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(57) ABSTRACT

Methods and systems for automated assessment of sperma-
togenesis. Embodiments disclosed herein relate to drug
development and testicular toxicity in safety evaluation
studies, and more particularly to automatic assessment of
spermatogenesis through a staging of seminiferous tubules
using Artificial Intelligence/deep learning methods. A
method disclosed herein includes detecting the seminiferous
tubules by analyzing a testes tissue specimen and mapping
the seminiferous tubules to detect and segment germ cells.
The method includes classifying the seminiferous tubules
into respective stages based on the segmented germ cells.
The method further includes categorizing the seminiferous
tubules into a normal category and an abnormal category
based on the segmented germ cells. The method further
includes categorizing the testes tissue specimen into the
normal category and the abnormal category based on the
classification of the seminiferous tubules for toxicity analy-
sis.
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FIG. 2A
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FIG. 6A
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ESp heads: limited bundling; ESp location: close to lumen
1 |{with very few moving towards base; Spc size: smaller than
stages 2/3

ESp heads: frequent bundling; ESp location: majority in the
mid-epithelial region; Spc size: smaller than stages 4/5 and 6
ESp heads: prominent bundling; ESp location: majority
4, 5 | within lower third of the epithelium; Spc size: larger than

2,3

stages 2/3

ESp heads: prominent bundling; ESp location: majerity
towards lumen; Spc size: larger than stages 4/5

RSp shape: round; ESp location: aligned around the lumen;
7 |RB size: smaller than stage 8; RB location: random with
respect to ESp heads

RSp shape: slightly eccentric; RB size: larger than stage 7;

RB position: mostly below ESp heads

RSp shape: towards elliptical; RB location: may be present
in lumen and within epithelium; No ESp

RSp shape: elliptical and starts to elongate; RB location:
10 {may be present in lower third and base of epithelium; No
ESp

ESp shape: banana shape; RB location: may lie in the lower
third and base of epithelium; No RSp

ESp shape: longer and thinner than stage 11; Chromatin

11

12
density of large pachytene: denser than stage 13; No RSp

ESp shape: similar or thinner than stage 12; Chromatin
density of large pachytene: less than stage 12; No RSp

ESp shape: similar to stage 13; At least one MB; RSp may
also be present
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FIG. 6C
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METHODS AND SYSTEMS FOR
AUTOMATED ASSESSMENT OF
SPERMATOGENESIS

CROSS REFERENCE TO RELATED
APPLICATION

This application is based on and derives the benefit of
Indian Provisional Application 201921037223 filed on 16
Sep. 2019, the contents of which are incorporated herein by
reference.

TECHNICAL FIELD

Embodiments disclosed herein relate to assessing sper-
matogenesis, and more particularly to automatic assessment
of spermatogenesis through a staging of seminiferous
tubules.

BACKGROUND

In general, toxicology studies of male reproductive func-
tions have received increased interest due to growing reports
of falling sperm counts and rising reproductive disorders,
infertility, or the like. The toxological effects on the male
reproductive function may be detected by identifying dis-
turbances in spermatogenesis, wherein spermatogenesis
involves production of the sperm from primordial germ
cells.

Testicular tissue may be examined with an awareness of
a spermatogenic cycle to ensure the identification of the
subtle disturbances in the spermatogenesis. A histopatho-
logical examination of testicular/testes tissue can be per-
formed for detecting the toxological effects on the male
reproductive function. The histopathological examination
can serve as a sensitive and early indicator of the subtle
disturbances in the spermatogenesis.

A conventional histopathological examination may
involve detecting seminiferous tubules (that can be made up
of columnar Sertoli cells and surrounded by spermatogenic
cells) from the testicular tissue, and classifying the detected
seminiferous tubules into different stages of the spermato-
genic cycle, which can be used to identify the subtle
disturbances in the spermatogenesis. However, detection
and classification of the seminiferous tubules into the dif-
ferent stages of the spermatogenic cycle may involve
manual assessment, which may be a complicated and
demanding task. Also, the complexity of testicular histology,
close association of various germ cells, and overlapping
features among adjacent stages makes manual assessment
challenging and time consuming. Further, manual assess-
ment is dependent on an expertise of a pathologist, which
can be highly subjective.

In addition, in the conventional histopathological exami-
nation, for better visualization and assessment of histologi-
cal features during the staging of the spermatogenic cycle,
additional stained slides such as PAS (Periodic Acid Schiff)
stained slides are required in addition to normal H&E
(Hematoxylin and Fosin) stained slides.

OBIJECTS

The principal object of embodiments herein is to disclose
methods and systems for automatic assessment of sperma-
togenesis through a staging of seminiferous tubules.
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Another object of embodiments herein is to disclose
methods and systems for using Artificial Intelligence (AI)/
deep learning methods for automatically assessing sperma-
togenesis.

Another object of embodiments herein is to disclose
methods and systems for using testes tissue specimen
stained with Hematoxylin and Fosin (H&E) for automati-
cally assessing spermatogenesis.

