a9y United States

US 20230396431A1

a2y Patent Application Publication (o) Pub. No.: US 2023/0396431 A1l

Liu 43) Pub. Date: Dec. 7, 2023
(54) ERROR REDUCTION DURING (52) US. CL
CRYPTOGRAPHIC KEY UPDATES IN CpC ... HO4L 9/0891 (2013.01); HO4L 9/3242
SECURE MEMORY DEVICES (2013.01); HO4L 9/0861 (2013.01); HO4L
9/0894 (2013.01)
(71) Applicant: I\{IJiScron Technology, Inc., Boise, ID (57) ABSTRACT
Us) The disclosure relates to improvements in key delivery to
. . : secure memory devices. In some implementations, the tech-
(72) Inventor: - Zhan Liu, Cupertino, CA (US) niques described herein relate to a system including: a
memory device including a key storage area; a key man-
. agement server (KMS) configured to receive a key request,
(21) - Appl. No.: 17/831,364 generate a cryptographic key, compute a hash of the cryp-
tographic key, and return the cryptographic key and the hash
- in response to the key request; and a manufacturer comput-
(22) Filed: Jun. 2, 2022 ing device configured to receive the cryptographic key and
the hash as part of the response to the key request and issue
a command including the cryptographic key and the hash to
Publication Classification the memory device, wherein the memory device is config-
ured to compute a local hash using the cryptographic key in
(51) Imt. CL the command, compare the local hash to the hash, and write
HO4L 9/08 (2006.01) the cryptographic key to the key storage area when the local
HO4L 9/32 (2006.01) hash matches the hash.

KMS 106

00

Key Generator Key Storage
Akl 114
Request Handler = Hash Generaior
112 116
Manufacturer 104
P e ———
P———— e —]
RequestGenerator | |
18 Key Storage 120
command | [commana vf
Generator 122 124

Customer 108

Key Storage 136

Key Generator 134

|

Memory Device 10

2

Hash Generator
128

Command I/F

Commang Generator 138
l

126

Comparaior 130

I —

f~— o
Key Storage 132
e ————r’

Command I/F 140

Patent Application Publication Dec. 7, 2023 Sheet 1 of 7 US 2023/0396431 A1
KMS 106
S 100
Key Generator Key Storage Y d
10 114
Request Handler Hash Generator
112 116
Manufaciurer 104 Custoner 108
S
Request Generator ,
118 Key Storage 120 Key Storage 136
S ra————
ommand command I/f
Generator 122 124 Key Generalor 134
l
Command Generator 138
Memory Device 102 l
Hash Generator Command I/F
128 126 Command I/F 140
I
Comparator 130
Key Storage 132

FIG. 1

Patent Application Publication Dec. 7, 2023 Sheet 2 of 7 US 2023/0396431 A1

200
e
Recelve Key Request 202
Generate Key 204
Compute key Hash 206

Refur Key and Key Hash 208

Patent Application Publication

Dec. 7,2023 Sheet 3 of 7 US 2023/0396431 Al

300

Issue Key Request 302

y

Receive Key and Key Hash 304

issue Command Inciuding key and
Key Hash to Memory Device 306

Receive Response from Memaory
Device 308

(fail]

[success]
®

Handie Failure 312

FIG. 3

Patent Application Publication Dec. 7, 2023 Sheet 4 of 7 US 2023/0396431 A1

400
/\/
Recelve COMMand InCiuding Key and
Key Hash 402
RECOMPUte Hash 404

Compare Recomputed Hash o
Received Hash 406

l

Retum Failure 412

[matcn] |

Write Key 410

RBLINN SUCCesS 414 ——>@

FIG. 4

Patent Application Publication Dec. 7, 2023 Sheet 5 of 7 US 2023/0396431 A1

500

~—=~> Generale key and key Hash 502

Issue Command Including Key and
Key Hash to Memory Device 504

|
|

!

!

!

|

|

|

!

!

!

|

I 4
|

: Recelve Response from Memory
: Device 506
|

|

!

!

!

|

|

|

!

!

!

|

|

|

!

|

l
08 [success] @

(faif]

—————— Handle Failure 510

FIG. 5

Patent Application Publication = Dec. 7, 2023 Sheet 6 of 7 US 2023/0396431 A1
600
N Host Processor 620
604
SN
(athe p14 F/W 16 ECC618
controtler 606
612
SN
! | [|]
Bank Bank Bank Bank Bank
L N I
603A 6088 608€ 608D 608N
Memaory Device 502

FIG. 6

Patent Application Publication Dec. 7, 2023 Sheet 7 of 7 US 2023/0396431 A1

700
N
CPU 702 1/0 DEVICES 712
< BUS 714 >
MEMORY 704
RAM 706

ROM 708

APPLICATIONS 710 =

FIG. 7

US 2023/0396431 Al

ERROR REDUCTION DURING
CRYPTOGRAPHIC KEY UPDATES IN
SECURE MEMORY DEVICES

FIELD OF THE TECHNOLOGY

[0001] At least some embodiments disclosed herein relate
generally to memory devices (e.g., semiconductor memory
devices) and, in particular, to improvements in key storage
on secure memory devices.

BACKGROUND

[0002] Some memory devices may store cryptographic
keys to perform cryptographic operations. Some such secure
memory devices may use stored public keys to validate
sensitive data (e.g., secure commands, digital signatures,
etc.) that are signed using corresponding private keys. If the
underlying content of a key is corrupted, current secure
memory devices do not provide mechanisms to prevent the
writing of an invalid key. As such, if an invalid key is validly
provided to such a secure memory device, the invalid key
will be persisted, resulting in a malfunctioning or unusable
memory device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] FIG. 1 is a block diagram of a computing system
according to some of the example embodiments.

[0004] FIG. 2 is a flow diagram illustrating a method for
generating a cryptographic key for a secure memory device
according to some of the example embodiments.

[0005] FIG. 3 is a flow diagram illustrating a method for
programming a manufacturer’s cryptographic key in a
secure memory device according to some example embodi-
ments.

[0006] FIG. 4 is a flow diagram illustrating a method for
validating a cryptographic key by a secure memory device
according to the example embodiments.

[0007] FIG. 5 is a flow diagram illustrating a method for
programming a customer’s cryptographic key in a secure
memory device according to some example embodiments
[0008] FIG. 6 is a block diagram illustrating a computing
system according to some of the example embodiments.
[0009] FIG. 7 is a block diagram illustrating a computing
device showing an example embodiment of a computing
device according to some of the example embodiments.

