
MAT KADI TORA TUTTI U NITAT DE LA US 20180267783A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0267783 A1

Kawaguchi (43) Pub . Date : Sep . 20 , 2018

(54) APPARATUS AND METHOD TO FACILITATE
EXTRACTION OF UNUSED SYMBOLS IN A
PROGRAM SOURCE CODE

(71) Applicant : FUJITSU LIMITED , Kawasaki - shi
(JP)

(72) Inventor : Yuki Kawaguchi , Numadu (JP)

(73) Assignee : FUJITSU LIMITED , Kawasaki - shi
(JP)

Publication Classification
(51) Int . Ci .

G06F 8 / 41 (2006 . 01)
GO6F 8 / 54 (2006 . 01)
G06F 8 / 72 (2006 . 01)

(52) U . S . Cl .
??? G06F 8 / 433 (2013 . 01) ; G06F 8 / 425

(2013 . 01) ; G06F 8 / 72 (2013 . 01) ; G06F 8 / 54
(2013 . 01) ; G06F 8 / 443 (2013 . 01)

(57) ABSTRACT
An apparatus adds attribute information that is used for
outputting a warning that use of a symbol is non - recom
mended to the symbol that is included in a source code . The
apparatus determines whether or not the warning corre
sponding to the attribute information is output for the
symbol in compilation of the source code , determines that
the symbol is an unused symbol which is not used in a
process which is described in the source code in a case
where the warning is not output , and outputs information of
the unused symbol .

(21) Appl . No . : 15 / 909 , 951

(22) Filed : Mar . 1 , 2018
(30) Foreign Application Priority Data
Mar . 15 , 2017 (JP) . 2017 - 049926

INFORMATION PROCESSING DEVICE

15
STORAGE
UNIT

-
PROCESSING

UNIT
DISPLAY
DEVICE

ADD
ATTRIBUTE

INFORMATION
. . .

int x ; < attribute > int x ;

func010) { < attribute > func010

:

I COMPILE
Warning : ' func01 () is deprecated . : < attribute >

J L NO WARNING ABOUT ' int x '

warning : ' int x ' is unused .

Patent Application Publication Sep . 20 , 2018 Sheet 1 of 26 US 2018 / 0267783 A1

FIG . 1

INFORMATION PROCESSING DEVICE

STORAGE
UNIT STORAGE PROCESSING

UNIT PROCESSING DISPLAY
DEVICE DISPLAY

ADD
ATTRIBUTE
INFORMATION int x ; < attribute > int x ;

func0104 < attribute > func010 {

D COMPILE
5

warning : func010) ' is deprecated . : < attribute >

NO WARNING ABOUT ' int x '

warning : ' int x ' is unused . Warning : intx ' is unused . 7

Patent Application Publication Sep . 20 , 2018 Sheet 2 of 26 US 2018 / 0267783 A1

FIG . 2 .

(START

ADD ATTRIBUTE INFORMATION
TO EACH SYMBOL OF SOURCE CODE

GENERATE OBJECT CODE

SELECT ONE SYMBOL

S4 OUTPUT OF WARNING BY
COMPILER CORRESPONDING

TO ATTRIBUTE PRESENT ? No

Yes S5
DECIDE CONCERNED
SYMBOL IS USED

DECIDE CONCERNED
SYMBOL IS UNUSED

ALL SYMBOLS TO WHICH
ATTRIBUTE INFORMATION IS
ADDED ALREADY SELECTED ? No

Yes
OUTPUT INFORMATION
OF UNUSED SYMBOL - S8

Seo END

Patent Application Publication Sep . 20 , 2018 Sheet 3 of 26 US 2018 / 0267783 A1

FIG . 3

30 SOURCE CODE

/ / sample . cpp (source file A)
int global _ x ;
int global _ y ;

void func01 (void) {
int x ;

void funcO2 (void) {

void func03 (void) {
func02 () ;

/ / main . cpp (source file B)
extern C {

int global _ x ;
int global _ y ;
void func01 (void) ;
void func02 (void) ;
void func03 (void) ;

int main (void) {
global _ x = 10 ;
func030) ;
return 0 ;

Patent Application Publication Sep . 20 , 2018 Sheet 4 of 26 US 2018 / 0267783 A1

FIG . 4
AC

SOURCE CODE

/ / sample . cpp (source file A)
[[deprecated]] int global _ x ;
[[deprecated]] int global _ y ;

[[deprecated]] void func01 (void) {
[[deprecated]] int x ;

[[deprecated]] void func02 (void) {

[[deprecated]] void func03 (void) {
func02 () ;

/ / main . cpp (source file B)
extern C {
[[deprecated]] int global _ x ;
[[deprecated]] int global _ y ;
[[deprecated]] void func01 (void) ;
[[deprecated]] void func02 (void) ;
[[deprecated]] void func03 (void) ;

int main (void) {
global _ x = 10 ;
func030) ;
return 0 ;

Patent Application Publication Sep . 20 , 2018 Sheet 5 of 26 US 2018 / 0267783 A1

FIG . 5

LIST OF sample . cpp

ELEMENT NAME USE FLAG LIST OF main . cpp
ELEMENT NAME FALSE int global _ x USE FLAG

int global _ y FALSE int global _ x TRUE
void func01 (void) FALSE int global _ y FALSE

intx FALSE void func01 (void) FALSE

void func02 (void) TRUE void func02 (void) FALSE

void func03 (void) FALSE void func03 (void) TRUE

sample . o a . out main . o

MERGE LISTS

MERGED LIST LIST743
ELEMENT NAME USE FLAG _ ha

int global _ x TRUE Unused
OUTPUT int global _ y FALSE int global _ y

void func01 (void) FALSE void func01 (void)
int x FALSE intx

void funcO2 (void) TRUE

void func03 (void) TRUE

Patent Application Publication Sep . 20 , 2018 Sheet 6 of 26 US 2018 / 0267783 A1

FIG . 6

- 100
COMPILER DEVICE

101 102 ec

n restoranlar ne PROCESSOR RAM HDD

- 104 105 - 106

IMAGE SIGNAL
PROCESSING

UNIT

INPUT SIGNAL
PROCESSING MEDIUM

READER
COMMUNICATION

INTERFACE UNIT

o os

Patent Application Publication Sep . 20 , 2018 Sheet 7 of 26 US 2018 / 0267783 A1

FIG . 7

P " struct [[deprecated (" warning ")]] X { } ;
enum [[deprecated (" ")]] { ZERO , ONE } ;
[[deprecated (" ')]] int const x = 10 ;
[[deprecated (" ')]] void func (void) { }
int main (void) {
Xa ;

So o o nha cao o N O T N S M -

int zero = ZERO ;
int one = ONE ;

int tmp _ x = x ;

func () ;
return 0 ;

Patent Application Publication Sep . 20 , 2018 Sheet 8 of 26 US 2018 / 0267783 A1

FIG . 8

OOoor A WN
$ 9 + + - 6 . 1 . 0 main . cpp - std = c + + 14
main . cpp : In function ' int main () ' :

3 main . cpp : 10 : 5 : warning : ' X ' is deprecated : warning
[- Wdeprecated - declarations]

Xa ;

main . cpp : 1 : 34 : note : declared here
struct [[deprecated (" warning ")]] X { } ;

main . cpp : 15 : 15 : warning : ' x ' is deprecated :
[- Wdeprecated - declarations]

int tmp _ x = x ;

> CNN main . cpp : 5 : 30 : note : declared here
[[deprecated (" ")]] int const x = 10 ;

main . cpp : 17 : 3 : warning : ' void func () ' is deprecated :
[- Wdeprecated - declarations]

func () ;
Ammo

main . cpp : 7 : 25 : note : declared here
| [[deprecated (" " }]] void func (void) { }

Aun
main . cpp : 17 : 8 : warning : ' void func () ' is deprecated :
(- Wdeprecated - declarations]

func () ;
A

main . cpp : 7 : 25 : note : declared here
[[deprecated (" ')]] void func (void) { }

Amru

Patent Application Publication Sep . 20 , 2018 Sheet 9 of 26 US 2018 / 0267783 A1

FIG . 9
- 100

COMPILER DEVICE

11 SOURCE FILE STORAGE UNIT

SOURCE
FILE

SOURCE
FILE

w

LEXICAL
ANALYSIS

UNIT

ATTRIBUTE
ADDITION

UNIT

152 162
SYNTACTIC
ANALYSIS

UNIT

SEMANTIC
ANALYSIS
UNIT

WARNING
OUTPUT
UNIT

OPTIMIZATION
UNIT

INTERMEDIATE
CODE

STORAGE UNIT
172

OUTPUT
GENERATION

UNIT

OBJECT FILE STORAGE UNIT
131

OBJECT
FILE

OBJECT
FILE

LIST LIST K LIST L20

140 181 182 183
LIST EXECUTABLE

FILE
STORAGE UNIT

LTO
PROCESSING

UNIT
COUPLING

UNIT

RESULT
OUTPUT
UNIT "

Patent Application Publication Sep . 20 , 2018 Sheet 10 of 26 US 2018 / 0267783 A1

FIG . 10

Il sample . cpp
int global _ x ;
[[deprecated]] int global _ y ;

struct X {
int x ;
static int y ; ?ÑÒoop voor own

int X : : y ;

void func010) {
int x = global _ y ;

void func020 { Joã
18 void func030) {

func020) ; 19
20

Patent Application Publication Sep . 20 , 2018 Sheet 11 of 26 US 2018 / 0267783 A1

FIG . 11

öoop voorow

/ / main . cpp
extern C {

int global _ x ;
[[deprecated]] int global _ y ;
void func010) ;
void func020) ;
void func03 () ; •

struct X {
int x ;
static int y ;

int X : : y ; DocBür int main (void) {
global _ x = 10 ;
func03 () ;
return 0 ; 19

Patent Application Publication Sep . 20 , 2018 Sheet 12 of 26 US 2018 / 0267783 A1

FIG . 12

Type Type
int

Variable
global _ x global _ x
Variable

int H
Type Variable

global _ y
Attribute

[[deprecated]] int A
Class key

struct
Variable Type

int

Qualifier
int H U

static Hint H
Type Variable

static int n
Qualifier . Type

Hint H
Variable
X : : y static int +

Routine
func01

Type
void

Type Variable

int H
Statement Operator www expression

global _ y obaly
Routine
func02

Type
void

Routine
func03

Type
void

Statement L secament call funco20) func020)

Patent Application Publication Sep . 20 , 2018 Sheet 13 of 26 US 2018 / 0267783 A1

FIG . 13
extern 61 / extern

Type
int

Variable
global _ x

Type Variable
global _ y

Attribute
[[deprecated]] int H

Type Routine
func01 void

Routine Type
func02 void

Type Routine
func03 void

Type Type Class key
struct

Variable
X X

Type
Hint H int
Qualifier
static

Type Variable
y + int int H

&

Qualifier
static

Type
int

Variable
| X : : y | ren e

Routine
main main

Type
i nt int

Operator Statement
expression

X global _ y
Statement

call func030
Statement

return HO

Patent Application Publication Sep . 20 , 2018 Sheet 14 of 26 US 2018 / 0267783 A1

FIG . 14

ooooo
struct X {

[[deprecated]] int x ; / / OK
[[deprecated]] static int y ; / / undefined behavior

[[deprecated]] int X : : y ; V OK

FIG . 15

?? $ g + + - 6 . 1 . 0 sample . cpp Ofast flto c o sample . o
$ 9 + + - 6 . 1 . 0 main . cpp Ofast fito co main . o
$ g + + - 6 . 1 . 0 sample . o main . o flto ??

Patent Application Publication Sep . 20 , 2018 Sheet 15 of 26 US 2018 / 0267783 A1

FIG . 16

START

RECEIVE COMPILATION COMMAND LS11

ANALYZE SOURCE FILE E 512

ADD ATTRIBUTE ADD ATTRIBUTE 1513

OUTPUT WARNING ABOUT
NON - RECOMMENDED FUNCTION VS14

OUTPUT OBJECT FILE

END

Patent Application Publication Sep . 20 , 2018 Sheet 16 of 26 US 2018 / 0267783 A1

FIG . 17
ATTRIBUTE ADDITION PROCESS

< S21 S21 an END UNPROCESSED SYNTAX TREE PRESENT ? - No
Yes - S22

IS SYNTAX TREE DECLARATION OF GLOBAL VARIABLE ? / Yes
- S23

IS SYNTAX TREE DEFINITION OF ENUMERATION TYPE ?
NO S24

IS SYNTAX TREE DEFINITION OF UNION ?
No S25

IS SYNTAX TREE DEFINITION OF FUNCTION ?
NO - S26

IS SYNTAX TREE DEFINITION OF CLASS ? > Yes Yes
.

