
US 20200285646A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0285646 A1

TUDORAN et al . (43) Pub . Date : Sep. 10 , 2020

(54) SYSTEM AND METHOD FOR STREAM
PROCESSING

(52) U.S. CI .
CPC .. GOOF 16/24568 (2019.01) ; G06F 16/24552

(2019.01) (71) Applicant : Huawei Technologies Co. , Ltd. ,
Shenzhen (CN)

(57) ABSTRACT
(72) Inventors : Radu TUDORAN , Munich (DE) ;

Stefano BORTOLI , Munich (DE) ;
Xing ZHU , Shanghai (CN) ; Goetz
BRASCHE , Munich (DE) ; Cristian
AXENIE , Munich (DE)

(21) Appl . No .: 16 / 827,122

(22) Filed : Mar. 23 , 2020

An input stream of events is processed to obtain an output
stream of events . Consecutive events are selected from the
input stream using a sliding window to obtain sliding
window events , then a function is applied thereto to obtain
an output result value . Operations of : outputting the output
result value in the output stream ; splitting the sliding win
dow events into filter - complying events and pending events ;
applying the function on the pending events to obtain
preliminary value (s) ; selecting , from the input stream , a
second plurality of events ; adding the second plurality of
events to the sliding window events ; removing , from the
sliding window events , the filter - complying events to obtain
a new set of sliding window events ; and applying the
function to the second plurality of events and the prelimi
nary value (s) to obtain a new output result value , are then iteratively performed .

Related U.S. Application Data
(63) Continuation of application No. PCT / EP2017 /

073956 , filed on Sep. 21 , 2017 .
Publication Classification

(51) Int . Ci .
G06F 16/2455 (2006.01)

100

102
Memory

101
Processor

103
Storage

104
Network
Interface

E 105 Storage

100

Patent Application Publication

102 Memory

101 Processor

103 Storage

104 Network Interface

Sep. 10 , 2020 Sheet 1 of 8

105 Storage

US 2020/0285646 A1

FIG . 1

250 - Stream

251

252

253

254

255

256

257

258

Patent Application Publication

210 Time

211 Complying

212 Pending

211 Complying

251

252

260 Cached Result Values

256

257

258

203 Cache

Sep. 10 , 2020 Sheet 2 of 8

201 Operator

202 Storage

FIG . 2

253

254

255

US 2020/0285646 A1

610 - Events

Patent Application Publication

1

2

3

10

11

12

21

22

23

33

34

35

221 Dropped

222 Added

214 Complying

212 Pending

213 Complying

Sep. 10 , 2020 Sheet 3 of 8

210 Time

FIG . 3

US 2020/0285646 A1

Patent Application Publication Sep. 10 , 2020 Sheet 4 of 8 US 2020/0285646 A1

300 301 Split events 302 Store 303 Apply preliminary computation function

FIG.4

400 401 Receive Events

Patent Application Publication

402 Apply computation function 403 Output

Sep. 10 , 2020 Sheet 5 of 8

404 Select complying events 405 Store

US 2020/0285646 A1

FIG . 5

500

401 Receive events

Patent Application Publication

501 Select one or more pending events

511 Retrieve pending events

Sep. 10 , 2020 Sheet 6 of 8

502 Add pending events

512 Remove pending events

503 Store pending events

513 Select complying events

US 2020/0285646 A1

514 Store complying events

FIG . 6

250 - Stream

251

252

253

254

255

256

257

258

210 Time

Patent Application Publication

211 Complying

212 Pending

211 Complying

260 Cached Result Values

251

252

254

255

256

257

258

203 Cache

201

Sep. 10 , 2020 Sheet 7 of 8

Operator

202 Storage

FIG . 7

253

254

255

US 2020/0285646 A1

240 Buckets

710 - Events

Patent Application Publication

{ mmmm

2

3

10

11

12

22

23

33

34

35

714 Complying

712 Pending

713 Complying

Sep. 10 , 2020 Sheet 8 of 8

1

3

10

11

21

22

23

33

34

35

621 Bucket

622 Bucket

623 Bucket

624 Bucket

US 2020/0285646 A1

FIG . 8

US 2020/0285646 A1 Sep. 10 , 2020
1

SYSTEM AND METHOD FOR STREAM
PROCESSING

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of International
Application No. PCT / EP2017 / 073956 , filed on Sep. 21 ,
2017 , the disclosure of which is hereby incorporated by
reference in its entirety .

TECHNICAL FIELD

[0002] The present disclosure , some embodiments
thereof , relates to a system for processing a stream of data
and , more specifically , but not exclusively , to distributed
processing of data in big data systems .

BACKGROUND
[0003] The term big data is used to refer to a collection of
data so large and / or so complex that traditional data pro
cessing application software cannot deal with the collection
adequately . Among the challenges in dealing with big data
is analysis of the large amount of data in the collection . In
some systems , the data is an ordered sequence of data
instances or events , referred to as a stream of data or a
stream of events .
[0004] In typical batch processing systems , data may be
accessed as many times as needed to perform the required
processing . In stream processing systems , data arrives con
tinuously and cannot be stored for future reference . There
may be a need to continuously calculate , on the fly , math
ematical or statistical analytics within the stream of events .
In some systems , there is a need to handle high volumes of
data in real time . In addition , there may be a need for the
system to be scalable and have a fault tolerant architecture .
[0005] Some stream processing systems use window
stream operators . A window stream operator is a software
object for processing a set of data instances (also referred to
as events) , selected by applying a filter to some of the events
of the stream of events . The set of selected events is called
a window of events . After applying the filter , a typical
window stream operator discards the remaining events , i.e.
events out of the scope of the filter , and stores only events
within the scope of the filter . In some systems , the amount
of events falling within the scope of the filter is large and
beyond the capacity of a single window stream operator's
local memory .