DETAILED DESCRIPTION

[0010] A trusted key management server (KMS) generates
cryptographic keys for a memory device in existing systems.
In general, these keys may be public keys of asymmetric key
pairs. The KMS then securely provides these keys to a
memory device manufacturer (e.g., via an out-of-band inter-
face or secure communications channel). Before releasing a
memory device, the manufacturer writes the keys to the
memory device via a dedicated manufacturer command
(e.g., a command not available after the manufacturer
releases the memory device). After a customer receives a
memory device, it may write its own key to the memory
device (e.g., its own public key), effectively overwriting the
manufacturer’s key. Thus, a customer can then sign secure
commands using its own private key.

[0011] In such a system, multiple parties are involved,
ultimately writing a key to a memory device. If any party
introduces an error or mistake (e.g., using the wrong Endian

Dec. 7, 2023

or key parameters) in the key delivery process, the memory
device may be rendered unusable. For example, the key
stored by the memory device can be used to verify secure
commands (including resetting or replacing a key). If the
key is not valid, such commands may not be executable.
[0012] As a more specific example, a customer may gen-
erate a command to replace the public key with its own key.
The customer may transmit this command to the KMS (or
manufacturer), which signs the key using the private key
corresponding to the manufacturer’s public key stored by the
memory device. The customer then issues the signed com-
mand to replace the public key, and the memory device
validates the signature and replaces the key. However, if the
public key included in the signed command uses the wrong
Endianness, the public key cannot be used to validate
signatures. Thus, when the customer attempts to sign a
secure command (e.g., to update or add a key), the signature
validation will fail. Thus, the memory device will be
“locked” into using an invalid key with no means for the
customer to independently reset the key. Thus, the customer
will be required to physically return the memory device to
the manufacturer for zeroing, which both results in data loss
and loss of use of the memory device. Further, in some
systems, physical access to the device may not be practical
or possible, thus resulting in a total loss of the memory
device.

[0013] Insome implementations, the techniques described
herein relate to a system including a memory device includ-
ing a key storage area; a key management server (KMS)
configured to receive a key request, generate a cryptographic
key, compute a hash of the cryptographic key, and return the
cryptographic key and the hash in response to the key
request; and a manufacturer computing device configured to
receive the cryptographic key and the hash as part of the
response to the key request and issue a command including
the cryptographic key and the hash to the memory device,
wherein the memory device is configured to compute a local
hash using the cryptographic key in the command, compare
the local hash to the hash, and write the cryptographic key
to the key storage area when the local hash matches the hash.
[0014] Insome implementations, the techniques described
herein relate to a system, wherein the cryptographic key
includes one of a public key portion or private key portion
of an asymmetric key pair.

[0015] Insome implementations, the techniques described
herein relate to a system, wherein the cryptographic key
includes a Unique Device Secret.

[0016] Insome implementations, the techniques described
herein relate to a system, wherein the cryptographic key
includes symmetric key.

[0017] Insome implementations, the techniques described
herein relate to a system, wherein the manufacturer com-
puting device is further configured to detect a failure
response associated with the command, request a second
cryptographic key and a second hash from the KMS in
response to the failure response, and issue a second com-
mand including the second cryptographic key and the sec-
ond hash to the memory device.

[0018] Insome implementations, the techniques described
herein relate to a system further including a customer
computing device, the customer computing device config-
ured to: generate a second cryptographic key and a second
hash corresponding to the second cryptographic key; and
issue a second command including the second cryptographic

US 2023/0396431 Al

key and the second hash to the memory device; wherein the
memory device is configured to compute a second local hash
using the second cryptographic key in the second command,
compare the second local hash to the second hash, and write
the second cryptographic key to the key storage area if the
second local hash is equal to the second hash.

[0019] Insome implementations, the techniques described
herein relate to a system, wherein the customer computing
device is further configured to include a signature in the
second command.

[0020] Insome implementations, the techniques described
herein relate to a system, wherein writing the second cryp-
tographic key to the key storage area includes overwriting an
existing cryptographic key.

[0021] Insome implementations, the techniques described
herein relate to a system, wherein the memory device is
further configured to determine that the local hash does not
match the hash and, in response, not write the cryptographic
key to the key storage area.

[0022] Insome implementations, the techniques described
herein relate to a system, wherein the memory device returns
a failure response in response to determining that the local
hash does not match the hash.

[0023] Insome implementations, the techniques described
herein relate to a method including: receiving, by a memory
device, a command, the command including a cryptographic
key and a hash of the cryptographic key; generating, by the
memory device, a local hash by inputting the cryptographic
key into a hashing algorithm; determining, by the memory
device, whether the local hash matches the hash included in
the command; writing, by the memory device, the crypto-
graphic key to a key storage area if the local hash matches
the hash included in the command; and returning, by the
memory device, a failure response if the local hash does not
match the hash included in the command.

[0024] Insome implementations, the techniques described
herein relate to a method, wherein the cryptographic key
includes one of a public key, a private key, a symmetric key,
and a Unique Device Secret.

[0025] Insome implementations, the techniques described
herein relate to a method, wherein determining whether the
local hash matches the hash included in the command
includes determining if the local hash is equal to the hash
included in the command.

[0026] Insome implementations, the techniques described
herein relate to a method, wherein writing the cryptographic
key to a key storage area includes overwriting an existing
key stored in the key storage area.

[0027] Insome implementations, the techniques described
herein relate to a method, wherein returning a failure
response includes returning failure response data as part of
the failure response.

[0028] Insome implementations, the techniques described
herein relate to a non-transitory computer-readable storage
medium for tangibly storing computer program instructions
capable of being executed by a computer processor, the
computer program instructions defining steps of: receiving a
command, the command including a cryptographic key and
a hash of the cryptographic key; generating a local hash by
inputting the cryptographic key into a hashing algorithm;
determining whether the local hash matches the hash
included in the command; writing the cryptographic key to
a key storage area if the local hash matches the hash

Dec. 7, 2023

included in the command; and returning a failure response if
the local hash does not match the hash included in the
command.

[0029] Insome implementations, the techniques described
herein relate to a non-transitory computer-readable storage
medium, wherein the cryptographic key includes one of a
public key, a private key, a symmetric key, and a Unique
Device Secret.

[0030] Insome implementations, the techniques described
herein relate to a non-transitory computer-readable storage
medium, wherein determining whether the local hash
matches the hash included in the command includes deter-
mining if the local hash is equal to the hash included in the
command.

[0031] Insome implementations, the techniques described
herein relate to a non-transitory computer-readable storage
medium, wherein writing the cryptographic key to a key
storage area includes overwriting an existing key stored in
the key storage area.

[0032] Insome implementations, the techniques described
herein relate to a non-transitory computer-readable storage
medium, wherein returning a failure response includes
returning failure response data as part of the failure
response.

[0033] FIG. 1 is a block diagram of a computing system
according to some of the example embodiments.