RECORD OBJECT OF SYNTAX TREE IN LIST
AND RECORD MEMBER VARIABLES OTHER THAN

STATIC MEMBER VARIABLES AND MEMBER
FUNCTIONS IN CASE OF CLASS

1927

$ 28
USER - DEFINED I?deprecated]] ATTRIBUTE

ATTACHED TO SYNTAX TREE ? No
Yes

RECORD Y FOR PARAMETER OF SAME OBJECT

RECORD X FOR PARAMETER OF SAME OBJECT

ADD deprecated ATTRIBUTE TO SYNTAX TREE 531

Patent Application Publication Sep . 20 , 2018 Sheet 17 of 26 US 2018 / 0267783 A1

FIG . 18

LIST OF sample . cpp
USER DEFINITION USE FLAG PARAMETER ELEMENT NAME

| * int global _ x
int global _ y >

struct X *

int X : : X

| | 11111111111
*

*

*

static int X : : y
void func010)
void func020)
void func030)

*

*

FIG . 19

LIST OF main . cpp
ELEMENT NAME USE FLAG USER DEFINITION

PARAMETER

int global _ x *

Y
X L *

int global _ y
void func01 (void) 01 (void)
void funcO2 (void)
void func03 (void) 111111111 struct X

int X : : x
static int X : : y

Patent Application Publication Sep . 20 , 2018 Sheet 18 of 26 US 2018 / 0267783 A1

FIG . 20
51a

Type Variable
global _ x

Attribute
[[deprecated]] www int

52a Type
w - otrogen Variable

global _ y
Attribute

[[deprecated]] med en int
ww .

Type Class key
struct XH

Type
int |

Attribute
[[deprecated]]

Variable Attribute
X - [[deprecated]]

Type Variable
int

Qualifier
static

54a
Variable Qualifier

static
Type
int

Attribute
[[deprecated]] X : y

55a Type Routine
func01 void

Attribute
[[deprecated]]

Variable Type
int

Statement Operator
expression

global y global _ y
56a Type wwwwwwwwwwwwwwwww Routine

func02
Attribute

[[deprecated]] void
57a Type Routine

func03
Attribute

[[deprecated]] void

Statement
call call Sementarainodz . E func020

Patent Application Publication Sep . 20 , 2018 Sheet 19 of 26 US 2018 / 0267783 A1

FIG . 21

extern 61a
Type
int

Variable
global _ x
Variable
global _ y

Type
int

Type Routine
func01 void
Routine
func02

Type
void

Attribute
[[deprecated]]

Attribute
[[deprecated]]
Attribute

[[deprecated]]
Attribute

[[deprecated]]
Attribute

[[deprecated]] [[deprec
Attribute

[[deprecated]]
Attribute

4 [[deprecated]]
Variable

62a Type

Routine Type

func03 H func03 void void

Class key
struct =

Type Variable
int H X

Qualifier
static int

Type
y

63a
Qualifier Type Variable Attribute

[[deprecated]] static int X : : y

Routine Type s romans main int en Statement
expression

Operator
=

Statement global y global _ y

func030)
Statement

call H
Statement
return return H 0

Patent Application Publication Sep . 20 , 2018 Sheet 20 of 26 US 2018 / 0267783 A1

FIG . 22
WARNING OUTPUT PROCESS ABOUT
NON - RECOMMENDED FUNCTION

ACQUIRE LIST 7541
- S42

UNPROCESSED ELEMENT
PRESENT IN LIST ? No

Yes

END CHECK WHETHER
NON - RECOMMENDATION WARNING 1543 BY FUNCTION OF ([deprecated]]

ATTRIBUTE IS PRESENT longa -
S44

NON - RECOMMENDATION
WARNING PRESENT ? No

Yes
S45

DECIDE ELEMENT IS USED FUNCTION DECIDE ELEMENT IS
NON - USED FUNCTION

- S46
IS USER DEFINITION
PARAMETER " Y " ?

Yes

DISPLAY WARNING OF
NON - RECOMMENDED FUNCTION S47 in the heart on
A STESURAS PERS

S48 - S50
SET USE FLAG OF CONCERNED

ELEMENT TO " TRUE "
SET USE FLAG OF CONCERNED

ELEMENT TO " FALSE " OAS RE SORT

Patent Application Publication Sep . 20 , 2018 Sheet 21 of 26 US 2018 / 0267783 A1

FIG . 23A

LIST OF sample . cpp
USER DEFINITION USE FLAG PARAMETER ELEMENT NAME

FALSE int global _ x
int global _ y TRUE >

struct X FALSE
* *

int X : : x FALSE

FALSE *

FALSE
static int X : : y
void func010)
void func020)
void func030)

TRUE * * *

FALSE

FIG . 23B

LIST OF main . cpp
ELEMENT NAME USE FLAG USER DEFINITION

PARAMETER
TRUE *

> FALSE
FALSE *

FALSE *

int global _ x
int global _ y

void func01 (void)
void funcO2 (void)
void func03 (void)

struct X
int X : : x

static int X : y

TRUE *

FALSE *

FALSE *

FALSE *

Patent Application Publication Sep . 20 , 2018 Sheet 22 of 26 US 2018 / 0267783 A1

FIG . 24

START

RECEIVE GENERATION INSTRUCTION
COMMAND OF EXECUTABLE FILE 1561

LINK TIME OPTIMIZATION (LTO) 5562

OUTPUT WARNING
ABOUT UNUSED FUNCTION 1963

OUTPUT EXECUTABLE FILE - 564

END

Patent Application Publication Sep . 20 , 2018 Sheet 23 of 26 US 2018 / 0267783 A1

FIG . 25

WARNING OUTPUT PROCESS
ABOUT UNUSED FUNCTION

ACQUIRE LISTS EXTRACTED FROM
RESPECTIVE OBJECT FILES IN LTO PROCESS S71

CREATE MERGED LIST BY MERGING LISTS 1 572

S73
UNPROCESSED ELEMENT
PRESENT IN MERGED LIST ?

Yes (END END

SELECT ONE ELEMENT OF MERGED LIST

S75
IS USE FLAG " FALSE " ? No

DISPLAY WARNING OF NON - USED FUNCTION

Patent Application Publication Sep . 20 , 2018 Sheet 24 of 26 US 2018 / 0267783 A1

FIG . 26
L30

MERGED LIST

ELEMENT NAME USE FLAG USER DEFINITION
PARAMETER

TRUE * int global _ x
int global _ y
struct X

TRUE >

FALSE *

int X : X FALSE *

*

*

static int X : : y
void func01 (void)
void func02 (void)
void func03 (void

FALSE
FALSE
TRUE
TRUE

*

*

FIG . 27

7116 warning : unused element

coop voor A WN
sample . cpp - line 5 " struct X { . . .
sample . cpp - line 6 " int x ; "
sample . cpp - line 7 " static int y ; "
sample . cpp - line 9 “ nt X : : y ; "
sample . cpp - line 11 " void func01 ({ . . . "

main . cpp - line 5 " void func010) ; "
main . cpp - line 10 " struct X { . . . "
main . cpp - line 11 " int x ; "
main . cpp - line 12 " static int y ; "
main . cpp - line 14 “ int X : : y ; "

Patent Application Publication Sep . 20 , 2018 Sheet 25 of 26 US 2018 / 0267783 A1

FIG . 28
- 100

COMPILER DEVICE

SOURCE FILE
STORAGE UNIT

191 Tournamento COMPILATION
CONTROL

UNIT

LEXICAL
ANALYSIS

UNIT

ATTRIBUTE
ADDITION

UNIT

190 153
LIST

STORAGE
UNIT

152
SYNTACTICA
ANALYSIS

UNIT

SEMANTIC
ANALYSIS
UNIT

WARNING
OUTPUT
UNIT

OPTIMIZATION
UNIT VION

INTERMEDIATE
CODE

STORAGE UNIT

7172 E OUTPUT
GENERATION

UNIT

2130
OBJECT FILE
STORAGE UNIT

140
EXECUTABLE

FILE
??

PROCESSING
UNIT for LIST

COUPLING
UNIT

RESULT
OUTPUT
UNIT " STORAGE UNIT

Patent Application Publication Sep . 20 , 2018 Sheet 26 of 26 US 2018 / 0267783 A1

FIG . 29

START

RECEIVE COMPILATION COMMAND E581
- 582

CREATED LIST FOR DESIGNATED
SOURCE FILE PRESENT ? NO

Yes

SET ELEMENT WITH USE FLAG
OF " FALSE " IN CONCERNED LIST
AS NO - TARGET OF COMPILATION

1583

COMPILE - 584

END

US 2018 / 0267783 A1 Sep . 20 , 2018

SUMMARY APPARATUS AND METHOD TO FACILITATE
EXTRACTION OF UNUSED SYMBOLS IN A

PROGRAM SOURCE CODE

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This application is based upon and claims the
benefit of priority of the prior Japanese Patent Application
No . 2017 - 49926 , filed on Mar . 15 , 2017 , the entire contents
of which are incorporated herein by reference .

[0009] According to an aspect of the invention , an appa
ratus adds attribute information that is used for outputting a
warning that use of a symbol is non - recommended to the
symbol that is included in a source code . The apparatus
determines whether or not the warning corresponding to the
attribute information is output for the symbol in compilation
of the source code , determines that the symbol is an unused
symbol which is not used in a process which is described in
the source code in a case where the warning is not output ,
and outputs information of the unused symbol .
[0010] The object and advantages of the invention will be
realized and attained by means of the elements and combi
nations particularly pointed out in the claims .
10011] It is to be understood that both the foregoing
general description and the following detailed description
are exemplary and explanatory and are not restrictive of the
invention , as claimed .

FIELD
[0002] The embodiments discussed herein are related to
apparatus and method to facilitate extraction of unused
symbols in a program source code .

BRIEF DESCRIPTION OF DRAWINGS

BACKGROUND
[0003] In a development field of computer software ,
developers often use a high - level language such as the C
programming language as a programming language . A
source code described in a high - level language may be
converted into an object code that is executable by a
processor by a compiler . Further , an object file that includes
an object code is coupled with another object file that is
referred to from the object code or a library by a linker , and
an executable file may thereby be generated .
[0004] Here , because multiple codes may be described in
a source code , it may not be easy to find corrected part or the
like by a developer . Accordingly , a method has been con
ceived which supports development of software by a devel
oper .
(0005) For example , a system has been suggested which
performs assessments about whether symbol information in
an input file is a definition of a symbol (PUBLIC declara
tion) or a reference to a symbol (EXTERN declaration) for
all pieces of symbol information and creates a symbol table
which records assessment results about the symbols . In this
suggestion , a symbol that is only defined but not referred to
is specified based on the symbol table .
[0006] Further , a code optimization device has also been
suggested which analyzes codes of a source program and
thereby extracts symbol - dependent information which indi
cates that each code symbol refers to which other symbol . In
this suggestion , codes that correspond to symbols which are
not used in execution of a load module are deleted from a
program .
[0007] In addition , a system has also been suggested
which creates a correction code in which external informa
tion is removed from the original code , loads the correction
code to a memory in runtime , and thereby intends to reduce
the memory usage amount . In this suggestion , in a case
where there is a request for external information during
runtime , the external information of an appropriate type is
found by a prescribed key that is inserted in the correction
code and is thereby loaded . Examples of external informa
tion include debugging information for an error report due to
exceptional treatment , unnecessary source information for
regular execution of a program order , and so forth .
[0008] Japanese Laid - open Patent Publication No .
4 - 149732 , Japanese Laid - open Patent Publication No . 2000
207226 , and Japanese Laid - open Patent Publication No .
2011 - 118901 are examples of related art .

[0012] . FIG . 1 is a diagram that illustrates an information
processing device of a first embodiment ;
[0013] . FIG . 2 is a flowchart that illustrates a process
example of the first embodiment ;
[0014 FIG . 3 is a diagram that illustrates an example (No .
1) of a source code of the first embodiment ;
10015] FIG . 4 is a diagram that illustrates an example (No .
2) of a source code of the first embodiment ;
[00161 . FIG . 5 is a diagram that illustrates another output
example of the unused symbols of the first embodiment ;
[0017] FIG . 6 is a diagram that illustrates a hardware
example of a compiler device of a second embodiment ;
[0018] FIG . 7 is a diagram that illustrates an example of
the source code to which a deprecated attribute is attached ;
[00191 . FIG . 8 is a diagram that illustrates an output
example of a warning message of non - recommendation ;
[0020] FIG . 9 is a diagram that illustrates a function
example of the compiler device ;
10021] FIG . 10 is a diagram that illustrates an example
(No . 1) of a source file ;
[0022] . FIG . 11 is a diagram that illustrates an example
(No . 2) of a source file ;
[0023] FIG . 12 is a diagram that illustrates examples (No .
1) of syntax trees ;
[0024] FIG . 13 is a diagram that illustrates examples (No .
2) of syntax trees ;
[0025] FIG . 14 is a diagram that illustrates an addition
example of the deprecated attribute ;
[0026] FIG . 15 is a diagram that illustrates a command
example in a case of using LTO ;
100271 FIG . 16 is a flowchart that illustrates a compilation
example of the second embodiment ;
[0028] FIG . 17 is a flowchart that illustrates an attribute
addition example of the second embodiment ;
100291 . FIG . 18 is a diagram that illustrates an example
(No . 1) of a list ;
[0030] FIG . 19 is a diagram that illustrates an example
(No . 2) of a list ;
[0031] FIG . 20 is a diagram that illustrates examples (No .
1) of syntax trees (to which deprecated is added) ;
[0032] FIG . 21 is a diagram that illustrates examples (No .
2) of syntax trees (to which deprecated is added) ;

US 2018 / 0267783 A1 Sep . 20 , 2018

[0033] FIG . 22 is a flowchart that illustrates a warning
output example for a non - recommended function of the
second embodiment ;
[0034 FIGS . 23A and 23B are diagrams that illustrate
examples of the lists in which use flags are set ;
[0035] FIG . 24 is a flowchart that illustrates a linking
process example of the second embodiment ;
[0036] FIG . 25 is a flowchart that illustrates a warning
output example for an unused function of the second
embodiment ;
[0037] FIG . 26 is a diagram that illustrates an example of
a merged list ;
[0038] FIG . 27 is a diagram that illustrates a display
example of a warning that indicates that elements are
unused ;
[0039] FIG . 28 is a diagram that illustrates another func
tion example of the compiler device ; and
10040] FIG . 29 is a flowchart that illustrates a compilation
control example of the second embodiment .

