PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 96/31041
HO4L 29/06 Al

(43) International Publication Date: 3 October 1996 (03.10.96)

(21) International Application Number: PCT/US96/04122 | (81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY,

(22) International Filing Date: 26 March 1996 (26.03.96)

(30) Priority Data:

08/412,154 28 March 1995 (28.03.95) Us

(71) Applicant (for all designated States except US): APPLE COM-
PUTER, INC. [US/US]; One Infinite Loop, Cupertino, CA
95014 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): QUINN, Michael
[US/US]; 919 Hedegard Avenue, Campbell, CA 95008
(US). SHOEMAKER, Michael, B. [US/US]; 397 Alric
Drive, San Jose, CA 95123 (US).

(74) Agent: PETERSON, James, W.; Bumns, Doane, Swecker &
Mathis, L.L.P., P.O. Box 1404, Alexandria, VA 22313-1404
(US).

CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS,
JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD,
MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD,
SE, SG, SI, SK, TJ, T™, TR, TT, UA, UG, US, UZ, VN,
ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU,
MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM,
GA, GN, ML, MR, NE, SN, TD, TG).

Published
With international search report.
Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: SYSTEM FOR RUN-TIME CONFIGURATION OF NETWORK DATA TRANSFER PATHS

(57) Abstract

A system which
enables new data paths
that form different network
configurations to be
constructed during the
run time of the computer
determines whether a given
configuration specified
by a user is legitimate,
and if so, creates a data
path. In operation, a user
issues a command to open
a data path containing a

USER
COMMAND

'

OPEN

CONFIGURATORS
TCPAP

A-TALK

L1 L
<1 N/

particular protocol module.
In response, an open handler
(36) inquires whether the
particular configuration
specified by the user is
proper. This inquiry is sent
to individual configurators,
which comprise shared
libraries (38) containing
routines pertaining to the
various protocols stored in
the computer. A configurator
(39) responds to the inquiry
if it contains information
pertaining to the protocol

HANDLER

CONFIGURATOR
LIST

1/

identified by the user. The routines in the configurator also indicate whether the protocol module can be connected in a legitimate
configuration. If it can, a data path is created. If the particular connection specified by the user is not proper, the configurator routine
identifies a different code module to which the specified protocol module can be properly connected. This process continues in a recursive
manner, until a legitimate configuration is found. A data path is then constructed in accordance with this configuration.

applications under the PCT.

AM
AT
AU
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
cM
CN
CS
CzZ
DE
DK
EE
ES
F1
FR
GA

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

Amenia
Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada
Central African Republic
Congo
Switzerland
Cote d'lIvoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Estonia

Spain

Finland

France

Gabon

GB
GE
GN
GR

IE
IT
JP

3R

ER8

LK
LR
LT
LU
LV
MC
MD

ML
MN
MR

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic Peopie’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka

Liberia

Lithuania
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia
Mauritania

MW

NE
NL
NO
NZ
PL

RO
RU
SD

SG
St

SK
SN
L¥2

TG
T

UA
uG
us
uz

Malawi

Mexico

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore
Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam

WO 96/31041 PCT/US96/04122

10

15

20

25

SYSTEM FOR RUN-TIME CONFIGURATION OF
NETWORK DATA TRANSFER PATHS

Field of the Invention

The present invention is directed to computer networks, and more
particularly to a system for dynamically configuring a computer, during run

time, to establish a data transfer path for communications over a network.

Background of the Invention
For two or more computers to exchange data with one another over a

network, their communications must conform to an established protocol.
Typically, different protocols are associated with particular services or tasks,
such as data packaging or packet routing. A given protocol specifies rules for
setting up, carrying out and terminating a communications connection. The
protocol may also specify the format that information packets must have as the
information is transmitted from one point on the network to another.

A computer connected to a network must be configured so that the
information which it sends over the network conforms to the protocol.
Typically, this configuration is accomplished by establishing a data transfer path
within the computer. This data transfer path is interposed between user
processes that are running on the computer, e.g. application programs, and the
hardware which provides the physical connection to the network. In the UNIX
operating system, for example, the data transfer path is established by means of
the "streams" facility. A stream is a communications path that is established
between an I/O device and a user process. Typically, a stream includes a head
end, which communicates with the user process, a driver that handles data
transfers between the operating system and the 1/0 device, and one or more
modules between the head end and the driver. Each module processes data
transferred between the network and the computer in accordance with a

designated protocol.