[0034] The illustrated system 100 includes a memory
device 102, manufacturer 104, KMS 106, and customer 108.
The memory device 102, manufacturer 104, KMS 106, and
customer 108 can be implemented as one or more computing
devices. For example, memory device 102 may be imple-
mented similar to computing system 600, while manufac-
turer 104, KMS 106, and customer 108 may be implemented
as one or more computing devices such as device 700.
Operational and other details of the KMS 106, manufacturer
104, memory device 102, and customer 108 are also
described in connection with FIG. 2, FIG. 3, FIG. 4, and
FIG. 5, respectively, and those details are incorporated
herein in their entirety.

[0035] In the illustrated system 100, the KMS 106
includes a request handler 112. In some implementations,
the request handler 112 can include a secure Hypertext
Transport Protocol (HTTP) server that can receive network
requests using a secure transport layer security (TLS) pro-
tocol. One such request includes a key request which causes
the KMS 106 to generate a cryptographic key as described
in more detail herein.

[0036] In response to a key request, the request handler
112 instructs the key generator 110 to generate a key. Details
of key generation are provided in FIG. 2 and not repeated
herein. In brief, the key can comprise a cryptographic key
generated using a well-defined algorithm such as a Ditfie-
Hellman (DH), Elliptic Curve Digital Signature Algorithm
(ECDSA), Elliptic-curve Diffie-Hellman (ECDH), Rivest-
Shamir-Adleman (RSA), or similar type of algorithm. The
specific type of algorithm is not limiting. The key generator
110 can persist keys in a secure storage area such as key
storage 114. In some implementations, the key storage 114
can be a secure storage device such as a hardware security
module (HSM) or similar type of device. The request
handler 112 can receive the generated key and hash the key
using a hash generator 116. The hash generator 116 can
include any well-known hash algorithm that converts a
given input to a fixed length hash value. The request handler

US 2023/0396431 Al

112 can combine the key generated by key generator 110 and
the hash generated by hash generator 116 into a response and

return the response to the calling party (e.g., manufacturer
104).

[0037] The manufacturer 104 includes a request generator
118 capable of generating and issuing a request for one or
more keys from the KMS 106. As discussed in FIG. 2, the
request can include various parameters controlling the key
generation process, which are not repeated herein. Upon
receiving a key and a hash from the KMS 106, the request
generator 118 can store the key in a key storage 120. As with
key storage 114, the key storage 120 can comprise an HSM
or similar device. The manufacturer 104 also includes a
command generator 122, which can generate commands
processible by the memory device 102. As discussed in FIG.
3, this command can be a manufacturing command that is
only available when the memory device 102 is being manu-
factured. The command further can include the key and the
hash received from the KMS 106. The manufacturer 104 can
communicate with the memory device 102 via a command
interface 124, which can comprise (for example) a serial
peripheral interface (SPI), universal asynchronous receiver-
transmitter (UART) interface, peripheral component inter-
connect express (PCle), wireless fidelity (Wi-Fi), Ethernet,
or another type of interface. As discussed in FIG. 3, the
manufacturer 104 issues a command to write a key to the
memory device 102 and awaits a response. Based on the
response, manufacturer 104 can determine whether the key
was written or if remedial measures should be taken.

[0038] The memory device 102 includes a command inter-
face 126 corresponding to the command interface 124. The
memory device 102 receives commands over the command
interface 126, including the command to write a key. In
response to such a command, a hash generator 128 generates
a local hash using the received key in the command, and a
comparator 130 compares the local hash to the hash received
in the command. If the two hashes match (e.g., are equal),
the memory device 102 can write the key to a key storage
area 132 of the memory device 102 (e.g., an HSM). In some
scenarios, this write can result in overwriting an existing
key. The memory device 102 is then further able to return a
response to the memory device 102 (or 108//) based on the
command indicating whether the write was performed and
successful or whether a failure occurred.

[0039] The illustrated system 100 can also include a
customer 108 that can write their own public key to the
memory device 102. Customer 108 includes a key generator
134, which functions similarly to key generator 110. In some
implementations, the algorithm used by key generator 134 is
the same as that used by key generator 110; however, this is
not required. After generating a key, customer 108 can store
the key in key storage 136 (e.g., an HSM). Customer 108
also can generate a command via the command generator
138, which operates similar to command generator 122.
Command generator 138 differs from command generator
122 in that it can only generate valid commands after
manufacturing. In some implementations, these commands
can include a replace key command that allows the customer
108 to replace a key. In some implementations, the replace
key command can be signed by the KMS 106 using a private
key corresponding to a public key stored in key storage area
132. Customer 108 can issue the command to the memory
device via a command interface 140 and await a success or

Dec. 7, 2023

failure response. Upon a successful response, the memory
device 102 will update its key with the key generated by
customer 108.

[0040] FIG. 2 is a flow diagram illustrating a method for
generating a cryptographic key for a secure memory device
according to some of the example embodiments. A KMS
(such as KMS 106 in FIG. 1) may execute method 200. The
description of method 200 provided below is provided in the
context of a single key; however, method 200 is not limited
as such, and references to a single key apply equally to
scenarios where multiple keys are involved.

[0041] In step 202, method 200 can include receiving a
key request.
[0042] A manufacturer or customer may generate and

issue a key request. Method 200 can receive the key request
via, for example, a secure network interface (e.g., secure
Hypertext Transport Protocol request). In some implemen-
tations, a user or device submitting a key request may be
authenticated prior to method 200 executing. For example,
a user or manufacturer may authenticate to the device
executing method 200 via a login or other type of authen-
tication mechanism, which is non-limiting. The key request
can include parameters describing the request such as the
intended use of the key, generation algorithm type, etc., all
of which are non-limiting. For example, the key request can
include a layer identifier in a DICE architecture and a
protocol to use (e.g., ECDH, ECDSA, etc.). Alternatively,
the key request can include no such parameters and the
device executing method 200 can operate using default
parameters.

[0043] In step 204, method 200 can include generating a
key in response to the key request.

[0044] In response to the key request, method 200 can
execute a key generation algorithm to generate a key. The
key generally is a cryptographic key. In some implementa-
tions, the key may be a symmetric key. However, in other
implementations, the key may be part of an asymmetric key
pair. In this implementation, the key generated in step 204
can include a public key and a corresponding private key.
However, in the following steps, references to a ‘“key”
generally refer to a public key in an asymmetric key imple-
mentation unless explicitly noted otherwise (mainly in step
210). However, in some embodiments, private keys, Unique
Device Secrets (in a Device Identity Composition Engine,
DICE, system), or other cryptographic or sensitive data may
be used instead. The disclosure does not limit the type of
algorithm used to generate a key and various types of
algorithms and protocols (e.g., DH, ECDH, ECDSA) can be
used. As discussed above, step 204 can include generating
multiple keys. For example, method 200 can be extended to
operate in a batch mode whereby a single key request can be
used to receive multiple keys. In such a mode, the key
request can include the number of keys to generate. Such a
batch mode may be useful for manufacturers performing
bulk provisioning of memory devices. Further, as another
example, the key request can include a request for multiple,
different types of keys (e.g., used for different purposes).
Thus, method 200 can be extended to generate multiple
types of keys in response to such a request.