Another object of embodiments herein is to disclose
methods and systems for detecting the seminiferous tubules
from the testes tissue specimen stained with H&E and
classifying the seminiferous tubules into respective stages of
a spermatogenic cycle based on a segmentation of germ
cells.

Another object of embodiments herein is to disclose
methods and systems for categorizing the seminiferous
tubules into at least one of a normal category and an
abnormal category based on the stages and morphological
features.

Another object of embodiments herein is to disclose
methods and systems for categorizing the testes tissues
specimen into the normal category and the abnormal cat-
egory based on the categorization of the seminiferous
tubules for toxicity analysis.

These and other aspects of the embodiments herein will
be better appreciated and understood when considered in
conjunction with the following description and the accom-
panying drawings. It should be understood, however, that
the following descriptions, while indicating at least one
embodiment and numerous specific details thereof, are given
by way of illustration and not of limitation. Many changes
and modifications may be made within the scope of the
embodiments herein without departing from the spirit
thereof, and the embodiments herein include all such modi-
fications.

BRIEF DESCRIPTION OF FIGURES

The patent or application file contains at least one drawing
and/or photograph executed in color. Copies of this patent or
patent application publication with color drawing(s) and/or
photograph(s) will be provided by the Office upon request
and payment of the necessary fee.

Embodiments herein are illustrated in the accompanying
drawings, through out which like reference letters indicate
corresponding parts in the various figures. The embodiments
herein will be better understood from the following descrip-
tion with reference to the drawings, in which:

FIG. 1A depicts an electronic device, wherein the elec-
tronic device can automatically assess spermatogenesis,
according to embodiments as disclosed herein;

FIGS. 1B, 1C and 1D depict an example deep learning
model used for an automated assessment of the spermato-
genesis, according to embodiments as disclosed herein;

FIG. 2A is an example diagram depicting the automated
assessment of the spermatogenesis, according to embodi-
ments as disclosed herein;

FIG. 2B is an example diagram depicting benefits of the
automated assessment of the spermatogenesis, according to
embodiments as disclosed herein;

FIG. 3 depicts an example electronic device for the
automated assessment of the spermatogenesis, according to
embodiments as disclosed herein;

FIG. 4 is an example diagram depicting seminiferous
tubules, according to embodiments as disclosed herein;
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FIGS. 5A, 5B, 5C, 5D and 5E are example diagrams
depicting segmentation of germ cells, according to embodi-
ments as disclosed herein;

FIGS. 6A, 6B, 6C, 6D, 6E, and 6F are example diagrams
depicting automated spermatogenic staging, according to
embodiments as disclosed herein;

FIG. 7 is an example diagram depicting a method for
automated assessment of the spermatogenesis, according to
embodiments as disclosed herein;

FIG. 8 is an example diagram depicting a result of the
automated spermatogenic staging, according to embodi-
ments as disclosed herein;

FIG. 9 is an example graph depicting a comparison of the
stage frequency map generated based on the automated
staging and a stage frequency map generated by an expert
pathologist, according to embodiments as disclosed herein;
and

FIG. 10 is an example table depicting average accuracy
and average precision resulted from the automated sperma-
togenic staging, according to embodiments as disclosed
herein.

DETAILED DESCRIPTION

The embodiments herein and the various features and
advantageous details thereof are explained more fully with
reference to the non-limiting embodiments that are illus-
trated in the accompanying drawings and detailed in the
following description. Descriptions of well-known compo-
nents and processing techniques are omitted so as to not
unnecessarily obscure the embodiments herein. The
examples used herein are intended merely to facilitate an
understanding of ways in which the embodiments herein
may be practiced and to further enable those of skill in the
art to practice the embodiments herein. Accordingly, the
examples should not be construed as limiting the scope of
the embodiments herein.

Embodiments herein disclose methods and systems for
automatic assessment of spermatogenesis through a staging
of seminiferous tubules. Embodiments herein disclose meth-
ods and systems for using Artificial Intelligence (Al)/deep
learning methods for assessment of the spermatogenesis.
Embodiments herein disclose methods and systems for
toxicity analysis based on the assessment of the spermato-
genesis. Referring now to the drawings, and more particu-
larly to FIGS. 1A through 10, where similar reference
characters denote corresponding features consistently
throughout the figures, there are shown embodiments.

