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1
METHODS FOR HIGH-RESOLUTION
GENOME-WIDE FUNCTIONAL DISSECTION
OF TRANSCRIPTIONAL REGULATORY
REGIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a national stage application of Inter-
national Patent Application No. PCT/US2018/056371 filed
Oct. 17, 2018, and claims the benefit of U.S. Provisional
Application No. 62/573,506, filed Oct. 17, 2017. The entire
contents of the above-identified applications are hereby fully
incorporated herein by reference.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH

This invention was made with government support under
Grant No. HG008155 awarded by the National Institutes of
Health. The government has certain rights in the invention.

REFERENCE TO AN ELECTRONIC SEQUENCE
LISTING

The contents of the electronic sequence listing (BROD-
2330US_ST25.4xt,” 1,661 bytes and created on Jul. 16,
2020) is herein incorporated by reference in its entirety.

TECHNICAL FIELD

The subject matter disclosed herein is generally directed
to genome-wide methods of detecting regulatory regions, in
particular enhancer regions.

BACKGROUND

Precise spatiotemporal control of gene expression is
achieved by the interplay between non-coding regulatory
elements, including distal enhancers and proximal promot-
ers, and the transcriptional regulators they help recruit or
repel, thus modulating the expression of nearby genes.
Unlike protein-coding genes, which can be readily identified
by their sequence properties and evolutionary signatures,
gene-regulatory elements lack highly-predictive sequence
patterns and show only modest evolutionary conservation at
the nucleotide level. Thus, systematic recognition of gene-
regulatory elements has relied on mapping of their epigen-
omic signatures, including DNA accessibility, histone modi-
fications, and DNA methylation. For example, both
enhancers and promoters have high DNA accessibility and
low H3K27me3, but distal enhancers show relatively higher
H3K27ac and H3K4mel while promoters show relatively
higher H3K9ac and H3K4me3. However, many regions
showing such epigenomic marks do not experimentally
drive reporter gene expression, and some regions driving
gene expression lack endogenous signatures. Moreover,
epigenomic signatures are often low-resolution, with impor-
tant driver regulatory nucleotides comprising only a small
subset of the larger regions showing epigenomic signatures.

Experimental dissection of enhancer and promoter
regions has been traditionally expensive, laborious, low
throughput, and low-resolution, lacking the resolution to
pinpoint individual regulatory driver nucleotides without
recourse to extensive mutagenesis. Several high-throughput
reporter assays for enhancer function have recently been
developed, enabling the testing of tens of thousands of
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distinct DNA sequences simultaneously, including MPRA
and CRE-Seq. These assays entail microarray-based oligo-
nucleotide synthesis technology to generate the tested ele-
ments and their barcodes, cloning the oligonucleotides into
a common episomal reporter vector, and using high-through-
put sequencing to quantify expression. Technical limitations
of oligonucleotide synthesis currently restrict the maximum
tested DNA fragment length to ~230 nucleotides, and the
maximum number of tested constructs to ~240,000
sequences per array. Although still limited in the number of
target regions, Sharpr-MPRA enabled higher-resolution
inferences by densely tiling target regions with multiple
overlapping constructs, and exploiting subtle differences
between the measured activity of neighboring constructs to
achieve offset resolution (~5 bp) instead of construct reso-
Iution (~230 bp). STARR-Seq integrated random genomic
fragments downstream of the transcription start site of
episomal reporter genes, thus foregoing the oligo synthesis
step and the need for barcodes as the tested elements were
transcribed and serve as their own activity reporters. How-
ever, STARR-seq fragments are selected by random
genomic fragmentation. As random genomic fragmentation
does not densely cover regulatory elements, STARR-seq has
limited efficiency and resolution at regulatory regions.

Thus, there is a need for improved genome wide methods
for identifying regulatory elements.

SUMMARY

Genome-wide epigenomic maps revealed millions of
regions showing signatures of enhancers, promoters, and
other gene-regulatory elements. However, high-throughput
experimental validation of their function and high-resolution
dissection of their driver nucleotides remain limited in their
scale and length of regions tested. It is an objective of the
present invention to provide a general, scalable, high-
throughput, and high-resolution approach for experimental
dissection of regulatory regions and driver nucleotides in the
context of human biology and disease.

Here, Applicants present a new method, HiDRA (High-
resolution Dissection of Regulatory Activity, also known as
High-Definition Reporter Assay), that overcomes prior limi-
tations by combining components of Sharpr-MPRA and
STARR-Seq with genome-wide selection of accessible
regions from ATAC-Seq (e.g. “ATAC-STARR-seq”). Appli-
cants used HiDRA to test ~7 million DNA fragments pref-
erentially selected from accessible chromatin in the
GM12878 lymphoblastoid cell line. By design, accessibility
selected fragments were highly overlapping (up to 370 per
region), enabling the pinpointing of driver regulatory
nucleotides by exploiting subtle differences in reporter activ-
ity between partially-overlapping fragments, using a new
machine learning model SHARPR2 (also known as
SHARPR-RE (SHARPR-Random Endpoints)). The result-
ing maps included ~65,000 regions showing significant
enhancer function and were enriched for endogenous active
hi stone marks (including H3K9ac, H3K27ac), regulatory
sequence motifs, and regions bound by immune regulators.
Within them, Applicants discovered 13,000 high-resolution
driver elements enriched for regulatory motifs and evolu-
tionarily-conserved nucleotides. Additionally, the maps
could predict causal genetic variants underlying disease
from genome-wide association studies (GWAS).

In one aspect, the present invention provides for a method
of identifying genomic enhancer regulatory elements com-
prising: fragmenting genomic DNA at accessible chromatin
in a population of cells thereby generating genomic DNA
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fragments, wherein said fragmenting comprises transposi-
tion; amplifying the genomic DNA fragments; enriching the
amplified genomic DNA fragments by size; integrating the
enriched fragments into a vector to obtain a vector library,
wherein the vector encodes a reporter gene and the enriched
fragments are integrated into an untranslated region (UTR)
of the reporter gene, whereby transcription of the reporter
gene results in a transcript comprising the integrated frag-
ment sequence; transfecting or transducing a cell line with
the vector library, wherein the transcript comprising the
integrated fragment sequences is expressed in the cell line;
and sequencing the transcript expressed in the cell line,
whereby integrated fragments comprising enhancer activity
are identified. The amplified genomic DNA fragments may
be selected for a size between about 150-500 nucleotides
long. The amplified genomic DNA fragments may be
selected for a size between about 230-500 nucleotides long.
The enriched fragments may be integrated in a UTR down-
stream of the reporter gene.

In one embodiment, the method may further comprise
removing mitochondrial DNA from the genomic DNA frag-
ments. The mitochondrial DNA may be removed by treating
the genomic DNA fragments with a CRISPR system com-
prising guide sequences targeting mitochondrial DNA
sequences, wherein mitochondrial DNA is cleaved. The
mitochondrial DNA may be removed after enriching ampli-
fied fragmented genomic DNA by size and before integra-
tion of the enriched fragments.

In one embodiment, the vector may be a plasmid. The
vector may be a viral vector. The viral vector may be a
lentiviral vector. The viral vector may be an integrating or
non-integrating lentiviral vector.

In one embodiment, identifying enhancer regulatory ele-
ments may comprise measuring the ratio of the number of
RNA sequencing reads comprising a fragment to the repre-
sentation of the fragment in the non-transfected vector
library.

In one embodiment, identifying enhancer regulatory ele-
ments comprises comparing a sequenced genomic fragment
to the chromatin state of the genomic locus of the fragment
in the cell line, wherein fragments present in an enhancer
chromatin state are selected. The enhancer chromatin state
may comprise H3K27ac (histone H3 lysine 27 acetylation)
and H3K4mel (histone H3 lysine 4 mono-methylation).

In one embodiment, identifying enhancer regulatory ele-
ments comprises comparing a sequenced genomic fragment
to Long-Terminal-Repeat (LTR) retrotransposon sequences,
wherein ITR sequences are not selected.

In one embodiment, the method according to any embodi-
ment herein, may further comprise detecting expression of
the reporter gene in the cell line and sorting the cells based
on the reporter levels. Not being bound by a theory, a
detectable reporter (e.g., GFP, YFP, RFP) may be used to
sort cells based on expression. Not being bound by a theory,
only sequencing cells that express the detectable marker
may decrease sequencing cost.

In one embodiment, the population of cells may be
obtained from a tissue sample. In one embodiment, the
population of cells may be a tissue specific cell line. In one
embodiment, the population of cells is obtained by pooling
cells or tissues from more than one individual. The indi-
viduals may be chosen to maximize genetic diversity at
informative disease variants. The cells may comprise
immune cells. The cells may comprise cancer cells. In one
embodiment, the population of cells may be derived from
the same cell line used for transfecting or transducing,
whereby enhancer regulatory elements active in the cell line
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may be identified. In other words, fragments are obtained
from a cell line to obtain a vector library and the vector
library is assayed in the same cell line. Not being bound by
a theory, different cell lines express different activators and
repressors and have different chromatin states. Therefore,
fragmenting accessible chromatin in a cell line may provide
fragments that function optimally in the same cell line. Not
being bound by a theory, different regulatory elements may
be identified by assaying a vector library in different cell
types.

In certain embodiments, nuclei are isolated from the
population of cells before fragmenting genomic DNA. In
certain embodiments, the present invention applies ATAC-
seq to obtain fragments of genomic DNA present in acces-
sible chromatin in a cell. The ATAC-seq protocol described
herein utilizes a buffer that results in a crude nuclei prepa-
ration. In certain embodiments, tissue samples to be ana-
lyzed are frozen. As described herein, components of Div-
seq can be used for single-nucleus isolation and RNA-Seq.
Div-seq is compatible with frozen or fixed tissue. In certain
embodiments, nuclei are isolated from frozen tissue and
genomic fragments obtained from the isolated nuclei fol-
lowing the steps described herein.

In certain embodiments, the genomic fragments are
amplified by error-prone PCR. In certain embodiments, the
fragments are amplified in an amplification reaction com-
prising a mutagen. Not being bound by a theory, mutations
affecting regulatory activity of a fragment may be deter-
mined by introducing mutations during PCR amplification.

In certain embodiments, the method may further comprise
high-resolution mapping of driver elements of enhancer
activity within identified enhancer regulatory elements by a
method comprising comparing the fragment enrichment
enhancer activity of a set of overlapping fragments repre-
sented in the vector library, whereby driver elements of
enhancer activity are identified for enhancer regulatory
elements. The driver element may comprise a minimum of
18 driver nucleotides. Not being bound by a theory the
resolution of driver elements increases with increasing over-
lapping fragments, however after about 40 overlapping
fragments the resolution does not extend past 18 driver
nucleotides. In certain embodiments, comparing may com-
prise uploading the overlapping fragment sequences into a
computing system and applying an algorithm, wherein the
algorithm compares the fragment enrichment enhancer
activity of the overlapping fragments. The algorithm may
estimate regulatory scores for nucleotides in the identified
set of overlapping fragments. The set of overlapping frag-
ments may comprise at least 10 unique overlapping frag-
ments. The method may further comprise identifying driver
element variants. The driver element variants may comprise
genome wide association (GWAS) variants. GWAS variants
are available on public data bases and are well known in the
art. Not being bound by a theory, GWAS variants with
unknown function may be linked to a regulatory element or
driver element using the present invention. The GWAS
variants may be genetic variants associated with a disease.
In certain embodiments, identifying driver element variants
may comprise resequencing the input vector library using
reads sufficiently long to identify sequence variants. Not
being bound by a theory, RNA-seq may not provide reads
long enough to identify sequence variants. The method may
further comprise correlating driver element variants with a
disease. Not being bound by a theory, new variants previ-
ously not associated with a disease may be identified.

In another aspect, the present invention provides for a
method of identifying genomic enhancer regulatory ele-
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ments comprising: fragmenting genomic DNA in a popula-
tion of cells, wherein the fragmented genomic DNA is
fragmented to create fragments comprising overhanging
ends; filling in the overhanging ends with at least one labeled
nucleotide, wherein the labeled nucleotide is used to isolate
the nucleic acids; joining the filled in ends of the fragmented
genomic DNA, wherein the joined fragments comprise
contact domains; isolating the joined genomic DNA frag-
ments using the labeled nucleotide; amplifying the isolated
joined genomic DNA fragments; integrating the amplified
fragments into a vector to obtain an input vector library,
wherein the vector encodes a reporter gene and the frag-
ments are integrated into an untranslated region (UTR) of
the reporter gene, whereby transcription of the reporter gene
results in a transcript comprising the integrated fragment
sequence; transfecting or transducing a cell line with the
vector library; and sequencing the transcripts expressed in
the cell line, whereby integrated fragments comprising
enhancer activity may be identified. Not being bound by a
theory, a regulatory sequence may depend upon a chromatin
loop to be formed to bring two sequences together at a
contact domain. The present invention may allow for iden-
tifying previously unknown regulatory sequences that func-
tion at contact domains. The genomic DNA fragments may
be held in a fixed position relative to one another. The
nucleic acids may be fixed in position relative to one another
by crosslinking. The crosslinking may comprise treatment
with a chemical crosslinker. The chemical crosslinker may
comprise an aldehyde. The aldehyde may comprise formal-
dehyde. The method may further comprise reversing the
crosslinking. Reversing the crosslinking may comprise con-
tacting the sample with Proteinase K.

In another aspect, the present invention provides for
identifying repressor regulatory elements. In one embodi-
ment, the reporter gene is constitutively expressed and
integrated fragments having repressor activity are identified
by measuring depletion of fragments in relation to their
representation in the input vector library.

In another aspect, the present invention provides for a
system for identifying enhancer regulatory elements com-
prising a computing element configured for applying an
algorithm as described herein to sequenced transcripts as
described herein.

These and other aspects, objects, features, and advantages
of the example embodiments will become apparent to those
having ordinary skill in the art upon consideration of the
following detailed description of illustrated example
embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

An understanding of the features and advantages of the
present invention will be obtained by reference to the
following detailed description that sets forth illustrative
embodiments, in which the principles of the invention may
be utilized, and the accompanying drawings of which:

FIG. 1A-1D—Overview of HiDRA library preparation.
(FIG. 1A) The Tn5 transposase preferentially fragments
genomic DNA at regions of open chromatin. Fragments are
then size-selected on an agarose gel and mtDNA contami-
nation is removed by selective CRISPR-Cas9 degradation.
The fragment library is amplified by PCR and cloned into a
enhancer reporter vector. (FIG. 1B) Size distribution of
HiDRA library fragments. Bimodal shape is due to Tn5
preference to cut adjacent to nucleosomes (FIG. 1C) Num-
ber of predicted enhancer, active TSS and ATAC-seq peaks
covered by multiple unique HiDRA fragments. (FIG. 1D)
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HiDRA plasmid library recapitulates genomic coverage of a
conventional ATAC-seq experiment.

FIG. 2A-2E—HiDRA identifies transcriptional regulatory
elements. (FIG. 2A) Scatterplot of abundances for HIDRA
fragments in input (plasmid DNA) and output (RNA)
samples. Abundances calculated after merging all five rep-
licates. Active HiDRA fragments called by DESeq2 high-
lighted with red dots, blue color intensity corresponds to
greater density of points. (FIG. 2B) The majority of HIDRA
active regions are distal to annotated TSSs (>2 kb). (FIG.
2C) HiDRA identifies enhancer activity within an intron in
the immunoglobulin heavy chain locus. Red bar, DNA
segment active in luciferase assay performed by Huang et al.
(2017). Orange bar and highlight, region identified by
HiDRA as having transcriptional regulatory activity. (FIG.
2D) Quantitative comparison of luciferase assay activity
levels to HiDRA for 21 predicted enhancer elements.
HiDRA signal corresponds to maximum activity within the
region tested by luciferase, and luciferase value corresponds
to median normalized activity over biological replicates.
Pearson correlation calculated after log 2 transformation.
FIG. 2E Luciferase experiments are colored in red or grey
depending on whether DNA fragments drive luciferase
activity in GM12878 cells as determined by Huang et al.
(2017).

FIG. 3A-3B—Active HiDRA fragments are enriched in
endogenously active regulatory regions. (FIG. 3A) Overlap
of'active HiDRA fragments with different endogenous chro-
matin states. Heights correspond to proportion of nucleo-
tides within active HiDRA fragments in each chromatin
state. Inset: histone modification enrichments in each of 18
ChromHMM chromatin states (FIG. 3B) HiDRA fragment
regulatory activity (fold-change increase in RNA levels)
across different chromatin states. Numbers correspond to
chromatin state numbers in 18-state ChromHMIM model.

FIG. 4A-4E—HiDRA activity outside of promoter and
enhancer elements and in endogenously inactive regions.
(FIG. 4A) The majority of ChromHMM-predicted
TssFlnkUp regions are not near annotated TSSs, but share a
similar genomic distribution pattern to predicted active
enhancers. (FIG. 4B, FIG. 4C) Endogenously inactive
genomic regions have low levels of TF binding (FIG. 4B)
but comparable TF motif composition (FIG. 4C) to predicted
active regions. (FIG. 4D, FIG. 4E) Endogenously inactive
chromatin states overlapping active HiDRA fragments are
more likely to be active in other human tissues (FIG. 4D)
and are enriched for LTR retrotransposons (FIG. 4E) com-
pared to endogenously active regions. Colored bars, regions
from each chromatin state overlapping active HiDRA
regions. Grey bars, regions from each chromatin state over-
lapping all HiDRA fragments tested.

FIG. SA-SE—High-resolution mapping of transcriptional
regulatory elements with SHARPR2. (FIG. 5A) Example
region used in high-resolution mapping. Fragment activity
shown on log 2 scale with two fragments with highest and
lowest activity removed for color scale to avoid outliers. The
transparent red bar indicates the driver element identified at
the regional FWER<0.05. (FIG. 5B) Size distribution of
driver elements. (FIG. 5C) Enrichment of immune-related
TF motifs in driver elements compared to shuffled driver
elements within tiled regions. (FIG. 5D) TF motifs enriched
in driver elements cluster into groups of co-occurring
motifs, suggesting diversity of TF motifs involved in tran-
scriptional regulatory activity (FIG. SE) Significantly more
driver elements are evolutionary conserved compared to
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shuflled driver elements within tiled regions. Evolutionary
conservation cut-off chosen as conservation score for top 5%
of shuffled regions.

FIG. 6A-6B—High-resolution driver elements are
enriched for fine-mapped GWAS SNPs. (FIG. 6A) Driver
elements overlap more GWAS fine-mapped SNPs associated
with 21 human immune-related complex traits than ran-
domly shuffled regions. (FIG. 6B) Example locus at
rs12946510 that overlaps a high-resolution driver element.
Highlighted segment indicates the driver element identified
at the regional FWER<0.05. Red bar at top corresponds to
region with luciferase activity as demonstrated by Hitomi et
al. (2017).

FIG. 7A-7F—Identification of human genetic variants
that alter HiDRA activity. (FIG. 7A) Overview of genotyp-
ing approach for HIDRA fragments. HiIDRA fragments were
originally quantified at high-depth using 37nt paired-end
reads. At this read length the allele composition of fragments
is mostly unobserved. As every HiDRA fragment has a
unique identifier (genomic alignment position and random
4nt barcode), long-read re-sequencing of the HiDRA library
can assign SNP genotypes to fragments that were previously
quantified for activity using short reads. (FIG. 7B) g-q plot
for allelic imbalance at SNPs covered by HiDRA fragments.
CENTIPEDE “effect” SNPs were identified by Moyer-
brailean et al. (2016). (FIG. 7C) “Effect” SNPs and SNPs
within HiDRA active regions are more likely to be nomi-
nally significant for allelic imbalance. (FIG. 7D) The A allele
of rs2382817, a SNP associated with inflammatory bowel
disease, is more active in the HiDRA assay than the C allele.
(FIG. 7E) Alelle-specific HiDRA activity signal tracks for
rs2382817. (FIG. 7F) rs2382817 alleles are correlated with
differences in expression of the nearby TMBIMI1 gene in
EBV-transformed lymphocytes.

FIG. 8—HiDRA coverage is greater for highly active
regulatory elements. Active enhancer and active TSS chro-
matin states were ranked by H3K27ac signal strength, and
ATAC-seq peaks were ranked by density of ATAC-seq reads
from Buenrostro et al. (2013). Solid, dashed and dotted lines
correspond to coverage with at least 1, 2 and 5 unique
HiDRA fragments.

FIG. 9A-9D—Correlation between RNA samples from
HiDRA. Correlation is shown at four different RPM cut-offs
(FIG. 9A for 0.1 RPM cutoff, FIG. 9B for 0.2 PRM cutoff,
FIG. 9C for 0.5 RPM cutoff, and FIG. 9D for 1.0 RPM
cutofl). Only fragments passing the minimum RPM cut-off
in plasmid samples are shown. Unlike gene expression
analysis where read counts from many unique fragments are
collapsed into one gene expression value, in HIDRA Appli-
cants consider each fragment on its own. Given the high
number of unique features in HiDRA, Poisson “shot noise”
will decrease correlations between replicates for low RPM
cut-offs.

FIG. 10A-10B—Enrichment of motifs in active HIDRA
regions. (FIG. 10A) HiDRA fragments within active
enhancer state regions have greater regulatory activity than
those within active TSS state regions. (FIG. 10B) Motif
enrichment is calculated separately for active TSS state
regions (left) and active enhancer state regions (right) that
overlap active HiDRA fragments. Only top 16 motifs are
shown for each group after filtering to keep only motifs
corresponding to expressed TFs in GM12878 (RPKM>5).
Numbers within bars correspond to false discovery rate.

FIG. 11—Enrichment of histone modifications in active
HiDRA fragments. All histone modifications and DHS data
were collected from GM12878 cells by the ENCODE or
Roadmap Epigenomics projects.
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FIG. 12—LTR retrotransposon repeat elements are
enriched within active HiDRA regions. Elements identified
using RepeatMasker annotation of the hgl9 human genome.
Low complexity and Simple Repeat classes are artificially
low due to pre-filtering to remove HiDRA fragments map-
ping to multiple genomic locations.

FIG. 13—Length of high-resolution driver elements
depends on coverage. Driver elements identified by
SHARPR?2 are smaller in size for tiled regions covered by
more fragments. Decrease in driver element size plateaus
around 40-50 HiDRA fragments, to reach an expected
minimum size of ~18nt.

FIG. 14A-14B—Genomic distribution of HiDRA driver
elements. (FIG. 14A) The majority of driver elements dis-
covered by HiDRA are distal to annotated transcription start
sites (FIG. 14B) Genomic distribution of driver elements
reveals that majority of driver elements are found in TSS,
TSS-flanking and predicted enhancer regions.

Fig. 15—Confounding effect of differing fragment posi-
tions for allelic activity analyses. As HiDRA relies on
random fragmentation of the genome, fragments carrying
different alleles at a SNP might have differential activity due
to the position of their ends, rather than due to allelic
activity. In this hypothetical example, a SNP with no true
allelic activity is mistakenly called as active because the
fragment containing the reference allele overlaps a driver
element not present in the alternate fragment.

FIG. 16A-16B— FIG. 16A shows a histogram with a
density curve of In(#RNA/#DNA) of the fragments from the
library described in the method section. The distribution of
In(#RNA/#DNA) is closer to a normal distribution. The
exclusion criteria for the fragments are length<100 or
length>600. FIG. 16B shows the Q-Q plot suggests that this
is a heavy-tailed distribution.

FIG. 17A-17B—Relationship between In(#RNA/ZDNA),
fragment length and size of tiled regions. FIG. 17A): the
distribution of In(#RNA/#DNA) after normalization with
respect to fragment length. In the plot, the fragment length
is categorized into five groups. FIG. 17B): the distribution of
fragment length with respect to the size of the tiled region in
which the fragment is located. The size of tiled regions is
defined by the number of fragments in the tiled region. The
plots are based on the library described in the main text in
which the fragments are ranged between 100-600nt (with
99% between 168-473nt).

FIG. 18—An example of estimated regulatory scores
from a simulated tile region of 1200nt. The data is generated
within a 1200nt tile region with 50 unique HiDR A fragments
ranging from 175nt to 450nt. The significant regulatory
region (FWER<5%) is highlighted in red. The predicted
motif region is highlighted in purple. The yellow dashed
lines are the estimated scores *MSE.

FIG. 19—FEmpirical statistical power according to differ-
ent numbers of fragments and different SNR. Y-axis: empiri-
cal power (%). X-axis: Signal-to-noise-ratio defined by

SNR = m_

Tnoise

The red bars are the empirical power for the predicted 20 bp
core driver element. The blue bars are the empirical power
for the identified drivers with a significant regulatory score
based on a regional FWER=5%.

FIG. 20A-20D Overview of HiDRA. FIG. 20A: Cells
with desired genotype and open chromatin patterns are
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selected for library construction. Tn5 transposase is used to
preferentially fragment genomic DNA at regions of open
chromatin. Fragments are then size-selected on an agarose
gel and mtDNA contamination is removed by selective
CRISPR-Cas9 degradation. The fragment library is ampli-
fied by PCR and cloned into a enhancer reporter vector. Gel
image adapted from Buenrostro et al. (2013). Fragments are
cloned into the STARR-seq vector backbone, introduced
into target cells (which can differ from cells used to con-
struct library), and RNA is collected and sequenced. After
data processing, the activity of partially-overlapping frag-
ments is compared to identify driver nucleotides using the
SHARPR-RE algorithm. FIG. 20B: Size distribution of
HiDRA library fragments. Bimodal shape is due to Tn5
preference to cut adjacent to nucleosomes (FIG. 20C) Num-
ber of ChromHMM-predicted active enhancer, active TSS
and ATAC-seq peaks covered by multiple unique HiDRA
fragments. (FIG. 20D) HiDRA plasmid library recapitulates
genomic coverage of a conventional ATAC-seq experiment.

FIG. 21A-21E—HiDRA identifies transcriptional regula-
tory elements. HiDRA identifies transcriptional regulatory
elements. FIG. 21A: Scatterplot of abundances for HIDRA
fragments in input (plasmid DNA) and output (RNA)
samples. Abundances calculated after merging all five rep-
licates. Active HiDRA fragments called by DESeq2 high-
lighted with red dots (FDR<0.05), blue color intensity
corresponds to greater density of points. FIG. 21B: The
majority of HiDRA active regions are distal to annotated
TSSs (>2 kb). FIG. 21C: HiDRA identifies enhancer activity
within an intron in the immunoglobulin heavy chain locus.
Red bar, DNA segment active in luciferase assay performed
by Huang et al. (2017). Orange bar and highlight, region
identified by HiDRA as having transcriptional regulatory
activity. FIG. 21D: Quantitative comparison of luciferase
assay activity levels to HiDRA for 21 predicted enhancer
elements. HiDRA signal corresponds to maximum activity
within the region tested by luciferase, and luciferase value
corresponds to median normalized activity over biological
replicates. Pearson correlation calculated after log2 trans-
formation. FIG. 21E: Comparison of HiDRA-called active
regions with luciferase assay results for 13 enhancers at the
NEKSO6 locus. Luciferase experiments are colored in red or
grey depending on whether DNA fragments drive luciferase
activity in GM 12878 cells as determined by Huang et al.
(2017).

FIG. 22A-22D—Active HiDRA fragments are enriched in
endogenously active regulatory regions. FIG. 22A: Overlap
of'active HiDRA fragments with different endogenous chro-
matin states. Heights correspond to proportion of nucleo-
tides within active HiDRA fragments in each chromatin
state. Inset: histone modification enrichments in each of 18
ChromHMM chromatin states. FIG. 22B: HiDRA fragment
regulatory activity (fold-change increase in RNA levels)
across different chromatin states. Numbers correspond to
chromatin state numbers in 18-state ChromHMM model.
FIG. 22C, FIG. 22D—Fndogenously inactive genomic
regions have low levels of TF binding (FIG. 22C) but
comparable TF motif composition (FIG. 22D) to predicted
active regions. Colored bars, regions from each chromatin
state overlapping active HiDRA regions. Grey bars, regions
from each chromatin state overlapping all fragments tested.

FIG. 23A-23F—High-resolution mapping of transcrip-
tional regulatory elements with SHARPR-RE. FIG. 23A—
Example region used in high-resolution mapping. Fragment
activity shown on log2 scale with two fragments with
highest and lowest activity removed for color scale to avoid
outliers. The transparent red bar indicates the driver element
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identified at the regional FWER<0.05. FIG. 23B: Size
distribution of driver elements. FIG. 23C: Enrichment of
immune-related TF motifs in driver elements compared to
shuflled driver elements within tiled regions.

FIG. 23D: TF motifs enriched in driver elements cluster
into groups of co-occurring motifs, suggesting diversity of
TF motifs involved in transcriptional regulatory activity.
FIG. 23E: Significantly more driver elements are evolution-
ary conserved compared to shuffled driver elements within
tiled regions. Evolutionary conservation cut-off chosen as
conservation score for top 5% of shuflled regions. FIG. 23F:
SNPs within driver elements have significantly greater
allelic skew by MPRA (Tewhey et al. Cell, 2016) compared
to those within tiled regions or across the genome.

FIG. 24A-24B—High-resolution driver elements are
enriched for fine-mapped GWAS SNPs. FIG. 24A: Driver
elements overlap more GWAS fine-mapped SNPs associated
with 21 human immune-related complex traits than ran-
domly shuffled regions. p-value calculated empirically by
random shuffling of driver element positions within tiled
regions. FIG. 24B: Example locus at rs12946510 that over-
laps a high-resolution driver element. Highlighted segment
indicates the driver element identified at the regional
FWER<0.05. Red bar at top corresponds to region with
luciferase activity as demonstrated by Hitomi et al. (2017).

FIG. 25A-25E—Identification of human genetic variants
that alter HiDRA activity. FIG. 25A: Overview of genotyp-
ing approach for HiDRA fragments. HIDRA fragments were
originally quantified at high-depth using 37nt paired-end
reads. At this read length the allele composition of fragments
is mostly unobserved. As every HiDRA fragment has a
unique identifier (genomic alignment position and random
4nt barcode), long-read re-sequencing of the HiDRA library
can assign SNP genotypes to fragments that were previously
quantified for activity using short reads. FIG. 25B: g-q plot
for allelic imbalance at SNPs covered by HiDRA fragments.
CENTIPEDE “effect” SNPs were identified by Moyer-
brailean et al. (2016). FIG. 25C: “Effect” SNPs and SNPs
within HiDRA active regions are more likely to be nomi-
nally significant for allelic imbalance. p-values from Fish-
er’s exact test. FIG. 25D: The A allele of rs2382817, a SNP
associated with inflammatory bowel disease, is more active
in the HiDRA assay than the C allele.

FIG. 25E: Alelle-specific HIDRA activity signal tracks for
rs2382817.

FIG. 26A-26C—HiDRA coverage is greater for highly
active regulatory elements. (FIG. 26A) ChromHMM-de-
fined active enhancer and active TSS chromatin states were
ranked by H3K27ac signal strength, and ATAC-seq peaks
were ranked by density of ATAC-seq reads from Buenrostro
et al. (2013). Solid, dashed and dotted lines correspond to
coverage with at least 1, 2 and 5 unique HiDRA fragments.
(FIG. 26B) Number of unique HiDRA fragments in
ChromHMM-defined active enhancer and active TSS ele-
ments, and ATAC-seq peaks. (FIG. 26C) Positive relation-
ship between ATAC-seq peak strength and number of unique
HiDRA fragments. Discrete bands at bottom of scatterplot
represent peaks with 1-6 unique fragments.

FIG. 27A-27D—Correlation between RNA samples from
HiDRA. Correlation is shown at four different RPM cut-offs
(FIG. 27A for 0.1 RPM cutoft, FIG. 27B for 0.2 PRM cutoff,
FIG. 27C for 0.5 RPM cutoff, and FIG. 27D for 1.0 RPM
cutoff). Only fragments passing the minimum RPM cut-off
in plasmid samples are shown. Unlike gene expression
analysis where read counts from many unique fragments are
collapsed into one gene expression value, in HiDRA we
consider each fragment on its own. Given the high number
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of unique features in HiDRA, Poisson “shot noise” will
decrease correlations between replicates for low RPM cut-
offs.