[0045] In step 206, method 200 can include computing a
hash of the key.

[0046] In a symmetric implementation, method 200 can
compute the hash using the symmetric key as the input to the
hashing algorithm. In an asymmetric implementation,

US 2023/0396431 Al

method 200 can compute the hash using the public key as the
input to the hashing algorithm. The choice of hashing
algorithm is non-limiting and any algorithm that can gen-
erate a suitably unique digest output can be used. For
example, step 206 can use a SHA-256, SHA-384, SHA-512,
SHA3-224, SHA3-256, SHA3-384, SHA3-512, BLAKE2,
BLAKE2s, BLAKE2b, RIPEMD-160, or Keccak-256. In
general, a hash function will convert an input (i.e., the key)
into a fixed-length output that provides high collision avoid-
ance with other outputs. In some algorithms, the hash
function may also take a desired output length as a parameter
and, if so, method 200 can utilize a suitable output length
(which is non-limiting).

[0047] In step 208, method 200 can include returning the
key and the hash as a response to the key request.

[0048] The returned key can be either a symmetric key or
a public key portion of an asymmetric key pair, as discussed
previously. In some implementations, the response includes
a single key and a corresponding hash generated in step 206.
In other implementations, when multiple keys are generated,
the response can be represented as a dictionary or map
structure mapping keys to hashes. Other data structures may
be used. Method 200 can transmit the key(s) and hash(es) as
a response to the key request received in step 202. Thus, as
one example, the response can be an HTTPS response to an
HTTP request including the key request. Other network
protocols may be used.

[0049] In step 210, method 200 can optionally include
storing the key and hash.

[0050] In most implementations, the device executing
method 200 will store the generated keys and hashes;
however, this may not be required. In one implementation,
step 210 can include securely storing the keys and hashes in,
for example, an HSM or similar type of data storage device.
Step 210 can include associating the keys and hashes with an
account associated with the key request to enable retrieval
by the same user or account. In some implementations, step
210 may only include storing the keys (and associated
accounts) and may not include storing the hashes. In this
implementation, method 200 can include re-generating a
hash if needed in the future using the stored keys and the
same hashing algorithm used in step 206.

[0051] In the foregoing method 200, a KMS (or other
device) executing method 200 can thus manage all keys and
corresponding hashes on behalf of requesting users (e.g.,
manufacturers). As will be discussed next, these keys can be
installed in memory device or another type of semiconductor
devices and used for cryptographic operations.

[0052] FIG. 3 is a flow diagram illustrating a method for
programming a manufacturer’s cryptographic key in a
secure memory device according to some example embodi-
ments. A manufacturer computing device (such as manufac-
turer 104 in FIG. 1) may execute method 300. The descrip-
tion of method 300 provided below is provided in the
context of a single key and a single memory device; how-
ever, method 300 is not limited as such and references to a
single key or memory device apply equally to scenarios
where multiple keys or memory devices are involved.

[0053] In step 302, method 300 can include issuing a key
request to a KMS and, in step 304, receiving a key and a
hash from the KMS in response. Details of this key request
were provided in the description of FIG. 2 and are not
repeated herein.

Dec. 7, 2023

[0054] In step 306, method 300 can include issuing a
command to a memory device, the command including the
key and hash. In an implementation, the command can be a
manufacturer’s command that is only capable of being
issued while the memory device is possessed by the manu-
facturer. Such a command may be replaced with a NOOP
command once the memory device is released from manu-
facturing. Specifically, in step 306, the memory device may
not include any cryptographic keys and thus the command
issued in step 306 may only be enabled in a secure envi-
ronment and then removed from the instruction set of the
memory device.

[0055] In step 308, method 300 can include receiving a
response from the memory device. The response may be a
success or failure response indicating whether the command
was successful. In some implementations, the command is
successful if the memory device has written the key in the
command from step 306 (including both new writes as well
as overwriting an existing key). In some implementations, a
command fails if the memory device does not write the key
for some reason. As discussed more in FIG. 4, one such
reason is that the hash cannot be validated. Other reasons
may also raise failures, including command malformation,
key length errors, etc.

[0056] In step 310, method 300 can include determining
which type of response was received: success or failure. If
method 300 receives a successful response from the memory
device, method 300 ends as the memory device has suc-
cessfully written the key provided in step 306. By contrast,
if the command issued in step 306 fails, method 300
proceeds to step 312.

[0057] In step 312, method 300 can include handling a
failure response to the command issued in step 306. As
discussed above, a failure can arise under many conditions,
however one such condition is that the hash provided in the
command cannot be validated. As will be discussed in FIG.
4, the memory device recomputes its own hash to confirm
that the data it has received is valid. If this comparison fails,
the command fails and a failure response is transmitted.
[0058] When faced with a failure state, method 300 may
take various actions. FIG. 3 illustrates two such alternative
paths in dashed lines. In one implementation, method 300
can simply terminate. In actual implementation, method 300
may include displaying an error message (or another indi-
cator) to a human operator to indicate that the command
failed. Ultimately, the choice of user interface may be left to
the implementation of method 300. In general, however, this
option represents an attempt to write the key and then
prompt for assistance if the key fails. As another alternative,
method 300 can attempt to perform various corrections on
the current key and re-execute. For example, method 300
can change the Endianness of the key and re-execute. Such
common errors may be enumerated and method 300 re-
executed for each type of error.

[0059] By contrast, in another implementation, method
300 may immediately return to step 302 and effectively
re-execute itself. That is, method 300 can request another
key and hash from the KMS and attempt to write the new
key and hash to the memory device. In some implementa-
tions, method 300 can re-execute like this until a successful
response is received. However, in other implementations,
method 300 may only re-execute itself a limited number of
times. For example, method 300 may only attempt to request
a new key and write this new key five times. Generally,

US 2023/0396431 Al

sporadic errors in the key or hash are likely caused by
corruption (e.g., Endianness switch) during network trans-
mission or command transmissions and are very unlikely.
Thus, in practice, method 300 may only need re-execute
once to successfully write a key. However, if repeated errors
occur, such errors may be caused by more fundamental
errors in the process (e.g., Endianness errors). In such a
scenario, part of the foregoing processes of FIGS. 2 and 3
(and, as will be discussed, FIG. 4) includes a bug or other
flaw that needs to be addressed. As such, method 300 may
only re-execute a fixed number of times before ending (and
alerting a user of a potential fault in the system).