FIG. 1A depicts an electronic device 100, wherein the
electronic device can automatically assess spermatogenesis,
according to embodiments as disclosed herein. Examples of
the electronic device 100 can be, but not limited to, a mobile
phone, a smart phone, a tablet, a handheld device, a phablet,
a laptop, a computer, a wearable computing device, a
medical equipment, an Internet of Thing (IoT) device and so
on. The electronic device 100 can also be a special-purpose
computing system such as, but not limited to, a server, a
cloud, a multiprocessor system, a microprocessor based
programmable consumer electronics, a network computer, a
minicomputer, a mainframe computer, and so on. The elec-
tronic device 100 can also be a server coupled with data-
bases (not shown). The server may be a standalone server, or
a server on a cloud. The electronic device 100 can also be a
cloud computing platform, that can be connected to user
devices (devices used by a physician/pathologist, a user/
patient, and so on) located in different geographical loca-
tions to provide information about the assessment of the
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spermatogenesis. The electronic device 100 referred herein
can be configured to perform automated assessment of
spermatogenesis, from which toxological effects on male
reproductive function can be detected. The spermatogenesis
can be a process of sperm cell development.

The electronic device 100 includes a processor 102, a
memory 104, a communication interface 106, an Input/
Output (I/0) module 108, and a display 110. In an embodi-
ment, the electronic device 100 includes at least one imaging
sensor, at least one camera, at least one scanner, and so on
(not shown). In an embodiment, the electronic device 100
may be connected to at least one of the at least one imaging
sensor, the at least one camera, the at least one scanner, and
so on externally using a communication network (not
shown). Examples of the communication network can be,
but is not limited to, the Internet, a wired network (a Local
Area Network (LAN), Ethernet and so on), a wireless
network (a Wi-Fi network, a cellular network, a Wi-Fi
Hotspot, Bluetooth, Zigbee and so on) and so on. The
electronic device 100 may also be connected to at least one
external entity such as, but not limited to, a server, external
databases, and so on using the communication network for
accessing information required for performing assessment
of the spermatogenesis.

The processor 102 can be at least one of a single proces-
ser, a plurality of processors, multiple homogeneous or
heterogeneous cores, multiple Central Processing Units
(CPUs) of different kinds, microcontrollers, special media,
and other accelerators. Further, the plurality of processing
units 102 may be located on a single chip or over multiple
chips.

The processor 102 can be configured to perform auto-
mated assessment of the spermatogenesis. In an embodi-
ment, the processor 102 can perform the assessment of the
spermatogenesis by classifying seminiferous tubules into
stages of a spermatogenic cycle/spermatogenesis process.

For the assessment of the spermatogenesis, a testes tissue
specimen can be obtained. In an example herein, the testes
tissue can be obtained from at least one of humans, rats,
mice, monkey, dogs, and any other organism. It is to be
noted that the number of stages can vary with the organism.
The obtained testes tissue specimen can be mounted over
glass slides. Thereafter, the obtained and mounted testes
tissue specimen can be dehydrated and embedded in a
suitable material. In an embodiment herein, the dehydrated
tissue can be embedded in melted paraffin wax. The embed-
ded dehydrated tissue is then cut into thin tissue slices. In an
embodiment herein, the dehydrated and embedded testes
tissue can be mounted on a suitable mount and cut into thin
tissue slices. In an example herein, a block from the dehy-
drated and embedded testes tissue is mounted on a micro-
tome and cut into thin tissue slices. Thereafter, the tissue
slices may be affixed to slides. After attaching the tissue
slices to the slide, the material used for embedding the tissue
is removed using a suitable means (such as a solvent). After
removing the tissue from the material used for embedding,
the tissue slices are rehydrated. In an embodiment, the
rehydrated tissue slices can be stained. In an embodiment
herein, the rehydrated tissue slices can be stained with at
least one of Hematoxylin and Eosin (H&E) staining and
Periodic acid-Schiff (PAS) staining. In an example, consider
that H&E staining is used, wherein the Hematoxylin is
mixed with a metallic salt or mordant, applied on the tissue
slices, and counterstained with the Eosin. Excess stain is
removed from the stained tissue slices using a weak acid
solution.
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For the assessment of the spermatogenesis using the
obtained tissue slices, the processor 102 obtains a media
(such as an image, video, and so on) of the slide with the
stained tissue slices/sections. In an embodiment, the proces-
sor 102 obtains the media of the stained tissue slices/sections
using the image sensors, cameras, and so on present in the
electronic device 100. In an embodiment, the processor 102
obtains the media of the stained tissue slices/sections using
the externally connected at least one of the image sensors,
cameras, digital whole side image scanners, and so on.

The processor 102 can analyze the media for the assess-
ment of spermatogenesis through a staging of seminiferous
tubules. In an embodiment, the processor 102 may use at
least one method/technique/model such as, Artificial Intel-
ligence (Al) models, deep learning models, and so on for
analyzing the stained tissue slices/sections (from the media).
Embodiments herein further explained considering a deep
learning model for the assessment of the spermatogenesis,
but it should be obvious to a person skilled in the art that any
other neural network/machine learning model can be con-
sidered.

