
TOHUONET HUOLTO
US 20180267806A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0267806 A1

Chirayath Kuttan (43) Pub . Date : Sep . 20 , 2018

(54) CALCULATING WAIT TIME FOR BATCH
SCHEDULER JOBS

(71) Applicant : Flexera Software LLC , Itasca , IL (US) 013 . 01) : 25066 206967
(57) (72) Inventor : Rajeesh Chirayath Kuttan , Victoria

(AU)

(21) Appl . No . : 15 / 461 , 202

(52) U . S . CI .
CPC G06F 9 / 3855 (2013 . 01) ; G06F 3 / 04847

(2013 . 01) ; G06F 9 / 5066 (2013 . 01) ; G06F
9 / 4843 (2013 . 01) ; G06F 9 / 3851 (2013 . 01)

ABSTRACT
Computer programs and computer - implemented techniques
are described here for predicting when jobs in the queue of
a batch scheduler will be completed . More specifically ,
various embodiments are described herein that relate to
mechanisms for predicting the wait time and / or the esti
mated time to completion for jobs that are to be executed by
a software asset management platform . For example , heu
ristics and algorithms could be used to discover when
execution of a job is likely to begin and / or end . The
estimated time to completion for a given job can be esti
mated by summing the expected execution time of the given
job and the expected execution times of any jobs to be
executed prior to the given job , while the wait time for a
given job can be estimated by summing the expected execu
tion times of any jobs to be executed prior to the given job .

(22) Filed : Mar . 16 , 2017

Publication Classification
(51) Int . Cl .

G06F 9 / 38 (2006 . 01)
GO6F 3 / 0484 (2006 . 01)
G06F 9 / 48 (2006 . 01)
G06F 9 / 50 (2006 . 01)

100 Software Asset
Management

Platform
102

104

- - - - - - - - - - - -

! Enterprise Network 110

106

292299 5588ED 1829
108a w 1086 11080

L - |

Patent Application Publication Sep . 20 , 2018 Sheet 1 of 6 US 2018 / 0267806 A1

100 Software Asset
Management

Platform
102

104

- - - - - - - - - - - - - - — — - - -
Enterprise Network 110

106

108a 1086 108c
-

FIG . 1

Software Asset Management Platform 202 Batch Scheduler 204 Job Execution Module 206

Patent Application Publication

Network 214a

216

Calculator Module 208 GUI Module 210
Storage Module (s) 212

Network 214b

Sep . 20 , 2018 Sheet 2 of 6

Storage Medium 218

FIG . 2

US 2018 / 0267806 A1

User Interface 314

End user initiates Job 3 from the user interface for a single tenant

Patent Application Publication

Post estimated time to
completion for job (s)

deployed from the user interface
Data Store 312

Update estimated time to completion for pending jobs and the given job

Identify job (s)
ahead of a given job in the queue

Job Queue 310

Incoming job

Calculator Module 308

Job 3 Job 2

AMP initiates Job 1 for all tenants

Batch Scheduler 304 * Hs

Sep . 20 , 2018 Sheet 3 of 6

Record time taken to complete current job

AMP initiates Job 2 for a single tenant

Dispatch high priority job for execution
Job Execution Module 306 Job 1

Software Asset Management Platform (SAMP) 302

US 2018 / 0267806 A1

FIG . 3

Patent Application Publication Sep . 20 , 2018 Sheet 4 of 6 US 2018 / 0267806 A1

400

Execute jobs of different types
401

Create an entry for each executed job by recording the execution time
402

Build a log of historical execution times from the entries
403 AAAA

Store the log of historical execution times in a data store
404

FIG . 4

Patent Application Publication Sep . 20 , 2018 Sheet 5 of 6 US 2018 / 0267806 A1

500

Receive input at a user interface indicative of a request to initiate a particular
job
501

Place the particular job in a queue of a batch scheduler
502

Determine that one or more jobs are ahead of the particular job in the queue
503

- - - - - -

Orm Identify a corresponding job type for each job of the one or more jobs
504

Compute an expected time to completion for the particular job
505

Post the expected time to completion for the particular job to the user interface
506

FIG . 5

Patent Application Publication Sep . 20 , 2018 Sheet 6 of 6 US 2018 / 0267806 A1

600

Processor 602
Display 618 618 Instructions 604
Input / Output Device 620

Main Memory 606
Control Device 622

berrrrrrrr Bus
616 Instructions 608

Drive Unit 624

-

Non - volatile Memory 610 Storage Medium 626

Instructions 628
Network Adapter 612

- - ????

Signal Generation Device 630

Network
614

FIG . 6

US 2018 / 0267806 A1 Sep . 20 , 2018

CALCULATING WAIT TIME FOR BATCH
SCHEDULER JOBS

RELATED FIELD
[0001] Various embodiments relate generally to providing
feedback on when jobs are expected to be finished . More
specifically , various embodiments relate to computer pro
grams and computer - implemented techniques for predicting
when jobs in a queue of a batch scheduler will be completed .

particular job . Batch schedulers prioritize jobs to be run (i . e . ,
executed) using a data structure known as a job queue .
However , when the end user initiates the particular job , there
is no indication as to when execution of the job will begin
or when the job will be finished .
[0008] Introduced here , therefore , are computer programs
and computer - implemented techniques for predicting when
jobs in the queue of a batch scheduler will be completed .
More specifically , various embodiments are described herein
that relate to mechanisms for predicting the estimated time
to completion for jobs that are to be executed by a software
asset management platform . The estimated time to comple
tion for a given job can be estimated by summing the
expected execution time of the given job and the expected
execution times of any jobs to be executed prior to the given
job .
[0009] Implementing the computer programs and com
puter - implemented techniques described herein can improve
the processing capabilities of the computing device (s) that
host the software asset management platform and the pro
cessing capabilities of the computing device (s) used to
interact with the software asset management platform .
Implementation of such computer programs and computer
implemented techniques also improves the end user expe
rience when interacting with the software asset management
platform . For example , rather than simply wait for an
unknown amount of time until execution of a requested job
has finished , the software asset management platform can
provide an indication as to how long the end user must wait .