[0060] FIG. 4 is a flow diagram illustrating a method for
validating a cryptographic key by a secure memory device
according to the example embodiments. A memory device
(such as memory device 102 in FIG. 1) may execute method
400. The description of method 400 provided below is
provided in the context of a single key, however, method 400
is not limited as such and references to a single key apply
equally to scenarios where multiple keys are involved.
[0061] In step 402, method 400 can include receiving a
command, the command including a cryptographic key and
a hash. In one scenario, method 400 receives the command
from a manufacturer computing device (as described in FIG.
3). In another scenario, method 400 receives the command
from a customer computing device (as will be discussed in
FIG. 5). Details of the cryptographic key and hash have been
described previously and are not repeated herein. In brief,
the cryptographic key can comprise a public key or sym-
metric key (or similar cryptographic data) and the hash
includes a hash computed using the cryptographic key as an
input.

[0062] In step 404, method 400 can include e recomputing
a hash. In this step, method 400 independently computes a
hash using the cryptographic key included in the command
received in step 402. No limitation is placed on the type of
hashing algorithm, as discussed in FIG. 2. However, in most
implementations, the hashing algorithm used in step 404
should match the hashing algorithm used in step 206 of FIG.
2.

[0063] In step 406, method 400 can include comparing the
hash computed in step 404 (referred to as the local hash) and
the hash received in the command received in step 402
(referred to as the received hash). In general, the comparison
includes a strict comparison to determine if the local hash
and the received hash are bytewise identical.

[0064] In step 408, method 400 can include determining
whether the local hash and the received hash are indeed
identical or otherwise matching (the disclosure does not
foreclose systems that rely on fuzzy matching between
hashes).

[0065] If method 400 determines that the local hash and
received hash do not match (e.g., are not equal), method 400
can, in step 412, return a failure to the device that issued the
command of step 402. In some implementations, the failure
can comprise a flag or other data structure indicating a
failure. In other implementations, the memory device can
attempt to provide further failure response data regarding the
failure. In general, the memory device only has access to two
hashes: the local and remote hash. Thus, the memory device
may be limited in the detail of error messages provided.
However, the memory device can still provide useful infor-
mation that can be used by the calling party. For example,
the memory device can provide the two number of unmatch-

Dec. 7, 2023

ing bits between the two hashes. If a local hash is computed
on a different input than the received hash, this value will be
high, frequently most or all of the bits. By contrast, if the
received hash was malformed during transmission, only a
few bits may be mismatched. In response, a calling party can
make decisions on how best to retry (as discussed).

[0066] If, in step 408, method 400 determines that the
local hash and the received hash match (e.g., are equal),
method 400 proceeds to step 410 where the key received in
the command is written. In some implementations, the key
can be written to a secure key storage area of the memory
device and subsequently used for cryptographic operations
performed by the memory device (e.g., signature validation).
In some scenarios, the writing of the key can include
overwriting an existing key. In such a scenario, the over-
writing of a key may operate as an ownership transfer of the
device (since only the owner of the private key can sign data
that can be validated by the memory device). Finally, after
writing a key to the key storage area, method 400 returns a
success response in step 414, indicating that the write was
successful.

[0067] FIG. 5 is a flow diagram illustrating a method for
programming a customer’s cryptographic key in a secure
memory device according to some example embodiments. A
customer computing device (such as customer 108 in FIG.
1) may execute method 500. The description of method 500
provided below is provided in the context of a single key and
a single memory device, however method 500 is not limited
as such and references to a single key or memory device
apply equally to scenarios where multiple keys or memory
devices are involved.

[0068] In step 502, method 500 can include generating a
key and a hash of the key.

[0069] Method 500 can execute a key generation algo-
rithm to generate a key. The key generally is a cryptographic
key. In some implementations, the key may be a symmetric
key. However, in other implementations, the key may be part
of an asymmetric key pair. In this implementation, the key
generated in step 502 includes a public key and a corre-
sponding private key. However, in the following steps,
references to a “key” generally refers to a public key in an
asymmetric key implementation unless explicitly noted oth-
erwise. The disclosure does not limit the type of algorithm
used to generate a key and various types of algorithms and
protocols (e.g., DH, ECDH, ECDSA) can be used. As
discussed above, step 502 can include generating multiple
keys. For example, method 500 can be extended to operate
in a batch mode whereby multiple keys can be generated. In
such a mode, the customer can specify the number of keys
to generate. Such a batch mode may be useful for customers
performing bulk re-provisioning of memory devices. Fur-
ther, as another example, step 502 can include generating
different types of keys (e.g., used for different purposes).
Thus, method 500 can be extended to generate multiple
types of keys.

[0070] In a symmetric implementation, step 502 can
include computing a hash using the symmetric key as the
input to the hashing algorithm. In an asymmetric implemen-
tation, step 502 can include computing the hash using the
public key as the input to the hashing algorithm. The choice
of hashing algorithm is non-limiting and any algorithm that
can generate a suitably unique digest output can be used. For
example, step 206 can use a SHA-256, SHA-384, SHA-512,
SHA3-224, SHA3-256, SHA3-384, SHA3-512, BLAKE2,

US 2023/0396431 Al

BLAKE2s, BLAKE2b, RIPEMD-160, or Keccak-256. In
general, a hash function will convert an input (i.e., the key)
into a fixed-length output that provides high collision avoid-
ance with other outputs. In some algorithms, the hash
function may also take a desired output length as a parameter
and, if so, step 502 can utilize a suitable output length
(which is non-limiting).

[0071] Notably, in method 500, a customer generates its
own keys and thus is charged with maintaining the security
of such data. For example, as described in FIG. 2, the
customer can store the keys and (if needed) hashes in an
HSM or other type of secure key storage area (similar to that
discussed in step 210).

[0072] In step 504, method 500 can include issuing a
command to a memory device, the command including the
key and hash generated. In an implementation, the command
can be a dedicated command for writing a key to the
memory device. In some implementations, the command
(and data thereto) must be signed by the current owner of the
key stored in the memory device. For example, the com-
mand must be signed by the holder of a private key corre-
sponding to the public key stored in the memory device. As
an example, if the current public key of the memory device
was generated by a KMS (as described in FIG. 2), the
customer must first obtain a signature for the command by
the KMS (which is generated using the KMS’s private key).
The customer can authenticate to the KMS (and provide a
device identifier of the memory device), provide the com-
mand, and receive this signature. In some implementations,
the KMS can be configured to manage the customer’s keys
and thus can persist the customer-generated public key (and
optional hash) in its own HSM or similar storage module.
Details on the operations performed by the memory device
in response to the command issued in step 504 were pro-
vided in FIG. 4 and are not described herein.

[0073] In step 506, method 500 can include receiving a
response from the memory device. The response may be a
success or failure response indicating whether the command
was successful. In some implementations, the command is
successful if the memory device has written the key in the
command from step 504 (including both new writes as well
as overwriting an existing key). In some implementations, a
command fails if the memory device does not write the key
for some reasons. As discussed more in FIG. 4, one such
reason is that the hash cannot be validated. Other reasons
may also raise failures including command malformation,
key length errors, etc.