In an embodiment, the deep learning model can be a
model capable of achieving one or more of detection,
segmentation, and classification of objects (in an example
herein, the objects can be the seminiferous tubules). Further,
the deep learning model can achieve semantic segmentation
of different classes in an input media. An example deep
learning model used for the assessment of the spermatogen-
esis is illustrated in FIG. 1B. In an embodiment, the deep
learning model includes an encoder subsystem/layer, and a
decoder subsystem/layer that make an inference based on
extracted features. The encoder subsystem includes three
layers of an inception module. An example inception mod-
ule is illustrated in FIG. 1C. The encoder subsystem com-
prises of an initial layer of zero padding followed by a
convolution layer. Zero-padding layer increases the original
media size by padding parameters. For example, a padding
parameter of size 2 increases the width and height of input
media by 4. The convolution layer is a matrix multiplication
followed by additions. In this layer, a filter matrix is mul-
tiplied with the input media, wherein the size of the filter
matrix is less than or equal to the input media size. An output
of the convolution layer can be a media, which is half the
size of the input media. The output of the convolution layer
can be fed into a max pooling block/layer for down sam-
pling. The max pooling layer takes the window-wise maxi-
mum pixel value from the input media. For example, a
window of size 2x2 replaces the 2x2 submatrices from input
media by the maximum pixel value from those 2x2 subma-
trices’ pixels. Hence, the size of output media will be half of
the input media size. The max pooling layer can be followed
by the inception module (illustrated in FIG. 1C) with a short
skip connection. The inception module may be followed by
a successive convolution layer and a dropout layer. The
dropout layer randomly nullifies the media pixel values
based on user defined dropout rate. Further, a process of the
max pooling layer and the inception module, and the con-
volution and the dropout layers can be repeated to derive an
output from the encoder subsystem. In an example herein,
the process of the max pooling layer and the inception
module, and the convolution and the dropout layers can be
repeated three times.

The decoder subsystem includes a deconvolution layer,
wherein an output of the deconvolution layer is concatenated
with the output of the encoder subsystem at a similar
resolution. The deconvolution layer upsamples/increases the
size of the media input using a suitable method such as, but
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not limited to, nearest neighbour method, convolution trans-
pose method, and so on. The deconvolution layer upsamples
the size of input media by the upsampling factor. The
concatenation output may be followed by a ResNet-Bottle-
neck module. An example ResNet-Bottleneck module is
illustrated in FIG. 1d. The ResNet-Bottleneck module
includes two convolution layers, where a residue of an input
of each convolution layer (which may be a short skip
connection) may be added to an output of the convolution
layers. This ensures properties of the encoder subsystem is
available for later layers, so that outputs of the encoder and
the decoder subsystems may not deviate from the original
input. An output of the ResNet-Bottleneck module can be
followed by a 1x1 convolution block to reduce the feature
dimension and minimize over fitting issues. A process of the
1x1 convolution block can be repeated for a plurality of
layers in the decoder subsystem with the last output layer in
the decoder subsystem not having the 1x1 convolution
block. In an example, a process of the 1x1 convolution block
can be repeated for five layers in the decoder subsystem with
the last output layer in the decoder subsystem not having the
1x1 convolution block.

The processor 102 analyzes the media of the stained tissue
slices/sections using the deep learning model to detect the
seminiferous tubules. By training a U-Net based deep learn-
ing model using a plurality of labels training data of a large
number of images where one label is given to the region
inside the tubules, another label is given to the periphery of
the tubules and another label is given to the region outside
the tubules. This data is further divided into training and
validation datasets, where training data is used for training
the deep learning model and validation dataset is used to
validate the learned deep learning model. In an example
herein, by training a U-Net based deep learning model using
three labels training data of 1500 images where one label is
given to the region inside the tubules, another label is given
to the periphery of the tubules and the third label is given to
the region outside the tubules. This data is further divided
into training and validation datasets were training data is
used for training the deep learning model and validation
dataset is used to validate the learned deep learning model.
In an example herein, the processor 102 uses the deep
learning model that is trained on 512x512 tiles at 10x
magnification.

The processor 102 maps the detected seminiferous tubules
for accurate detection and segmentation of germ cells by
mapping to a higher magnification. In an example herein, the
processor 102 maps the detected seminiferous tubules from
10x to 40x magnification for the accurate segmentation of
the germ cells. One tile at 10x resolution corresponds to 4
tiles at 40x resolution representing the same pixel informa-
tion that is present at 10x resolution. This way, the tiles
present at 10x resolution corresponding to that particular
tubule are determined. Then the corresponding tiles are
extracted at 40x resolution. Examples of the germ cells, can
be but not limited to, elongated spermatids, spermatocytes,
round spermatids, residual bodies, meiotic bodies, sperma-
togonia, or any other relevant markers. In an embodiment,
the processor 102 uses at least one of a binary class
segmentation model, a multi-class (semantic) segmentation
model, and so on of the deep learning model to detect the
germ cells. In an example herein, the binary class deep
learning based model is used to segment out the elongated
spermatids and sa six-class deep learning based model is
used to segment out round spermatids of stage 1-9 and 14,
round spermatids of stage 10, spermatogonia, meiotic bodies
and pachytene. The processor 102 also displays an enhanced
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visualization of the segmented germ cells and other relevant
features overlaid on the individual seminiferous tubules.