DESCRIPTION OF EMBODIMENTS
[0041] For example , it is possible to implement , to a
compiler , a function to assess a symbol , which is not used in
execution of a load module corresponding to a concerned
program , among symbols that are defined in a source code .
However , it is not easy to search for all the symbols in the
source code , separately make a function to seek the defini
tions and references of the respective symbols , and sepa
rately implement the function to the compiler . Thus , there is
room for improvement .
10042] It is desirable to facilitate implementation of an
extraction function of unused symbols .
[0043] The embodiments will hereinafter be described
with reference to drawings .

[0047] The processing unit 1b adds attribute information
that is used for outputting a warning that use of a symbol is
non - recommended about the symbol that is included in the
source code 3 stored in the storage unit la . An output of the
warning that use of the symbol is non - recommended is an
output by the compiler that compiles the source code 3 .
[0048] The processing unit 1b executes a compiler pro
gram that is stored in the storage unit la and may thereby
provide the function of the compiler . Alternatively , the
function of the compiler may be provided by a prescribed
computation device that the information processing device 1
has . The attribute information may be referred to as meta
data , tag , annotation , or the like . Some compilers funda
mentally include a function to determine whether or not the
relationship between a variable and a function , a class , or the
like that refers to the variable and a declared or defined
function , class , or the like are actually executed in a gen
eration course of an object code and to output a non
recommendation warning corresponding to the attribute
information . Examples of such attribute information include
a deprecated attribute that is used in a compiler for C + + ,
JAVA , or the like .
[0049] The deprecated attribute is used in a case where a
failure is found from a function that already exists or for
making a past function be non - recommended in a case
where a better and new function comes out . As one example ,
in C + + , the deprecated attribute may be designated for a
class type , an alias of type , a variable , a non - static member
variable , a function , and an enumeration type . Specifically ,
a prescribed code that includes the character string of
deprecated is inserted in a prescribed position for a descrip
tion part of the declaration or definition of a symbol in the
source code 3 (for example , immediately before the sym
bol) , and the deprecated attribute may thereby be attached to
the symbol . For example , in a case where the symbol to
which the " deprecated attribute ” is attached is used , the
compiler warns that the concerned symbol is a non - recom
mended function or presents an alternative function .
[0050] As one example , in FIG . 1 , the character string that
is correspondent to the attribute information is written as
" attribute ” . For example , the source code 3 includes a
variable “ X ” of an integer type (int type) and a function
“ func01 () " . The variable “ x ” is one symbol of plural
symbols included in the source code 3 . Further , the function
" func01 ” is one symbol of the plural symbols included in the
source code 3 . For example , the processing unit 1b adds a
code “ < attribute > ” that is correspondent to the attribute
information immediately before the definition “ int x ; " of the
symbol “ x ” included in the source code 3 . Similarly , the
processing unit 1b adds the code “ < attribute that is
correspondent to the attribute information immediately
before the definition " func01 ({ . . . } ” of the symbol
“ func01 ” included in the source code 3 . Here , it is assumed
that a program language exemplified in FIG . 1 has a protocol
of enclosing the attribute information by signs of " < " and
" X " . A source code 4 is a result of addition of the attribute
information to each of the symbols of the source code 3 .
10051] . However , the processing unit 1b may add the
attribute information to prescribed intermediate information
that is obtained as a result of performing a prescribed
syntactic analysis (a process at a previous phase to object
code creation) of the source code 3 .
10052] The processing unit 1b assesses whether or not the
compiler outputs the warning corresponding to the attribute

First Embodiment
[0044] FIG . 1 is a diagram that illustrates an information
processing device of a first embodiment . An information
processing device 1 functions as a compiler and is used for
compiling a source code . The information processing device
1 is connected with a display device 2 . The display device
2 is used for displaying information that is output by the
information processing device 1 . The information process
ing device 1 has a storage unit la and a processing unit 1b .
10045) . The storage unit la may be a volatile storage
device such as a random access memory (RAM) or may be
a non - volatile storage device such as a hard disk drive
(HDD) or a flash memory . The processing unit 16 may
include a central processing unit (CPU) , a digital signal
processor (DSP) , an application specific integrated circuit
(ASIC) , a field programmable gate array (FPGA) , and so
forth . The processing unit 1b may be a processor that
executes a program . “ Processor ” mentioned here may
include an aggregation of plural processors (multi - proces
sor) .
[0046] The storage unit la stores a source code 3 . The
source code 3 is created by a user . The source code 3 may
be referred to as source program . For example , the source
code 3 is described by using a high - level language such as
C + + or JAVA® . The source code 3 includes plural symbols .
A symbol is an identification name that represents an ele
ment such as a variable , a function , a class , or a structure ,
which is included in the source code 3 .

US 2018 / 0267783 A1 Sep . 20 , 2018

information to the symbol in a case of compilation of the
source code 4 . In a case where the warning is not output for
a certain symbol , the processing unit 1b decides that the
symbol is an unused symbol that is not used in the process
described in the source code 4 (or the source code 3) .
Examples of “ unused symbol ” may include a variable that is
declared or defined but is not referred to by the function ,
class , or the like which is executed by the object code which
corresponds to the concerned source code , and the function ,
class , or the like for which only the declaration or definition
is present but which is not executed .
[0053] For example , it is assumed that the processing unit
1b obtains an output 5 as the warning by the compiler
corresponding to the attribute information . The output 5
includes the warning that the symbol " func01 () ” is non
recommended but does not include the warning that the
symbol “ int x ” is non - recommended . Thus , the processing
unit 1b assesses that the symbol “ func010) ” is a symbol that
is used in the process described in the source code 4 . On the
other hand , the processing unit 1b decides that the symbol
“ x ” is the unused symbol that is not used in the process
described in the source code 4 .
[0054] Note that because the output 5 is the warning
corresponding to the attribute information that is attached by
the processing unit 1b , the information of the output 5 may
be recorded in a log or the like in the storage unit la , but the
contents of the output 5 may not be displayed by the display
device 2 . Here , in this example , whether or not the symbol
“ func01 () ” is “ truly ” non - recommended may be unmen
tioned . Rather , because the processing unit 1b adds the
attribute information to each symbol in order to divert the
function corresponding to the attribute information by the
compiler to another usage than the fundamental function
(that is , specifying an unused symbol) , the symbol “ func01 (
) " may not be non - recommended . However , it is possible
that in order for the compiler to achieve the fundamental
function corresponding to the attribute information (a warn
ing about a non - recommended function) , the attribute infor
mation that is added by the user is distinguished from the
attribute information that is added by the processing unit 1b .
[0055] Specifically , the processing unit 1b may distinguish
first type attribute information (for a notification about a
fundamental non - recommendation warning) that is added by
an operation by the user from second type attribute infor
mation that is added by the processing unit 1b for specifying
a non - used symbol . For example , the processing unit 1b sets
the attribute information that is in advance described in the
source code 3 as the first type , sets the attribute information
that is added by the processing unit 1b in compilation as the
second type , and thereby performs distinction . Then , the
processing unit 1b may control display contents of the
non - recommendation warning by the compiler by the dis
play device 2 in accordance with which of the first type or
the second type attribute information the warning about the
symbol included in the output 5 corresponds to . That is , the
processing unit 1b may perform control so as to cause the
non - recommendation warning to be displayed in a case of
the first type and to cause the non - recommendation warning
not to be displayed in a case of the second type .
[0056] The processing unit 1b outputs information of the
unused symbol . For example , the processing unit 1b may
output a code in the source code 4 , which is correspondent
to the declaration or definition of the unused symbol , to the
display device 2 and may cause the display device 2 to

display the code . More specifically , the processing unit 1b
may cause the display device 2 to display the contents of an
output 6 that includes a message which indicates the symbol
“ int x ” is unused , as " warning : ‘ int x ' is unused . ”
[0057] Next , process procedures by the information pro
cessing device 1 will be described .
[0058] FIG . 2 is a flowchart that illustrates a process
example of the first embodiment . In the following , a process
illustrated in FIG . 2 will be described along step numbers .
[0059] (S1) When the processing unit 1b receives an
instruction for compiling the source code 3 , the processing
unit 1b adds the attribute information to each of the symbols
of the source code 3 .
[0060] (S2) The processing unit 1b generates the object
code that corresponds to the source code 4 (or the interme
diate information that is correspondent to the source code 4)
by the function of the compiler .
[0061] (S3) The processing unit 1b selects one symbol
included in the source code 4 (or the source code 3) . A
symbol to be a selection target is a symbol which is not yet
selected in the present process .
[0062] (S4) The processing unit 1b assesses whether or not
an output of the warning by the compiler , which corresponds
to the attribute information added in step S1 , (an output of
the non - recommendation warning) is present . In a case
where the warning is present , the processing unit 1b moves
the process to step S5 . In a case where the warning is not
present , the processing unit 1b moves the process to step S6 .
[0063] (S5) The processing unit 1b decides that the con
cerned symbol is used . Then , the processing unit 1b moves
the process to step S7 .
[0064] (56) The processing unit 1b decides that the con
cerned symbol is unused . Then , the processing unit 1b
moves the process to step S7 .
10065] (S7) The processing unit 1b assesses whether or not
all the symbols to which the attribute information is added
in step S1 are already selected (whether the selection in step
S3 is performed) . In a case where all the symbols to which
the attribute information is added are already selected , the
processing unit 1b moves the process to step S8 . In a case
where not all the symbols to which the attribute information
is added are already selected , the processing unit 1b moves
the process to step S3 .
[0066] (S8) The processing unit 1b outputs the informa
tion of the unused symbol . For example , the processing unit
1b causes the display device 2 to display the contents of the
output 6 .
10067] In such a manner , the processing unit 1b adds the
attribute information that is used for outputting the non
recommendation warning by the compiler to each of the
symbols and thereby identifies whether each of the symbols
is used or not used in accordance with presence or absence
of the non - recommendation warning by the compiler about
each of the symbols .
[0068] Accordingly , the function that is fundamentally
included in the compiler is diverted , and implementation of
an extraction function of unused symbols may thereby be
facilitated . Further , the processing unit 1b outputs the infor
mation of the unused symbol and may thereby support
finding of the unused symbol by the user (a developer of
software) and an improvement of the source code 3 .
[0069] Further , because the processing unit 1b performs an
extraction process of the unused symbol by using the result
of an output process of the non - recommendation warning by

US 2018 / 0267783 A1 Sep . 20 , 2018

the compiler , the processing unit 1b may not execute the
extraction process of the unused symbol by a separate
routine . Specifically , the processing unit 1b does not have to
perform a checking process of whether or not each of the
symbols is used , separately from a compilation process .
Thus , an efficiency improvement in the extraction process of
the unused symbol may be intended . Further , the processing
unit 1b may make extraction of the unused symbol faster
than separately performing a routine for extracting the
unused symbol .
[0070] In addition , in a case where the source code 3 is
again compiled , it is possible for the processing unit 1b to set
the unused symbols included in the source code 3 as
non - targets of compilation based on the information of the
unused symbols .
[0071] Note that the source code 3 may be created while
being divided into plural source files . For example , each of
the source files may be created by a separate user , in a
separate place , and at a separate time and may separately be
compiled . In this case , the information processing device 1
couples (links) object files that are individually created for
the respective source files and thereby generates an execut
able file .
10072] Even in a case where the source code 3 is created
while being divided into the plural source files in such a
manner , the information processing device 1 may provide a
function to extract the unused symbols from the whole
source code 3 . Details are as follows . Note that in the
following , C + + is raised as one example of programming
languages (however , other programming languages may be
used) .
[0073] FIG . 3 is a diagram that illustrates an example (No .
1) of a source code of the first embodiment . A source code
30 is created while being divided into source files 31 and 32 .
The source files 31 and 32 are managed as individual files .
The file name of the source file 31 is “ sample . cpp " . The file
name of the source file 32 is “ main . cpp ” .
[0074] The processing unit 1b individually compiles the
source files 31 and 32 . In this case , the processing unit 1b
adds the deprecated attribute to each of the symbols included
in each of the source files 31 and 32 while following the
protocol of C + + .
[0075] FIG . 4 is a diagram that illustrates an example (No .
2) of a source code of the first embodiment . A source code
40 is the result of addition of the deprecated attribute to each
of the symbols of the source files 31 and 32 included in the
source code 30 . The source code 40 includes source files 41
and 42 . The source file 41 is the result of addition of the
deprecated attribute to each of the symbols of the source file
31 . The source file 42 is the result of addition of the
deprecated attribute to each of the symbols of the source file
32 . In this case , the attribute information is correspondent to
a code portion of “ [[deprecated]] ” that is surrounded by
double square bracket signs " [[” and “]] ” . As described
above , the symbol as an addition target of the deprecated
attribute and an addition method of the deprecated attribute
are decided in accordance with the protocol of C + + .
[0076] Note that FIG . 4 illustrates an example where the
deprecated attribute is added to each of the source files 41
and 42 . However , as described above , prescribed interme
diate information that corresponds to each of the source files
41 and 42 may be created in a state where the deprecated
attribute is added .