FIG. 28—Genomic distribution of TSS Flanking
Upstream regions. The majority of ChromHMNI-predicted
TssFlnkUp regions are not near annotated TSSs, but share a
similar genomic distribution pattern to predicted active
enhancers.

FIG. 29A-29F—Enrichment of motifs in active HIDRA
regions. (FIG. 29A) HiDRA fragments within active
enhancer state regions have greater regulatory activity than
those within active TSS state regions. (FIG. 29B) Motif
enrichment is calculated separately for active TSS state
regions (left) and active enhancer state regions (right) that
overlap active HiDRA fragments. Only top 16 motifs are
shown for each group after filtering to keep only motifs
corresponding to expressed TFs in GM12878 (RPKM>5).
Numbers within bars correspond to false discovery rate.
(FIG. 29C) Top motifs that are differentially enriched in
enhancer vs. active TSS states. (FIG. 29D) Top motifs
enriched in enhancer and active TSS states are largely
distinct from each other (FIG. 29E) Proportion of nucleo-
tides inside motifs for highly and lowly active fragments in
enhancers and active TSS regions. (FIG. 29F) Enriched
motifs in highly active enhancer (left) and active TSS (right)
regions.

FIG. 30—Enrichment of histone modifications in active
HiDRA fragments. All histone modifications and DHS data
were collected from GM12878 cells by the ENCODE or
Roadmap Epigenomics projects.

FIG. 31—Endogenously inactive chromatin states over-
lapping active HiDRA fragments are more likely to be active
in 97 other (non-GM12878) human tissues. No difference
observed for endogenously active regions. Colored bars,
regions from each chromatin state overlapping active
HiDRA regions. Grey bars, regions from each chromatin
state overlapping all HiDRA fragments tested.

FIG. 32A-32B—LTR retrotransposon repeat elements are
enriched within active HiDRA regions in endogenously
inactive chromatin states. (FIG. 32A) Elements identified
using RepeatMasker annotation of the hg19 human genome.
(*) Low complexity and Simple Repeat classes are artifi-
cially low due to pre-filtering to remove HiDRA fragments
mapping to multiple genomic locations. (FIG. 32B) Endog-
enously inactive chromatin states overlapping active
HiDRA fragments are enriched for LTR retrotransposons
compared to endogenously active regions. Colored bars,
regions from each chromatin state overlapping active
HiDRA regions. Grey bars, regions from each chromatin
state overlapping all HiDRA fragments tested.

FIG. 33—Number of unique fragments per tiled region
for high-resolution mapping.

FIG. 34—Iength of high-resolution driver eclements
depends on coverage. Driver elements identified by
SHARPR-RE are smaller in size for tiled regions covered by
more fragments. Decrease in driver element size plateaus
around 40-50 HiDRA fragments, to reach an expected
minimum size of ~18nt.

FIG. 35A-35B—Genomic distribution of HiDRA driver
elements. (FIG. 35A) The majority of driver elements are
distal to annotated transcription start sites (FIG. 35B)
Genomic distribution of driver elements reveals that major-
ity of driver elements are found in TSS, TSS-flanking and
predicted enhancer regions.

FIG. 36A-36B—Additional functional properties of
driver elements. (FIG. 36A) Driver elements have greater
evolutionary conservation compared to adjacent regions
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both upstream and downstream. +/-1,2,3 values represent
control windows of equal size to the driver element shifted
upstream (- values) and downstream (+ values) by the
length of the driver element. (FIG. 36B) Left, Driver ele-
ments show greater functional importance scores from inde-
pendent SHARPR-MPRA experiment in both K562 and
HepG2. +/-1,2,3 values correspond to controls used in panel
a. Right, functional importance scores for driver elements in
K562 and HepG2 driven by drivers containing motifs from
TFs expressed in respective cell lines.

FIG. 37—Confounding effect of differing fragment posi-
tions for allelic activity analyses As HiDRA relies on
random fragmentation of the genome, fragments carrying
different alleles at a SNP might have differential activity due
to the position of their ends, rather than due to allelic
activity. In this hypothetical example, a SNP with no true
allelic activity is mistakenly called as active because the
fragment containing the reference allele overlaps a driver
element not present in the alternate fragment.

FIG. 38—Proportion of reads lost by each processing
filter for HiDRA library.

FIG. 39A-39B—FIG. 39A: A histogram with a density
curve of In(#RNA/#DNA) of the fragments from the library
described in the method section. The distribution of
In(#RNA/#DNA) is closer to a normal distribution. The
exclusion criteria for the fragments are length<100 or
length>600. FIG. 39B: The Q-Q plot suggests that this is a
heavy-tailed distribution.

FIG. 40A-40B—Relationship between In(#RNA/ZDNA),
fragment length and size of tiled regions. FIG. 40A: the
distribution of In(#RNA/#DNA) after normalization with
respect to fragment length. In the plot, the fragment length
is categorized into five groups. FIG. 40B: the distribution of
fragment length with respect to the size of the tiled region in
which the fragment is located. The size of tiled regions is
defined by the number of fragments in the tiled region. The
plots are based on the library described in the main text in
which the fragments are ranged between 100-600nt (with
99% between 168-473nt).

FIG. 41—An example of estimated regulatory scores
from a simulated tile region of 1200nt. The data is generated
within a 1200nt tile region with 50 unique HiDR A fragments
ranging from 175nt to 450nt. The significant regulatory
region (FWER<5%) is highlighted in red. The predicted
motif region is highlighted in purple. The yellow dashed
lines are the estimated scores *MSE.

FIG. 42—FEmpirical statistical power according to differ-
ent numbers of fragments and different SNR. Y-axis: empiri-
cal power (%). X-axis: Signal-to-noise-ratio defined by

SNR =

Tnotse

The red bars are the empirical power for the predicted 20 bp
core driver element. The blue bars are the empirical power
for the identified drivers with a significant regulatory score
based on a regional FWER=5%.

The figures herein are for illustrative purposes only and
are not necessarily drawn to scale.

DETAILED DESCRIPTION OF THE EXAMPLE
EMBODIMENTS

General Definitions

Unless defined otherwise, technical and scientific terms
used herein have the same meaning as commonly under-



US 11,987,790 B2

13

stood by one of ordinary skill in the art to which this
disclosure pertains. Definitions of common terms and tech-
niques in molecular biology may be found in Molecular
Cloning: A Laboratory Manual, 2"¢ edition (1989) (Sam-
brook, Fritsch, and Maniatis); Molecular Cloning: A Labo-
ratory Manual, 4” edition (2012) (Green and Sambrook);
Current Protocols in Molecular Biology (1987) (F. M.
Ausubel et al. eds.); the series Methods in Enzymology
(Academic Press, Inc.): PCR 2: A Practical Approach (1995)
(M. J. MacPherson, B. D. Hames, and G. R. Taylor eds.):
Antibodies, A Laboratory Manual (1988) (Harlow and Lane,
eds.): Antibodies A Laboratory Manual, 2 edition 2013 (E.
A. Greenfield ed.); Animal Cell Culture (1987) (R. I. Fresh-
ney, ed.); Benjamin Lewin, Genes IX, published by Jones
and Bartlet, 2008 (ISBN 0763752223); Kendrew et al.
(eds.), The Encyclopedia of Molecular Biology, published
by Blackwell Science Ltd., 1994 (ISBN 0632021829); Rob-
ert A. Meyers (ed.), Molecular Biology and Biotechnology:
a Comprehensive Desk Reference, published by VCH Pub-
lishers, Inc., 1995 (ISBN 9780471185710); Singleton et al.,
Dictionary of Microbiology and Molecular Biology 2nd ed.,
J. Wiley & Sons (New York, N.Y. 1994), March, Advanced
Organic Chemistry Reactions, Mechanisms and Structure
4th ed., John Wiley & Sons (New York, N.Y. 1992); and
Marten H. Hotker and Jan van Deursen, Transgenic Mouse
Methods and Protocols, 27 edition (2011).

As used herein, the singular forms “a”, “an”, and “the”
include both singular and plural referents unless the context
clearly dictates otherwise.

The term “optional” or “optionally” means that the sub-
sequent described event, circumstance, or substituent may or
may not occur, and that the description includes instances
where the event or circumstance occurs and instances where
it does not.

The recitation of numerical ranges by endpoints includes
all numbers and fractions subsumed within the respective
ranges, as well as the recited endpoints.

The terms “about” or “approximately” as used herein
when referring to a measurable value such as a parameter, an
amount, a temporal duration, and the like, are meant to
encompass variations of and from the specified value, such
as variations of +/-10% or less, +/=5% or less, +/-1% or
less, and +/-0.1% or less of and from the specified value,
insofar such variations are appropriate to perform in the
disclosed invention. It is to be understood that the value to
which the modifier “about” or “approximately” refers is
itself also specifically, and preferably, disclosed.

As used herein, a “biological sample” may contain whole
cells and/or live cells and/or cell debris. The biological
sample may contain (or be derived from) a “bodily fluid”.
The present invention encompasses embodiments wherein
the bodily fluid is selected from amniotic fluid, aqueous
humour, vitreous humour, bile, blood serum, breast milk,
cerebrospinal fluid, cerumen (earwax), chyle, chyme, endo-
lymph, perilymph, exudates, feces, female ejaculate, gastric
acid, gastric juice, lymph, mucus (including nasal drainage
and phlegm), pericardial fluid, peritoneal fluid, pleural fluid,
pus, rheum, saliva, sebum (skin oil), semen, sputum, syn-
ovial fluid, sweat, tears, urine, vaginal secretion, vomit and
mixtures of one or more thereof. Biological samples include
cell cultures, bodily fluids, cell cultures from bodily fluids.
Bodily fluids may be obtained from a mammal organism, for
example by puncture, or other collecting or sampling pro-
cedures.

The terms “subject,” “individual,” and “patient” are used
interchangeably herein to refer to a vertebrate, preferably a
mammal, more preferably a human. Mammals include, but
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are not limited to, murines, simians, humans, farm animals,
sport animals, and pets. Tissues, cells, and their progeny, of
a biological entity obtained in vivo or cultured in vitro are
also encompassed.

Various embodiments are described hereinafter. It should
be noted that the specific embodiments are not intended as
an exhaustive description or as a limitation to the broader
aspects discussed herein. One aspect described in conjunc-
tion with a particular embodiment is not necessarily limited
to that embodiment and can be practiced with any other
embodiment(s). Reference throughout this specification to
“one embodiment”, “an embodiment,” “an example embodi-
ment,” means that a particular feature, structure, or charac-
teristic described in connection with the embodiment is
included in at least one embodiment of the present invention.
Thus, appearances of the phrases “in one embodiment,” “in
an embodiment,” or “an example embodiment™ in various
places throughout this specification are not necessarily all
referring to the same embodiment but may. Furthermore, the
particular features, structures or characteristics may be com-
bined in any suitable manner, as would be apparent to a
person skilled in the art from this disclosure, in one or more
embodiments. Furthermore, while some embodiments
described herein include some, but not other, features
included in other embodiments, combinations of features of
different embodiments are meant to be within the scope of
the invention. For example, in the appended claims, any of
the claimed embodiments can be used in any combination.

All publications, published patent documents, and patent
applications cited herein are hereby incorporated by refer-
ence to the same extent as though each individual publica-
tion, published patent document, or patent application was
specifically and individually indicated as being incorporated
by reference.

Overview

Embodiments disclosed herein provide a general, scal-
able, high-throughput, and high-resolution approach for
experimental dissection of regulatory regions and driver
nucleotides in the context of human biology and disease.

The present disclosure includes methods for performing
HiDRA (High-resolution Dissection of Regulatory Activ-
ity), a novel high-resolution global screen for transcriptional
regulatory activity in accessible regions, enabling high-
efficiency, high-throughput, and high-resolution inference of
regulatory activity. The methods may comprise extracting
accessible DNA regions from ATAC-Seq, size-selecting for
constructs between about 150 and about 500nt long and
inserting the selected constructs downstream of an episomal
reporter gene to test their activity and exploit their overlap-
ping nature for high-resolution inferences. The approach
overcomes the construct-length and region count limitations
of synthesis-based technologies, and the ATAC-seq selection
of open chromatin regions concentrates the signal on likely
regulatory regions and enables high-resolution inferences.
Altogether, enhancer constructs of comparable length to
low-throughput studies may be tested, achieving high reso-
Iution dissection of systematic perturbation. In some
embodiments, the methods allow for testing millions of
unique fragments in a single experiment.

In some embodiments, HIDRA may be applied to infer
genome-wide regulatory activity across ~7 million DNA
fragments, e.g., selected from accessible chromatin in the
GM12878 lymphoblastoid cell line, resulting in 95,000
active fragments clustering in 65,000 regions showing sig-
nificant regulatory function. These fragments may be
enriched for endogenous active histone marks (including
H3K9ac, H3K27ac), regulatory sequence motifs, and

29 <
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regions bound by immune regulators. The ATAC-based
selection approach may result in highly-overlapping frag-
ments, with up to 370 fragments per region, enabling
pinpointing driver regulatory nucleotides. Overall, HIDRA
may provide a general, scalable, high-throughput, high-
resolution (~50 nucleotides) approach for experimental dis-
section of regulatory regions and driver nucleotides in the
context of human biology and disease.

In some embodiments, the methods for identifying
genomic enhancer regulatory elements may comprise frag-
menting DNA molecules; amplifying the fragments; enrich-
ing the amplified fragments; integrating the enriched frag-
ments into a vector to obtain a vector library; introducing
(e.g., by transfecting or transducing) the vector library in a
population of cells, thereby generating transcripts of one or
more vector in the library; sequencing the transcripts; and
identifying transcripts that have enhancer activity.

In certain embodiments, the methods for identifying
genomic enhancer regulatory elements may comprise frag-
menting DNA molecules to generate fragments with over-
hanging ends; filling in the overhanging ends with labeled
nucleotide(s); joining the overhanging ends; isolating and
amplifying the joined fragments; integrating the amplified
fragments into a vector to generate a vector library, intro-
ducing (e.g., by transfecting or transducing) the vector
library to a population of cells thereby generating transcripts
of one or more vector in the library; sequencing the tran-
scripts; and identifying transcripts that have enhancer activ-
ity.

Nucleic Acids Fragmentation

In certain embodiments, the methods herein comprise
fragmenting nucleic acids from a population of cells. In
some cases, the population of cells may be cells in a cell line.
Any method of fragmenting DNA, such that fragments are
derived from “open” (i.e., accessible) chromatin may be
used. In preferred embodiments, transposition is used to
fragment genomic DNA to obtain fragmented genomic DNA
(tagmented fragments). Transposition is performed on a
population of cells. The cells are preferably in a homog-
enous single cell suspension. Methods of obtaining a
homogenous single cell suspension from a biological sample
(e.g., cell culture, tissue sample, blood) are well known in
the art. In certain embodiments, fragmenting genomic DNA
at accessible chromatin is performed according to methods
known in the art (see, e.g., Buenrostro et al., 2015, ATAC-
seq).

In an exemplary embodiment, fragmenting the nucleic
acids comprises a method comprising transposition and PCR
amplification. An exemplary protocol may include any of
the following reagents or steps:

Materials

Phosphate Buffered Saline (PBS)

Molecular biology grade IGEPAL CA-630

Lysis buffer (10 mM Tris-HCL, pH 7.4, 10 mM NaCl, 3

mM MgCl,, 0.1% IGEPAL CA-630)
2x TD (2x reaction buffer, [llumina Cat #FC-121-1030)
TDE1 (Nextera TnS Transposase, [llumina Cat #FC-121-
1030)
Qiagen MINELUTE™ PCR Purification Kit
NEBNEXT™ High-Fidelity 2x PCR Master Mix (New
England Labs Cat #M0541)

25 uM Custom Nextera PCR Primer 1

25 uM Custom Nextera PCR Primer 2

100x SYBR® Green I (Invitrogen Cat #S-7563)

0.2-ml PCR tubes

PCR Thermal cycler
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qPCR consumables, products are specific to the instru-

ment
Cell Preparation

1. Harvest cells, protocol to be defined by the user.

Cells should be intact and in a homogenous single cell
suspension.

2. Spin down 50,000 cells at 500xg for 5 min, 4° C.

The number of cells at this step is crucial as the trans-
posase to cell ratio sets the distribution of DNA frag-
ments generated. See Critical Parameters.

3. Wash once with 50 pl of cold 1x PBS buffer. Spin down

at 500xg for 5 min, 4° C.

4. Gently pipette to resuspend the cell pellet in 50 pl of
cold lysis buffer. Spin down immediately at 500xg for 10
min, 4° C.

This step provides lysis of cells with non-ionic detergent

and generates of a crude nuclei preparation.

5. Discard the supernatant, and immediately continue to
transposition reaction.

Transposition Reaction and Purification

1. Make sure the cell pellet is set on ice.

2. To make the transposition reaction mix, combine the
following:

25 ul TD (2x reaction buffer)

2.5 pl TDE1 (Nextera Tn5 Transposase)

22.5 pl Nuclease Free H,O

3. Resuspend nuclei in the transposition reaction mix.

4. Incubate the transposition reaction at 37° C. for 30 min.

Gentle mixing may increase fragment yield.

5. Immediately following transposition, purify using a
Qiagen MINELUTE™ PCR Purification Kit.

6. Elute transposed DNA in 10 pl Elution Buffer (10 mM
Tris buffer, pH 8).

7. Purified DNA can be stored at -20° C.

This is a convenient stopping point. Please note that these
DNA fragments are not PCR amplifiable if melted at
this point.

PCR Amplification

1. To amplify transposed DNA fragments, combine the
following in a 0.2 ml PCR tube:

10 ul Transposed DNA

10 ul Nuclease Free H,O

2.5 pl 25 pM Custom Nextera PCR Primer 1

2.5 ul 25 pM Custom Nextera PCR Primer 2 (Contains
Barcode)

25 ul NEBNEXT™ High-Fidelity 2x PCR Master Mix
A complete list of primers is available in Buenrostro et

al. Care should be taken to ensure that samples are
barcoded appropriately for subsequent pooling and
sequencing.

2. Thermal cycle as follows:

1 cycle of 72° C. for 5 min, 98° C. for 30 sec

5 cycles of 98¢ C. for 10 sec, 63° C. for 30 sec, 72° C. for
1 min
This first 5 minute extension at 72° C. is critical to

allow extension of both ends of the primer after
transposition, thereby generating amplifiable frag-
ments (see figure). This short pre-amplification step
ensures that downstream quantitative PCR (qPCR)
quantification will not change the complexity of the
original library.

3. To reduce GC and size bias in PCR, the appropriate
number of PCR cycles is determined using qPCR allowing
us to stop amplification prior to saturation. To run a gPCR
side reaction, combine the following in qPCR compatible
consumables:
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5 wl of previously PCR amplified DNA

4.41 pl Nuclease Free H,O

0.25 pl 25 pM Customized Nextera PCR Primer 1

0.25 pl 25 pm Customized Nextera PCR Primer 2

0.09 ul 100x SYBR® Green 1

5 ul NEBNEXT™ High-Fidelity 2x PCR Master Mix

4. Using a qPCR instrument, cycle as follows:

1 cycle of 98° C. for 30 sec

20 cycles of 98° C. for 10 sec, 63° C. for 30 sec, 72° C.
for 1 min

5. To calculate the additional number of cycles needed,
plot linear Rn versus cycle and determine the cycle number
that corresponds to %4 of maximum fluorescent intensity.

The purpose of this qPCR step is to generate libraries that
are minimally PCR amplified Most PCR bias comes
from later PCR cycles that occur during limited reagent
concentrations. This determination of the optimal num-
ber of cycles to amplify the library reduces artifacts
associated with saturation PCR of complex libraries.

6. Run the remaining 45 pl PCR reaction to the cycle
number determined by qPCR. Cycle as follows:

1 cycle of 98° C. for 30 sec

N cycles of 98° C. for 10 sec, 63° C. for 30 sec, 72° C.
for 1 min
Cycle for an additional N cycles, where N is deter-

mined using qPCR.

7. Purity amplified library using Qiagen MINELUTE™
PCR Purification Kit. Elute the purified library in 20 pl
Elution Buffer (10 mM Tris Buffer, pH 8). Be sure to dry the
column before adding elution buffer.

The concentration of DNA eluted from the column ought
to be approximately 30 nM, however 5-fold variation is
possible and not detrimental.

Type of Nucleic Acids

The nucleic acids herein may comprise DNA, RNA, a
mixture thereof, or a hybrid thereof. The nucleic acids may
be genomic nucleic acids, e.g., genomic DNA. Alternatively
or additionally, the nuclei acids may comprise nucleic acids
from a organelle, e.g., mitochondria, ribosomes, or plastids.
In some examples, the nucleic acids may comprise mito-
chondrial DNA. In some examples, the nucleic acids may
comprise a mixture of genomic DNA and mitochondrial
DNA. In some examples, the nucleic acids may comprise
genomic DNA fragmented at open chromatin (e.g., tagmen-
tation).

Methods of Fragmentation

The fragmentation can be done by a variety of methods,
such as enzymatic and chemical cleavage. For example,
DNA can be fragmented using an endonuclease that cuts a
specific sequence of DNA and leaves behind a DNA frag-
ment with a 5' overhang, thereby yielding fragmented DNA.
In other examples an endonuclease can be selected that cuts
the DNA at random spots and yields overhangs or blunt
ends. In some embodiments, fragmenting the nucleic acid
present in the one or more cells comprises enzymatic
digestion with an endonuclease that leaves 5' overhanging
ends. Enzymes that fragment, or cut, nucleic acids and yield
an overhanging sequence are known in the art and can be
obtained from such commercial sources as New England
BioLabs® and Promega®. One of ordinary skill in the art
can choose the restriction enzyme without undue experi-
mentation. One of ordinary skill in the art will appreciate
that using different fragmentation techniques, such as dif-
ferent enzymes with different sequence requirements, will
yield different fragmentation patterns and therefore different
nucleic acid ends. The process of fragmenting the sample
can yield ends that are capable of being joined.
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Nuclei Isolation

In some embodiments, the methods comprise isolating
nuclei from the population of cells. The isolation of nuclei
may be performed before fragmenting the nucleic acids. In
certain embodiments, nuclei are isolated from the population
of cells before fragmenting genomic DNA (e.g., a tissue
sample). In certain embodiments, ATAC-seq as described
herein is used to obtain fragments of genomic DNA present
in accessible chromatin in a cell. The ATAC-seq protocol
described herein utilizes a buffer that results in a crude
nuclei preparation. In certain embodiments, tissue samples
to be analyzed are frozen or fixed and nuclei are isolated
from the frozen or fixed tissue. The nuclei isolated from
frozen or fixed tissue may be processed according to a
protocol described herein to obtain genomic fragments.
Fragment Length

The nucleic acid fragments may be from about 50 base
pairs (bp) to 5000 bp in length. In some cases, the nucleic
acid fragments may be from about 100 bp to about 1000 bp
in length, although longer and shorter fragments are con-
templated. In some embodiments, the nucleic acid fragments
are from about 100 bp to about 1000 bp in length, such as
about 100, about 150, about 200, about 250, about 300,
about 350, about 400, about 450, about 500, about 550,
about 600, about 650, about 700, about 750, about 800,
about 850, about 900, about 950 or about 1000 base pairs in
length, for example form about 100 to about 1000, about 200
to about 800, about 500 to about 850, about 100 to about 500
and about 300 to about 775 base pairs in length and the like.
In specific examples, the nucleic acid fragments are selected
for fragments that are between about 300 and 500 base pairs
in length.
Overhang

In certain embodiments, nucleic acids, e.g., genomic
DNA, are fragmented to yield nucleic acid fragments with
overhanging ends, such as a 5' overhanging end or a 3'
overhanging end. In some cases, the nucleic acids fragments
have a 5' overhanging end on one end. In some cases, the
nucleic acid fragments have a 3' overhanging end on one
end. In some cases, the nucleic acid fragments have a 5'
overhanging end on one end and a 5' overhanging end on
another end. In some cases, the nucleic acid fragments have
a 3' overhanging end on one end and a 3' overhanging end
on another end. In some cases, the nucleic acid fragments
have a 3' overhanging end on one end and a 5' overhanging
end on another end.
Filling Overhang Ends

The methods may further comprise filling in one or more
of the overhanging ends of the nucleic acid fragments with
at least one nucleotide, e.g., labeled nucleotide. The over-
hanging ends may be filled in, for example using a DNA
polymerase, such as available from a commercial source.
The filled in nucleic acid fragments are thus blunt ended at
the end filled 5' end. The at least one nucleotide filled in the
fragments may be labeled nucleotide described herein that
allow for capturing and detecting of the fragments.
Joining Overhang Ends

The fragments may be then end joined at the filled in end,
for example, by ligation using a commercially available
nucleic acid ligase, or otherwise attached to another frag-
ment that is in close physical proximity. The ligation, or
other attachment procedure, for example nick translation or
strand displacement, creates one or more end joined nucleic
acid fragments having a junction, for example a ligation
junction, wherein the site of the junction, or at least within
a few bases, includes one or more labeled nucleic acids, for
example, one or more fragmented nucleic acids that have
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had their overhanging ends filled and joined together. While
this step typically involves a ligase, it is contemplated that
any means of joining the fragments can be used, for example
any chemical or enzymatic means. Further, it is not neces-
sary that the ends be joined in a typical 3'-5' ligation.

Typically, the end joined fragments are desired to be
between about 100 and about 1000 bases in length, although
longer and shorter fragments are contemplated. In some
embodiments, the nucleic acid fragments are between about
100 and about 1000 bases in length, such as about 100, about
150, about 200, about 250, about 300, about 350, about 400,
about 450, about 500, about 550, about 600, about 650,
about 700, about 750, about 800, about 850, about 900,
about 950 or about 1000 bases in length, for example form
about 100 to about 1000, about 200 to about 800, about 500
to about 850, about 100 to about 500 and about 300 to about
775 base pairs in length and the like. In specific examples,
end joined fragments are selected for fragments that are
between about 300 and 500 base pairs in length.

Label and Cross-Link

To identify the created ligation junction, a labeled nucleo-
tide may be used. In one example embodiment, one or more
labeled nucleotides are incorporated into the ligated junc-
tion. For example, the overhanging ends may be filled in
using a DNA polymerase that incorporates one or more
labeled nucleotides during the filling in step described
above.

The nucleic acid fragments may be held in a fixed position
relative to one another. In some examples, the nucleic acid
fragments may be fixed in position relative one another by
crosslinking. In some embodiments, the nucleic acid frag-
ments are cross-linked, either directly, or indirectly, and the
information about spatial relationships between the different
nucleic acid fragments in the cell, or cells, is maintained
during this joining step, and substantially all of the end
joined nucleic acid fragments formed at this step were in
spatial proximity in the cell prior to the crosslinking step. In
certain embodiments, the spatial relationships in the cell is
locked in, for example cross-linked or otherwise stabilized.
For example, a sample of cells can be treated with a
cross-linker to lock in the spatial information or relationship
about the molecules in the cells, such as the DNA in the cell.

In some embodiments, the methods further comprise
reversing the crosslinking. In these cases, the crosslinking
may be performed using a reversible crosslinking agent. In
one example, reversing the crosslinking may be performed
by contacting the sample with Proteinase K, e.g., at an
elevated temperature, such as about 45° C.
Methods/Reagents of Crosslinking

In some embodiments, the crosslinking is performed by
treating the nucleic acid fragments with one or more cross-
linking agents. As used herein the term “crosslinking agent”
refers to a chemical agent or even light, which facilitates the
attachment of one molecule to another molecule. Crosslink-
ing agents can be protein-nucleic acid crosslinking agents,
nucleic acid-nucleic acid crosslinking agents, and protein-
protein crosslinking agents. Examples of such agents are
known in the art. In some embodiments, a crosslinking agent
is a reversible crosslinking agent. In some embodiments, a
crosslinking agent is a non-reversible crosslinking agent. In
some cases, the crosslinking agents may be chemical cross-
linkers. Examples of the chemical crosslinkers include alde-
hyde, epoxy, N-hydroxysuccinimide, halogen, imidate,
thiol, and quinone. In some examples, the chemical cross-
linker may be aldehyde. In some examples, the chemical
crosslinker may be formaldehyde.
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It has been found however, that in some situations, it is not
necessary to hold the nucleic acids in place using a chemical
fixative or crosslinking agent. Thus, in some embodiments,
no crosslinking agent is used. In still other embodiments, the
nucleic acids are held in position relative to each other by the
application of non-crosslinking means, such as by using agar
or other polymer to hold the nucleic acids in position. The
labeled nucleotide is present in the junction is used to isolate
or enrich the one or more end joined nucleic acid fragments
using the labeled nucleotide.

In some embodiments, in order to create discrete portions
of nucleic acid that can be joined together in subsequent
steps of the methods, the nucleic acids present in the cells,
such as cross-linked cells, are fragmented.

Isolating Joined Fragments

In some embodiments, the methods further comprise
isolating the nucleic acid fragments, e.g., the joined nucleic
acid fragments. The isolation may be performed using the
labeled nucleotide(s) filled in the fragments, e.g., by cap-
turing the fragments with the labeled nucleotide(s). In some
embodiments, the end joined DNA that includes a labeled
nucleotide is captured with a specific binding agent that
specifically binds a capture moiety, such as biotin, on the
labeled nucleotide. In some embodiments, the capture moi-
ety is adsorbed or otherwise captured on a surface. In
specific embodiments, the end target joined DNA is labeled
with biotin, for instance by incorporation of biotin-14-CTP
or other biotinylated nucleotide during the filling in of the 5'
overhang, for example with a DNA polymerase, allowing
capture by streptavidin. Other means for labeling, capturing,
and detecting nucleic acid probes include: incorporation of
aminoallyl-labeled nucleotides, incorporation of sulthydryl-
labeled nucleotides, incorporation of allyl- or azide-contain-
ing nucleotides, and many other methods described in Bio-
conjugate Techniques (2nd Ed), Greg T. Hermanson,
Elsevier (2008), which is specifically incorporated herein by
reference. In some embodiments the specific binding agent
has been immobilized for example on a solid support,
thereby isolating the target nucleic molecule of interest. By
“solid support or carrier” is intended any support capable of
binding a targeting nucleic acid. Well-known supports or
carriers include glass, polystyrene, polypropylene, polyeth-
ylene, dextran, nylon, amylases, natural and modified cel-
Iuloses, polyacrylamides, agarose, gabbros and magnetite.
The nature of the carrier can be either soluble to some extent
or insoluble for the purposes of the present disclosure. The
support material may have virtually any possible structural
configuration so long as the coupled molecule is capable of
binding to targeting probe. Thus, the support configuration
may be spherical, as in a bead, or cylindrical, as in the inside
surface of a test tube, or the external surface of a rod.
Alternatively, the surface may be flat such as a sheet or test
strip. After capture, the end joined nucleic acid fragments
are available for amplification (e.g., PCR), wherein the
amplified products include universal ends for use in cloning
into the regulatory element assay vector described herein.
Identifying Regulatory Elements at Genome-Wide Contact
Domains

In certain embodiments, fragmenting genomic DNA is
performed in order to detect regulatory elements present at
contact domains (also called “topologically constrained
domains”, “topologically associated domains”, or “physical
domains™) (Dixon et al., 2012 Nature 485, 376-380; Lieber-
man-Aiden et al., 2009 Science 326, 289-293; Nora et al.,
2012 Nature 485, 381-385; Rao et al., 2014 Cell 159,
1665-1680). Contact domains as used herein refer to con-
tiguous genomic intervals in which there is an enhanced
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probability of contact among all loci. Contact domains range
in size from tens of kilo bases to several megabases, with a
median size of 185 kb. Many contact domains are also “loop
domains”—that is, contact domains whose boundaries are
demarcated by the endpoints of a chromatin loop. Chromatin
fibers are arranged in living cells as independent chromatin
loops anchored to the nuclear matrix or chromosomal scaf-
fold. Specific DNA sequences act as anchors for these loops.
Genes are configured into looped structures or chromatin
loops that juxtapose regulatory elements to activate or
repress transcription. Moreover, chromatin loop formation is
the result of the presence of a pair of CTCF binding motifs
in the convergent orientation on opposite strands of the
DNA. Not being bound by a theory, contact domains are
enriched for regulatory sequences as compared to the entire
genome.

