US 20190258535A1

a2y Patent Application Publication o) Pub. No.: US 2019/0258535 A1

a9y United States

Morisse

43) Pub. Date: Aug. 22,2019

(54) DETERMINING RELATIONSHIPS BETWEEN
COMPONENTS IN A COMPUTING
ENVIRONMENT TO FACILITATE

ROOT-CAUSE ANALYSIS
(71) Applicant: Red Hat, Inc., Raleigh, NC (US)
(72) Inventor: Erich S. Morisse, New York, NY (US)
(21) Appl. No.: 15/902,696
(22) Filed: Feb. 22, 2018
Publication Classification
(51) Int.ClL
GO6F 11/07 (2006.01)
GO6F 17/27 (2006.01)
GO6F 11/34 (2006.01)
3840 42
e R
144 COMPUTING || o yLOGFLE f ¥ '
t_DEVICE i T1 | Al] MESSAGE | }24-t
16-11 PROCESSOR | yyd T2 A3 MESSAGE | }24-2
! =t T3 | A4 | MESSAGE | }24-3
o MEMORY | | T4| A8 | MESSAGE | }244
21 Al | T5 | A3 | MESSAGE | }24-5
264 A ! o 18] A4 | MESSAGE JEE
25 A3 ! T7 | AG | MESSAGE | }24-7
206+ a8 : T8 | A8 | MESSAGE | }24-8
20440 A i TS | A2 | MESSAGE | |
S e i W3< (T10] A4 | MESSAGE
o m , T11] A5 | MESSAGE
;9_" il - } T12| Al | MESSAGE
"’: A7 | was T3] A3 WESSAGE | |,
e —— : T14| A7 | MESSAGE
T15| A2 | MESSAGE
@ T16] A4 | MESSAGE
22~ Ws iR <:‘H
UL J 17| 46 | MESSAGE
] T18| A8 | MESSAGE | |

(52) US.CL
CPC GOGF 11/079 (2013.01); GOGF 11/3476

(2013.01); GOGF 17/2705 (2013.01)

(57) ABSTRACT

Determining relationships between components in a com-
puting environment to facilitate root-cause analysis is dis-
closed. A logfile comprising a plurality of logfile records that
were originated by a plurality of components is accessed.
The logfile records identify a time associated with the logfile
record and a component of the plurality of components that
originated the logfile record. Each respective logfile record
is parsed to identify the time associated with the logfile
record and the component that originated the logfile record.
A plurality of respective time window records is generated
based on the at least some of the plurality of logfile records.
Each respective time window record identifies the compo-
nents that originated the logfile records during a time
window that corresponds to the respective time window
record. A directed graph that identifies dependencies among
the plurality of components is generated based on the
plurality of time window records.

10

286~] COMPUTING DEVICE
3 PROCESSOR
DEVICE
329 MEMORY
|1l DEPENDENCY
3671 GENERATOR
DIRECTED
il GRAPH
ST ceneraToR ;
(E.G., BNLEARN) /
GRAPH /
sl VISUALIZER /
- EG,)
RGRAPHVIZ) ;
261 wiatazaa88l 1]/
224 walazpaneasl 1/
26-3iws| azaans 1Y
26-4-Hl wia| ALASAT |
26-54 | W5 | A2,A4,A6.A8
sl DIRECTED
GRAPH L
DISPLAY DEVICE |

v
= .
i L Ol
w,
o]
O
- !
S D0 ATIdSa Hve NS NIWOOT
— &
= :
> T HAvED B <
w a3103HIa nE OYSSEN 1 8Y 18LL
— IOVSSAN | 9 |11
/vy Py oY | S H-5-02 b - e

. 3OVSSIN | vV [911 5
g IRV | v | e
- SYPYZY | S 602 JOVESAN | BV PV
- /|| levevnrev|zm how o ot P e !
g / wﬁmﬂmim L | H1-02 JOVSSIN [€Y [SLL] FPM | o
= / - . JOVSSIN | 1Y |2l | | =l m,am
> ;||| ndnios SOVSSAN | 6 |LIL | m
= j 76 m Y e
S ; HIZINSIA JOVSSIN | vy [01L] Fem | i
o / Hd7HO | 3Ovesan | ov |6l |] ! LA | 1
e / (NHvaINg © 3 g-y2{ | 3OvSSan | v |81 ! e
- / HOLVYINGD : m e

LSO Loy AN ECTEET ET TN W | ov few
£ 43L034ia o-pZ{ | JOVSSAN | pv | oL ! o o0
= e s-v2{ | 3OVSSIN | €V |61) | R
£ oNaoNaasa % pvz{ | 3OVSSIN | 8Y | bl m onan Hig
z REOREN g e-v2{ | 30vSSaN | v | €L L IS
g A z-v7{ | 3OVSSIN fev |zl || 40SS300ud [-9t
b H0SSI00Nd Mg \-vz{ | 3OVSSIN | 1 | 1L WTTIREG
£ w 7 || ONLLNAWOO Hopy
) ADIAFAONINGINCO M8 g7 E;ﬂw m,m,%mwﬂ;wf | _ Ju
) 2 A
=
2
& 0l -

Patent Application Publication Aug. 22,2019 Sheet 2 of 7 US 2019/0258535 A1

START

¥
ACCESS ALOGFILE COMPRISING A PLURALITY OF LOGFILE
RECORDS THAT WERE ORIGINATED BY A PLURALITY OF
COMPONENTS, AT LEAST SOME OF THE LOGFILE RECORDS
IDENTIFYING A TIME ASSOCIATED WITH THE LOGFILE
RECORD AND A COMPONENT OF THE PLURALITY OF
COMPONENTS THAT ORIGINATED THE LOGFILE RECORD