WO 96/31041 PCT/US96/04122

-2 -

A separate module is employed for each different protocol that is to be
used, and multiple modules can be linked together to form any desired
configuration. In the UNIX operating system. for example, various modules
are configured to form a stream by commands to "Open" a module, to "Push”

5 one module above or below another, and/or to "Link" one module to another.
Because there are a large number of different types of modules, many different
configurations are possible. However, not all possible configurations will
work. For example, a module for the Datagram Delivery Protocol (DDP) can
be linked to a device driver for an Ethernet network architecture. However,

10 the AppleTalk Data Stream Protocol (ADSP) is not compatible with the
Ethernet architecture. Thus, a stream in which an ADSP module is directly
linked to an Ethernet driver would not form a workable connection.

In addition, configuring a workable stream commonly requires detailed
knowledge of the implementation of the protocol modules. For instance, to

15 create a stream consisting of the DDP protocol operating with Ethernet, it is not
enough to open an Ethernet driver and push a DDP module onto it. Most
protocols require complex "plumbing” in order to become operational. For
example, to implement a stream containing a DDP module over an Ethernet
driver requires the operations of "opening” a DDP module, "opening” two

20 Ethernet drivers, and then "linking" the Ethernet drivers beneath the DDP
module. This creates a DDP control stream. From that point on, creating a
new DDP stream only requires "opening" a DDP module.

To avoid problems associated with unworkable data transfer paths,
configuration information is typically set up using a daemon process, i.e. one

25 which runs in the background and is transparent to the user, and system
configuration files supplied by a network administrator. Subsequently, when
the computer is booted, the daemon process retrieves the information stored in
the configuration file and configures the computer to set up the proper streams
with the modules connected in a manner that is workable.

30 One limitation associated with this approach is the fact that the

configuration of the computer to set up a data stream is carried out by certain

WO 96/31041 PCT/US96/04122

10

15

20

25

30

-3
processes that typically operate only when the computer boots up. These
processes run in the background, without any user awareness of their operation,
and are referred to as "daemon" processes. An application is not able to
specify a new configuration and use it without modifying configuration files and
starting up a new daemon process to create a protocol stack. It is not currently
possible to dynamically create a stream for a protocol family that is not set up

ahead of time by one of the daemon processes.

Summary of the Invention

It is desirable, therefore, to provide a system which enables new data
paths that form different network configurations to be constructed during the
run time of the computer. In accordance with the present invention, such an
objective is achieved by means of a system which dynamically determines
whether a given configuration is legitimate, and if so, creates a data path during
run time. In operation, a user issues a command to open a data path containing
a set of protocol modules, and optionally a device driver. In response, an open
handler inquires whether the particular configuration specified by the user is
proper. This inquiry is sent one by one to a number of software modules called
configurators, which comprise shared libraries containing routines pertaining to
the various protocols stored in the computer. The open handler first inquires
which configurator can handle the topmost protocol module in the user-specified
configuration. A configurator respond positively to the inquiry if it contains
information pertaining to the protocol identified by the handler. If it does not
contain information pertaining to the protocol requested for configuration, it
will respond negatively, so that the open handler can go on to the next
configurator. Once the appropriate configurator is identified, it is asked to
configure the specified module. The routines in the configurator decide
whether the given module can use the next module specified in the desired
configuration. In order to do so, the configurator may decide to add one or
more modules to the path. Once the configurator has determined that the

topmost two modules are compatible, the process is continued in a recursive

WO 96/31041 PCT/US96/04122

10

15

20

25

-4 -
manner, until either a legitimate configuration is created, or a determination is
made that one cannot be created. A data path is then constructed in accordance
with the legitimate configuration.

Further features of the present invention, as well as the advantages
offered thereby, are explained in greater detail hereinafter with reference to

specific embodiments illustrated in the accompanying drawings.