In certain embodiments, regulatory elements comprising
genomic contact domains in a cell may be identified. As
described herein, fragments may be obtained using in situ
Hi-C methods (see, e.g., W02016089920). The methods
include providing a sample of one or more cells or nuclei
and following a method of Hi-C as described previously.
Amplification of Fragments

Methods herein may comprise amplifying the nucleic acid
fragments. As used herein the term “amplifying” or “ampli-
fication” refers to a method to increase the number of copies
of a nucleic acid molecule, such as one or more tagmented
fragments or end joined nucleic acid fragments that includes
a junction, such as a ligation junction. The resulting ampli-
fication products are called “amplicons.” Amplification of a
nucleic acid molecule (such as a DNA or RNA molecule)
refers to use of a technique that increases the number of
copies of a nucleic acid molecule (including fragments).

An example of amplification is the polymerase chain
reaction (PCR), in which a sample is contacted with a pair
of oligonucleotide primers under conditions that allow for
the hybridization of the primers to a nucleic acid template in
the sample. The primers are extended under suitable condi-
tions, dissociated from the template, re-annealed, extended,
and dissociated to amplify the number of copies of the
nucleic acid. This cycle can be repeated.

Other examples of in vitro amplification techniques
include quantitative real-time PCR; reverse transcriptase
PCR (RT-PCR); real-time PCR (RT PCR); real-time reverse
transcriptase PCR (1t RT-PCR); nested PCR; strand dis-
placement amplification (see U.S. Pat. No. 5,744,311); tran-
scription-free isothermal amplification (see U.S. Pat. No.
6,033,881, repair chain reaction amplification (see WO
90/01069); ligase chain reaction amplification (see Euro-
pean patent publication EP-A-320 308); gap filling ligase
chain reaction amplification (see U.S. Pat. No. 5,427,930);
coupled ligase detection and PCR (see U.S. Pat. No. 6,027,
889); and NASBA™ RNA transcription-free amplification
(see U.S. Pat. No. 6,025,134) amongst others.

In certain embodiments, the nucleic acid fragments may
be amplified by an error-prone PCR. Error prone PCR is a
method by which random mutants may be inserted into any
piece of DNA. The technique is based on PCR (polymerase
chain reaction). Normally the replication of DNA by the
polymerase is extremely specific. The difference in error
prone PCR is that the fidelity of the Tag DNA polymerase is
modulated by alteration of the composition of the reaction
buffer. In these conditions, the polymerase makes mistakes
in the base paring during DNA synthesis that results in the
introduction of errors in the newly synthesized complemen-
tary DNA strand. By carefully controlling the buffer com-
position the frequency of mis-incorporation of nucleotide
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bases, and therefore the number of errors introduced into the
sequence may be regulated. For the technique to work
properly, a Taq DNA polymerase which does not have
proof-reading ability may be used. This proof-reading, or
auto-correction of nucleotide sequence, is a property that is
found in many commercially available Taq DNA poly-
merases. Use of a proof-reading DNA polymerase in an error
prone PCR reaction may result in the automatic correction of
the mismatched nucleotides, and any mutations introduced
during the reaction may be lost.

The nucleic acid fragments may be amplified in an
amplification reaction. The reaction may comprise one or
more reagents for amplification. In some examples, the
reaction may comprise nucleic acid polymerase, e.g., DNA
polymerase. In certain examples, the reaction may comprise
one or more mutagens. Examples of the mutagens include
mitomycin, nitrous acid, photoactivated psoralens, sodium
bisulfite, hydroxylamine, hydrazine or formic acid, ana-
logues of nucleotide precursors, e.g., nitrosoguanidine,
5-bromouracil, 2-aminopurine, or acridine, or any combina-
tion thereof.

Enrichment and Selection

The method may comprise enriching the nucleic acid
fragments, e.g., the amplified nucleic acid fragments. The
enrichment may be performed by selecting the nucleic acid
fragments according to certain characteristics. For example,
the nucleic acid fragments may be selected by size, affinity,
charge, label, or any combination thereof.

In certain embodiments, the nucleic acid fragments may
be selected by size For example, the nucleic acid fragments
may be selected for size between about 50 and about 5000,
between about 100 and about 2000, between about 100 and
about 1000, between about 150 and about 500, between
about 200 and about 500, between about 230 and about 500,
between about 50 and about 150, between about 100 and
about 200, between about 150 and about 250, between about
200 and about 300, between about 250 and about 350,
between about 300 and about 400, between about 350 and
about 450, between about 400 and about 500, between about
450 and about 550, or between about 500 and about 600
nucleotides long. In certain examples, the nucleic acid
fragments may be selected for size between about 150 and
about 500 nucleotides long. In certain examples, the nucleic
acid fragments may be selected for size between about 230
and about 500 nucleotides long.

In certain embodiments, fragments are manually loaded
onto a gel and fragments corresponding to the correct size
are cut from the gel and purified as is known in the art. In
certain embodiments, automated size selection using pre-
cast, disposable gel cassettes may be used (see, e.g., Quail
et al., (2012) Evaluation and optimisation of preparative
semi-automated electrophoresis systems for [llumina library
preparation. Electrophoresis. Dec; 33(23):3521-8). In cer-
tain embodiments, an automated optical electrophoretic sys-
tem is used to select for fragment size (see, e.g., Pippin Prep
(Sage Science; Beverly, MA, USA).

Removing Mitochondrial DNA

The methods may further comprise removing non-ge-
nomic nucleic acids from the nucleic acid fragments. In
some embodiments, the methods comprise removing mito-
chondrial DNA from the nucleic acid fragments. In certain
embodiments, mitochondrial DNA is removed to reduce the
cost of a vector library containing high amounts of mito-
chondrial DNA. In some examples, ATAC-seq is a high-
throughput sequencing technique that identifies open chro-
matin. Depending on the cell type, ATAC-seq samples may
contain ~20-80% of mitochondrial sequencing reads.
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In certain embodiments, removal of mitochondrial DNA
is performed before amplifying the nucleic acid fragments.
In certain embodiments, removal of mitochondrial DNA is
performed after amplifying the nucleic acid fragments. In
certain embodiments, removal of mitochondrial DNA is
performed before the enrichment of the amplified nucleic
acid fragments. In certain embodiments, removal of mito-
chondrial DNA is performed after the enrichment of the
amplified nucleic acid fragments. In certain embodiments,
removal of mitochondrial DNA is performed before the
integration of the enriched nucleic acid fragments. In certain
embodiments, removal of mitochondrial DNA is performed
after the integration of the enriched nucleic acid fragments.
In certain examples, removal of mitochondrial DNA is
performed after the enrichment of the amplified nucleic acid
fragments and before the integration of the enriched nucleic
acid fragments.

Removal of mitochondrial DNA may be performed using
a reagent targeting mitochondrial DNA. The reagent may be
a CRISPR system comprising guide sequences targeting the
mitochondrial DNA sequences, wherein the mitochondrial
DNA is cleaved. For example, Montefiori, L. et al. 2017
describes a method of reducing mitochondrial DNA using a
CRISPR/Cas9 system applicable to the present invention.
Mitochondrial fragment depletion may use about 50, 75,
100, or 200 or more guide sequences. Not being bound by
a theory, designing a denser set of guide sequences can
achieve greater amounts of depletion to save on high-
throughput sequencing costs later.

In some embodiments, removal of mitochondrial DNA
may be performed by positive selection using labeled
nucleic acid molecules synthesized to capture pre-deter-
mined regions of accessible chromatin or promoter and
enhancer sequences. The labeled nucleic acid molecules
may be nucleic fragments filled in with labeled nucleotide
(s).

Integration of Fragment to Vectors

The methods may further comprise integrating the nucleic
acid fragments, e.g., the enriched fragments into a vector. In
some cases, such integration generates a vector library. The
integration may be performed using molecular cloning
methods known in the art. For example, the integration may
be performed by digesting the fragments and the vector
using endonuclease to great ligatable ends and ligating the
digested fragments and the digested vector using ligase.
Vectors

In certain embodiments, the vectors are for delivering or
introducing in a cell a reporter gene and library fragment as
described herein, but also for propagating these components
(e.g. in prokaryotic cells). As used herein, a “vector” is a tool
that allows or facilitates the transfer of an entity from one
environment to another. It is a replicon, such as a plasmid,
phage, or cosmid, into which another DNA segment may be
inserted so as to bring about the replication of the inserted
segment. Generally, a vector may be capable of replication
when associated with the proper control elements. In gen-
eral, the term ‘““vector” refers to a nucleic acid molecule
capable of transporting another nucleic acid to which it has
been linked. Vectors include, but are not limited to, nucleic
acid molecules that are single-stranded, double-stranded, or
partially double-stranded; nucleic acid molecules that com-
prise one or more free ends, no free ends (e.g. circular);
nucleic acid molecules that comprise DNA, RNA, or both;
and other varieties of polynucleotides known in the art. One
type of vector is a “plasmid,” which refers to a circular
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double stranded DNA loop into which additional DNA
segments can be inserted, such as by standard molecular
cloning techniques.

Another type of vector is a viral vector. For example, such
vectors may have virally-derived DNA or RNA sequences
are present in the vector for packaging into a virus (e.g.
retroviruses, replication defective retroviruses, adenovi-
ruses, replication defective adenoviruses, and adeno-associ-
ated viruses (AAVs)). Viral vectors also include polynucle-
otides carried by a virus for transfection into a host cell. The
viral vectors may be non-integrating vectors. For example,
certain vectors are capable of autonomous replication in a
host cell into which they are introduced (e.g. bacterial
vectors having a bacterial origin of replication and episomal
mammalian vectors). The viral vectors may be integrating
viral vectors. For examples, Other vectors (e.g., non-epi-
somal mammalian vectors) are integrated into the genome of
a host cell upon introduction into the host cell, and thereby
are replicated along with the host genome. In certain
examples, a vector may be a lentiviral vector (e.g., an
integrating or non-integrating lentiviral vector). Moreover,
certain vectors are capable of directing the expression of
genes to which they are operatively-linked. Such vectors are
referred to herein as “expression vectors.” In certain
embodiments, the methods utilize episomal vectors.

Exemplary vectors are described in the art (see e.g.,
Arnold et al., Genome-Wide Quantitative Enhancer Activity
Maps Identified by STARR-seq, Science 1 Mar. 2013: Vol.
339, Issue 6123, pp. 1074-1077; and Muerdter et al.,
STARR-seq—Principles and applications, Genomics Vol-
ume 106, Issue 3, September 2015, Pages 145-150).
Reporter Genes

In certain embodiments, the vectors encode a reporter
gene and an untranslated sequence (UTR) that when intro-
duced into a cell of the present invention has low (basal) or
non-existent expression. Upon introduction of an enhancer
sequence into the vector, the vector expresses the transcript
above basal levels, wherein the transcript includes the
reporter gene sequence and enhancer sequence. One skilled
in the art can generate a vector as described herein.

In certain embodiments, the vector may encode a reporter
gene. The reporter gene encoded by the vector may encode
a detectable marker. In certain embodiments, the detectable
marker is a fluorescent protein such as green fluorescent
protein (GFP), enhanced green fluorescent protein (EGFP),
red fluorescent protein (RFP), blue fluorescent protein
(BFP), cyan fluorescent protein (CFP), yellow fluorescent
protein (YFP), mCherry, tdTomato, DsRed-Monomer,
DsRed-Express, DSRed-Express2, DsRed2, AsRed2,
mStrawberry, mPlum, mRaspberry, HcRedl, E2-Crimson,
mOrange, mOrange2, mBanana, ZsYellowl, TagBFP,
mTagBFP2, Azurite, EBFP2, mKalamal, Sirius, Sapphire,
T-Sapphire, ECFP, Cerulean, SCFP3A, mTurquoise, mTur-
quoise2, monomelic Midoriishi-Cyan, TagCFP, niTFP1,
Emerald, Superfolder GFP, Monomeric Azami Green,
TagGFP2, mUKG, mWasabi, Clover, mNeonGreen, Citrine,
Venus, SYFP2, TagYFP, Monomeric Kusabira-Orange,
mKOk, mKO02, mTangerine, mApple, mRuby, mRuby?2,
HcRed-Tandem, mKate2, mNeptune, NiFP, mKeima Red,
LSS-mKatel, LSS-m ate2, mBeRFP, PA-GFP, PAmCherryl1,
PATagRFP, TagRFP6457, IFP1.2, iRFP, Kaede (green),
Kaede (red), KikGR1 (green), KikGR1 (red), PS-CFP2,
mFEos2 (green), mEos2 (red), mEos3.2 (green), mEos3.2
(red), PSmOrange, Dronpa, Dendra2, Timer, AmCyanl, a
variant thereof, a fragment thereof, or a combination thereof.
In certain embodiments, the detectable marker is a cell
surface marker. In other instances, the cell surface marker is
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a marker not normally expressed on the cells, such as a
truncated nerve growth factor receptor tNGFR), a truncated
epidermal growth factor receptor (tEGFR), CD8, truncated
CDS8, CD19, truncated CD19, a variant thereof, a fragment
thereof, a derivative thereof, or a combination thereof.

Enhancer activity is directly linked to the underlying
DNA sequence and measured as presence of the resulting
reporter transcripts among cellular RNA by deep sequenc-
ing. Specifically, DNA fragments are cloned downstream of
a core promoter and into the 3' UTR of a reporter gene.
Active enhancers will transcribe themselves and become
part of the resulting reporter transcripts. This setup allows
the simultaneous testing of millions of DNA sequences in a
highly complex reporter library and also ensures that the
identified sequences act as bona fide enhancers (rather than
for example promoters) as they activate transcription from a
remote position.

In some embodiments, the methods comprise detecting
expression of the reporter gene and sorting cells in the cell
line based on expression levels of the reporter gene. In
certain embodiments, cell sorting (e.g., FACS) may be used
for enriching cells expressing a detectable marker. Not being
bound by a theory, sorting may allow for sequencing of only
transcripts having specific levels of enhancer activity.
UTR

In some embodiments, a nucleic acid fragment may be
integrated into an untranslated region (UTR) of the reporter
gene. A UTR may be a nucleotide sequence (e.g., of a
mRNA or DNA sequence or chemical analog thereof) that is
transcribed into a mRNA in which the nucleotides corre-
sponding to the open reading frame (“ORF”) are not present.
In some embodiments, the UTR is the region of a mRNA
that is not translated into protein. In one embodiment, the
UTR is either or both a 5-UTR, i.e., upstream of the ORF
coding region, or a 3'-UTR, i.e., downstream of the ORF
coding region. For example, the nucleic acid fragment may
be integrated into an untranslated region (UTR) downstream
of the reporter gene. In certain examples, the nucleic acid
fragment may be integrated into an untranslated region
(UTR) upstream of the reporter gene.

Introduction of Nucleic Acids to Cells

In some embodiments, the methods may comprise intro-
ducing nucleic acids to a population of cells. The nucleic
acids to be introduced may be the nucleic acid fragments,
vectors, or vectors integrated with the nucleic acid fragments
(e.g., the vector library described herein). In some examples,
nucleic acids to be introduced may be the vector library.
After introduced into cells, the nucleic acids, e.g., DNA,
may express one or more transcripts.

Nucleic acids may be introduced to cells using molecular
cloning techniques known in the art. Examples of methods
of introducing nucleic acids into cells include transfection,
transduction, electroporation, and microinjection. In some
cases, the nucleic acids are introduced into cells by trans-
fection. In some cases, the nucleic acids are introduced into
cells by transduction.

Cells

Cells or the population of cells herein may be derived
from cells taken from a subject, such as a tissue or cell line.
A wide variety of cell lines for tissue culture models are
known in the art. Examples of cell lines include, but are not
limited to, HT115, RPE1, C8161, CCRF-CEM, MOLT,
mIMCD-3, NHDF, HeLa-S3, Huh1, Huh4, Huh7, HUVEC,
HASMC, HEKn, HEKa, MiaPaCell, Pancl, PC-3, TF1,
CTLL-2, CIR, Rath, CV1, RPTE, A10, T24, J82, A375,
ARH-77, Calul, SW480, SW620, SKOV3, SK-UT, CaCo2,
P388D1, SEM-K2, WEHI-231, HB56, TIBSS, Jurkat,
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J45.01, LRMB, Bcl-1, BC-3, 1C21, DLD2, Raw264.7,
NRK, NRK-52E, MRCS, MEF, Hep G2, HeLa B, HelLa T4,
COS, COS-1, COS-6, COS-M6A, BS-C-1 monkey kidney
epithelial, BALB/3T3 mouse embryo fibroblast, 3T3 Swiss,
3T3-L1, 132-d5 human fetal fibroblasts; 10.1 mouse fibro-
blasts, 293-T, 3T3, 721, 9L, A2780, A2780ADR, A2780cis,
Al172, A20, A253, A431, A-549, ALC, B16, B35, BCP-1
cells, BEAS-2B, bEnd.3, BHK-21, BR 293, BxPC3, C3H-
10T1/2, C6/36, Cal-27, CHO, CHO-7, CHO-IR, CHO-K1,
CHO-K2, CHO-T, CHO Dhfr -/-, COR-L23, COR-L23/
CPR, COR-1.23/5010, COR-L23/R23, COS-7, COV-434,
CML T1, CMT, CT26, D17, DH82, DU145, DuCaP, EL4,
EM2, EM3, EMT6/AR1, EMT6/AR10.0, FM3, H1299,
H69, HB54, HBS5, HCA2, HEK-293, Hel.a, Hepalclc7,
HL-60, HMEC, HT-29, Jurkat, JY cells, K562 cells, Ku812,
KCL22,KG1, KYOI, LNCap, Ma-Mel 1-48, MC-38, MCF-
7, MCF-10A, MDA-MB-231, MDA-MB-468, MDA-MB-
435, MDCK 1I, MDCK II, MOR/0.2R, MONO-MAC 6,
MTD-1A, MyEnd, NCI-H69/CPR, NCI-H69/L.X10, NCI-
H69/1L.X20, NCI-H69/1. X4, NIH-3T3, NALM-1, NW-145,
OPCN/OPCT cell lines, Peer, PNT-1A/PNT 2, RenCa, RIN-
S5F, RMA/RMAS, Saos-2 cells, Sf-9, SkBr3, T2, T-47D,
T84, THP1 cell line, U373, U87, U937, VCaP, Vero cells,
WM39, WT-49, X63, YAC-1, YAR, and transgenic varieties
thereof. Cell lines are available from a variety of sources
known to those with skill in the art (see, e.g., the American
Type Culture Collection (ATCC) (Manassas, Va.)).

In certain embodiments, the population of cells may be
obtained from a tissue sample. As used herein the term
“tissue” refers to a plurality of functionally related cells. A
tissue can be a suspension, a semi-solid, or solid. Tissue
includes cells collected from a subject such as blood, cervix,
uterus, lymph nodes, breast, skin, and other organs. In some
cases, the population of cells may be a tissue-specific cell
line.

The population of cells may comprise cells of certain
type. For example, the population of cells may comprise
immune cells. “Immune cells” as used herein is meant to
include any cells of the immune system that may be assayed,
including, but not limited to, B lymphocytes (also called B
cells), T lymphocytes (also called T cells), natural killer
(NK) cells, lymphokine-activated killer (LAK) cells, mono-
cytes, macrophages, neutrophils, granulocytes, mast cells,
platelets, Langerhans cells, stem cells, dendritic cells,
peripheral blood mononuclear cells, tumor-infiltrating (TIL.)
cells, myeloid cells, such as monocytes, macrophages,
eosinophils, mast cells, basophils, and granulocytes, gene
modified immune cells including hybridomas, drug modified
immune cells, and derivatives, precursors or progenitors of
the above cell types.

In certain examples, the population of cells may comprise
cancer cells. Cancer cells may be cells obtained or derived
from a tumor or cancer tissues. The cancer cells may be
obtained or derived from leukemia, such as chronic lym-
phocytic leukemia, fibrosarcoma, myxo sarcoma, liposar-
coma, chondrosarcoma, osteogenic sarcoma, chordoma,
angiosarcoma, endotheliosarcoma, lymphangiosarcoma,
lymphangioendothelioma sarcoma, synovioma, mesothe-
lioma, Ewing’s, leiomyosarcoma, rhabdomyosarcoma, gas-
trointestinal system carcinomas, colon carcinoma, pancre-
atic cancer, breast cancer, genitourinary system carcinomas,
ovarian cancer, prostate cancer, squamous cell carcinoma,
basal cell carcinoma, adenocarcinoma, sweat gland carci-
noma, sebaceous gland carcinoma, papillary carcinoma,
papillary adenocarcinomas, cystadenocarcinoma, medullary
carcinoma, bronchogenic carcinoma, renal cell carcinoma,
hepatoma, bile duct carcinoma, choriocarcinoma, semi-
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noma, embryonal carcinoma, Wilms’ tumor, cervical cancer,
endocrine system carcinomas, testicular tumor, lung carci-
noma, small cell lung carcinoma, non-small cell lung car-
cinoma, bladder carcinoma, epithelial carcinoma, glioma,
astrocytoma, medulloblastoma, craniopharyngioma,
ependymoma, pinealoma, hemangioblastoma, acoustic neu-
roma, oligodendroglioma, meningioma, melanoma, neuro-
blastoma, retinoblastoma, or combinations thereof.

In some cases, the cells may be obtained by pooling cells
or tissues from multiple individual. For example, the mul-
tiple individuals may be chosen to maximize genetic diver-
sity at informative disease variants. In some cases, the
population of cells are derived from the same cell line used
for transtfecting or transducing, whereby enhancer regulatory
elements active in the cell line are identified.

Sequencing

In some embodiments, the methods comprise sequencing
transcripts expressed by the vector library. The transcripts
may comprise RNA molecules or DNA molecules derived
therefrom. The sequences of the transcripts may be used for
identifying nucleic acid fragments that have enhancer activ-
ity. In some examples, nucleic acid fragments with enhancer
activity may be identified by measuring a ratio of a number
of RNA sequencing reads comprising a fragment to the
representation of the fragment in a non-transfected vector
library.

In some embodiments, nucleic acid fragments with
enhancer activity may be identified by comparing a
sequenced fragment to the chromatin state of a genomic
locus of the fragment in the cell line, where fragments
present in an enhancer chromatin state are selected. For
example, the enhancer chromatin state comprises H3K27ac
(histone H3 lysine 27 acetylation) and H3K4mel (histone
H3 lysine 4 mono-methylation). In some embodiments,
nucleic acid fragments with enhancer activity may be iden-
tified by comparing a sequenced genomic fragment to Long-
Terminal-Repeat (LTR) retrotransposon sequences, wherein
LTR sequences are not selected.

In preferred embodiments, the present invention uses next
generation sequencing in order to detect transcripts. Exem-
plary next generation sequencing technologies include, for
example, [llumina sequencing, lon Torrent sequencing, 454
sequencing, SOLiD sequencing, and nanopore sequencing
amongst others. Methods for constructing sequencing librar-
ies are known in the art (see, e.g., Head et al., Library
construction for next-generation sequencing: Overviews and
challenges. Biotechniques. 2014; 56(2): 61-77).

The terms “depth” or “coverage” as used herein refers to
the number of times a nucleotide is read during the sequenc-
ing process. Depth can be calculated from the length of the
original genome (G), the number of reads(N), and the
average read length(L) as NxL/G. For example, a hypotheti-
cal genome with 2,000 base pairs reconstructed from 8 reads
with an average length of 500 nucleotides will have 2x
redundancy. This parameter also enables one to estimate
other quantities, such as the percentage of the genome
covered by reads (sometimes also called coverage). A high
coverage in shotgun sequencing is desired because it can
overcome errors in base calling and assembly. The subject of
DNA sequencing theory addresses the relationships of such
quantities. Even though the sequencing accuracy for each
individual nucleotide is very high, the very large number of
nucleotides in the genome means that if an individual
genome is only sequenced once, there will be a significant
number of sequencing errors. Furthermore, rare single-
nucleotide polymorphisms (SNPs) are common. Hence to
distinguish between sequencing errors and true SNPs, it is
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necessary to increase the sequencing accuracy even further
by sequencing individual genomes or libraries a large num-
ber of times.

The sequencing may be deep sequencing, e.g., ultra-deep
sequencing. The term “deep sequencing” as used herein
indicates that the total number of reads is many times larger
than the length of the sequence under study. The term “deep”
as used herein refers to a wide range of depths greater than
1x up to 100x. The term “ultra-deep” as used herein refers
to higher coverage (>100-fold), which allows for detection
of sequence variants in mixed populations. Alternatively or
additionally, the sequencing may be low-pass sequencing or
shallow sequencing. The terms “low-pass sequencing” or
“shallow sequencing” as used herein refers to a wide range
of depths greater than or equal to 0.1x up to 1x.

In the cases where nuclei are isolated, Nuc-seq can be
used for single-nucleus isolation and RNA-Seq and is com-
patible with frozen or fixed tissue (see, e.g., Swiech et al.,
2014, “In vivo interrogation of gene function in the mam-
malian brain using CRISPR-Cas9” Nature Biotechnology
Vol. 33, pp. 102-106; and Habib et al., 2016, “Div-Seq:
Single-nucleus RNA-Seq reveals dynamics of rare adult
newborn neurons” Science, Vol. 353, Issue 6302, pp. 925-
928, both of which are herein incorporated by reference in
their entirety). In certain embodiments, the invention
involves obtaining nuclei from a population of cells (e.g.,
tissues) and enriching genomic fragments from the nuclei. In
certain embodiments, nuclei are isolated from cells where it
is difficult to generate a single cell suspension, such as
neurons, whereby a single suspension of nuclei is processed
to generate fragments (e.g., from accessible chromatin).
High Resolution Mapping of Driver Elements

In certain embodiments, the method comprises high-
resolution mapping of driver elements of enhancer activity
within identified enhancer regulatory elements by a method
comprising comparing the fragment enrichment enhancer
activity of a set of overlapping fragments represented in the
vector library, whereby driver elements of enhancer activity
are identified for enhancer regulatory elements. As used
herein the term “driver element(s)” refers to nucleotides in
a genomic regulatory fragment that is required for the
functional activity of the fragment. In an exemplary embodi-
ment, the fragment may comprise transcription factor bind-
ing sites (e.g., activator, mediator complex, RUNX3 or an
unknown binding site). The driver elements may be chro-
matin modifying or remodeling recruitment sites (e.g., his-
tone remodeling complexes, histone modifying enzymes).
The fragment may comprise more than one driver element.
As used herein the terms “fragment enrichment enhancer
activity” or “enhancer activity” refers to of number of
transcripts sequenced. In other words, fragments having a
high enhancer activity generate more transcription of the
reporter. The more transcripts, the more enhancer activity.
Thus, the enhancer activity can be measured by the number
of transcripts including a fragment sequence. The enhancer
activity may be normalized by the representation of each
fragment in the input vector library.

Driver elements may be more than 10, 18, 20, 30, 40, 50,
60, 70, 80, 90 or more than 100 nucleotides in length. In
certain embodiments, driver elements are greater than or
equal to 18 nucleotides. In certain embodiments, overlap-
ping fragments are represented in the input library. The
enhancer activity of the overlapping fragments may be
compared to identify driver elements.

An algorithm may be used to compare the overlapping
fragments (e.g., SHARPR?2, as described herein). The algo-
rithm may be used by a computing system. In some
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examples, the algorithm may estimate regulatory scores for
nucleotides in the identified set of overlapping fragments.
The sequencing data from the input library and sequenced
transcripts may be uploaded to a computing system and the
algorithm applied to generate an output of driver elements.
Not being bound by a theory, the more overlapping frag-
ments the higher the resolution of driver elements. In certain
embodiments, the minimum number of overlapping frag-
ments is ten. Not being bound by a theory, more than 40
overlapping fragments does not provide increased resolu-
tion.

In some embodiments, the set of overlapping fragments
may comprise at least 5 unique overlapping fragments, e.g.,
at least 10, 20, 40, 60, 80, 100 unique overlapping frag-
ments. In certain examples, the set of overlapping fragments
may comprise at least 10 unique overlapping fragments.
Identifying Sequence Variants

In certain embodiments, the method further comprises
identifying driver element variants. The variants may com-
prise genome wide association (GWAS) variants. Variants
may be identified by sequencing the transcripts. Variants
may be identified by first identifying regulatory elements
and second resequencing the vector library using reads
sufficiently long to identify sequence variants. Not being
bound by a theory, reads from sequencing transcripts may
not be sufficiently long. In some embodiments, the methods
further comprise correlating the driver element variants with
a disease.

In certain embodiments, driver element variants may be
associated with a disease. In certain examples, the GWAS
variants herein may be genetic variants associated with a
disease. Variants associated with a disease may be identified
by comparing regulatory elements in diseased and healthy
tissue samples. The variants may also be correlated with
changes in gene expression. In one exemplary embodiment,
differential gene expression between disease and healthy
samples is determined using methods known in the art.
Fragments having regulatory activity are identified using
methods as described herein. Fragment sequences capable of
regulating genes differentially expressed are then analyzed
for sequence variants. Additionally, the sequence variants
may be present in a driver element. Sequence variants may
be identified that modulate expression of the differentially
expressed genes.

In certain embodiments, sequence variants in regulatory
elements or specifically in driver elements may be variants
already associated with disease. Genome Wide Association
Studies (GWASs) have identified SNPs that are associated
with many complex diseases or traits. For example, as of
February 2015, 2111 association studies have identified
15,396 SNPs for various diseases and traits, with the number
of identified SNP-disease/trait associations increasing rap-
idly in recent years. However, it has been difficult for
researchers to understand disease risk from GWAS results
(see, e.g., Tak and Farnham, Epigenetics Chromatin. 2015
Dec. 30; 8:57). Thus, the present invention may identify
functional consequences of sequence variants. In other
words, a sequence variant may be identified to function in a
regulatory element required for enhancer activity. In certain
embodiments, a variant associated with a disease is not
identified by the present invention, but a regulatory element
comprising the sequence containing the variant may be
identified. In certain embodiments, a fragment identified as
having enhancer activity may be mutated to include the
variant and enhancer activity assayed. In certain embodi-
ments, regulatory elements are identified for a disease for
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which at least one genome-wide association (GWA) study
(GWAS) has been performed.

In some embodiments, a gene or allele or polymorphism
has been identified as contributing to disease risk or severity
in at least one GWAS. See, e.g., www.genome.gov/gwastud-
ies for examples of GWAS studies and genetic variants
(alleles, polymorphisms) associated with various diseases.
In some embodiments, a gene (or any sequence) is one for
which an allele or polymorphism is associated with an
increased or decreased risk of developing a disease of at
least 1.1, 1.2, 1.5, 2, 3, 4, 5, 7.5, 10, or more, relative to
individuals not having the allele or polymorphism. In some
embodiments, an allele or polymorphism is associated with
an increased or decreased risk of developing a disease of at
least 1.1, 1.2, 1.5, 2, 3, 4, 5, 7.5, 10, or more, relative to
individuals not having the allele or polymorphism. Genes,
alleles, polymorphisms, or genetic loci that may contribute
to any phenotypic trait of interest such as longevity, weight,
resistance to infection, response or lack thereof to various
therapeutic agents, resistance or susceptibility to potentially
harmful substances such as toxins or infectious agents (e.g.,
viruses, bacteria, fungi, parasites), severity of disease or
prognosis (e.g., cancer), or resistance to therapy (e.g., can-
cer) are of interest. A phenotypic trait may be a physical sign
(such as blood pressure), a biochemical marker, which in
some embodiments may be detectable in a body fluid such
as blood, saliva, urine, tears, etc., such as level of a metabo-
lite, LDL,, etc., wherein an abnormally low or high level of
the marker may correlate with having or not having the
disease or with susceptibility to or protection from a disease.