[0077] FIG . 5 is a diagram that illustrates another output
example of the unused symbols of the first embodiment . The
processing unit 1b executes the procedures in FIG . 2 for the
source file 31 and thereby creates a list Ll for the source file
31 . The list L1 is an output result of the information of the
unused symbols about the source file 31 . The processing unit
1b adds the list L1 to an object file 7 that corresponds to the
source file 31 (or the source file 41) . The processing unit 1b
stores the created object file 7 in the storage unit la . The file
name of the object file 7 is “ sample . o ” , for example .
[0078] Here , the list L1 is the information that indicates
the association relationship between an element name which
corresponds to the symbol included in the source file 31 and
a use flag . A use flag is a flag that indicates that the
concerned symbol is assessed as " used ” or assessed as
" unused ” by the procedures in FIG . 2 . For example , a use
flag " TRUE ” indicates “ used ” . A use flag “ FALSE ” indicates
" unused ” .
[0079] Similarly , the processing unit 1b executes the pro
cedures in FIG . 2 for the source file 32 and thereby creates
a list L2 for the source file 32 . The list L2 is an output result
of the information of the unused symbols about the source
file 32 . The processing unit 1b adds the list L2 to an object
file 8 that corresponds to the source file 32 (or the source file
42) . The processing unit 16 stores the created object file 8 in
the storage unit la . The file name of the object file 8 is
" main . o ” , for example . Here , similarly to the list L1 , the list
L2 is the information that indicates the association relation
ship between the element name which corresponds to the
symbol included in the source file 32 and the use flag .
[0080] Then , the processing unit 1b performs a linking
process for the object file 7 and the object file 8 by a function
of a linker and creates an executable file 9 (a . out) . Here , the
processing unit 1b merges the list L1 included in the object
file 7 and the list L2 included in the object file 8 , thereby
creates a merged list L3 , and extracts the unused symbols
based on the list L3 .
[0081] Particularly , the processing unit 1b performs opti
mization that is referred to as link time optimization (LTO)
in the linking process . The link time optimization enables
not only the optimization of individual object files but also
the optimization across the object files (for example , inlining
of functions , constant propagation , and so forth across the
object files and throughout the whole program) . Note that in
a case where the LTO is used , a compilation option is
selected in compilation such that prescribed intermediate
representation (for example , Gimple data) is left in the
object file . Creation of the list L3 and extraction of the
unused symbols by the processing unit 1b may be performed
in execution of the LTO , for example .
[0082] For example , the processing unit 1b registers the
element name that is included in at least one of the lists L1
and L2 in an item of the element name of the list L3 . Further ,
the processing unit 1b refers to the use flag in each of the list
L1 and L2 with respect to the element name registered in the
list L3 and sets the use flag for the element name in the list
L3 as " TRUE ” in a case where the use flag in at least one of
the list L1 and L2 is " TRUE ” . In a case where the use flag
in both of those is " FALSE " , the processing unit 1b sets the
use flag for the element name in the list L3 as “ FALSE ” .
[0083] Then , the processing unit 1b decides that the sym
bol for the element name whose use flag in the list L3 is
“ FALSE ” is the unused symbol that is not used in the

US 2018 / 0267783 A1 Sep . 20 , 2018

process described in the source code 30 (that is , the process
that is executed by the executable file 9) .
10084] In such a manner , the processing unit 1b deter
mines that the symbol that is used in at least any of the object
files as link targets is used based on the list L1 and L2 . On
the other hand , the processing unit 1b determines that the
symbol that is not used in any of the object files as the link
targets is the unused symbol .
[0085] For example , in the case of the example of FIG . 5 ,
the processing unit 1b assesses a variable " global _ y ” , a
function " func01 (void) ” , and the variable “ x ” as the unused
symbols based on the list L3 . Accordingly , for example , the
processing unit 1b outputs a fact that the descriptions for
those unused symbols “ int global _ y ” , “ void func01 (void) ” ,
and “ int x ” are unused (Unused) and causes the display
device 2 to display the output . An output 6a is one example
of the warning that the symbol is unused . For example , the
processing unit 1b may cause the display device 2 to display
the contents of the output 6a .
[0086 In such a manner , also in a case where division
compilation is performed , the processing unit 1b adds the list
L1 to the object file 7 , adds the list L2 to the object file 8 ,
and becomes thereby capable of extracting the unused
symbols based on the lists L1 and L2 in the linking process
(in the LTO) . Further , the information of the unused symbol
that is extracted in such a manner is output , and finding of
the unused symbol by the user (the developer of software)
and an improvement of the source code 30 may thereby be
supported . Further , in a case where the source files 31 and 32
are again compiled , it is possible for the processing unit 1b
to set the unused symbols included in the source files 31 and
32 as non - targets of compilation based on the information of
the unused symbols .
[0087] In the following , as one example of the information
processing device 1 , a computer that performs compilation
and a linking process of source codes (referred to as com
piler device) will be exemplified , and the function of the
information processing device 1 will be described more
specifically

104 , an input signal processing unit 105 , a medium reader
106 , and a communication interface 107 . Each piece of
hardware is connected with a bus of the compiler device
100 .
[0092] The processor 101 is hardware that controls infor
mation processing by the compiler device 100 . The proces
sor 101 may be a multi - processor . The processor 101 is a
CPU , a DSP , an ASIC , an FPGA , or the like , for example .
The processor 101 may be a combination of two or more
elements of a CPU , a DSP , an ASIC , an FPGA , and so forth .
10093] The RAM 102 is a main storage device of the
compiler device 100 . The RAM 102 temporarily stores at
least a portion of programs of an operating system (OS) and
application programs , which are executed by the processor
101 . Further , the RAM 102 stores various kinds of data that
are used for processes by the processor 101 .
[0094] The HDD 103 is an auxiliary storage device of the
compiler device 100 . The HDD 103 magnetically writes data
in and reads out data from a built - in magnetic disk . The
HDD 103 stores programs of the OS , the application pro
grams , and various kinds of data . The compiler device 100
may include another kind of an auxiliary storage device such
as a flash memory or a solid state drive (SSD) and may
include plural auxiliary storage devices .
[0095] The image signal processing unit 104 outputs an
image on a display 11 that is connected with the compiler
device 100 in accordance with an order from the processor
101 . As the display 11 , a cathode ray tube (CRT) display , a
liquid crystal display , or the like may be used .
[0096] The input signal processing unit 105 acquires an
input signal from an input device 12 that is connected with
the compiler device 100 and outputs the input signal to the
processor 101 . As the input device 12 , a pointing device such
as a mouse or a touch panel , a keyboard , or the like may be
used , for example .
[0097] The medium reader 106 is a device that reads a
program or data that are recorded in a recording medium 13 .
As the recording medium 13 , for example , a magnetic disk
such as a flexible disk (FD) or an HDD , an optical disk such
as a compact disc (CD) or a digital versatile disc (DVD) , or
a magneto - optical disk (MO) may be used . As the recording
medium 13 , for example , a non - volatile semiconductor
memory such as a flash memory card may also be used . The
medium reader 106 stores the program or data that are read
from the recording medium 13 in the RAM 102 or the HDD
103 in accordance with the order from the processor 101 , for
example .
10098] The communication interface 107 performs com
munication with other devices via a network 10 . The com
munication interface 107 may be a wired communication
interface or may be a wireless communication interface .
10099] FIG . 7 is a diagram that illustrates an example of
the source code to which the deprecated attribute is attached .
A source code P1 is one example of a source code that is
described by using C + + . The file name of the source code P1
is set as “ main . cpp ” . As described above , in C + + , the code
of " I deprecated]] " that is surrounded by double square
bracket signs “ I ” and “ 21 ” is added to the symbol , and the
attribute information for the non - recommendation warning
is thereby added . Further , parenthesis signs “ C ” and “ ” are
described after “ deprecated ” , and a message that the user
desires to display as the warning may be set by the double
quotation marks that are enclosed by the parenthesis signs .
In a case where the message that the user desires to display

Second Embodiment
[0088] FIG . 6 is a diagram that illustrates a hardware
example of a compiler device of a second embodiment . A
compiler device 100 functions as a compiler of the program
ming language C + + .
[0089] Here , as for C + + , a standard of International Orga
nization for Standardization (ISO) / International Electro
technical Commission (IEC) 14882 : 2014 (commonly
referred to as C + + 14) has been established in the year of
2014 . To C + + 14 , a function that is referred to as [[depre -
cated]] attribute (which may simply be referred to as dep
recated attribute) is added as a new function . In a case where
an object to which this attribute is designated is used , a
compiler outputs a warning message . As described above ,
the deprecated attribute is a function that is used in a case
where a failure is found from a function which already exists
or for making a past function be non - recommended in a case
where a better and new function comes out .
[0090] However , the compiler that has an output function
of the non - recommendation warning by the deprecated
attribute may be used for other versions of C + + and other
programming languages (for example , JAVA and so forth) .
[0091] The compiler device 100 has a processor 101 , a
RAM 102 , an HDD 103 , an image signal processing unit

US 2018 / 0267783 A1 Sep . 20 , 2018

is not set , nothing may be described in the double quotation
marks , or the parenthesis signs and double quotation marks
that follow the character string of “ deprecated ” may not be
described .
[0100] Specifically , the first line of the source code P1 is
an example where the deprecated attribute is attached to a
symbol “ X { } ” that represents a structure . [[deprecated
(“ warning ”)]] is the attribute information for the non - rec
ommendation warning . A character string of " warning ”
included as an option of the attribute information is a
message that the user desires to display , separately from the
provided warning that is output by the compiler .
[0101] Further , the third line of the source code P1 is an
example where the deprecated attribute is attached to a
symbol “ { ZERO , ONE } ” that represents an enumeration
type (which may also be referred to as enumeration) . [[dep
recated (" ")]] is the attribute information for the non
recommendation warning . The example of the third line
indicates that a message that the user desires to display is not
set .
[0102] In the source code P1 , the deprecated attribute is
attached to other symbols while following the protocol of
C + + . Further , a main function and the definition block of the
main function (the 9th line to 20th line) are non - targets of
attachment of the deprecated attribute .
[0103] FIG . 8 is a diagram that illustrates an output
example of the warning message of non - recommendation . A
message group 11a is an example of the warning message of
non - recommendation that is displayed by the display 11
(that is , output contents of the non - recommendation warning
by the compiler device 100) in a case where compilation of
the source code P1 is performed by the compiler device 100 .
Note that the message group 11a is output by using GNU
Compiler Collection (GCC) 6 . 1 . 0 .
[0104] Specifically , the message group 11a includes the
warning message that the structure “ X ” used in the main
function in the source code P1 is non - recommended (the
third line to ninth line of the message group 11a) . Further ,
the message group 11a includes the warning message that
the variable “ x ” used in the main function in the source code
P1 is non - recommended (the 10th line to 16th line of the
message group 11a) . Further , the message group 11a
includes the warning message that the function “ func () " .
used in the main function in the source code P1 is non
recommended (the 17th line to 30th line of the message
group 11a) .
[0105] Note that the message group 11a does not include
the warning message that an enumeration type symbol in the
source code P1 is non - recommended . This is because the
concerned enumeration type is not used in the main function .
[0106] In such a manner , the compiler device 100 uses the
function of the deprecated attribute and may thereby cause
the compiler to output the warning message that the symbol
used in the source code P1 is non - recommended . Here ,
" used symbol " is a symbol that is used in a process realized
by the object code which corresponds to the source code P1
(that is a process described in the source code P1) . Here , “ a
symbol that is not used ” is a symbol that is not used in the
process realized by the object code which corresponds to the
source code P1 (that is the process described in the source
code P1) . Accordingly , the compiler device 100 utilizes the
output function of the non - recommendation warning by the
compiler to perform extraction of non - used symbols . Details
are as follows .