Once the germ cells are segmented, the processor 102
uses the segmented germ cells for performing a staging to
classify the detected seminiferous tubules into respective
stages of the spermatogenic cycle/spermatogenesis process.
The germ cells present in individual tubules are first iden-
tified. Then corresponding to each tubule, a feature vector of
28 dimensions is formed by extracting features based on the
size, position and number of various germ cells present
therein. In an embodiment, the processor 102 uses a random
forest classifier of the deep learning model to classify the
detected seminiferous tubules into at least one stage. In
accordance with the random forest classifier, the processor
102 uses characteristic features/stage attributes associated
with each stage to classify the detected seminiferous tubules
into respective stages of the spermatogenic cycle. Examples
of' the staging attributes can be, but not limited to, elongated
spermatid heads bundling/location, spermatocytes, residual
bodies, and so on. In an example herein, the detected
seminiferous tubules can be classified into at least one of
fourteen stages based on the characteristic feature/stage
attributes associated with each stage and the detected staging
attributes of the detected seminiferous tubules.

The processor 102 further classifies the detected seminit-
erous tubules into a normal category and an abnormal
category based on the stages and morphological parameters.
Examples of the parameters of the tubules present in the
abnormal category are degenerated tubules, giant cell, Ser-
toli cell vacuolation, and so on. Embodiments herein can
apply any machine learning based multiclass model to
identify the stages. In an embodiment herein, based on the
classification of the seminiferous tubules, the processor 102
generates a stage frequency table, wherein the table com-
pares the seminiferous tubules of the normal category with
the seminiferous tubules of the abnormal category. In an
embodiment herein, the processor 102 can fetch a pre-
generated stage frequency table. The stage frequency table
lists the stage frequencies corresponding to individual stage
numbers. The stage frequencies are calculated by dividing
the number of tubules in that particular stage by the total
number of tubules analyzed in the testes.

The processor 102 can be also configured to classify the
obtained testes tissue specimen into the normal category and
the abnormal category based on the classification of the
seminiferous tubules into the normal and abnormal catego-
ries and the generated stage frequency table. This classifi-
cation is of importance in preclinical drug toxicology test-
ing, where toxicity associated with a new drug is tested on
animal tissue. If there are abnormalities occurring in animals
after dosage, then the drug can be considered to be a failure.

The processor 102 can be further configured to classify a
molecule or chemical present in the obtained testes tissue
specimen into the normal and the abnormal based on the
classification of the testes tissue specimen. The processor
102 further generates reports based on quantified param-
eters. The report includes information such as, but not
limited to, detailed analysis of each of the tubules, frequency
map of fourteen stages, abnormalities, visualization(s) of the
stages overlaid on individual tubules, and so on.

The memory 104 stores at least one of the obtained media
of the stained tissue slices, the stage frequency table, the
classifications, and so on. The memory 104 may also store
program code/instructions that can be executed on the
processor 102 to perform the automated assessment of the
spermatogenesis. Further, the memory 104 may include one
or more computer-readable storage media. The memory 104
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may include non-volatile storage elements. Examples of
such non-volatile storage elements may include magnetic
hard discs, optical discs, floppy discs, flash memories, or
forms of electrically programmable memories (EPROM) or
electrically erasable and programmable (EEPROM) memo-
ries. In addition, the memory 104 may, in some examples, be
considered a non-transitory storage medium. The term “non-
transitory” may indicate that the storage medium is not
embodied in a carrier wave or a propagated signal. However,
the term “non-transitory” should not be interpreted to mean
that the memory 104 is non-movable. In some examples, the
memory 104 can be configured to store larger amounts of
information than the memory. In certain examples, a non-
transitory storage medium may store data that can, over
time, change (e.g., in Random Access Memory (RAM) or
cache).

The communication interface 106 can be configured to
enable the electronic device 100 to connect with the at least
one external entity (such as, the server, the external database,
the user devices, the imaging sensors/scanners, and so on)
using the communication network.

The 1/0O module 108 can be configured to enable the
electronic device 100 to connect with at least one of the
imaging sensors, scanners, cameras, and so on to capture the
media of the stained tissue slices.

The display 110 can be configured to display the enhanced
visualization of the detected seminiferous tubules and the
associated into stages and so on.

FIG. 1 shows exemplary blocks of the electronic device
100, but it is to be understood that other embodiments are
not limited thereon. In other embodiments, the electronic
device 100 may include less or more number of blocks.
Further, the labels or names of the blocks are used only for
illustrative purpose and does not limit the scope of the
embodiments herein. One or more blocks can be combined
together to perform same or substantially similar function in
the electronic device 100.