BACKGROUND
[0002] Software asset management platforms provide
extensive capabilities for managing software from various
vendors and desktop , laptop , and server hardware . Software
asset management platforms may also provide automated ,
entitlement - based license optimization for software from
vendors such as Adobe® , Microsoft® , and Symantec® .
Accordingly , software asset management platforms are often
used by end users (e . g . , individuals and enterprises) to
reduce ongoing software licensing costs , maintain continu
ous license compliance , and gain better control over soft
ware spend while reducing the time and effort required to
manage software assets .
[0003] Graphical user interfaces are often used by the end
users to interact with the software asset management plat
forms . For example , an end user may access a graphical user
interface and submit a request to a software asset manage
ment platform to execute a particular job (also referred to as
a “ task ”) , such as a license reconciliation task , an import of
software purchase order details , etc .
[0004] Software asset management platforms may include
a computer application that controls unattended background
program execution of jobs . More specifically , the computer
application can represent a single point of control for
defining and monitoring background executions in a distrib
uted network of computing device in a streamlined manner .
Such a computer application is often referred to as a “ batch
scheduler ” or “ job scheduler . ” A batch scheduler can be
implemented as a Microsoft Windows® service running on
a computing device (e . g . , a server) .
[0005] When an end user initiated a job (e . g . , by submit
ting a request through the graphical user interface) , there is
no indication as to when execution of the job will begin or
when the job will be finished . The end user must simply wait
until execution has finished and the outcome of the job is
available for review , though such a requirement may lead to
a negative end user experience in interacting with the
software asset management platform .

BRIEF DESCRIPTION OF THE DRAWINGS
[0010) One or more embodiments of the present invention
are illustrated by way of example and not limitation in the
figures of the accompanying drawings , in which like refer
ences indicate similar elements .
[0011] FIG . 1 is a system - level diagram of a software
licensing and distribution model .
10012] FIG . 2 depicts a system - level diagram that illus
trates how an end user may interact with a software asset
management platform through a graphical user interface
according to some embodiments .
10013] FIG . 3 is a diagrammatic illustration of a process
for calculating the execution times for some or all of the
tasks that are executed by a software asset management
platform , and then using the execution time (s) to predict the
expected time to completion for a given job .
[0014] FIG . 4 depicts a process for building a log of
historical execution times that can be used by a software
asset management platform to predict the estimated time to
completion for jobs in a job queue .
[0015] FIG . 5 depicts a process for predicting the esti
mated time to completion for jobs that reside within a job
queue and are to be executed by a software asset manage
ment platform .
[0016] FIG . 6 is a block diagram illustrating an example of
a processing system in which at least some of the operations
described herein can be implemented .

SUMMARY
[0006] Software asset management platforms may include
a computer application referred to as a " batch scheduler " or
" job scheduler . " Said another way , a batch scheduler is a
computer application that controls unattended background
program execution of jobs . This is commonly called batch
scheduling , while execution of jobs is commonly called
batch processing .
[0007] Conventional batch schedulers typically provide a
graphical user interface that may represent a single point of
control for defining and monitoring background executions
in a distributed network of computing devices . For example ,
an end user (e . g . , an individual or enterprise) may use the
graphical user interface to submit a request to execute a

DETAILED DESCRIPTION
(0017] Introduced here are computer programs and com
puter - implemented techniques for predicting when jobs in
the queue of a batch scheduler will be completed . More
specifically , various embodiments are described herein that

US 2018 / 0267806 A1 Sep . 20 , 2018

relate to mechanisms for predicting the wait time and / or the
estimated time to completion for jobs that are to be executed
by a software asset management platform . The estimated
time to completion for a given job can be estimated by
summing the expected execution time of the given job and
the expected execution times of any jobs to be executed prior
to the given job , while the wait time for a given job can be
estimated by summing the expected execution times of any
jobs to be executed prior to the given job .
[0018] Implementing the computer programs and com
puter - implemented techniques described herein can improve
the processing capabilities of the computing device (s) that
host the software asset management platform and the pro
cessing capabilities of the computing device (s) used to
interact with the software asset management platform .
Implementation of such computer programs and computer
implemented techniques also improves the end user expe
rience when interacting with the software asset management
platform . For example , rather than simply wait for an
unknown amount of time until execution of a requested job
has finished , the software asset management platform can
provide an indication as to how long the end user must wait .
[0019] Certain software asset management platforms (e . g . ,
Flexera FlexNet Manager®) may be mentioned herein for
the purposes of illustration . Other network - accessible plat
forms could also be used to run computer programs that
utilize a batch scheduler or host resources required by the
batch scheduler . Software asset management platforms may
be accessible via one or more of a web browser , mobile
application , software program , or over - the - top (OTT) appli
cation . Accordingly , a software asset management platform
may be accessed using any appropriate network - accessible
electronic device , such as a mobile phone , tablet , personal
computer , game console (e . g . , Sony PlayStation® or Micro
soft Xbox®) , music player (e . g . , Apple iPod Touch®) ,
wearable electronic device (e . g . , a watch or fitness band) ,
network - connected (“ smart ”) device (e . g . , television) , vir
tual / augmented reality system (e . g . , Oculus Rift or Micro
soft Hololens®) , or some other electronic device .