Various additional embodiments are described in the
following numbered paragraphs:

1. A method of identifying genomic enhancer regulatory
elements comprising: fragmenting genomic DNA at acces-
sible chromatin in a population of cells thereby generating
genomic DNA fragments, wherein said fragmenting com-
prises transposition; amplifying the genomic DNA frag-
ments; enriching the amplified genomic DNA fragments by
size; integrating the enriched fragments into a vector to
obtain a vector library, wherein the vector encodes a reporter
gene and the enriched fragments are integrated into an
untranslated region (UTR) of the reporter gene, whereby
transcription of the reporter gene results in a transcript
comprising the integrated fragment sequence; transfecting
or transducing a cell line with the vector library, wherein the
transcript comprising the integrated fragment sequences is
expressed in the cell line; and sequencing the transcript
expressed in the cell line, whereby integrated fragments
comprising enhancer activity are identified.

2. The method according to paragraph 1, wherein the ampli-
fied genomic DNA fragments are selected for a size between
about 150 and about 500 nucleotides long.

3. The method according to paragraph 1 or 2, wherein the
amplified genomic DNA fragments are selected for a size
between about 230 and about 500 nucleotides long.

4. The method according to any one of paragraphs 1-3,
wherein the enriched fragments are integrated in a UTR
downstream of the reporter gene.

5. The method according to any one of paragraphs 1-4,
further comprising removing mitochondrial DNA.

6. The method according to any one of paragraphs 1-5,
wherein the mitochondrial DNA is removed using a CRISPR
system comprising guide sequences targeting the mitochon-
drial DNA sequences, wherein the mitochondrial DNA is
cleaved.
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7. The method according to paragraph 5 or 6, wherein
mitochondrial DNA is removed after the enriching the
amplified genomic DNA fragments and before the integrat-
ing the enriched fragments.

8. The method according to any one of paragraphs 1-7,
wherein the vector is a plasmid.

9. The method according to any one of paragraphs 1-8,
wherein the vector is a viral vector.

10. The method according to paragraph 9, wherein the viral
vector is a lentiviral vector.

11. The method according to any one of paragraphs 1-10,
wherein the integrated fragments comprising enhancer
activity is identified by measuring a ratio of a number of
RNA sequencing reads comprising a fragment to the repre-
sentation of the fragment in a non-transfected vector library.
12. The method according to any one of paragraphs 1-11,
wherein the integrated fragments comprising enhancer
activity is identified by comparing a sequenced genomic
fragment to the chromatin state of a genomic locus of the
fragment in the cell line, wherein fragments present in an
enhancer chromatin state are selected.

13. The method according to paragraph 12, wherein the
enhancer chromatin state comprises H3K27ac (histone H3
lysine 27 acetylation) and H3K4me 1 (histone H3 lysine 4
mono-methylation).

14. The method according to any one of paragraphs 1-13,
wherein the integrated fragments comprising enhancer
activity is identified by comparing a sequenced genomic
fragment to Long-Terminal-Repeat (I'TR) retrotransposon
sequences, wherein TR sequences are not selected.

15. The method according to any one of paragraphs 1-14,
further comprising detecting expression of the reporter gene
in the cell line and sorting cells in the cell line based on
expression levels of the reporter gene.

16. The method according to any one of paragraphs 1-15,
wherein the population of cells is obtained from a tissue
sample.

17. The method according to any one of paragraphs 1-16,
wherein the population of cells is a tissue-specific cell line.
18. The method according to any one of paragraphs 1-17,
wherein the population of cells is obtained by pooling cells
or tissues from more than one individual.

19. The method according to any one of paragraphs 1-18,
wherein the population of cells comprise immune cells.
20. The method according to any one of paragraphs 1-19,
wherein the population of cells comprise cancer cells.

21. The method according to any one of paragraphs 1-20,
wherein the population of cells are derived from the same
cell line used for transfecting or transducing, whereby
enhancer regulatory elements active in the cell line are
identified.

22. The method according to any one of paragraphs 1-21,
further comprising isolating nuclei from the population of
cells before fragmenting the genomic DNA.

23. The method according to any one of paragraphs 1-22,
wherein the fragments are amplified by error-prone PCR.
24. The method according to any one of paragraphs 1-23,
wherein the fragments are amplified in an amplification
reaction comprising a mutagen.

25. The method according to any one of paragraphs 1-24,
further comprising high-resolution mapping of driver ele-
ments of enhancer activity within identified enhancer regu-
latory elements by a method comprising comparing the
fragment enrichment enhancer activity of a set of overlap-
ping fragments represented in the vector library, whereby
driver elements of enhancer activity are identified for
enhancer regulatory elements.
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26. The method according to paragraph 25, wherein the
driver element comprises a minimum of 18 driver nucleo-
tides.

27. The method according to paragraph 25 or 26, wherein
the comparing comprises uploading the overlapping frag-
ment sequences into a computing system and applying an
algorithm, wherein the algorithm compares the fragment
enrichment enhancer activity of the overlapping fragments.
28. The method according to paragraph 27, wherein the
algorithm estimates regulatory scores for nucleotides in the
identified set of overlapping fragments.

29. The method according to any one of paragraphs 25-28,
wherein the set of overlapping fragments comprises at least
10 unique overlapping fragments.

30. The method according to any one of paragraphs 25-29,
further comprising identifying driver element variants.

31. The method according to paragraph 30, wherein the
driver element variants comprise genome wide association
(GWAS) variants.

32. The method according to paragraph 31, wherein the
GWAS variants are genetic variants associated with a dis-
ease.

33. The method according to paragraph 32, wherein identi-
fying driver element variants comprises resequencing the
vector library using reads sufficiently long to identify
sequence variants.

34. The method according to any one of paragraphs 30-33,
further comprising correlating the driver element variants
with a disease.

35. A method of identifying genomic enhancer regulatory
elements comprising: fragmenting genomic DNA in a popu-
lation of cells, thereby generating genomic DNA fragments
comprising overhanging ends; filling in the overhanging
ends with at least one labeled nucleotide; joining the filled
in overhanging ends of the fragmented genomic DNA,
wherein the joined fragments comprise contact domains;
isolating the joined genomic DNA fragments using the
labeled nucleotide; amplifying the isolated joined genomic
DNA fragments; integrating the amplified fragments into a
vector to obtain a vector library, wherein the vector encodes
a reporter gene and the amplified fragments are integrated
into an untranslated region (UTR) of the reporter gene,
whereby transcription of the reporter gene results in a
transcript comprising the integrated fragment sequence;
transfecting or transducing a cell line with the vector library,
wherein the transcript comprising the integrated fragment
sequence is expressed in the cell line; and sequencing the
transcripts expressed in the cell line, whereby integrated
fragments comprising enhancer activity are identified.

36. The method according to paragraph 35, wherein the
genomic DNA fragments are held in a fixed position relative
to one another.

37. The method according to paragraph 35 or 36, wherein
the genomic DNA fragments are fixed in position relative to
one another by crosslinking.

38. The method according to paragraph 37, wherein the
crosslinking comprises treating the genomic DNA fragments
with a chemical crosslinker.

39. The method according to paragraph 38, wherein the
chemical crosslinker comprises an aldehyde.

40. The method according to paragraph 39, wherein the
aldehyde comprises formaldehyde.

41. The method according to any one of paragraphs 37-40,
further comprising reversing the crosslinking.

42. The method according to paragraph 41, wherein the
reversing the crosslinking comprises contacting the sample
with Proteinase K.
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The invention is further described in the following
examples, which do not limit the scope of the invention
described in the claims.

EXAMPLES

Example 1—HiDRA Experimental Method
Overview and Plasmid Library Construction

HiDRA leverages the selective fragmentation of genomic
DNA at regions of open chromatin to generate fragment
libraries that densely cover putative transcriptional regula-
tory elements. Fragments are enriched from open chromatin
and regulatory regions using ATAC-seq (Assay for Trans-
posase-Accessible Chromatin  with high throughput
sequencing) and subsequently cloned into the 3' untranslated
region (UTR) of a reporter gene on the self-transcribing
enhancer reporter vector used in STARR-seq> *. Fragments
with transcriptional regulatory activity promote self-tran-
scription such that active segments of DNA can be identified
and quantified by high-throughput RNA sequencing to pro-
duce a quantitative readout of enhancer activity (FIG. 1A).
Library construction can be completed in 2-3 days and
requires as few as 10%-10° cells as input starting material.

Applicants constructed a HiDRA library with 9.7 million
total unique mapping fragments, of which 4 million had a
frequency greater than 0.1 reads per million (RPM; non-
mitochondrial reads). More than 99% of fragments had
lengths between 169nt and 477nt (median: 337nt), with the
fragment length distribution showing two peaks spaced by
~147nt, corresponding to the length of DNA wrapped
around each nucleosome (FIG. 1B). In contrast to unbiased
fragmentation of the genome, the library has much higher
efficiency for selectively targeting accessible DNA regions
that are more likely to play gene-regulatory roles. The
HiDRA library covers 4486 predicted enhancers and 9631
predicted promoters (“Active Transcription Start Site
(TSS)” state) with more than 10 unique fragments (FIG. 1C,
colored lines), a ~130-fold and ~210-fold enrichment com-
pared to 35 enhancer and 46 promoter regions expected to be
covered by chance at the same coverage, indicating that
HiDRA library construction successfully targets predicted
regulatory regions. Even among enhancer and promoter
regions, those with higher expected activity are preferen-
tially selected by HiDRA, as they show higher accessibility
and are thus more likely to be cloned in our library and tested
by our episomal reporters (FIG. 8).

The cloning strategy is specifically designed to densely
sample regulatory regions, in order to enable high resolution
inference of regulatory activity from highly-overlapping
fragments. Indeed, Applicants found up to 370 unique
fragments per region in our HiDRA libraries, with 32,000
genomic intervals containing at least 10 overlapping frag-
ments and 2750 containing at least 50 fragments, compared
to 180 and O that would be expected by randomly-selected
fragments, respectively. In addition to clustering of tested
fragments within the same region, high-resolution inference
relies on partially-overlapping rather than fully-overlapping
fragments, which requires a random fragmentation pattern.
Indeed, the Tn5 transposase Applicants used here inserts
randomly into the genome, and indeed the resulting DNA
fragments provide a dense sampling of start and end posi-
tions that mirrors the peaks of ATAC-seq experiments (FIG.
1D), indicating that accessible regions most likely to show
regulatory activity will have both higher representation in
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our libraries, and also more starting and ending positions
that can help identify driver nucleotides.

Example 2— Identification of DNA Fragments with
Transcriptional Regulatory Activity

To evaluate the ability of each cloned DNA fragment to
promote gene expression, Applicants transfected the HIDRA
library into GM 12878 lymphoblastoid cells, collected RNA
24 hours post-transtection, and measured the abundance of
transcribed fragments by high-throughput RNA sequencing.
Applicants carried out 5 replicate transfection experiments
from the same plasmid library, each into —120 million cells,
and observed a high degree of correlation in the RNA counts
between replicates (0.95 Pearson correlation on average for
fragments >1 RPM; 0.76 for >0.1 RPM; FIGS. 9A-9D). To
quantify the regulatory activity of tested elements, Appli-
cants compared the number of RNA reads obtained for a
fragment (corresponding to the expression level of the
reporter gene, as the constructs are self-transcribing), rela-
tive to representation of that fragment in the non-transfected
input plasmid library (thus normalizing the differential abun-
dance of each fragment in our library). Applicants observed
a substantial number of fragments that are more prevalent in
RNA than DNA, indicating capability of many HiDRA
fragments to drive reporter gene expression (FIG. 2A).

Given the intentionally high initial complexity of the
HiDRA library, many fragments are sequenced with a rela-
tively low depth of coverage. Applicants therefore grouped
fragments with a 75% reciprocal overlap to boost the read
coverage of genomic regions and increase statistical power.
This yielded 7.1 million unique “fragment groups” gener-
ated from merging 9.7 million HiDRA fragments. In total,
Applicants identified 95,481 fragment groups that promote
reporter gene expression at an FDR cut-off of 0.05, which
Applicants refer to as ‘active HiDRA fragments’ (FIG. 2A,
red dots). These 95,481 active HiDRA fragments are located
within 66,254 unique genomic intervals that Applicants
subsequently refer to as “active HiDRA regions”.

Applicants found that active HIDRA fragments showed a
wide range of input DNA levels in the plasmid library,
indicating that regulatory function and DNA accessibility
rely on complementary sequence signals, and that DNA
accessibility alone is not sufficient to predict episomal
regulatory function. Applicants also found that active
HiDRA regions are predominantly distal to annotated tran-
scription start sites (TSSs) (FIG. 2B), validating the utility of
HiDRA for pinpointing distal regulatory regions that are
particularly challenging to identify.

As proof-of-concept that HiDRA is capable of identifying
true enhancer elements, Applicants examined the well-stud-
ied immunoglobulin heavy chain enhancer within the intron
of the immunoglobulin heavy constant epsilon (IGHE)
gene'®. Applicants observed that the peak of HIDRA activity
is centered precisely within the region previously identified
as driving enhancer activity in low-throughput luciferase
assays (FI1G. 2C).

To assess the quantitative accuracy of HiDRA relative to
luciferase assays, Applicants compared active HiDRA
regions and luciferase results across 21 putative enhancers
predicted and tested independently by Huang et al.'®. Appli-
cants found a 0.88 Pearson correlation between measured
luciferase activity and HiDRA activity, confirming the accu-
racy and quantitative nature of the high-throughput approach
(FIG. 2D). A visualization of 14 luciferase-tested enhancers
in the serine/threonine kinase NEK6 locus shows a strong
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correspondence between luciferase assay results and
HiDRA active regions (FIG. 2E).

Example 3— HiDRA Regulatory Elements are
Enriched in Promoter and Enhancer Elements

Applicants next surveyed the 95,481 active HiDRA frag-
ments identified in GM12878 to assess shared common
genomic or epigenomic characteristics. In comparison to the
set of all HIDRA fragments tested, active fragments were 12
times more likely to overlap an active promoter “TssA”
chromatin state (marked by H3K4me3 and H3K27ac, FIG.
3A inset) and 5 times more likely to overlap an “Active
Enhancer” chromatin state (marked by H3K4mel and
H3K27ac, FIG. 3A). By contrast, “Weak Enhancer” chro-
matin states (marked by H3K4mel but lack of H3K27ac)
showed substantially weaker enrichment (2.2-fold) within
active HiDRA fragments than active enhancers, consistent
with previous literature indicating that presence of H3K27ac
correlates with higher greater expression of nearby genes
(FIG. 3B). Overall, 35% of all predicted active promoters
(8355 regions) and 16% of all predicted active enhancers
(5276 regions) overlapped at least one active HiDRA frag-
ment.

In addition to active promoter and active enhancer chro-
matin states, the “TSS Flanking Upstream” chromatin state
showed strong enrichment for active HiDRA fragments
(7.3-fold higher than expected from the input library). This
chromatin state is defined by the presence of both promoter
and enhancer histone marks H3K4mel, H3K4me3, and
H3K27ac, and was named “TSS Flanking” due its depletion
at exactly the TSS position, but its enrichment 400nt-1kb
upstream of annotated transcription start sites®. However,
64% of its occurrences are >2 kb from the nearest transcrip-
tion start site, suggesting that a portion of genomic regions
annotated as “TSS Flanking Upstream” may function bio-
logically as distal enhancers (FIG. 4A).

When Applicants computed enrichment of chromatin
states as a function of HiDRA activity strength, Applicants
found a linear quantitative relationship for HiDRA activity
levels up to ~2.5-fold RNA/DNA ratios, with increasing
activity showing increasing chromatin state enrichment for
both promoter and enhancer chromatin states (FIG. 3B).
Surprisingly, this enrichment stayed constant thereafter for
promoter regions, and increased modestly for enhancer
regions, ultimately surpassing the enrichment seen for pro-
moters. In fact, even though promoter chromatin states were
more enriched at intermediate HiDRA activity levels,
enhancer chromatin states were the most enriched at the
highest HIiDRA activity levels (p=9.3x107'°%, FIG. 10A),
suggesting that enhancer elements have a greater dynamic
range of regulatory activity potential, which has implica-
tions for the regulatory architecture of genes.

At the other end of the spectrum, Quiescent and Poly-
comb-repressed chromatin states showed a 2-fold depletion
for HiDRA active elements, but heterochromatin-associated
chromatin states showed a modest enrichment, indicating
that they may contain regulatory signals that become active
once taken outside their repressive endogenous chromo-
somal context. The ZNF/repeats-associated chromatin state
(marked by H3K36me3 and H3K9me3) showed a modest
enrichment for lower HiDRA activity levels but continued to
increase linearly even at the highest activity levels, possibly
due to active repetitive elements, as Applicants discuss
below.

Applicants also studied the enrichment of HiDRA regions
for individual histone marks profiled by the ENCODE
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project in GMI12878°. Active promoter- and active-en-
hancer-associated acetylation marks H3K9ac and H3K27ac,
histone turnover-associated H2A.Z, promoter- and
enhancer-associated H3K4me3 and H3K4mel, and DNase 1
accessible chromatin were the most enriched individual
marks within active HiDRA regions, while Polycomb-re-
pression-associated H3K27me3, heterochromatin-associ-
ated H3K9me3, and transcription-associated H3K36me3
were the least enriched compared to the input library (FIG.
1.

As these elements are tested outside their endogenous
chromatin context, Applicants expect that they drive reporter
gene transcription by recruiting transcriptional regulators in
a sequence-specific way, and Applicants sought to gain
insights into the recruited factors. Applicants calculated the
overrepresentation of 651 transcription factor sequence
motifs assembled by ENCODE in active HIDRA regions and
found enrichment for many distinct motifs for immune
transcription factors (FIG. 10B), including IRF, NFKB1, and
RELA, corresponding to transcriptional regulators known to
function in GM12878 compared to other human cell lines.
The motifs enriched in promoter chromatin states were
largely distinct from those enriched in enhancer chromatin
states, highlighting the differential regulatory control of the
two types of regions (FIG. 10A). These differences in motif
content indicate that the two types of regions recruit different
sets of transcriptional regulators both in their endogenous
context and in our episomal assays, consistent with their
distinct endogenous chromatin state and their distinct prop-
erties in our HiDRA assays.

Example 4— HiDRA Regulatory Activity Outside
Promoter and Enhancer Regions

Even though HiDRA active regions were most enriched
for enhancer and promoter states, they were not exclusive to
them. In fact, approximately half of active HiDRA regions
(52%) showed endogenous epigenomic signatures charac-
teristic of repressed and inactive chromatin states, including
Quiescent, Repressed Polycomb, Weak Repressed Poly-
comb, and Heterochromatin.

As active chromatin states were defined based on the
profiling of only a subset of known chromatin marks in
GM12878, Applicants reasoned that perhaps other marks
may be marking these regions active, but that they were
perhaps not profiled in GM12878 and thus missed by the
reference genome annotations. For example, a recent study
identified subclasses of active enhancer elements marked
with H3K122ac or H3K64ac but not H3K27ac™®. While
these marks were not profiled in GM12878, inactive chro-
matin states that showed HiDRA activity were 8-fold to
13-fold more likely to be bound by transcription factors in
ChIP-seq experiments in GM 12878 than inactive chromatin
states that lacked HiDRA activity (FIG. 4B), indicating that
the assays can successfully recover active regions even
outside active chromatin states, and highlighting the impor-
tance of the unbiased survey of open chromatin regions
regardless of their endogenous chromatin marks.

As both high-throughput and low-throughput episomal
assays test regions outside their endogenous chromatin
context, Applicants reasoned that some active HiDRA
regions with inactive chromatin signatures may reflect
endogenously-inactive regions that become active when
removed from the influence of nearby repressive effects.
Applicants reasoned that these regions would contain
sequence motifs of TFs active in GM12878, but that these
sequence motifs would be less likely to be bound in vivo,
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compared to motifs in active states. Indeed, Applicants
found that active HiDRA regions from endogenously-inac-
tive chromatin states showed similar enrichments in regu-
latory motif occupancy to that of enhancer and promoter
chromatin states (FIG. 4C), but substantial differences in
their endogenous TF binding (FIG. 4B), consistent with
endogenous repression due to their genomic context. These
regions were also ~30% more likely to be active in another
human tissue, compared to HiDRA-inactive regions (FIG.
4D), consistent with cell-type specific repression in their
endogenous chromatin context.

In addition to the presence of regulatory motifs for known
regulators active in GM 12878, Applicants sought additional
driver elements that may be responsible for the episomal
activity of endogenously-inactive regions. In particular,
Applicants considered the presence of Long-Terminal-Re-
peat (LTR) retrotransposons, which have been previously
shown to have regulatory activity potential and were
enriched in the set of all active HiDRA regions unlike other
repetitive elements in the genome (FIG. 12)* *°. Indeed,
Applicants found that active HiDRA regions from endog-
enously-inactive regions showed substantial enrichment for
LTR retrotransposons. In fact, Quiescent and Heterochro-
matin states were more enriched for LTR retrotransposons
than either Enhancer or Promoter chromatin states (FIG. 4E,
FIG. 12). As LTRs are motif-rich and often act as the
substrate for recently evolved enhancers, these endog-
enously inactive but episomally-active HiDRA regions may
represent a reservoir for the emergence of new regulatory
elements®.

Example 5— High-Resolution Mapping of
Regulatory Activity with HIDRA

Applicants next sought to exploit the highly overlapping
nature of tested HiDRA fragments to increase the resolution
of regulatory inferences by exploiting subtle differences
between neighboring fragments that only overlap partially.
As an example, Applicants considered a 3 kb region on
chromosome 7 that is covered by 134 distinct HiDRA
fragments. When Applicants examined every fragment in
this region, Applicants observed that fragments overlapping
the known RUNX3 motif showed substantially higher regu-
latory activity (FIG. SA). This motif is bound by the RUNX3
protein in GM12878 cells and shows increased evolutionary
conservation (FIG. 5A). These properties suggest that the
driver regulatory nucleotides within this region are tightly
concentrated surrounding the RUNX3 motif, and that on the
global level the differential activity of HiDRA-tested seg-
ments should enable us to systematically discover these
driver nucleotides in an unbiased way based on the relative
activity of fragments that do or do not overlap them.

As part of the development of Sharpr-MPRA?Z, Applicants
had previously developed the SHARPR algorithm, a graphi-
cal probabilistic model that inferred high-resolution activity
from MPRA tiling experiments by reasoning about the
differential activity of partially-overlapping microarray
spots. Intuitively, SHARPR allowed us to transform mea-
surements from the 145-bp resolution of individually tested
tiles to the 5-bp resolution of the offset between consecutive
tiles. The SHARPR algorithm relies on synthesized oligos
that uniformly tile regions at regularly spaced intervals, and
thus is not applicable for the random fragmentation nature of
HiDRA experiments where both the length and the spacing
of neighboring fragments can vary. To address this chal-
lenge, Applicants developed a new algorithm, SHARPR2,
which estimates regulatory scores underlying any set of
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randomly-positioned and variable-length segments, by
appropriately scaling the segments by their varying lengths,
and enabling inferences at variable-length offsets between
them (Appendix A).

Applying the SHARPR2 algorithm to the RUNX3
example above, Applicants found that the 3 kb region was
narrowed down to a single ‘driver’ element of 27nt (FIG.
5A). These captured the known RUNX3 motif shown
experimentally by ChIP-Seq to be bound by the RUNX3
regulator in GM12878°, and also the independently-deter-
mined high-resolution region of evolutionary conservation,
even though neither line of evidence was used in the
inferences.

Across all ~32,000 “tiled regions” that are covered by at
least 10 unique HiDRA fragments, SHARPR2 predicted
~13,000 driver elements of median length 52nt, using a
regional family-wise error rate of 5% (FIG. 5B). With
increasing coverage, the resolution of driver regions also
increased, from ~50nt for regions with 10-20 fragments to
~20nt for regions with 40 or more fragments (FIG. 13). The
length of driver elements did not further decrease between
40 and 80 fragments per tiled region, suggesting a minimum
number of ~18 driver nucleotides necessary to drive regu-
latory activity. Similar to active HiDRA regions, driver
elements were also mostly distal from annotated TSS
regions and were preferentially found in endogenously
active chromatin states (active promoters, TSS-flanking, and
active enhancer regions, FIGS. 14A-14B).

Applicants found that predicted driver nucleotides were
significantly more enriched for regulatory motifs than
shuffled controls (obtained by randomly shuffling driver
positions within tiled regions). The enriched motifs con-
sisted of regulators known to be active in GM 12878, includ-
ing several critical B-cell and immune transcription factor
including NF-kB and the IRF family (FIG. 5C). A total of 98
motifs were enriched in driver elements (FDR<0.05), clus-
tering into several distinct groups with little overlap between
groups, suggesting a wide range of distinct transcription
factors act to regulate GM 12878 gene expression (FIG. 5D).
Applicants also found that driver nucleotides are signifi-
cantly more likely to be evolutionarily-conserved across
vertebrates than randomly-shuffled controls (FIG. SE), with
~1080 driver elements overlapping conserved regions, com-
pared to only ~650 expected by chance (p=2.23x1077%).
These results indicate that our high-resolution inferences are
biologically meaningful and can help pinpoint driver nucleo-
tides among larger regions.

Example 6— Prioritization and Characterization of
GWAS Variants Affecting Regulatory Activity

Applicants next sought to use the predicted active regions
and driver nucleotides to gain insights into non-coding
variation. Applicants studied the overlap between genetic
variants associated with immune disorders and our high
resolution predicted driver nucleotides. Even though driver
nucleotides only cover 0.032% of the genome, Applicants
found 12 cases where they overlap fine-mapped SNPs
associated with 21 immune-related traits’ predicted to be
causal (~5 expected by chance inside tiled regions, p=0.012,
FIG. 6A). For example, Applicants predict a 76-nt driver
element overlapping rs12946510 in the IKZF3 locus asso-
ciated with multiple sclerosis in a tiled region of 3 kb (FIG.
6B), suggesting this may be the causal variant. The SNP
overlaps a 76-nt driver element that contains a RUNX3
motif and a REL A motif, both bound by the respective TFs
in GM12878°. Indeed, rs12946510 is predicted to be causal
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based on genetic fine-mapping!, with a posterior probabil-
ity of 0.314 of being causal with the next strongest signal
showing only 0.067 posterior probability. rs12946510 is also
an eQTL for the IKZF3 gene*!*?, and was recently shown
to disrupt enhancer activity for the surrounding 279-nt
region using a luciferase reporter assay>, consistent with
the prediction that rs12946510 is a causal SNP.

To recognize regions that showed differential activity
between risk and non-risk alleles of common genetic vari-
ants, Applicants first inferred the genotype of all RNA
fragments profiled. As HiDRA is a sequencing-based assay,
where the expression of reporter genes is quantified based on
the number of sequencing reads, allele-specific differences
in HiDRA activity between risk and non-risk haplotypes
should be detectable in principle by using heterozygous
positions to distinguish reads coming from the 275 paternal
or the maternal allele. In practice however, HIDRA frag-
ments are much longer (~337 median length) than the
typical sequencing reads Applicants used for quantification
(37nt, paired end), and thus 78% of genetic variants will not
be covered by the sequencing reads (if they fall in the inner
~260nt not captured by our paired-end sequencing). To
overcome this limitation and to determine allele-specific
activity scores for all of the fragments, Applicants used
low-depth re-sequencing of the input library using long
reads, thus revealing the genotype associated with each
start/end position in our library (FIG. 7A). Applicants aug-
mented this information with 4-nt random 17 barcodes that
were added by PCR during the initial HiDRA library con-
struction, thus ensuring that the [start, end, i7] triplet is
almost guaranteed to be unique, by resolving the cases
where both start and end positions are identical between
paternal and maternal alleles. This strategy enabled Appli-
cants to resolve the genotype of all previously quantified
HiDRA fragments without having to sequence both the
plasmid and RNA libraries to full length at high depth,
which would be too costly.

In a proof-of-concept analysis to assess the ability of
HiDRA to detect allelic activity, Applicants applied this
approach systematically to all heterozygous positions
known in the genotyped GM12878 cell lines. Applicants
found ~180,000 heterozygous SNPs that were represented
by at least one HiDRA fragment at either allele in our library.
Applicants realized that fragments carrying the maternal or
paternal alleles of a SNP may also differ at their start and end
positions, and that differences at fragment ends may cause
SNPs with no true biological activity to falsely appear to
disrupt HiDRA activity (FIG. 15). Applicants attempted to
filter out these cases by only comparing fragments that show
90% mutual overlap, and where the start and end of the
fragment is more than 25nt from a high-resolution driver
element, thus ensuring that allelic differences are not due to
differential inclusion of driver elements (~16,000 SNPs
remained after filtering). At an uncorrected nominal p-value
cut-off of 0.05, Applicants found 880 ‘allelic’ HIDRA SNPs
where paternal and maternal alleles showed differences in
activity, 25 of which had a corrected FDR<0.1 (beta-bino-
mial model**). The corresponding SNPs in these 880 allelic
HiDRA regions were more frequently found in HiDRA
active regions and more frequently predicted to have strong
regulatory effects in open chromatin regions by an indepen-
dent study® (FIGS. 7B, 7C), suggesting they are biologi-
cally meaningful.

For example, Applicants found that rs2382817, a SNP
associated with inflammatory bowel disease® (pG-
WAS=1.13x107"3), shows differential HiDRA activity
between paternal and maternal alleles. The risk allele shows
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increased regulatory activity upstream of a HiDRA-anno-
tated active region (nominal p=8.7x10~%, FDR=0.25, FIGS.
7D, 7E). In a panel of human individuals from the GTEx
project®®, rs2382817 was an eQTL for TMBIM1 in EBV-
transformed lymphocytes (the same cell type as GM12878,
FIG. 7F), and for TMBIM1 and other nearby genes PNKD,
ARPC2 and GPBARI1 in other tissues, consistent with a role
of' rs2382817 in gene expression regulation and illustrating
the possibility of using HiDRA to detect SNPs with allelic
effects on regulatory activity.

These results indicate that HIDRA can help shed light on
disease-associated variants, by either narrowing down the
set of candidate causal SNPs using the high-resolution driver
nucleotide inferences, or by directly observing differential
activity between risk and non-risk alleles using allele-
specific activity inferences.

Example 7—Discussion

Applicants presented a high-throughput experimental
assay, HiDRA, to test transcriptional regulatory activity for
millions of DNA fragments preferentially generated from
regions of open chromatin and discover high resolution
driver elements. Applicants performed HiDRA mapping of
regulatory activity using a library of sequences from the
GM12878 lymphoblastoid cell line ranging from 169-477nt
in length. Applicants found that the endogenous loci of
up-regulated HIDRA fragments are significantly more likely
to be classified as promoter and enhancer elements, contain
motifs for immune transcription factors and be marked by
activating histone modifications. Applicants also leverage
the dense tiling of HiDRA fragments at regulatory regions to
perform a high-resolution mapping of regulatory activity to
identify short DNA segments that act as drivers of regulatory
activity, including one 76nt driver element that overlaps a
SNP, rs12946510, associated with multiple sclerosis risk.

While Applicants performed the study in the GM12878
cell line, the HiIDRA methodology can be readily applied to
study the transcriptional regulatory architecture of any cell
line. For cell lines with poor transfection efficiencies, a
non-integrating lentiviral infection method can be used
instead of transfection, as both approaches have shown
highly similar results in other high-throughput reporter
assays 27. HiDRA libraries can also be transfected in a
different cell line than was used for library generation. For
example, libraries could be generated from limited patient
tissue, and subsequently transfected into a relevant immor-
talized cell line.