Brief Description of the Drawings

Figure 1 is a schematic diagram of an exemplary wide-area network;

Figure 2 is a block diagram of a stream;

Figure 3 is a first example of a stream configuration;

Figure 4 is a second example of a stream configuration;

Figure 5 is a block diagram of the system for dynamically configuring a
stream;

Figure 6 is a block diagram of the structure of a configurator;

Figures 7A and 7B illustrate respective states in the construction of a
first example of a user-commanded configuration for a stream;

Figures 8A, 8B and 8C illustrate respective states in the construction of
a second example of a user-commanded configuration for a stream; and

Figures 9A, 9B and 9C illustrate respective states in the construction of

a third example of a user-commanded configuration for a stream.

Detailed Description
To facilitate an understanding of the principles which underlie the

present invention, it is described hereinafter with reference to its
implementation in a particular embodiment. Specifically, the invention is
described in the context of the UNIX operating system, with particular
reference to the construction of streams for internetwork configurations. It will
be appreciated, however, that the practical implementations of the present
invention are not limited to this particular embodiment. Rather, the invention

will find utility in any environment in which it is desirable to configure a

WO 96/31041 PCT/US96/04122

10

15

20

25

30

-5.-
computer for different types of internetwork communications during the run
time of the computer without having to set them up at boot time, and where
protocol implementations are discrete modules rather than monolithic entities.

An example of a network in which the present invention might be
employed is illustrated in Figure 1. The architecture of the network does not
form part of the invention itself. Rather, it is described herein to provide a
more thorough understanding of the environment in which the invention
operates. The particular example illustrated in Figure 1 is a wide-area network
10 that includes two subnetworks, namely local-area networks 12a and 12b.
Each of the subnetworks includes a number of computers 14a. 14b which can
be connected by means of various topologies. For example, the computers 14a
on the local-area network 12a might be connected via a token-ring architecture,
whereas those on the local area network 12b might be connected via an
Ethernet architecture. Depending upon the particular architecture that is
employed, the various subnetworks may use different sets of protocols for
communications among the computers within the local-area networks. For
example, the token ring network 12a might employ the IP and DDP protocols,
and the Ethernet network might employ the DDP and IPX protocols.
Accordingly, each of the computers in the respective networks must be
configured to transmit and receive information in accordance with the
established protocols.

Furthermore, a different protocol, such as X.25, may be employed to
transmit information between the different subnetworks via the wide-area
network 10. Consequently, the computers on the various subnetworks may
need to be configured to send and receive information via a first set of
protocols, for communications within the local-area network, and via a second
set of protocols, for communications over the wide-area network.

The particular manner in which the computers are configured to operate
in accordance with the different protocols can vary from one computer type to
another. In general, however, the configuration is carried out by establishing a

data path within the computer between a user process, such as an application

WO 96/31041 PCT/US96/04122

10

15

20

25

30

-6 -

program or operating system service, and the 1/O device which provides the
connection to the network. Data which travels over this path is processed in
accordance with one or more protocols associated with that path. In a
computer which runs on the UNIX operating system, such a data path is
constructed as a "stream".

Generally speaking, a stream in the UNIX operating system is a full-
duplex processing and data transfer path between a device driver in the kernel
space of the operating system and a process in the user space of the computer’s
memory. Referring to Figure 2, a stream 16 comprises a head end 18, a driver
20 and one or more protocol modules 22 between the head end and the driver.
The head end 18 is the portion of the stream that is nearest to the user process
24. All system calls that are made by a user-level process to a stream are
processed by the head end. The driver 20 is a device driver that handles data
transfer between the kernel and the I/0 device which connects the computer to
the network. For example, the driver might be associated with an Ethernet
connection, an ARCnet connection or a token ring connection.

Each protocol module 22 carries out processing functions that are to be
performed on data flowing in the stream in accordance with the protocol it
represents. This data processing may involve changing the way the data is
represented, adding or deleting header and trailer information, and/or
packetizing and depacketizing data, depending upon the requirements of the
particular protocol.

Any number of modules can be present in the stream between the head
end and the driver. For example, Figure 3 illustrates a stream in which an
ADSP module 26 is located above a DDP protocol module 28, which
communicates with an Ethernet driver 30. Furthermore, muitiple drivers can
be present within a stream, for example to connect a single module with any
one of a number of different I/O devices. Figure 4 illustrates a data stream in
which a single DDP protocol module 32 is functionally connected to two

individual Ethernet device drivers 34a and 34b.