be remotely hosted by the licensor (or some other third
party) on a remote license server accessible to the computing
devices 108a - c across an external network 104 , such as the
Internet , a local area network (LAN) , a wide area network
(WAN) , a point - to - point dial - up connection , cellular net
work , etc . When software is needed by a computing device
(e . g . , computing device 108a) , the computing device can
submit a request to the license server 106 for a license for the
software .
[0023] However , software applications (and thus licenses)
can be difficult to strategically manage , particularly as the
software licensing and distribution model becomes more
complex . For example , the software applications required by
each computing device may vary based on the correspond
ing end user ' s role within the enterprise .
[0024] Accordingly , in some embodiments a software
asset management platform 102 is responsible for managing
software from various vendors and desktop , laptop , and
server hardware . The software asset management platform
102 may also provide automated , entitlement - based license
optimization for software applications from vendors such as
Adobe® , Microsoft® , and Symantec® . Thus , the software
asset management platform 102 can be used by an end user
(e . g . , an individual or an enterprise) to reduce ongoing
software licensing costs , maintain continuous license com
pliance , and gain better control over software spend while
reducing the time and effort required to manage software
assets . The software asset management platform 102 (which
resides on a computing device such as a server) may be
communicatively coupled to the license server 106 and / or
the computing devices 108a - C .
[0025] FIG . 2 depicts a system - level diagram that illus
trates how an end user may interact with a software asset
management platform 202 through a graphical user interface
216 according to some embodiments . As noted above , the
software asset management platforms described herein
allow for more precise management of software assets and
hardware assets owned or leased by the end user .
10026] Typically , the end user interacts with the software
asset management platform 202 by logging in through the
graphical user interface 216 , which may be accessible via a
web browser , mobile application , desktop software , or over
the - top (OTT) application . In short , the end user is able to
remotely access and utilize the software asset management
platform 202 by forming a connection between the graphical
user interface 216 and the computing device on which the
software asset management platform 202 resides (e . g . , a
server) over a network 214a .
[0027] The end user can access the graphical user interface
216 and request that the software asset management plat
form 202 perform a job (also referred to as a “ task ”) . In some
embodiments , the graphical user interface 216 prompts the
end user to enter login credentials (e . g . , preexisting creden
tials used to log into other software applications accessible
to the end user) that are analyzed and validated by the
software asset management platform 202 prior to allowing
the end user to submit the request .
[0028] The software asset management platform 202
includes a batch scheduler 204 that may be implemented , for
example , as a Microsoft Windows® service . The batch
scheduler 204 is responsible for streamlining the execution
of jobs by controlling the unattended background execution
of the jobs . However , software asset management platforms
(and , more specifically , batch schedulers) conventionally do

General System Overview
[0020] FIG . 1 is a system - level diagram of a software
licensing and distribution model 100 . The hallmark of
software licenses is that a licensor (e . g . , the software devel
oper , publisher , or distributor) grants a licensee (e . g . , an
individual or enterprise) the right to use copies of software .
The license agreement includes terms that define the autho
rized uses of the software , such as the number of installa
tions allowed and the terms of distribution .
10021] Software is often licensed to the licensee based on
one or more criteria , such as the total number of computing
devices / installations , the total (expected) usage , the desired
feature (s) , etc . For example , Software as a Service (SaaS)
applications are often licensed to licensees on a subscription
basis . When the licensee is an enterprise , the licenses are
typically made accessible to one or more computing devices
108a - c associated with the enterprise . The computing device
(s) 108a - c could include , for example , mobile phones ,
tablets , or personal computers (e . g . , laptop computers or
desktop computers) that are owned or operated by employ
ees of the enterprise .
[0022] As shown in FIG . 1 , the licenses may be locally
hosted on a license server 106 residing within an enterprise
network 110 . Additionally or alternatively , the licenses may