Applicants also demonstrate a proof-of-concept applica-
tion of HiDRA to identify SNPs that alter regulatory element
activity by mapping reads in an allele-specific manner, as
well as illustrate potential confounding factors for analyzing
allelic HIDRA and STARR-seq data when fragments map-
ping to either allele have different genomic positions. Mov-
ing forward, construction of libraries with higher coverage
at relevant SNPs should mitigate this concern. HiDRA also
relies on the presence of different alleles in the input
genomic DNA. While no human individual or cell line exists
that is heterozygous at every clinically important genetic
variant, future studies can pool cells or tissue from multiple
individuals to generate a HiDRA library heterozygous at
more loci. As recent studies have also shown that cancer
driver mutations are enriched inside promoter elements,
HiDRA may also be applied to pools of tumor samples to
identify promoter variants that experimentally alter regula-
tory activity and gene expression®®.
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One limitation of HiDRA is the use of genomic DNA,
while technologies involving in vitro synthesis can readily
introduce changes to DNA not observed in the human
population to better fine-map regulatory subregions of
enhancers'®>°, HIDRA fragment libraries can be modified to
introduce non-existing mutations through error-prone PCR
or introduction of mutagens during fragment amplification.
Another improvement to the assay is to further enrich for
fragments from active regulatory regions, by coupling with
a fragment capture technology similar to those used in
Capture Hi-C to selectively test a subset of enhancers or
promoters at higher resolution while retaining the advan-
tages of having larger fragment sizes and high library
complexity®®. Finally, the SHARPR2 high-resolution map-
ping algorithm can be applied to other STARR-seq experi-
ments. For example, investigators interested in only a spe-
cific locus could perform STARR-seq on a bacterial artificial
chromosome clone (“BAC-STARR-seq”) that contains the
region of interest®. SHARPR2 high-resolution mapping will
then readily be capable of mapping regulatory activity of
this specific locus with single nucleotide resolution.

In summary, Applicants present HiDRA, a high-through-
put method to assay the regulatory activity of millions of
open chromatin-derived fragments located genome-wide. As
HiDRA can be readily applied to any eukaryotic cell type,
Applicants envision this approach or similar technologies
being used to quantify the transcriptional regulatory land-
scape of DNA sequences for a variety of tissues from
multiple organisms.

Example 8—Methods

HiDRA Library Construction

Applicants performed 16 ATAC-seq reactions on 50,000
GM12878 cells each using a modified protocol based upon
Buenrostro et al. (Supplemental Note 1). Applicants per-
formed cell collection, lysis, and Tn5 digestion as described
by Buenrostro et al., Tn5-fragmented DNA was cleaned up
using a MINELUTE™ PCR purification kit (Qiagen
#28004, four reactions per column eluted in 20 ul. EB
buffer) and the resulting 80 ul. of eluate was split into 16
PCR reactions (Supplemental Note 2). PCR was performed
using custom HPLC-purified primers (F: 5-TAGAG-
CATGCACCGGCAAGCAGAAGACGGCAT-
ACGAGATNNNNATGTCTCGTGGGC TCGGAGATGT-
3 (SEQ D NO: 1, R:
5'-GGCCGAATTCGTCGATCGTCGGCAGCGTCA-
GATGTG-3' (SEQ ID NO: 2), NNNN corresponds to ran-
dom 4nt 17 barcode sequence) and NEBNEXT™ Ultra 11 Q5
DNA polymerase master mix (NEB #M0544L). Thermocy-
cler conditions were: 65C for 5 min, 98C for 30 sec, 8 cycles
of: 98C for 10 sec and 65C for 90 sec. PCR reactions were
pooled and 385 cleaned up with a Qiagen MINELUTE™
PCR purification kit (two PCR reactions per column eluted
in 20 ulL EB buffer) and run on a 1% agarose E-Gel EX with
SYBR® Gold 1II stain (Thermo Fisher #G402001). Size
selection of ATAC-seq fragments was performed by gel
excision using a razor blade. Gel slabs were pooled into
<300 mg groups and DNA was purified using a MIN-
ELUTE™ Gel Extraction kit (Qiagen #28604) and eluted in
20 uL. of buffer EB per column following modified guide-
lines described in Box 2 of Taiwo et al. (2012)*'. The
resulting size-selected ATAC-seq fragment library was
treated with an anti-mitochondrial DNA CRISPR/Cas9
library following the protocol outlined in Montefiori et al.
using 10x excess of Cas9 protein (Supplemental Note 3)*2.
Applicants cleaned up the reaction with a Qiagen MIN-

25

30

40

45

42

ELUTE™ PCR purification kit and split into 8 PCR reac-
tions for a second round of PCR using the same conditions
and primers described above. PCR products were cleaned up
using two rounds of AMPure bead selection (0.8x ratio of
beads to input) to size-select against small fragments, eluted
in 40 ulL of dH20O and quantified using a Qubit dsDNA HS
Assay kit (Thermo Fisher #Q32854).

The pSTARR-seq_human plasmid used for generating the
plasmid library was a gift from Alexander Stark (Addgene
plasmid #71509). The linear backbone used for the subse-
quent cloning steps was generated by digesting 4 ug of
circular pSTARR-seq_human for 4-6 hours with Agel and
Sall restriction enzymes (NEB #R3552S and R3138S),
followed by gel excision under a dark reader transillumina-
tor (Clare Chemical #DR22A) to extract a linear 3.5 kb
fragment corresponding to the human STARR-seq plasmid
backbone. Applicants performed cloning of the fragment
library into the plasmid backbone approximately following
the Methods section from Arnold et al. (2013) 3. For each
library, Applicants performed 20 individual InFusion HD
cloning reactions (Takara Bio #638911) using a 3.5:1 molar
ratio of insert to vector backbone, following manufacturer’s
instructions (Supplemental Note 4). Each group of five
InFusion reactions was collected and cleaned up using the
Qiagen MINELUTE™ Enzymatic Reaction cleanup kit,
eluted in 10 ul of dH20, and transformed into four 20 ul
aliquots of MegaX DHI10B T1R electrocompetent bacteria.
The bacteria were thawed on ice for 10 min and mixed with
eluted DNA (five InFusion reactions per 100 uL. of bacteria).
22 ul of bacteria/DNA mixture were pipetted into a 0.1 cm
electroporation cuvette (Thermo Fisher Scientific #P41050)
and tapped repeatedly against a hard surface to remove
bubbles. Cuvettes were electroporated using a Bio-Rad
Gene Pulser Xcell Microbial Electroporation System (Bio-
Rad #1652662) using the conditions: 2.0 kV, 200 S2, 25 g
(Supplemental Note 5). For high-yield transformations,
Applicants observed electroporation time constants between
4.8 and 5.1 ms. After electroporation, bacteria were imme-
diately collected in 750 uLL pre-warmed SOC media, pooled,
and incubated for 1 hr in a 37C shaker. After recovery, serial
dilutions of bacteria were plated to estimate the number of
clones in the library. Recovered bacteria were diluted in 2 L.
of pre-warmed luria broth and 100 ug/mL of carbenicillin
and grown overnight (8-10 hours while shaking). Plasmids
were collected from bacteria using the Plasmid Plus Mega-
Prep kit (Qiagen #12981) following manufacturer’s instruc-
tions. Plasmid concentration was quantified using a Nano-
drop One machine (Thermo Scientific) and diluted to a 3
ug/ulL concentration for subsequent transfection steps. To
ensure plasmid library quality and diversity, a small aliquot
of the fragment library was amplified by PCR using i5 and
i7 primers, run on an Illumina MiSeq machine using the
50-cycle v2 kit as per manufacturer’s instructions, and
aligned to the human genome to ensure correct complexity
and sufficient proportions of reads within predicted tran-
scriptional regulatory elements (Supplemental Note 6, see
subsequent Methods sections for details on processing of
sequencing libraries).

Cell Culture and Transfections

GM 12878 cells were obtained from the Coriell bioreposi-
tory and grown in RPMI 1640 Medium with GlutaMAX
Supplement (Thermo Fisher #61870127), 15% fetal bovine
serum (Sigma Aldrich #F2442), and 1% pen/strep at a
density of between 2x10° and 1x10° cells/mL with regular
media changes every 2-3 days. Approximately 24 hours
before transfection, GM12878 cells were split to a density of
4x10° cells/mL to ensure the presence of actively dividing
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cells for increased transfection efficiency. For transfection,
cells were collected by centrifugation for 5 min at 300 g,
washed once with pre-warmed PBS, and collected again for
5 min at 300 g. PBS was aspirated, and cell pellets were
re-suspended in Resuspension Buffer R (Thermo Fisher
Scientific #MPK10096) at a concentration of 7.5 million
cells per 100 ul.. DNA was added to cells at a concentration
of 5 ug of plasmid per 1 million cells. In total, Applicants
transfected between 120-130 million cells per replicate
using 100 uL tips from the Neon Transfection System at
1200V with 3 pulses of 20 ms. Transfected cells were
immediately recovered in pre-warmed GM12878 media
without antibiotic and recovered at a density of 1x10°
cells/mL for 24 hours. In parallel, Applicants performed two
transfections of GM12878 cells with a positive control GFP
plasmid to assess transfection efficiency using the same
conditions.
RNA Isolation and cDNA Generation

GM12878 cells were collected 24 hours post-transfection,
washed twice in pre-chilled PBS (collecting for 5 min at 300
g) and RNA was purified using the Qiagen RNEasy Maxi kit
(Qiagen #75162) following manufacturer’s instructions and
performing the optional on-column DNase treatment step
(Qiagen #79254). Poly A+ RNA was extracted from total
RNA using the Oligotex mRNA Midi kit (Qiagen #70042,
two columns per RNA sample), and any remaining DNA
was digested with a second DNase treatment step using
Turbo DNase (Thermo Fisher #AM2238) following manu-
facturer’s instructions (Supplemental Note 7). Treated
mRNA was cleaned up and concentrated using the Qiagen
RNEasy MINELUTE™ Cleanup kit (Qiagen #74204).
Applicants generated cDNA from mRNA using Superscript
IIT Reverse Transcriptase (Thermo Fisher #18080085) with
a gene-specific RT primer located in the 3'UTR of the sgGFP
reporter gene downstream from the inserted fragments (5
-CAAACTCATCAATGTATCTTATCATG-3") (SEQ ID
NO: 3). Reverse transcription was performed following
manufacturer’s recommendations except with 2 ug of poly
A+ mRNA and 1 ulL of 12.5 uM primer per 20 ul. reaction,
and extension was performed for 60 minutes at SOC (Supple-
mental Note 8). Reverse transcription reactions were
cleaned up using a MINELUTE™ PCR purification kit
(Qiagen #28106, two reactions per column) and eluted in 15
ul. of pre-warmed buffer EB.
Library Construction and High-Throughput Sequencing

Applicants performed a qPCR to test the number of cycles
needed for amplification of single-stranded cDNA as well as
input material of plasmid DNA needed such that both
reactions had the same Ct values. Applicants used 1 ulL of
ssDNA and dilutions of plasmid DNA similar to the method
described by Tewhey et al. Cell 2016. qPCRs were per-
formed in 10 uL reactions with all reagents scaled down
proportionally from a normal 50 ul. PCR reaction (1 ul of
DNA, 5 ul of Ultra II Q5 master mix, 0.4 ulL of 25 uM
primer mix, 0.2 ul. of 10X SYBRL dye, 3.4 ul. of dH20)
with thermocycler conditions: 98C for 30 s, 20 cycles of:
98C for 10 s, 65C for 90 s. Applicants proceeded to perform
eight regular 50 ulL PCR reactions (each scaled up 5x from
the 10 ulL PCR reactions) using the same thermocycler
conditions except using the Ct value for the cycle number (F:
5'-CAAGCAGAAGACGGCATACGAGAT-3', (SEQ ID
NO: 4 R: 5-AATGATACGGCGACCACCGAGATCTA-
CAC[X®TCGTCGGCAGCGTC-3', “X8” sequence corre-
sponds to sample barcode, chosen from Illumina Nextera
barcode list) (SEQ ID NO: 5). PCR reactions were cleaned
up using Qiagen MINELUTE™ PCR purification kits and
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balanced for sequencing using the Kapa Library Quantifi-
cation Kit (Kapa Biosystems #KK4824, Supplemental Note
9).

Each library batch (five transfected RNA biological rep-
licates, five plasmid controls) was sequenced by the Broad
Institute Walk-Up Sequencing Facility on four flowcells on
a NextSeq 500 machine using the 75-cycle kit as per
manufacturer’s instructions for 2x37nt paired-end reads
with 2x8nt barcodes.

Read mapping, data processing and identification of sig-
nificantly up-regulated fragment groups

Reads were labelled by a random 4nt P7 barcode and an
8nt P5 barcode for sample ID. Reads were split into the ten
samples (5 plasmid replicates and 5 RNA replicates) by P5
barcode and aligned to the human genome (hg19 assembly)
using bowtie2 v2.2.9. Alignment files were filtered to (i)
keep only aligned fragments, (ii) remove reads mapping to
chrM, (iii) select reads passing the -q 30 filter in samtools,
and (iv) remove reads aligning to the ENCODE hgl9
blacklist regions (Supplemental Note 10). Applicants iden-
tified unique fragments using the bamtobed command in
BEDTools (v2.26.0) and filtered to keep only fragments
between 100 and 600nt.

In analyzing results from HiDRA, Applicants track the
abundance of each individual fragment between the input
(plasmid DNA) and output (RNA). Applicants grouped
fragments into “fragment groups” by 75% mutual overlap
(bedtools v2.26.0), removed redundant fragment groups and
summed counts of all fragments per group. To control for
length-dependent biases, Applicants split fragment groups
into bins of 100nt (100-200, 200-300, etc.) and used DEseq2
(v1.10.1) to identify FDR<0.05 significantly up-regulated
fragment groups>>.

Analysis of Active HiDRA Regions

All overlap and shuffle analyses performed using the
BEDTools suite, v2.26.0°* Most colors for plots chosen
with guidance from the wesanderson R package (github-
.com/karthik/wesanderson). For chromatin state annota-
tions, Applicants used the 18-state output model generated
by the Roadmap Epigenomics Consortium'. Active
enhancer states were merged from states #9 and #10 (EnhA1l
and EnhA2). ATAC-seq peaks positions were obtained from
Buenrostro et al. (2013)*.

Signal tracks: Signal tracks for regulatory activity calcu-
lated as (RNA-DNA)/DNA after adding a pseudocount of
0.1 to both plasmid and RNA samples, and drawn in UCSC
Genome browser showing only means (no whiskers) and
with 5-pixel smoothing.

Correlation between RNA samples: Applicants show cor-
relations for fragments selected by four different cut-ofts of
minimum RPM. Pearson and Spearman correlations were
calculated on log2-transformed data. Matrix of graphs
drawn using layout and grid. arrange functions in R from the
gridExtra library. Scatterplot between RNA samples drawn
using the hexbinplot function from the hexbin library in R
with xbins=100.

Proximal vs. distal: TSS regions were defined using the
UCSC Genome Browser’s Table Browser tool for hgl9.
Distances to nearest annotated TSS were taken using clos-
estBed tool in the BEDTools2 suite.

TF motif enrichment: Applicants obtained the hgl9 TF
motif catalog from the ENCODE project®. Applicants only
considered motifs corresponding to transcription factors
expressed in GM 12878 (RPKM>5 using processed RNA-
seq data from the Roadmap Epigenomics Consortium).

Activity of HIDRA regions in other tissues: Applicants set
a lenient definition for active in other tissues as the union of
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regions annotated in 97 non-GM 12878 tissues from epig-
enome roadmap predicted with 18-state ChromHMA/I
model. For active regions Applicants considered states
“TssA” (state #1), “TssFlnkU” (state #3), and “EnhA” (states
#9 and 10).

SHARPR?2 activity plots: Tracks were drawn in the UCSC
Genome Browser using “Custom Tracks”. Coloring of indi-
vidual fragments was performed by setting maximum and
minimum colors (RGB 0,0,0 and RGB 255,255,0, respec-
tively) to log2(RNA/DNA) values of 3rd lowest and 3rd
highest fragments (two strongest and weakest fragments
were removed to avoid strong outliers), and scaling colors of
all other fragments linearly between these extremes. Appli-
cants chose to include only ChIP-seq bound TF bars for
ChIPseq experiments performed in GM12878 cells by the
ENCODE project and where the motif (green bar) over-
lapped driver nucleotides.

SHARPR2 Identification of High-Resolution Driver Ele-
ments

See Appendix A for details and more information on
SHARPR2.

Read mapping and data analysis for allele-specific regula-
tory activity

Applicants used vcf-consensus (VCFTools) to mask the
hg19 genome assembly by replacing heterozygous nucleo-
tides identified by the [llumina NA12878 Platinum Genome
with N’s. 250nt paired-end MiSeq reads were trimmed using
cutadapt to remove Illumina primer sequences, mapped to
the NA12878-masked hgl9 assembly using bowtie2 v2.2.9
(settings: —end-to-end—phred33—sensitive-p 7-N 1—no-
unal), and filtered using the steps described above for 37nt
reads. As some long reads have poor quality scores at their
3' end, Applicants trimmed low quality sequences (quality
value <38) to reduce the proportion of sequencing errors at
SNPs that could lead to incorrect allelic assignment of
fragments. Fragments were then assigned to a SNP based on
genotype at the position. For comparisons of SNP activity,
Applicants only considered fragments with 90% mutual
overlap to reduce the confounding effect of fragments that
differ by both allele and position. Applicants also removed
fragments if either end was within 25nt of a driver element,
as in these cases small differences in end position could
artificially lead to large effects. After assigning fragment
abundances (from high-depth 37nt PE read sequencing) to
each allele of a SNP, Applicants identified SNPs with
significant differential activity using QuASAR-1VIPRA.
CENTIPEDE SNPs were identified by Moyerbrailean et al.
(2016) using an effect-size cut-off of >3 or <-3, following
the cut-offs used by Kalita et al. (2017)**2>,

URLSs and Data Availability

All high-throughput sequencing data generated by this
study has been deposited in NCBI GEO with accession
GSE104001. Processed HiDRA plasmid input, RNA output,
activity, as well as active fragments and driver elements can
be visualized on the UCSC genome browser at:

genome.ucsc.edu/cgibin/

hgTracks?hgSdoOtherUser=submit&hgS_otherUser
Name=xinchenw&
hgS_otherUserSessionName=HiDRA_GM12878_
092617.

The SHARPR2 R package is currently available from
R-forge at: r-forge.rproject.org/R/?group_id=2288, and will
also be available from CRAN pending package approval.
Supplementary Notes for Methods Section

0) Note on HiDRA insert size—Applicants recommend
caution before trying very large fragments (e.g. 800nt and
above) in HiDRA or STARR-seq. If sequencing on an
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Ilumina machine, fragments of this size do not cluster
efficiently and can lead to poor sequencing results. Appli-
cants tried a library with a wide length distribution of
600-1.5 kb, and found that large fragments (800nt and
above) were very poorly represented in plasmid samples.
Surprisingly, some of the strongest “active” regions in RNA
output were large fragments (1 kb and above)—this is likely
an artificial signal due to internal splicing of some large
fragments, creating a smaller fragment that is very efficiently
sequenced. A more detailed study of this artifact could yield
insights into RNA splicing of nongenic regions and the
evolution of new genes.

1) Applicants performed 16 ATAC-seq reactions on
50,000 GM12878 cells each. Applicants chose to perform
extra ATAC-seq reactions to ensure high library complexity,
but performing so many reactions is not necessary if initial
cell/tissue amount is an issue.

2) 16 reactions chosen to maintain high library complex-
ity and allow for low cycle number based on slide 67 from
www.broadinstitute.org/files/shared/illuminavids/Sam-
plePrepSlides.pdf. Applicants did not quantify library com-
plexity with fewer reactions, but if reagents or time are an
issue, reducing number of reactions will probably have
minimal effect on the library.

3) Mitochondrial fragment depletion was useful, however
for future studies Applicants recommend designing a denser
set of gRNAs to achieve greater amounts of depletion to
save on high-throughput sequencing costs later.

4) In subsequent tests Applicants found that in our hands
that the NEBuilder HiFi DNA Assembly enzyme (NEB
#e5520) yielded approximately 8-10x more bacterial colo-
nies per reaction using the same primers as described here,
in our hands. Based on manufacturer’s' literature, primers
with longer homology arms (20-25nt overlaps) should yield
even greater efficiency.

5) Applicants recommend using MegaX DHI10B T1R
cells or performing extensive tests if changing to a different
line of bacteria. In our hands, Applicants experienced sub-
stantially lower transfection efficiencies and greater degree
of arcing when using other electrocompetent cells (e.g. NEB
10-beta). Also, if this is your first time performing bacterial
electroporations, Applicants recommend practicing a few
times with the pUC19 positive control plasmid under dif-
ferent conditions.

6) The most important consideration for HiDRA library
preparation is the expected complexity (number of unique
fragments). If the complexity is too low, there will be
insufficient fragments in most regulatory regions for high-
resolution mapping. If library complexity is too high, more
cells may need to be transfected for reliable activity read-
ings, and DNA and RNA libraries will need to be sequenced
to greater depth. While developing HiDRA, Applicants were
able to generate plasmid libraries with over 30-50 million
unique fragments (almost an order of magnitude greater than
the data presented here), however this would require very
large sequencing runs. In our experience, library complexity
can be controlled in the (bottleneck) homology-based clon-
ing step. Before proceeding through time-consuming and
expensive transfection, RNA collection & RNA sequencing
steps, Applicants recommend sequencing the plasmid library
(MiSeq or spiking into a larger run) to estimate library
complexity and proportion of reads within interesting
regions (enhancers, promoters, etc).

7) As the Oligotex mRNA kits are fairly expensive,
another option is to synthesize biotin-labelled capture probes
against the reporter gene transcript and perform streptavidin
bead pull-down, as described by Tewhey et al. (Cell, 2016),
but modifying the probe sequences to match the sgGFP
reporter gene on pSTARR-seq_human.
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8) The Superscript III RT manual recommends using no
more than 500 ng of polyA RNA for reverse transcription
reactions. As Applicants are only reverse transcribing a
single gene and not the entire transcriptome, Applicants
reasoned Applicants could use add more polyA RNA per
reaction. Applicants selected 2 ug of polyA RNA after
performing reverse transcription reactions with increasing
amounts of RNA followed by reaction cleanup and 6-cycle
PCR to quantify yield.

9) If possible, Applicants recommend balancing libraries
on either a MiSeq or by spiking in on a sequencing run.
Applicants have tried Kapa kits, Bioanalyzer and Qubit/
Nanodrop, and balancing by MiSeq/sequencing is the best
option.

10) Applicants always recommend filtering against the
ENCODE blacklist regions, especially for ATACseq or
ATAC-seq-esque libraries due to the presence of a pseudo-
mitochondrial region near the beginning of chrl that will
otherwise substantially affect downstream analyses. Adapter
removal is also important if read length is greater than
minimum fragment size.

TABLE 1

Empirical FWER for the proposed local
multiple testing procedure. The
empirical FWER was calculated

from 500 replicates under each setting.

The theoretical FWER a is 5%.
Applicants examined the empirical FWER
with respect to a max tiled region length
(between 900 nt and 1500 nt) and the number of
fragments in the tiled region.

Number of Max length of tiled region
fragments 900 110 1300 1500
25 7.6% 9.0% 7.0% 7.6%
50 7.2% 6.0% 4.8% 4.0%
75 7.0% 5.2% 5.8% 6.4%
100 6.8% 5.0% 6.0% 6.7%
125 6.4% 5.4% 6.4% 5.0%
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Appendix A—Methodological Details of SHARPR2

Al. Model specification

Basic Model

We define a tiled region” as a continuous region in which
each position is covered by at least one HiDRA fragment

Suppose that a tiled region containing P positions is covered

by R fragments. The regulatory activity of each fragment j

with a length 1, j E{1, ..., R} can be measured by the ratio

RNA

DN4,

between me counts of sequenced RNA and DNA. For a
design with multiple replicates, the ratio is calculated from
the average counts of RNA and DNA across the replicates.
In this paper, we calculate RNA/DNA ratios for each frag-
ment after normalization of RNA & DNA by DESeq2 with
the library split into 100nt bins (100-200nt, 2013-300nt,
etc). We expect that the ratio fora fragment containing one
or more functional driver element site is larger than those not
overlapping a driver element We use the transformed obser-
vation M)° by taking the log-transformation with base e of

RNA

DN4,

for the downstream analysis, i.e.,

MO_IH(RNAJ-]
I 7"\ DNA, )

For the HiDRA library described in the Methods section, we
observed that the empirical distribution of M,° from the
whole genome (approximately 4 million fragments after
quality control and filtering for minimum expression) is
nearly symmetrically centered at zero but with heavy tails
(Supplemental Figure S8).
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In HiDRA, the length of a general tiled region is much
larger than the number of fragments (P»R). The basic idea
of SHARPR?2 is to use a shrinkage prior to tackle this large
p small n problem. We first compute a centered variable M;
for each fragment j by subtracting p, the mean of the
background signal (i.e., M=M°-u, ). The mean of the
background signal p, is the average signal intensity from
fragments not overlapping a driver element Thus, we esti-
mate 1, by the mean value of the observations taken from all
tiled regions covered by <5 fragments across the whole
chromosome, With the assumption that the majority of these
k tiled regions do not contain a driver element. More
specifically, suppose that there are K tiled regions on a
Chromosome and each tiled region is covered by R, frag-
ments each of Which has an observation M,,%, JE{1, . . . R}
and k&{1, . . ., K}. Thus, we have p,=%,,%,_,“M,°/
2,<5R;, where B is the set of all tiled regions covered by <5
fragments (B={kIR,<5}).

Within one tiled region, we assume that M, (we omit the
index k whenever the formula only involves a specific tiled
region) follows an i.i.d. normal distribution with a mean
equal to a scaled sum of those regulatory scores A, that are
covered by fragment j, that is,

M~-N (@1145,) 0

where T is an indicator matrix, i.e., T,=1 if position i, i€
{1,..., P}, is covered by fragment j; otherwise T,==0, and
L is a diagonal matrix for scaling each fragment. Note that
this specification of T assumes that each position in the tiled
region contributes identically to the regulatory activity mea-
surement of the fragments. If, for example, driver elements
at the ends of a fragment may contribute less to the regu-
latory activity, smaller weights can be assigned according to
its distance to the middle of the fragment. For the purpose
of regularization, we impose an ¢ , penalty on A, which is
equivalent to a normal prior from the Bayesian perspective.
Generalizing MPRA-SHARPR (Ernst et al., 2016) from 5 bp
to 1 bp, the regulatory score A, at each position i, which is
a latent variable, is assigned by a univariate normal prior

A4~N (0,62, ()]

where u is a hyper-parameter, which is defined by users and
is tested for 1 and 50 in Ernst et al., 2016_ In MPRA-
SHARPR, it is assumed that L =1 .. Because each fragment
has the same length in MPRA-SHARPR, we end up with

TA
L=land M NN(T’Zm]

Ernst et al., 2016), where I is the identity matrix. In contrast,
each fragment has a different length in HiIDRA ranging from
150nt to 500nt. In SHARPR2, we use a uniform scale
coefficient L, =1, where I=%,_ %2 _ 4, /%, | ¥R, is the aver-
age length of all fragments on the chromosome. Under this
modeling of L, the signal of a fragment depends only on the
sum of the regulatory scores at all positions that the fragment
covers but not on the fragment length. 2, is a covariance
matrix with non-zero diagonal elements equal to 0,2, which
is set to be the sample variance of M, in (Ernst et al., 2016).
The marginal distribution of M after integrating out A from
(1) follows

M~-N (0L T= (L' T)+5,,), 3)
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where

is a diagonal matrix. Thus, the ridge estimate or the posterior

mean of A given the observed M is
AT (L' T TE (L7 THE, ) M. ey
After some rearrangement to merge £, and £, we end up

with the following equation
Ay =((L' YL ' T+ (L' TYM 3

where

mqm ‘ §qm

is the penalizing coefficient

Selection of Penalizing Coefficient

Instead of letting 6,,* and thus the penalizing coefficient A
be defined by users as in (Emnst et al., 2016), we select A in
a data-driven way. This is because the choice of A substan-
tially affects the estimates and thus the following hypothesis
testing procedure. This means that A should be selected
carefully. Note that although the formula (4) is the same as
the posterior mean in the Bayesian framework used in
MPRA-SHARPR, we instead regard (5) as a ridge estimate
under the classical framework in SHARPR2. In this case, we
only assume that (1) is the true model in which A are
parameters rather than random variables, and (2) is used for
the purpose of regularization. Note that in this case the
choice of A has significant influence on the estimation of A.
If A is too small, the estimates would be unstable, while an
overly large A would bring more bias. A handful of strategies
have been proposed to select an optimal and stable A,
including cross-validation (Golub et al., 1979; Hastie et at,
2009), the Hoerl-Kennard-Baldwin plug-in method (Cule
and De lorio, 2013; Hoed and Kennard, 1970; Hoeft et al.,
1975), and the Markov chain Monte Carlo (MCMC) meth-
ods (Denison, 2002). We select A by following the strategy
proposed by Cule and De lorio, 2013, which generalizes the
idea of (Hoer) et al., 1915) to the large p small n problem and
shows stable estimation in simulation and real data studies.
More specifically, we first perform the singular value
decomposition (SVD) for L™'T:

L7'T=UDV,
where D is a diagonal matrix with t non-zero diagonal
elements dij, and t<min (P,R) We select r¥e {1, ..., t}, so
that

4
4

t
r* = argmin,r — E R
j=1 (djzj +A,.)°

where we have

A2
ré
= g
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-continued
f=D2V(L7'TY M, and
g2 M- L' VA) M- (L7 D, VA
T R-r

B

where 1, is an r-vector of the first r elements in 1.
Given r*¥, we choose A as

and the estimate at A in SHARPR?2 is

A, =L TY L T $ (L7 T M=HM, 6)

where H={(L ™' TL™'T+A,*1}"" (L' T)' is the hat matrix. For
HIDRA dataset, it is usually the case that the number of
fragments R is much smaller than the length of a tiled region
P. We apply SVD to the hat matrix to avoid the inversion of
a large-scale matrix After SVD, we have

H= (1) ' T+ 2. 0)7 (L7 T)
=(VD'U'UDV + A VV Y \vD' U’
= VW' U UD+ MD)W VD' U’

= V@' U UD+ MDDV,

in which the computation of LID is dramatically faster as
D has at mast R non-zero diagonal elements. In the analysis
of the example HiDRA library, we observed that this algo-
rithm of selecting A* produced stable estimates of the
regulatory scores. We also noticed that the algorithm would
produce an overly small A,* if in a tiled region two or more
fragments are mapped to almost the same position (the
difference is only a couple of nucleotides) and have large
opposite values of

[ #RNA; ]
In| X
#DNA;

This phenomenon may suggest a potential data problem.
Note that this algorithm estimates a unique A, * for each tiled
region, and thus the estimated regulatory scores cannot be
compared directly across regions. If the comparison across
regions is the major concern (e.g., using the estimated
regulatory scores as a training set in deep learning such as
convolutional neural networks (CNN) for other downstream
analysis), studentized estimates Z, ; can be used (described in
the next section).