events , a second plurality of events ; adding the second
plurality of events to the sliding window events ; removing ,
from the sliding window events , the set of complying events
to obtain a new set of sliding window events ; applying the
function to the second plurality of events , and the at least one
preliminary value to obtain a new output result value .
[0008] The method will use a fixed amount of resources
both in terms of local cache memory and computation effort .
Such a specification overcomes traditional topologies which ,
due to their feature implementations , are provided initially
with fixed computational resources and are not able to adapt
at runtime . In this case , fixed resources are likely to render
over - provisioning or under - provisioning scenarios for
changing streaming data rates . The method addresses this
problem by operating with a very low resource footprint ,
through its efficient computation of features . In this context ,
the feature functions are optimized to be computed incre
mentally , updating pre - computed states (i.e. stateful process
ing) . The efficient resource usage and the incremental update
enables the solution to compute multiple features at the same
time , and even combine features for more complex analyt
ics . Additionally , the method restricts the cached data to the
events that are potentially involved in the incremental
updates , thus keeping memory usage constant . Conse
quently , it is possible to globally compute features over the
entire stream or sub - domains of the stream with very low
latencies (millisecond level) . A key benefit is to enable low
latency accounting of features over the input data stream ,
even for high rates of incoming events .
[0009] According to a second aspect of the disclosure , a
system for processing an input stream of events , using a
function f , to obtain an output stream of events , is provided .
The system is configured to : select , from the input stream of
events , a plurality of consecutive events using a sliding
window , as sliding window events ; apply the function to the
sliding window events to obtain an output result value ; in
each of a plurality of iterations : output the output result
value on the output stream of events ; split the sliding
window events into a set of complying events that satisfy at
least one filter test and a set of pending events ; apply the
function on the set of pending events to obtain at least one
preliminary value ; select , from the stream of events , a
second plurality of events ; add the second plurality of events
to the sliding window events ; remove , from the sliding
window events , the set of complying events to obtain a new
set of sliding window events ; apply the function to the
second plurality of events , and the at least one preliminary
value to obtain a new output result value .
[0010] With reference to the first and second aspects , in a
first possible implementation of the first and second aspects
of the present disclosure , the set of complying events and the
at least one preliminary value are stored in a cache memory ,
and the set of pending events is stored in a non - volatile
memory .

[0011] Storing only some of a stream's events in cache
memory and remaining events in non - volatile storage
reduces memory requirements and allows reducing costs of
implementing a system . Storing some of a stream's events in
cache memory and not in non - volatile storage allows faster
access to the some events than to events stored in non
volatile storage , allowing lowered latency in processing
stream events . Preparing at least one preliminary result value

SUMMARY

[0006] The present disclosure provides a system and a
method for processing a stream of data .
[0007] According to a first aspect of the disclosure , a
method for processing an input stream of events , to obtain
an output stream of events , is provided . The method com
prises the steps : selecting , from the input stream of events ,
a plurality of consecutive events using a sliding window to
obtain sliding window events ; applying a function to the
sliding window events to obtain an output result value ; in
each of a plurality of iterations : outputting the output result
value on the output stream of events ; splitting the sliding
window events into a set of complying events satisfying at
least one filter test and a set of pending events ; applying the
function on the set of pending events to obtain at least one
preliminary value ; selecting , from the input stream of

US 2020/0285646 A1 Sep. 10 , 2020
2

(i.e. , cached result value) and storing this value in the cache
memory for a next iteration allows lowered latency in
processing stream events .
[0012] With reference to the first and second aspects , in a
further implementation , each of the events of a stream of
events has an event value . The at least one cached result
value (preliminary value) is from a group consisting of a
basic function value and a composite function value . The
basic function value is optionally selected from a group of
basic function values consisting of : an average value of a
plurality of event values of a plurality of events of the stream
of events , a minimum value of the plurality of event values ,
a maximum value of the plurality of event values , an amount
of values in the plurality of event values , an amount of
distinct values in the plurality of event values , a sum of the
plurality of event values , a median value of the plurality of
event values , a quartile value of the plurality of event values ,
a standard deviation value of the plurality of event values ,
and a variance value of the plurality of event values . The
composite function value is optionally computed by per
forming one or more arithmetic operations between one or
more basic function values selected from the group of basic
function values . These values may be used for computing a
variety of features , including but not limited to , an average
value in a plurality of values in a stream of events , a median
value in the plurality of values in the stream of events , a
minimum value in the plurality of values in the stream of
events , and a maximum value in the plurality of values in the
stream of events .
[0013] With reference to the first and second aspects , in a
further implementation , the plurality of pending events is
split into a plurality of buckets (i.e. , groups) of pending
events according to compliance with at least one second
filter test . The at least one preliminary value (cached result
value) comprises a value produced by the at least one
processor applying the function to at least one of the buckets
of pending events . Splitting the plurality of pending events
into buckets (i.e. , groups) and storing in the cache memory
preliminary values corresponding to each bucket enables
low latency computation of some features including , but not
limited to , a median value and quartile value .
[0014] With reference to the first and second aspects , in a
further implementation , the step of applying the function to
the second plurality of events , and the at least one prelimi
nary value , to obtain a new output result value , comprises :
retrieving the at least one preliminary value from the cache
memory ; applying the function to the second plurality of
events to obtain a head result ; and applying the function to
the head result and the plurality of preliminary values to
obtain the new output result value .
[0015] This provides for an incremental computation of
the function on the events of the stream in a very efficient
way by buffering just the right data — the new events — and
reusing cached result values from the function applied in the
previous iteration .
[0016] With reference to the first and second aspects , in a
further implementation , the at least one preliminary value
(i.e. , cached result value) comprises a plurality of minimum
or maximum values , each a minimum value or a maximum
value of a plurality of event values of the plurality of events
in one of the plurality of groups of pending events . Storing
in the cache memory a minimum value or a maximum value
related to one or more of the groups enables low latency
computation of some features including , but not limited to ,