FIG. 2A is an example diagram depicting automated
assessment of the spermatogenesis, according to embodi-
ments as disclosed herein. Embodiments herein enable the
electronic device 100 to perform the automated assessment
of the spermatogenesis for toxicology analysis on the male
reproductive function. As illustrated in FIG. 2A, the elec-
tronic device 100 may use at least one of the Al model, the
deep learning model, Computer Vision (CV) techniques, and
so on to perform the automated assessment of the sperma-
togenesis. The electronic device 100 may further display the
enhanced visualization of the spermatogenesis using a User
Interface (Ul)/display 110.

As illustrated in FIG. 2B, the automated assessment of the
spermatogenesis may result in providing instantaneous out-
put for parameters such as tubules, lumen, cytoplasm, and so
on, generation of multiple reports providing information
related to the assessment of the spermatogenesis cytoplasm,
efficient detection and counting of the germ cells, generation
of the stage frequency table, shorter toxicity analysis dura-
tion, and so on.

FIG. 3 depicts an example electronic device 100 for the
automated assessment of the spermatogenesis, according to
embodiments as disclosed herein. Embodiments herein
enable the electronic device 100 to perform the automated
assessment of the spermatogenesis through the seminiferous
tubules. The electronic device 100 obtains the testes tissue
specimen. The electronic device 100 uses at least one of the
deep learning model, the Al model, and so on to analyze the
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obtained testes tissue specimen and detects the seminiferous
tubules. Example seminiferous tubules are illustrated in FIG.
4.

The electronic device 100 maps the detected seminiferous
tubules and segments the germ cells. The segmented germ
cells can be at least one of elongated spermatids, sperma-
tocytes, round spermatids, residual bodies, meiotic bodies,
spermatogonia,  basophilic  granules/residual  bodies,
pachytene or any other relevant markers. In an example
herein, a round spermatids segmentation, a basophilic gran-
ules/residual bodies with lumen area segmentation, a
pachytene segmentation, an elongated spermatids segmen-
tation, a meiotic bodies segmentation is illustrated in FIGS.
5A-5E.

Based on the segmented germ cells, the electronic device
100 classifies the individual seminiferous tubules into the
respective stages of the spermatogenic cycle based on the
segmented germ cells. The electronic device 100 can clas-
sify the individual seminiferous tubules into the respective
stages based on the random forest classifier as illustrated in
FIG. 6 A. In accordance with the random forest classifier, the
electronic device 100 uses the characteristic features and
staging attributes. Examples of the staging attributes can be,
but not limited to, elongated spermatid heads bundling/
location, spermatocytes, residual bodies, and so on. In an
example herein, the characteristics features/staging attri-
butes associated with each stage are illustrated in FIG. 6B.
In an example herein, the electronic device 100 classifies the
individual seminiferous tubules into the fourteen stages as
illustrated in FIG. 6C.

The electronic device 100 further classifies the seminif-
erous tubules into the normal category and the abnormal
category based on the classification of the individual semi-
niferous tubules into the respective stages and the segmented
germ cells. The electronic device 100 further generates the
stage frequency table for comparing the seminiferous
tubules of the normal category with the seminiferous tubules
of the abnormal category. In an example herein, the stage
frequency table/map is illustrated in FIG. 6D.

Once the seminiferous tubules are classified into the
normal category and the abnormal category, the electronic
device 100 classifies the obtained testes tissue specimen into
the normal category and the abnormal category using stag-
ing criteria. Examples of the staging criteria can be, but not
limited to, presence or absence of the segmentation of the
germ cells (the round spermatids segmentation, the baso-
philic granules/residual bodies with lumen area segmenta-
tion, the pachytene segmentation, an elongated spermatids
segmentation, the meiotic bodies segmentation, or the like),
a majority rule in a statistical sense for mixed stages
(abnormal or necessity of recalibration), recalibration using
the stage/standard frequency table/map, a decision tree
based logic to combine different criteria, and so on. In an
example herein, the staging criteria are illustrated in FIG.
6E.

As illustrated in FIG. 6F, the staging of the testes tissue
specimen may lead to accurate evaluation of the tissue
toxicity in preclinical context. The electronic device 100
identifies size/shape of the seminiferous tubules/lumen
while performing the staging. Further, the electronic device
100 detects presence or absence of the germ cells for a given
region, and loss of the germ cells for a given stage. There-
after, the electronic device 100 detects presence of vacuoles,
and a count of Leydig cells in the obtained whole testes.
Based on the count of the cells, the electronic device 100 can
determine a major deviation from the standard frequency
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map, wherein the major deviation from the standard fre-
quency map indicates toxicity possibility.