T~ 200

A
PARSE FACH RESPECTIVE LOGFILE RECORD OF THE AT
LEAST SOME OF THE PLURALITY OF LOGFILE RECORDS TO
IDENTIFY THE TIME ASSOCIATED WITH THE LOGFILE T~ 202
RECORD AND THE COMPONENT THAT ORIGINATED THE
LOGFILE RECORD

¥
(GENERATE, BASED ON THE AT LEAST SOME OF THE
PLURALITY OF LOGFILE RECORDS, A PLURALITY OF

RESPECTIVE TIME WINDOW RECORDS, EACH RESPECTIVE

TIME WINDOW RECORD IDENTIFYING THE COMPONENTS
THAT ORIGINATED THE LOGFILE RECORDS DURING A TIME
WINDOW THAT CORRESPONDS TO THE RESPECTIVE TIME
WINDOW RECORD

T~ 204

¥
GENERATE, BASED ON THE PLURALITY OF TIME WINDOW
RECORDS, ADIRECTED GRAPH THAT IDENTIFIES
DEPENDENCIES AMONG THE PLURALITY OF COMPONENTS

T~ 2006

END

FIG. 2

US 2019/0258535 Al

Aug. 22,2019 Sheet 3 of 7

Patent Application Publication

0130 AY1dSI0 Hb8
NOLLYWHOANI HH-18
S
5va -85
STHOMLIN
NYISIAvE [Tr9s
YOV PV TV | SR | F-6-vS
LYEYLY M | Hepvs
SYPYZY | EM | HEbS
8Y'Gy Y Y | 2 | IS
QUPYEY LY | LM [rbs
ZINH O
nmumV i Nmm
HOLYHINZD [T
Hd7H9

{(NdvINE “©3)
HOLYMINTD |||
YHOMLIN -09
N¥ISIAYE

HOLVYANTO | gp

AONIONIIA
ROWEN Hoe
ERJEN

HOSS300Ud Lge

J0IA30 ONILNANOD 162

& Ol

VSN

Py [911]

14

| JOVSSAN | 1Y 21|

| 3OVSSaN | 9V [0LL|

£avz{ |

JOVESIN

py | 9L |

zave{|

AVSSHN

by | €L |

\avz{

JDVSSEN

WL

¢ 14001

{

> m.u?)

0¢-00:0

>R
G100:0

>EM

01-00:0

= O

50:00:0

> L

00-000

FOVSSIN [8v |81l
JOVSSAN | OV | 211
IOVSSIN | 7V |11

p7) | FOVSSIN | 1Y 1t1L
3YSSIN | £y [C1l

| 3ovssan | ov | 1L

| 3ovssan | zv | 6L
sv-yz{ | IOVSSIN | av | 8L
py-pz{ | 30vSsan | av | 4L
ev-yz{ | 30vssan | v | oL
2v-92{ | 30vSSaW | 8V | pL

wvzd{ | 3ovesan | ev |zl |

A

i

02000

i

§1:00:0

~ CiA
41000

A

§0:00:0

~ LM

00:00:0

-0}

US 2019/0258535 Al

Aug. 22,2019 Sheet 4 of 7

Patent Application Publication

vy Old

“mwo 409

US 2019/0258535 Al

Aug. 22,2019 Sheet 5 of 7

Patent Application Publication

(AT WELSAY

VX3 ININ Ty
DOVYLOLISIATYL] DHO

AHL51D3Y

VSHINSNG

TINYIN NOWIVa THYAY

OWNZLSAS HADVYNVNAHOMLIN

GNIDOT WILSKS

HEHDLYASIG AN

G Old

US 2019/0258535 Al

Aug. 22,2019 Sheet 6 of 7

Patent Application Publication

Havs
gaLoada (v
Ov'OV PV TY |SM | 02
IVEYIY oA | oz
SY'YTY |EM | -0
gY' Ov By e | oM | 20z
BYPYEV LY LM] 182
AMONIN Hge

ERE
H0853008d g
30130 ONILNAIWOD M2
Ol —w

9 old

49

YeS3IN | 8Y

gLl

30

VSSIW | OV

ik

49

YSSAN | Y

9L

9

VESHW 12V

Gt

39

LASE R AY

1223

114 5

YESdW | &Y

ELL

39

VESIW | LY

¢l

349

VeS| &Y

bLE

£

VESIN | vy

0Lt

E1

VS5 | 2

6L

ALES

YOS | 8V

8L

IRAIES

LESEN R

Ll

gvz{| 39

VoSN | FY

al

5v2{| 3O

YeSa | ey

&1

2 ALER

YESIW | 8Y

vl

AR

YOSIN | bY

€L

2zl ES)

VSSEW | £Y

A

vz | 39

YOSIW | LY

152 ,L;M

L ﬁ%gﬁ
oy

bl
Wrm
-
ov 8

o

5

=G

a7

~ M

A

> LM

gy L
A4 00
by —A
T e
£y b2
g¥ 307
LY -0

US 2019/0258535 Al

Aug. 22,2019 Sheet 7 of 7

Patent Application Publication

L O
¥
S0
i
oY
%
gl HOLVHANTD
19N00Yd WSO AONIONIJEd
HILNANOD
87
AT IOVHOLS WELSAS mwwﬁém%
vy
8 %
SNOLEYONNAINGD
08
JOV-HIINI o
FOIAIT 1NN 30IATA HOSSID0NA

US 2019/0258535 Al

DETERMINING RELATIONSHIPS BETWEEN
COMPONENTS IN A COMPUTING
ENVIRONMENT TO FACILITATE

ROOT-CAUSE ANALYSIS

TECHNICAL FIELD

[0001] The examples relate generally to determining a
cause of a fault or other problem in a complex computing
environment, and in particular to determining relationships
between components in a computing environment to facili-
tate root-cause analysis.

