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Systems and methods for managing one or more physical
systems, including determining system behavior switching
based on time series data from one or more sensors in the

system. Time series is divided into a plurality of segments,

and each of the segments represents a system behavior. A

fitness model is generated for each of the segments to

determine whether to select each of the segments as invari-

ants, and an ensemble of local relationship models are built

for each of the time series for each invariant to identify local
behavior switching points over time. The identified local

behavior switching points of each invariant are aggregated
by aligning the local switching points of all invariant seg-

ments, computing a density distribution of the aligned

switching points, and extracting local maximas of the den-
sity distribution to determine the global switching points.
(2006.01) System operations are controlled based on the determined
(2006.01) system behavior switching.
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MANAGEMENT OF COMPLEX PHYSICAL
SYSTEMS USING TIME SERIES
SEGMENTATION TO DETERMINE
BEHAVIOR SWITCHING

RELATED APPLICATION INFORMATION

[0001] This application claims priority to provisional
application Ser. No. 62/137,923 filed on Mar. 25, 2015,
incorporated herein by reference in its entirety.

BACKGROUND
[0002] 1. Technical Field
[0003] The present invention relates to the management of

physical systems, and more particularly, to the autonomic
management of complex physical systems using time series
segmentation to determine behavior switching.

[0004] 2. Description of the Related Art

[0005] With the decreasing hardware cost and increasing
demand for autonomic management, most complex physical
systems (e.g., nuclear power plants, manufacturing systems,
etc.) are now equipped with a large network of sensors
distributed across different parts of the system. The readings
of sensors are generally continuously collected, and may be
regarded as time series, which reflects the operational status
of system. Effectively modeling and discovering patterns
from the sensor data is important to improve system opera-
tions and many management tasks (e.g., anomaly detection,
capacity planning, etc.).

[0006] One important observation from physical systems
is that their operations usually switch between different
states. For example, manufacture systems usually follow
certain production workflows, which may automatically
switch to a new process after completing the previous
process. In many cases, system operators do not even know
the exact time that system behavior switches. Determining
behavior switching along time may essential include seg-
menting the collected time series into regions, each repre-
senting a system behavior. Conventional approaches are
either based on dynamic programming or heuristics.
Recently, due to the high demand of efficient and flexible
mining and optimization systems and methods, optimization
has been attempted to be employed to effectively analyze
tune series. However, conventional optimization-based
methods currently are only applicable to single time series,
and as such, cannot be applied to efficiently discover com-
plex system dynamics for management of complex physical
systems.

SUMMARY

[0007] A method for managing one or more physical
systems, including determining system behavior switching
based on time series data from one or more sensors in the
system. Time series is divided into a plurality segments, and
each of the segments represents a system behavior. A fitness
model is generated for each of the plurality of segments to
determine whether to select each of the plurality of segments
as an invariant, and an ensemble of local relationship models
are built for each of the time series for each invariant to
identify local behavior switching points over time. The
identified local behavior switching points of each invariant
are aggregated by aligning the local switching points of all
the invariant segments, computing a density distribution of
the aligned local switching points, and extracting local
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maximas of the density distribution to determine one or
more global switching points. System operations are con-
trolled based on the determined system behavior switching.
[0008] A system for managing one or more physical
systems, including a behavior switching determination
engine for determining global system behavior switching
based on time series data from one or more sensors in the
physical systems. A pair selector is configured to divide the
time series into a plurality of segments, and each of the
segments represents a system behavior. A model generator is
configured to generate a model fitness score for each of the
plurality of segments to determine whether to select each of
the plurality of segments as an invariant, and to build an
ensemble of local relationship models for each of the time
series for each invariant to identify local behavior switching
points over time. A result fuser for aggregating the identified
local behavior switching points of each invariant, the aggre-
gating including aligning the local switching points of all the
invariant segments, computing a density distribution of the
aligned local switching points, and extracting local maximas
of the density distribution to determine one or more global
switching points. A controller is employed to control system
operation based on the determined system behavior switch-
ing

[0009] A computer-readable storage medium including a
computer-readable program, wherein the computer-readable
program when executed on a computer causes the computer
to perform the steps for determining system behavior
switching based on time series data. Time series is divided
into a plurality of segments, and each of the segments
represents a system behavior. A fitness model is generated
for each of the plurality of segments to determine whether to
select each of the plurality of segments as an invariant, and
an ensemble of local relationship models are built for each
of' the time series for each invariant to identify local behavior
switching points over time. The identified local behavior
switching points of each invariant are aggregated by align-
ing the local switching points of all the invariant segments,
computing a density distribution of the aligned local switch-
ing points, and extracting local maximas of the density
distribution to determine one or more global switching
points. System operations are controlled based on the deter-
mined system behavior switching.

[0010] These and other features and advantages will
become apparent from the following detailed description of
illustrative embodiments thereof, which is to be read in
connection with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0011] The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

[0012] FIG. 1 shows an exemplary processing system to
which the present principles may be applied, in accordance
with one embodiment of the present principles;

[0013] FIG. 2 shows an exemplary high-level method for
determining behavior switching for management of physical
systems, in accordance with an embodiment of the present
principles;

[0014] FIG. 3 shows an exemplary system and method for
determining behavior switching for management of physical
systems, in accordance with an embodiment of the present
principles;
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[0015] FIG. 4 shows an exemplary plate diagram illustra-
tively depicting a method for invariant segmentation, in
accordance with an embodiment of the present principles;

[0016] FIG.5is a block/flow diagram illustratively depict-
ing an exemplary high level system for behavior switching
determination and management of physical systems, in
accordance with an embodiment of the present principles;
and

[0017] FIG. 6 is a block/flow diagram illustratively depict-
ing an exemplary system for behavior switching determina-
tion and management of physical systems, in accordance
with an embodiment of the present principles.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0018] In one embodiment, the present principles may be
employed to manage complex physical systems based on
determining and/or analyzing behavior switching in com-
plex physical systems using, for example, an optimization-
based segmentation method which efficiently mines the
massive amount of time series data in physical systems (e.g.,
sensor data). Unlike conventional methods that segment
time series based on their shapes, the present principles may
be employed to segment an ensemble of models learned
from time series. An operation state of a system can be
modeled by the ensemble of relationships between different
system time series attributes (e.g., invariant model with
pairwise relationships) according to various embodiments.
[0019] In some embodiments, when the system’s opera-
tion state switches, the relationships among its attributes
may break, and thus the relationship model learned for the
previous state may no longer hold, which may result in a
significant parameter change of the model to response to the
behavior change. The present principles may be employed to
learn such relationship models for each of a plurality of
different system behaviors, thus enabling identification of
behavior switching points by inferring it from the parameter
change of the learned models along time. In one embodi-
ment, to build such models for each of a plurality of
behaviors, system behaviors may be determined from rela-
tionships of one of more attributes according to the present
principles .

[0020] In a particularly useful embodiment, accurate and
automated identification/determination of operational
behavior switching may be employed for management (
autonomic management) of one or more systems (e.g.,
complex physical systems). In one embodiment, sensor
readings may be collected from one or systems, and may be
treated as time series. The present principles may be
employed to discover system behavior switching by infer-
ring the relationship changes between massive time series.
The underlying switching identification determination may
be performed using an optimization method according to the
present principles. The optimization may include, for
example, learning a sequence of local relationship models
that can best fit the time series data, and then analyzing
changes of the local relationships to identify system behav-
ior switching.

[0021] In one embodiment, optimization may be per-
formed by employing a low-level sophisticated optimization
method and a high-level optimization method design strat-
egy according to the present principles to achieve the
large-scale problem solving for use in management of com-
plex physical systems. The present principles may be
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employed to determine the global system behavior change
by, for example, effectively aggregating the learned local
relationship change and identifying system-level behavior
switching points with a high level of identification accuracy
and low computational complexity, thereby reducing system
processing requirements. Moreover, the present principles
may be employed to automatically discover system behavior
switching based on the time series data gathered from
sensors according to various embodiments.

