
US008418143B2

(12) United States Patent (10) Patent No.: US 8,418,143 B2
Cha et al. (45) Date of Patent: *Apr. 9, 2013

(54) SOFTWARE RELIABILITY TEST METHOD (58) Field of Classification Search 717/124;
USING SELECTIVE FAULTACTIVATION, 379f26.01
TEST AREA RESTRICTION METHOD,
WORKLOAD GENERATION METHOD AND
COMPUTINGAPPARATUS FOR TESTING
SOFTWARE RELIABILITY USING THE
SAME

(75) Inventors: Gyu Il Cha, Daejeon (KR); Young Ho
Kim, Daejeon (KR); Sung In Jung,
Daejeon (KR)

(73) Assignee: Electronics and Telecommunications
Research Institute, Daejeon (KR)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 699 days.
This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 12/572,939

(22) Filed: Oct. 2, 2009

(65) Prior Publication Data

US 2010/0287.412 A1 Nov. 11, 2010

(30) Foreign Application Priority Data

May 8, 2009 (KR) 10-2009-004O283

(51) Int. Cl.
G06F 9/44 (2006.01)
H04M, I/24 (2006.01)

(52) U.S. Cl.
USPC .. 717/124; 379/26.01

110
\

FAULT INUECTION UNIT

111 ar

FAULT INUECTIO
EXECUTOR GENERATOR

(SHARED FUNCTION

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2006/O126799 A1* 6/2006 Burk 379,26.01

FOREIGN PATENT DOCUMENTS
KR 102O080042659 A 5, 2008

OTHER PUBLICATIONS

Kenichi Tanaka et al., “SCSIFault Injection Test.” Proceedings of the
Linux Symposium, 2008, pp. 205-214, Ontario, Canada.

* cited by examiner

Primary Examiner — Hyun Nam

(57) ABSTRACT

Provided are a software reliability test method using selective
fault activation, a test area restriction method, a workload
generation method and a computing apparatus for testing
software reliability using the same. The software reliability
test method registers a test target module. The software reli
ability test method injects a fault into a fault injection target
function when a caller of the fault injection target function is
included in the registered module, in a case of calling the fault
injection target function.

7 Claims, 4 Drawing Sheets

WORKLOAD
GENERATION UNIT

WORKLOAD
GENERATOR 2

WORKOAD
GENERATOR in

US 8,418,143 B2 Sheet 1 of 4 Apr. 9, 2013 U.S. Patent

(170TX HOM
081

BOITOEXE
WEH W TENHEIX WEIHW HES[] , () NOLIONIE GEHVHS),

| 1

0 | -

LINN NOI10=TNI ITIVA
| ||

U.S. Patent Apr. 9, 2013 Sheet 2 of 4

S280

FG 2

120

TARGET MODULE
EXIST IN KERNEL?

US 8,418,143 B2

REGISTER TEST TARGET MODULE -S210

y
COLLECT INFORMATION FOR CHECKING
EFFECTIVENESS OF FAULT INJECTION

-S220

y
REGISTER HANDLER FOR PROCESSING
FAULT INUECTION TARGET FUNCTION

--S230

S240

CONTINUOUS FAULT
NJECTION REQUIRED2

WAIT EXECUTION OF FAULT INJECTION TARGET FUNCTION --S250

S260

CALLED FUNCTION NO
= FAULT INUECTION TARGET

FUNCTION?

S270

YES FAULT INUECTION NO W
CONDITION SATISF EDT

S290
y 4.