[0074] In step 508, method 500 can include determining
which type of response was received: success or failure. If
method 500 receives a successful response from the memory
device, method 500 ends as the memory device has suc-
cessfully written the key provided in step 504. By contrast,
if the command issued in step 504 fails, method 500
proceeds to step 510.

[0075] In step 510, method 500 can include handling a
failure response to the command issued in step 504. As
discussed above, a failure can arise under many conditions,
however one such condition is that the hash provided in the
command cannot be validated. As discussed in FIG. 4, the
memory device recomputes its own hash to confirm that the
data it has received is valid. If this comparison fails, the
command fails, and a failure response is transmitted. As
another alternative, method 500 can attempt to perform
various corrections on the current key and re-execute. For

Dec. 7, 2023

example, method 500 can change the Endianness of the key
and re-execute. Such common errors may be enumerated
and method 500 re-executed for each type of error.

[0076] When faced with a failure state, method 500 may
take various actions. FIG. 5 illustrates two such alternative
paths in dashed lines. In one implementation, method 500
can simply terminate. In actual implementation, method 500
may include displaying an error message (or another indi-
cator) to the customer to indicate that the command failed.
Ultimately, the choice of user interface may be left to the
implementation of method 500. In general, however, this
option represents an attempt to write the key and then
prompt for assistance if the key fails.

[0077] By contrast, in another implementation, method
500 may immediately return to step 502 and effectively
re-execute itself. That is, method 500 can generate another
key and hash and attempt to write the new key and hash to
the memory device. In some implementations, method 500
can re-execute like this until a successful response is
received. However, in other implementations, method 500
may only re-execute itself a limited number of times. For
example, method 500 may only attempt to request a new key
and write this new key five times. Generally, sporadic errors
in the key or hash are likely caused by corruption during
network transmission or command transmissions and are
very unlikely. Thus, in practice, method 500 may only need
re-execute once to successfully write a key. However, if
repeated errors occur, such errors may be caused by more
fundamental errors in the process (e.g., Endianness errors).
In such a scenario, part of the foregoing processes of FIG.
2 through FIG. 4 includes a bug or other flaw that needs to
be addressed. As such, method 500 may only re-execute a
fixed number of times before ending (and alerting a user of
a potential fault in the system).

[0078] FIG. 6 is a block diagram illustrating a computing
system according to some embodiments of the disclosure.

[0079] As illustrated in FIG. 6, a computing system 600
includes a host processor 620 communicatively coupled to a
memory device 602 via a bus 604. The memory device 602
comprises a controller 606 communicatively coupled to one
or more memory banks (e.g., bank 608A, bank 608B, bank
608C, bank 608D, bank 608N, etc.) forming a memory array
via a interface 612. As illustrated, the controller 606 includes
a local cache 614, firmware 616, and an ECC module 618.
[0080] In the illustrated embodiment, host processor 620
can comprise any type of computer processor, such as a
central processing unit (CPU), graphics processing unit
(GPU), or other types of general-purpose or special-purpose
computing devices. The host processor 620 includes one or
more output ports that allow for the transmission of address,
user, and control data between the host processor 620 and
the memory device 602. In the illustrated embodiment, this
communication is performed over the bus 604. In one
embodiment, the bus 604 comprises an input/output (1/O)
bus or a similar type of bus.

[0081] The memory device 602 is responsible for manag-
ing one or more memory banks (e.g., bank 608A, bank
608B, bank 608C, bank 608D, bank 608N, etc.). In one
embodiment, the memory banks (e.g., bank 608A, bank
608B, bank 608C, bank 608D, bank 608N, etc.) comprise
NAND Flash dies or other configurations of non-volatile
memory. In one embodiment, the memory banks (e.g., bank
608A, bank 608B, bank 608C, bank 608D, bank 608N, etc.)
comprise a memory array.

US 2023/0396431 Al

[0082] The memory banks (e.g., bank 608A, bank 608B,
bank 608C, bank 608D, bank 608N, etc.) are managed by the
controller 606. In some embodiments, the controller 606
comprises a computing device configured to mediate access
to and from banks (e.g., bank 608A, bank 608B, bank 608C,
bank 608D, bank 608N, etc.). In one embodiment, the
controller 606 comprises an ASIC or other circuitry installed
on a printed circuit board housing the memory banks (e.g.,
bank 608A, bank 608B, bank 608C, bank 608D, bank 608N,
etc.). In some embodiments, the controller 606 may be
physically separate from the memory banks (e.g., bank
608A, bank 608B, bank 608C, bank 608D, bank 608N, etc.).
The controller 606 communicates with the memory banks
(e.g., bank 608A, bank 608B, bank 608C, bank 608D, bank
608N, etc.) over the interface 612. In some embodiments,
this interface 612 comprises a physically wired (e.g., traced)
interface. In other embodiments, the interface 612 comprises
a standard bus for communicating with memory banks (e.g.,
bank 608A, bank 608B, bank 608C, bank 608D, bank 608N,
etc.).

[0083] The controller 606 comprises various modules
including local cache 614, firmware 616 and ECC module
618. In one embodiment, the various modules (e.g., local
cache 614, firmware 616 and ECC module 618) comprise
various physically distinct modules or circuits. In other
embodiments, the modules (e.g., local cache 614, firmware
616 and ECC module 618) may completely (or partially) be
implemented in software or firmware.

[0084] As illustrated, firmware 616 comprises the core of
the controller and manages all operations of the controller
606. The firmware 616 may implement some or all of the
methods described above. Specifically, the firmware 616
may implement the methods described in the foregoing
figures.

[0085] FIG. 7 is a block diagram of a computing device
according to some embodiments of the disclosure.

[0086] As illustrated, the device 700 includes a processor
or central processing unit (CPU) such as CPU 702 in
communication with a memory 704 via a bus 714. The
device also includes one or more input/output (I/O) or
peripheral devices 712. Examples of peripheral devices
include, but are not limited to, network interfaces, audio
interfaces, display devices, keypads, mice, keyboard, touch
screens, illuminators, haptic interfaces, global positioning
system (GPS) receivers, cameras, or other optical, thermal,
or electromagnetic sensors.

[0087] In some embodiments, the CPU 702 may comprise
a general-purpose CPU. The CPU 702 may comprise a
single-core or multiple-core CPU. The CPU 702 may com-
prise a system-on-a-chip (SoC) or a similar embedded
system. In some embodiments, a graphics processing unit
(GPU) may be used in place of, or in combination with, a
CPU 702. Memory 704 may comprise a memory system
including a dynamic random-access memory (DRAM),
static random-access memory (SRAM), Flash (e.g., NAND
Flash), or combinations thereof. In one embodiment, the bus
714 may comprise a Peripheral Component Interconnect
Express (PCle) bus. In some embodiments, the bus 714 may
comprise multiple busses instead of a single bus.