US 2018 / 0267806 A1 Sep . 20 , 2018

not provide any indication as to when a job will be com
pleted when an end user initiates the job (e . g . , by submitting
a request through the graphical user interface 216) . This
causes some end users to report negative user experiences
because they do not know how much longer until a given
task will be completed and must simply wait until execution
has finished . In fact , such issues may lessen the value
provided to the end user by the software asset management
platform because strategic decisions may be dependent on
knowing when certain job (s) will finish . For example , an end
user planning to generate a report on a compliant license
position may need to wait until a license reconciliation job
has been completed by the software asset management
platform . Such issues are more evident in cloud - based
environments , where multiple tenants may compete for
system resources on a single shared software asset manage
ment platform .
[0029] Accordingly , computer programs and computer
implemented techniques are introduced here for predicting
the time to completion for jobs that are to be executed by the
software asset management platform 202 . As further
described below , a log of historical execution times is
initially constructed by recording the execution times for
some or all of the jobs that are executed by the software asset
management platform 202 . For example , a job execution
module 206 may be responsible for executing job and then
creating an entry for each executed job within the log of
historical execution times .
[0030] Each entry may include a job identifier , an execu
tion time , a job type , one or more operating characteristics
(e . g . , input / output (1 / 0) subsystem speed , central processing
unit (CPU) speed , network connectivity status , network
connection bandwidth , etc .) , or some combination thereof .
Accordingly , the log of historical execution times is embod
ied in an appropriate data structure , such as a table . The log
of historical execution times can then be stored within a data
store that is accessible to the software asset management
platform 202 . More specifically , the data store may reside
within one or more storage modules 212 of the software
asset management platform 202 , a remote storage medium
218 that is accessible to the software asset management
platform 202 , or both .
[0031] The batch scheduler 204 prioritizes jobs to be run
(i . e . , executed) using a data structure known as a job queue .
Therefore , when the end user initiates a particular job , the
particular job is placed in the job queue maintained by the
batch scheduler 204 . Jobs may be automatically initiated by
the software asset management platform 202 or manually
initiated by the end user . For example , a job may be initiated
responsive to a graphical user interface (GUI) module 210
receiving input indicative of a request to initiate the par
ticular job at the graphical user interface 216 .
[0032] After placing the particular job in the job queue of
the batch scheduler 204 , the software asset management
platform 202 can predict the expected time to completion for
the particular job based on the log of historical execution
times maintained in the data store . More specifically , a
calculator module 208 can apply heuristics and algorithms
for predicting the estimated time to completion for pending
jobs . For example , the calculator module 208 can initially
determine whether any jobs are ahead of the particular job
in the job queue of the batch scheduler 204 . If one or more
jobs are discovered , the calculator module 208 can identify
a job type for each of the one or more jobs , and then compute

the expected execution time for each of the one or more jobs .
The expected execution time for a given job is generally
derived by averaging the historical execution times main
tained in the data store that are associated with the same job
type as the given job . Such a technique allows two different
metrics to be readily produced :

[0033] Expected Wait Time — This metric provides an
indication as to when execution of the particular job
will begin , and is produced by summing the expected
execution times corresponding to each of the one or
more jobs ahead of the particular job in the job queue .

[0034] Expected Time to Completion — This metric pro
vides an indication as to when execution of the par
ticular job will be completed , and is produced by
summing the expected execution time corresponding to
the particular job and the expected execution times
corresponding to each of the one or more jobs ahead of
the particular job in the job queue .

[0035] The calculator module 208 can then forward one or
both of these metrics to the GUI module 210 , which posts
the metric (s) for review by the end user responsible for
submitting the request to perform the particular job .
10036] In some embodiments , the graphical user interface
216 , software asset management platform 202 , and remote
storage medium 218 communicate with one another over
one or more networks 214a - b , such as the Internet , a local
area network (LAN) , a wide area network (WAN) , a point
to - point dial - up connection , a cellular network , etc .
Although FIG . 2 illustrates a remote storage medium 218
that is distinct from the software asset management platform
202 , some embodiments are entirely self - contained . That is ,
the data store could be hosted locally on the software asset
management platform 202 (e . g . , within one or more storage
modules 212) .
[0037] Note that the term “ module ” as used herein refers
broadly to software , hardware , and / or firmware components .
Modules are typically functional components that generate
useful data or some other output using specified input (s) .
Moreover , a module may or may not be self - contained . For
example , a computer program may include one or more
modules , or a module can include one or more computer
programs .
[0038] FIG . 3 is a diagrammatic illustration of a process
for calculating the execution times for some or all of the
tasks that are executed by a software asset management
platform 302 , and then using the execution time (s) to predict
the expected time to completion for a given job . At a high
level , the process involves three steps : (1) jobs are executed
by the software asset management platform 302 ; (2) the
execution times for those jobs are recorded by the software
asset management platform 302 ; and (3) the software asset
management platform 302 approximates when a future job
will be completed based on the execution times of previ
ously - executed jobs . The accuracy of such an approximation
can be improved by learning about the actual execution time
every time a job is executed by the software asset manage
ment platform 302 , and then using those actual execution
times to approximate the expected execution time for jobs in
a job queue 310 .
[0039] For example , information may be stored in a batch
scheduler 304 based on a previous run (also referred to as a
“ historic run ”) of the following tasks :

[0040] A full import run for Tenant A was completed in
four (4) hours , and

US 2018 / 0267806 A1 Sep . 20 , 2018

[0041] A System Center Configuration Manager
(SCCM) import run for Tenant A was completed in one
(1) hour .

[0042] At a subsequent point in time , a BMC Atrium
Discover & Dependency Mapping (ADDM) import (also
referred to as a “ BMC Discovery import ”) import may be
initiated by an end user and placed in the job queue 310 of
the batch scheduler 304 behind a single instance of a full
import and a single instance of an SCCM import . Note that
the end user may or may not be Tenant A . Assuming that the
ADDM import will be executed following the full import
and the SCCM import (i . e . , jobs are executed by a job
execution module 306 in chronological order) , then the wait
time for the ADDM import is five (5) hours . Meanwhile , the
expected time to completion will be five (5) hours plus the
expected execution time for the ADDM import . Either or
both of these metrics can be shown to the end user on a user
interface 314 through which the end user submitted a request
for the ADDM import to be executed .
[0043] As noted above , the expected execution time for a
given job will generally be derived by averaging the execu
tion times maintained in a data store 312 that are associated
with the same job type as the given job . While the example
provided above includes a single value for different types of
imports , multiple values often exist for a single job type . For
example , the data store 312 may include separate entries
noting that a first full import run was completed in four (4)
hours , a second full import run was completed in five (5)
hours , and a third import run was completed in four and a
half (4 . 5) hours . In such a scenario , the expected execution
time for a full import run can be calculated as follows :