ACTIVATE FAULT INUECTION RETURN NORMAL EXECUTION
IN CALLED FUNCTION RESULT OF CALLED FUNCTION

U.S. Patent Apr. 9, 2013 Sheet 3 of 4 US 8,418,143 B2

FG 3

270

OBTAIN ADDRESS OF CALLER --S271

EFFECTIVE CALLER ADDRESS

CALLER ADDRESS INCLUDED
N EXECUTION ADDRESS AREA OF

TEST TARGETP

USER SETTING FAULT INUECTION
CONDITION SATISF EDP

S276
V

S275 - NJECTION ACTIVATION FLAG=1 NJECTION ACTIVATION FLAG=0

END

U.S. Patent Apr. 9, 2013 Sheet 4 of 4 US 8,418,143 B2

FG 4

RECEIVE WORKLOAD GENERATION INFORMATION -S300
ANALYZED BY FAULT INJECTION UNIT

COMPOSE WORKLOAD GENERATION SCENARIO FOR --S310
WORKLOAD TO BE GENERATED IN TARGET MODULE BASED

ON RECEIVED WORKLOAD GENERATION INFORMATION

GENERATE WORKLOAD FOR FUNCTION CORRESPONDING h-S320
TO FAULT INUECTION POINT TO BE EXECUTED

END

US 8,418,143 B2
1.

SOFTWARE RELIABILITY TEST METHOD
USING SELECTIVE FAULTACTIVATION,
TEST AREA RESTRICTION METHOD,

WORKLOAD GENERATION METHOD AND
COMPUTINGAPPARATUS FOR TESTING
SOFTWARE RELIABILITY USING THE

SAME

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. S 119 to
Korean Patent Application No. 10-2007-0040283, filed on
May 8, 2009, in the Korean Intellectual Property Office, the
disclosure of which is incorporated herein by reference in its
entirety.

TECHNICAL FIELD

The following disclosure relates to a software reliability
test method using selective fault activation, a test area restric
tion method, a workload generation method and a computing
apparatus for testing software reliability using the same, and
in particular, to a software reliability test method using selec
tive fault activation, a test area restriction method, a workload
generation method and a computing apparatus for testing
Software reliability using the same, which select any one of
execution modules that dynamically reside in an Operating
System (OS) (for example, a kernel area) having the dynamic
loading functions of the execution modules and are indepen
dent in function terms, and injects a fault only into the
selected execution module to test reliability.

BACKGROUND

A software reliability test method using fault injection and
workload generation has been used in the reliability test of
various software, the availability test of a system or the bench
marking of a fault-tolerance system. This test method is also
applied in the development of execution modules that are
dynamically loaded. Such as device driver.
A fault injection scheme for software reliability test can be

divided into a compile-time fault injection scheme and a
runtime fault injection Scheme.
The compile-time fault injection scheme injects faults into

the Source code or assembly code of the target program. To
inject faults, the program instruction must be modified before
the program image is loaded and executed. The modified code
alters the target program instructions, causing injection.
The runtime fault injection scheme dynamically changes a

specific register value or the result value of a specific opera
tion while a program is being executed, allowing a fault to be
injected.
The compile-time fault injection scheme using the change

of source codes allow a fault to be injected into a desired
location, but it requires the change of Source code, recompil
ing of changed source code, and execution of recompiled
execution code. Moreover, when a user desires to change a
fault injection location, the whole work process should be
repeated.
On the contrary, the runtime fault injection scheme may

freely inject a fault without the change of the source code or
recompilation. However, it is difficult to dynamically change
the result value of a corresponding function to inject a fault
only for the test target when the modules of a system share a
specific function. That is, this scheme is suitable for the test of

5

10

15

25

30

35

40

45

50

55

60

65

2
the entire system, but there are some limitations when only
the specific portion of the system is tested.

Such related art software reliability test method cannot
inject a fault into the exact test area of a system specified by
a user, but injects the fault into an entire system. Conse
quently, it is difficult to perform a detailed reliability test for
each module of software. Moreover, it is difficult to generate
intensive workload for the activation of an injected fault in
consideration of the Software operation characteristic of a test
target.

SUMMARY

In one general aspect, a Software reliability test method
using selective fault activation includes: registering a test
target module; and injecting a fault into a fault injection target
function when a caller of the fault injection target function is
included in the registered module, in a case of calling the fault
injection target function.