a minimum value of a plurality of event values and a
maximum value of a plurality of event values .
[0017] With reference to the first and second aspects , in a
further implementation , the at least one preliminary value
(i.e. , cached result value) comprises a plurality of range
values , each of the range values comprising a minimum
value and a maximum value of the plurality of values of the
plurality of events in one of the plurality of groups of
pending events . Storing in the cache memory a range value
related to one or more of the groups enables low latency
computation of some features including , but not limited to ,
a meridian or quartile value of a plurality of event values .
[0018] With reference to the first and second aspects , in a
further implementation , the at least one cached result value
comprises a plurality of bucket count values , each counting
an amount of events in one of the plurality of buckets of
pending events .
[0019] With reference to the first and second aspects , in a
further implementation , all event values in at least a first of
the plurality of buckets of pending events succeed all event
values in a second of the plurality of buckets of pending
events according to an identified ordering function . Sorting
the plurality of pending events according to an identified
ordering function enables low latency computation of some
features including , but not limited to , a meridian or quartile
value of a plurality of event values .
[0020] With reference to the first and second aspects , in a
further implementation , each of the events of the stream of
events has a time value . The time value is selected from a
group consisting of a time of arrival , a time of creation , and
a time of occurrence . The time value also may be equal to
a current time of the compute unit / operator . This is the
processing time case , where the time of the compute unit is
taken as a reference . This can be distinct from the time of
arrival of the event , as the time of arrival can be the time
when the event arrived in the processing system , which can
happen at a different machine and moment than the one that
currently performs the computation .
[0021] Some events of the plurality of complying events
have a time value earlier than a time value of any of the
plurality of pending events or later than a time value of any
of the plurality of pending events . Storing in the cache
memory earliest events and latest events enables low latency
computation of features including , but not limited to , a sum
or an average value of a plurality of event values .
[0022] With reference to the first and second aspects , in a
further implementation , the cache memory is a random
access memory . Using random access memory enables
quick access to the plurality of complying events and the at
least one cached result values (preliminary value) , enabling
low latency computation of features for a plurality of events
in a stream of events .
[0023] With reference to the first and second aspects , in a
further implementation , the at least one non - volatile storage
is selected from a group consisting of : a hard disk electri
cally connected to the at least one hardware processor , and
a network storage connected to the at least one hardware
processor via a network interface electrically connected to
the at least one hardware processor . Optionally , memory
media , flash drives , or SSDs can be employed . Network
storage provides flexibility in storage size , important in
systems processing large amounts of data . Access to a hard
disk is less vulnerable to network security breaches than a

US 2020/0285646 A1 Sep. 10 , 2020
3

[0035] FIG . 6 is a flowchart schematically representing an
optional flow of operations for continuously splitting a
stream of events , according to some embodiments of the
present disclosure ;
[0036] FIG . 7 is a schematic block diagram of another
exemplary partitioning of a stream of events including
buckets , according to some embodiments of the present
disclosure ; and
[0037] FIG . 8 is a schematic block diagram of the exem
plary partitioning of a stream of events of FIG . 7 with
regards to another function computation with buckets ,
according to some embodiments of the present disclosure .

DETAILED DESCRIPTION

network connection ; using a hard disk is useful in security
sensitive stream processing systems .
[0024] With reference to the first and second aspects , in a
further implementation , the at least one non - volatile storage
comprises at least one storage system selected from a group
consisting of a database , a local file system , a distributed file
system , and a cloud storage . Databases , local file systems ,
and distributed file systems provide means for organizing
stored data .
[0025] According to a third aspect of the disclosure , a
computer program is provided comprising program code
configured to perform a method according to the first aspect
and any implementations thereof .
[0026] Other systems , methods , features , and advantages
of the present disclosure will be or become apparent to one
with skill in the art upon examination of the following
drawings and detailed description . It is intended that all such
additional systems , methods , features , and advantages be
included within this description , be within the scope of the
present disclosure , and be protected by the accompanying
claims .
[0027] Unless otherwise defined , all technical and / or sci
entific terms used herein have the same meaning as com
monly understood by one of ordinary skill in the art to which
the invention pertains . Although methods and materials
similar or equivalent to those described herein can be used
in the practice or testing of embodiments of the invention ,
exemplary methods and / or materials are described below . In
case of conflict , the patent specification , including defini

will control . In addition , the materials , and
examples are illustrative only and are not intended to be
necessarily limiting .