[0022] In one embodiment, the task of identifying behav-
ior switching may be formulated as an optimization prob-
lem, which captures the local relationships from different
system attributes time series, and then for each relationship
we learn a sequence of models to describe how it changes
along time. The present principles may be employed to
analyze the change for very local relationship, aggregate
them, and use the aggregated local changes to identify the
global behavior switching for the whole system for use in
system management according to various embodiments.
[0023] However, there are several challenges to achieve
this goal. These may include, for example the following: (1)
Local relationship building: Since the system behaviors may
be unknown, it is difficult to select the right attributes to
build local relationships; (2) Model complexity: Even if the
correct attributes are selected, the relationship modeling
generally requires more parameters than traditional time
series, and thus leads to higher model complexity; (3)
Efficient solver: By its nature, the number of established
local relationships e pairwise) usually is several orders of
magnitude greater than the number of time series, which
may calls for an efficient optimization method (e.g., algo-
rithm) to quickly and accurately identify the solution; and
(4) Result aggregation: Assembling a large quantity (e.g.,
hundreds, thousands, millions, etc.) of local relationship
models learned from different system components together
to determine the whole system behavior switching to gen-
erate a final output.

[0024] In one embodiment, a segmentation method
according to the present principles may be employed to
address such challenges. Although in some embodiments,
the method does not depend on any models to build local
relationships, to determine a comprehensive description of
relationships in systems (e.g., complex systems), an invari-
ant model may be employed as an illustrative example,
which may build pairwise relationships between different
time series according to the present principles.

[0025] In one embodiment, given a set of time series
collected from a system, without knowing the system behav-
ior, a sampling-based mechanism may be employed to select
the correct system attributes to build pairwise local relation-
ships. For each selected invariant pair, one or more objective
functions may be designed (e.g., generated) and employed to
identify its local behavior switching along time. This may be
applied to determine the accuracy, complexity, and behavior
switching frequency to for real-world system operations
according to the present principles. To optimize the objec-
tive function, an efficient method, customized for relation-
ship modeling, may be employed, and may include a low-
level sophisticated optimization algorithm, and a high-level
optimization strategy design. In some embodiments, with
respect to the optimization method, the framework of, for
example, Alternating Direction Method of Multipliers
(ADMM) may be utilized for large-scale problem solving
capability.
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[0026] In some embodiments, a novel primal-dual active
set method may be employed to efficiently further optimize
the internal steps of ADMM for high-level optimization
according to the present principles. With respect to the
high-level optimization, a hierarchical block-wise optimiza-
tion method may be employed to further enhance the prob-
lem solving efficiency according to various embodiments.
After determining local behavior switching for each invari-
ant, to discover the global system behavior change, an
aggregation method which accurately aligns the massive
local change points may be employed to discover the
system-level behavior switching points. More particularly, a
nonparametric model may be employed to search for peak
density locations of the switching points identified from all
invariants, and since those positions may be supported by
most local relationships, they may be regarded as the global
behavior switching points according to the present prin-
ciples.

[0027] The present principles may be employed to achieve
high accuracy in identifying global behavior switch points
for systems with a mixture of states, and the designed
hierarchical optimization method further greatly boosts the
solving efficiency and speed as compared to conventional
systems and methods. In some embodiments, the present
principles may be employed to, for example, efficiently
discover system behavior switching by inferring it from the
relationship of system attributes with ensemble of models;
formulate the objective of behavior switching discovery as
an optimization problem, with novel methods to efficiently
solve it and further boost the solution efficiency with a
hierarchical optimization strategy; and aggregate the results
to determine global system behavior switching with consid-
eration of noise, event lag, etc.) using a fusion mechanism.
[0028] Referring now to the drawings in which like
numerals represent the same or similar elements and initially
to FIG. 1, an exemplary processing system 100, to which the
present principles may be applied, is illustratively depicted
in accordance with an embodiment of the present principles.
The processing system 100 includes at least one processor
(CPU) 104 operatively coupled to other components via a
system bus 102. A cache 106, a Read Only Memory (ROM)
108, a Random Access Memory (RAM) 110, an input/output
(I/O) adapter 120, a sound adapter 130, a network adapter
140, a user interface adapter 150, and a display adapter 160,
are operatively coupled to the system bus 102.

[0029] A first storage device 122 and a second storage
device 124 are operatively coupled to system bus 102 by the
1/0 adapter 120. The storage devices 122 and 124 can be any
of a disk storage device (e.g., a magnetic or optical disk
storage device), a solid state magnetic device, and so forth.
The storage devices 122 and 124 can be the same type of
storage device or different types of storage devices.

[0030] A speaker 132 is operatively coupled to system bus
102 by the sound adapter 130. A transceiver 142 is opera-
tively coupled to system bus 102 by network adapter 140. A
display device 162 is operatively coupled to system bus 102
by display adapter 160.

[0031] A first user input device 152, a second user input
device 154, and a third user input device 156 are operatively
coupled to system bus 102 by user interface adapter 150. The
user input devices 152, 154, and 156 can be any of a
keyboard, a mouse, a keypad, an image capture device, a
motion sensing device, a microphone, a device incorporating
the functionality of at least two of the preceding devices, and
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so forth. Of course, other types of input devices can also be
used, while maintaining the spirit of the present principles.
The user input devices 152, 154, and 156 can be the same
type of user input device or different types of user input
devices. The user input devices 152, 154, and 156 are used
to input and output information to and from system 100.
[0032] Of course, the processing system 100 may also
include other elements (not shown), as readily contemplated
by one of skill in the art, as well as omit certain elements.
For example, various other input devices and/or output
devices can be included in processing system 100, depend-
ing upon the particular implementation of the same, as
readily understood by one of ordinary skill in the art. For
example, various types of wireless and/or wired input and/or
output devices can be used. Moreover, additional processors,
controllers, memories, and so forth, various configurations
can also be utilized as readily appreciated by one of ordinary
skill in the art. These and other variations of the processing
system 100 are readily contemplated by one of ordinary skill
in the art given the teachings of the present principles
provided herein.

[0033] Moreover, it is to be appreciated that circuits/
systems/networks 300, 500, and 600 described below with
respectto FIGS. 3, 5, and 6 are circuits/systems/networks for
implementing respective embodiments of the present prin-
ciples. Part or all of processing system 100 may be imple-
mented in one or more of the elements of systems 300, 500,
and 600 with respect to FIGS. 3, 5, and 6.

[0034] Further, it is to be appreciated that processing
system 100 may perform at least part of the methods
described herein including, for example, at least part of
methods 200 and 400 of FIGS. 2 and 4. Similarly, part or all
of circuits/systems/networks 300, 500, and 600 of FIGS. 3,
5, and 6 may be used to perform at least part of the methods
described herein including, for example, at least part of
methods 200 and 400 of FIGS. 2 and 4.

[0035] Referring now to FIG. 2, an exemplary high-level
method 200 for determining behavior switching for man-
agement of physical systems is illustratively depicted in
accordance with an embodiment of the present principles.
Before describing the present principles in detail, some
background regarding an invariant model employed accord-
ing to the present principles is presented for ease of illus-
tration. An invariant model may be employed to model an
operational state of a system (e.g., complex system), and it
is noted that herein the term “invariant” may represent a pair
of time series where a local relationship model is built. It is
noted that the described invariant model is shown as an
exemplary model for illustrative purposes, and that the
present principles may be applied using one or more of a
plurality of types of models according to various embodi-
ments.