In another general aspect, a test area restriction method
includes: collecting effectiveness check information includ
ing an address of a memory in which a module registered as
a test target among a plurality of modules sharing a specific
function is executed; determining whether a caller of a fault
injection target function included in the specific function is
included in the registered module on the basis of the collected
effectiveness check information; and injecting a fault into the
fault injection target function, when the caller is included in
the registered module.

In another general aspect, a workload generation method
for testing software reliability includes: receiving workload
information corresponding to a module which is registered as
a test target among a plurality of modules sharing a specific
function; and generating a workload in the registered module
on the basis of the received workload information.

In another general aspect, a computing apparatus includes:
a plurality of modules operating in a kernel; and a fault
injection executor existing in the kernel, registering a desig
nated module among the modules as a test target module, and
injecting a fault into a fault injection target function when the
fault injection target function is called by the registered mod
ule.

Other features and aspects will be apparent from the fol
lowing detailed description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating a software reliability
test system using selective fault activation according to an
exemplary embodiment.

FIG. 2 is a flowchart illustrating a software reliability test
method using selective fault activation according to an exem
plary embodiment.

FIG. 3 is a flowchart illustrating a test area restriction
method for a software reliability test according to an exem
plary embodiment.

FIG. 4 is a flowchart illustrating a workload generation
method in a test target module for a software reliability test
according to an exemplary embodiment.

DETAILED DESCRIPTION OF EMBODIMENTS

Hereinafter, exemplary embodiments will be described in
detail with reference to the accompanying drawings.
Throughout the drawings and the detailed description, unless
otherwise described, the same drawing reference numerals
will be understood to refer to the same elements, features, and

US 8,418,143 B2
3

structures. The relative size and depiction of these elements
may be exaggerated for clarity, illustration, and convenience.
The following detailed description is provided to assist the
readeringaining a comprehensive understanding of the meth
ods, apparatuses, and/or systems described herein. Accord
ingly, various changes, modifications, and equivalents of the
methods, apparatuses, and/or systems described herein will
be suggested to those of ordinary skill in the art. Also, descrip
tions of well-known functions and constructions may be
omitted for increased clarity and conciseness. As used herein,
the singular forms “a” “an and “the are intended to include
the plural forms as well, unless the context clearly indicates
otherwise. It will be further understood that the terms “com
prises' and/or "comprising, when used in this specification,
specify the presence of stated features, integers, steps, opera
tions, elements, and/or components, but do not preclude the
presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.
A Software reliability test system and method using selec

tive fault activation according to an exemplary embodiment
will be described with reference to FIGS. 1 and 2. FIG. 1 is a
block diagram illustrating a Software reliability test system
using selective fault activation according to an exemplary
embodiment. FIG. 2 is a flowchart illustrating a software
reliability test method using selective fault activation accord
ing to an exemplary embodiment.

Referring to FIG. 1, a software reliability test system 100
using selective fault activation according to an exemplary
embodiment includes a fault injection unit 110, a fault injec
tion executer 120, and a workload generation unit 130.

The fault injection unit 110 includes a fault injection
executer generator 111, and receives information related to
fault injection from a user.
The information related to fault injection may include

modules that are designated as test targets, fault types to be
generated in the designated modules, resident time limit of
the fault injection executer 120 in a kernel, and the user
designation activation pattern of fault injection.
The fault types to be generated in the designated module

may include memory allocation and page allocation that are
selected by a user. For example, when the user would like a
fault to be generated in the memory allocation of the desig
nated module, the user may select the memory allocation as
the fault type to be generated in the designated module.

The user designation activation pattern of fault injection
may include the number of fault injection for the selected
fault type. The user may set the number of times a fault is
injected when a memory is allocated. For example, the user
may set a fault to be injected each time the memory allocation
is performed, or the user may set a fault to be injected every
five times the memory allocation is performed.
The fault injection executor generator 111 dynamically

generates the source code of the fault injection executer 120
that may inject a fault of the fault type designated by the user
into a designated module, compiles the generated source code
into a dynamic loading kernel module, and loads the com
piled code in a kernel.