BRIEF DESCRIPTION OF THE DRAWINGS

[0028] Some embodiments of the disclosure are herein
described , by way of example only , with reference to the
accompanying drawings . With specific reference now to the
drawings in detail , it is stressed that the particulars shown
are by way of example and for purposes of illustrative
discussion of embodiments of the disclosure . In this regard ,
the description taken with the drawings makes apparent to
those skilled in the art how embodiments of the disclosure
may be practiced .
[0029] In the drawings :
[0030] FIG . 1 is a schematic block diagram of an exem
plary system , according to some embodiments of the present
disclosure ;
[0031] FIG . 2 is a schematic block diagram of the exem
plary partitioning of a stream of events between local
memory and storage , according to some embodiments of the
present disclosure ;
[0032] FIG . 3 is a schematic block diagram of the exem
plary partitioning of a stream of events of FIG . 2 with
regards to a function computation , according to some
embodiments of the present disclosure ;
[0033] FIG . 4 is a flowchart schematically representing an
optional flow of operations for splitting a stream of events ,
according to some embodiments of the present disclosure ;
[0034] FIG . 5 is a flowchart schematically representing an
optional flow of operations for continuously processing a
stream of events , according to some embodiments of the
present disclosure ;

[0038] The present disclosure , in some embodiments
thereof , relates to a system for processing a stream of data
and , more specifically , but not exclusively , to distributed
processing of data in big data systems .
[0039] As used herein , the term " event " means a data
instance and the term " stream of events ” means a continuous
ordered sequence of data instances or events .
[0040] A window stream operator is a software object for
processing a window of data instances (also referred to as
events) , selected by applying a filter to some events of the
stream of events . As used herein , the term “ operator ” means
a window stream operator .
[0041] In a typical system using window stream operators ,
each operator applies a function to events it receives , and
produces an output stream of events . A typical operator
applies the function over a sliding window of events , and at
any given moment has a working set of events . The function
may be a computation function , applied to the working set
of events and resulting in a result event sent to another
operator on an output stream of results of the operator . As the
operator receives events in a continuous stream of events ,
the operator adds the received events to its working set of
events . At a trigger , the operator selects a window of events
by applying a filter to its working set of events and selecting
only events that match the filter . Other events remaining
after applying the filter , i.e. events out of the scope of the
filter , are discarded . Typically , the window of events is a
group of events , each having a certain property with a value
within certain finite boundaries . The trigger may be recep
tion of an event or a time interval since last selecting a
window of events . In some systems , the operator applies its
computation function after selecting a window of events (the
sliding window) . The result event pertains to the entire
window of events .
[0042] Henceforth , the term “ window ” means " window of
events ” , and the term global feature means “ a result event
computed on an entire window of events ” .
[0043] In a typical stream processing system , each opera
tor stores its entire working set of events in a digital memory
local to the operator , allowing quick access to an entire
window when applying the operator's function to the win
dow to compute a global feature . In some stream processing
systems , a window of a single operator comprises a large
amount of events , beyond the operator's local digital memo
ry's capacity . In addition , memory and processing resources
required for computation of some functions increases as the
amount of events in the window increases . In some systems ,
resource requirements for computing a function make com
putation of the global feature by applying a function to all
events of the window impossible for large windows . For

US 2020/0285646 A1 Sep. 10 , 2020
4

example , the amount of events in one year may be so great
that a typical window operator cannot store all the events in
the one year , making computation of a global feature , such
as an average or a maximum value , for a year impossible to
compute in such a typical operator . Examples of events that
generate a large amount of data over time are credit card
transactions over a period of a year or several years and
temperature measurements over a period of a month , a year
or several years .
[0044] According to the present invention , in some
embodiments thereof , an operator stores in digital memory
only some of the events of the window , storing remaining
events in non - volatile digital storage . The some of the events
stored in digital memory are the relevant events , and the
remaining events , stored in non - volatile digital storage , are
referred the pending events . In addition , in these embodi
ments , the operator stores in digital memory one or more
cached result values produced by applying one or more
preliminary functions to the stream of data . Stream process
ing is performed continuously and iteratively , where in each
iteration one or more new events are received . The operator
in these embodiments applies in each iteration one or more
computation functions to the some of the events in storage
(the relevant events) , the one or more new events and the one
or more cached values , to produce an output event compris
ing the global feature , and one or more cached result values .
In addition , in each iteration , the operator may update the
relevant events and the pending events with the received
events .

[0045] Applying the one or more preliminary functions
and producing the one or more cached result values , allows
incremental computation of the global feature , where the
global feature is produced without requiring access to all the
events of the window . This reduces the amount of memory
and computational resources required to compute some
global features , such as an average value , a median value
and a maximum value . In addition , computation may be
faster than when using all the events in the window , allowing
implementation of applications requiring low latency com
putations . Storing only some of the events of the window in
the digital memory allows limiting the amount of digital
memory required by the operator , reducing the stream
processing system's cost . Besides limiting the amount of
digital memory required by the operator , the present inven
tion in some embodiments thereof allows the amount of
digital memory used by one operator to be fixed over time ,
enabling reducing costs by eliminating the need to provide
memory for peaks or expansions . Besides reducing the
computational resources required to compute some global
features in some embodiments the present invention allows
computing some global features using a constant amount of
computational operations , regardless of the amount of
events of the window . This enables building systems with
predictable and constant performance , regardless of peaks of
received events .

[0046] Before explaining at least one embodiment of the
invention in detail , it is to be understood that the invention
is not necessarily limited in its application to the details of
construction and the arrangement of the components and / or
methods set forth in the following description and / or illus
trated in the drawings and / or the Examples . The invention is
capable of other embodiments or of being practiced or
carried out in various ways .