Accuracy of Estimation

To provide a measure of the accuracy of the estimates, we
compute the pointwise mean square error (MSE) of A,. As
we assume that (1) is the true model, A, is a biased estimate
of A, and the MSE of A, should take into account both
variance and bias. That is, we are interested in finding not
only Var(A) but E(A,~A)* as well. Note that the MSE can
be decomposed into

MSE(A,)=Var(A,)+Bias(Ag0)2,

where Bias(A;h):E( Ax)—A measures the bias between the true
value of A and the mean of A,. The bias term is given by
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Bias(4,)>=(E(A)-A)EA)-A =((L~'T)L™'T+
AN DY L T-DAA (LT DL T !
(L' TY L T=Iy=(W, *=DAA (W ,*=1)', where
W A=((L DY L T+, ¥ )~ (L YL T

The variance Var(A,) can be shown as

Var() = Var((L 7Y LT + 4, )7 (L7 T) M) =

(L 7Y LT+ A )L T Var@n) (B 7Y L7 T + 4,07 (£ 7)) =

(YL T e N Y L (L ) L T A 1) = oL HE

The true value of G,,> is unknown, but can be estimated
from the residuals

L (M-LiTh) (M -LT)
I = R-df ’

where df=R-2tr(H)+tr(HH)' is the residual degrees of free-

dom (Hastie and Tibshirani, 1990). Plugging in the ridge

estimate (5) for A and the sample estimate ,,* for ,,>, the
estimated point wise MSE is

MSE (3)=6,2W, (L™ TY L™ T+A, ") HW, )

AA W 1y, (N

Pointwise confidence intervals (Cls) can be calculated

from Var (A,), e.g., 95% CI Akﬂ.%x\/?ar: (A,). Note that
the bias term Bias(A,) is non-zero if A of A, * is non-zero.
Therefore, it is not straightforward to interpret the Cls
obtained from Var(A,). Instead, the following 95% Cl

Cluy=As— BYIE (A,)11.96:<Var (4,)

can be used (De Brabanter et al., 2011), which adjusts for the
bias. One problem of the adjusted Cl is that the true bias is

unknown and its estimate Feas (A,) might not be accurate

Al Identifying High-Resolution Driver Elements

Regional FWER Controlling Procedure Given the esti-
mated regulatory scores A, for each nucleotide within a
specific tiled region, we then aim at finding a regional
threshold to declare the significant regulatory regions (regu-
latory drivers) at which an active motif is located. More
specifically, we need to make the inference for nucleotide i
by testing the following hypothesis,

Hy:A=0vs.H:A>O0.

For this hypothesis testing, we are only interested in
finding activating regulatory elements but not repressive
ones. For a specific tiled region containing P positions, we
want to find a cutoff c; so that the family-wise error rate
(FWER) o is bounded below a given value (e.g., 0.05). The
value of o can be set, differently among different tiled
regions. This amounts to a multiple testing problem of
performing P one-sided tests of the estimated regulatory
scores A,=(A,,, ..., A, ,)'=0 simultaneously. One way can
be computing a p-value for each A,, and use the simple
Bonferroni correction to obtain a local significance level

from which c; can be computed. This approach would be
overly conservative as A,; was not independent of each other
in this case. A more accurate cutoff should take into account
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the correlation structure of the estimated regulatory scores.
On the other hand, performing a permutation test for each
tiled region would be too time consuming for a library of the
whole genome albeit more accurate. Following the strategy
described by (Dickhaus and Gierl, 2012; Stange et al.,
2015), we thus propose a fast multiple testing procedure
based on Gaussian copula to find region-specific cutoffs for
controlling FINER «. Note that under the null hypothesis
A=0, the bias term in (7) disappears. We use the studentized
estimate as the test statistics

Ay A
Zy = = = ;
\/ﬁr(ah) G \/dlag(HH')i

where diag( ), stands for the ith element in the vector of the
diagonal elements of a matrix. It has been shown that under
the null hypothesis, Z,; follows a Student t-distribution and
can be approximated by a standard normal distribution under
alarge sample size (Cule et al., 2011; Halawa and Bassiouni,
2000). (Cule et al., 2011) find through simulation studies
that the type [ error rate and the power using the normality
approximation are comparable to those from permutation
tests for a wide range of A. This observation motivates us to
assume that under the null hypothesis, Z, follows a multi-
variate normal distribution

zh:e,;1(HHU)*“ZAM:sArN(o,S@ A)S), ®)

where | is the Hadamard product. In the simulation studies
provided in the next section, we will investigate the potential
influence on the empirical FINER induced by the multivari-
ate normal approximation under a small sample size. As the
marginal cumulative density function (CDF) F,(x,) of Z, is
continuous, according to Sklar’s theorem (Nelsen, 1999),
there exist a unique copula € :[0,11°—[0,1] such that
V(X Xp)e RZF(xy, ..., X0)=C (Fy(X)), - . ., Fu(Xp),
where F(x,, .. ., X,) is the joint CDF. Hence, for a one-sided
test we have

P P
@ = FWER = [PHO(UZM > c,v] =1- [PHO[ﬂZM < c,v] =

=1 =1

1=PpyZu sc1, ... ,Zyp=cp)=1-ClFi(c1), ... , File)

Under the multivariate normality approximation of (8),
we have

FP(CP))zl_C SVZ\F (A;Js(q)l

Dp(cp) ®

where C JVar (A,s (Ug, . .., Up) is a Gaussian copula with

a correlation parameter matrix of S¥ar (A,)S, and ®(c) is the
CDF of a standard normal distribution. Given a specific
value of «, there are infinite many solutions (u,, . . ., up)=

C Jar Ay s '(1-0). However, if we treat every position as
equally important and pursue a single-step common-quantile
cutoff ((Dudoit and van der Laan, 2008), Chapter 4) c, i.e.,

c,=...=cp=c, we can find a unique solution
ur=C JVar Aps(1=0), atu,= . .. =uP=u%

and
c*=P~ (u¥)

So, we reject H, for the positions in H ={ie(1, . . .,
P):Z,,>c*}, which we term as high-resolution “driver” ele-
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ments. The common-quantile cutoff c* can be calculated, for
example, by the function gmvnorm in the R package
mvtnorm (Genz and Bretz, 2002). The similar idea can also
be used to obtain adjusted p-values for controlling regional
FWER as shown in (Conneety and Boehnke, 2007). In real

data analysis, the estimated covariance matrix Var (A,) is
often degenerated and the estimates of adjacent positions are
completely correlated when P>R. Therefore, we trim the
number of the estimates by selecting one position from each
group in which the estimates for the positions are completely
correlated. This also dramatically reduces the computational
intensity for finding the solution to (9y identifying the driver
elements, we can further attempt to pinpoint the location of
the most possible occurrence of a 20nt “core” driver element
(see section A4 below for rationale for choosing ~20nt as the
estimated “core” region). We predict the center position i,
of a 20 bp core driver element by the highest regulatory
scores over its 20 bp flanking region, i.e.,

(+10AP
Ay
Zi:(i—Q)vl A

(i+10)AP— (=9l +1°

iy = argmax;eq

Supplemental Figure S10 gives an illustration of the
significant regulatory region and the predicted motif region.
In this example, the true motif is located at position 400-
420nt and is covered by an identified significant driver
element by SHARPR?2 (highlighted in red). The predicted
core driver region (highlighted in purple) further pinpoints
the location of the motif at ~400 bp.

Global FDR Controlling Procedure

The above regional procedure calls significant driver
elements for a specific tiled region. To identify driver
elements across an entire genome, it may be preferable to
control the global false discovery rate (FDR). We thus
propose a global p-value correction procedure for this pur-
pose by taking into account the p-values observed from the
whole genome. We first calculate the pointwise p-values for
all positions in all filed regions across the genome based on
the t-distribution

A

T "R}
VYA

where R—tr(H) is the sample size minus the effective degrees
of freedom. As mentioned in the local controlling procedure,
we select one position from a consecutive region in which
the estimate for these positions are completely correlated.
Then, the Benjamini-Hochberg procedure (Benjamini and
Hochberg, 1995) is performed on the pointwise p-values to
control the global FDR at level o. As the p-values from
different filed regions are independent, the p-values can be
regarded as dependent in finite blocks when the number of
fragments R, within each tiled region K is large

Zy =

[suming 22 =)
assuming -0}
R

Thus, under this assumption, the estimate of FDR is con-
sistent (Schwartzman and Lin, 2011; Storey et al., 2004).
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A3. Evaluation of Empirical Statistical Power and FWER

Simulation Settings

We assessed the performance of the proposed SHARPR2
algorithm in terms of empirical statistical power estimated
from our simulation studies. To mimic the current version of
the HIDRA library, we randomly generated a number R of
fragments (R between 25-100) in a P=1 kb tiled region. The
length of each fragment was sampled from a uniform
distribution 1j~U(175,450), je{l. ..., R}. We randomly
selected a 20 bp driver element from a 400 bp window in the
middle of the tiled region. For any fragment that covers the
driver element, we generated its signal from a normal
distribution N (u,,,,,,;=S,,:5,.5,;=0.1), where S, is the true
signal varying across different simulation scenarios. For the
rest of the fragments, we generated the signal from a normal
distribution M (u,,;,.=0, 6,,;.=1). We defined the signal-
to-noise-ratio (SNR) as

noise

S
SNR = .

Tnoise

We examined the empirical FWER and empirical statistical
power under different SNR and numbers of fragments. For
each simulation selling, we generated 500 replicates to
obtain the estimates of empirical FWER and statistical
power.

Evaluation of Empirical Type I Error Rate

Our results in Table 1 show that generally the empirical
regional FWER was controlled at ~5% when the number of
fragments was above 50. We observed mild inflation of
empirical FWER especially in the case of small sample size
(e.g., 25), but the inflation diminished with the sample size
increasing. This inflation should be due to the discrepancy
between the true null distribution of the statistic and the
asymptotic normal distribution at the tails (Han et al., 2009).
This indicates that the error introduced by the multivariate
normality approximation should be taken into account when
the sample size is overly small (e.g., by setting a more
stringent cutoff for a tiled region covered by very few
fragments). In addition, we also found that overall the
shortest tiled region (900 kb) in the simulation yielded the
largest FWER. One possible justification is that in a shorter
tiled region, fragments are more frequently overlapped.
Thus, the estimates of the regulatory scores are more closely
correlated with each other, which results in a denser corre-
lation matrix that requires more samples for an accurate
estimate

Evaluation of Empirical Statistical Power

Next, we examined the statistical power for pinpointing a
driver element under the condition of «=5%, i.e., the FINER
<5%. In this investigation, a true positive is counted if an
identified driver element or a predicted 20 bp functional
motif region overlapping the true driver element region. The
results in Supplemental Figure S11 show that the statistical
power for both regions consistently increases with respect to
the number of fragments and the SNR If there are 100
fragments in a tiled region, SHARPR2 can achieve more
than 80% power under SNR=1. When the number of frag-
ments is small (e.g., 25), SNR>1.5 is needed to achieve a
power of 80. Higher SNR requires that the biological
experiments have higher precision and sensitivity., so that
significantly more RNAs can be sequenced when the DNA
region covers a true driver element
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A4. Analysis of a HiDRA Library

We applied SHARPR?2 to a HIDRA library prepared from
the GM 12878 lymphoblastoid cell line. The library contains
3,896,416. fragments after quality control, with the length of
fragments ranging from 100-600nt (99% of fragments
between 168-413nt). We first identified 645,936 tiled
regions that are covered by at least two fragments across the
whole genome, among which 28,092 were are by more than
10 fragments. The distribution of the signals (In(#RNA/
#DNA)) of these fragments are almost symmetrically cen-
tered at zero with heavy tails (Supplemental Figure S8). The
average and the variance of the signals are constant across
the length of fragments after normalization (Supplemental
Figure S9).

We estimated the regulator scores for the 22 chromo-
somes separately and called driver elements based on a
cutoff controlling regional FWER<0.05 for the positions in
each tiled region. We found that the tiled regions covered by
larger numbers of HiDRA fragments were more likely to
have a driver element called, which is likely a combination
of greater statistical power and enrichment for regions more
likely to contain drivers

As shown in FIG. 5C, most driver elements are found
within active TSS, TSS Flanking Upstream and active
enhancers chromatin states. The median size of driver ele-
ments identified from the tiled regions covered by >10
fragments was 52nt after filtering to remove drivers smaller
than 5nt. The average size of drivers decreased with an
increase in number of fragments in a tiled region, suggesting
that more complex libraries with greater numbers of unique
fragments should be able to detect shorter driver elements
(Supplemental Figure S6), The average size of a driver
element converges to ~18nt after the depth of unique
HiDRA fragment coverage reaches 50 fragments/kb
(Supplemental Figure S6).
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Example 9—High-Resolution Genome-Wide
Functional Dissection of Transcriptional Regulatory
Regions and Nucleotides in Human

Genome-wide epigenomic maps have revealed millions
of putative enhancers and promoters, but experimental vali-
dation of their function and high-resolution dissection of
their driver nucleotides remain limited. Here, this example
shows HiDRA (High-resolution Dissection of Regulatory
Activity), a combined experimental and computational
method for high-resolution genome-wide testing and dissec-
tion of putative regulatory regions. Applicants tested ~7
million accessible DNA fragments in a single experiment,
by coupling accessible chromatin extraction with self-tran-
scribing episomal reporters (ATAC-STARR-seq). By design,
fragments were highly overlapping in densely-sampled
accessible regions, enabling us to pinpoint driver regulatory
nucleotides by exploiting differences in activity between
partially-overlapping fragments using a machine learning
model (SHARPR-RE). In GM12878 lymphoblastoid cells,
Applicants found 65,000 regions showing enhancer func-
tion, and pinpoint ~13,000 high-resolution driver elements.
These were enriched for regulatory motifs, evolutionarily-
conserved nucleotides, and disease-associated genetic vari-
ants from genome-wide association studies. Overall,
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HiDRA provided a high-throughput, high-resolution
approach for dissecting regulatory regions and driver
nucleotides.

Introduction

Precise spatiotemporal control of gene expression was
achieved by the interplay between non-coding regulatory
elements, including distal enhancers and proximal promot-
ers, and the transcriptional regulators they helped recruit or
repel, thus modulating the expression of nearby genes (1-3).
Unlike protein-coding genes, which can be readily identified
by their sequence properties and evolutionary signatures,
gene-regulatory elements lack highly-predictive sequence
patterns and show only modest evolutionary conservation at
the nucleotide level (1,4). Thus, systematic recognition of
gene-regulatory elements has relied on mapping of their
epigenomic signatures, including DNA accessibility, histone
modifications, and DNA methylation (5-7). For example,
both enhancers and promoters have high DNA accessibility
and low H3K27me3, but distal enhancers show relatively
higher H3K27ac and H3K4me1 while promoters show rela-
tively higher H3K9ac and H3K4me3 (8,9). However, many
regions showing such epigenomic marks do not experimen-
tally drive reporter gene expression, and some regions
driving gene expression lack endogenous signatures (10-12).
Moreover, epigenomic signatures are often low-resolution,
with important driver regulatory nucleotides comprising
only a small subset of the larger regions showing epigen-
omic signatures (13).

Experimental dissection of enhancer and promoter
regions has been traditionally expensive, laborious, low-
throughput, and low-resolution, lacking the resolution to
pinpoint individual regulatory driver nucleotides without
recourse to extensive mutagenesis. Several recent high-
throughput reporter assays for enhancer function enable
testing of thousands of distinct DNA sequences simultane-
ously, by cloning variable DNA fragments into common
reporter constructs, and using high-throughput sequencing
to quantify fragment activity. Synthesis-based approaches
(e.g. MPRA (14), CRE-seq (15)) use oligonucleotide syn-
thesis technology to generate elements and coupled bar-
codes. Genome-fragmentation approaches (e.g. STARR-seq
(16), Cap-STARR-seq (17,18), ChIP-STARR (1-3,19)) use
DNA fragments collected or captured from genomic DNA.
For synthesis-based approaches, technical limitations of
oligonucleotide synthesis technology restrict the tested
DNA fragment lengths to 130-230 nucleotides, and the
number of tested constructs to 100,000-200,000 sequences
per array. For genome-fragmentation approaches, random
fragmentation of the entire genome results in only shallow
coverage of regulatory elements, while synthesis-based cap-
ture is limited in the number of regions interrogated due to
its reliance on oligonucleotide synthesis, and ChIP-based
capture is limited in only one or few transcription factors at
atime. To recognize driver nucleotides within tested regions,
synthesis-based approaches have used systematic mutagen-
esis (1, 4, 20) or tiling at regularly-spaced intervals (5-7, 13),
but both require synthesis of many constructs for fine-
mapping each region, thus reducing the number of regions
that can be dissected at high resolution.

Here, Applicants present HiDRA (High-resolution Dis-
section of Regulatory Activity), a method for high-resolu-
tion inference of transcriptional regulatory activity across all
accessible regions of the genome. HiDRA overcomes the
limitations of previous technologies and combine their
advantages, enabling high-throughput and high-resolution
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inference of regulatory activity. Briefly, Applicants first
extracted accessible DNA regions using ATAC-seq (10-12,
21), size-selected for constructs 150-500nt long, and incor-
porated them in self-reporting episomal constructs (ATAC-
STARR-seq), by insertion in the 3’ untranslated region (3'
UTR) of reporter genes, thus enabling them to drive their
own transcription and serve as their own barcodes, provid-
ing a quantitative readout of their activity. Applicants then
exploited the dense sampling of accessible regions and the
partially-overlapping nature of tested fragments for high-
resolution inferences using a machine-learning approach
(SHARPR-RE). The approach overcome the construct-
length and region-count limitations of synthesis-based tech-
nologies at substantially lower cost, and the ATAC-based
selection of open chromatin regions concentrated the signal
on likely regulatory regions and enabled high-resolution
inferences. Altogether, in a single experiment Applicants
tested millions of enhancer constructs of comparable length
to low-throughput studies while achieving the high-resolu-
tion dissection of systematic perturbation studies.

Applicants applied HiDRA to infer genome-wide regula-
tory activity across ~7 million DNA fragments preferentially
selected from accessible chromatin in the GM12878 lym-
phoblastoid cell line, resulting in ~65,000 discrete genomic
regions showing significant regulatory function. These were
enriched for endogenous active histone marks (including
H3K9ac, H3K27ac), regulatory sequence motifs, and
regions bound by immune regulators. Applicants’ selection
approach resulted in highly-overlapping fragments (~32,000
regions covered by 10+ unique fragments, ~12,500 by 20+
fragments), enabling Applicants to pinpoint “driver” regu-
latory nucleotides that are critical for transcriptional
enhancer activity. Applicants discover ~13,000 of these
high-resolution driver elements, which were enriched for
regulatory motifs and evolutionarily conserved nucleotides,
and helped predict causal genetic variants underlying dis-
ease from genome-wide association studies. Overall,
HiDRA provided a general, scalable, and high-throughput
approach for the high-resolution experimental dissection of
regulatory regions and driver nucleotides in the context of
human biology and disease.

Results

HiDRA Experimental Method Overview

HiDRA leverages the selective fragmentation of genomic
DNA at regions of open chromatin to generate fragment
libraries that densely cover putative transcriptional regula-
tory elements. The experimental component of HiDRA was
the combination of ATAC-seq and STARR-seq (i.e. ATAC-
STARR-seq): fragments were enriched from open chromatin
and regulatory regions using ATAC-seq (Assay for Trans-
posase-Accessible Chromatin  with high throughput
sequencing) and subsequently cloned into the 3' UTR of a
reporter gene on the self-transcribing enhancer reporter
vector used in self-transcribing active regulatory region
sequencing (STARR-seq) (13, 16, 21). Fragments with tran-
scriptional regulatory activity promoted self-transcription
such that active segments of DNA can be identified and
quantified by high-throughput RNA sequencing to produce
a quantitative readout of enhancer activity (FIG. 20A).
Library construction can be completed in 2-3 days and
requires as few as 104-105 cells as input starting material.

Applicants constructed a HiDRA library with 9.7 million
total unique mapping fragments, of which 4 million had a
frequency greater than 0.1 reads per million (RPM; non-
mitochondrial reads). More than 99% of fragments had
lengths between 169nt and 477nt (median: 337nt), with the
fragment length distribution showing two peaks spaced by
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-147nt, corresponding to the length of DNA wrapped
around each nucleosome (FIG. 20B). In contrast to unbiased
fragmentation of the genome, the library had much higher
efficiency for selectively targeting accessible DNA regions
that are more likely to play gene-regulatory roles. The
HiDRA library covers 4486 predicted enhancers and 9631
predicted promoters (“Active Transcription Start Site
(TSS)” state (5, 6, 14) with more than 10 unique fragments
(FIG. 20C, colored lines), a ~130-fold and ~210-fold enrich-
ment compared to 35 enhancer and 46 promoter regions
expected to be covered by chance at the same coverage. This
indicated that HiDRA library construction successfully tar-
geted predicted regulatory regions rather than randomly
fragmenting the genome. Even among enhancer and pro-
moter regions and ATAC-seq peaks, those with higher
expected activity were preferentially selected by HiDRA, as
they showed higher accessibility and were thus more likely
to be cloned in our library and tested by our episomal
reporters (FIGS. 26A-26C).

The cloning strategy was specifically designed to densely
sample regulatory regions, in order to enable high-resolution
inference of regulatory activity from highly-overlapping
fragments. Indeed, Applicants found up to 370 unique
fragments per region in our HiDRA libraries, with ~32,000
genomic intervals containing at least 10 overlapping frag-
ments and ~2750 containing at least 50 fragments, compared
to 180 and O that would be expected by randomly-selected
fragments, respectively. In addition to clustering of tested
fragments within the same region, high-resolution inference
relied on partially-overlapping rather than fully-overlapping
fragments, which required a random fragmentation pattern.
Indeed, the TnS transposase used here inserted randomly
into the genome, and indeed the resulting DNA fragments
provided a dense sampling of start and end positions that
mirrored the peaks of ATAC-seq experiments (FIG. 20D),
indicating that accessible regions most likely to show regu-
latory activity would have both higher representation in our
libraries, and also more starting and ending positions that
can help identify driver nucleotides.

Identification of DNA Fragments with Regulatory Activ-
ity

To evaluate the ability of each cloned DNA fragment to
promote gene expression, Applicants transfected our
HiDRA library into GM12878 lymphoblastoid cells, col-
lected RNA 24 hours post-transfection, and measured the
abundance of transcribed fragments by high-throughput
RNA sequencing. Applicants carried out 5 replicate trans-
fection experiments from the same plasmid library, each into
~120 million cells, and Applicants observed a high degree of
correlation in the RNA counts between replicates (0.95
Pearson correlation on average for fragments =1 RPM; 0.76
for 20.1 RPM; FIGS. 27A-27D). To quantify the regulatory
activity of tested elements, Applicants compared the number
of RNA reads obtained for a fragment (corresponding to the
expression level of the reporter gene, as the constructs are
self-transcribing), relative to representation of that fragment
in the non-transfected input plasmid library (thus normaliz-
ing the differential abundance of each fragment in our
library). Applicants observed a substantial number of frag-
ments that were more prevalent in RNA than DNA, indi-
cating capability of many HiDRA fragments to drive
reporter gene expression (FIG. 21A).

Given the intentionally high initial complexity of the
HiDRA library, many fragments would be sequenced with a
relatively low depth of coverage. Applicants therefore
grouped fragments with a 75% reciprocal overlap to boost
the read coverage of genomic regions and increased statis-
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tical power. This yielded 7.1 million unique ‘“fragment
groups” generated from merging 9.7 million HiDRA frag-
ments. In total, Applicants identified 95,481 fragment
groups that promote reporter gene expression at an FDR
cut-off of 0.05, which is referred to as ‘active HiDRA
fragments’ (FIG. 21A, red dots, see Methods). These 95,481
active HiDRA fragments were located within 66,254 unique
genomic intervals that were subsequently referred to as
“active HiDRA regions”. Active HiDRA fragments showed
a wide range of input DNA levels in the plasmid library,
indicating that regulatory function and DNA accessibility
relied on complementary sequence signals, and that DNA
accessibility alone was not sufficient to predict episomal
regulatory activity. Applicants also found that active HIDRA
regions were predominantly distal to annotated transcription
start sites (TSSs) (FIG. 21B), validating the utility of
HiDRA for pinpointing distal regulatory regions that were
particularly challenging to identify.

As proof-of-concept that HiDRA was capable of identi-
fying true enhancer elements, Applicants examined the
immunoglobulin heavy chain enhancer within the intron of
the immunoglobulin heavy constant epsilon (IGHE) gene
(15, 22). Applicants observed that the peak of HiDRA
activity was centered precisely within the region previously
identified as driving enhancer activity in low-throughput
luciferase assays (FIG. 21C). To assess the quantitative
accuracy of HiDRA relative to luciferase assays, Applicants
compared active HiDRA regions and luciferase results
across 21 putative enhancers predicted and tested indepen-
dently by Huang et al. (16, 23). Applicants found a 0.88
Pearson correlation between measured luciferase activity
and HiDRA activity, confirming the accuracy and quantita-
tive nature of our high-throughput approach (FIG. 21D). A
visualization of 14 luciferase-tested enhancers in the serine/
threonine kinase NEK6 locus showed a strong correspon-
dence between luciferase assay results and HiDRA active
regions (FIG. 21E).

HiDRA Elements were Enriched in Promoters and
Enhancers

Applicants surveyed the 95,481 active HiDRA fragments
identified in GM12878 to assess shared common genomic or
epigenomic characteristics. In comparison to the set of all
HiDRA fragments tested, active fragments were 8-times
more likely to overlap regions annotated as Active Promoter
chromatin states by ChromHMM based on the presence of
H3K4me3 and H3K27ac, and 5-times more likely to overlap
annotated Active Enhancer chromatin states, marked by
H3K4mel and H3K27ac (FIG. 22A). By contrast, Weak
Enhancer chromatin states marked by H3K4mel and
absence of H3K27ac had substantially weaker enrichment
(1.7-fold) within active HiDRA fragments than active
enhancers, consistent with previous literature indicating that
presence of H3K27ac correlates with higher greater expres-
sion of nearby genes (FIG. 22B). Overall, 35% of all
predicted active promoters (8355 regions) and 16% of all
predicted active enhancers (5276 regions) overlapped at
least one active HiDRA fragment.

In addition to active promoter and active enhancer chro-
matin states, the “TSS Flanking Upstream” chromatin state
showed strong enrichment for active HiDRA fragments
(7.3-fold higher than expected from the input library). This
chromatin state was defined by the presence of both pro-
moter and enhancer histone marks H3K4mel, H3K4me3,
and H3K27ac, and was named “TSS Flanking” due its
depletion at exactly the TSS position, but its enrichment
400nt-1kb upstream of annotated transcription start sites 7,
17, 18. However, 64% of its occurrences are >2 kb from the
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nearest transcription start site, suggesting that a portion of
genomic regions annotated as “TSS Flanking Upstream”
may function biologically as distal enhancers (FIG. 28).

When Applicants computed enrichment of chromatin
states as a function of HiDRA activity strength, Applicants
found a linear quantitative relationship for HiDRA activity
levels up to ~2.5-fold RNA/DNA ratios, with increasing
activity showing increasing chromatin state enrichment for
both promoter and enhancer chromatin states (FIG. 22B).
Surprisingly, this enrichment stayed constant thereafter for
promoter regions, and increased modestly for enhancer
regions, ultimately surpassing the enrichment seen for pro-
moters. In fact, even though promoter chromatin states were
more enriched at intermediate HiDRA activity levels,
enhancer chromatin states were the most enriched at the
highest HiDRA activity levels (p=9.3x10-102, Mann-Whit-
ney U test, FIG. 29A), suggesting that enhancer elements
have a greater dynamic range of regulatory activity poten-
tial, which has implications for the regulatory architecture of
genes.

Surprisingly, fragments from heterochromatin-associated
chromatin states showed a modest enrichment in active
elements, indicating that DNA kept in an endogenous het-
erochromatic state may contain regulatory signals that
become active once taken outside their repressive endog-
enous chromosomal context. The ZNF/repeats-associated
chromatin state (marked by H3K36me3 and H3K9me3)
showed a modest enrichment for lower HiDRA activity
levels, but continued to increase linearly even at the highest
activity levels, possibly due to active repetitive elements, as
discussed below. In contrast, Quiescent and Polycomb-
repressed chromatin states showed a 2-fold relative deple-
tion for HiDRA active elements, accounting for the enrich-
ments found in other states. The depletion of Polycomb-
repressed chromatin states may reflect Polycomb repression
on the episomal plasmid.

Applicants also studied the enrichment of HiDRA regions
for individual hi stone marks profiled by the ENCODE
project in GM128787. Active promoter- and active-en-
hancer-associated acetylation marks H3K9ac and H3K27ac,
histone turnover-associated H2A. Z, promoter- and
enhancer-associated H3K4me3 and H3K4mel, and DNase 1
accessible chromatin were the most enriched individual
marks within active HiDRA regions, while Polycomb-re-
pression-associated H3K27me3, heterochromatin-associ-
ated H3K9me3, and transcription-associated H3K36me3
were the least enriched compared to the input library (FIG.
30).

As these elements were tested outside their endogenous
chromatin context, Applicants expected that they drive
reporter gene transcription by recruiting transcriptional
regulators in a sequence-specific way, and Applicants sought
to gain insights into the recruited factors. Applicants calcu-
lated the overrepresentation of 651 transcription factor
sequence motifs assembled by ENCODE in active HIDRA
regions, and found enrichment for many distinct motifs for
immune transcription factors (FIG. 29B), including IRF,
NFKBI, and RELA, corresponding to transcriptional regu-
lators known to function in GM12878 compared to other
human cell lines. The motifs enriched in promoter chromatin
states were largely distinct from those enriched in enhancer
chromatin states, highlighting the differential regulatory
control of the two types of regions (FIGS. 29B-29D).
High-activity fragments showed distinct motif composition,
and were enriched for GM12878 regulators including NF-
kB (FIGS. 29E, 29F). These differences in motif content
indicated that the two types of regions recruit different sets
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of transcriptional regulators both in their endogenous con-
text and in the episomal assays, consistent with their distinct
endogenous chromatin state and their distinct properties in
our HiDRA assays.

Regulatory Activity Outside Promoters and Enhancers

Even though HiDRA active regions were most enriched
for enhancer and promoter states, they were not exclusive to
them. In fact, consistent with recent studies (24, 25),
approximately half of active HiDRA regions (52%) showed
endogenous epigenomic signatures characteristic of
repressed and inactive chromatin states, including Quies-
cent, Repressed Polycomb, Weak Repressed Polycomb, and
Heterochromatin.

As active chromatin states were defined based on the
profiling of only a subset of known chromatin marks in
GM12878, Applicants reasoned that perhaps other marks
may be marking these regions active, but that they were
perhaps not profiled in GM12878 and thus missed by the
reference genome annotations. For example, a recent study
identified subclasses of active enhancer elements marked
with H3K122ac or H3K64ac but not H3K27ac12. While
these marks were not profiled in GM12878, inactive chro-
matin states that showed HiDRA activity were 8-fold to
13-fold more likely to be bound by transcription factors in
ChIP-seq experiments in GM 12878 than inactive chromatin
states that lacked HiDRA activity (FIG. 22D), indicating that
our assays can successfully recover active regions even
outside active chromatin states, and highlighting the impor-
tance of the unbiased survey of open chromatin regions
regardless of their endogenous chromatin marks.

As both high-throughput and low-throughput episomal
assays test regions outside their endogenous chromatin
context, Applicants reasoned that some active HiDRA
regions with inactive chromatin signatures may reflect
endogenously-inactive regions that become active when
removed from the influence of nearby repressive effects.
Applicants reasoned that these regions would contain
sequence motifs of TFs active in GM12878, but that these
sequence motifs would be less likely to be bound in their
endogenous chromatin context, compared to motifs in active
states. Indeed, Applicants found that active HiDRA regions
from endogenously-inactive chromatin states showed simi-
lar enrichments in regulatory motif sequence coverage to
that of enhancer and promoter chromatin states (FIG. 22C),
but substantial differences in their endogenous TF binding
(FIG. 22D), consistent with endogenous repression due to
their genomic context. These regions were also ~30% more
likely to be active in another human tissue, compared to
HiDRA-inactive regions (FIG. 31), consistent with cell-
type-specific repression in their endogenous chromatin con-
text.