BACKGROUND

[0002] Today’s computing environments, such as desktop,
laptop, or server computing devices, and smartphone and
computing tablet computing devices, contain multiple levels
of complex software packages layered on top of one another
or that operate in parallel with one another in ways that may
be unknown to a user or operator. The software packages
may be made up of hundreds or thousands of components,
including sub-components, that each implement a certain
functionality or responsibility and that have both intra-
package component dependencies as well as inter-package
component dependencies. At times, a fault or other problem
occurs in such an environment, and it is desirable to deter-
mine the component or components responsible for the fault.

SUMMARY

[0003] The examples disclosed herein identify compo-
nents in a computing environment, and relationships
between the components to facilitate, for example, root-
cause analysis of problems.

[0004] In one example a method is provided. The method
includes accessing a logfile comprising a plurality of logfile
records that were originated by a plurality of components. At
least some of the plurality of logfile records identify a time
associated with the logfile record and a component of the
plurality of components that originated the logfile record.
The method further includes parsing each respective logfile
record of the at least some of the plurality of logfile records
to identify the time associated with the logfile record and the
component that originated the logfile record. The method
further includes generating, based on the at least some of the
plurality of logfile records, a plurality of respective time
window records. Each respective time window record iden-
tifies the components that originated the logfile records
during a time window that corresponds to the respective
time window record. The method further includes generat-
ing, based on the plurality of time window records, a
directed graph that identifies dependencies among the plu-
rality of components.

[0005] In another example, a computing device is pro-
vided. The computing device includes a memory and a
processor device. The processor device is coupled to the
memory and is to access a logfile comprising a plurality of
logfile records that were originated by a plurality of com-
ponents. At least some of the plurality of logfile records
identify a time associated with the logfile record and a
component of the plurality of components that originated the
logfile record. The processor device is further to parse each
respective logfile record of the at least some of the plurality
of logfile records to identify the time associated with the
logfile record and the component that originated the logfile

Aug. 22,2019

record. The processor device is further to generate, based on
the at least some of the plurality of logfile records, a plurality
of respective time window records. Each respective time
window record identifies the components that originated the
logfile records during a time window that corresponds to the
respective time window record. The processor device is
further to generate, based on the plurality of time window
records, a directed graph that identifies dependencies among
the plurality of components.

[0006] In another example a computer program product
stored on a non-transitory computer-readable storage
medium is provided. The computer program product
includes instructions to cause a processor device to access a
logfile comprising a plurality of logfile records that were
originated by a plurality of components. At least some of the
plurality of logfile records identify a time associated with the
logfile record and a component of the plurality of compo-
nents that originated the logfile record. The instructions
further cause the processor device to parse each respective
logfile record of the at least some of the plurality of logfile
records to identify the time associated with the logfile record
and the component that originated the logfile record. The
instructions further cause the processor device to generate,
based on the at least some of the plurality of logfile records,
a plurality of respective time window records. Each respec-
tive time window record identifies the components that
originated the logfile records during a time window that
corresponds to the respective time window record. The
instructions further cause the processor device to generate,
based on the plurality of time window records, a directed
graph that identifies dependencies among the plurality of
components.

[0007] Individuals will appreciate the scope of the disclo-
sure and realize additional aspects thereof after reading the
following detailed description of the examples in association
with the accompanying drawing figures.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The accompanying drawing figures incorporated in
and forming a part of this specification illustrate several
aspects of the disclosure and, together with the description,
serve to explain the principles of the disclosure.

[0009] FIG. 1 is a block diagram of an environment in
which examples may be practiced;

[0010] FIG. 2 is a flowchart illustrating a method for
determining relationships between components in a com-
puting environment to facilitate root-cause analysis accord-
ing to one example;

[0011] FIG. 3 is a block diagram of the environment
illustrated in FIG. 1, illustrating the use of multiple logfiles
according to one example;

[0012] FIG. 4 is a block diagram illustrating a visualiza-
tion of a directed acyclic graph depicted on a display device
according to one example;

[0013] FIG. 5 is a block diagram illustrating another
example of a directed acyclic graph depicted on the display
device generated based on logfile records from a logfile
contained on a desktop computer running a Linux operating
system, according to one example;

[0014] FIG. 6 is a simplified block diagram of the envi-
ronment illustrated in FIG. 1 according to one example; and
[0015] FIG. 7 is a block diagram of a computing device
suitable for implementing the disclosed examples.

US 2019/0258535 Al

DETAILED DESCRIPTION

[0016] The examples set forth below represent the infor-
mation to enable individuals to practice the examples and
illustrate the best mode of practicing the examples. Upon
reading the following description in light of the accompa-
nying drawing figures, individuals will understand the con-
cepts of the disclosure and will recognize applications of
these concepts not particularly addressed herein. It should be
understood that these concepts and applications fall within
the scope of the disclosure and the accompanying claims.