[0047] The present invention may be a system , a method ,
and / or a computer program product . The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention .
[0048] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing .
[0049] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network .
[0050] The computer readable program instructions may
execute entirely on the user's computer , partly on the user's
computer , as a stand - alone software package , partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server . In the latter scenario , the
remote computer may be connected to the user's computer
through any type of network , including a local area network
(LAN) or a wide area network (WAN) , or the connection
may be made to an external computer (for example , through
the Internet using an Internet Service Provider) . In some
embodiments , electronic circuitry including , for example ,
programmable logic circuitry , field - programmable gate
arrays (FPGA) , or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry , in order to
perform aspects of the present invention .
[0051] Aspects of the present disclosure are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0052] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the

US 2020/0285646 A1 Sep. 10 , 2020
5

specified functions or acts or carry out combinations of
special purpose hardware and computer instructions .
[0053] Reference is now made to FIG . 1 , showing a
schematic block diagram of an exemplary system 100 ,
according to some embodiments of the present disclosure . In
such embodiments , at least one hardware processor 101 is
configured to process a stream of events , comprising storing
some of the events in at least one digital memory 102 .
Processing the stream of events may be done by one or more
operators executed by at least one hardware processor 101 .
Optionally , the at least one digital memory is a random
access memory (RAM) electrically coupled with at least one
hardware processor 101. The at least one digital memory
may be a non - volatile memory electrically coupled with at
least one hardware processor 101. Flash memory storage is
an example of non - volatile memory . In addition , at least one
hardware processor 101 is optionally connected to at least
one non - volatile storage 103 and 106. Storage 103 may be
a hard disk electrically attached to at least one hardware
processor 101. Optionally , storage 106 is a network storage
connected to at least one hardware processor 101 via a
network interface 104 electrically connected to at least one
hardware processor 101. Optionally , storing and retrieving
data to and from at least one digital memory 102 is faster
than storing and retrieving data to and from at least one
storage 103 and 106. Optionally , at least one non - volatile
storage 103 and 106 comprise a database . In some embodi
ments , at least one non - volatile storage 103 and 106 com
prise a local file system or a distributed file system .
[0054] In some embodiments of the present invention , an
operator stores in digital memory 102 only some of the
events of the window it operates on , storing remaining
events in non - volatile storage 103 or 106. Reference is now
also made to FIG . 2 , showing a schematic block diagram of
an exemplary partitioning of a window's plurality of events
between local memory and storage , according to some
embodiments of the present invention . In such embodi
ments , stream 250 comprises a plurality of events 251 , 252 ,
253 , 254 , 255 , 256 , 257 and 258 , received by operator 201
over time , depicted by time line 210. In this example , an
event is received by operator 201 before all other events to
the event's right on timeline 210 , for example event 257 may
be received by the operator before event 258 , but after
events 251 , 252 , 253 , 254 , 255 and 256. The operator may
split the window's plurality of events into a set of complying
events 211 , comprising events 251 , 252 , 256 , 257 and 258 ,
according to a certain filter test , and a set of pending events
212 , comprising events 253 , 254 and 255. Optionally , the
operator stores complying events 211 in a digital memory
03 , and pending events 212 in a non - volatile storage 202 .

Operator 201 may also store in digital memory one or more
cached result values 260 , produced by applying one or more
preliminary computational functions to events in the stream
of events . In such embodiments , an amount of time for the
operator to access complying events 211 and one or more
cached result values 260 in digital memory 203 is faster than
another amount of time for the operator to retrieve pending
events 212 from storage 202 .
[0055] Some global features may be computed by apply
ing a computational function to a set of complying events
and one or more cached values , produced by applying one
or more preliminary computational functions to some of the
stream's plurality of events . For example , when each of the
stream's events has a value , and when the global feature is

a sum of all event values in a certain window of events , one
possible function to compute the sum is to add all the event
values in the certain window of events . A possible equivalent
function uses a sum of a previous window . The operator may
identify a set of dropped events , included in the previous
window but not included in the certain window , and a set of
added events received after the previous window . The pos
sible equivalent function for computing the sum of all values
in the certain window adds the values of the added events to
the previous sum and subtracts from the previous sum the
values of the dropped events . The resulting sum is the sum
of the values of the certain window of events .
[0056] Reference is now also made to FIG . 3 , showing a
schematic block diagram of the exemplary partitioning of a
stream of events of FIG . 2 with regards to a function
computation , according to some embodiments of the present
disclosure . In this example , each event of a plurality of
events 610 has another value representing a time of creation
relative to an absolute start time . The plurality of events 610
may be ordered according to ascending time of creation . Set
214 comprises some of plurality of events 610 , received
earliest by the operator . Group 213 comprises some other of
plurality of events 610 , received latest by the operator . In
some embodiments of the present disclosure , to compute a
possible feature such as a sum of the values of a window's
events , the operator stores in digital memory only earliest
arriving events 214 and latest arriving events 213 , as well as
a cached sum of all values of plurality of events 610. When
one or more new events arrive and the operator computes a
new sum , the operator optionally selects a new window .
Optionally , one or more of complying events 214 are
removed from the new window , and thus removed 221 from
214 and discarded . Optionally , the one or more new events
are added 222 to 213. A new sum may be computed by
subtracting from the cached sum the values of the one or
more events removed from 214 , and adding to the cached
sum the values of the one or more new events added to 213 .
Other examples of features that can be computed using a
plurality of latest arriving events and a plurality of earliest
arriving events are an average value and an amount of
events .