Job 2) . Each job may be performed on behalf of a single
tenant of the software asset management platform 302 , all
tenants , or a subset of tenants . After these jobs have been
completed , the task execution module 306 records an execu
tion time for each job by creating or updating corresponding
entries within a log maintained in the data store 312 . The
software asset management platform 302 also initiates
another job (i . e . , Job 3) upon receiving input indicative of a
request to perform the other job at the user interface 314 .
After this job has been completed , the task execution module
306 records an execution time for the job by creating or
updating a corresponding entry within the log . The software
asset management platform 302 (and , more specifically , the
task execution module 306) may record an execution time
for all executed jobs or some subset thereof .
[0047] At some later point in time , the software asset
management platform 302 initiates the same set of jobs (i . e . ,
Job 1 , Job 2 , and Job 3) . However , the software asset
management platform 302 (and , more specifically , the cal
culator module 308) can now predict how long until each job
is finished based on the actual execution times previously
recorded in the data store 312 .
[0048] For example , assuming the jobs are placed in , and
dispatched from , the job queue 310 in the following order :
Job 1 - Job 2 - Job 3 , the calculator module 308 can calculate
the expected wait time (EWT) for each job using expected
execution times (EET) as follows :

EWT (Job 1) = None

EWT (Job 2) = EET (Job 1)

EWT (Job 3) = EET (Job 1) + EET (Job 2)

Expected Execution Time = 4 Hours + 4 . 5 Hours + 5 Hours
3 Instances

= 4 . 5 Hours 10049) The expected wait time for a given job represents
a prediction of how long it will take until the given job is
started . Moreover , the calculator module 308 can predict the
estimated time to completion (ETC) as follows :

ETC (Job 1) = EET (Job 1)

ETC (Job 2) = EET (Job 1) + EET (Job 2)

[0044] Note , however , that the expected execution time
may not always be in the form of the arithmetic mean . Other
mathematical and statistical models may be used . For
example , an arithmetic mean may be appropriate when all
external factors (also referred to as “ operating characteris
tics ”) remain substantially the same because the execution
time is expected to be roughly the same . However , in some
embodiments weights are assigned to certain execution
times so that corresponding entries in the data store 312 are
weighted more heavily than others . For example , the soft
ware asset management platform 302 may assign a weight to
each of the full import runs listed above based on how many
operating characteristics are shared between each of those
jobs and the job currently in the job queue 310 .
[0045] One skilled in the art will recognize that such an
approach requires that each job in the job queue 310 (or a
similar job of the same type) has been previously executed
at least one time so that an actual execution time is available
to determine the expected execution time . Similar prediction
techniques may simply substitute a value for those jobs that
have not previously been executed by the job execution
module 306 of the software asset management platform 302 .
For example , a calculator module 308 may substitute a time
corresponding to a similar job or a placeholder value that is
specified for each job type or a certain set of operating
characteristics .
[0046] Here , for example , the software asset management
platform 302 automatically initiates two jobs (i . e . , Job 1 and

[0050] ETC (Job 3) = EET (Job 1) + EET (Job 2) + EET (Job 3)
[0051] The expected time to completion for a given job
represents a prediction of how long it will take until the
given job is completed .
[0052] FIG . 4 depicts a process 400 for building a log of
historical execution times that can be used by a software
asset management platform to predict the estimated time to
completion for jobs in a job queue . Jobs of different types are
initially executed by the software asset management plat
form (step 401) . The jobs may be manually initiated by an
end user or automatically initiated by the software asset
management platform . Moreover , the jobs may be initiated
on behalf of one or more tenants of the software asset
management platform . For example , a first job may be
executed on behalf of a single tenant , while a second job
may be executed on behalf of all tenants .
10053] . An entry can then be created for some or all of the
jobs executed by the software asset management platform by
recording the execution time (step 402) . Each entry may also
specify a job identifier , job type , one or more operating
characteristics , or both . Operating characteristics may
include , for example , the input / output (I / O) subsystem

US 2018 / 0267806 A1 Sep . 20 , 2018

speed , central processing unit (CPU) speed , network con
nectivity status , network connection bandwidth , or some
combination thereof .
[0054] A log of historical execution times can be built
from the entries (step 403) . The log can be constructed in
several different ways . For example , in some embodiments
the entries corresponding to jobs of similar job types are
arranged together , while in other embodiments the entries
are arranged in chronological order of execution . The log of
historical execution times is then stored in a data store that
is accessible to the software asset management platform
(step 404) . For example , the data store may be maintained
locally on the software asset management platform or
remotely on another network - accessible computing device .
[0055] FIG . 5 depicts a process 500 for predicting the
estimated time to completion for jobs that reside within a job
queue and are to be executed by a software asset manage
ment platform . The software asset management platform
may initially receive input indicative of a request to initiate
a particular job (step 501) . The request may be submitted by
an end user through a user interface that is accessible via a
web browser , mobile application , desktop software , or over
the - top (OTT) application . In some embodiments , the par
ticular job is instead automatically initiated by the software
asset management platform . For example , the software asset
management platform may include configuration instruc
tions that specify certain job (s) are to be performed in
accordance with a predetermined schedule .
[0056] The software asset management platform then
places the particular job in a job queue of a batch scheduler
(step 502) . Generally , the batch scheduler dispatches jobs to
a job execution module for execution in chronological order .
However , in some embodiments the batch scheduler dis
patches jobs to the job execution module for execution based
on a priority assigned to each job . For example , time
sensitive tasks may be assigned a higher priority than
non - time - sensitive tasks , and multi - tenant tasks are assigned
a higher priority than single tenant tasks . As another
example , the end user may be able to specify a priority
ordering among jobs using a user interface .
[0057 The software asset management platform then
determines whether any jobs exist in the job queue of the
batch scheduler ahead of the particular job . For instance , the
software asset management platform may determine that one
or more jobs are ahead of the particular job in the job queue
(step 503) . In such scenarios , the software asset management
platform identifies a corresponding job type for each job of
the one or more jobs (step 504) , and then derives an expected
execution time for each job of the one or more jobs . The
expected execution time for a given job is generally derived
by averaging the execution times maintained in a log of
historical execution times that are associated with the same
job type as the given job . For example , the expected execu
tion time for a full import can be predicted by averaging the
actual execution time (s) corresponding to previous full
imports executed by the software asset management plat
form .
[0058] The expected execution time can be determined in
several different manners . For example , in some embodi
ments the calculator module of the software asset manage
ment platform may use the arithmetic mean , while in other
embodiments different mathematical and / or statistical mod
els are used . For example , the software asset management
platform may assign a weight to each actual execution time