[0017] Any flowcharts discussed herein are necessarily
discussed in some sequence for purposes of illustration, but
unless otherwise explicitly indicated, the examples are not
limited to any particular sequence of steps. The use herein of
ordinals in conjunction with an element is solely for distin-
guishing what might otherwise be similar or identical labels,
such as “first logfile” and “second logfile,” and does not
imply a priority, a type, an importance, or other attribute,
unless otherwise stated herein. The term “about” used herein
in conjunction with a numeric value means any value that is
within a range of ten percent greater than or ten percent less
than the numeric value. As used herein and in the claims, the
articles “a” and “an” in reference to an element refers to
“one or more” of the element unless otherwise explicitly
specified.

[0018] Today’s computing environments, such as desktop,
laptop, or server computing devices, smart phones and
computing tablet computing devices, and the like, contain
multiple levels of complex software packages layered on top
of one another or that operate in parallel with one another in
ways that may be unknown to a user or operator. The
software packages may be made up of hundreds or thou-
sands of components, including sub-components, that each
implement a certain functionality or responsibility and that
have both intra-package dependencies as well as inter-
package dependencies. At times, a problem, such as a fault
or warning, occurs in such an environment, and it is desir-
able to determine the component or components responsible
for the problem.

[0019] The individual attempting to “debug” the problem
is in essence attempting to find a root cause of the problem
such that a solution can then be devised. However, it is rare
that the individual is knowledgeable about the architecture
of each software package in a computing environment, or
could be aware of the many, many intra-package component
dependencies as well as inter-package component depen-
dencies between software packages used in the computing
environment. The user is not only unlikely to know depen-
dencies between components, but is even unlikely to know
what the components are.

[0020] Many components have the capability of logging
information during execution. Logfile records from multiple
components may be written to multiple logfiles, or may be
consolidated by a logging mechanism into one or a relatively
small number of logfiles. The examples disclosed herein
analyze logfile records stored in one or more logfiles to
determine the components and the dependencies between
components that generate logfile records. The examples
generate a directed graph that can be visually presented to a
user to visually depict and identify both the components and
the dependencies between the components. The user can
utilize the visual depiction of the directed graph to learn

Aug. 22,2019

about the components executing at the time the problem
occurred and to learn about the dependencies between such
components.

[0021] In some examples disclosed herein, a Bayesian
network is generated based on the logfile records. The
Bayesian network comprises a directed acyclic graph with
probability information that identifies a probability that a
child component generated a logfile record given the exis-
tence of logfile records from one or more parent compo-
nents.

[0022] Among other advantages, the examples facilitate
an improved dependency generator computing device that
can determine, and identify, complex inter-package and
intra-package component dependencies executing in a com-
plex software environment. The examples reduce the need
for highly trained and skilled people to identify a root cause
of a problem, making the resolution of problems both less
expensive, and more timely.

[0023] The examples also facilitate an improvement to
computer functionality itself via the generation of a novel
directed graph structure that identifies what were previously
unknown components, as well as unknown relationships
between components. Thus, the examples are directed to
specific improvements in computer functionality.

[0024] FIG. 1 is a block diagram of an environment 10 in
which examples may be practiced. The environment 10
includes a computing environment 12 that, solely for pur-
poses of illustration, includes a single computing device 14.
However, the examples have applicability to computing
environments 12 that include multiple different computing
devices. The computing device 14 includes a processor
device 16 and a memory 18. The memory 18 includes a
plurality of components 20-1-20-8 (generally, components
20. The phrase “component” as used herein refers to a
software process that is capable of being independently
identified as the subject component of a logfile record. The
subject component is identified in the logfile record such that
the logfile record contains a message about the subject
component. The subject component itself may have gener-
ated the logfile record, or another component may have
generated the logfile record and identified the subject com-
ponent in the logfile record. The subject component of a
logfile record will be referred to herein as an originator of
the logfile record, or, as the component that originated the
logfile record.

[0025] While for purposes of illustration only eight com-
ponents 20 are illustrated, a computing environment 12 may
involve hundreds or thousands of different components. The
components 20 may be contained in different software
packages from different software vendors. Some of the
components 20 may be subcomponents of other components
20. The components 20 have relationships with one another,
such as, by way of non-limiting example, one component 20
may invoke another component 20, one component 20 may
necessarily execute before or after another component 20, or
one component 20 may rely on the output of another
component 20 to perform its respective function. A user 22
of the computing environment 12 may be completely
unaware of what components 20 are executing in the com-
puting environment 12, and/or completely unaware of the
dependencies and/or relationships between all or some of the
components 20.

[0026] Over a period of time, the components 20 generate
a plurality of logfile records 24, 24-1-24-8, that are stored in

US 2019/0258535 Al

a logfile 25-1 of a plurality of different logfiles 25-1-25-N.
The components 20 may directly store the logfile records 24
in the logfile 25-1, or may store, send or otherwise commu-
nicate the logfile records 24 to one or more intermediaries
that ultimately consolidate the logfile records 24 in the
logfile 25-1.

[0027] The environment 10 also includes a computing
device 28 that has a processor device 30 and a memory 32.
The computing device 28 may also be coupled to or have an
integral display device 34. In one example, the memory 32
includes a dependency generator 36 that implements some
or all of the functionality disclosed herein. It will be noted
that because the dependency generator 36 is a component of
the computing device 28, functionality implemented by the
dependency generator 36 may be attributed herein to the
computing device 28 generally. Moreover, in examples such
as shown in FIG. 1 where the dependency generator 36
comprises software instructions that program the processor
device 30 to carry out functionality discussed herein, func-
tionality implemented by the dependency generator 36 may
be attributed herein to the processor device 30.