[0057] Time of creation is one possible value an event may
have . Other time values are possible , for example time of
event arrival (ingestion) , and time of event occurrence .
[0058] To process a stream of events to compute a global
feature by splitting the events between a digital memory and
a storage , in some embodiments of the present disclosure ,
the system implements the following possible method .
[0059] Reference is now also made to FIG . 4 , showing a
flowchart schematically representing an optional flow of
operations 300 for splitting a stream of events , according to
some embodiments of the present disclosure . In these
embodiments , an operator executed by at least one hardware
processor 101 splits in 301 a stream of event into a plurality
of complying events that satisfy one or more first filter tests ,
and a plurality of remaining pending events . An example of
a first filter test is comparing a time of creation of an event
to a certain time range relative to a present time . The
plurality of complying events may comprise events created
no more than a first certain threshold time before a present
time . The plurality of complying events may comprise
events created at least a second threshold time before the
present time . Optionally , each event in the stream of events
has a time of creation at the operator . Some of the plurality

US 2020/0285646 A1 Sep. 10 , 2020
6

of complying events may have a time of creation earlier than
a time of creation of any of the plurality of pending events .
Some of the plurality of complying events may have a time
of creation later than a time of creation of any of the plurality
of pending events . Another example of a first filter test is
comparing a value of an event to one or more threshold
values . The plurality of complying events may comprise of
events having values greater than one threshold value and
less than another threshold value . In 302 , the operator
optionally stores the plurality of complying events in at least
one digital memory , and the plurality of pending events in at
least one non - volatile storage . The operator may store some
of the plurality of pending events in the at least one digital
memory in addition to the storage , for quicker access . In
303 , the operator optionally applies one or more preliminary
computation functions to the stream of events to produce at
least one cached result value . For example , the at least one
cached result value may be an amount of values in a plurality
of values of the plurality of events of the stream of events or
an amount of distinct values in a plurality of values of the
plurality of events of the stream of events . Other examples
of an at least one cached result value are : an average value
of the plurality of event values of the plurality of events of
the stream of events , a minimum value of the plurality of
event values , a maximum value of the plurality of event
values , a sum of the plurality of event values , a median value
of the plurality of event values , a quartile value of the
plurality of event values , a standard deviation value of the
plurality of event values , and a variance value of the
plurality event values . The at least one cached result value
may be a result of computing any other statistical or function
or other mathematical function . Optionally , the at least one
cached result is a result of applying one or more arithmetic
operations between one or more values . For example , the at
least one cached result value may be computed by multi
plying the maximum value of the plurality of event values by
an identified amount to produce a first product , multiplying
the minimum value of the plurality of event values by
another identified amount to produce a second product , and
then subtracting the second product from the first product .
[0060] Stream processing is a continuous process , option
ally performed in a plurality of iterations . Reference is now
also made to FIG . 5 , showing a flowchart schematically
representing an optional flow of operations 400 for continu
ously processing a stream of events , according to some
embodiments of the present disclosure . In such embodi
ments , in each iteration or a plurality of iterations the
operator receives in 401 one or more new events , and in 402
applies at least one computation function to the plurality of
complying events and the at least one cached result value
from the at least one digital memory , to obtain at least one
new cached result value and at least one output event . The
at least one output event may include the at least one new
cached result value . Optionally , in 403 the operator outputs
the at least one output event on an output stream of events .
In 404 , the operator optionally selects a new plurality of
complying events that satisfy the at least one first filter test
from the plurality of complying events and the one or more
new events , and in 405 optionally stores the at least one new
cached result value and the new plurality of complying
events in the at least one digital memory for a next iteration .
Optionally , the operator produces the new plurality of com
plying events before applying the at least one computation
function .

[0061] Over time , some events of an operator's window of
events in the plurality of complying events may no longer
satisfy the at least one first filter test . In addition , some other
events of an operator's window of events in the plurality of
pending events may over time satisfy the at least one first
filter test . In some embodiments of the present disclosure ,
the system implements the following possible method to
move events between the at least one digital memory and the
at least one storage .
[0062] Reference is now also made to FIG . 6 , showing a
flowchart schematically representing an optional flow of
operations 500 for continuously splitting a stream of events ,
according to some embodiments of the present disclosure . In
such embodiments , in at least one of the plurality of itera
tions , after receiving one or more new events in 401 , the
operator selects in 501 one or more new pending events from
the one or more new events and the plurality of complying
events . In 502 , the operator optionally adds the one or more
new pending events to the plurality of pending events and in
503 optionally stores the one or more new pending events in
the at least one non - volatile storage . Optionally , in 511 the
operator retrieves from the at least one non - volatile storage
at least one pending event of the plurality of pending events ,
and in 512 removes the at least one pending event from the
plurality of pending events . In 513 the operator optionally
selects a second new plurality of complying events that
satisfy the at least one first filter test from the plurality of
complying events and the at least one pending event , and in
514 optionally stores the second new plurality of compliant
events in the at least one digital memory for a next iteration .
Optionally , the operator moves some events from the at least
one digital memory to the at least one non - volatile storage
and vice versa after outputting the at least one output event
on the output stream of event , to reduce latency in outputting
the at least one output event .
[0063] In some embodiments , the operator periodically
stores in the at least one non - volatile storage information
describing its state , providing fault tolerance by allowing
restoring the operator state from the information stored in
the at least non - volatile storage . The information describing
the operator state optionally comprises the at least one
cached value .
[0064) Computation of some global features may be pos
sible by splitting the plurality of pending events into a
plurality of buckets , each bucket a group of pending events ,
according to compliance with one or more second filter tests .
In some embodiments , the at least one cached result values
comprises a value produced by the operator applying the at
least one preliminary computation function to at least one of
the buckets . Reference is now also made to FIG . 7 , showing
a schematic block diagram of another exemplary partition
ing of a stream of events including buckets , according to
some embodiments of the present invention . In some
embodiments , the plurality of pending events 253 , 254 and
255 is split into one or more buckets 240. Optionally , the
plurality of complying events comprises one or more events
254 and 255 from each of the plurality of buckets 240 and
operator 201 stores in the at least one digital memory 203
one or more events 254 and 255 from each of the plurality
of buckets 240. Optionally , the plurality of complying events
comprises all events of at least one bucket of the plurality of
buckets 240 , and operator 201 stores in the at least one
digital memory 203 all the events of the at least one bucket .
Optionally , the plurality of pending events are sorted , such