FIG. 7 is an example diagram depicting a method for
automated assessment of the spermatogenesis, according to
embodiments as disclosed herein. The electronic device 100
obtains (at step 702) the media of the stained tissue slices.
The electronic device 100 detects and segments (at step 704)
the seminiferous tubules by analyzing the media of the
stained tissue slices. The electronic device 100 (at step 706)
maps the segmentation of the seminiferous tubules from a
lower magnification to a higher magnification. The elec-
tronic device 100 detects and segments (at step 708) the
germ cells from the segmented seminiferous tubules. The
germ cells can be segmented into at least one of the round
spermatid segmentation, the basophilic granules/residual
bodies with lumen area segmentation, the pachytene seg-
mentation, the elongated spermatids segmentation, the mei-
otic bodies segmentation, or the like. The electronic device
100 classifies (at step 710) the seminiferous tubules uses the
random forest classifier based on the segmented germ cells
into the respective stages. The electronic device 100 further
categorizes (at step 712) the seminiferous tubules into the
normal category and the abnormal category based on the
classification of the seminiferous tubules into the respective
stages and the morphological features/parameters. The elec-
tronic device 100 classifies (at step 714) the obtained testes
tissue specimen into the normal category and the abnormal
category for detecting toxological effects on the male repro-
ductive function. The various actions in method 700 may be
performed in the order presented, in a different order or
simultaneously. Further, in some embodiments, some
actions listed in FIG. 7 may be omitted.

FIG. 8 is an example diagram depicting a result of the
automated spermatogenic staging, according to embodi-
ments as disclosed herein.

FIG. 9 is an example graph depicting a comparison of the
stage frequency map generated based on the automated
staging and a stage frequency map generated by an expert
pathologist, according to embodiments as disclosed herein.

FIG. 10 is an example table depicting average accuracy
and average precision resulted from the automated sperma-
togenic staging, according to embodiments as disclosed
herein.

Embodiments herein provide an analytical aid to assess
spermatogenesis through a staging of seminiferous tubules.

Embodiments herein provide an accurate, reproducible,
faster assessment of the spermatogenesis through an auto-
mated staging of seminiferous tubules, which eliminates a
need for an expertise pathologist.

Embodiments herein facilitate the automated assessment
of'the spermatogenesis without requiring extra stained tissue
slices/sections such as a Periodic Acid Schiff (PAS) stained
tissue slices, or the like.

Embodiments herein detect and classify the seminiferous
tubules into different stages/classes automatically using a
deep learning/Artificial Intelligence method.

Embodiments herein provide an enhanced visualization of
the detected seminiferous tubules and the associated stages.

Embodiments herein perform an automated assessment of
stage aware abnormalities to classify the seminiferous
tubules into a normal category and an abnormal category.

Embodiments herein perform an automated assessment of
testes tissue specimen and molecules/chemicals to classify
the testes tissue specimen and the molecules/chemicals into
the normal category and the abnormal category.

The embodiments disclosed herein can be implemented
through at least one software program running on at least
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one hardware device and performing network management
functions to control the network elements. The network
elements shown in FIG. 1 include blocks which can be at
least one of a hardware device, or a combination of hardware
device and software module.

The embodiment disclosed herein discloses method and
systems for automated assessment of spermatogenesis.
Therefore, it is understood that the scope of the protection is
extended to such a program and in addition to a computer
readable means having a message therein, such computer
readable storage means contain program code means for
implementation of one or more steps of the method, when
the program runs on a server or mobile device or any
suitable programmable device. The method is implemented
in at least one embodiment through or together with a
software program written in e.g. Very high speed integrated
circuit Hardware Description Language (VHDL) another
programming language, or implemented by one or more
VHDL or several software modules being executed on at
least one hardware device. The hardware device can be any
kind of portable device that can be programmed. The device
may also include means which could be e.g. hardware means
like e.g. an ASIC, or a combination of hardware and
software means, e.g. an ASIC and an FPGA, or at least one
microprocessor and at least one memory with software
modules located therein. The method embodiments
described herein could be implemented partly in hardware
and partly in software. Alternatively, the invention may be
implemented on different hardware devices, e.g. using a
plurality of CPUs.

The foregoing description of the specific embodiments
will so fully reveal the general nature of the embodiments
herein that others can, by applying current knowledge,
readily modify and/or adapt for various applications such
specific embodiments without departing from the generic
concept, and, therefore, such adaptations and modifications
should and are intended to be comprehended within the
meaning and range of equivalents of the disclosed embodi-
ments. It is to be understood that the phraseology or termi-
nology employed herein is for the purpose of description and
not of limitation. Therefore, while the embodiments herein
have been described in terms of embodiments, those skilled
in the art will recognize that the embodiments herein can be
practiced with modification within the spirit and scope of the
embodiments as described herein.

We claim:

1. A method for performing automated assessment of
spermatogenesis of a testes tissue specimen, the method
comprising

analyzing, by an electronic device (100), a media of a

mounted slice of a stained testes tissue specimen to
detect at least one seminiferous tubule;

performing, by the electronic device (100), segmentation

of at least one germ cell in the media of the mounted
slice of the stained testes tissue specimen by mapping
the detected at least one seminiferous tubule to a higher
magnification level;

classifying, by the electronic device (100), the detected at

least one seminiferous tubule into at least one stage of
spermatogenic cycle/spermatogenesis process by per-
forming a staging using the at least one segmented
germ cell;

classifying, by the electronic device (200), the at least one

detected seminiferous tubule into at least one of a
normal category and an abnormal category based on the
stage into which the detected at least one seminiferous
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tubule in classified and at least one morphological
parameter associated with the testes tissue; and

classifying, by the electronic device (200), the testes
tissue specimen into at least one of a normal category
and an abnormal category based on classification of the
at least one seminiferous tubules into at least one of a
normal category and at least one abnormal category and
a stage frequency table.