used to determine the expected execution time based on how
many operating characteristics are shared between each of
those jobs and the job currently in the job queue .
[0059] The software asset management platform can then
compute the expected time to completion for the particular
job (step 505) . The expected time to completion can be
predicted by summing the expected execution times corre
sponding to the one or more jobs and the expected execution
time corresponding to the particular job . The software asset
management platform then posts the expected time to
completion for the particular job to a user interface for
review (step 506) . For example , the user interface may be
accessible to an end user who was responsible for submitting
the request to initiate the particular job .
[0060] In some embodiments the expected time to comple
tion is updated upon completion of each job ahead of the
particular job in the job queue of the batch scheduler , while
in other embodiments the expected time to completion is
continually updated in accordance with a refresh rate speci
fied by the end user or set by the software asset management
platform (e . g . , every 15 minutes or 30 minutes) .
[0061] One skilled in the art will recognize that in some
instances the software asset management platform may
determine that no jobs are ahead of the particular job in the
job queue . In such scenarios , the expected time to comple
tion is simply the expected execution time for the particular
job .
[0062] Unless contrary to physical possibility , it is envi
sioned that the steps described above may be performed in
various sequences and combinations . For example , the
expected execution time for each job type may be main
tained and continually updated by the software asset man
agement platform upon completing a job .
[0063] Additional steps could also be included in some
embodiments . For example , in some embodiments the soft
ware asset management platform may alternatively or addi
tionally compute an optimal expected time to completion
and / or a sub - optimal expected time to completion . The
optimal expected time to completion may be computed by
multiplying the expected time to completion by a first factor
(e . g . , 0 . 7 or 0 . 8) , while the sub - optimal expected time to
completion may be computed by multiplying the expected
time to completion by a second factor (e . g . , 1 . 2 or 1 . 3) .
These values can be determined by comparing the current
operating characteristics of the underlying computer system
(e . g . , I / O subsystem speed , CPU speed , network connectiv
ity status , network connection bandwidth , etc .) with the
operating characteristics of previous executions . Moreover ,
these values (which indicate how quickly or slowly tasks
may be executed assuming a change in operating character
istics) may be posted to the user interface for review by the
end user .
[0064] As another example , in some embodiments the
software asset management platform may apply machine
learning technique (s) to the job history of the asset man
agement system to improve the accuracy of predicting the
expected time to completion and / or the wait time for a given
job . For instance , the software asset management platform
may apply a Naïve Bayes Classifier algorithm , a K Means
Clustering algorithm , a Support Vector Machine algorithm ,
linear regression , logic regression , artificial neural networks ,
etc . The software asset management platform can then adjust
a parameter for computing the expected time to completion

US 2018 / 0267806 A1 Sep . 20 , 2018

and / or the wait time for the given job based on the result (s)
of applying the machine learning technique (s) .

Processing System
[0065] FIG . 6 is a block diagram illustrating an example of
a processing system 600 in which at least some operations
described herein can be implemented . For example , the
processing system 600 may be responsible for monitoring
compliance of a licensee or managing software assets . The
computing system may include one or more central process
ing units (processors ”) 602 , main memory 606 , non - vola
tile memory 610 , network adapter 612 (e . g . , network inter
faces) , display 618 , input / output devices 620 , control device
622 (e . g . , keyboard and pointing devices) , drive unit 624
including a storage medium 626 , and signal generation
device 630 that are communicatively connected to a bus 616 .
The bus 616 is illustrated as an abstraction that represents
any one or more separate physical buses , point to point
connections , or both connected by appropriate bridges ,
adapters , or controllers . The bus 616 , therefore , can include ,
for example , a system bus , a Peripheral Component Inter
connect (PCI) bus or PCI - Express bus , a HyperTransport or
industry standard architecture (ISA) bus , a small computer
system interface (SCSI) bus , a universal serial bus (USB) ,
IIC (12C) bus , or an Institute of Electrical and Electronics
Engineers (IEEE) standard 1394 bus , also called “ Firewire . "
[0066] In various embodiments , the processing system
600 operates as a standalone device , although the processing
system 600 may be connected (e . g . , wired or wirelessly) to
other machines . For example , the processing system 600
may include a terminal that is coupled directly to licensing
server of a licensee . As another example , the processing
system 600 may be wirelessly coupled to the licensing
server .
[0067] In various embodiments , the processing system
600 may be a server computer , a client computer , a personal
computer (PC) , a user device , a tablet PC , a laptop computer ,
a personal digital assistant (PDA) , a cellular telephone , an
iPhone , an iPad , a Blackberry , a processor , a telephone , a
web appliance , a network router , switch or bridge , a console ,
a hand - held console , a (hand - held) gaming device , a music
player , any portable , mobile , hand - held device , or any
machine capable of executing a set of instructions (sequen
tial or otherwise) that specify actions to be taken by the
computing system .
[0068] While the main memory 606 , non - volatile memory
610 , and storage medium 626 (also called a " machine
readable medium) are shown to be a single medium , the term
" machine - readable medium ” and “ storage medium ” should
be taken to include a single medium or multiple media (e . g . ,
a centralized or distributed database , and / or associated
caches and servers) that store one or more sets of instruc
tions 628 . The term “ machine - readable medium ” and “ stor
age medium ” shall also be taken to include any medium that
is capable of storing , encoding , or carrying a set of instruc
tions for execution by the computing system and that cause
the computing system to perform any one or more of the
methodologies of the presently disclosed embodiments .
[0069] In general , the routines executed to implement the
embodiments of the disclosure , may be implemented as part
of an operating system or a specific application , component ,
program , object , module , or sequence of instructions
referred to as “ computer programs . ” The computer programs
typically comprise one or more instructions (e . g . , instruc