[0088] Memory 704 illustrates an example of a non-
transitory computer storage media for the storage of infor-
mation such as computer-readable instructions, data struc-
tures, program modules, or other data. Memory 704 can
store a basic input/output system (BIOS) in read-only

Dec. 7, 2023

memory (ROM), such as ROM 708 for controlling the
low-level operation of the device. The memory can also
store an operating system in random-access memory (RAM)
for controlling the operation of the device.

[0089] Applications 710 may include computer-execut-
able instructions which, when executed by the device,
perform any of the methods (or portions of the methods)
described previously in the description of the preceding
figures. In some embodiments, the software or programs
implementing the method embodiments can be read from a
hard disk drive (not illustrated) and temporarily stored in
RAM 706 by CPU 702. CPU 702 may then read the software
or data from RAM 706, process them, and store them in
RAM 706 again.

[0090] The device may optionally communicate with a
base station (not shown) or directly with another computing
device. One or more network interfaces in peripheral devices
712 are sometimes referred to as a transceiver, transceiving
device, or network interface card (NIC).

[0091] An audio interface in peripheral devices 712 pro-
duces and receives audio signals such as the sound of a
human voice. For example, an audio interface may be
coupled to a speaker and microphone (not shown) to enable
telecommunication with others or generate an audio
acknowledgment for some action. Displays in peripheral
devices 712 may comprise liquid crystal display (LCD), gas
plasma, light-emitting diode (LED), or any other type of
display device used with a computing device. A display may
also include a touch-sensitive screen arranged to receive
input from an object such as a stylus or a digit from a human
hand.

[0092] A keypad in peripheral devices 712 may comprise
any input device arranged to receive input from a user. An
illuminator in peripheral devices 712 may provide a status
indication or provide light. The device can also comprise an
input/output interface in peripheral devices 712 for commu-
nication with external devices, using communication tech-
nologies, such as USB, infrared, Bluetooth®, or the like. A
haptic interface in peripheral devices 712 provides tactile
feedback to a user of the client device.

[0093] A GPS receiver in peripheral devices 712 can
determine the physical coordinates of the device on the
surface of the Earth, which typically outputs a location as
latitude and longitude values. A GPS receiver can also
employ other geo-positioning mechanisms, including, but
not limited to, triangulation, assisted GPS (AGPS), E-OTD,
CI, SAIL ETA, BSS, or the like, to further determine the
physical location of the device on the surface of the Earth.
In one embodiment, however, the device may communicate
through other components, providing other information that
may be employed to determine the physical location of the
device, including, for example, a media access control
(MAC) address, Internet Protocol (IP) address, or the like.

[0094] The device may include more or fewer components
than those shown in FIG. 7, depending on the deployment or
usage of the device. For example, a server computing
device, such as a rack-mounted server, may not include
audio interfaces, displays, keypads, illuminators, haptic
interfaces, Global Positioning System (GPS) receivers, or
cameras/sensors. Some devices may include additional com-
ponents not shown, such as graphics processing unit (GPU)
devices, cryptographic co-processors, artificial intelligence
(Al) accelerators, or other peripheral devices.

US 2023/0396431 Al

[0095] The subject matter disclosed above may, however,
be embodied in a variety of different forms and, therefore,
covered or claimed subject matter is intended to be con-
strued as not being limited to any example embodiments set
forth herein; example embodiments are provided merely to
be illustrative. Likewise, a reasonably broad scope for
claimed or covered subject matter is intended. Among other
things, for example, subject matter may be embodied as
methods, devices, components, or systems. Accordingly,
embodiments may, for example, take the form of hardware,
software, firmware, or any combination thereof (other than
software per se). The preceding detailed description is,
therefore, not intended to be taken in a limiting sense.

[0096] Throughout the specification and claims, terms
may have nuanced meanings suggested or implied in context
beyond an explicitly stated meaning. Likewise, the phrase
“in an embodiment” as used herein does not necessarily
refer to the same embodiment and the phrase “in another
embodiment” as used herein does not necessarily refer to a
different embodiment. It is intended, for example, that
claimed subject matter include combinations of example
embodiments in whole or in part.

[0097] In general, terminology may be understood at least
in part from usage in context. For example, terms, such as
“and,” “or,” or “and/or,” as used herein may include a
variety of meanings that may depend at least in part upon the
context in which such terms are used. Typically, “or” if used
to associate a list, such as A, B or C, is intended to mean A,
B, and C, here used in the inclusive sense, as well as A, B
or C, here used in the exclusive sense. In addition, the term
“one or more” as used herein, depending at least in part upon
context, may be used to describe any feature, structure, or
characteristic in a singular sense or may be used to describe
combinations of features, structures, or characteristics in a
plural sense. Similarly, terms, such as “a,” “an,” or “the,”
again, may be understood to convey a singular usage or to
convey a plural usage, depending at least in part upon
context. In addition, the term “based on” may be understood
as not necessarily intended to convey an exclusive set of
factors and may, instead, allow for existence of additional
factors not necessarily expressly described, again, depend-
ing at least in part on context.

[0098] The present disclosure is described with reference
to block diagrams and operational illustrations of methods
and devices. It is understood that each block of the block
diagrams or operational illustrations, and combinations of
blocks in the block diagrams or operational illustrations, can
be implemented by means of analog or digital hardware and
computer program instructions. These computer program
instructions can be provided to a processor of a general-
purpose computer to alter its function as detailed herein, a
special purpose computer, application-specific integrated
circuit (ASIC), or other programmable data processing
apparatus, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, implement the functions/acts specified
in the block diagrams or operational block or blocks. In
some alternate implementations, the functions or acts noted
in the blocks can occur out of the order noted in the
operational illustrations. For example, two blocks shown in
succession can in fact be executed substantially concurrently
or the blocks can sometimes be executed in the reverse
order, depending upon the functionality or acts involved.

Dec. 7, 2023

[0099] These computer program instructions can be pro-
vided to a processor of a general purpose computer to alter
its function to a special purpose; a special purpose computer;
ASIC; or other programmable digital data processing appa-
ratus, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, implement the functions or acts speci-
fied in the block diagrams or operational block or blocks,
thereby transforming their functionality in accordance with
embodiments herein.