For example, the fault injection unit 110 collects the func
tion symbol information of a designated module, and the fault
injection executor generator 111 transfers a fault injection
location to the fault injection executor 120 on the basis of the
collected symbol information. The collected symbol infor
mation may include symbols that are used in a designated
target module 150, and address information corresponding to
the symbols.

10

15

25

30

35

40

45

50

55

60

65

4
Functions 140 are used when coding a source code for a

designated module, and addresses are respectively given to
the used functions 140 when the used functions 140 are
respectively converted into execution codes (for example,
when the used functions are compiled). More specifically,
when a memory allocation function and a disk access func
tion are used in the Source coding of the designated module,
the fault injection unit 110 may collect the symbol informa
tion of a target module 150 because the converted execution
code includes the address of the memory allocation function
and the address of the disk accessfunction. The fault injection
executor generator 111 automatically generates an execution
code in order for the fault injection executor 120 to register a
fault injection processing handler for processing of a fault
injection target function on the basis of the collected symbol
information. Accordingly, an operation, checking whether a
called function is the fault injection target function, is per
formed in the fault injection processing handler on the basis
of the symbol information. Since this operation is merely a
check operation, it may be omitted.
The fault injection unit 110 sets the resident time limit of

the dynamically-loaded fault injection executor 120 in a ker
nel, and checks whether the resident time exceeds the resident
time limit.
When the resident time of the fault injection executor 120

exceeds the resident timelimit in the kernel, the fault injection
unit 110 terminates the fault injection executor 120 that is
operating in the kernel. Herein, the resident time limit in the
kernel may basically be the maximum time limit of a reliabil
ity test for a designated module, and may also be the time limit
for preventing the fault injection executor 120 from limit
lessly operating (for example, that in which a test gets into an
infinite loop).
The fault injection unit 110 may autonomously determine

a resident time in the kernel when the resident timelimit of the
fault injection executor 120 in the kernel is not provided from
a U.S.

The fault injection executor 120 receives information of a
module that is designated as a test target, from the fault
injection unit 110. The fault injection executor 120 registers
the information of the module, designated as the test target, in
its own state variable on the basis of the received information.
The fault injection executor 120 collects effectiveness

check information from the kernel for checking whether it is
required to activate the fault injection of a registered module.
Herein, the effectiveness check information is the address of
a memory in which a module designated as a test target is
executed.
The fault injection executor 120 registers a fault injection

processing handler that processes the activation of selective
fault injection. For example, the fault injection executor 120,
which is dynamically loaded in the kernel, may register the
fault injection processing handler for injecting a fault into a
function (for example, malloc) of performing an operation
(for example, memory allocation) that is selected as a fault
type by a user on the basis of fault types included in fault
injection-related information.
When the above-described operations are completed, the

fault injection executor 120 is changed into a fault injection
standby state.
The workload generation unit 130 receives workload gen

eration information that is analyzed on the basis of a fault type
and a designated module from the fault injection unit 110, and
generates a workload efficiently and intensively.
When a designated module reaches a fault injection point

according to a workload generated by the workload genera
tion unit 130, i.e., a fault injection target function among

US 8,418,143 B2
5

functions shared by a plurality of modules is executed to
reach a fault injection location that is predetermined in a
called function, the fault injection executor 120 that is in the
fault injection standby State is changed into a fault injection
operation state.
The operation of the fault injection executor 120 and a

software reliability test method will be described below in
more detail with reference to FIG. 2.

Referring to FIG. 2, the fault injection executor 120 regis
ters a module designated by a user as a test target on the basis
of information that is transferred from the user, among a
plurality of modules sharing a specific function in operation
S210.
The fault injection executor 120 checks whether a desig

nated module exists in a kernel, before registering the desig
nated module as a test target in operation S200.
When the designated module does not exist in the kernel,

the fault injection executor 120 ends a software reliability
teSt.