[0036] In one embodiment, to determine one or more
behaviors of a system, an invariant model may be generated,
and may consider a pairwise relationship between two
attributes x(t) and y(t) that employ an AutoRegressive
relationship with eXogenous inputs (ARX):

y(O+ayE-D+ . . . +ay(t-n)=bx(O)+ . . . +b,x(t-m), (€8]
where [n,m] is the order of the model that determines how
many previous steps are affecting the current output. a, and

b, are the coeflicient parameters that reflect how strongly a
previous step is affecting the current output. Denote:

QO=[-y(t-1), . . ., —=y(t-n), x@), . . . , x(t-m)]%. 3)2)
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[0037]
follows:

D=0 Q)

[0038] The parameter 8 in Equation (4) can be learned by
minimizing the least squares error. After that, a score may be
generated to evaluate how well the learned model (1) fits the
measurement data according to the present principles, and
only a pair with sufficiently high fitness score may be
considered as an invariant.

[0039] In some embodiments, for systems with multiple
states, for each invariant pair of a physical system (e.g., in
a state), their relationship can be modeled with parameter 6.
When the system state changes, their relationship in the
previous state may no longer hold, which may result in a
significant change of 6 in the new model to fit the new state.
The present principles may be employed to detect and/or
analyze such change of 0 for each of the invariants, and the
aggregated change may be utilized for indicating/detecting
the global behavior switching points of the entire physical
system, which will be described in further detail herein
below.

[0040] In one embodiment, one or more sets of time series
(e.g., multiple pairs of e series) may be received as input in
block 202. In block 204, pair selection and invariant seg-
mentation may be performed according to the present prin-
ciples. In block 204, multiple segments of the time series
may be sampled, and a model fitness score may be generated
for each segment (e.g., to determine whether to treat seg-
ments as invariant). A plurality (e.g., pre-determined thresh-
old number) of random positions may be generated within
the length of the time series. In one embodiment, for each of
the time series pairs, a segment of the pairs may be selected,
and a fitness score of the invariant model may be generated.
In some embodiments, the segmentation in block 204 may
be iteratively performed for all segments, and the highest
determined score may represent a final score for the two time
series. This invariant segmentation in block 204 may be
performed for all pairs of time series, and those with high
final scores (e.g., final score >0.7) may be selected as
invariants. This final score 0.7 final score threshold) may be
interpreted as a confidence score, and the confidence score
may be represented by a number between zero and one
according to one embodiment. The value one (1) indicates
the model with the highest confidence, and the value zero (0)
indicates the model with the lowest confidence.

[0041] In one embodiment, after selecting invariant pairs
in block 204, a probabilistic model may be employed to
capture switching points for each of a plurality of pairs for
global switching behavior determination in block 206
according to the present principles. In block 206, a sequence
of models may be built for each invariant in the system,
which may extend an Autoregressive Exogenous (ARX)
model to a piecewise invariant model to best fit its dynamic
relationships along time. In one embodiment, relationship
switch points may be identified for each invariant by ana-
lyzing the parameter change of the corresponding invariant
[0042] The present principles may be employed to build
an ensemble of models which may be employed to monitor
and/or manage real physical systems in block 206. In some
embodiments, model accuracy, model complexity (e.g.,
which adds sparsity constraints to the model to reduce the
member of parameters) and/or frequency of behavior
switching (e.g., which may explicitly avoid the solution with

Thus, Equation (1) may then be represented as
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too many switching points to reflect the realistic operation of
a physical system) may be considered and or controlled
during model building in block 206 according to the present
principles.

[0043] In some embodiments, model parameters may be
treated/analyzed as a stochastic sequence that reflects the
evolution of the system states. A probabilistic model may be
built on the sequence to characterize the underlying dynam-
ics in block 206, and the sequence may be estimated by
maximizing its posterior probability, which may include
maximizing a likelihood function and a prior probability
density function. In some embodiments, a piecewise invari-
ant model may be represented as an optimization problem
and analyzed according to the present principles, which will
be described in further detail herein below.

[0044] In one embodiment, an Alternating Direction
Method of Multipliers (ADMM) framework may be
employed to solve a formulated optimization problem and to
segment the time series to determine global switching
behavior in block 206. In one embodiment, the present
principles may employ an ADMM framework (e.g., an
iterative framework which may be employed for solving
large-scale distributed convex optimization problems), and
an underlying segmentation problem may be reformulated as
an optimization problem with linear equality constraints
(e.g., involving two separate classes of variables which may
be solved under the setting of ADMM). In one embodiment,
optimality and/or termination conditions for the reformu-
lated/adapted problem may be derived, the reformulated
problem may be iteratively solved in block 206 to determine
global switching behavior accordance with the conditions),
and global switch points (e.g., for one or more complex
physical systems) may be identified and output in block 214
for use in, for example, system management according to the
present principles.

[0045] In one embodiment, the present principles may be
employed to aggregate identified switch points of all invari-
ants to identify global behavior switch points for an entire
system in block 206. In block 208, the switch points of all
the segmented pairs may be aligned/combined, and a scatter
plot (e.g. representing distributions of switch points across a
time range) may be generated according to the present
principles.

[0046] In one embodiment, in block 210, a density distri-
bution of the aggregated switch points may be built/com-
puted using, for example, kernel density estimation, and data
points may be regarded as sampled from a density distribu-
tion function, and may determine/identify such functions
from the data points in accordance with the present prin-
ciples. In block 212, one or more modes may be identified
from the local maximas of the density distribution function
using, for example, the Mean Shift algorithm. In some
embodiments, such maxima points may be regarded as the
global switching points (e.g., because they are supported by
invariant models), and the determined global switch points
may be output in block 214 in accordance with the present
principles.

[0047] In some embodiments, to further improve the effi-
ciency of the system, a two-phase hierarchical method may
be employed in block 206 to solve the above-mentioned
problems. For example, in one embodiment, Phase 1 of the
hierarchical method may include dividing time indices into
multiple blocks, and reducing the variable number for each
block. Some of the blocks may be considered falsely allo-



US 2016/0282821 Al

cated if they include the true switch point. If a block does not
include any switch points, this may mean that it includes a
single operation behavior, and may be referred to as “cor-
rectly allocated” herein. If a block does include a switch
point, this may mean that it includes multiple operations
behaviors, and may be referred to as “falsely allocated”
herein. In Phase 2, switch points may be identified by
building a point-wise model on each of any suspicious
blocks in accordance with various embodiments of the
present principles.

[0048] Referring now to FIG. 3, with further reference to
FIG. 4, an exemplary system and method 300 for determin-
ing behavior switching for management of physical systems
is illustratively depicted in accordance with an embodiment
of'the present principles. In one embodiment, data (e.g., time
series) may be input in block 301 into a system behavior
switching determination engine 302 to determine system
behavior switching using, for example, segmentation and
invariant modeling according to the present principles.
[0049] In one embodiment, pair selection may be per-
formed (e.g., via sampling) for one or more systems (e.g.,
with multiple states) in block 304 according to the present
principles. In general, given a system with multiple states,
for two time series, it is likely that such time series may only
be considered as invariant for certain states, and may not be
correlated when considering all the states. To utilize an
invariant model in such systems (e.g., with multiple states),
invariants with unknown system behavior switching points
may be selected in accordance with various embodiments of
the present principles.