WO 96/31041 PCT/US96/04122

10

15

20

25

30

-7

In accordance with the present invention, streams of this type can be
constructed at any time while the computer is running. Figure 5 is a block
diagram of the architecture of the system for providing this functionality.
Typically, this structure will form part of the operating system for the
computer. Referring to Figure 5, the system includes an open handler 36
which responds to a user command to open a particular stream. Associated
with the handler are a number of shared libraries 38 that are referred to herein
as "configurators”. Each configurator is associated with a different type of
network architecture. For example, one configurator 38a might be associated
with the AppleTalk network architecture, and another configurator 38b can be
associated with the TCP/IP architecture. Configurators can also be associated
with drivers, where the driver may be complex. For example, a Point-to-Point
Protocol (PPP) driver is typically composed of several modules all cooperating
together, and located in the data path above a serial port.

Each configurator contains a list of one or more protocols that are
appropriate for its associated architecture, as well as a method for determining
what modules may sit below it in a data path, and a method for determining
default modules when none are specified. The method for determining which
modules can be located below a given protocol module may be as simple as a
list of the legal modules and driver names, or as complex as a dynamically-
loaded shared library methodology. The determination of the default modules
that can reside below a given protocol module is typically determined by either
hard-coded rules, or preference (configuration) information stored in the
system.

A list 39 of all of the configurators in the computer system is stored
with the open handler 36. Each configurator 38 registers itself with the list 39,
for example at boot time, so that its existence is known to the open handler.

In the general operation of the system shown in Figure 5, a two-step
process is carried out to create a legitimate configuration. Initially, a user
commands the open handler 36 to open a stream containing one or more

specified protocol modules. In the first step of the process, the open handler

WO 96/31041 PCT/US96/04122

10

15

20

25

30

- 8-

sequentially polls the configurators 38 to determine which one can configure the
first module in the proposed configuration. When one of the configurators
responds that it can configure the module, the open handler instructs the
configurator to configure the module. This two-step operation is repeated for
each of the modules in the stream, until a legitimate configuration is created, or
a determination is made that a legitimate configuration cannot be created.

Once the open handler has created a legitimate configuration (i.e. the
configuration was created with no error), the open handler than asks the
configurator for the topmost module to create the stream. This configurator
then recursively invokes the open handler to ask the configurator for the next
module down to create that stream. Once the stream for the next module down
is created, the original configurator then does whatever "plumbing” is
necessary, i.e. opening, pushing and linking of modules, to finish creating the
stream.

In the preferred embodiment of the invention, each of the configurators
38 comprises two main portions, represented in Figure 6. One portion 40 is
initially loaded into memory when the open handler itself is loaded, e.g. at boot
time. This portion contains a list of the protocols that are associated with the
network architecture to which the configurator pertains. Also contained within
this portion is a list of control streams that have been created by the
configurator. When the open handler polls the configurators to determine
whether any of them can configure a particular type of module (the "can
configure" step), the configurator checks the list of protocols contained in its
first portion 40. If the list does not contain the protocol, the configurator
responds in the negative and no further action is taken by the configurator. If
the protocol is known to the configurator, it will respond positively.

When a configurator responds with an indication that it can configure a
particular module, the open handler issues the command to that configurator to
configure the module (the "configure" step). In response, the configurator
loads a second portion 42 of its library of routines. This portion contains the

routines that are used to actually configure the module and create the stream.

WO 96/31041 PCT/US96/04122

10

15

20

25

30

-9.
In operation, the routines contained in this portion of the configurator first
determine whether the connection of components specified by the open handler
is a recognized one. If so, an identification of this fact is returned to the open
handler. If the configuration is not one that is recognized, the configurator uses
its built-in rules to attempt to create a valid configuration by inserting one or
more modules below it in the configuration. It then returns either an error
indication or the valid configuration to the open handler.

When the configurator is reinvoked the last time to create the stream, it
checks a list of control streams to determine whether a control stream with the
specified configuration already exists. If such a control stream exists, the
configurator responds to the request by "cloning" the control stream, i.e. setting
up a reference to the control stream, and returning it to the open handler. If no
such control stream is in existence, the configurator creates the control stream,
placing it and the configuration information on the list of control streams. It
then returns a clone of the control stream to the open handler.