After the registration of the test target module 150 in opera
tion S210, the fault injection executor 120 collects effective
ness check information for checking whether it is required to
activate the selective fault injection for the registered target
module 150 in operation S220. When the test target is a kernel
module, the effectiveness check information may be basically
collected on the basis of module state information in the
kernel. When a shared function 140 for fault injection is
called in a system, it may be used as information for checking
whether the activation of fault injection is required in opera
tion S270.

The fault injection executor 120 collects information for
the effectiveness check of a target module 150, and when a
fault injection target function among specific functions
shared by the plurality of modules is called, the fault injection
executor 120 registers a fault injection processing handler for
executing fault injection in operation S230. Herein, the reg
ister location of the fault injection processing handler may be
set on the basis of information that is analyzed in association
with a fault type by the fault injection unit 110.
When the registration of the fault injection processing han

dler for processing the fault injection target function is com
pleted, the fault injection unit 110 determines whether fault
injection should be continuously performed through the fault
injection executor 120 in operation S240. This determination
is based on the predetermined resident time limit of the fault
injection executor 120 in the kernel. For example, when the
resident time exceeds the resident time limit, the fault injec
tion unit 110 may terminates the fault injection executor 120
that is operating in the kernel.

However, when the resident time does not exceed the resi
dent time limit, the fault injection executor 120 changes into
a standby state in which fault injection may be performed in
operation S250. When a workload is generated in a module
that is registered as a test target by the workload generation
unit 130 and thereby a shared function is called, the fault
injection executor 120 changes into a fault injection operation
state. A detailed description associated with the workload
generation of the workload generation unit 130 will be
described with reference to FIG. 4.
The fault injection executor 120 that is in the changed fault

injection operation state determines whether the shared func
tion 140 is a fault injection target function in operation S260.

For example, when the called shared function 140 is a
memory allocation function and the memory allocation func
tion is the fault injection target function, the fault injection
processing handler of the fault injection executor 120 may
determine whether to activate fault injection based on infor

5

10

15

25

30

35

40

45

50

55

60

65

6
mation of a caller that calls the memory allocation function
because the memory allocation function may be called by
other modules existing on the kernel as well as a module
registered as a test target.
When the called shared function 140 is the fault injection

target function, determination of whether to actually inject a
fault is performed through an operation S270 of checking the
fault injection effectiveness of a target module 150 in the fault
injection processing handler. An operation of injecting a fault
into a test target module 150 will be described in detail with
reference to FIG. 3, and is described in brief here.
When the caller of the function is included in the module

registered as the test target in operation S260, the fault injec
tion processing handler of the fault injection executor 120
checks whether it satisfies the fault injection condition set by
a user in operation S270, and injects a fault into fault injection
location in operation S280. The fault injection processing
handler of the fault injection executor 120 returns a fault value
instead of a normal result value based on the execution of the
called function.
The fault injection condition for controlling the fault injec

tion pattern in detail may include fault injection intervals, a
faultinjection maximum frequency and flags. For example, in
a case where fault injection condition is set to inject a fault
when a memory allocation flag is set as 1, although the
memory allocation function is set as the fault injection target
function, the fault is not injected when a memory allocation
flag is not 1.

However, when the caller of the function is not included in
the designated module in operation S260, the fault injection
processing handler of the fault injection executor 120 returns
the normal result value of the called function in operation
S29O.

In this way, the software reliability test may be performed
in detail by injecting the fault into the selected location of the
designated module.
The following description will be made in detail with ref

erence to FIG. 3 on a method for checking whether a fault
injection condition is satisfied in a test target module 150 for
a software reliability test according to an exemplary embodi
ment. FIG. 3 is a flowchart illustrating a test area restriction
method for a software reliability test according to an exem
plary embodiment.