[0050] In some embodiments, multiple segments of the
time series may be sampled, and a model fitness score may
be computed for each segment in block 306 to determine
whether to treat segments as invariant. For example, k and
M may be used to denote the sample frequency and sample
size, respectively, and K random positions {r , r,, . . . , .}
may be generated within the length of the time series. In one
embodiment, for each two time series, segments of the pairs
b Tty - - - 5 Ly 1+ may be selected, and a fitness score of
the invariant model may be generated/determined for each
of the segments in block 306 using, for example, Equation
(4) in accordance with the present principles. In some
embodiments, the segmentation in may be iteratively per-
formed for all of the Kk segments, and the highest determined
score may represent a final score for the two time series. This
invariant segmentation may be performed for all pairs of
time series in block 306, and those with high final scores
(e.g., final score >0.7) may be selected in block 304 as
invariants in accordance with the present principles.
[0051] In one embodiment, an objective function may be
formulated and employed to capture switching points for
each of one or more invariant pairs in block 308 according
to the present principles. In block 310, a probabilistic model
may be employed to represent relationship switching
between each pair of two time series. In some embodiments,
we may treat the model parameter {6,} as a stochastic
sequence 0, . . ., 0,, that reflects the evolution of the system
states. The probabilistic model may be built based on the
sequence to characterize the underlying dynamics, and the
sequence {6t} may then be determined (e.g., estimated) by
maximizing its posterior probability, which may include
maximizing a likelihood function and a prior probability
density function in accordance with the present principles.
In some embodiments, a piecewise invariant model may be
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represented as an optimization problem in block 318 and/or
analyzed in block 328 according to the present principles.

[0052] In one embodiment, a probabilistic model may be
employed in block 310, and may be utilized to characterize
complex dynamic systems in accordance with the present
principles. For illustrative purposes, denote the two time
series as x(t) and y(t), each including N data points, and
define D={xX,...,Xx, V1, - - ., Yu) as the observed data set.
Rather than assuming the model parameter 0, to be a
constant parameter, the present principles may advanta-
geously treat 0, as a stochastic process that evolves in a
piecewise constant fashion in accordance with various
embodiments. Such adaptation in block 310 may incorporate
the system behavior switching in the model, as the switching
events may be accurately reflected and determined based on
the change of 0, in accordance with the present principles.
[0053] In some embodiments, an objective function is
formulated with one or more constraints, conditions, specific
purposes, and/or requirements in block 308 in accordance
with the present principles. In one embodiment, the objec-
tive function may be formulated in block 312 to minimize
the error (e.g., least squares error) of each of one or more
models. The objective function may further be formulated to
balance accuracy and complexity of the models in block
314, and to accurately reflect, and consider real-world
system operations to avoid solutions with a large number of
switching points (e.g., minimize number of switching
points) in block 316 in accordance with the present prin-
ciples.

[0054] Referring now to FIG. 4, with continued reference
to FIG. 3, an exemplary plate diagram 400 illustratively
depicting a method for invariant segmentation is shown in
accordance with an embodiment of the present principles.
For convenience of illustration, with respect to the descrip-
tion of the method of FIG. 4, we temporarily redefine the
notation of a variable where appending a subscript of time
index t emphasizes its fixation on t. We define D ={y,°, . .
yn xS oo, x), where y,%=y(t), x,°=x(t), and the
remaining variables may be obtained from observations at
t-1 by the following:

»2=0), x0=x(1),

where the parameters m and n are determined using the ARX
model in Equation (1) according to the present principles.
[0055] Inone embodiment, the plate diagram 400 shows a
probabilistic relationship between D, and 6,, and for illus-
trative purposes, the diagram 400 may include representa-
tions of 0, ; 404, 0, 406, 0,,, 408, etc. according to the
present principles. The diagram 400 may include dashed
lines 403 to represent deterministic transitions, and solid
lines 401 to represent probabilistic transitions. Note that A
402 may be a hyper-parameter imposed on, for example, 6,
406 to control model complexity and/or define a condition
distribution P(6,A) in accordance with the present prin-
ciples.
[0056] In one embodiment, the diagram 400 shows a
probability that a sequence 04, . . ., 0, happens conditioned
on an observed data set D (e.g., the posterior probability)
may satisfy:
PO, ..., 00 Dyp(Dio,, ..., 0P, ...,
o), ®

where the first component on the right side of Equation (5)
is the likelihood of a particular observation given the
sequence, and the second part is the prior probability of the
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sequence, which may carry with prior knowledge on 6, . .
., By (e.g., such as a piecewise constant constraint) accord-
ing to the present principles. These two components will be
described in further detail herein below.

[0057] Inone embodiment, the likelihood function may be
expressed as follows:

PO|0,... .00 =PDy,... ,Or|01,... ,0r) (6)

N
=Py | 6)] [ PO 16, Drp).

=2

According to Equation (4), given observations D, ,, only
v/ is a random variable with distribution:

2 Dl‘el)’“ ‘N(OHT 6,,0%)
Do, D_p-rr26, D _~N@"e, 0,

where o[-y}, ..., -y/%x° ..., x/"]%, and essentially c,
may be the same as the vector ¢(t) in Equation (4), but is
represented in a different manner according to one embodi-
ment of the present principles. As a result, the likelihood
may be represented as follows:

o

T
Ly” (r — a6}
rotn =gz ) | Joof- 25}

t=1

[0058] In one embodiment, the diagram 400 shows a
probability distribution of 6, 406 at time t, and may depend
solely on 0, ;, 404 and a hyper parameter 402 which may
influence: the model complexity via 6,. An exception may
occur when t=1, in which case 0, may only be dependent on
A. As a result, the prior probability may be expressed as
follows:

v ®
POy, ... . 0x) = PO | D] [ P61 61, D
=2

N
= PO )] | PO 1 6-0PO: | 2.
=2

That is, the probability of 0, at time t may depend on its
previous values 0,_;, as well as the probability P(0,1A) given
a predefined hyper parameter A 402 according to the present
principles. Moreover, the two probabilities may embed
different expectations on 0, according to various embodi-
ments.

[0059] In some embodiments, the probability P(0,IA) is
related to model complexity, and we may employ Az0 to
control model complexity by controlling the sparsity of 6, to
balance accuracy and complexity of the model in block 314
as follows:

P(6,10)=exp {-M6/,}-

[0060] In block 316, switching frequency may be con-
trolled, and as previously described, since 6, may be
expected to be piecewise constant to reflect the state change
in real system operation according to various embodiments,
a probability density function P(6,l0,_,) may enforce simi-

Sep. 29, 2016

larities between consecutive 8s. In one embodiment, expo-
nential family distribution may y be employed to model such
expectations as follows:

P(6,10,_)=exp {~[0-6._,I}.

Thus, the prior probability may be determined using Equa-
tion (8), and may reflect model complexity and switch
frequency requirements, which may be represented as fol-
lows:

N v ©)
POy, ... ,0n)= ]_I eXP{—/\||91||1}1_[ exp{~16; — O—1ll}.

=2 =2

[0061] In one embodiment, after formulating the afore-
mentioned constraints/requirements in block 308, they may
be assembled together to derive an optimization model for
identifying invariant relationship switching in block 318
according to the present principles. In one embodiment, the
objective attempts to maximize logarithm posterior prob-
ability 0, . . ., 0, given the observation D, as defined in
Equation (5). By applying Equations (7) and (9) to the
logarithm of Equation (5) and ignoring the constant additive
item, the result is:

1 T N N
s == =] 6" =10 6l = 16, ~ Ol
Lo T =1 =1 =2

[0062] Equivalently, in some embodiments, the optimiza-
tion model may be expressed in the form of:

1 & R N N (10)
o0 5 25 0=l 007+ 21 16 + 310 = Ol
T =1 =1 =2

o o
where A; = 7/1 and A; = -

may be the regularization parameters.

[0063] Insome embodiments, although Equation (10) may
be derived through the probabilistic model 400 of FIG. 4, it
may include intuitive interpretations according to the present
principles. The objective function formulated in block 308
may serve as a cohesive measure of the model accuracy,
model complexity, and the frequency of model switches in
blocks 312, 314, and 316. The first component

1< )
3 § (v _0‘17-01)
=1

may reflect the expectation of obtaining a model with high
accuracy. The second component A%, *|6)]l may be
employed to determine the model complexity by, for
example, enforcing sparsity on the invariants parameter 0,.
The third term may represent the component that controls
the frequency of model switches in accordance with the
present principles. By penalizing the changes of 6,, this
component may determine how frequent the switches may
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occur in one or more systems, and larger values of A, may
encourage the presence of, and result in fewer switching
points in the optimization results based on the objective
function formulation in block 316 according to various
embodiments.