[0028] Assume that the computing device 14 experiences
a problem, such as a fault, a warning message, or an inability
to perform an action that the computing device 14 is
expected to do. The dependency generator 36 accesses, such
as by reading, the logfile 25-1. The dependency generator 36
parses each respective logfile record 24 to identify the time
associated with the logfile record 24 and the component 20
that originated the logfile record 24. In particular, the
dependency generator 36 may utilize string parsing tech-
niques that match predetermined patterns in the logfile
records 24 to separate portions of the logfile records 24, such
as a time component portion 38 that identifies the time
associated with the respective logfile record 24, a compo-
nent portion 40 that identifies the component that originated
the respective logfile record 24 (i.e., is the subject of the
respective logfile record 24) and a message portion 42 that
contains information, typically textual, about the respective
logfile record 24.

[0029] The dependency generator 36 determines a time
span of a plurality of time windows W1-W5. The length of
the time span for each time window W1-WS5 is typically the
same. In some examples, the length of the time span may be
user-configurable. In other examples, the dependency gen-
erator 36 may analyze the logfile 25-1 and determine a
suitable time span based on the overall time span of the
logfile records 24 in the logfile 25-1, the number of logfile
records 24 in the logfile 25-1, or a combination of the time
span of the logfile records 24 in the logfile 25-1 and the
number of logfile records 24 in the logfile 25-1. While the
time span can be any length of time, in some examples it is
a time span between about 1 second and 60 seconds. In other
examples it is a time span between about 1 minute and 60
minutes.

[0030] The dependency generator 36 generates, based on
the plurality of logfile records 24, a plurality of respective
time window records 26-1-26-5 (generally, time window
records 26), each respective time window record 26 identi-
fying the components 20 that originated the logfile records
24 during a particular time window having a time span of the
determined length of time.

[0031] As an example, assume that the determined time
span is five seconds. The dependency generator 36 identifies
the time window W1 as covering a five-second time span,

Aug. 22,2019

and, based on the time component portion 38 of the logfile
records 24, identifies the logfile records 24-1-24-4 as the
logfile records generated during that five-second time span.
Based on the component portion 40 of the logfile records
24-1-24-4, the dependency generator 36 generates the time
window record 26-1, which identifies the components 20-1
(A1), 20-3 (A3), 20-4 (A4), and 20-8 (A8) as the compo-
nents 20 that originated the logfile records during the time
window W1.

[0032] The dependency generator 36 identifies the time
window W2 as covering a different five second time span
than that of the time window W1. The time window W2 may
be the next successive five seconds after the time window
W1, or may capture a non-successive five second time span
if, for example, no logfile records 24 were generated in the
five seconds that occurred after the time window W1. The
dependency generator 36, based on the time component
portion 38 of the logfile records 24, identifies the logfile
records 24-5-24-8 as the logfile records generated during
that five second time span. Based on the component portion
40 of the logfile records 24-5-24-8, the dependency genera-
tor 36 generates the time window record 26-2, which iden-
tifies the components 20-3 (A3), 20-4 (A4), 20-6 (A6), and
20-8 (A8) as the components 20 that originated the logfile
records during the time window W2. The dependency gen-
erator 36, in a similar manner, generates the time window
records 26-3-26-5 based on the time windows W3-W5,
respectively.

[0033] The dependency generator 36 generates, based on
the plurality of time window records 26-1-26-5, a directed
graph 44 that identifies dependencies among the plurality of
components 20. In one example, the dependency generator
36 generates the directed graph 44 by utilizing a directed
graph generator 46 such as may be provided by a graph-
generating package, such as, by way of non-limiting
example, a BNlearn graph-generating package, available at
www.bnlearn.com. However, the examples herein can uti-
lize any directed graph generator. The dependency generator
36 may then output the directed graph 44 for presentation on
the display device 34. In some examples, the dependency
generator 36 generates an image 48 that identifies each
component 20, and identifies dependencies between the
components 20 via lines 50 that connect pairs of the com-
ponents 20. The lines 50 may include arrowheads to show
dependencies from one component 20 to another component
20. The image 48 thus visually depicts to the user 22 not
only the components 20 that were executing on the com-
puting device 14 at the time of the problem, which may have
been unknown to the user 22, but also relationships between
the components 20. As an example, if the user 22 is aware
that the problem occurred in the component 20-4, based on
the image 48, the user 22 may initially perform an analysis
on the component 20-8 or the components 20-2, 20-7, and
20-5 to ascertain whether such components lead to the
problem in the component 20-4.

[0034] In some examples, the dependency generator 36
may generate the image 48 by utilizing a graph visualizer 52,
such as, by way of non-limiting example, a Rgraphviz graph
visualizer, available at www.bioconductor.org, although the
examples are not limited to any particular graph visualizer.
[0035] FIG. 2 is a flowchart illustrating a method for
determining relationships between the components 20 in the
computing environment 12 to facilitate root-cause analysis
according to one example. FIG. 2 will be discussed in

US 2019/0258535 Al

conjunction with FIG. 1. The dependency generator 36
accesses the logfile 25-1 comprising the plurality of logfile
records 24 that were originated by the plurality of compo-
nents 20. At least some of the plurality of logfile records 24
identify a time associated with the logfile record 24 and the
component 20 of the plurality of components 20 that origi-
nated the logfile record 24 (FIG. 2, block 200).