tions 604 , 608 , 628) set at various times in various memory
and storage devices in a computer , and that , when read and
executed by one or more processing units or processors 602 ,
cause the processing system 600 to perform operations to
execute elements involving the various aspects of the dis
closure .

[0070] Moreover , while embodiments have been
described in the context of fully functioning computers and
computer systems , those skilled in the art will appreciate that
the various embodiments are capable of being distributed as
a program product in a variety of forms , and that the
disclosure applies equally regardless of the particular type of
machine or computer - readable media used to actually effect
the distribution .
[0071] Further examples of machine - readable storage
media , machine - readable media , or computer - readable (stor
age) media include recordable type media such as volatile
and non - volatile memory devices 610 , floppy and other
removable disks , hard disk drives , optical disks (e . g . , Com
pact Disk Read - Only Memory (CD ROMS) , Digital Versa
tile Disks (DVDs)) , and transmission type media such as
digital and analog communication links .
[0072] The network adapter 612 enables the processing
system 600 to mediate data in a network 614 with an entity
that is external to the processing system 600 through any
known and / or convenient communications protocol sup
ported by the processing system 600 and the external entity .
The network adapter 612 can include one or more of a
network adaptor card , a wireless network interface card , a
router , an access point , a wireless router , a switch , a multi
layer switch , a protocol converter , a gateway , a bridge ,
bridge router , a hub , a digital media receiver , and / or a
repeater .
10073] The network adapter 612 can include a firewall
which can , in some embodiments , govern and / or manage
permission to access / proxy data in a computer network , and
track varying levels of trust between different machines
and / or applications . The firewall can be any number of
modules having any combination of hardware and / or soft
ware components able to enforce a predetermined set of
access rights between a particular set of machines and
applications , machines and machines , and / or applications
and applications , for example , to regulate the flow of traffic
and resource sharing between these varying entities . The
firewall may additionally manage and / or have access to an
access control list which details permissions including for
example , the access and operation rights of an object by an
individual , a machine , and / or an application , and the cir
cumstances under which the permission rights stand .
[0074] As indicated above , the techniques introduced here
implemented by , for example , programmable circuitry (e . g . ,
one or more microprocessors) , programmed with software
and / or firmware , entirely in special - purpose hardwired (i . e . ,
non - programmable) circuitry , or in a combination or such
forms . Special - purpose circuitry can be in the form of , for
example , one or more application - specific integrated circuits
(ASICs) , programmable logic devices (PLDs) , field - pro
grammable gate arrays (FPGAs) , etc .
[0075] Note that any of the embodiments described above
can be combined with another embodiment , except to the
extent that it may be stated otherwise above or to the extent
that any such embodiments might be mutually exclusive in
function and / or structure .

US 2018 / 0267806 A1 Sep . 20 , 2018

[0076] Although the present invention has been described
with reference to specific exemplary embodiments , it will be
recognized that the invention is not limited to the embodi
ments described , but can be practiced with modification and
alteration within the spirit and scope of the appended claims .
Accordingly , the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive
sense .

1 . A computer - implemented method comprising :
building a log of historical execution times by recording

an execution time for each job that is executed by a
software asset management platform ;

storing the log of historical execution times in a data store
that is accessible to the software asset management
platform ;

receiving input at a user interface indicative of a request
to initiate a particular job ;

placing the particular job in a queue of a batch scheduler
computer application that is executed by the software
asset management platform ;

identifying multiple execution times in the log of histori
cal execution times corresponding to multiple past jobs
that are of a same type as the particular job ;

assigning a weight to each of the multiple execution times
based on how many operating characteristics are shared
between each of the multiple past jobs and the particu
lar job ;

predicting an expected execution time for the particular
job based on the multiple weighted execution times ;
and

predicting an expected time to completion for the par
ticular job based on the log expected execution time .

2 . The computer - implemented method of claim 1 ,
wherein building the log of historical execution times com
prises :

executing jobs of different types ; and
creating an entry for each job in the data store that

includes an execution time , a job type , and one or more
operating characteristics .