[0064] In one embodiment, the solution of Equation (10)
(e.g., the sequence 8, . . . 6,) may be an estimation of the
real dynamics of {8,}. ||6,-8,,, ,|| may measure a statistical
significance of an event that 0, changed at time t. By the
definition of P(6,18,_,), it may be determined that for ||6,-
0,_,|l=€, where €20, it may be concluded with a confidence
of over 1-e< that 0, is different with 0,_, (e.g., t is a switch
point) according to the present principles.

[0065] In one embodiment, the optimization method in
block 318 may efficiently and scalably be employed to solve
Equation (10) according to the present principles. For
example, the optimization method 318 may be designed to
follow the framework of Alternating Direction Method of
Multipliers (ADDM), which is an iterative framework that
has been applied for solving large-scale distributed convex
optimization problems. For ease of illustration, an ADMM
framework and its general formulation will initially be
described herein below.

[0066] In one embodiment, Equation (10) may be refor-
mulated into an optimization problem with linear equality
constraints involving two separable classes of variables in
block 318, such that it may be solved under the setting of
ADMM according to the present principles. Optimality
and/or termination conditions may be derived for the
adapted problem in block 320, and the method may itera-
tively solve the problem in block 322 according to one
embodiment. This solving may include efficiently comput-
ing, for example, one or more of a plurality of generic steps
of each ADMM iteration, and translating the optimization
solution into pair segmentation results in accordance with
the present principles.

[0067] In one embodiment, the optimization method in
block 318 may be performed using ADDM, which is a
framework for designing and applying efficient optimization
solutions for achieving large-scale optimization capability
by iteratively solving a problem in a decentralized manner.
A typical ADMM problem formulation may be represented
as follows:

leixrzl{f(xl)+g(xz)i Arx) = Axxa}, an

where f, g are convex functions, and A,, A, are linear
coeflicient matrices. To solve such a problem, the ADMM
may be employed in block 322 to iteratively update x; and
X, in an alternating manner that steers (x,, X,) progressively
closer to the optimality condition.

[0068] In sot embodiments, this iterative updating method
may be formulated to be parallelizable in block 324 in
accordance with the present principles.

[0069] In block 318, Equation (10) may be reformulated
and adapted to the form of Equation (11) so that ADMM
may be applied in accordance with the present principles. To
fit Equation (1) into the ADMM framework, we may first
denote:

A:=[ay, . .., ay)tc Ry

0:=[0,%, . . ., 0,/ Fc B
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and may introduce an auxiliary variable  as:
B=l0.%, . .., 0,717-[0,%, . . ., 6y 7€ R Ds, 12

[0070] In one embodiment, {3 is a block first-order differ-
ence of 0, with respect to time t, which represents the
parameter change between invariant models and identifies
the behavior switch points, and thus may be a desirable
solution to be obtained according to the present principles.
Moreover, such block-wise formation of § according to the
present principles allows it be computed in a distributed
way, which greatly improve the scalability of the algorithm.
[0071] In one embodiment, by replacing variables, the
original Equation (10) may be re-written, and may be
formulated compactly as follows:

1 , 13)
min 5y~ 4617 + 41161 + 2ol Al

sit. f=D6,

where D € R @Y=« i5 a linear operator which may be defined
according to Equation (12), and ||f||,,, may be the sum of
2-norms. Thus, it is clear that Equation (13) may follow the
form of Equation (11), and (8, 6) may represent the solution
that is desired to be computed in block 318.

[0072] In one embodiment, having converted Equation
(10) to Equation (13), it may now be solved according to the
present principles. In block 320, an optimality condition of
the formulated problem may be derived for solvers to
achieve an optimal solution according to the present prin-
ciples. Before presenting the implementation details of the
solver in detail, the optimality condition (e.g., KKT condi-
tion) for Equation (13) derived in block 320 will be
described in accordance with various embodiments of the
present principles. The optimality condition may be a con-
dition in which a solver achieves an optimal solution for a
particular problem. For example, for (8%, p*) to be optimal,
there may exist a dual variable p*&R @< such that:

p*-Do*=0, (14a)
0€47(40%-y)-DT82 *+3(h,||0%),, (14b)
(14c). (14c)
[0073] By convention, condition (14a) may be referred to

as a primal feasibility condition, and Conditions (14b) and
(14c) may be referred to as a dual feasibility condition. In
one embodiment, the optimality essentially considers the
solution (8%, §*, u*) to be optimal if it is both primal and
dual feasible according to the present principles. Thus, the
Condition (14) may provide an explicit and verifiable char-
acterization of optimality. The amount that a solution vio-
lates Condition (14) may serve naturally as a measure of its
distance to optimality in accordance with the present prin-
ciples.

[0074] Practically, in the numerical sense, the Condition
(14) may not always be exactly reached in block 320, and
thus the corresponding numerical method may be designed
to terminate once the solution becomes sufficiently close to
optimality. To do so, the termination condition, or “close-
ness” (e.g., the amount of violating Condition (14)) may be
explicitly measured in accordance with the present prin-
ciples. For example, it may be assumed d that (6, f3, 1) is an
intermediate iterate of ADMM, according to the design of
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ADMM, and that all iterates hold for (14c) in block 322.
Therefore, we only need to measure the amount that (8, f3,
1) violates Conditions (14b) and (14c). The amount of
violation of Condition (14a) can be measured/determined by
IB-D8||, and Condition (14b) be measured by the norm of
difference between f§ and its immediate previous iterate in
block 322 according to various embodiments.

[0075] In one embodiment, to derive the optimization
method (e.g., algorithm) in an ADMM framework for Equa-
tion (13) in block 318, p>0 may be denoted as an arbitrary
number and the augmented language of Equation (13) may
be represented as follows:

LB, 0. )= 1s)

1 2 T P 2
zlly = AOIF + 24010l + 2Bl + 4 (B-DO) + zllﬁ'— Do|I*.

In one embodiment, the present principles may be employed
to implement an ADMM method specialized for Equation
(13), as described in Method 1 below. Similarly to conven-
tional iterative methods, an initial solution is first estimated
for (8, p*, u*) in block 320, and then it may be iteratively
updated in block 322 until an above-mentioned termination
condition is satisfied, and the updating may be performed in
a parallelizable manner in block 324. The efficiency of the
method may be further boosted using a hierarchical solving
method in block 326 in accordance with the present prin-
ciples.

[0076] In one embodiment, for illustrative purposes, let
€,,.~>0 be the optimality tolerance for the ADMM framework

opt

described in Method 1 as follows:

Method 1 The ADMM framework for problem (13)

Input: an initial (6%, p°, pno).
Output: (071, p¥*1, 1y after k + 1 updates.

1: fork=0,1,2,...do

2 Set 0! < argming £(0, B, 1.

3 Set pF+! «— argming L1 B, F).

4 Set 1L« | + p(B*L - DEFY,

5: if 1IpF*! - D"l < e, and |IBF"! - BFIl <, then
6 return (6%, BFHL, AT

7 end if

8: end for

Method 1 may include, for each iteration, three generic steps
(e.g., Steps 2-4). Step 4 may be regarded as trivial, and as
such, the method to efficiently implement Steps 2 and 3
according to the present principles will be described in detail
herein below. With respect to updating 6 in block 322, the
iteration counter may be temporarily dropped, and we may
denote

LB, 0. 1) :=MlIBilly + 22 Bill + s i) + gll(ﬁ— Do
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The augmented language from Equation (15) may be
expressed as follows:

1 4
L(B. 0. 19 = 5lly— AGIF ~u"DO+ 3 Li(B. 0. ).
This may be plugged into Step 2 of Method 1 to provide:

. L1 el
argming £(B, 0, ) = argminy 5lly = AGlI" - 4 DO+ S11(B - DONI* +

Al
1
= argming 5eT(ATA +pD D)6 -

67(ATy + DT+ pDT B) + A,

[0077] In some embodiments, the above may be a convex
quadratic function with regularization. To solve this prob-
lem, the present principles may be employed to adopt a
primal-dual active-set method. It is observed that after
several initial ADMM iterations, the subsequent update of 6
may usually be moderate (e.g., |0+ -6 is relatively small).
By serving 0 as the input of Step 2 in Method 1, the
primal-dual active-set method according to the present prin-
ciples is able to rapidly yield 0!, Such an ability of
utilizing an advantageous initial point is called “warm-start™
and may be employed as an active-set method in accordance
with the present principles.