[0036] The dependency generator 36 parses each respec-
tive logfile record 24 to identify the time associated with the
logfile record 24 and the component 20 that originated the
logfile record 24 (FIG. 2, block 202). The dependency
generator 36 generates, based on the plurality of logfile
records 24, a plurality of respective time window records 26,
each respective time window record 26 identifying the
components 20 that originated the logfile records 24 during
a time window W that corresponds to the respective time
window record 26 (FIG. 2, block 204). The dependency
generator 36 generates, based on the plurality of time
window records 26, the directed graph 44 that identifies
dependencies between the plurality of components 20.
[0037] FIG. 3 is a block diagram of the environment 10
illustrating the use of multiple logfiles 25 according to one
example. In this example, a plurality of logfile records 24,
24-A1-24-A5, 24-B1-24-B3 are spread among a first logfile
25-A and a second logfile 25-B. In this example, logfile
records 24 generated by the components 20-2, 20-3, 20-5,
20-6, 20-7, and 20-8 were written to the logfile 25-A, and
logfile records generated by the components 20-1 and 20-4
were written to the logfile 25-B. The dependency generator
36 determines a time span of a plurality of time windows
W1-WS5. In this example, it will be assumed that the time
span is five seconds. Time window W1 covers the time from
0:00:00 (midnight) to 0:00:05 in both the logfiles 25-A and
25-B. Thus, the logfile records 24-Al, 24-A2, 24-B1, and
24-B2 were generated within the same time window W1.
The dependency generator 36, based on the logfile records
24-A1, 24-A2, 24-B1, and 24-B2 in the logfiles 25-A and
25-B, generates a time window record 54-1 which identifies
the components 20-1 (A1), 20-3 (A3), 20-4 (A4), and 20-8
(A8) as components that originated the logfile records
24-A1, 24-A2, 24-B1, and 24-B2 during the time window
W1.

[0038] The dependency generator 36 identifies the time
window W2 as covering a different five second time span
than that of the time window W1, such as the time span from
0:00:05 to 0:00:10. The dependency generator 36, based on
the logfile records 24-A3, 24-Ad, 24-A5, and 24-B3 in the
logfiles 25-A and 25-B, generates a time window record
54-2 which identifies the components 20-3 (A3), 20-6 (A6),
20-8 (A8), and 20-4(A4) as components that originated the
logfile records 24-A3, 24-A4, 24-A5, and 24-B3 during the
time window W2.

[0039] Similarly, the dependency generator 36 generates
time window records 54-3-54-5 based on the logfile records
24-A and 24-B in the time windows W3-W5 in the logfiles
25-A and 25-B. In this example, the dependency generator
36 generates a Bayesian network 56 based on the plurality
of time window records 54-1-54-5. The Bayesian network
56 includes a directed acyclic graph (DAG) 58. The DAG 58
comprises a plurality of nodes, each node of the plurality of
nodes corresponding to a particular component 20, and
edges between pairs of nodes, the edges identifying a
direction from a parent node of the pair of nodes to a child
node of the pair of nodes, and information 61 that identifies

Aug. 22,2019

a probability of the occurrence of a logfile record 24
originated by the component 20 that corresponds to the child
node given that a logfile record 24 of the component 20
corresponding to the parent node exists.

[0040] In one example, the dependency generator 36 gen-
erates the Bayesian network 56 by utilizing a Bayesian
network generator 60, such as may be provided by a
Bayesian network generating package, such as, by way of
non-limiting example, the BNlearn Bayesian network gen-
erating package, available at www.bnlearn.com. However,
the examples herein can utilize any Bayesian network gen-
erator.

[0041] FIG. 4 is a block diagram illustrating a visualiza-
tion of the directed acyclic graph 58 that is depicted on the
display device 34 according to one example. The depen-
dency generator 36 generates an image 62 based on the
directed acyclic graph 58 that identifies each component 20,
dependencies between components 20 via lines 64 that
connect pairs of components 20, and probabilities 66 asso-
ciated with pairs of components 20. The probabilities 66
may identify a probability that a logfile record originating
from a child component will exist given that a logfile record
of'a parent component exists (identified in the image 62 via
the letter “T”), and/or a probability that a logfile record
originating from a child component will exist given that a
logfile record of a parent component does not exist (identi-
fied in the image 62 via the letter “F”).

[0042] FIG. 5 is a block diagram illustrating another
example of a directed acyclic graph depicted on the display
device 34 generated based on logfile records from a logfile
contained on a desktop computer running a Linux operating
system, according to one example.

[0043] FIG. 6 is a simplified block diagram of the envi-
ronment 10 illustrated in FIG. 1 according to one example.
The environment 10 includes the computing device 28
which has the memory 32 and the processor device 30
coupled to the memory 32. The processor device 30 is to
access the logfile 25-1 comprising the plurality of logfile
records 24 that were originated by the plurality of compo-
nents 20, at least some of the plurality of logfile records 24
identifying a time associated with the logfile record 24 and
a component 20 of the plurality of components 20 that
originated the logfile record 24. The processor device 30 is
further to parse each respective logfile record 24 of the at
least some of the plurality of logfile records 24 to identify
the time associated with the logfile record 24 and the
component 20 that originated the logfile record 24. The
processor device 30 is further to generate, based on the at
least some of the plurality of logfile records 24, the plurality
of respective time window records 26, each respective time
window record 26 identifying the components 20 that origi-
nated the logfile records 24 during a time window W1-W5
that corresponds to the respective time window record 26.
The processor device 30 is further to generate, based on the
plurality of time window records 26, a directed graph 44 that
identifies dependencies among the plurality of components
20.