It is also possible to have configurators for protocols that do not use a
control stream. In cases like these, the configurator exists solely to validate
and create the configuration. For example, implementations of serial drivers do
not normally require a control stream.

A more detailed description of the features and operation of the system
depicted in Figure 5 will be set forth hereinafter with reference to specific
examples.

When the user desires to construct a stream for a particular protocol, a
command is sent to the handler 36 to open the stream. Included within the
command is an identification of one or more protocols to be employed.
Optionally, the user can also specify one or more device drivers. This
identification is called a "configuration". For example, the user might send a
command to open a stream having the configuration shown in Figure 7A, in
which a DDP module 44 is connected to an Ethernet driver 46. The description
of this proposed configuration can be supplied in any suitable form. For

example, it might be a simple text command, such as "ddp,enet”, or it can be a

WO 96/31041 PCT/US96/04122

10

15

20

25

30

-10 -

more complex data structure, such as a graphic of the type shown in Figure 7A.
The proposed configuration can represent any possible combination of modules
and drivers, including those which are not workable.

In response to the open command, the open handler 36 selects the
topmost module in the structure, in this case the DDP module, and sends an
inquiry to each of the configurators 38, asking if any of them is capable of
configuring a DDP module. The DDP protocol is employed in networks based
on the AppleTalk network architecture. Therefore, the library 38a associated
with AppleTalk generates a positive response to the inquiry.

When the open handler receives this response, it sends a command to
the responding configurator to configure the module. The configurator then
loads a routine which enables it to create a legitimate connection with the
module. In the case of a DDP module, an intermediate module (called an
ADEYV) is required. The AppleTalk configurator is aware of this, through its
stored routines, and inserts the appropriate ADEV module 48 into the
configuration between the DDP module and the Ethernet driver, resulting in the
configuration shown in Figure 7B. The open handler is re-invoked to configure
the ADEV stream 50. At this point, the configurator for AppleTalk is invoked
recursively to configure the ADEV module. In this particular example, the
AppleTalk architecture requires two different protocol types when using
Ethernet, so the configurator inserts a second Ethernet driver 52 under the
ADEV stream, as shown in Figure 7C, and reinvokes the open handler to
configure each Ethernet driver.

A "standard" configurator can be provided which understands that
Ethernet is a driver, and therefore just needs to be "opened”. As long as a
configurator for the Ethernet driver does not exist, the "standard" configurator
can claim responsibility for configuring the Ethernet driver. At this point, the
whole process has completed without an error, and a valid configuration has
been created.

Once a valid configuration has been created, the open handler 36 re-

invokes the AppleTalk configurator to actually construct the stream. The

WO 96/31041 PCT/US96/04122

10

15

20

25

30

- 11 -
AppleTalk configurator determines if it already has created a stream with these
specifications. If it has, it simply clones a copy of the stream and returns it to
the open handler. If it has not, the open handler is re-invoked to construct the
ADEYV stream 50 (which re-invokes the open handler to construct the Ethernet
streams). The actual construction of the stream is carried out by issuing the
appropriate "open”, "push" and "link" commands to the streams facility of the
operating system. The required commands for a particular construction are
stored in the configuration routines of the configurator. Once the ADEV
stream is constructed, the DDP module 44 is opened, and the ADEV stream is
linked under it. This control stream is then stored in the AppleTalk
configurator, along with the information about the configuration, so that
subsequent attempts to open this stream simply clone the control stream. A
clone of the "control" stream is then returned to the open handler.

Figure 8A illustrates a second example of a possible data path
configuration that might be sent by the user with the open command. In this
case, an ADSP module is linked to two Ethernet drivers, which is not a
legitimate configuration. As before, the open handler 36 polls each of the
configurators 38, asking which one can configure an ADSP module. This
module is also within the AppleTalk suite of protocols, and so the configurator
38a provides a positive response. The open handler then issues a command to
configure the module, which causes the configurator to load a routine associated
with that module.