[0078] Inblocks 322 and/or 324,  may be updated in Step
3 of Method 1 in accordance with the present principles. In
Step 3 of Method 1, separable, and thus may be minimized
individually for each block £. Specifically by letting

we immediately have:

. . P
avgming, £(0. . 1) = axgming, VIB + (. ) + 1B - DO
_ . P “y 17
= argmig, all+ 5 (- Do+ £ |

. P
= argming, AllB1 + 5118 - 2P

In some embodiments, this problem may be solved using a
closed-form solution as follows:

0, ift plizill < A2
Bi= (1 - %)PZ", otherwise.
[0079] In some embodiments, for large-scale problems

using Method 1, updating [} may be computationally inten-
sive, and as such, a distributed implementation may be
performed in block 324 according to the present principles
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to minimize such computational intensity. For example,
according to the formulation of Equation (12), since each
block (3, may be independent of other blocks, the updating of
[ can be carried out in a distributed fashion, which makes
Method 1 efficiently applicable in large-scale settings. In
block 326, the scalability of the solution may be further
improved by employing a hierarchical optimization strategy
in accordance with the present principles.

[0080] In one embodiment, the present principles may be
employed to analyze and/or interpret results of the optimi-
zation in block 318. For example, the solution 0, returned
from Method 1 gives the invariant model at time t, whereas
[ includes the information regarding the change of 6,, which
may further indicates where the switch points are located.
When the noise in the attributes is substantial, the identified
switch points may enclose some false positives, and as such,
in practice, the present principles may be employed to
implement further refinement on the returned switch points
using one or more denoising methods (e.g., mean shift) to
eliminate such false positives in accordance with various
embodiments.

[0081] In one embodiment, result fusion may be per-
formed in block 328 to identify system global behavior
switching using a system behavior switching determination
engine 302 in accordance with the present principles. As
previously described, the method 300 may be employed to
identify the switch points and perform segmentation for each
invariant pair of a system. In block 330, a method to
aggregate the identified switch points of all the invariants to
infer the global behavior switch points of the whole system
is provided. This tray be performed in block 328 using, for
example, the following method in accordance with the
present principles.

[0082] Inone embodiment, in block 328, the switch points
of all the segmented pairs may be aligned/combined, and a
scatter plot (e.g. representing distributions of switch points
across a time range) may be generated. A density distribution
of the aggregated switch points may be built/computed
using, for example, kernel density estimation, and data
points may be regarded as sampled from a density distribu-
tion function, and may determine/identify such functions
from the data points in accordance with the present prin-
ciples. One or more modes may be identified from the local
maximas of the density distribution function using, for
example, the Mean Shift algorithm, and such maxima points
may be regarded as the global switching points (e.g.,
because they are supported by invariant models), and the
determined global switch points may be output in block 333
in accordance with the present principles.

[0083] Inblock 330, during switch points aggregation, the
segmented switch points of an invariant pair may indicate
the behavior change between the two corresponding com-
ponents. Individually, the information obtained from the
segmentation result of a single pair may be obscure. How-
ever, by aggregating the switch points of all segmented
pairs, the apparent pattern on the combined data points may
result in an accurate and reliable inference on the system
behavior switching. In some embodiments, by aligning the
switch points of all the invariant pairs, and then determining
the densest regions along a timeline, the switch points that
are supported by most of the invariant pairs may be identi-
fied in block 330.

[0084] In one embodiment, kernel density estimation may
be performed in block 332 according to the present prin-
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ciples. For example, to determine the densest regions, kernel
density estimation may be employed to estimate the density
of'each aligned switch points along a time line in accordance
with the present principles. In one embodiment, we may
denote the set of combined data points of all segmented pairs
as S (e.g., to extract the density of points in S), and regard
S as sampled from a continuous empirical probability den-
sity function f. The density of each point in the time range
may be computed using the (weighted) mean of the neigh-
boring data points as the estimation, and may determine the
densest regions in accordance with the present principles.

[0085] As an illustrative embodiment regarding kernel
density estimation in block 332, assume that the data points
in ct-dimensional space, and the function K(u): B4~ R

[0086] may be called the kernel, which satisfies the fol-
lowing properties:

K()=K(-u)=0
K(0)2K(4) for u=0

K(@)=0 for [u]>1

JK@)du=1 (16)

Some exemplary kernel function examples include:

Flat

1, if llull <1
K(u) =

0, otherwise

Epanechnikov

20 P, S fdl < 1
K(u):{é_l( ~ P, E ] <

0, else

[0087] The data points may be denoted as S={x,, ..., x,},
and given a kernel K and a bandwidth h, the recovered
density function T for $ in block 332 may be represented as
follows:

n . an

[0088] In one embodiment, in block 332, a mechanism to
determine the maximas in f (e.g., densest regions in S) may
include applying a mean shift method according to the
present principles. The mean shift method may be applied to
locate local maximas of the recovered density function f in
an iterative manner, which will be described in further detail
with reference to Method 2 below:

Method 2 The Mean Shift algorithm for modes discovery

Input: Input the set of observed data S, bandwidth h.
Output: The set of local maximas 7.

1: for x; € S, initialize u = x; do

2:  while u does not converge do
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-continued

Method 2 The Mean Shift algorithm for modes discovery

S

Setue ———
u-x;
Y]
=
4:  end while
5:  Adduto Pand associate x; with u.
6: end for

[0089] In one embodiment, since mean shift may be an
iterative method, it may be shown how the Mean Shift
iteration progressively improves the solution according to
the present principles until it reaches a local maxima. For
example, from each point v in the domain of f, applying one
iteration of Method 2 may shift v to w*'. According to the
definition of mean shift, such update may be given by:

n . (18)

[0090] In some embodiments, to determine proof of con-
vergence (e.g., that the sequence {f(w/)} generated by Mean
Shift is monotonically non-decreasing and converges), a
brief proof may be given as follows. First, note that the even
symmetry of K(u) enables its profile function k: R ++ R to be
defined as:

K =k(lP).

Thus, it may follow that:

Wt —

2 j_ . 2
=)y )
1 2 j_‘_z 2 j_‘_z
> N )
i=1

I
S Lt

i=1

N -
Pt = ) = — («(

i=1

Wt —x;

h

uj—x‘- 2 i1 : 0
—— || Jwt - )

= 0.

In some embodiments, the first inequality shown above may
utilize the convexity of the profile k, and the second inequal-
ity may come from the fact that k'(x)<0 (e.g., k is a
monotonically decreasing function). Since the sequence
{#1’)} may be monotone and bounded, {1} may converge.
Therefore, after a sufficient number of iterations, the local
maximas of the recovered density function T may be deter-
mined in block 332, thus identifying the global switch
points. In some embodiments, to determine a sufficient
number of iterations is dependent on the density distribution

Sep. 29, 2016

of data. However, for most situations, tens of iterations is
generally enough iterations to achieve convergence accord-
ing to the present principles.