[0044] FIG. 7 is a block diagram of the computing device
28 suitable for implementing examples according to one
example. The computing device 28 may comprise any
computing or electronic device capable of including firm-
ware, hardware, and/or executing software instructions to
implement the functionality described herein, such as a
computer server, a desktop computing device, a laptop

US 2019/0258535 Al

computing device, a smartphone, a computing tablet, or the
like. The computing device 28 includes the processor device
30, the memory 32, and a system bus 68. The system bus 68
provides an interface for system components including, but
not limited to, the memory 32 and the processor device 30.
The processor device 30 can be any commercially available
or proprietary processor.

[0045] The system bus 68 may be any of several types of
bus structures that may further interconnect to a memory bus
(with or without a memory controller), a peripheral bus,
and/or a local bus using any of a variety of commercially
available bus architectures. The memory 32 may include
non-volatile memory 70 (e.g., read-only memory (ROM),
erasable programmable read-only memory (EPROM), elec-
trically erasable programmable read-only memory (EE-
PROM), etc.), and volatile memory 72 (e.g., random-access
memory (RAM)). A basic input/output system (BIOS) 74
may be stored in the non-volatile memory 70 and can
include the basic routines that help to transfer information
between elements within the computing device 28. The
volatile memory 72 may also include a high-speed RAM,
such as static RAM, for caching data.

[0046] The computing device 28 may further include or be
coupled to a non-transitory computer-readable storage
medium such as a storage device 76, which may comprise,
for example, an internal or external hard disk drive (HDD)
(e.g., enhanced integrated drive electronics (EIDE) or serial
advanced technology attachment (SATA)), HDD (e.g., EIDE
or SATA) for storage, flash memory, or the like. The storage
device 76 and other drives associated with computer-read-
able media and computer-usable media may provide non-
volatile storage of data, data structures, computer-executable
instructions, and the like. Although the description of com-
puter-readable media above refers to an HDD, it should be
appreciated that other types of media that are readable by a
computer, such as Zip disks, magnetic cassettes, flash
memory cards, cartridges, and the like, may also be used in
the operating environment, and, further, that any such media
may contain computer-executable instructions for perform-
ing novel methods of the disclosed examples.

[0047] A number of modules can be stored in the storage
device 76 and in the volatile memory 72, including an
operating system and one or more program modules, such as
the dependency generator 36, which may implement the
functionality described herein in whole or in part.

[0048] All or a portion of the examples may be imple-
mented as a computer program product 78 stored on a
transitory or non-transitory computer-usable or computer-
readable storage medium, such as the storage device 76,
which includes complex programming instructions, such as
complex computer-readable program code, to cause the
processor device 30 to carry out the steps described herein.
Thus, the computer-readable program code can comprise
software instructions for implementing the functionality of
the examples described herein when executed on the pro-
cessor device 30. The processor device 30, in conjunction
with the dependency generator 36 in the volatile memory 72,
may serve as a controller, or control system, for the com-
puting device 28 that is to implement the functionality
described herein.

[0049] An operator, such as the user 22, may also be able
to enter one or more configuration commands through a
keyboard (not illustrated), a pointing device such as a mouse
(not illustrated), or a touch-sensitive surface such as the

Aug. 22,2019

display device 34. Such input devices may be connected to
the processor device 30 through an input device interface 80
that is coupled to the system bus 68 but can be connected by
other interfaces such as a parallel port, an Institute of
Electrical and Electronic Engineers (IEEE) 1394 serial port,
a Universal Serial Bus (USB) port, an IR interface, and the
like.

[0050] The computing device 28 may also include a
communications interface 82 suitable for communicating
with a network as appropriate or desired.

[0051] Individuals will recognize improvements and
modifications to the preferred examples of the disclosure.
All such improvements and modifications are considered
within the scope of the concepts disclosed herein and the
claims that follow.

What is claimed is:

1. A method comprising:

accessing, by a computing device comprising a processor

device, a logfile comprising a plurality of logfile
records that were originated by a plurality of compo-
nents, at least some of the plurality of logfile records
identifying a time associated with the logfile record and
a component of the plurality of components that origi-
nated the logfile record;

parsing each respective logfile record of the at least some

of the plurality of logfile records to identify the time
associated with the logfile record and the component
that originated the logfile record;

generating, based on the at least some of the plurality of

logfile records, a plurality of respective time window
records, each respective time window record identify-
ing the components that originated the logfile records
during a time window that corresponds to the respec-
tive time window record; and

generating, based on the plurality of time window records,

a directed graph that identifies dependencies among the
plurality of components.

2. The method of claim 1 further comprising outputting
the directed graph for presentation.

3. The method of claim 2 wherein outputting the directed
graph for presentation comprises outputting on a display
device an image that identifies each component and that
identifies the dependencies among the plurality of compo-
nents via lines that connect pairs of components.

4. The method of claim 1 wherein accessing the logfile
comprising the plurality of logfile records further comprises
accessing a plurality of different logfiles that contain corre-
sponding pluralities of logfile records; and

wherein generating, based on the plurality of logfile

records, the plurality of respective time window
records further comprises generating, based on the
plurality of logfile records in the plurality of logfiles,
the plurality of respective time window records.

5. The method of claim 4 wherein each logfile of the
plurality of different logfiles includes logfile records gener-
ated within a same timeframe.

6. The method of claim 1 wherein generating the directed
graph that identifies the dependencies among the plurality of
components comprises generating a Bayesian network based
on the plurality of time window records, the Bayesian
network comprising a directed acyclic graph.