In addition to the presence of regulatory motifs for known
regulators active in GM 12878, Applicants sought additional
driver elements that may be responsible for the episomal
activity of endogenously-inactive regions. In particular,
Applicants considered the presence of Long-Terminal-Re-
peat (LTR) retrotransposons, which had been previously
shown to have regulatory activity potential and were
enriched in the set of all active HiDRA regions unlike other
repetitive elements in the genome (FIG. 32A) (13, 26).
Indeed, Applicants found that active HiDRA regions from
endogenously-inactive regions showed substantial enrich-
ment for TR retrotransposons. In fact, Quiescent and
Heterochromatin states were more enriched for LTR ret-
rotransposons than either Enhancer or Promoter chromatin
states (FIG. 32B). These regions were endogenously inac-
tive despite their seeming regulatory activity potential,
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likely due to the effect of repressive chromatin in their
endogenous loci. As LTRs are motif-rich and often act as the
substrate for recently evolved enhancers, these endog-
enously-inactive but episomally-active HiDRA regions may
represent a reservoir for the emergence of new regulatory
elements (2).

High-Resolution Mapping of Regulatory Activity with
HiDRA

Applicants sought to exploit the highly overlapping
nature of tested HiDRA fragments to increase the resolution
of regulatory inferences by exploiting subtle differences
between neighboring fragments that only overlap partially.
As an example, Applicants considered a 3 kb region on
chromosome 7 that is covered by 134 HiDRA fragments
with distinct start and end positions. When Applicants
examined every fragment in this region, Applicants
observed that fragments overlapping a known RUNX3 motif
showed substantially higher regulatory activity (FIG. 23A).
This motif was bound by the RUNX3 protein in GM 12878
cells and showed increased evolutionary conservation (FIG.
23A). These properties suggested that the driver regulatory
nucleotides within this region were tightly concentrated
surrounding the RUNX3 motif, and that on the global level
the differential activity of HiDRA-tested segments would
allow for systematically discover these driver nucleotides in
an unbiased way based on the relative activity of fragments
that do or do not overlap them.

As part of the development of Sharpr-MPRA13, Appli-
cants had previously developed the SHARPR algorithm
(Systematic High-resolution Activation and Repression Pre-
diction from Reporter assays), a graphical probabilistic
model that inferred high-resolution activity from MPRA
tiling experiments by reasoning about the differential activ-
ity of partially-overlapping microarray spots. SHARPR
allowed Applicants to transform measurements from the
145-bp resolution of individually tested tiles to the 5-bp
resolution of the offset between consecutive tiles. The
SHARPR algorithm relied on synthesized oligos that uni-
formly tiled regions at regularly spaced intervals. Applicants
developed a new algorithm, SHARPR-RE (for SHARPR
with Random Endpoints), which estimated regulatory scores
underlying any set of randomly-positioned and variable-
length segments, by appropriately scaling the segments by
their varying lengths, and enabling inferences at variable-
length offsets between them (Supplementary Methods).

Applying the SHARPR-RE algorithm to the RUNX3
example above, Applicants found that the 3 kb region was
narrowed down to a single ‘driver’ element of 27nt (FIG.
23A). These captured the known RUNX3 motif shown
experimentally by ChIP-seq to be bound by the RUNX3
regulator in GM 128787, and also the independently-deter-
mined high-resolution region of evolutionary conservation,
even though neither line of evidence was used in our
inferences.

Across all ~32,000 “tiled regions” that were covered by at
least 10 unique HiDRA fragments (FIG. 33), SHARPR-RE
predicted ~13,000 driver elements of median length 52nt,
using a regional family-wise error rate of 5% (FIG. 23B, see
Supplementary Methods and Supplementary Datasets 2 and
3). The resolution with which driver elements could be
resolved increased with the number of unique HiDRA
elements spanning a tiled region, reflecting both the
increased number of breakpoints in densely-tiled regions,
and the increased discovery power afforded by the
SHARPR-RE algorithm. Regions tiled by 40 or more frag-
ments showed ~20nt resolution (FIG. 34). Regions tiled by
fewer fragments (10-20) showed lower resolution (~50nt),
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but resolution only increased to ~18nt with higher fragment
density, suggesting the minimum size of driver elements
detectable by the HiDRA assay that resulted in regulatory
activity was only slightly longer than individual regulatory
motifs. Similar to active HiDRA regions, driver elements
were also mostly distal from annotated TSS regions, and
were preferentially found in endogenously active chromatin
states (active promoters, TSS-flanking, and active enhancer
regions, FIG. 35).

Compared to a background of all tiled regions, which
were specifically enriched for GM12878 regulatory regions,
Applicants found that predicted driver nucleotides were
significantly more enriched for regulatory motifs than
shuffled controls (obtained by randomly shuffling driver
element positions within the same set of tiled regions with
at least 10 unique HiDRA fragments). The enriched motifs
consisted of regulators known to be active in GM12878,
including several critical B-cell and immune transcription
factor including NF-kB and the IRF family (FIG. 23C). A
total of 98 motifs were enriched in driver elements
(FDR<0.05 vs. random shuffling of driver elements in tiled
regions, see Methods), clustering into several distinct groups
with little overlap between groups, suggesting a wide range
of distinct transcription factors act to regulate GM12878
gene expression (FIG. 23D). Applicants also found that
driver nucleotides were significantly more likely to be
evolutionarily-conserved across vertebrates than randomly-
shuffled controls in tiled regions (FIG. 23E), with 1080
driver elements overlapping conserved regions, compared to
only ~650 expected by random shuflling of driver elements
within tiled regions (p=2.23x10-73). Driver elements were
also more evolutionarily conserved than equally-sized seg-
ments residing directly upstream or downstream (FIG. 36A),
supporting the biological importance of the high-resolution
inferences.

Applicants also validated our high-resolution predictions
using an independent high-resolution experimental method
based on 1VIPRA array synthesis and high-resolution tiling
(Sharpr-MPRA13). As the original SHARPR algorithm did
not include the functionality to call discrete driver elements,
Applicants compared Sharpr-MPRA activity scores within
driver elements identified in this study compared to equally-
sized segments shifted upstream and downstream. Appli-
cants found that HiDRA driver elements were much more
likely to show Sharpr-MPRA activity than these shifted
segments. Sharpr-MPRA activity scores peaked for HIDRA
driver elements, and were lower in flanking regions (256
regions tested in both HepG2 and K562, FIG. 36B), sup-
porting the functional importance of HiDRA driver nucleo-
tides (FIG. 36B, left panels). The agreement was stronger for
Sharpr-MPRA scores in K562 than HepG2 (FIG. 36B),
consistent with its higher similarity to GM12878. Specifi-
cally distinguishing accessible DNA sites based on their
motif content (and thus the trans-acting TFs predicted to
target them), Applicants found that predicted targets of K562
and HepG2 TFs that were also expressed in GM12878
showed even higher Sharpr-MPRA scores, whereas targets
of TFs that were not expressed in GM 12878 showed nearly
complete loss of any enrichment signal (FIG. 36B, right
panels), thus providing a mechanistic explanation for their
similarity in activity.

Applicants also evaluated whether disruption of regula-
tory motifs within predicted driver elements reduced their
activity. Applicants selected HiDRA driver elements whose
disruption had previously been tested in K562 and HepG2
using a synthesis-based MPRA27. In all four cases, shuffling
motif-containing nucleotides within predicted driver regions
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showed reduced 1VIPRA activity in one or both cell types
tested (FIG. 36C, Mann-Whitney U test), confirming the
functionality of our predicted driver nucleotides for
enhancer activity. Applicants also evaluated whether genetic
variants in predicted driver nucleotides were more likely to
result in differential activity between the two alleles, com-
pared to other genetic variants. Applicants used the results of
an independent experimental study that quantified allelic
enhancer activity for 4,335 single-nucleotide polymor-
phisms (SNPs) across the genome (28), of which 24 overlap
driver elements identified by our assay. Genetic variants
inside driver elements indeed showed significantly stronger
allelic skews compared to all variants tested by MPRA
(p=1.62x10-4, Mann-Whitney U test), and also compared to
all tested variants inside HiDRA-tiled regions but outside
driver elements (p=9.20x10-4, Mann-Whitney U test) (FIG.
23F), supporting the functional importance of our predic-
tions, and the high-resolution nature of our driver elements.

Taken together, these results indicated that the high-
resolution inferences were biologically meaningful and
could help pinpoint driver nucleotides among larger regions.

Characterization of GWAS SNPs Affecting Enhancer
Activity

Applicants next sought to use our predicted active regions
and driver nucleotides to gain insights into non-coding
variation, as past work has demonstrated that disease-asso-
ciated variants are preferentially localized to regulatory
elements (4, 29, 30). Applicants studied the overlap between
genetic variants associated with immune disorders and the
high-resolution predicted driver nucleotides. Even though
driver nucleotides only covered 0.032% of the genome,
Applicants found 12 cases where they overlapped fine-
mapped SNPs associated with 21 immune-related traits (31)
predicted to be causal (~5 expected by chance inside tiled
regions, p=0.012 vs. random shuffling, FIG. 24A). For
example, Applicants predicted a 76-nt driver element over-
lapping rs12946510 in the IKZF3 locus associated with
multiple sclerosis in a tiled region of 3 kb (FIG. 24B),
suggesting this may be the causal variant. The SNP over-
lapped a 76-nt driver element that contains a RUNX3 motif
and a RELA motif, both bound by the respective TFs in
GM128787. Indeed, rs12946510 was predicted to be causal
based on genetic fine-mapping (31), with a posterior prob-
ability of 0.314 of being causal with the next strongest signal
showing only 0.067 posterior probability. rs12946510 was
also an eQTL for the nearby IKZF3 gene (31, 32), and was
recently shown to disrupt enhancer activity for the surround-
ing 279-nt region using a luciferase reporter assay (33),
consistent with the prediction that rs12946510 was a causal
SNP.

To recognize regions that showed differential activity
between risk and non-risk alleles of common genetic vari-
ants, Applicants first inferred the genotype of all RNA
fragments profiled. As HiDRA was a sequencing-based
assay, where the expression of reporter genes was quantified
based on the number of sequencing reads, allele-specific
differences in HiDRA activity between risk and non-risk
haplotypes would be detectable in principle by using het-
erozygous positions to distinguish reads coming from the
paternal or the maternal allele. In practice however, HIDRA
fragments were much longer (~337 median length) than the
typical sequencing reads we used for quantification (37nt,
paired end), and thus 78% of genetic variants may not be
covered by our sequencing reads (if they fell in the inner
~260nt not captured by the paired-end sequencing). To
overcome this limitation and to determine allele-specific
activity scores for all the fragments, Applicants used low-
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depth re-sequencing of our input library using long reads,
thus revealing the genotype associated with each start/end
position in our library (FIG. 25A). Applicants augmented
this information with 4-nt random i7 barcodes that were
added by PCR during the initial HIDR A library construction,
thus ensuring that the [start, end, i7] triplet was almost
guaranteed to be unique, by resolving the cases where both
start and end positions were identical between paternal and
maternal alleles. This strategy enabled us to resolve the
genotype of all previously quantified HiDRA fragments
without having to sequence both the plasmid and RNA
libraries to full length at high depth, which would be too
costly.

In a proof-of-concept analysis to assess the ability of
HiDRA to detect allelic activity, Applicants applied this
approach systematically to all heterozygous positions
known in the genotyped GM12878 cell lines. Applicants
found 180,000 heterozygous SNPs that were represented by
at least one HiDRA fragment at either allele in the library.
Detection of allelic activity with random fragmentation was
subject to confounders, as fragments carrying the maternal
or paternal allele of a SNP may also differ at their start and
end positions, which may result in activity differences
independent of SNP effects (FIG. 37). To minimize such
effects, Applicants only compared fragments with 90%
mutual overlap, and with driver elements at least 25nt from
fragment ends. Additionally, statistical power to detect
allelic differences may be limited for many SNPs. Appli-
cants also only consider SNPs that have >20 read coverage
for both fragments (reference and non-reference alleles). In
total, 16,000 SNPs remained after applying these three
filters. At an uncorrected nominal p-value cut-off of 0.05,
Applicants found 880 “allelic’ HIDRA SNPs where paternal
and maternal alleles showed differences in activity, 25 of
which had a corrected FDR<0.1 (beta-binomial model (34),
Supplementary Dataset 4). The corresponding SNPs in these
880 allelic HiDRA regions were more frequently found in
HiDRA active regions and more frequently predicted to have
strong regulatory effects in open chromatin regions by an
independent study (35) (FIG. 25B, 25C), suggesting they are
biologically meaningful. As an example, Applicants found
that rs2382817, a SNP associated with inflammatory bowel
disease (32) (GWAS p=1.13x10-13), showed differential
HiDRA activity between paternal and maternal alleles. The
risk allele showed increased regulatory activity upstream of
an HiDRA-annotated active region (nominal p=8.7x10-4,
FDR=0.25, p-values from QuASAR-MPRA, FIG. 25D,
25E), illustrating the possibility of using HiDRA to detect
SNPs with allelic effects on regulatory activity.

These results indicated that HIDRA would shed light on
disease-associated variants, by either narrowing down the
set of candidate causal SNPs using our high-resolution
driver nucleotide inferences, or by directly observing dif-
ferential activity between risk and non-risk alleles using
allele-specific activity inferences.

DISCUSSION

In this example, Applicants introduced a high-throughput
experimental assay, HIDRA, for testing transcriptional regu-
latory activity across millions of DNA fragments, and for
inferring high-resolution driver elements within them. In the
experimental component of HiDRA, Applicants captured
regions of open chromatin, size selecting them, and inserting
them downstream of transcription start in an episomal
reporter construct, thus driving their own transcription and
serving as their own barcodes (ATAC-STARR-seq). By
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concentrating the signal on open-chromatin regions, HIDRA
enabled high-resolution inference of driver nucleotides
within these regions using a machine-learning model
(SHARPR-RE), by exploiting subtle differences in the
reporter activity driven by partially-overlapping tested frag-
ments. Applicants referred to the combined SHARPR-RE-
ATAC-STARR-seq method as the “High-resolution Dissec-
tion of Regulatory Activity”, or HiDRA. By capturing
putative regulatory regions directly from open chromatin
regions, HiDRA had the advantage of foregoing oligonucle-
otide synthesis, and thus enabling testing of much longer
fragments, and testing many more regions in a single experi-
ment.

Applicants applied HIDRA on the GM 12878 lymphoblas-
toid cell line, revealing a global map of regulatory elements
and their sequence-driven effects on transcription. Appli-
cants showed that HIDRA provided a quantitative assay with
strong sensitivity and specificity, compared to low-through-
put luciferase assays. Applicants showed that fragments with
the strongest activity show endogenous promoter and
enhancer signatures, contain motifs for immune transcrip-
tion factors, and showed in vivo binding by immune regu-
lators. Applicants also showed that driver nucleotides
inferred by the high-resolution mapping were enriched for
evolutionarily-conserved regions, known regulatory motifs
for immune regulators, and for genetic variants associated
with immune traits. Applicants also showed that long-read
resequencing of the HiDRA library can distinguish allele-
specific activity of risk vs. non-risk fragments derived from
heterozygous loci associated with disease, enabling direc-
tionality-of-effect inference and providing mechanistic
insights on disease loci.

Another method that enables the high-resolution dissec-
tion of thousands of putative regulatory regions is Sharpr-
MPRA13. Sharpr-MPRA and HiDRA differ in key several
respects: Sharpr-1VIPRA selects regions based on prior
computational predictions, requiring microarray-based syn-
thesis. This in vitro synthesis step limits the number of
nucleotides and regions tested by Sharpr-MPRA (4.6 Mb in
15,720 regions for Sharpr-MPRA vs. 463 Mb in 31,813
regions for HiDRA). Moreover, Sharpr-MPRA uses fixed
5-bp increments (vs. random increments for HiDRA, stem-
ming from the transposase fragmentation pattern), 145-bp
fragments (vs. random lengths for HiDRA, 335-bp on aver-
age), and Sharpr-MPRA tests elements upstream of the TSS
using 3'UTR barcodes (vs. testing elements downstream,
thus enabling them to serve as their own barcodes).

The ATAC-STARR-seq step in HIDRA had many benefits
compared to regular STARR-seq without fragment selec-
tion. ATAC-STARR-seq preferentially tested the activity of
fragments derived from open chromatin, and the HiDRA
library Applicants developed achieves 130-220x more
highly covered regulatory elements than random genome
fragmentation (FIG. 20C). This facilitated both higher con-
fidence discovery of regulatory elements, and the high-
resolution dissection of regulatory elements by comparing
the relative activity of partially-overlapping fragments. This
latter application using the newly developed SHARPR-RE
algorithm permitted the genome-wide mapping of high-
resolution driver elements, and would not be possible with
regular STARR-seq unless extremely complex fragment
libraries were used (at least 15 or 20-fold more complex than
this current library). HIDRA may therefore be feasibly and
readily applied across a wide range of tissues for high-
resolution mapping without the limitations that regular
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STARR-seq would entail (e.g. >109 cells per tissue, and
high depth of sequencing to quantify a library with ~20-fold
more fragments).

The HiDRA approach was general and can be readily
adapted for other applications. While Applicants performed
our study using ATAC regions from the GM12878 cell line
and re-transfection of constructs in the same cell line, the
approach may be applicable to any cell type, and to com-
bining of different source and target cells. For example,
libraries may be generated from limited patient tissue, or a
pool of multiple donors to increase heterozygous loci, and
subsequently transfected into a relevant immortalized cell
line that can be easily grown to high cell quantities. Here,
Applicants used transfection to introduce episomal plasmid
reporters, but lentiviral methods may be used in cell lines
with lower transfection efficiencies. Applicants chose non-
integrating episomal reporters to focus more directly on
sequence function independently of its broader chromatin
context, however the HiDRA approach may be used with an
integrating lentiviral vector to also incorporate the effect of
chromosomal context, with the understanding that previous
analyses used up to ~100 integration sites per tested element
to accurately quantify activity 36. Moreover, integrating
reporter techniques may require cell sorting using fluores-
cent reporter activity, which limits the number of constructs
that can be tested (37).

The HiDRA approach can also be specifically tuned for
mapping differential allele activity in regulatory regions
associated with human disease SNPs from GWAS. At the
library construction stage, capture probes can be used to
further increase coverage at known polymorphic SNPs of
interest, thus increasing fine-mapping resolution, facilitating
comparison of fragments with alternate alleles but matching
start and end positions, and increasing statistical power to
detect differential activity between risk and non-risk alleles.
For cancer mutations and other somatic mutations, HIDRA
may also be applied to pools of tumor samples, or pools of
disease tissue, to identify variants that alter regulatory
activity and gene expression (39). For systematic mutagen-
esis, HiDRA libraries can also processed to introduce new
mutations through error-prone PCR or introduction of muta-
gens during amplification.

We also envision modifications of the HiDRA assay
presented here for testing specific subsets of the genome. A
modified HiDRA assay may be used to enrich for fragments
from active regulatory regions, by coupling HiDRA with a
fragment capture technology similar to those used in Cap-
ture Hi-C to selectively test a subset of enhancers or pro-
moters at higher resolution while retaining the advantages of
having larger fragment sizes and high library complexity 40.
To test regions associated with specific chromatin states,
capture could be performed using the output of chromatin
immunoprecipitation experiments (ChIP) using histone
modifications, thus preferentially sequencing genomic
regions that were also pulled down with ChIP. Finally, the
SHARPR-RE high-resolution mapping algorithm developed
here can be applied to perform high-resolution mapping of
genomic regions for high-complexity libraries with suffi-
cient fragment density (e.g. testing of individual large
regions using bacterial artificial chromosome clones with
“BAC-STARR-seq” (16), or high-resolution mapping of
transcription factor binding sites with ChIP-STARR-seq
(19). Applicants envision that HIDRA and such modified
approaches can be used to quantify the transcriptional regu-
latory landscape of DNA sequences for a variety of tissues
from multiple organisms.



US 11,987,790 B2

71

URLSs and Data Availability

All high-throughput sequencing data generated by this
study has been deposited in NCBI GEO with accession
GSE104001. Processed HiDRA plasmid input, RNA output,
activity, as well as active fragments and driver elements can
be directly visualized on the UCSC genome browser at:
genome.ucsc.edu/cgi-bin/
hgTracks?hgS_doOtherUser=submit&hg_otherUserName=
xinchenw&hgS_otherUserSessi
onName=HiDRA_GM12878_092617. These bigWig files
can also be downloaded at the NCBI GEO repository
(GSE104001). The SHARPR-RE R package is available on
CRAN (CRAN.R-project.org/package=sharpr2).

Methods

Method Considerations and Detailed Information

Additional information and considerations in applying the
method are provided in Supplementary Notes.

HiDRA Library Construction

Applicants performed 16 ATAC-seq reactions on 50,000
GM12878 cells each using a modified protocol based upon
Buenrostro et al. (Supplementary Note 1). Initial steps of
ATAC-seq (cell collection, lysis, and Tn5 digestion) fol-
lowed the protocol in Buenrostro et al: each batch of 50,000
cells was collected by spinning at 500 g for 5 min in a 4° C.
cold room, washed with 50 ulL of 1xPBS, and resuspended
in ATAC-seq lysis buffer (10 mM Tris-HCL, pH 7.4, 10 mM
NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630); a pellet was
collected by spinning at 500 g for 10 min, and was resus-
pended in 25 pulL TD buffer (Illumina #FC-121-1030), 2.54,
TnS transposase (Illumina #FC-121-1030) and 22.5 ul
dH20; the transposition reaction proceeded for 30 minutes
at 37° C. on a shaker (300 rpm). Tn5-fragmented DNA was
cleaned up using a MINELUTE™ PCR purification kit
(Qiagen #28004, four reactions per column eluted in 20 pl.
EB buffer) and the resulting 80 uLL of eluate was split into 16
PCR reactions (Supplementary Note 2). PCR was performed
using custom HPLC-purified primers (F: 5-TAGAG-
CATGCACCGGCAAGCAGAAGACGGCAT-
ACGAGATNNNNATGTCTCGTGGGC TCGGAGATGT-
3 (SEQ D NO: 1), R:
5'-GGCCGAATTCGTCGATCGTCGGCAGCGTCA-
GATGTG-3', where NNNN corresponded to a random 4nt i7
barcode sequence) (SEQ ID NO: 2) and NEBNEXT™ Ultra
1I Q5 DNA polymerase master mix (NEB #M0544L.). Ther-
mocycler conditions were: 65° C. for 5 min, 98° C. for 30
sec, 8 cycles of: 98° C. for 10 sec and 65° C. for 90 sec. PCR
reactions were pooled and cleaned up with a Qiagen MIN-
ELUTE™ PCR purification kit (two PCR reactions per
column eluted in 20 uL. EB buffer) and run on a 1% agarose
E-Gel EX with SYBRL Gold II stain (Thermo Fisher
#G402001). Size selection of ATAC-seq fragments was
performed by gel excision using a razor blade to select
fragments between 150-500nt. Gel slabs were pooled into
<300 mg groups and DNA was purified using a MIN-
ELUTE™ Gel Extraction kit (Qiagen #28604) and eluted in
20 uL of buffer EB per column following modified guide-
lines described in Box 2 of Taiwo et al. (2012) (41). The
resulting size-selected ATAC-seq fragment library was
treated with an anti-mitochondrial DNA CRISPR/Cas9
library following the protocol outlined in Montefiori et al.
using 10x excess of Cas9 protein (Supplementary Note 3)
(42). Applicants cleaned up the reaction with a Qiagen
MINELUTE™ PCR purification kit and split into 8 PCR
reactions for a second round of PCR using the same condi-
tions and primers described above. PCR products were
cleaned up using two rounds of AMPure bead selection
(0.8x ratio of beads to input) to size-select against small
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(<150nt) fragments, eluted in 404, of dH20 and quantified
using a Qubit dsDNA HS Assay kit (Thermo Fisher
#Q32854).

The pSTARR-seq_human plasmid used for generating the
plasmid library was a gift from Alexander Stark (Addgene
plasmid #71509). The linear backbone used for the subse-
quent cloning steps was generated by digesting 4 ug of
circular pSTARR-seq_human for 4-6 hours with Agel and
Sall restriction enzymes (NEB #R3552S and R3138S),
followed by gel excision under a dark reader transillumina-
tor (Clare Chemical #DR22A) to extract a linear 3.5 kb
fragment corresponding to the human STARR-seq plasmid
backbone. Applicants performed cloning of the fragment
library into the plasmid backbone approximately following
the Methods section from Arnold et al. (2013) (16). For each
library, we performed 20 individual InFusion HD cloning
reactions (Takara Bio #638911) using a 3.5:1 molar ratio of
insert to vector backbone, following manufacturer’s instruc-
tions (Supplementary Note 4). Each group of five InFusion
reactions was collected and cleaned up using the Qiagen
MINELUTE™ Enzymatic Reaction cleanup kit, eluted in 10
ul. of dH,O, and transformed into four 20 ulL aliquots of
MegaX DHI10B T1R electrocompetent bacteria. The bacte-
ria were thawed on ice for 10 min and mixed with eluted
DNA (five InFusion reactions per 100 of bacteria). 22 ul. of
bacteria/DNA mixture were pipetted into a 0.1 cm electropo-
ration cuvette (Thermo Fisher Scientific #P41050) and
tapped repeatedly against a hard surface to remove bubbles.
Cuvettes were electroporated using a Bio-Rad Gene Pulser
Xcell Microbial Electroporation System (Bio-Rad
#1652662) using the conditions: 2.0 kV, 200 €, 25 uF
(Supplementary Note 5). For high-yield transformations,
Applicants observed electroporation time constants between
4.8 and 5.1 ms. After electroporation, bacteria were imme-
diately collected in 750 uLL pre-warmed SOC media, pooled,
and incubated for 1 hr in a 37° C. shaker. After recovery,
serial dilutions of bacteria were plated to estimate the
number of clones in the library. Recovered bacteria were
diluted in 2 L of pre-warmed Luria broth and 100 pg/mL of
carbenicillin and grown overnight (8-10 hours while shak-
ing). Plasmids were collected from bacteria using the Plas-
mid Plus MegaPrep kit (Qiagen #12981) following manu-
facturer’s instructions. Plasmid concentration was quantified
using a Nanodrop One machine (Thermo Scientific) and
diluted to a 3 pg/ulL concentration for subsequent transfec-
tion steps. To ensure plasmid library quality and diversity, a
small aliquot of the fragment library was amplified by PCR
using i5 and 17 primers, run on an [llumina MiSeq machine
using the 50-cycle v2 kit as per manufacturer’s instructions,
and aligned to the human genome to ensure correct com-
plexity and sufficient proportions of reads within predicted
transcriptional regulatory elements (Supplementary Note 6,
see subsequent Methods sections for details on processing of
sequencing libraries).

Cell Culture and Transfections

GM 12878 cells were obtained from the Coriell bioreposi-
tory and grown in RPMI 1640 Medium with GlutaMAX
Supplement (Thermo Fisher #61870127), 15% fetal bovine
serum (Sigma Aldrich #F2442), and 1% pen/strep at a
density of between 2x10° and 1x10° cells/mL with regular
media changes every 2-3 days. Approximately 24 hours
before transfection, GM12878 cells were split to a density of
4x105 cells/mL to ensure the presence of actively dividing
cells for increased transfection efficiency. For transfection,
cells were collected by centrifugation for 5 min at 300 g,
washed once with pre-warmed PBS, and collected again for
5 min at 300 g. PBS was aspirated and cell pellets were
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re-suspended in Resuspension Buffer R (Thermo Fisher
Scientific #MPK10096) at a concentration of 7.5 million
cells per 100 ul.. DNA was added to cells at a concentration
of 5 ug of plasmid per 1 million cells. In total, Applicants
transfected 5 replicates with 120-130M million cells per
replicate using 1004, tips from the Neon Transfection Sys-
tem at 1200V with 3 pulses of 20 ms. Replicate number was
chosen based on other high-throughput reporter assay stud-
ies (e.g. Vockley et al. and Tewhey et al.). Transfected cells
were immediately recovered in pre-warmed GM12878
media without antibiotic and recovered at a density of 1x10°
cells/mL for 24 hours. In parallel, Applicants performed two
transfections of GM12878 cells with a positive control GFP
plasmid to assess transfection efficiency using the same
conditions.

RNA Isolation and cDNA Generation

GM12878 cells were collected 24 hours post-transfection,
washed twice in pre-chilled PBS (collecting for 5 min at 300
g) and RNA was purified using the Qiagen RNEasy Maxi kit
(Qiagen #75162) following manufacturer’s instructions and
performing the optional on-column DNase treatment step
(Qiagen #79254). Poly A+ RNA was extracted from total
RNA using the Oligotex mRNA Midi kit (Qiagen #70042,
two columns per RNA sample), and any remaining DNA
was digested with a second DNase treatment step using
Turbo DNase (Thermo Fisher #AM2238) following manu-
facturer’s instructions (Supplementary Note 7). Treated
mRNA was cleaned up and concentrated using the Qiagen
RNEasy MINELUTE™ Cleanup kit (Qiagen #74204). We
generated cDNA from mRNA using Superscript 1II Reverse
Transcriptase (Thermo Fisher #18080085) with a gene-
specific RT primer located in the 3'UTR of the sgGFP
reporter gene downstream from the inserted fragments (5'-
CAAACTCATCAATGTATCTTATCATG-3'(SEQ ID NO:
3)). Reverse transcription was performed following manu-
facturer’s recommendations except with 2 pg of poly A+
mRNA and 1 ul of 12.504 primer per 20 pl reaction, and
extension was performed for 60 minutes at 50° C. (Supple-
mentary Note 8). Reverse transcription reactions were
cleaned up using a MINELUTE™ PCR purification kit
(Qiagen #28106, two reactions per column) and eluted in 15
pL of pre-warmed buffer EB.

Library Construction and High-Throughput Sequencing

We performed a qPCR to test the number of cycles needed
for amplification of single-stranded cDNA as well as input
material of plasmid DNA needed such that both reactions
had the same Ct values. Applicants used 1 pl. of ssDNA and
dilutions of plasmid DNA similar to the method described
by Tewhey et al. Cell 2016. qPCRs were performed in 10 pl,
reactions with all reagents scaled down proportionally from
a normal 50 uL, PCR reaction (1 ul. of DNA, 5 ulL of Ultra
1T Q5 master mix, 0.44 pl, of 25 uM primer mix, 0.2 pul, of
10x SYBR® dye, 3.44, of dH,0O) with thermocycler con-
ditions: 98° C. for 30 s, 20 cycles of: 98° C. for 10 s, 65° C.
for 90 s. Applicants proceeded to perform eight regular 50
ul. PCR reactions (each scaled up 5x from the 104, PCR
reactions) using the same thermocycler conditions except
using the Ct value for the cycle number (F:
5'-CAAGCAGAAGACGGCATACGAGAT-3' (SEQ ID
NO: 4), R: 5-AATGATACGGCGACCACCGAGATCTA-
CACIX8]TCGTCGGCAGCGTC-3', “X8” sequence corre-
sponds to sample barcode, chosen from Illumina Nextera
barcode list (SEQ ID NO: 5)). PCR reactions were cleaned
up using Qiagen MINELUTE™ PCR purification kits and
balanced for sequencing using the Kapa Library Quantifi-
cation Kit (Kapa Biosystems #KK4824, Supplementary
Note 9).
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Each library batch (five transfected RNA biological rep-
licates, five plasmid controls) was sequenced by the Broad
Institute Walk-Up Sequencing Facility on four flowcells on
a NextSeq 500 machine using the 75-cycle kit as per
manufacturer’s instructions for 2x37nt paired-end reads
with 2x8nt barcodes.

Fragment Data Processing and Calling Active Fragment
Groups

Reads were labelled by a random 4nt P7 barcode and an
8nt P5 barcode for sample ID. Reads were split into the ten
samples (5 plasmid replicates and 5 RNA replicates) by P5
barcode and aligned to the human genome (hg19 assembly)
using bowtie2 v2.2.9. Alignment files were filtered to (i)
keep only aligned fragments, (ii) remove reads mapping to
chrM, (iii) select reads passing the -q 30 filter in samtools,
and (iv) remove reads aligning to the ENCODE hgl9
blacklist regions (Supplementary Note 10). Applicants iden-
tified unique fragments using the bamtobed command in
BEDTools (v2.26.0) and filtered to keep only fragments
between 100 and 600nt. A diagram illustrating proportion of
reads lost to each filter step is available in FIG. 38.