[0091] As described above, the present principles may
employ an efficient and scalable optimization method (e.g.,
Method 1) to obtain the switch point of each invariant pair.
In Method 1, the problem complexity may grow linearly
with the length of the time series, which may present a
challenge for solving huge-scale problems. To further
improve the problem solving capability and handle very
large-scale time series, the present principles may further be
employed to design and implement a two-phase hierarchical
optimization strategy to solve the optimization and/or seg-
mentation problem in block 326 according to various
embodiments.

[0092] In some embodiments, the solution [ of Equation
(13) may usually be very sparse. Physically, this means that
the behavior switching may occur infrequently, which is
common based on the nature of real physical systems during
the long term operation. Ideally, if it is known in advance
(e.g., predicted) that 6,=0,,,=0,,,= . . . =0,,,, then we could
simply use 0, to replace such whole block of k+1 points in
Equation (13), and thus undercut the problem size in accor-
dance with the present principles. When the switching points
are rare, such a variable reduction approach may be
employed to drastically reduce the problem complexity.
[0093] In block 326, in light of the above observation on
solution sparsity, a two-phase hierarchical method (e.g.,
algorithm) may be employed to solve the problem. Phase-I
may divide the time indices into multiple blocks and reduce
the variable number for each block, and some of the blocks
may be falsely allocated if they contain the true switch
points. In such situations, binding 6, on those blocks may
cause unpredictable optimization results, but in practice the
results usually show suspiciously distinct solutions with its
neighbors. Next, Phase-1I may identify the switch points by
building a point-wise model on each of the suspicious blocks
in accordance with the present principles.

[0094] In further detail, with respect to Phase-1 of the
hierarchical method, for illustrative purposes, assume that
the invariants of length N may be dividable into & blocks,
where each block has equal size b (e.g., N=3b). Since it is
assumed that all the values within each block are the same,
¥, ER* may be used to represent the i, block, where s is the
length of 8,. Mathematically, this means 8,=y, for t=ib+1, . .
., ib+b, which is equivalent to imposing extra constraints on
Equation (13). Let e, be the b-dimensional all-one vector,
and I, € R be the s-dimensional identity matrix, so that the
linear constraints between 0 and y may be compactly
expressed as follows:

I, 0 ... 0 (19
I, 0 ... 0
6, e, 0 ... 0 0 I ... 0[n
02 0 ep ... 0 Y2
= .. ®Iy = .
0 I 0
Oy 0 0 ... e Yé
00 I
00 I
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where yER® is the concatenation of y, for i=1, . . ., 8. Let
M represent the linear transformation between 6 and y of
Equation (19) (e.g., 6=My), and thus, it is verifiable that the
reduced Equation (13) may be formulated as follows:

! . J— (20)
minz|ly — AyIl" + Ayl + 220181l
7B 2

sit. f=Dy,

where A=AM, X, =\, s, A,=A,. Note that D, similarly to D of
Equation (13), is the block first-order difference operator but
with reduced dimension.

[0095] In some embodiments, Equation (20) may be in the
form of Equation (13), hence the ADMM method according
to the present principles may be applicable to solve Equation
(20) using the system behavior switching determination
engine 302. The output of this step may include suspicious
blocks that will be further investigated for switch points in
Phase-II.

[0096] In some embodiments, Phase-II of the hierarchical
optimization strategy in block 326 may be a refinement of
Phase-1. After identifying the suspicious blocks from Phase-
1, it is natural to zoom into each identified block and pinpoint
the switch points by the original point-wise Equation (13).
In practice a point-wise model may be constructed on
indices which belong to both the suspicious block and its
two adjacent neighboring blocks in accordance with the
present principles. For example, it the i block is identified as
a switch block by the solution of Equation (20), a corre-
sponding point-wise Equation (13) may be built on the tune
interval t €{(i-1)b, . . . ib, . . . (i+2)b} in accordance with
the present principles. After such refinement, the output of
Phase-II is the switch points searched from the identified
switch blocks and their neighbors, which may be provided
for result fusion in block 328 according to various embodi-
ments.

[0097] In some embodiments, to ensure an efficiency
boost using the hierarchical method in block 326, some
guidelines for usage of Equation (20) are described. For
example, the designed hierarchical Equation (20) (e.g.,
model) may include (20-1)s variables, which is much fewer
than the original Equation (13), which may include (2N-1)s
variables, given d<<N in accordance with the present prin-
ciples. Furthermore, Phase-II may be solved in a distributed
manner since the processes of building and solving piece-
wise models on suspicious block may be independent of one
another. In some embodiments, in the description, the time
indices may be divided into blocks of equal size, which may
be adjusted (e.g., in real time) to, for example, set different
block sizes by incorporating prior knowledge according to
the present principles.

[0098] Referring now to FIG. 5, a high-level schematic
500 of an exemplary complex physical system including a
system behavior switching determination engine/controller
512 is illustratively depicted in accordance with an embodi-
ment of the present principles. In one embodiment, one or
more complex physical systems 502 may be controlled
and/or monitored using a switching determination engine/
controller 512 according to the present principles. The
physical systems may include a plurality of sensors 504,
506, 508, and 510 (e.g., sensors 1, 2, 3, . . . n), for
detecting/measuring various system devices/processes.
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[0099] Inone embodiment, sensors 504, 506, 508, and 510
may include any sensors for any components now known or
known in the future for monitoring and/or performing opera-
tions in physical (or virtual) systems (e.g., temperature
sensors, pressure sensors, key performance indicator (KPI),
pH sensors, etc.), and data collected from various sensors
and/or components (or received (e.g., as time series)) may be
employed as input to the switching determination engine/
controller 512 according to the present principles. The
switching determination engine/controller 512 may be
directly connected to the physical system or may be
employed to remotely monitor and/or control the quality
and/or components of the system according to various
embodiments of the present principles.

[0100] Referring now to FIG. 6, an exemplary system for
behavior switching determination and management of
physical systems 600 is illustratively depicted in accordance
with an embodiment of the present principles.

[0101] While many aspects of system 600 are described in
singular form for the sakes of illustration and clarity, the
same can be applied to multiples ones of the items men-
tioned with respect to the description of system 600. For
example, while a single controller 680 is illustratively
depicted, more than one controller 680 may be used in
accordance with the teachings of the present principles,
while maintaining the spirit of the present principles. More-
over, it is appreciated that the controller 680 is but one
aspect involved with system 600 than can be extended to
plural form while maintaining the spirit of the present
principles.

[0102] The system 600 may include a bus 601, a data
collector 610, a system behavior switching determination
engine 620, a pair selector/invariant segmenter 630, an
objective function formulator 640, a storage device 650, an
optimizer 660, which may further include an iterative
updater 662, an accuracy/complexity determiner 664, and a
hierarchical solver 666, a results fuser 670, which may
further include an aggregator 672, and a density estimator
674, and/or a controller 680 according to various embodi-
ments of the present principles.

[0103] In one embodiment, the data collector 610 may be
employed to collect raw data (e.g., component aging data,
time series, system operational status, etc.), and the raw data
may be received as input to an aging profiler/time series
transformer 620 (e.g., aging profiling engine). The system
behavior switching determination engine 620 may be
employed to determine system behavior switching using, for
example, a pair selector/invariant segmenter 630, an objec-
tive function formulator 640, an optimizer 660, and/or a
result fuser 670 in accordance with various embodiments of
the present principles. A storage device 650 (e.g., non-
transitory computer-readable storage medium) may be
employed to store a plurality of data items/types (e.g., tune
series, selected pairs, segments, etc.) for later access.

[0104] In some embodiments, the optimizer 660 may
further include an iterative updater 662, an accuracy/com-
plexity determiner 664, and/or a hierarchical solver, and the
result fuser 670 may further include an aggregator 672 and
a density estimator 674 according to the present principles.
System operations may be controlled based on the deter-
mined behavior switching using a controller 680, and may
include, for example, disabling and/or replacing compo-
nents, accounting for anomaly detection, capacity planning
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and implementation, rerouting tasks, etc., according to vari-
ous embodiments of the present principles.