7. The method of claim 6 wherein the directed acyclic
graph comprises:

US 2019/0258535 Al

a plurality of nodes, each node of the plurality of nodes
corresponding to a particular component of the plural-
ity of components; and
edges between pairs of nodes, the edges identifying a
direction from a parent node of the pair of nodes to a
child node of the pair of nodes, and information that
identifies a probability of an occurrence of a logfile
record originated by a component that corresponds to
the child node given that a logfile record of a compo-
nent corresponding to the parent node exists.
8. The method of claim 7 further comprising:
generating an image based on the directed acyclic graph
that identifies:
each component;
the dependencies among the plurality of components
via lines that connect pairs of components; and

the information that identifies the probability of the
occurrence of the logfile record originated by the
component that corresponds to the child node given
that the logfile record of the component correspond-
ing to the parent node exists; and
effecting presentation of the image on a display device.
9. The method of claim 1 wherein the time window is in
a range between one second and one minute.
10. The method of claim 1 wherein the time window is
non-varying.
11. A computing device, comprising:
a memory; and
a processor device coupled to the memory to:
access a logfile comprising a plurality of logfile records
that were originated by a plurality of components, at
least some of the plurality of logfile records identi-
fying a time associated with the logfile record and a
component of the plurality of components that origi-
nated the logfile record;

parse each respective logfile record of the at least some
of the plurality of logfile records to identify the time
associated with the logfile record and the component
that originated the logfile record;

generate, based on the at least some of the plurality of
logfile records, a plurality of respective time window
records, each respective time window record identi-
fying the components that originated the logfile
records during a time window that corresponds to the
respective time window record; and

generate, based on the plurality of time window
records, a directed graph that identifies dependencies
among the plurality of components.

12. The computing device of claim 11 wherein to access
the logfile comprising the plurality of logfile records, the
processor device is further to access a plurality of different
logfiles that contain corresponding pluralities of logfile
records; and

wherein to generate, based on the plurality of logfile
records, the plurality of respective time window
records, the processor device is further to generate,
based on the plurality of logfile records in the plurality
of logfiles, the plurality of respective time window
records.

13. The computing device of claim 11 wherein to generate

the directed graph that identifies the dependencies among
the plurality of components, the processor device is further

Aug. 22,2019

to generate a Bayesian network based on the plurality of
time window records, the Bayesian network comprising a
directed acyclic graph.

14. The computing device of claim 13 wherein the
directed acyclic graph comprises:

a plurality of nodes, each node of the plurality of nodes
corresponding to a particular component of the plural-
ity of components; and

edges between pairs of nodes, the edges identifying a
direction from a parent node of the pair of nodes to a
child node of the pair of nodes, and information that
identifies a probability of an occurrence of a logfile
record originated by a component that corresponds to
the child node given that a logfile record of a compo-
nent corresponding to the parent node exists.

15. The computing device of claim 14 wherein the pro-

cessor device is further to:
generate an image based on the directed acyclic graph that
identifies:
each component;
the dependencies among the plurality of components
via lines that connect pairs of components; and

the information that identifies the probability of the
occurrence of the logfile record originated by the
component that corresponds to the child node given
that the logfile record of the component correspond-
ing to the parent node exists; and

effecting presentation of the image on a display device.

16. A computer program product stored on a non-transi-
tory computer-readable storage medium and including
instructions configured to cause a processor device to:

access a logfile comprising a plurality of logfile records
that were originated by a plurality of components, at
least some of the plurality of logfile logfile records
identifying a time associated with the logfile record and
a component of the plurality of components that origi-
nated the logfile record;

parse each respective logfile record of the at least some of
the plurality of logfile records to identify the time
associated with the logfile record and the component
that originated the logfile record;

generate, based on the at least some of the plurality of
logfile records, a plurality of respective time window
records, each respective time window record identify-
ing the components that originated the logfile records
during a time window that corresponds to the respec-
tive time window record; and

generate, based on the plurality of time window records,
a directed graph that identifies dependencies among the
plurality of components.

17. The computer program product of claim 16 wherein to
access the logfile comprising the plurality of logfile records,
the instructions further cause the processor device to access
a plurality of different logfiles that contain corresponding
pluralities of logfile records; and

wherein to generate, based on the plurality of logfile
records, the plurality of respective time window
records, the instructions further cause the processor
device to generate, based on the plurality of logfile
records in the plurality of logfiles, the plurality of
respective time window records.

18. The computer program product of claim 16 wherein to

generate the directed graph that identifies the dependencies
among the plurality of components, the instructions further

US 2019/0258535 Al

cause the processor device to generate a Bayesian network
based on the plurality of time window records, the Bayesian
network comprising a directed acyclic graph.

19. The computer program product of claim 18 wherein

the directed acyclic graph comprises:

a plurality of nodes, each node of the plurality of nodes
corresponding to a particular component of the plural-
ity of components; and

edges between pairs of nodes, the edges identifying a
direction from a parent node of the pair of nodes to a
child node of the pair of nodes, and information that
identifies a probability of an occurrence of a logfile
record originated by a component that corresponds to
the child node given that a logfile record of a compo-
nent corresponding to the parent node exists.

20. The computer program product of claim 19 wherein

the instructions further cause the processor device to:
generate an image based on the directed acyclic graph that

identifies:

each component;

the dependencies among the plurality of components
via lines that connect pairs of components; and

the information that identifies the probability of the
occurrence of the logfile record originated by the
component that corresponds to the child node given
that the logfile record of the component correspond-
ing to the parent node exists; and

effecting presentation of the image on a display device.

#* #* #* #* #*

Aug. 22,2019