Since an ADSP module cannot be directly linked to an Ethernet driver,
the configurator attempts to find a legitimate configuration. Stored within the
configurator’s routine are rules to help identify legitimate connections for a
given module. In the present case, an ADSP module can be linked to a DDP
module. Therefore, the configurator places a DDP module below the ADSP
module in the configuration, as shown in Figure 8B. The configurator then
reinvokes the open handler to configure the DDP stream 54, which then goes
through similar steps as indicated in the previous example. The result of this

operation is a new proposed configuration shown in Figure 8C, in which a

WO 96/31041 PCT/US96/04122

10

15

20

25

30

-12 -
DDP module and associated ADEV modules are interposed between the ADSP
module and the Ethernet drivers.

The open handler 36 is then re-invoked to construct the stream. As
before, it asks the AppleTalk configurator to construct the stream. The
configurator asks the open handler to construct the DDP stream. This causes a
second invocation of the AppleTalk configurator, which returns a "cloned”
version of the control stream to the first invocation. The first invocation then
"pushes” the ADSP module onto the "cloned" DDP stream and returns the
stream to the open handler.

A third example of a user-requested stream is shown in Figure 9A. In
this example, and ADSP module sits above two different device drivers, one for
a LocalTalk network and one for a token ring network. When this structure is
passed to the open handler, it proceeds in the same manner as described above
with respect to the example of Figure 8A. As a result, the structure of Figure
9B is formed, where a DDP module is inserted between the ADSP module and
the 1/O drivers. This new configuration forms a first control stream 56, which
the open handler then attempts to create by means of a call to configure the
DDP module. In this case, the DDP module can be linked to the LocalTalk
driver, but not to the token ring driver. Consequently, the routine for
configuring the DDP module causes a new ADEV module, labeled DDP/TR, to
be inserted between the DDP module and the token ring driver, as shown in
Figure 9C. This configuration results in a second control stream 58 being
formed. The open handler stores this new configuration, and then attempts to
construct this control stream in the same manner as described previously.

The open handler operates this way in a recursive manner to both
configure and construct the stream, beginning with the lowest, or innermost,
control stream. If it is not able to construct such a stream, an error message is
generated and no further efforts are taken. If, however, the stream 58 can be
constructed, the open handler proceeds to construct the next stream 56, by

linking the DDP module to the LocalTalk driver and to the DDP/TR module of

WO 96/31041 PCT/US96/04122

10

15

20

-13 -
the lower stream 58. Once this is carried out, the ADSP module is then pushed
above the DDP module, to complete the stream.

When a control stream is constructed, it can be cloned for use in
different data path streams. For this purpose, each control stream has a
configuration and a usecount associated with it, which are stored in the first
portion 40 of the associated configurator. When the stream is first constructed,
its usecount is set to a value of one. For each subsequent use of the control
stream in another stream, the value of the usecount is incremented.

Conversely, each time a stream cloned from the control stream is closed, or
dismantled, the usecount is decremented. When the usecount decrements to a
value of zero, the control stream itself can be dismantled.

From the foregoing, it can be seen that the present invention provides a
system that enables data paths for internetwork communications to be created
during the run time of a computer. The user can specify any desired
combination of protocol modules and I/0 drivers, and the system attempts to
construct a legitimate data path that utilize the specified components. It will be
appreciated by those skilled in this technology that the present invention can be
embodied in other specific forms without departing from the spirit or essential
characteristics thereof. The presently disclosed embodiments are considered in
all respects to be illustrative and not restrictive. The scope of the invention is
indicated by the appended claims, rather than the foregoing description, and all
changes that come within the meaning and range of equivalents thereof are

intended to be embraced therein.

WO 96/31041 PCT/US96/04122

10

15

20

25

- 14 -

What is claimed is:

1. A system for constructing network communication data paths during the
run time of a computer, comprising:

a plurality of configurator code modules, each of which contains
information pertaining to the configuration of communications protocols that are
associated with respective network architectures; and

a handler which receives commands from a user to construct a data path
that operates with a specified protocol and polls said configurator modules to
determine which one is associated with the specified protocol and commands
said one configurator module to construct a data path which operates with the

specified protocol.

2. The system of claim 1 wherein a command from a user specifies a
protocol path, and said one library determines whether the specified protocol

path can be legitimately created.

3. The system of claim 2 wherein a command from a user specifies first
and second function modules that are to be linked together, and wherein said
one configurator code module determines whether said first and second function
modules can be legitimately linked and, if they cannot, identifies a third module

that can be legitimately linked to the first function module.