3 . The computer - implemented method of claim 2 ,
wherein predicting the expected time to completion for the
particular job comprises :

determining that one or more jobs are ahead of the
particular job in the queue of the batch scheduler
computer application ;

identifying a corresponding job type for each job of the
one or more jobs ; and

computing the expected time to completion for the par
ticular job by summing expected execution times cor
responding to the one or more jobs and the expected
execution time corresponding to the particular job ,
wherein expected execution time for a given job is

derived by averaging execution times maintained in
the log of historical execution times that are associ
ated with a same job type as the given job .

4 . The computer - implemented method of claim 3 , further
comprising :

posting the expected time to completion for the particular
job to the user interface for review by an end user
responsible for submitting the request .

5 . The computer - implemented method of claim 4 ,
wherein the posted expected time to completion for the

particular job is updated upon completion of each job ahead
of the particular job in the queue of the batch scheduler
computer application .

6 . The computer - implemented method of claim 1 ,
wherein the user interface is accessible via a web browser ,
mobile application , software program , or over - the - top
(OTT) application .

7 . The computer - implemented method of claim 1 ,
wherein jobs executed by the software asset management
platform are manually initiated by an end user or automati
cally initiated by the software asset management platform .

8 . A computer - implemented method comprising :
receiving input at a user interface indicative of a request

to a software asset management platform to initiate a
particular job ;

placing the particular job in a queue of a batch scheduler
computer application that is executed by the software
asset management platform ;

determining that one or more jobs are ahead of the
particular job in the queue of the batch scheduler
computer application ;

identifying a corresponding job type for each job of the
one or more jobs ;

computing an expected time to completion for the par
ticular job by summing expected execution times cor
responding to the one or more jobs and an expected
execution time corresponding to the particular job ,
wherein expected execution time for a given job is

derived by averaging execution times maintained in
a log of historical execution times that are associated
with a same job type as the given job ,

wherein the log of historical execution times includes
an entry for each job executed by the software asset
management platform , each entry including an
execution time , a job type , and one or more operating
characteristics ,

wherein the expected execution times corresponding to
the one or more jobs and the expected execution time
corresponding to the particular job are weighted
based on how many operating characteristics are
shared between the particular job and each of the one
or more jobs , and

wherein those expected execution times corresponding
to jobs that share at least one operating parameter in
common with the particular job are weighted more
heavily ; and

posting the expected time to completion for the particular
job to the user interface for review by an end user
responsible for submitting the request .

9 . The computer - implemented method of claim 8 ,
wherein the log of historical execution times is maintained
in a data store that is accessible to the software asset
management platform .

10 . The computer - implemented method of claim 9 ,
wherein the operating characteristics include input / output

(I / O) subsystem speed , central processing unit (CPU)
speed , network connectivity status , network connection
bandwidth , or some combination thereof .

11 . The computer - implemented method of claim 8 , further
comprising :

updating the posted expected time to completion for the
particular job upon completion of each job ahead of the
particular job in the queue of the batch scheduler
computer application .

US 2018 / 0267806 A1 Sep . 20 , 2018

for 12 . The computer - implemented method of claim 8 , fur
ther comprising :

continually updating the posted expected time to comple
tion for the particular job in accordance with a refresh
rate specified by the end user or the software asset
management platform .

13 . An asset management system comprising :
a processor operable to execute instructions stored in a
memory ; and

the memory that includes specific instructions for predict
ing estimated times to completion for jobs that are to be
executed by the asset management platform , wherein
execution of the specific instructions causes the pro
cessor to :
receive input indicative of a request to initiate a par

ticular job that is submitted at a user interface ;
place the particular job in a queue of a batch scheduler

computer application ;
determine that one or more jobs are ahead of the

particular job in the queue of the batch scheduler
computer application ;

identify a corresponding job type for each job of the
one or more jobs ;

assign a weight to expected execution times corre
sponding to the one or more jobs and an expected
execution time corresponding to the particular job
based on how many operating characteristics are
shared between the particular job and each of the one
or more lobs ;

compute an expected time to completion for the par
ticular job based on the expected execution times
corresponding to the one or more jobs and the
expected execution time corresponding to the par
ticular job ; and

cause the expected time to completion for the particular
job to be posted to the user interface for review by an
end user responsible for submitting the request .

14 . The asset management system of claim 13 , wherein
computing the expected time to completion for the particular
job comprises :
summing the expected execution times corresponding to

the one or more jobs and the expected execution time
corresponding to the particular job .

15 . The asset management system of claim 14 , wherein
expected execution time for a given job is derived by
averaging execution times maintained in a log of historical
execution times that are associated with a same job type as
the given job .

16 . (canceled)
17 . The asset management system of claim 13 , wherein

the one or more jobs ahead of the particular job in the queue
are dispatched for execution based on a priority assigned to
each job .

18 . The asset management system of claim 13 , wherein
execution of the specific instructions causes the processor to :

compute an optimal expected time to completion for the
particular job by multiplying the expected time to
completion by a first factor ;

compute a sub - optimal expected time to completion for
the particular job by multiplying the expected time to
completion by a second factor ; and

cause the optimal expected time to completion , the sub
optimal expected time to completion , or both to be
posted to the user interface for review by the end user .

19 . The asset management system of claim 13 , wherein
execution of the specific instructions causes the processor to :

apply one or more machine learning techniques to a job
history of the asset management system ; and

adjusting a parameter for computing the expected time to
completion for the particular job based on a result of
applying the one or more machine learning techniques ,

wherein said adjusting improves causes accuracy of said
computing to be improved .

* * * * *