(0107] FIG . 9 is a diagram that illustrates a function
example of the compiler device . The compiler device 100
has a source file storage unit 110 , an intermediate code
storage unit 120 , an object file storage unit 130 , an execut
able file storage unit 140 , a lexical analysis unit 151 , a
syntactic analysis unit 152 , a semantic analysis unit 153 , an
attribute addition unit 161 , a warning output unit 162 , an
optimization unit 171 , an output generation unit 172 , an LTO
processing unit 181 , a list coupling unit 182 , and a result
output unit 183 .
f0108] The source file storage unit 110 stores plural source
files . For example , the source file storage unit 110 stores
source files 111 and 112 . The source files 111 and 112 are
used for creation of a certain executable file . It is supposed
that the source files 111 and 112 are managed as separate
files but form one source code that corresponds to the
executable file .
[0109] The intermediate code storage unit 120 stores the
intermediate code that corresponds to the source files 111
and 112 . An intermediate code is a code in a previous phase
of an object code .
[0110] The object file storage unit 130 stores plural object
files . For example , the object file storage unit 130 stores
object files 131 and 132 . The object file 131 is an object file
that is generated based on the source file 111 . The object file
132 is an object file that is generated based on the source file
112 .
[0111] The executable file storage unit 140 stores an
executable file that is generated as a result of the linking
process for the object files 131 and 132 .
[0112] The lexical analysis unit 151 performs a lexical
analysis process about the source files 111 and 112 . Specifi
cally , the lexical analysis unit 151 specifies characters (let
ters) that are described in the source file 111 and specifies a
character string (phrase) from the arrangement of the char
acters . The lexical analysis unit 151 similarly performs the
lexical analysis process about the source file 112 .
[0113] The syntactic analysis unit 152 performs a syntactic
analysis process about the source files 111 and 112 . Specifi
cally , the syntactic analysis unit 152 specifies a combination
(syntax) of lexical tokens that are specified by the lexical
analysis unit 151 and generates information of a syntax tree .
The information of a syntax tree may be considered as the
intermediate information that is created in the previous
phase to creation of the object code .
[0114] . The semantic analysis unit 153 performs a semantic
analysis process about the source files 111 and 112 . Specifi
cally , the semantic analysis unit 153 extracts orders and
notations that are provided by the programming language
from the syntax specified by the syntactic analysis unit 152
and generates the intermediate code that is used for an
optimization process . The semantic analysis unit 153 stores
the generated intermediate code in the intermediate code
storage unit 120 . Here , the semantic analysis unit 153
specifies the declarations or definitions of variables , func
tions , classes , and so forth , the call relationship of those , and
so forth . Further , the semantic analysis unit 153 analyzes
presence or absence of the deprecated attribute that is added
by the attribute addition unit 161 , which will be described
later , with respect to each of the symbols and instructs the
warning output unit 162 to output the non - recommendation
warning about the used symbol .
0115] . The attribute addition unit 161 adds the deprecated
attribute to the symbols included in the syntax tree that is

US 2018 / 0267783 A1 Sep . 20 , 2018

nc

created from the source file 111 while following the protocol
of C + + . Similarly , the attribute addition unit 161 adds the
deprecated attribute to the symbols included in the syntax
tree that is created from the source file 112 . The semantic
analysis unit 153 performs the semantic analysis process
about the source files that include the added deprecated
attribute .
[0116] The warning output unit 162 causes the display 11
to display the non - recommendation warning corresponding
to the deprecated attribute by the instruction from the
semantic analysis unit 153 . Specifically , the warning output
unit 162 causes the display 11 to display the non - recom
mendation warnings while narrowing the symbols down to
the symbols in the source files 111 and 112 to which the
deprecated attribute is added by the user . For example , the
warning output unit 162 causes the display 11 to display the
warning message that use of the function that corresponds to
the concerned symbol is non - recommended . Meanwhile , the
warning output unit 162 does not perform outputs of the
non - recommendation warnings about the symbols to which
the deprecated attribute is added by the attribute addition
unit 161 . Further , the warning output unit 162 creates a list
that records presence or absence of the non - recommendation
warning about each of the symbols and provides the list to
the output generation unit 172 .
[0117] Here , the list is information in which the element
name , the use flag , and a user definition parameter are
associated . Here , one association relationship among the
element name , the use flag , and the user definition parameter
will be referred to as one record . The list may include plural
records . The element name is the name of the symbol (or
object) that is described in the source file . That is , an element
indicates a symbol (or object) . The use flag is a flag that
indicates whether or not the non - recommendation warning
corresponding to the deprecated attribute occurs to the
symbol that corresponds to the element name in compila
tion . The use flag " FALSE " indicates that the instruction for
outputting the non - recommendation warning does not occur
to the symbol . The use flag “ TRUE ” indicates that the
instruction for outputting the non - recommendation warning
occurs to the symbol . The user definition parameter is a
parameter that indicates the identification result about
whether the deprecated attribute attached to the symbol is
user - defined or the deprecated attribute is added by the
attribute addition unit 161 . A user definition parameter “ X ”
indicates that the deprecated attribute is not user - defined
(that is , the deprecated attribute is added by the attribute
addition unit 161) . A user definition parameter “ Y ” indicates
that the deprecated attribute is user - defined (that is , the
deprecated attribute is not added by the attribute addition
unit 161) .
[0118] . The optimization unit 171 uses the intermediate
code stored in the intermediate code storage unit 120 to
perform the optimization process for an intermediate code
unit (that is , a compilation unit) . For example , shortening of
the requested time for execution of a program , lessening of
the memory usage amount , or the like is intended by the
optimization process by the optimization unit 171 .
[0119] The output generation unit 172 generates the object
file based on the optimization result by the optimization unit
171 and stores the object file in the object file storage unit
130 . Here , the output generation unit 172 adds the list that
is provided by the warning output unit 162 to the object file .
For example , in a case where compilation is performed for

the source file 111 , the output generation unit 172 stores the
object file 131 that corresponds to the source file 111 in the
object file storage unit 130 . The object file 131 includes a list
L10 that records presence or absence of the non - recommen
dation warning about each of the symbols , which corre
sponds to the deprecated attribute , about the source file 111 .
Further , in a case where compilation is performed for the
source file 112 , the output generation unit 172 stores the
object file 132 that corresponds to the source file 112 in the
object file storage unit 130 . The object file 132 includes a list
L20 that records presence or absence of the non - recommen
dation warning about each of the symbols , which corre
sponds to the deprecated attribute , about the source file 112 .
[0120] The LTO processing unit 181 provides the function
of the linker . Specifically , the LTO processing unit 181
executes the linking process for plural object files that are
stored in the object file storage unit 130 . The LTO processing
unit 181 executes the LTO in the linking process . The LTO
processing unit 181 executes the linking process and thereby
generates the executable file . The LTO processing unit 181
stores the generated executable file in the executable file
storage unit 140 .
[0121] The list coupling unit 182 acquires the lists that are
included in the respective object files as the link targets in
execution of the LTO by the LTO processing unit 181 . The
list coupling unit 182 couples (merges) the plural acquired
lists and creates a merged list . For example , in a case where
the linking process for the object files 131 and 132 is
performed by the LTO processing unit 181 , the list coupling
unit 182 acquires the list L10 included in the object file 131
and the list L20 included in the object file 132 . Then , the list
coupling unit 182 merges the lists L10 and L20 and creates
the merged list .
[0122] The result output unit 183 refers to the list that is
created by the list coupling unit 182 (the coupled list) and
specifies the symbols that are unused (unused symbols)
across the object files 131 and 132 . The result output unit
183 outputs the information of the unused symbols . For
example , the result output unit 183 causes the display 11 to
display the warning message that indicates that the unused
symbols exist in the source files 111 and 112 .
10123] Here , the source file storage unit 110 , the interme
diate code storage unit 120 , the object file storage unit 130 ,
and the executable file storage unit 140 are realized by using
a prescribed storage area that is secured in the RAM 102 or
the HDD 103 .
[0124] Further , the functions of the lexical analysis unit
151 , the syntactic analysis unit 152 , the semantic analysis
unit 153 , the attribute addition unit 161 , the warning output
unit 162 , the optimization unit 171 , the output generation
unit 172 , the LTO processing unit 181 , the list coupling unit
182 , and the result output unit 183 are realized by the
processor 101 . For example , the processor 101 executes
prescribed programs that are stored in the RAM 102 and
thereby provides the functions of the lexical analysis unit
151 , the syntactic analysis unit 152 , the semantic analysis
unit 153 , the attribute addition unit 161 , the warning output
unit 162 , the optimization unit 171 , the output generation
unit 172 , the LTO processing unit 181 , the list coupling unit
182 , and the result output unit 183 . Those functions are
implemented as the function of the software that is referred
to as compiler . However , the functions may be implemented
as separate pieces of software such that the functions of the
lexical analysis unit 151 , the syntactic analysis unit 152 , the

US 2018 / 0267783 A1 Sep . 20 , 2018

semantic analysis unit 153 , the attribute addition unit 161 ,
the warning output unit 162 , the optimization unit 171 , and
the output generation unit 172 are implemented to the
compiler and the functions of the LTO processing unit 181 ,
the list coupling unit 182 , and the result output unit 183 are
implemented to the linker .
[0125] FIG . 10 is a diagram that illustrates an example
(No . 1) of the source file . The file name of the source file 111
is “ sample . cpp " . In the source file 111 , “ [[deprecated]] ” is
attached to " int global y ; " (the third line of the source file
111) . This is the deprecated attribute that is added by the user
in order to notify the warning message that use of “ global _
y ; " is non - recommended .
10126] . FIG . 11 is a diagram that illustrates an example
(No . 2) of the source file . The file name of the source file 112
is “ main . cpp " . Similarly to the source file 111 , in the source
file 112 , " [[deprecated]] ” is attached to “ int global _ y ; " (the
fourth line of the source file 112) . This is the deprecated
attribute that is added by the user in order to notify the
warning message that use of “ global _ y ; " is non - recom
mended .
[0127] As exemplified in FIG . 10 and FIG . 11 , the dep
recated attribute may be in advance added to the source files
111 and 112 by the user in order to notify the fundamental
warning message by the deprecated attribute . Accordingly ,
the compiler device 100 also provides a function to present
the warning messages to the user while narrowing the
warning messages down to such warning messages that are
fundamentally to be notified .
[0128] FIG . 12 is a diagram that illustrates examples (No .
1) of syntax trees . FIG . 12 exemplifies syntax trees 51 , 52 ,
53 , 54 , 55 , 56 , and 57 that correspond to the source file 111 .
[0129] The syntax tree 51 is correspondent to the code in
the second line of the source file 111 . The syntax tree 52 is
correspondent to the code in the third line of the source file
111 . The syntax tree 53 is correspondent to the code in the
fifth to eighth lines of the source file 111 . The syntax tree 54
is correspondent to the code in the ninth line of the source
file 111 . The syntax tree 55 is correspondent to the code in
the 11th to 13th lines of the source file 111 . The syntax tree
56 is correspondent to the code in the 15th and 16th lines of
the source file 111 . The syntax tree 57 is correspondent to the
code in the 18th to 20th lines of the source file 111 .
10130] A syntax tree is information that has a tree structure
in which the lexical tokens described in the source file 111
are set as nodes and the joining relationships between the
lexical tokens are set as edges . For example , in the second
line of the source file 111 , a character string “ global _ x ” .
follows the character string that represents an integer type of
" int ” . Thus , in the syntax tree 51 , the node that has “ int ” as
a type (Type) and the node that has “ global _ x ” as a variable
(Variable) are joined together by the edge .
[0131] In such a manner , the node of the syntax tree has an
attribute such as the type (Type) or the variable (Variable) .
In a case where the type of a class is defined by using a class
key (Class key) , the node of Class key (which has a value
such as " struct " , " class " , or " union ”) is connected with the
node of Type . The following attributes of nodes may be
exemplified other than the type and the variable .
[0132] The first example is a qualifier (Qualifier) such as
“ static ” or “ const " . The second example is a routine (Rou
tine) that is correspondent to a function name or the like . The
third example is an attribute (Attribute) that is correspondent
to the deprecated attribute or the like .