4. The system of claim 3 wherein said configurator code modules generate
a configuration containing a plurality of components that are legitimately
linkable to one another in response to a user command, and said open handler
recursively commands said configurator modules to construct a data path

containing each of said components.

3. The system of claim 3 wherein said handler determines whether one of

said configurator modules is associated with the third function module and

WO 96/31041 PCT/US96/04122

10

15

20

25

- 15 -
controls such configurator module to construct a first data path which contains
said second and third function modules, and subsequently controls the
configurator module associated with the first function module to construct a

data path which contains the first function module and the first data path.

6. The system of claim 1 wherein each of said configurator modules
comprises a first portion that is resident in computer memory and which
contains a list of protocol modules associated with the configurator module, and
a second portion that is selectively loadable into memory and which contains
routines for configuring a data path in accordance with a specified protocol

module.

7. The system of claim 6 wherein a configurator identifies itself as capable
of configuring a particular protocol module, in response to an inquiry from said
open handler which identifies said particular protocol module, based on
information contained in said first portion, and loads said second portion into
memory in response t0 a command from said open handler to configure said

particular protocol module.

8. A method for constructing network communication data paths during the
run time of a computer, comprising the steps of:

storing a plurality of configurator code modules in memory of the
computer, wherein each configurator module contains information pertaining to
the configuration of communications protocols that are associated with
respective network architectures;

receiving a command from a user to construct a data path in accordance
with a specified protocol;

determining which one of said configurator modules is associated with
the specified protocol; and

controlling the determined one of said configurator modules to construct

a data path which operates in accordance with the specified protocol.

WO 96/31041 PCT/US96/04122

10

15

20

25

- 16 -
9. The method of claim 8 wherein the step of determining which
configurator module is associated with the specified protocol comprises the
steps of successively polling the configurator modules, and sending a positive
response from the configurator module that is associated with the specified

protocol.

10. The method of claim 9 wherein said controlling step includes the step of
commanding the configurator module which sends a positive response to
configure a data path containing a module which operates in accordance with

the specified protocol.

11. The method of claim 10 wherein the commanded configurator module
determines whether a particular configuration of a specified protocol module

and a second function module is legitimate and, if it is not. identifies a third

function module to be linked to the specified module to form a legitimate

configuration.

12. The method of claim 11 further including the step of determining which
configurator module is associated with the third function module. and
controlling the determined configurator module to configure a data path
containing said second and third function modules, to create a legitimate

configuration.

13. The method of claim 12 further including the step of recursively
invoking said configurator modules to construct a data path containing function

modules in a legitimate configuration identified by said configurator modules.

14. The method of claim 8 wherein said storing step comprises the steps of
initially storing a first part of each configurator module which identifies
protocols with which the configurator modules are respectively associated, and

selectively loading a second part of a configurator module, which contains

WO 96/31041 PCT/US96/04122

-17 -

routines for constructing a data path, in response to a command to configure a

data path in accordance with a specified protocol.

WO 96/31041 PCT/US96/04122

1/6

24

USER PROCESS

‘ |
|)

| HEAD END 14—

l ¢ T I

l |

16 |

PROTOCOL /

MODULE 4

VO DRIVER ___,L/ 4 FIG. 2

WO 96/31041 PCT/US96/04122

HEAD END T

1
ADSP -

¢ T :' FIG. 3

FIG. 4 L

I
I
I
I
I
DDP |
I
I
I
|
]

WO 96/31041

3/6

PCT/US96/04122

CONFIGURATORS

A-TALK TCPNP

COMMAND /

N,

36 N\ 3sb
]
OPEN
HANDLER <€
CONFIGURATOR | 3°
LIST /
PROTOCOL1
PROTOCOL2
40 PROTOCOL3

\-.

CONFIGURATIONS
CONTROL STREAMS

USECOUNTS

FIG. 6

!