US 2020/0285646 A1 Sep. 10 , 2020
7

that all event values in a first of the plurality of buckets
succeed all event values in a second of the plurality of
buckets , according to an identified ordering function . For
example , when each of the events of the stream has a
numerical value , every event in the first bucket may have a
value greater than all values of all events of the second
bucket . Sorted buckets are useful for computing some global
functions such as a median value and a quartile value .
[0065] Reference is now also made to FIG . 8 , showing a
schematic block diagram of the other exemplary partitioning
of a stream of events of FIG . 7 with regards to another
function computation with buckets , according to some
embodiments of the present disclosure . In this example , each
event of a plurality of events 710 has a numerical value . The
plurality of events 610 may be ordered according to ascend
ing order of numerical value . The plurality of events may be
split into a plurality of buckets 621 , 622 , 623 and 624. In this
example 212 is the plurality of pending events . In this
example 213 and 214 are the plurality of complying events .
In the example , the plurality of complying events comprises
all the events in one or more buckets 621 and 624. Option
ally , the at least one cached result value comprises a plurality
of minimum values , each a minimum value of the plurality
of event vales of one of the plurality of buckets . For
example , a plurality of cached bucket minimum values may
be used when computing a minimum value of all event
values . In addition , the plurality of complying events may
comprise events of a bucket including an event having a
value equal to a minimum value of all cached bucket
minimum values . Optionally , the at least one cached result
value comprises a plurality of maximum values , each a
maximum value of the plurality of event vales of one of the
plurality of buckets . For example , a plurality of cached
bucket maximum values may be used when computing a
maximum value of all event values . In addition , the plurality
of complying events may comprise events of a bucket
including an event having a value equal to a maximum value
of all cached bucket maximum values . Optionally , the at
least one cached result value comprises a plurality of range
values , each comprising a minimum event value and a
maximum event of the plurality of event vales of one of the
plurality of buckets . For example , a plurality of cached

values may be used when computing a median
value of all event values or a quartile value of all event
values . In addition , the plurality of complying events may
comprise events of a bucket including an event having a
value equal to one of the at least one cached result values ,
such as a median value of all event values . The at least one
cached result value may comprise a plurality of amount
values , each an amount of events in one of the plurality of
groups of pending events .
[0066] The descriptions of the various embodiments of the
present invention have been presented for purposes of
illustration , but are not intended to be exhaustive or limited
to the embodiments disclosed . Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments . The terminology used herein was
chosen to best explain the principles of the embodiments , the
practical application or technical improvement over tech
nologies found in the marketplace , or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein .

[0067] It is expected that during the life of a patent
maturing from this application many relevant computation
functions , global features and cached result values will be
developed and the scope of the terms " computation func
tion ” , “ global feature ” and “ cached result value ” are
intended to include all such new technologies a priori .
[0068] As used herein the term “ about ” refers to 10 % .
[0069] The terms " comprises ” , “ comprising ” , “ includes ” ,
“ including ” , “ having " and their conjugates mean “ including
but not limited to ” . This term encompasses the terms " con
sisting of " and " consisting essentially of " .
[0070] The phrase “ consisting essentially of " means that
the composition or method may include additional ingredi
ents and / or steps , but only if the additional ingredients
and / or steps do not materially alter the basic and novel
characteristics of the claimed composition or method .
[0071] As used herein , the singular form " a " , " an ” and
“ the ” include plural references unless the context clearly
dictates otherwise . For example , the term “ a compound ” or
“ at least one compound ” may include a plurality of com
pounds , including mixtures thereof .
[0072] The word " exemplary ” is used herein to mean
“ serving as an example , instance or illustration ” . Any
embodiment described as “ exemplary ” is not necessarily to
be construed as preferred or advantageous over other
embodiments and / or to exclude the incorporation of features
from other embodiments .
[0073] The word “ optionally ” is used herein to mean “ is
provided in some embodiments and not provided in other
embodiments ” . Any particular embodiment of the invention
may include a plurality of “ optional ” features unless such
features conflict .
[0074] Throughout this application , various embodiments
of this invention may be presented in a range format . It
should be understood that the description in range format is
merely for convenience and brevity and should not be
construed as an inflexible limitation on the scope of the
invention . Accordingly , the description of a range should be
considered to have specifically disclosed all the possible
subranges as well as individual numerical values within that
range . For example , description of a range such as from 1 to
6 should be considered to have specifically disclosed sub
ranges such as from 1 to 3 , from 1 to 4 , from 1 to 5 , from
2 to 4 , from 2 to 6 , from 3 to 6 etc. , as well as individual
numbers within that range , for example , 1 , 2 , 3 , 4 , 5 , and 6 .
This applies regardless of the breadth of the range .
[0075] Whenever a numerical range is indicated herein , it
is meant to include any cited numeral (fractional or integral)
within the indicated range . The phrases “ ranging / ranges
between ” a first indicate number and a second indicate
number and “ ranging / ranges from ” a first indicate number
“ to ” a second indicate number are used herein interchange
ably and are meant to include the first and second indicated
numbers and all the fractional and integral numerals ther
ebetween .
[0076] It is appreciated that certain features of the inven
tion , which are , for clarity , described in the context of
separate embodiments , may also be provided in combination
in a single embodiment . Conversely , various features of the
invention , which are , for brevity , described in the context of
a single embodiment , may also be provided separately or in
any suitable sub - combination or as suitable in any other
described embodiment of the invention . Certain features
described in the context of various embodiments are not to