[0100] For the purposes of this disclosure a computer
readable medium (or computer-readable storage medium)
stores computer data, which data can include computer
program code or instructions that are executable by a
computer, in machine readable form. By way of example,
and not limitation, a computer readable medium may com-
prise computer readable storage media, for tangible or fixed
storage of data, or communication media for transient inter-
pretation of code-containing signals. Computer readable
storage media, as used herein, refers to physical or tangible
storage (as opposed to signals) and includes without limi-
tation volatile and non-volatile, removable, and non-remov-
able media implemented in any method or technology for
the tangible storage of information such as computer-read-
able instructions, data structures, program modules or other
data. Computer readable storage media includes, but is not
limited to, RAM, ROM, EPROM, EEPROM, flash memory
or other solid-state memory technology, CD-ROM, DVD, or
other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other physical or material medium which can be used to
tangibly store the desired information or data or instructions
and which can be accessed by a computer or processor.
[0101] For the purposes of this disclosure a module is a
software, hardware, or firmware (or combinations thereof)
system, process or functionality, or component thereof, that
performs or facilitates the processes, features, and/or func-
tions described herein (with or without human interaction or
augmentation). A module can include sub-modules. Soft-
ware components of a module may be stored on a computer
readable medium for execution by a processor. Modules
may be integral to one or more servers or be loaded and
executed by one or more servers. One or more modules may
be grouped into an engine or an application.

[0102] Those skilled in the art will recognize that the
methods and systems of the present disclosure may be
implemented in many manners and as such are not to be
limited by the foregoing exemplary embodiments and
examples. In other words, functional elements being per-
formed by single or multiple components, in various com-
binations of hardware and software or firmware, and indi-
vidual functions, may be distributed among software
applications at either the client level or server level or both.
In this regard, any number of the features of the different
embodiments described herein may be combined into single
or multiple embodiments, and alternate embodiments having
fewer than, or more than, all the features described herein
are possible.

[0103] Functionality may also be, in whole or in part,
distributed among multiple components, in manners now
known or to become known. Thus, a myriad of software,
hardware, and firmware combinations are possible in
achieving the functions, features, interfaces, and preferences
described herein. Moreover, the scope of the present disclo-

US 2023/0396431 Al

sure covers conventionally known manners for carrying out
the described features and functions and interfaces, as well
as those variations and modifications that may be made to
the hardware or software or firmware components described
herein as would be understood by those skilled in the art now
and hereafter.

[0104] Furthermore, the embodiments of methods pre-
sented and described as flowcharts in this disclosure are
provided by way of example to provide a more complete
understanding of the technology. The disclosed methods are
not limited to the operations and logical flow presented
herein. Alternative embodiments are contemplated in which
the order of the various operations is altered and in which
sub-operations described as being part of a larger operation
are performed independently.

[0105] While various embodiments have been described
for purposes of this disclosure, such embodiments should
not be deemed to limit the teaching of this disclosure to
those embodiments. Various changes and modifications may
be made to the elements and operations described above to
obtain a result that remains within the scope of the systems
and processes described in this disclosure.

What is claimed is:

1. A system comprising:

a memory device including a key storage area;

a key management server (KMS) configured to receive a
key request, generate a cryptographic key, compute a
hash of the cryptographic key, and return the crypto-
graphic key and the hash in response to the key request;
and

a manufacturer computing device configured to receive
the cryptographic key and the hash as part of the
response to the key request and issue a command
including the cryptographic key and the hash to the
memory device,

wherein the memory device is configured to compute a
local hash using the cryptographic key in the command,
compare the local hash to the hash, and write the
cryptographic key to the key storage area when the
local hash matches the hash.

2. The system of claim 1, wherein the cryptographic key
comprises one of a public key portion or private key portion
of an asymmetric key pair.

3. The system of claim 1, wherein the cryptographic key
comprises a Unique Device Secret.

4. The system of claim 1, wherein the cryptographic key
comprises symmetric key.

5. The system of claim 1, wherein the manufacturer
computing device is further configured to detect a failure
response associated with the command, request a second
cryptographic key and a second hash from the KMS in
response to the failure response, and issue a second com-
mand including the second cryptographic key and the sec-
ond hash to the memory device.

6. The system of claim 1 further comprising a customer
computing device, the customer computing device config-
ured to:

generate a second cryptographic key and a second hash
corresponding to the second cryptographic key; and

issue a second command including the second crypto-
graphic key and the second hash to the memory device;

wherein the memory device is configured to compute a
second local hash using the second cryptographic key
in the second command, compare the second local hash

Dec. 7, 2023

to the second hash, and write the second cryptographic
key to the key storage area if the second local hash is
equal to the second hash.

7. The system of claim 6, wherein the customer comput-
ing device is further configured to include a signature in the
second command.

8. The system of claim 6, wherein writing the second
cryptographic key to the key storage area comprises over-
writing an existing cryptographic key.

9. The system of claim 1, wherein the memory device is
further configured to determine that the local hash does not
match the hash and, in response, not write the cryptographic
key to the key storage area.

10. The system of claim 9, wherein the memory device
returns a failure response in response to determining that the
local hash does not match the hash.

11. A method comprising:

receiving, by a memory device, a command, the com-

mand including a cryptographic key and a hash of the
cryptographic key;

generating, by the memory device, a local hash by input-

ting the cryptographic key into a hashing algorithm;
determining, by the memory device, whether the local
hash matches the hash included in the command;
writing, by the memory device, the cryptographic key to
a key storage area if the local hash matches the hash
included in the command; and
returning, by the memory device, a failure response if the
local hash does not match the hash included in the
command.

12. The method of claim 11, wherein the cryptographic
key comprises one of a public key, a private key, a sym-
metric key, and a Unique Device Secret.

13. The method of claim 11, wherein determining whether
the local hash matches the hash included in the command
comprises determining if the local hash is equal to the hash
included in the command.

14. The method of claim 11, wherein writing the crypto-
graphic key to a key storage area comprises overwriting an
existing key stored in the key storage area.

15. The method of claim 11, wherein returning a failure
response comprises returning failure response data as part of
the failure response.

16. A non-transitory computer-readable storage medium
for tangibly storing computer program instructions capable
of being executed by a computer processor, the computer
program instructions defining steps of:

receiving a command, the command including a crypto-

graphic key and a hash of the cryptographic key;
generating a local hash by inputting the cryptographic key
into a hashing algorithm;

determining whether the local hash matches the hash

included in the command;

writing the cryptographic key to a key storage area if the

local hash matches the hash included in the command,;
and

returning a failure response if the local hash does not

match the hash included in the command.

17. The non-transitory computer-readable storage
medium of claim 16, wherein the cryptographic key com-
prises one of a public key, a private key, a symmetric key,
and a Unique Device Secret.

18. The non-transitory computer-readable storage
medium of claim 16, wherein determining whether the local

US 2023/0396431 Al Dec. 7, 2023
10

hash matches the hash included in the command comprises
determining if the local hash is equal to the hash included in
the command.

19. The non-transitory computer-readable storage
medium of claim 16, wherein writing the cryptographic key
to a key storage area comprises overwriting an existing key
stored in the key storage area.

20. The non-transitory computer-readable storage
medium of claim 16, wherein returning a failure response
comprises returning failure response data as part of the
failure response.