[0133] The fourth example is a statement (Statement) that
is correspondent to an expression (expression) , iteration
iteration) , a call (call) , return (return) , or the like .
[0134] For example , the node that has an attribute of an
operator (Operator) (for example , an operator “ = ” is set) is
joined to the node that has " expression " as the statement .
Then , the variables that are joined together by the operator
(for example , the variable “ X ” and the variable " global y ”)
are joined to the node of the operator .
[0135] Further , for example , the node of a function name
to be called or the like is joined to the node that has “ call ”
as the statement . In addition , the node for which a return
value to the function as a caller is set is joined to the node
that has “ return ” as the statement .
[0136] FIG . 13 is a diagram that illustrates examples (No .
2) of syntax trees . FIG . 13 exemplifies syntax trees 61 , 62 ,
63 , and 64 that correspond to the source file 112 .
[0137] The syntax tree 61 is correspondent to the code in
the second to eighth lines of the source file 112 . The syntax
tree 62 is correspondent to the code in the 10th to 13th lines
of the source file 112 . The syntax tree 63 is correspondent to
the code in the 14th line of the source file 112 . The syntax
tree 64 is correspondent to the code in the 16th to 20th lines
of the source file 112 .
[0138] The syntax trees 61 , 62 , 63 , and 64 also have the
tree structure in which the lexical tokens described in the
source file 112 are set as the nodes and the joining relation
ships between the lexical tokens are set as the edges .
[0139] FIG . 14 is a diagram that illustrates an addition
example of the deprecated attribute . The deprecated attribute
is not appropriately processed by the compiler unless the
deprecated attribute is attached in accordance with the
protocol of C + + . That is , the deprecated attribute may not be
attached to anywhere , but places to which the attachment
may be made are defined by the language standard . Particu
larly , attention is requested in a case where the deprecated
attribute is attached to a static member variable of a class . In
a sample code 111p , the deprecated attribute is attached to a
portion of the codes of the source file 111 . Here , it is
assumed that “ class ” mentioned here includes a structure .
[0140] A description of “ [[deprecated]] int x ; " in the sixth
line of the sample code 111p is permitted . On the other hand ,
a description of " [[deprecated]] static int y ; " in the seventh
line of the sample code 111p is not permitted . Here , “ unde
fined behavior ” in the seventh line of the sample code 111p
is not defined by ISO / IEC 13382 : 2014 and is a process that
behaves differently depending on the used compiler . In a
case where the deprecated attribute is attached to the dec
laration of a static member variable of an actual class , the
deprecated attribute has to be attached to the entity of a static
variable in the protocol of C + + . Accordingly , a description
of " [[deprecated]] int X : : y ; " in the ninth line of the sample
code 111p is proper .
(0141] For such a reason , the attribute addition unit 161
attaches the deprecated attribute to an appropriate part that
is defined by the protocol of C + + based on the result of the
semantic analysis process about the source code by the
semantic analysis unit 153 .
10142] Note that a local variable such as the above
described “ int x ” (the sixth line of the sample code 111p) is
detectable by an existing warning function . The compiler
device 100 sets the following contents to which a reference
or call across the files may occur as main attachment targets

US 2018 / 0267783 A1 Sep . 20 , 2018

of the deprecated attribute in order to detect functions that
are not used across plural files .
[0143] The first target is a global variable . The second
target is a function . The third target is a class (including a
structure) . The fourth target is a member variable of a class .
The fifth target is a static member variable of a class
(however , the entity of a static member variable as described
above) . The sixth target is a member function of a class . The
seventh target is an enumeration type . The eighth target is a
union .
[0144] Thus , the attribute addition unit 161 checks
whether the attachment target is appropriate in a case where
the deprecated attribute is attached .
[0145] FIG . 15 is a diagram that illustrates a command
example in a case of using the LTO . The user inputs a
command “ g + + - 6 . 1 . 0 sample . cpp Ofast flto co sample . o " to
the compiler device 100 and thereby instructs compilation of
the source file 111 by the compiler device 100 . In this case ,
the user designates an option “ fito ” and may thereby instruct
the compiler device 100 about generation of the object file
in consideration of an LTO process , which is a subsequent
phase . The compiler device 100 compiles the source file 111
in response to an input of the command and thereby gener
ates the object file 131 . As described above , the object file
131 includes the information of the intermediate represen
tation that is used for the LTO process . Further , the object
file 131 includes the list L10 .
[0146] Similarly , the user inputs a command “ g + + - 6 . 1 . 0
main . cpp Ofast flto co main . o ” to the compiler device 100
and thereby instructs compilation of the source file 112 by
the compiler device 100 . The compiler device 100 compiles
the source file 112 in response to an input of the command
and thereby generates the object file 132 . As described
above , the object file 132 includes the information of the
intermediate representation that is used for the LTO process .
Further , the object file 132 includes the list L20 .
[0147] Next , process procedures executed by the compiler
device 100 will be described .
10148] . FIG . 16 is a flowchart that illustrates a compilation
example of the second embodiment . In the following , a
process illustrated in FIG . 16 will be described along step
numbers .
[0149] (S11) The lexical analysis unit 151 receives a
compilation command for the source file 111 . The compi
lation command is the command that is indicated in the first
line in FIG . 15 , for example . In a case where a compilation
target is the source file 112 , the command that is indicated
in the second line in FIG . 15 is used , for example .
[0150] (S12) The lexical analysis unit 151 performs a
lexical analysis of the source file 111 . Further , the syntactic
analysis unit 152 performs the syntactic analysis of the
source file 111 based on the result of the lexical analysis by
the lexical analysis unit 151 , generates the information of the
syntax trees 51 , 52 , 53 , 54 , 55 , 56 , and 57 , and stores the
information in a prescribed storage area of the RAM 102 . In
addition , the semantic analysis unit 153 performs a semantic
analysis based on the information of the syntax trees 51 , 52 ,
53 , 54 , 55 , 56 , and 57 , which is stored in the RAM 102 , and
notifies the attribute addition unit 161 of the analysis result .
10151] (S13) The attribute addition unit 161 adds the
deprecated attribute to prescribed symbols included in each
of the syntax trees 51 , 52 , 53 , 54 , 55 , 56 , and 57 based on
the result of the semantic analysis by the semantic analysis
unit 153 . Details of the process will be described later .

[0152] (S14) The warning output unit 162 performs warn
ing outputs about the non - recommended functions corre
sponding to the deprecated attribute . Details of the process
will be described later .
f0153] (S15) The semantic analysis unit 153 generates the
intermediate code that corresponds to the source file 111
based on the result of the semantic analysis and stores the
intermediate code in the intermediate code storage unit 120 .
The optimization unit 171 uses the intermediate code stored
in the intermediate code storage unit 120 to execute a
prescribed optimization process . The output generation unit
172 generates the object file 131 that corresponds to the
source file 111 based on the optimization result by the
optimization unit 171 and stores the object file 131 in the
object file storage unit 130 . Here , the output generation unit
172 acquires the list L10 that is created by the warning
output unit 162 and adds the list L10 to the object file 131 .
[0154] In such a manner , the compiler device 100 com
piles the source file 111 and creates the object file 131 . The
compiler device 100 similarly creates the object file 132 for
the source file 112 .
[0155) FIG . 17 is a flowchart that illustrates an attribute
addition example of the second embodiment . In the follow
ing , a process illustrated in FIG . 17 will be described along
step numbers . The procedures indicated in the following are
correspondent to step S13 in FIG . 16 .
[0156] (S21) The attribute addition unit 161 assesses
whether or not an unprocessed syntax tree (the syntax tree
for which the process of step S22 and subsequent steps is not
performed) is present among the syntax trees 51 , 52 , 53 , 54 ,
55 , 56 , and 57 that are stored in the RAM 102 . In a case
where the unprocessed syntax tree is present , the attribute
addition unit 161 selects one unprocessed syntax tree and
moves the process to step S22 . In a case where the unpro
cessed syntax tree is not present , the attribute addition unit
161 finishes the process .
[0157] (S22) The attribute addition unit 161 assesses
whether or not the concerned syntax tree is the declaration
of the global variable . In a case where the concerned syntax
tree is the declaration of the global variable , the attribute
addition unit 161 moves the process to step S27 . In a case
where the concerned syntax tree is not the declaration of the
global variable , the attribute addition unit 161 moves the
process to step S23 . For example , in a case where the
concerned syntax tree is the variable that is declared in a part
which does not belong to the block which is correspondent
to the structure , function , or the like in the program , the
attribute addition unit 161 assesses the syntax tree as the
declaration of the global variable . In a case where the
concerned syntax tree is not the variable that is declared in
a part which does not belong to the block which is corre
spondent to the structure , function , or the like in the pro
gram , the attribute addition unit 161 assesses the syntax tree
as not the declaration of the global variable .
[0158] (S23) The attribute addition unit 161 assesses
whether or not the concerned syntax tree is the definition of
the enumeration type . In a case where the concerned syntax
tree is the definition of the enumeration type , the attribute
addition unit 161 moves the process to step S27 . In a case
where the concerned syntax tree is not the definition of the
enumeration type , the attribute addition unit 161 moves the
process to step S24 . For example , in a case where the
concerned syntax tree is the definition by Type " enum " , the
attribute addition unit 161 assesses the concerned syntax tree

US 2018 / 0267783 A1 Sep . 20 , 2018

as the definition of the enumeration type . In a case where the
concerned syntax tree is not the definition by Type " enum " ,
the attribute addition unit 161 assesses the concerned syntax
tree as not the definition of the enumeration type .
0159] (S24) The attribute addition unit 161 assesses
whether or not the concerned syntax tree is the definition of
the union . In a case where the concerned syntax tree is the
definition of the union , the attribute addition unit 161 moves
the process to step S27 . In a case where the concerned syntax
tree is not the definition of the union , the attribute addition
unit 161 moves the process to step S25 . For example , in a
case where the concerned syntax tree has the node of Class
key " union ” , the attribute addition unit 161 assesses the
concerned syntax tree as the definition of the union . In a case
where the concerned syntax tree does not have the node of
Class key " union ” , the attribute addition unit 161 assesses
the concerned syntax tree as not the definition of the union .
[0160] (S25) The attribute addition unit 161 assesses
whether or not the concerned syntax tree is the definition of
the function . In a case where the concerned syntax tree is the
definition of the function , the attribute addition unit 161
moves the process to step S27 . In a case where the concerned
syntax tree is not the definition of the function , the attribute
addition unit 161 moves the process to step S26 . For
example , in a case where the concerned syntax tree has the
node of Routine as a root , the attribute addition unit 161
assesses the concerned syntax tree as the definition of the
function . In a case where the concerned syntax tree does not
have the node of Routine as the root , the attribute addition
unit 161 assesses the concerned syntax tree as not the
definition of the function . However , because the attribute
addition unit 161 exceptionally sets the concerned syntax
tree as a non - target of attachment of the deprecated attribute
in a case where the node of Routine represents the main
function , the attribute addition unit 161 moves the process to
step S21
10161] (S26 . The attribute addition unit 161 assesses
whether or not the concerned syntax tree is the definition of
the class . In a case where the concerned syntax tree is the
definition of the class , the attribute addition unit 161 moves
the process to step S27 . In a case where the concerned syntax
tree is not the definition of the class , the attribute addition
unit 161 moves the process to step S21 . For example , in a
case where the concerned syntax tree has the node of Class
key “ struct ” or Class key “ class ” , the attribute addition unit
161 assesses the concerned syntax tree as the definition of
the class . In a case where the concerned syntax tree does not
have the node of Class key " struct ” or Class key “ class ” , the
attribute addition unit 161 assesses the concerned syntax tree
as not the definition of the class .
f0162] (527) The attribute addition unit 161 records the
object of the concerned syntax tree in the list L10 . In a case
where the concerned object is the class , the attribute addition
unit 161 records the member variables other than the static
member variables and the member functions in the list L10 .
Note that immediately before step S27 is first executed in
compilation of a certain source file , the attribute addition
unit 161 creates the list (an empty list in which nothing is
initially recorded) for the concerned source file and stores
the list in a prescribed storage area of the RAM 102 .
[0163] (S28) The attribute addition unit 161 assesses
whether or not the user - defined [[deprecated]] attribute
(deprecated attribute) is attached to the concerned syntax
tree . In a case where the user - defined deprecated attribute is

attached to the concerned syntax tree , the attribute addition
unit 161 moves the process to step S29 . In a case where the
user - defined deprecated attribute is not attached to the
concerned syntax tree , the attribute addition unit 161 moves
the process to step S30 .
[0164] (S29) The attribute addition unit 161 records “ Y ”
in the parameter (specifically , the user definition parameter)
of the same object in the list L10 . Then , the attribute addition
unit 161 moves the process to step S21 .
10165) (830) The attribute addition unit 161 records “ X ”
in the parameter (specifically , the user definition parameter)
of the same object in the list L10 .
[0166] (S31) The attribute addition unit 161 adds the
deprecated attribute to the concerned syntax tree . Specifi
cally , in step S27 , the attribute addition unit 161 joins the
node of attribute to the node of the object of the syntax tree
that is recorded in the list L10 and set “ [[deprecated]] ” to the
node of attribute . Note that in a case where the concerned
object is the class , the attribute addition unit 161 similarly
adds the deprecated attribute to the member variables other
than the static member variables and the member functions .
Then , the attribute addition unit 161 moves the process to
step S21 .
101671 . Note that in the above description , a description is
made about the procedures of attribute addition in compi
lation of the source file 111 . The attribute addition unit 161
similarly performs the attribute addition to the source file
112 .