Referring to FIG. 3, the fault injection processing handler
of the fault injection executor 120 obtains the address of a
caller in operation S271.
A function call mechanism is based on a stack. A system

maintains a stack per software, and maintains a buffer (for
example, a stack frame) corresponding to a function. When
ever the function is called, the address of the caller is stored in
the buffer. That is, the system may store the address of a caller
function in a buffer corresponding to the called function.

Accordingly, the fault injection processing handler may
trace a value, which is stored in a buffer corresponding to a
called function, to obtain the caller address.
The fault injection processing handler of the fault injection

executor 120 checks the effectiveness of the caller address in
operation S272. Herein, the effectiveness check is for check
ing whether the caller address is stored in the buffer of the
called function. When the caller address is not effective (for
example, when there are no more caller addresses to be
checked), an operation of checking effectiveness designates a
fault injection activation flag as 0 and is ended in operation
S276. When the flag is 0, the fault injection processing han
dler does not inject a fault into a fault injection target function.
When the caller address is effective, the fault injection

processing handler of the fault injection executor 120 deter

US 8,418,143 B2
7

mines whether the caller address is included in the execution
address of a module registered as a test target, i.e., the address
of a memory in which the module registered as the test target
is executed, on the basis of the effectiveness check informa
tion of the module registered as the test target in operation
S273.
When the caller address is not included in the execution

address of the module registered as the test target in operation
S273, the fault injection processing handler of the fault injec
tion executor 120 returns to operation S271 of obtaining the
fore caller address. This return operation is repeated until a
caller address is not effective or the caller address is included
in the execution address of a test target module 150.
When the caller address is included in the execution

address of the test target module 150 in operation S273, the
fault injection processing handler of the fault injection execu
tor 120 checks whether the fault injection condition set by a
user is satisfied in operation S274.
When the fault injection condition is not satisfied in opera

tion S274, the fault injection processing handler of the fault
injection executor 120 designates a fault injection activation
flag as 0 based on the result value of the effectiveness check
and is ended in operation S276.

However, when the fault injection condition is completely
satisfied, the fault injection processing handler of the fault
injection executor 120 designates a fault injection activation
flag as 1 based on the result value of the effectiveness check
and is ended in operation S275. When the flag is 1, the fault
injection processing handler injects a fault into the fault injec
tion target function.
As described above, the fault injection executor 120 may

inject a fault only into the location of a module that is selected
as a test target among a plurality of modules sharing a specific
function. Accordingly, it prevents the fault from being
injected into an undesired location (for example, another
module instead of a designated module), and the Software
reliability test is performed in a selected location efficiently.
A workload generation method for a software reliability

test will be described with reference to FIG. 4. FIG. 4 is a
flowchart illustrating a workload generation method in a test
target module 150 for a software reliability test according to
an exemplary embodiment.

Referring to FIG. 4, the workload generation unit 130
receives workload generation information that is analyzed on
the basis of a fault type and a designated module in operation
S3OO.

For example, the workload generation unit 130 may
receive the workload generation information inputted from a
user, through the fault injection unit 110, or may directly
receive workload generation information from the user.

Herein, the workload generation information may include
a designated module and its fault injection location informa
tion.

The workload generation unit 130 generates a workload in
a target module 150 based on the received workload genera
tion information.

For example, the workload generation unit 130 composes a
workload generation scenario for a workload to be generated
on the basis of the workload generation information in opera
tion S310. In the composed workload generation scenario, the
workload may be intensively generated in order for a function
corresponding to a fault injection location to be executed in
operation S320.

Herein, the workload generation is for executing a function
(for example, a fault injection target function) corresponding
to the fault injection location of a target module 150 through
the operation of the a designated module, and the workload

10

15

25

30

35

40

45

50

55

60

65

8
generation unit 130 may replace the role of an application
program in a scheme similar to a scheme of requesting the
performance of a function to a target module 150 in the
application program.