2. The method, as claimed in claim 1, wherein the method
comprises

mounting the testes tissue specimen on a glass slide;

dehydrating the mounted testes tissue specimen;

embedding the dehydrated mounted testes tissue speci-
men in melted paraffin wax;

cutting the embedded dehydrated mounted testes tissue
specimen into at least one slice;

removing the melted paraffin wax from the at least one
slice of the embedded dehydrated mounted testes
tissue specimen;

rehydrating the at least one slice of the dehydrated
mounted testes tissue specimen; and

staining the at least one slice of the rehydrated mounted
testes tissue specimen.

3. The method, as claimed in claim 2, wherein cutting the
embedded dehydrated mounted testes tissue specimen com-
prises

mounting a block from the embedded dehydrated

mounted testes tissue specimen on a microtome; and
cutting at least one tissue slice from the mounted block.

4. The method, as claimed in claim 2, wherein the at least
one slice of the rehydrated mounted testes tissue specimen
is stained with Hematoxylin and Eosin (H&E) staining,
which comprising

mixing Hematoxylin with a metallic salt or mordant;

applying the mixed Hematoxylin on the tissue slices;

counterstaining the tissue slices with Eosin; and
removing excess stain from the stained tissue slices using
a weak acid solution.

5. The method, as claimed in claim 1, wherein the at least
one germ cell is detected using at least one of a binary class
segmentation model, and a multi-class (semantic) segmen-
tation model.

6. The method, as claimed in claim 1, wherein the germ
cell is at least one of elongated spermatids, spermatocytes,
round spermatids, residual bodies, meiotic bodies, and sper-
matogonia.

7. The method, as claimed in claim 1, wherein a random
forest classifier classifies the detected at least one seminif-
erous tubule into at least one stage of spermatogenic cycle
using at least one characteristic feature associated with each
stage.

8. The method, as claimed in claim 1, wherein a molecule
or a chemical present in the obtained testes tissue specimen
is classified into at least one of a normal category and an
abnormal category based on the classification of the testes
tissue specimen.

9. The method, as claimed in claim 1, wherein the stage
frequency table compares at least one seminiferous tubule of
anormal category with at least one seminiferous tubule of an
abnormal category.

10. An electronic device (100) configured for

analyzing a media of a mounted slice of a stained testes

tissue specimen to detect at least one seminiferous
tubule;

performing segmentation of at least one germ cell in the

media of the mounted slice of the stained testes tissue
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specimen by mapping the detected at least one semi-
niferous tubule to a higher magnification level;

classifying the detected at least one seminiferous tubule
into at least one stage of spermatogenic cycle/sperma-
togenesis process by performing a staging using the at
least one segmented germ cell;

classifying the at least one detected seminiferous tubule
into at least one of a normal category and an abnormal
category based on the stage into which the detected at
least one seminiferous tubule in classified and at least
one morphological parameter associated with the testes
tissue; and

classifying the testes tissue specimen into at least one of
a normal category and an abnormal category based on
classification of the at least one seminiferous tubules
into at least one of a normal category and at least one
abnormal category and a stage frequency table.

11. The electronic device, as claimed in claim 10, wherein

the electronic device is configured for

dehydrating a mounted testes tissue specimen;

embedding the dehydrated mounted testes tissue speci-
men in melted paraffin wax;

cutting the embedded dehydrated mounted testes tissue
specimen into at least one slice;
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removing the melted paraffin wax from the at least one
slice of the embedded dehydrated mounted testes tissue
specimen;

rehydrating the at least one slice of the dehydrated

mounted testes tissue specimen; and

staining the at least one slice of the rehydrated mounted

testes tissue specimen.

12. The electronic device, as claimed in claim 10, wherein
the electronic device is configured for detecting the at least
one germ cell using at least one of a binary class segmen-
tation model, and a multi-class (semantic) segmentation
model, wherein the germ cell is at least one of elongated
spermatids, spermatocytes, round spermatids, residual bod-
ies, meiotic bodies, and spermatogonia.

13. The electronic device, as claimed in claim 10, wherein
the electronic device is configured for using a random forest
classifier to classify the detected at least one seminiferous
tubule into at least one stage of spermatogenic cycle using
at least one characteristic feature associated with each stage.

14. The electronic device, as claimed in claim 10, wherein
the electronic device is configured for classifying a molecule
or a chemical present in the obtained testes tissue specimen
into at least one of a normal category and an abnormal
category based on the classification of the testes tissue
specimen.