bucket range

US 2020/0285646 A1 Sep. 10 , 2020
8

be considered essential features of those embodiments ,
unless the embodiment is inoperative without those ele
ments .
[0077] All publications , patents and patent applications
mentioned in this specification are herein incorporated in
their entirety by reference into the specification , to the same
extent as if each individual publication , patent or patent
application was specifically and individually indicated to be
incorporated herein by reference . In addition , citation or
identification of any reference in this application shall not be
construed as an admission that such reference is available as
prior art to the present invention . To the extent that section
headings are used , they should not be construed as neces
sarily limiting .

1. A method for processing an input stream of events to
obtain an output stream of events , the method comprising :

selecting , from the input stream of events , a plurality of
consecutive events using a sliding window to obtain
sliding window events ;

applying a function to the sliding window events to obtain
an output result value ; and

in each of a plurality of iterations :
outputting the output result value in the output stream

of events ;
splitting the sliding window events into a set of com

plying events , satisfying at least one filter test and a
set of pending events ;

applying the function on the set of pending events to
obtain at least one preliminary value ;

selecting , from the input stream of events , a second
plurality of events ;

adding the second plurality of events to the sliding
window events ;

removing , from the sliding window events , the set of
complying events to obtain a new set of sliding
window events ; and

applying the function to the second plurality of events
and the at least one preliminary value to obtain a new
output result value .

2. The method according to claim 1 ,
wherein the set of complying events and the at least one

preliminary value are stored in a cache memory , and
wherein the set of pending events is stored in a non

volatile memory .
3. The method according to claim 1 , wherein the at least

one preliminary value , after the applying of the function on
the set of pending events , comprises at least one of :

an average value of a plurality of event values of a
plurality of events of the input stream of events ,

a minimum value of the plurality of event values ,
a maximum value of the plurality of event values ,
an amount of values in the plurality of event values ,
an amount of distinct values in the plurality of event

values ,
a sum of the plurality of event values ,
a median value of the plurality of event values ,
a quartile value of the plurality of event values ,
a standard deviation value of the plurality of event values ,

splitting the plurality of pending events into a plurality of
buckets according to a second filter test ;

applying the function on each bucket of the plurality of
buckets to obtain a corresponding plurality of prelimi
nary values ; and

storing the plurality of preliminary values in a cache
memory .

5. The method according to claim 2 , wherein applying the
function to the second plurality of events and the at least one
value to obtain a new output result value comprises :

retrieving the at least one preliminary value from the
cache memory ;

applying the function to the second plurality of events to
obtain a head result ; and

applying the function to the head result and the plurality
of preliminary values to obtain the new output result
value .

6. The method according to claim 4 , wherein the plurality
of preliminary values comprise a plurality of minimum or
maximum values a plurality of event values of the plurality
of events in one of the plurality of buckets of the pending
events .

7. The method according to claim 4 , wherein the plurality
of preliminary values comprise a plurality of bucket count
values , each bucket count value , of the bucket count values ,
counting an amount of events in one of the plurality of
buckets of the pending events .

8. The method according to claim 4 , wherein all event
values in a first one of the plurality of buckets of the pending
events succeed all event values in a second one of the
plurality of buckets of the pending events according to an
identified ordering function .

9. The method according to claim 1 ,
wherein each event of the input stream of events has a

time value selected from a group consisting of a time of
arrival , a time of creation , and a time of occurrence of
the event , and

wherein at least one event of the plurality of complying
events has a time value that is earlier than a time value
of any event of the set of pending events .

10. The method according to claim 1 , wherein the at least
one filter test comprises :

comparing a time of an event to a certain time range
relative to a present time ; or

comparing a value of an event to one or more threshold
values .

11. (canceled)
12. (canceled)
13. A system for processing an input stream of events to

obtain an output stream of events , the system comprising a
processor that is configured to :

select , from the input stream of events , a plurality of
consecutive events using a sliding window to obtain
sliding window events ;

apply a function to the sliding window events to obtain an
output result value ; and

in each of a plurality of iterations :
output the output result value in the output stream of

events ;
split the sliding window events into a set of complying

events , satisfying at least one filter test and a set of
pending events ;

apply the function on the set of pending events to obtain
at least one preliminary value ;

or

a variance value of the plurality of event values .
4. The method according to claim 1 , wherein the step of

applying the function on the set of pending events com
prises :

US 2020/0285646 A1 Sep. 10 , 2020
9

select , from the input stream of events , a second
plurality of events ;

add the second plurality of events to the sliding window
events ;

remove , from the sliding window events , the set of
complying events to obtain a new set of sliding
window events ; and

apply the function to the second plurality of events , and
the at least one preliminary value , to obtain a new
output result value .

14. The system according to claim 13 , the system further
comprising :

a cache memory ; and
a non - volatile memory ,
wherein the processor is configured to store the set of

complying events and the at least one preliminary value
in the cache memory and is configured to sore the set
of pending events in the non - volatile memory .

15. The system according to claim 14 , wherein the non
volatile memory comprises one of a hard disk electrically
connected to the processor , a network memory connected to
the processor via a network interface , a database , a local file
system , a distributed file system , or a cloud storage .

16. A non - transitory computer readable medium compris
ing program code configured to perform the method accord
ing to claim 1 upon the computer program being executed on
a computer .