Intensive workload generation may increase the frequency
of requesting the execution of the function to the target mod
ule 150 than the frequency of requesting under a normal
operation instead of a software test. For example, if the
request is performed once under the normal operation, the
request may be performed a hundred times under the inten
sive workload generation.
A number of exemplary embodiments have been described

above. Nevertheless, it will be understood that various modi
fications may be made. For example, Suitable results may be
achieved if the described techniques are performed in a dif
ferent order and/or if components in a described system,
architecture, device, or circuit are combined in a different
manner and/or replaced or Supplemented by other compo
nents or their equivalents. Accordingly, other implementa
tions are within the scope of the following claims.

What is claimed is:
1. A software reliability test method using selective fault

activation, the method comprising:
registering a test target module; and
injecting a fault into a fault injection target function when

(i) a caller of the fault injection target function is com
prised in the registered module and (ii) a given fault
injection condition is satisfied,

wherein the injecting of a fault comprises:
collecting effectiveness check information comprising

an address of a memory in which the registered mod
ule is executed;

determining whether the caller of the fault injection
target function is comprised in the registered module
on the basis the collected effectiveness check infor
mation; and

injecting the fault into the fault injection target function
when the caller is comprised in the registered module,

wherein the step of determining comprises:
determining whether an address of the caller is com

prised in the address of the memory in which the
registered module is executed; and

determining that the caller is comprised in the registered
module, when the address of the caller is comprised in
the address of the memory.

2. The software reliability test method of claim 1, further
comprising:

registering a fault injection processing handler for process
ing the fault injection target function,

wherein the injecting of the fault comprises injecting the
fault into the fault injection target function through the
fault injection processing handler.

3. The software reliability test method of claim 1, the
method further comprising:

generating a workload for the registered module to call the
fault injection target function,

wherein the injecting of the fault comprises injecting the
fault into the fault injection target function according to
the generated workload.

4. A test area restriction method, comprising:
collecting effectiveness check information comprising an

address of a memory in which a module, registered as a
test target among a plurality of modules sharing a spe
cific function, is executed;

determining whether a caller of a fault injection target
function, comprised in the specific function, is com

US 8,418,143 B2
9

prised in the registered module on the basis of the col
lected effectiveness check information; and

injectingafault into the fault injection target function when
(i) the caller is comprised in the registered module and
(ii) the effectiveness check information satisfies a given
fault injection condition,

wherein the determining comprises:
determining whether a caller address of the fault injec

tion target function is comprised in the address of the
memory in which the registered module is executed;
and

determining that the caller is comprised in the registered
module, when the caller address is comprised in the
address of the memory.

5. A computing apparatus, comprising:
a plurality of modules operating in a kernel; and
a fault injection executor existing in the kernel,
wherein the fault injection executor is configured to regis

ter a designated module among the modules as a test
target module, and further configured to inject a fault
into a fault injection target function when (i) the fault
injection target function is called by the registered mod
ule and (ii) a given fault injection condition is satisfied,

wherein the fault injection executor collects effectiveness
check information comprising an address area of a
memory in which the registered module is executed,

10

15

25

10
wherein the fault injection executor determines whether a

caller of the fault injection target function is comprised
in the registered module on the basis of the collected
effectiveness check information, and injects a fault into
the called fault injection target function when the caller
is comprised in the registered module, and

wherein the fault injection executor determines whetheran
address of the caller is comprised in the address of the
memory in which the registered module is executed, and
injects a fault into the called fault injection target func
tion when the address of the caller is comprised in the
address of the memory.

6. The computing apparatus of claim 5.
wherein the fault injection executor registers a fault injec

tion processing handler in the fault injection target func
tion, and injects a fault into the fault injection target
function through the fault injection processing handler.

7. The computingapparatus of claim 5, further comprising:
a workload generating unit generating a workload for the

registered module to call the fault injection target func
tion of a specific function,

wherein the fault injection executor injects the fault into the
called fault injection target function according to the
generated workload.

k k k k k