CONFIGURE
ROUTINES

WO 96/31041

4/6

PCT/US96/04122

44
oop +— | DOP
— = ZI= =7
” : ADEV _| +
ener : i,j?
| ENET :
FIG. 7A Sp———
FIG. 7B
-—/44
DDP
______ 1z,
: ADEV | »T’//
|
|
| /£ N\ =)
| ENET ENET 7

WO 96/31041

ADSP

ENET1

5/6

PCT/US96/04122

ENET2

FIG. BA

ADSP

DDP

ADEV1

/. \

FIG. 8C

ADEV2

ENET1

ENET1

ENET2| |ENET2

WO 96/31041 PCT/US96/04122

6/6
ADSP
e dndiegi
ADSP | DDP
I
|
|
TOKEN TOKEN
LocalTalk RING | | LocalTalk RING
- — — — — — - —C
FIG. 9A FIG. 9B
ADSP
[- - ==~ |
| DDP | 56
| L,//
[S B
i | 1 | s8
| LocalTalk | { DDP/TR l_y
| I
FIG.9C , X
| RING |,
| L |
| I

INTERNATIONAL SEARCH REPORT

Intern ~nal Applicaton No

PCY/,US 96/04122

A.
I

C F
PC 6 HO4L29/06

LASSIFICATION OF SUBJECT MATTER

According to Internatonal Patent Classficaton (IPC) or to both natonal classficaton and [PC

B. FIELDS SEARCHED

HO4L

Mimumum documentaton searched (classificaton system foliowed by clasaificaton symbols)

IPC 6

Documentation searched other than mimumum documentauon to the extent that such documnents are inciuded in the fields searched

Electronic data base consulted during the internanonai search (name of data base and, where pracucal, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

us,

pages 90-104, XP0O00577006
M.S.KOGAN ET AL:
SYSTEM/2"

"THE DESIGN OF OPERATING

see page 99, right-hand column, line 16 -
page 100, right-hand coiumn, line 46

_/--

Category * | Citanon of document, with indicaton, where appropnate, of the relevant passages Relevant to clam No.
X EP,A,0 555 997 (ATT) 18 August 1993 1,6,8,14
see page 4, line 32 - page 7, line 1
see page 9, line 20 - page 10, line 1
see figure 13
Y 2 '5) 7 ’
9-13
Y IBM SYSTEMS JOURNAL, 2-5,7,
vol. 27, no. 2, 1988, ARMONK, NEW YORK 9-13

Further documents are iisted in the conunuagon of hox C.

Patent family members are listed 1n annex.

A"

E°

-L-

-0

-p*

* Speaal categones of ated documents :

document defining the general state of the art which 1s not
considered to be of parucular relevance

carlier document but published on or after the internatonal
filing date

document which may throw doubts on pnionty claimys) or

whach 15 cited to estabhish the publicauon date ot another
citauon or other speaal reason (as specttied)

document refernng to an oral disclosure, use, exhibiton or
other means

document published prior to the internautonal filing date but
later than the pnority date claimed

T

later documnent published after the internatonal filing date
or prionty date and not 1n contlict with the application but
cited to understand the pnncipie or theory underiying the
invenuaon

document of partucular reievance; the claimed tnventon
cannot be considered novel or cannot be considered o
involve an inventive step when the document is taken alone

document of parucular relevance; the clamed inventon
cannot be considered 10 involve an inventuve step when the
document 15 combined with one or more other such docu-
ments, such combination being obvious to a person sklled
in the art.

document member of the same patent famuly

Date of the actual completon ot the internauonal search

31 July 1996

Date of mailing of the internataonal scarch report

07.08.96

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+ 31-70) 340-3016

Authonzed officer

Canosa Areste, C

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

Interr ~nal Apphicaton No

PCy,US 96/04122

C.(Continuagon) DOCUMENTS CONSIDERED TO BE RELEVANT

pages 197-205, XP000234937
C.TSCHUDIN: “FLEXIBLE PROTOCOL STACKS"
see the whole document

Category ° | Citauon of dc with tndicauon, where appropnate, of the relevant passages Relevant to claim No.
A COMPUTER COMMUNICATIONS REVIEW, 1-13
vol. 21, no. 4, September 1991, NEW YORK
us,

Form PCT/1SA/210 {(conunuauon of second sheat) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

ronmauon on patent family members

Interr -nal Applicauton No

PCi,US 96/04122

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-555997 18-08-93 CA-A- 2088395 11-08-93

JP-A- 6006406 14-01-94

Form PCT/ISA/31D (patant famaly annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