[0168] Further , the attribute addition unit 161 may include
a check about whether or not the syntax tree is the definition
of the entity of the static member variable of the class in the
check about the variable in step S22 . For example , as the
syntax tree 54 , in a case of the definition of the entity of a
static member variable “ X : : y ” of a class “ X ” that uses the
scope resolution operator " : " , the attribute addition unit 161
moves the process to step S27 . Then , the attribute addition
unit 161 performs registration of the element name and the
user definition parameter of the object in the list L10 and
addition of the deprecated attribute .
(0169] FIG . 18 is a diagram that illustrates an example
(No . 1) of a list . A list L11 is an example of a list that is
created by the attribute addition unit 161 in the course of
compilation of the source file 111 (the file name " sample .
cpp ") (the phase immediately subsequent to the procedures
in FIG . 17) . The list L11 represents the state of the previous
phase to the list L10 . The list L11 includes items of the
element name , the use flag , and the user definition param
eter .
(0170] For example , the list L11 includes the record in
which the element name is “ int global _ x ” , the use flag is not
set (in FIG . 18 , the hyphen sign “ - ” represents no setting) ,
and the user definition parameter is “ X ” . This indicates that
a program element of “ int global _ x ” exists in the source file
111 , presence or absence of the non - recommendation warn
ing is not yet assessed , and the user - defined deprecated
attribute is not present for “ int global _ x ” . This case indicates
that the deprecated attribute is added to “ int global _ x ” by the
attribute addition unit 161 .
[0171] Further , the list L11 includes the record in which
the element name is “ int global _ y ” , the use flag is not set ,
and the user definition parameter is “ Y ” . This indicates that
a program element of “ int global _ y ” exists in the source file
111 , presence or absence of the non - recommendation warn

US 2018 / 0267783 A1 Sep . 20 , 2018

ing is not yet assessed , and the user - defined deprecated
attribute is present for “ int global _ y ” .
f0172] In the list L11 , the association relationship among
the element name , the use flag , and the user definition
parameter is similarly registered for the other program
elements that are included in the source file 111 (here , the
elements as the attachment targets of the deprecated attri
bute) . However , in the phase at which the procedures in FIG .
17 are completed , the use flags are not set .
[0173] FIG . 19 is a diagram that illustrates an example
(No . 2) of a list . A list L21 is an example of a list that is
created by the attribute addition unit 161 in the course of
compilation of the source file 112 (the file name “ main . cpp ")
(the phase immediately subsequent to the procedures in FIG .
17) . The list L21 represents the state of the previous phase
to the list L20 . The list L21 includes items of the element
name , the use flag , and the user definition parameter .
10174] Similarly to the list L11 , in the list L21 , the
association relationship among the element name , the use
flag , and the user definition parameter are registered for the
program elements that are included in the source file 112
(here , the elements as the attachment targets of the depre
cated attribute) . However , in the phase at which the proce
dures in FIG . 17 are completed , the use flags are not set .
0175] FIG . 20 is a diagram that illustrates examples (No .
1) of syntax trees to which deprecated is added) . Syntax
trees 51a , 52a , 53a , 54a , 55a , 56a , and 57a indicate the state
where the deprecated attribute is added to the syntax trees
51 , 52 , 53 , 54 , 55 , 56 , and 57 . Particularly , in the syntax tree
53a , “ [[deprecated]] ” is added to the structure “ X ” , and
further " [[deprecated]] ” is added to the member variable “ x ” .
other than the static member variable of the structure “ X ” .
On the other hand , in the syntax tree 53a , “ T [deprecated]] ”
is not added to the static member variable " y " of the
structure “ X ” . Instead , " [[deprecated]] ” is added to the
definition of the entity of the static member variable “ y ” of
the syntax tree 54a .
[0176] FIG . 21 is a diagram that illustrates examples (No .
2) of syntax trees (to which deprecated is added) . Syntax
trees 61a , 62a , and 63a indicate the state where the depre
cated attribute is added to the syntax trees 61 , 62 , and 63 .
Note that because the syntax tree 64 is the syntax tree that
represents the main function , the deprecated attribute is not
added , as described above .
(0177] FIG . 22 is a flowchart that illustrates a warning
output example for the non - recommended function of the
second embodiment . In the following , a process illustrated
in FIG . 22 will be described along step numbers .
0178] (841) The warning output unit 162 acquires the list
L11 that is created for the source file 111 as the present
compilation target from a prescribed storage area of the
RAM 102 .
[0179] (842) The warning output unit 162 assesses
whether or not an unprocessed element (the element for
which the process of step S43 and subsequent steps is not
performed) is present in the list L11 . In a case where the
unprocessed element is present , the warning output unit 162
moves the process to step S43 . In a case where the unpro
cessed element is not present , the warning output unit 162
finishes the process .
[0180] (S43) The warning output unit 162 checks whether
a response of the non - recommendation warning by the
function of [[deprecated]] attribute (deprecated attribute) is
present . For example , the warning output unit 162 checks

whether the non - recommendation warning by the function
of the deprecated attribute occurs to the concerned element
as a result of the semantic analysis of each of the syntax
trees , to which the deprecated attribute is attached , by the
semantic analysis unit 153 .
0181 (844) The warning output unit 162 assesses
whether or not the non - recommendation warning is present
for the concerned element by the check in step S43 . In a case
where the non - recommendation warning is present for the
concerned element , the warning output unit 162 moves the
process to step S45 . In a case where the non - recommenda
tion warning is not present for the concerned element , the
warning output unit 162 moves the process to step S49 .
10182] (S45) The warning output unit 162 decides that the
concerned element is the used function .
0183] (846) The warning output unit 162 refers to the list
L11 and assesses whether or not the user definition param
eter for the concerned element is “ Y ” . In a case where the
user definition parameter for the concerned element is “ Y ” ,
the warning output unit 162 moves the process to step S47 .
In a case where the user definition parameter for the con
cerned element is not “ Y ” (that is , in a case of “ X ”) , the
warning output unit 162 moves the process to step S48 .
[0184] (S47) The warning output unit 162 causes the
display 11 to display the warning that the concerned element
is a non - recommended function .
[0185] (S48) The warning output unit 162 sets the use flag
of the concerned element as " TRUE ” in the list L11 . Then ,
the warning output unit 162 moves the process to step S42 .
[0186] (S49) The warning output unit 162 decides that the
concerned element is the function that is not used .
[0187] (850) The warning output unit 162 sets the use flag
of the concerned element as “ FALSE ” in the list L11 . Then ,
the warning output unit 162 moves the process to step S42 .
[0188] Here , the reason why the decisions in steps S45 and
S49 may be performed is as follows . Fundamentally , the
warning function by the deprecated attribute , which indi
cates that the element is non - recommended , is a function for
the compiler to output the warning in a case where the
concerned object (element) is “ used ” . Considering this func
tion , it may be considered that “ the object for which the
warning of non - recommendation is not output by the com
piler is not used ” among the objects to which the deprecated
attribute is attached . Accordingly , it may be considered that
in a case where the non - recommendation warning by the
compiler occurs to the element to which the deprecated
attribute is attached , the element is the used function . On the
other hand , it may be considered that in a case where the
non - recommendation warning by the compiler does not
occur to the element to which the deprecated attribute is
attached , the element is the function that is not used .
[0189] Further , as indicated by the procedures in steps S43
to S50 , the compiler device 100 decides the unused symbol
in accordance with presence or absence of the warning about
the deprecated attribute together with an output process of
the warning about the deprecated attribute . That is , the
compiler device 100 decides the unused symbol in proce
dures of the output process of the warning about the dep
recated attribute in compilation . More specifically , in a case
where the warning about the deprecated attribute is present ,
the warning output unit 162 decides that the concerned
symbol to which the deprecated attribute is attached is used .
Further , in a case where the warning about the deprecated

US 2018 / 0267783 A1 Sep . 20 , 2018
12

attribute is not present , the warning output unit 162 decides
that the concerned symbol to which the deprecated attribute
is attached is unused .
10190 Thus , a routine for deciding the unused symbol
does not have to be separately performed from compilation .
Specifically , the checking process of whether or not each of
the symbols is used does not have to be performed separately
from compilation . Consequently , the compiler device 100
may efficiently perform extraction of the unused symbols .
Further , extraction of the unused symbol may be made faster
than separately performing the routine for extracting the
unused symbol .
[0191] Further , based on the assessment in step S46 , the
compiler device 100 may set the non - recommendation warn
ings as display targets of the display 11 while narrowing the
elements (symbols) down to the elements (symbols) to
which the deprecated attribute is in advance added by the
user . That is , the compiler device 100 restricts display by the
display 11 of the non - recommendation warnings about the
elements (symbols) to which the deprecated attribute is
added by the attribute addition unit 161 . Consequently , the
non - recommendation warnings may be displayed while the
elements are narrowed down to the elements about which
the user intends to display the non - recommendation warn
ings .
[0192] FIGS . 23A and 23B are diagrams that illustrate
examples of the lists in which the use flags are set . FIG . 23A
illustrates the contents of the list L10 . The list L10 is in a
state where the use flags are set compared to the list L11 .
FIG . 23B illustrates the contents of the list L20 . The list L20
is in a state where the use flags are set compared to the list
L21 .

[0193] Referring to the example of the list L10 , the use
flags that correspond to the elements of “ int global _ x ” ,
" struct X ” , “ int X : : X ” (the member variable “ x ” of the
structure “ X ”) , “ static int X : : y ” , “ void func01 () ” , and “ void
func03 () ” in the source file 111 are " FALSE " . This indicates
that the elements of “ int global x " , " struct X ” , “ int X : : X ”
(the member variable “ x ” of the structure “ X ”) , “ static int
X : : y ” , “ void func01 () ” , and “ void func030 ” are not used
in the source file 111 .
[0194] On the other hand , in the list L10 , the use flags that
correspond to the elements of “ int global _ y ” and “ void
func02 () ” in the source file 111 are " TRUE ” . This indicates
that the elements of “ int global _ y ” and “ void func02 () ” are
used in the source file 111 .
[0195] Similarly , referring to the example of the list L20 ,
the use flags that correspond to the elements of “ int global
y ” , “ void func0l (void) ” , “ void func02 (void) " , " struct X ” ,
" int X : : X " , and " static int X : : y ” in the source file 112 are
" FALSE " . This indicates that the elements of “ int global _ y ” ,
" void func01 (void) ” , “ void func02 (void) " , " struct X ” , “ int
X : : X ” , and “ static int X : : y ” are not used in the source file
112 .
[0196] On the other hand , in the list L20 , the use flags that
correspond to the elements of “ int global _ x ” and “ void
func03 (void) ” in the source file 112 are “ TRUE ” . This
indicates that the elements of “ int global _ x ” and “ void
func03 (void) ” are used in the source file 112 .
[0197] The list L10 is added to the object file 131 . Further ,
the list L20 is added to the object file 132 . Then , the object
files 131 and 132 are stored in the object file storage unit
130 .

[0198] Next , a description will be made about procedures
of a generation process of the executable file based on the
object files 131 and 132 that are generated as described
above . The compiler device 100 couples the object files 131
and 132 together (performs the linking process) and thereby
generates the executable file .
[0199] FIG . 24 is a flowchart that illustrates a linking
process example of the second embodiment . In the follow
ing , a process illustrated in FIG . 24 will be described along
step numbers
10200] (S61) The LTO processing unit 181 receives a
generation instruction command of the executable file . The
generation instruction command of the executable file is the
command that is indicated in the third line in FIG . 15 , for
example . For example , the command designates the object
files 131 and 132 that are stored in the object file storage unit
130 as link targets .
[0201] (S62) The LTO processing unit 181 executes a link
time optimization (LTO) process based on the object files
131 and 132 . Here , the LTO processing unit 181 extracts the
list L10 from the object file 131 as the link target and
provides the list L10 to the list coupling unit 182 . Further ,
the LTO processing unit 181 extracts the list L20 from the
object file 132 as the link target and provides the list L20 to
the list coupling unit 182 .
[0202] (863) The list coupling unit 182 executes a process
of warning output for an unused function based on the lists
L10 and L20 that are acquired from the LTO processing unit
181 . Details of the process will be described later .
10203] (S64) The LTO processing unit 181 generates the
executable file based on the object files 131 and 132 and
outputs the generated executable file . Specifically , the LTO
processing unit 181 stores the generated executable file in
the executable file storage unit 140 .
[0204] FIG . 25 is a flowchart that illustrates a warning
output example for the unused function of the second
embodiment . In the following , a process illustrated in FIG .
25 will be described along step numbers . The procedures
indicated in the following are correspondent to step S63 in
FIG . 24 .
[0205] (871) The list coupling unit 182 acquires the lists
L10 and L20 that are extracted from the object files 131 and
132 in the LTO process by the LTO processing unit 181 .
[0206] (S72) The list coupling unit 182 merges the lists
L10 and L20 and creates the merged list . Specifically , the list
coupling unit 182 registers the element name that is included
in at least one of the lists L10 and L20 in the item of the
element name of the merged list . Further , the list coupling
unit 182 refers to the use flag in each of the lists L10 and L20
with respect to the element name registered in the merged
list and sets the use flag for the element name in the merged
list as “ TRUE ” in a case where the use flag in at least one
of the lists L10 and L20 is " TRUE ” . In a case where the use
flags in both of those are " FALSE " , the list coupling unit 182
sets the use flag for the element name in the merged list as
" FALSE " . The user definition parameter is set as “ Y ” in a
case where “ Y ” is in at least one of the lists L10 and L20 but
sets “ X ” in a case where “ X ” is in both of those .
0207] Here , in a case where substantially the same ele
ment name is present in the lists L10 and L20 , the list
coupling unit 182 determines that the element name exists in
both of the lists L10 and L20 . For example , " void func01 (
) ” in the list L10 and “ void func01 (void) ” in the list L20 are
substantially the same . Accordingly , the list coupling unit