[0105] The system and method according to the present
principles may include an efficient method to discover
system behavior switching (e.g., by inferring it from the
relationship of system attributes with an ensemble of mod-
els). An objective problem for behavior switching discovery
may be formulated as an optimization problem, and several
novel methods according to the present principles may be
applied in both low and high levels to efficiently solve the
optimization problem. A further boost to the efficiency of the
present system and method may be realized using a hierar-
chical optimization method according to the present prin-
ciples. A fusion mechanism may be employed to aggregate
the results from different system attributes to unveil the
global system behavior switching (e.g., with the consider-
ation of noise, event lag, etc.) with low computational
complexity while achieving a high degree of accuracy in
identifying behavior switching in one or more systems with
a mixture of states in accordance with various embodiments
of the present principles.

[0106] It should be understood that embodiments
described herein may be entirely hardware or may include
both hardware and software elements, which includes but is
not limited to firmware, resident software, microcode, etc. In
a preferred embodiment, the present invention is imple-
mented in hardware.

[0107] Embodiments may include a computer program
product accessible from a computer-usable or computer-
readable medium providing program code for use by or in
connection with a computer or any instruction execution
system. A computer-usable or computer readable medium ay
include any apparatus that stores, communicates, propa-
gates, or transports the program for use by or n connection
with the instruction execution system, apparatus, or device.
The medium can be magnetic, optical, electronic, electro-
magnetic, infrared, or semiconductor system (or apparatus
or device) or a propagation medium. The medium may
include a computer-readable storage medium such as a
semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory
(RAM), a read-only memory (ROM), a rigid magnetic disk
and an optical disk, etc.

[0108] A data processing system suitable for storing and/
or executing program code may include at least one proces-
sor coupled directly or indirectly to memory elements
through a system bus. The memory elements can include
local memory employed during actual execution of the
program code, bulk storage, and cache memories which
provide temporary storage of at least some program code to
reduce the number of times code is retrieved from bulk
storage during execution. Input/output or 1/O devices (in-
cluding but not limited to keyboards, displays, pointing
devices, etc.) may be coupled to the system either directly or
through intervening /O controllers.

[0109] Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modem and Ethernet cards are just
a few of the currently available types of network adapters.
[0110] The foregoing is to be understood as being in every
respect illustrative and exemplary, but not restrictive, and
the scope of the invention disclosed herein is not to be
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determined from the Detailed Description, but rather from
the claims as interpreted according to the full breadth
permitted by the patent laws. It is to be understood that the
embodiments shown and described herein are only illustra-
tive of the principles of the present invention and that those
skilled in the art may implement various modifications
without departing from the scope and spirit of the invention.
Those skilled in the art could implement various other
feature combinations without departing from the scope and
spirit of the invention.

What is claimed is:

1. A method for managing one or more physical systems,
comprising:

determining system behavior switching based on time

series data from one or more sensors in the system, the
determining further comprising:
dividing the time series into a plurality of segments,
wherein each of the segments represents a system
behavior;
generating a model fitness score for each of the plu-
rality of segments to determine whether to select
each of the plurality of segments as an invariant;
building an ensemble of local relationship models for
each of the time series for each invariant to identify
local behavior switching points over time;
aggregating the identified local behavior switching
points of each invariant, the aggregating comprising:
aligning the local switching points of all the invariant
segments;
computing a density distribution of the aligned local
switching points; and
extracting local maximas of the density distribution
to determine one or more global switching points;
and

controlling system operation based on the determined

system behavior switching.

2. The method as recited in claim 1, wherein an objective
function is formulated for each of the invariants to identify
the local behavior switching points over time.

3. The method as recited in claim 2, wherein optimization
of the objective function is performed using an Alternating
Direction Method of Multipliers (ADMM) framework.

4. The method as recited in claim 2, wherein at least one
of optimality or termination conditions are derived for
optimization of the objective function.

5. The method as recited in claim 1, wherein a probabi-
listic model is employed to determine relationship switching
between the invariants.

6. The method as recited in claim 3, wherein the optimi-
zation comprises a two-phase hierarchical solving method.

7. The method as recited in claim 6, wherein the two-
phase hierarchical solving method further comprises:

dividing time indices into multiple blocks to identify

suspicious blocks and reduce a variable number for
each of the multiple blocks; and

building a pointwise model for each of the suspicious

blocks to determine the local behavior switching
points.

8. The method as recited in claim 1, wherein the segments
selected as the invariants include only segments with high
final scores greater than 0.7.

9. A system for managing one or more physical systems,
comprising:
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a behavior switching determination engine for determin-
ing global system behavior switching based on time
series data from one or more sensors in the physical
systems, further comprising:
a pair selector configured to divide the time series into
a plurality of segments, wherein each of the seg-
ments represents a system behavior;
a model generator configured to:
generate a model fitness score for each of the plu-
rality of segments to determine whether to select
each of the plurality of segments as an invariant;
and

build an ensemble of local relationship models for
each of the time series for each invariant to
identify local behavior switching points over time;
a result fuser for aggregating the identified local behav-
ior switching points of each invariant, the aggregat-
ing comprising:
aligning the local switching points of all the invariant
segments;

computing a density distribution of the aligned local
switching points; and

extracting local maximas of the density distribution
to determine one or more global switching points;
and

a controller for controlling system operation based on the
determined system behavior switching.

10. The system as recited in claim 9, wherein an objective
function is formulated for each of the invariants to identify
the local behavior switching points over time.

11. The system as recited in claim 10, wherein optimiza-
tion of the objective function is performed using an Alter-
nating Direction Method of Multipliers (ADMM) frame-
work.

12. The system as recited in claim 11, wherein at least one
of optimality or termination conditions are derived for
optimization of the objective function.

13. The system as recited in claim 9, wherein a probabi-
listic model is employed to determine relationship switching
between the invariants.

14. The system as recited in claim 11, wherein the
optimization employs a two-phase hierarchical solver.

15. The system as recited in claim 14, wherein the
two-phase hierarchical solver is configured to:

divide time indices into multiple blocks to identify sus-
picious blocks and reduce a variable number for each of
the multiple blocks; and

build a pointwise model for each of the suspicious blocks
to determine the local behavior switching points.
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16. The system as recited in claim 9, wherein the seg-
ments selected as the invariants include only segments with
high final scores greater than 0.7.

17. A computer-readable storage medium including a
computer-readable program for determining system behav-
ior switching based on time series data from one or more
sensors in the system, wherein the computer-readable pro-
gram when executed on a computer causes the computer to
perform the steps of:

dividing the time series into a plurality of segments,

wherein each of the segments represents a system
behavior;

generating a model fitness score for each of the plurality

of segments to determine whether to select each of the
plurality of segments as an invariant;

building an ensemble of local relationship models for

each of the time series for each invariant to identify
local behavior switching points over time;
aggregating the identified local behavior switching points
of each invariant, the aggregating comprising:
aligning the local switching points of all the invariant
segments;
computing a density distribution of the aligned local
switching points; and
extracting local maximas of the density distribution to
determine one or more global switching points; and
controlling system operation based on the determined
system behavior switching.

18. The computer-readable storage medium as recited in
claim 17, wherein an objective function is formulated for
each of the invariants to identify the local behavior switch-
ing points over time.

19. The computer-readable storage medium as recited in
claim 18, wherein optimization of the objective function is
performed using an Alternating Direction Method of Mul-
tipliers (ADMM) framework.

20. The computer-readable storage medium as recited in
claim 19, wherein the optimization comprises a two-phase
hierarchical solving method, the two-phase hierarchical
solving method further comprising:

dividing time indices into multiple blocks to identify

suspicious blocks and reduce a variable number for
each of the multiple blocks; and

building a pointwise model for each of the suspicious

blocks to determine the local behavior switching
points.