US 2018 / 0267783 A1 Sep . 20 , 2018

182 adopts the element name that is registered in one of the
lists L10 and L20 (for example , " void func01 (void) ”) and
adds the element name to the merged list . The list coupling
unit 182 stores the list that is created in a prescribed storage
area of the RAM 102 .
[0208] (S73) The result output unit 183 assesses whether
or not an unprocessed element is present in the merged list .
In a case where the unprocessed element (the element for
which the process of step S74 and subsequent steps is not
performed) is present in the merged list , the result output
unit 183 moves the process to step S74 . In a case where the
unprocessed element is not present in the merged list , the
result output unit 183 finishes the process .
[0209] (874) The result output unit 183 selects one ele
ment in the merged list . Here , the element to be a selection
target is the element that is not yet selected .
10210] (875) The result output unit 183 refers to the
merged list and assesses whether or not the use flag that
corresponds to the element is " FALSE " . In a case where the
use flag is " FALSE " , the result output unit 183 moves the
process to step S76 . In a case where the use flag is not
“ FALSE ” (that is , in a case of “ TRUE ") , the result output
unit 183 moves the process to step S73 .
[0211] (876) The result output unit 183 causes the display
11 to display the warning that the concerned element is the
function that is not used . Then , the result output unit 183
moves the process to step S73 .
[0212] FIG . 26 is a diagram that illustrates an example of
the merged list . A list L30 is the result of merging of the lists
L10 and L20 . For example , in the list L30 , the use flag is
decided about each of the elements as follows .
10213) With respect to the element name “ int global _ x ” ,
the use flag in the list L10 is " FALSE " , and the use flag in
the list L20 is “ TRUE ” . Accordingly , the use flag of the
element name “ int global _ x ” in the list L30 is “ TRUE ” .
[0214] With respect to the element name “ int global _ y ” ,
the use flag in the list L10 is “ TRUE ” , and the use flag in the
list L20 is " FALSE " . Accordingly , the use flag of the
element name “ int global _ y ” in the list L30 is “ TRUE ” .
[0215] . With respect to the element name “ struct X ” , the
use flag in the list L10 is " FALSE " , and the use flag in the
list L20 is " FALSE ” . Accordingly , the use flag of the
element name “ struct X ” in the list L30 is “ FALSE " .
(0216) . With respect to the element name “ int X : : X ” , the
use flag in the list L10 is " FALSE " , and the use flag in the
list L20 is " FALSE " . Accordingly , the use flag of the
element name “ int X : : X ” in the list L30 is " FALSE " .
[0217 With respect to the element name " static int X : : y ” ,
the use flag in the list L10 is " FALSE " , and the use flag in
the list L20 is " FALSE " . Accordingly , the use flag of the
element name “ static int X : : y ” in the list L30 is “ FALSE ” .
[0218] With respect to the element name “ void func01
(void) ” , the use flag in the list L10 is " FALSE " , and the use
flag in the list L20 is " FALSE " . Accordingly , the use flag of
the element name " void func01 (void) ” in the list L30 is
“ FALSE ” .
[0219] With respect to the element name “ void func02
(void) ” , the use flag in the list L10 is “ TRUE ” , and the use
flag in the list L20 is “ FALSE ” . Accordingly , the use flag of
the element name " void func02 (void) ” in the list L30 is
" TRUE ” .
[0220] With respect to the element name “ void func03
(void) " , the use flag in the list L10 is " FALSE " , and the use

flag in the list L20 is “ TRUE ” . Accordingly , the use flag of
the element name “ void func03 (void) ” in the list L30 is
" TRUE ” .
[0221] Based on the list L30 , the result output unit 183
causes the display 11 to display a warning that the codes
which are correspondent to “ struct X ” , “ int X : : X ” , “ static int
X : : y ” , and “ void func01 (void) ” in the source files 111 and
112 are unused .
[0222] FIG . 27 is a diagram that illustrates a display
example of a warning that indicates the elements are unused .
A message group 11b is a display example of a warning
message that indicates that the concerned elements are
unused . For example , the result output unit 183 specifies the
description parts in the source files 111 and 112 from the
concerned element names in the list L30 . Further , the result
output unit 183 may cause the display 11 to display the file
names of the source files 111 and 112 and information that
indicates the description parts (for example , the line num
bers , the numbers that represent the positions from the line
heads , and so forth) .
0223] In such a manner , the compiler device 100 utilizes
the output function of the non - recommendation warning by
the deprecated attribute to perform extraction of the unused
elements in the source code . Consequently , it becomes
possible to easily implement an extraction function of the
unused elements in the source code to the compiler . That is ,
it becomes possible to easily realize the extraction function
of the unused elements in the source code as a portion of
functions of the compiler or as an additional function of the
compiler .
[0224] In addition , the compiler device 100 decides the
unused symbol in accordance with presence or absence of
the warning about the deprecated attribute together with the
output process of the warning about the deprecated attribute .
Thus , the routine for deciding the unused symbol does not
have to be separately performed from compilation . Specifi
cally , the checking process of whether or not each of the
symbols is used does not have to be performed separately
from compilation . Consequently , the compiler device 100
may efficiently perform extraction of the unused symbols .
Further , extraction of the unused symbol may be made faster
than separately performing the routine for extracting the
unused symbol .
0225) . Further , the compiler device 100 presents the
unused elements in the source files 111 and 112 to the user
and may thereby support specifying of reviewed parts of the
source code by the user . Further , the compiler device 100
may use the list L30 to intend an efficiency improvement of
compilation . Details are as follows .
(0226] FIG . 28 is a diagram that illustrates another func
tion example of the compiler device . For example , the
compiler device 100 may further have a list storage unit 190
and a compilation control unit 191 in addition to the func
tions exemplified in FIG . 9 . The list storage unit 190 is
realized by using a prescribed storage area of the RAM 102
or the HDD 103 . The compilation control unit 191 is realized
by execution of a program stored in the RAM 102 by the
processor 101 .
[0227] The list storage unit 190 stores the list L30 that is
generated by the list coupling unit 182 while associating the
list L30 with the file names of the source files 111 and 112 .
[0228] The compilation control unit 191 narrows down
compilation target parts in the source files based on the
information stored in the list storage unit 190 . Specifically ,

US 2018 / 0267783 A1 Sep . 20 , 2018
14

the compilation control unit 191 searches for a created list
about the source file to be the target of compilation from the
list storage unit 190 and sets the elements whose use flags in
the list are " FALSE ” as non - targets of compilation . For
example , the compilation control unit 191 may add pre
scribed metadata that instruct the compiler to set the con
cerned elements as non - targets of compilation to the target
source file . Alternatively , the compilation control unit 191
may create a new source file in which the elements as
non - targets of compilation are deleted from the original
source file and instruct the compiler to compile the new
source file .
[0229] Next , a description will be made about process
procedures by the compiler device 100 based on the function
of the compilation control unit 191 .
[0230] FIG . 29 is a flowchart that illustrates a compilation
control example of the second embodiment . In the follow
ing , a process illustrated in FIG . 29 will be described along
step numbers .
[0231] (S81) The compilation control unit 191 receives a
compilation command . The compilation command includes
the file name of the source file 111 as the compilation target ,
for example .
[02321 (882) The compilation control unit 191 assesses
whether or not the created list about the designated source
file is present in the list storage unit 190 . In a case where the
created list is present , the compilation control unit 191
moves the process to step S83 . In a case where the created
list is not present , the compilation control unit 191 moves
the process to step S84 . For example , the created list about
the source file 111 is the list L30 .
[0233] (S83) The compilation control unit 191 sets the
elements whose use flags in the concerned list are " FALSE "
as non - targets of compilation . For example , the compilation
control unit 191 sets the elements whose use flags in the list
L30 are set to “ FALSE ” among the elements included in the
source file 111 as non - targets of compilation . As described
above , the compilation control unit 191 may add prescribed
metadata that instruct that the concerned elements are set as
non - targets of compilation to the source file 111 . Alterna
tively , the compilation control unit 191 may create a new
source file in which the concerned elements are deleted . In
the case of creating a new source file , the compilation
control unit 191 may instruct the compiler (for example , the
lexical analysis unit 151 thereof) to start compilation of the
new source file instead of the original source file 111 .
10234] (S84) The lexical analysis unit 151 starts the lexical
analysis process . Subsequently , the object file is generated
(compilation is executed) by a series of functions of the
syntactic analysis unit 152 , the semantic analysis unit 153 ,
the optimization unit 171 , and the output generation unit
172 . Note that in this case , the compilation control unit 191
may regulate an addition process of the deprecated attribute
by the attribute addition unit 161 .
[0235] In such a manner , the compiler device 100 may
omit compilation of the elements (symbols) that are not used
in the source file 111 based on the created list L30 . Similarly
for the source file 112 , the compiler device 100 may omit
compilation of the elements (symbols) that are not used in
the source file 112 based on the list L30 .
[0236] Consequently , an efficiency improvement of com
pilation may be intended . For example , the processes that
accompany compilation may be made faster , and the
requested time for compilation may thereby be shortened .

[0237] Note that the information processing of the first
embodiment may be realized by causing the processing unit
lb to execute the program . Further , the information process
ing of the second embodiment may be realized by causing
the processor 101 to execute the program . The program may
be recorded in the computer - readable recording medium 13 .
[0238] For example , the recording mediums 13 that record
the program are distributed , and the program may thereby be
circulated . Further , the program is stored in another com
puter , and the program may thereby be distributed via a
network . For example , the computer stores (installs) the
program that is recorded in the recording medium 13 or
received from the other computer in the storage device such
as the RAM 102 or the HDD 103 and may thereby reads the
program from the storage device and execute the program .
[0239] All examples and conditional language recited
herein are intended for pedagogical purposes to aid the
reader in understanding the invention and the concepts
contributed by the inventor to furthering the art , and are to
be construed as being without limitation to such specifically
recited examples and conditions , nor does the organization
of such examples in the specification relate to a showing of
the superiority and inferiority of the invention . Although the
embodiments of the present invention have been described
in detail , it should be understood that the various changes ,
substitutions , and alterations could be made hereto without
departing from the spirit and scope of the invention .
What is claimed is :
1 . A non - transitory , computer - readable recording medium

having stored therein a compiler program that causes a
computer to execute a process comprising :

adding attribute information that is used for outputting a
warning that use of a symbol is non - recommended to
the symbol that is included in a source code ; and

determining whether or not the warning corresponding to
the attribute information is output for the symbol in
compilation of the source code , determining that the
symbol is an unused symbol which is not used in a
process which is described in the source code in a case
where the warning is not output , and outputting infor
mation of the unused symbol .

2 . The non - transitory , computer - readable recording
medium of claim 1 , wherein

the source code is divided into plural source files , and
in the determining of the unused symbol , each of the

plural source files is individually compiled , plural
output results of the information are acquired for the
plural source files , and the unused symbol is decided
based on the plural output results .

3 . The non - transitory , computer - readable recording
medium of claim 2 , wherein

a first output result of the information on a first source file
is added to a first object file that is generated from the
first source file ,

a second output result of the information on a second
source file is added to a second object file that is
generated from the second source file , and

in the determining of the unused symbol , in a linking
process that uses the first and second object files , the
unused symbol is decided based on the first and second
output results .

US 2018 / 0267783 A1 Sep . 20 , 2018
15

4 . The non - transitory , computer - readable recording
medium of claim 1 , wherein the process further comprising
setting the unused symbol as a non - target of compilation
based on the information .

5 . The non - transitory , computer - readable recording
medium of claim 1 , wherein

in the adding of the attribute information , the attribute
information is added to a second symbol that is differ
ent from a first symbol to which the attribute informa
tion is in advance attached in the source code , and

in compilation of the source code , the warning about the
first symbol is set as a display target by a display
device , and display of the warning about the second
symbol by the display device is restricted .

6 . The non - transitory , computer - readable recording
medium of claim 1 , wherein

the attribute information is a deprecated attribute , and
the unused symbol is decided based on presence or

absence of the warning about the deprecated attribute
together with an output process of the warning about
the deprecated attribute .

7 . An apparatus comprising :
a memory ; and
a processor coupled to the memory and configured to :
add attribute information that is used for outputting a

warning that use of a symbol is non - recommended to
the symbol that is included in a source code ; and

determine whether or not the warning corresponding to
the attribute information is output for the symbol in
compilation of the source code , determine that the
symbol is an unused symbol which is not used in a
process which is described in the source code in a
case where the warning is not output , and output
information of the unused symbol .

8 . A method comprising :
adding attribute information that is used for outputting a
warning that use of a symbol is non - recommended to
the symbol that is included in a source code ; and

determining whether or not the warning corresponding to
the attribute information is output for the symbol in
compilation of the source code , determining that the
symbol is an unused symbol which is not used in a
process which is described in the source code in a case
where the warning is not output , and outputting infor
mation of the unused symbol .

9 . A compiler device for compiling software source files ,
the compiler device comprising :

a storage device storing the software source files ; and
a processor configured to :

perform a lexical analysis of the source files to identify
characters and character strings included in the
source files ,

perform a syntactic analysis of the source files , based
on the result of the lexical analysis , to identify lexical
tokens ,

generate a plurality of syntax trees based on the syn
tactic analysis , the syntax trees represent a syntactic
tree structure of the source file in which the lexical
tokens are set as nodes in the tree structure and
joining relationships between the lexical tokens are
set as edges in the tree structure ,

modify the syntax trees (or source files) to add depre
cated attribute information to prescribed symbols
included in the syntax trees , and

output a warning message for the prescribed symbols
with deprecated attribute information , the warning
message indicating that the use of the prescribed
symbol is non - recommended .

* * * * *