In analyzing results from HiDRA, Applicants tracked the
abundance of each individual fragment between the input
(plasmid DNA) and output (RNA). Applicants grouped
fragments into “fragment groups” by 75% mutual overlap
(bedtools v2.26.0, intersect Bed command), removed redun-
dant fragment groups and summed counts of all fragments
per fragment group. As Applicants detected active fragments
by comparing RNA signal to the non-transfected DNA
library, Applicants controlled for the possible length-depen-
dent biases in transfection efficiency of plasmids by splitting
fragment groups into separate bins of 100nt (100-200nt,
200-300nt, etc.) and used DEseq2 (v1.10.1) to identify
FDR<0.05 significantly up-regulated fragment groups in
each bin43.

Analysis of Active HIDRA Regions

All overlap and shuffle analyses performed using the BED
Tools suite, v2.26.044. Most colors for plots chosen with
guidance from the wesanderson R package (github.com/
karthik/wesanderson). For chromatin state annotations
Applicants used the 18-state output model generated by the
Roadmap Epigenomics Consortium6. Active enhancer states
were merged from states #9 and #10 (EnhAl and EnhA2).
ATAC-seq peaks positions were obtained from Buenrostro et
al. (2013)21.

Signal tracks: Signal tracks for regulatory activity calcu-
lated as (RNA-DNA)/DNA after adding a pseudocount of
0.1 to both plasmid and RNA samples, so that fragments
with no activity have a regulatory activity value of 0. Signal
tracks were drawn in UCSC Genome browser showing only
means (no whiskers) and with 5-pixel smoothing.

Correlation between RNA samples: Applicants showed
correlations for fragments selected by four different cut-offs
of minimum RPM. Pearson and Spearman correlations were
calculated on log2-transformed data. Matrix of graphs
drawn using layout and grid.arrange functions in R from the
gridExtra library. Scatterplot between RNA samples drawn
using the hexbinplot function from the hexbin library in R
with xbins=100.

Proximal vs. distal: TSS regions were defined using the
UCSC Genome Browser’s Table Browser tool for hgl9.
Distances to nearest annotated TSS were taken using clos-
estBed tool in the BEDTools2 suite.

TF motif enrichment: Applicants obtained the hgl9 TF
motif catalog from the ENCODE project?7. Applicants only
considered motifs corresponding to transcription factors
expressed in GM12878 (RPKM>5 wusing processed
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GM12878 RNA-seq data from the Roadmap Epigenomics
Consortium). TF motifs in driver elements were compared
against motifs found in shuffled driver elements within the
same set of tested tiled regions (regions with at least 10
HiDRA fragments).

Random shuffling of driver elements: To assess signifi-
cance of TF motifs, evolutionary conservation and fine-
mapped GWAS SNPs in driver eclements, Applicants
shuflled the positions of driver elements within tiled regions
(genomic segments with at least 10 HiDRA fragments) using
shuffleBed with the -incl flag to force driver elements to be
shuflled within tiled regions. To assess the significance of
enrichment, Applicants performed 1,000 shuffles of driver
elements and calculated z-score of true driver elements
compared to shuffled driver elements. The p-value of this
difference was calculated in R from this z-score under a
normal distribution (2-sided) with mean and standard devia-
tion calculated from random shuffles.

Activity of HIDRA regions in other tissues: Applicants set
a lenient definition for active in other tissues as the union of
regions annotated in 97 non-GM 12878 tissues from epig-
enome roadmap predicted with 18-state ChromHMA/I
model. For active regions Applicants considered states
“TssA” (state #1), “TssFlnkU” (state #3), and “EnhA” (states
#9 and 10).

SHARPR-RE activity plots: Tracks were drawn in the
UCSC Genome Browser using “Custom Tracks”. Coloring
of individual fragments was performed by setting maximum
and minimum colors (RGB 0,0,0 and RGB 255,255.0,
respectively) to log2(RNA/DNA) values of 3rd lowest and
3rd highest fragments (two strongest and weakest fragments
were removed to avoid strong outliers), and scaling colors of
all other fragments linearly between these extremes. Appli-
cants chose to include only ChIP-seq bound TF bars for
ChIP-seq experiments performed in GM12878 cells by the
ENCODE project and where the motif (green bar) over-
lapped driver nucleotides.

Comparison of driver elements vs. 1VIPRA allelic skew:
Applicants used allelic skew data from Supplemental Table
51 from Tewhey et al. (2016). In total, 39,500 SNPs were
tested by Tewhey et al. for allelic activity, of these 4,335
SNPs had enhancer activity in MPRA fragments containing
either allele so that allelic skew can be calculated. 3,291
SNPs remained after using dbSNP142 and the correspond-
ing RsMergeArch file to assign coordinates for these SNPs.
Applicants used this set of 3,291 SNPs to assess the degree
of allelic skew inside driver elements.

Comparison of driver elements vs. Sharpr-MPRA activ-
ity: Applicants used Sharpr-MPRA activity scores from the
basepredictions_*_ScaleUpDesignl  and2_combinedP.txt
files provided by Ernst et al. (2016). Applicants identified
the top Sharpr-MPRA activity score per driver element and
compared these to activity scores for control, shifted ele-
ments.

SHARPR-RE Identification of High-Resolution Driver
Elements

See Supplementary Methods for details and more infor-
mation on SHARPR-RE.

Read Mapping and Data Analysis for Allele-Specific
Activity

Applicants used vcf-consensus (VCFTools) to mask the
hg19 genome assembly by replacing heterozygous nucleo-
tides identified by the [llumina NA12878 Platinum Genome
with N’s. 250nt paired-end MiSeq reads were trimmed using
cutadapt to remove Illumina primer sequences, mapped to
the NA12878-masked hgl9 assembly using bowtie2 v2.2.9
(settings: —end-to-end—yphred33—sensitive -p 7-N 1—no-
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unal), and filtered using the steps described above for 37nt
reads. As some long reads have poor quality scores at their
3' end, Applicants trimmed low quality sequences (quality
value <38) to reduce the proportion of sequencing errors at
SNPs that could lead to incorrect allelic assignment of
fragments. Fragments were then assigned to a SNP based on
genotype at the position. For comparisons of SNP activity,
Applicants only considered fragments with 90% mutual
overlap to reduce the confounding effect of fragments that
differ by both allele and position. Applicants also removed
fragments if either end was within 25nt of a driver element,
as in these cases small differences in end position could
artificially lead to large effects. After assigning fragment
abundances (from high-depth 37nt PE read sequencing) to
each allele of a SNP, Applicants identified SNPs with
significant differential activity using QuASAR-1VIPRA.
CENTIPEDE SNPs were identified by Moyerbrailean et al.
(2016) using an effect-size cut-off of >3 or <-3, following
the cut-offs used by Kalita et al. (2017) (34, 35).
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Methodological Details of SHARPR-RE

Al. Model Specification Basic Model

Applicants defined a “tiled region” as a continuous region
in which each position was covered by at least one HIDRA
fragment. Suppose that a tiled region containing P positions
was covered by R fragments. The regulatory activity of each
fragment j with a length 1, je{1, . .., R} was measured by
the ratio

#RNA,
#DNA,

between the counts of sequenced RNA and DNA. For a
design with multiple replicates, the ratio can be calculated
from the average counts of RNA and DNA across the
replicates. In this example, Applicants calculated RNA/
DNA ratios for each fragment after normalization of RNA &
DNA by DESeq2 with the library split into 100nt bins
(100-200nt, 200-300nt, etc). The ratio for a fragment con-
taining one or more functional driver element site was larger
than those not overlapping a driver element. For the down-
stream analysis, Applicants used the transformed observa-
tion M;” by taking the log-transformation with base e of

HRNA; H#RNA,
e.,M}’:l o )
J

#DNA;" "
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For the HiDRA library described in the Methods section,
Applicants observed that the empirical distribution of M
across the whole genome (approximately 4 million frag-
ments after quality control and filtering for minimum
expression) was nearly symmetrically centered at zero but
with heavy tails that indicate regulatory activity (FIGS.
39A-39B).

In HiDRA, the length of a tiled region was generally
much larger than the number of fragments (P»R). The basic
idea of SHARPR-RE was to use a shrinkage prior to tackle
this large p small n problem. Applicants first computed a
centered variable M; for each fragment j by subtracting p,,
the mean of the background signal (i.e., M;=M,"—p,). The
mean of the background signal p is the average signal
intensity from fragments not overlapping a driver element.
We estimate p, by the mean of the observations taken from
all tiled regions covered by <5 fragments across the whole
chromosome, with the assumption that the majority of these
tiled regions do not contain a driver element. More specifi-
cally, suppose that there are ! tiled regions on a chromosome
and each tiled region is covered by R, fragments each of
which has an observation M;%, je{l, . . ., R,} and ke
{1, ..., K}. Thus, we have p =X, %, "M, 7/%,_ R,
where B was the set of all tiled regions covered by <5
fragments (B={KIR.<5}).

Within one tiled region, Applicants assumed that M,
(Applicants omitted the index k whenever the formula only
involved a specific tiled region) followed an i.i.d. normal
distribution with a mean equal to a scaled sum of those
regulatory scores A, that are covered by fragment j, that is,

1

where Te {0,1}® was an indicator matrix, ie., T,=1 if
position 1, ie{1, . . . , P}, was covered by fragment j;
otherwise T;=0, and Le R®%® was a diagonal matrix for
scaling each fragment. Note that this specification of T
assumed that each position in the tiled region contributed
identically to the regulatory activity measurement of the
fragments. If, for example, driver elements at the ends of a
fragment may contribute less to the regulatory activity,
smaller weights can be assigned according to its distance to
the middle of the fragment. For the purpose of regulariza-
tion, Applicants imposed an €, penalty on A, which was
equivalent to a normal prior from the Bayesian perspective.
Generalizing SHARPR-MPRA1 from 5nt to 1nt, the regu-
latory score A at each position i, which was a latent variable,
is assigned by a univariate normal prior

M~ W14, 1E),

A-M 0,2, )

where 6,7 was a hyper-parameter, which was defined by
users and was tested for specific values in SHARPR-MPRA
1. In SHARPR-MPRA, it was assumed that ij=1j. Because
each fragment had the same length in SHARPR-MPRA,
Applicants ended up with L=11 and

@®

where [ was the identity matrix. In contrast, each fragment
had a different length in HiDRA ranging from 150nt to
500nt. In SHARPR-RE, Applicants chose a uniform scale
coefficient L,=I, where 1=X,_,*X_ *1,/¥,_ R, was the
average length of all fragments on the chromosome. Under
this modeling of L, the signal of a fragment depended only
on the sum of the regulatory scores at all positions that
the fragment covered but not on the fragment length. X,
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was a covariance matrix with non-zero diagonal
elements equal to 6,7 which was set to be the sample
variance of M; in SHARPR-MPRA (1). Thus, the marginal
distribution of M after integrating out A from (1) follows

M- N 73,30 143, 3

R RXR

where

was a diagonal matrix and the prime stands for transpose.
Thus, the ridge estimate or the posterior mean of A given the
observed M was

A=T (L' DWTILT ' DHE,) M. @

After some rearrangement to merge X“ and £, Applicants
ended up with the following equation

A= D T T TYM 5)
where
2
A= =2

Ll

was the penalizing coefficient.

Selection of Penalizing Coefficient

Instead of letting 6,,* and thus the penalizing coefficient A
be defined by users as in Ernst et al. (11), Applicants selected
A in a data-driven way. This was because the choice of A
substantially affected the estimates and the performance of
the following hypothesis testing procedure. This meant that
A should be selected carefully. Note that although the
formula (4) was essentially the same as the posterior mean
in the Bayesian framework used in SHARPR-MPRA, Appli-
cants instead regarded (5) as a ridge estimate under the
classical framework in SHARPR-RE. In this case, we only
assume that (1) was the true model in which A were
parameters rather than random variables, and (2) was used
for the purpose of regularization. Note that in this case the
choice of A had significant influence on the estimation of A.
If A was too small, the estimates would be unstable, while an
overly large A would bring more bias. A handful of strategies
have been proposed to select an optimal and stable A,
including cross-validation (2), the Hoerl-Kennard-Baldwin
plug-in method (3-5), and a Markov chain Monte Carlo
(MCMC) method (6). In SHARPR-RE, Applicants selected
A by following the strategy proposed by Cule and De Iorio,
2013, which generalized the idea of Hoerl et al. 1975 (5) to
the large p small n problem and shows fast and stable
estimation in simulation and real data studies. More specifi-
cally, Applicants first performed a singular value decompo-
sition (SVD) for L™'T:

L7'T=UDV,

where D was a diagonal matrix with t non-zero diagonal

elements d;, and t<min (PR) Applicants selected r¥*e

{1, ..., t}, so that

4
w : ' d]']'
7 = argmin r — s
g =1 (@2 12,
g4 4



US 11,987,790 B2

81

where we have

2
¥

~

',
A=

YN

4,

#=D2V L) M,

(M-L7'Tv4,) (M- L7 TV,8,)
R-r ’

and 67 =

where ﬁr was an r-vector of the first r elements in 1, and V,
was the first r column of V.
Given r*, we choose A as

o2
o

7 >
LRl

* =

-

and the estimate of ! in SHARPR-RE is

A= T L TH0 7 (LT T M=H), M, )

where H;MB((L_IT)‘L_1T+7ur*l)_1 (L™'T)' was the hat matrix.
For HiDRA datasets, it was often the case that the number
of fragments R was much smaller than the length of a tiled
region P. To make the computation more efficient, Appli-
cants applied SVD to the hat matrix to avoid the inversion
of a large-scale matrix, so that Applicants had

H= (7' T+ a0 (70 T)
=(VD'U'UDV + A VV' Y \vD' U’
= VWU UD+A D)W VD' U’

= VW' U'UD+ A D' D'U,

in which the computation of UD was dramatically faster as
D had at most R non-zero diagonal elements. In the analysis
of the example, HiDRA library, Applicants observed that
this algorithm of selecting A,.. produced stable estimates of
the regulatory scores. We also noticed that the algorithm
would produce an overly small A if two or more fragments
in a tiled region were mapped to almost the same position
(the difference was only a couple of nucleotides) and had
large opposite values of

o RN
#DNA, |

This phenomenon may suggest a potential data problem.

Note that this algorithm estimated a unique A _* for each
tiled region, and thus the estimated regulatory scores cannot
be compared directly across tiled regions. If the comparison
across regions was the major concern (e.g., using the esti-
mated regulatory scores as a training set in deep learning
such as convolutional neural networks (CNN) for other
downstream analysis), studentized estimates Z,; can be used
(described in the next section).

Accuracy of Estimation

To measure the accuracy of the estimates, Applicants
computed the pointwise mean square error (MSE) of A,. As
Applicants assumed that (1) was the true model, A, was a
biased estimate of A if Az0, and the MSE of A, should take
into account both variance and bias. That was, Applicants
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were interested in finding not only Var (A) but E(A,—A)? as
well. Note that the MSE can be decomposed into

MSE(A,)=Var(A,)+Bias(4,)?

where BiaS(AL)zE(AL)—A measured the bias between the
true value of A and the mean of A,. The bias term was given
by
Bias(d ) *=(E(d;)~ANE@,)~AY=((L ' TYL T+AD ™!
(LY L T=DAA' (L' TY L T+ N DL
1 T=D'=(W,—DAA' (Wh—D)',

where W,=H,L™'T
The variance var=(A,) can be shown as

Var(4) = Var((E71 7)Y LT + 1) (L7 7))
= (£ 7y L 4 ) (L) Var(a)
(oY tr gy (L)Y
oLy i) ey T
(rryctr ™y

=L H\Hj.

The true value of 6,,> is unknown, but can be estimated
from the residuals

L (M-LiTa) (M -LTd)
Oy = R—df >

where df=R-2tr(H, W+tr(H, H,") was the residual degrees of
freedom (7) and tr () stands for the trace. Plugging in the
ridge estimate (5) to A and the sample estimate G,,* to G,
the estimated MSE was

MSE (3,)=Var (d,+ BYGS 4,75, 2Hy Hy +(Wi-

DAA(Wy—D), @)

Pointwise confidence intervals (CIs) can be calculated

from Var (A,), e.g., 95% CI=A¢1.96x\/I7ar: (A,). Note that
the bias term Bias(A, ) was non-zero if A or A was non-zero.
Therefore, it was not straightforward to interpret the Cls
obtained from Var(A,). Instead, the following adjusted 95%
CI

Cl,

adj

=A4,~ Fras (4,1 so{Varay

was proposed (8), which adjusted for the bias. One problem
of the adjusted CI was that the true bias was unknown and

its estimate Fias (A,) might not be accurate.

A2. Identifying High-Resolution Driver Elements

Regional FWER Controlling Procedure

Given the estimated regulatory scores A, for each nucleo-
tide within a specific tiled region, Applicants then aimed at
finding a regional threshold to declare significant regulatory
regions, which were term as high-resolution “driver” ele-
ments at which an active motif was located. More specifi-
cally, Applicants made the inference for each nucleotide i by
testing the following hypothesis,

Hy:A=vs. H:A>O.

For this hypothesis testing, Applicants focused only on
finding activating regulatory elements but not repressive
ones; however, generalization to a two-sided test was
straightforward. For a specific tiled region containing P
positions, Applicated wanted to find a cutoff C; so that the
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family-wise error rate (FWER) a was bounded below a
given value (e.g., 0.05). The value of o can be set differently
among different tiled regions. This amounts to a multiple
testing problem of performing P one-sided tests of the
estimated regulatory scores A,=(A,,, . . ., A, ,)'=0 simul-
taneously. One way can be computing a p-value for each A,
and using the simple Bonferroni correction to obtain a local
significance level

@

Mol R

from which C, can be computed. This approach would be
overly conservative as A, , was not independent of each other
in this case. A more accurate cutoff should take into account
the correlation structure of the estimated regulatory scores.
On the other hand, performing a permutation test for each
tiled region would be too time consuming for a library
comprising the whole genome albeit more accurate. Follow-
ing the strategy described by (9,10), Applicants thus pro-
posed a fast multiple testing procedure based on Gaussian
copula to find region-specific cutoffs for controlling FWER
o. Note that under the null hypothesis A;=0, the bias term in
(7) disappeared. Applicants used the studentized estimate as
the test statistics

Ay Ay
Zos = A _ A

Varty)  Om[diagURH),

where diag( ), stands for the ith element in the vector of the
diagonal elements of a matrix. It had been shown that under
the null hypothesis, Z, ; followed a Student t-distribution and
can be approximated by a standard normal distribution under
a large sample size (11,12). Cule et al. 2011 found through
simulation studies that the type I error rate and the statistical
power using the normality approximation were comparable
to those from permutation tests for a wide range of A.
Applicants assumed that under the null hypothesis, Z,
approximately followed a multivariate normal distribution

7,28, W(H,H, O 24, =54, ~ W 0.5Var (4,)s), ®

where © was the Hadamard product and S=8,~'(H,
H,' Oy In the simulation studies provided in the next
section, Applicants investigated the empirical FWER based
on this multivariate normal approximation under small
sample size and high-dimensional cases. Denote by F,(x,)
the marginal cumulative density function (CDF) of Z, which
was continuous. According to Sklar’s theorem (13), there
existed a unique copula C :[0,1]°—[0,1], such that

VX, ..., X)E R7F(x,, ..., xH=C F &), . ..,
Fp(xp)), where F(x,, . . ., Xp) was the joint CDF. Hence, for
the one-sided test we had

o = FWER

»
=P, [UZM > Ci]
=1
»
=1- [PHO[ﬂZM < c,v]

=1

=1-Py 2 =c1,... ,Zyp=cp)

=1-CFi(a), ... , Fplcp)
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Under the multivariate normality approximation of (8),
we had

a=1-C File, .- FP(CP))zl_C SVZ\F Aps(P
Dplcp)), ®

where C gVar 4,51, . . ., Up) was a Gaussian copula with

a correlation parameter matrix of S¥ar (A,)S, and ®(c) is the
CDF of a standard normal distribution. Given a specific
value of o, there were infinite many solutions (u,, . . ., up)=

C JVar ‘ Ax)s_l(l—‘x)- However, if we treated every position
as equally important and pursued a single-step common-
quantile cutoff (Dudoit and van der Laan, 2008, Chapter 4)
c,i.e, c;=...=cp=c, we can find a unique solution

7 -1
ur=C SVZJF Aps (-0, atuy= ... =up=u*

And

c*=P~ (1),

So, Applicants rejected H, for the positions in H ={ie
1, ...,P)yZ,,>c* }. The common-quantile cutoff c* can be
calculated, for example, by the function qmvnorm in the R
package mvtnorm (14). The similar idea can also be used to
obtain adjusted p-values for controlling regional FWER as
shown in Conneely and Boehnke, 2007 (15). In real data

analysis, the estimated) covariance matrix Var (A,) was
often degenerated and the estimates of adjacent positions
were completely correlated when P>R. Therefore, Appli-
cants trimmed the number of the estimates by selecting one
position from each group in which the estimates for the
positions were completely correlated. This also dramatically
reduced the computational intensity for finding the solution
to (9). After identifying the driver elements, we can further
attempt to pinpoint the location of the most possible occur-
rence of a 20nt “core” driver element (see section A4 below
for rationale for choosing ~20nt as the estimated “core”
region). We predicted the center position i,, of a 20nt core
driver element by the highest regulatory scores over its 20nt
flanking region, i.e.,

(+10)AP ~
A
Z.:(,;g) An

CH G+ 1A P- (-9 v1+1

i, = argmax

FIG. 41 gives an illustration of the significant regulatory
region and the predicted motif region. In this example, the
true motif was located at position 400-420nt and was
covered by an identified significant driver element by
SHARPR-RE (highlighted in red). The predicted core driver
region (highlighted in purple) further pinpoints the location
of the motif at ~400nt.

Global FDR Controlling Procedure

The above regional procedure called significant driver
elements for a specific tiled region. If we want to identify
driver elements across an entire genome, it may be prefer-
able to control the global false discovery rate (FDR). Appli-
cants thus proposed a global multiple testing correction
procedure for this purpose by taking into account the p-val-
ues observed from the whole genome. Applicants first cal-
culated the pointwise p-values for all positions in each tiled
region across the genome based on the t-distribution
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A

T ~Ilpuf >
Wty "

where R—tT(H,) was the sample size minus the effective
degrees of freedom. As mentioned in the local controlling
procedure, Applicants selected one position from a consecu-
tive region in which the estimates for these positions were
completely correlated. Then, Applicants applied the Benja-
mini-Hochberg procedure to the pointwise p-values to con-
trol the global FDR at level a. As p-values from different
tiled regions were independent, the p-values across the
genome can be regarded being dependent in finite blocks if
the size of the largest tiled region is limited. More specifi-
cally, Applicants assumed that the ratio between max(R,)
and the total number of fragments T,_,*R, went to zero as

Zy =

max (R K
Re) -0 as Z/ﬂRk_)oo’

P

and R, is used instead of P, because the number of tests in
a tiled region was related to R, when P,»R,). Thus, under
this assumption, which was biologically reasonable, the
estimate of FDR was consistent (16, 17).

A3. Evaluation of Empirical Statistical Power and FWER

Simulation Settings

Applicants assessed the performance of the proposed
SHARPR-RE algorithm in terms of empirical statistical
power estimated from our simulation studies. To mimic the
current version of the HiDRA library, Applicants randomly
generated a number ! of fragments (R between 25-100) in a
tiled region with P=1 kb. The length of each fragment was
sampled from a uniform distribution 1~U(175,450), je
{1, . ... R}. Applicants randomly selected a 20nt driver
element from a 400nt window in the middle of the tiled
region. For any fragment that covers the driver element,
Applicants generated its signal from a normal distribution
K (Wsriver=S,,0 zrive,=0.1), Where S, was the true signal
varying across different simulation scenarios. For the rest of
the fragments, Applicants generated signals from a normal
distribution A (u,,,;,.=0, ©,,,;..=1). Applicants defined the
signal-to-noise-ratio (SNR) as

K .
21(—1 Ry - oo(ie.,

Sm

SNR =

T noise

Applicants examined the empirical FWER and empirical
statistical power under different SNR and numbers of frag-
ments. Under each simulation setting, Applicants generated
500 replicates to obtain the estimated of the empirical
FWER and statistical power.

Evaluation of Empirical Type I Error Rate

The results in Table 2 below show that generally the
empirical regional FWER was controlled at ~5%, which was
the theoretical FWER, when the number of fragments was
above 50. Applicants observed mild inflation of the empiri-
cal FWER especially in the case of small sample size (e.g.,
25), but the inflation diminished with the sample size
increasing in most situations. This inflation can be due to the
discrepancy between the true null distribution of the statis-
tics and the asymptotic multivariate normal distribution at
the tails as shown in 18. This indicates that the error
introduced by the multivariate normality approximation

20

25

30

35

40

45

50

55

60

65

86

should be taken into account when the sample size is overly
small (for example, by using a similar scaling procedure as
proposed in 18 or by setting a more stringent cutoff for a
tiled region covered by a small number of fragments).

TABLE 2

Empirical FWER for the proposed local multiple testing procedure.
The empirical FWER was calculated from 500 replicates
under each setting. The theoretical FWER ! is 5%. Applicants
examined the empirical FWER with respect to a
max tiled region length (between 900 nt and 1500 nt )
and the number of fragments in the tiled region.

Number of Max length of a tiled region
fragments 900 1100 1300 1500
25 7.6% 9.0% 7.0% 7.6%
50 7.2% 6.0% 4.8% 4.0%
75 7.0% 5.2% 5.8% 6.4%
100 6.8% 5.0% 6.0% 6.7%
125 6.4% 5.4% 6.4% 5.0%

Evaluation of Empirical Statistical Power

Next, Applicants examined the statistical power for pin-
pointing a driver element under the condition of 1=5%, i.e.,
the FWER <5%. In this investigation, a true positive was
counted if an identified driver element or a predicted 20 bp
functional motif region overlapping the true driver element
region. The results in FIG. 42 show that the statistical power
for both regions consistently increased with respect to the
number of fragments and the SNR. If there were 100
fragments in a tiled region, SHARPR-RE can achieve more
than 80% power under SNR=1.

When the number of fragments was small (e.g., 25),
SNR>1.5 was needed to achieve a power of 80%. Higher
SNR required that the biological experiments had higher
precision and sensitivity, so that significantly more RNAs
can be sequenced when the DNA region covers a true driver
element.

A4. Analysis of an HiDRA Library

Applicants applied SHARPR-RE to an HiDRA library
prepared from the GM12878 lymphoblastoid cell line. The
library contained 3,896,416 fragments after quality control,
with the length of fragments ranging from 100-600nt (99%
of fragments between 168-473nt). Applicant first identified
645,936 tiled regions that were covered by at least two
fragments across the whole genome, among which 28,092
regions were covered by more than 10 fragments. The
distribution of the signals (In(#RNA/#DNA)) of these frag-
ments are almost symmetrically centered at zero with heavy
tails (FIGS. 39A-39B). The average and the variance of the
signals are constant across the length of HiDRA fragments
after normalization (Materials and Methods, FIG. 15).
Applicants estimated the regulatory scores for the 22 chro-
mosomes separately and called driver elements based on a
cutoff controlling regional FWER<0.05 for the positions in
each tiled region. Applicants found that the tiled regions
covered by larger numbers of HIDRA fragments were more
likely to have a driver element called, which was likely a
combination of greater statistical power and enrichment for
regions more likely to contain drivers.

As shown in FIG. 24C, most driver elements were found
within active TSS, TSS Flanking Upstream and active
enhancer chromatin states. The median size of driver ele-
ments identified from the tiled regions covered by >10
fragments was 52nt after filtering to remove drivers smaller
than 5nt. The average size of drivers decreased with an
increase in number of fragments in a tiled region, suggesting
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that more complex libraries with greater numbers of unique
fragments should be able to detect shorter driver elements
(FIG. 34). The average size of a driver element converged to
—18nt after the depth of unique HiDRA fragment coverage
reaches 50 fragments/kb (FIG. 34).
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Various modifications and variations of the described

methods, pharmaceutical compositions, and kits of the
invention will be apparent to those skilled in the art without
departing from the scope and spirit of the invention.
Although the invention has been described in connection
with specific embodiments, it will be understood that it is
capable of further modifications and that the invention as
claimed should not be unduly limited to such specific
embodiments. Indeed, various modifications of the
described modes for carrying out the invention that are
obvious to those skilled in the art are intended to be within
the scope of the invention. This application is intended to
cover any variations, uses, or adaptations of the invention
following, in general, the principles of the invention and
including such departures from the present disclosure come
within known customary practice within the art to which the
invention pertains and may be applied to the essential
features hereinbefore set forth.

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 5

<210> SEQ ID NO 1

<211> LENGTH: 66

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Synthetic
<220> FEATURE:

<221> NAME/KEY: misc_feature

<222> LOCATION: (40)..(43)

<223> OTHER INFORMATION: n is a, ¢, g, or t

<400> SEQUENCE: 1

tagagcatge accggcaagce agaagacgge atacgagatn nnnatgtcte gtgggetegg

agatgt

<210> SEQ ID NO 2
<211> LENGTH: 36
<212> TYPE: DNA

60
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-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:

<223> OTHER INFORMATION: Synthetic
<400> SEQUENCE: 2

ggccgaatte gtcgategte ggcagegtca gatgtg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 3

LENGTH: 26

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Synthetic
<400> SEQUENCE: 3

caaactcatc aatgtatctt atcatg

<210>
<211>
<212>
<213>
<220>
<223>

SEQ ID NO 4

LENGTH: 24

TYPE: DNA

ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION: Synthetic

<400> SEQUENCE: 4

caagcagaag acggcatacg agat

<210>
<211>
<212>
<213>
<220>
<223>
<220>
<221>
<222>
<223>

SEQ ID NO 5
LENGTH: 51
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:

OTHER INFORMATION:
FEATURE:

NAME/KEY: misc_feature
LOCATION: (30)..(37)

OTHER INFORMATION: n is a,

Synthetic

¢, g, or t

<400> SEQUENCE: 5

aatgatacgg cgaccaccga gatctacacn nnnnnnntceg teggcagegt

36

26

24

c 51

What is claimed is:
1. A method of identifying genomic enhancer regulatory
elements comprising:
fragmenting genomic DNA at accessible chromatin in a
population of cells thereby generating genomic DNA
fragments, wherein said fragmenting comprises trans-
position;
amplifying the genomic DNA fragments;
enriching the amplified genomic DNA fragments by size;
integrating the enriched fragments into a vector to obtain
a vector library, wherein the vector encodes a reporter
gene and the enriched fragments are integrated into an
untranslated region (UTR) of the reporter gene,
whereby transcription of the reporter gene results in a
transcript comprising the integrated fragment
sequence;
transfecting or transducing a cell line with the vector
library, wherein the transcript comprising the integrated
fragment sequences is expressed in the cell line; and
sequencing the transcript expressed in the cell line,
whereby integrated fragments comprising enhancer
activity are identified.
2. The method according to claim 1, wherein the amplified
genomic DNA fragments are selected for a size between
about 150 and about 500 nucleotides long.
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3. The method according to claim 1, wherein the amplified
genomic DNA fragments are selected for a size between
about 230 and about 500 nucleotides long.

4. The method according to claim 1, wherein the enriched
fragments are integrated in a UTR downstream of the
reporter gene.

5. The method according to claim 1, further comprising
removing mitochondrial DNA.

6. The method according to claim 5, wherein the mito-
chondrial DNA is removed using a CRISPR system com-
prising guide sequences targeting the mitochondrial DNA
sequences, wherein the mitochondrial DNA is cleaved.

7. The method according to claim 5, wherein the mito-
chondrial DNA is removed after the enriching the amplified
genomic DNA fragments and before the integrating the
enriched fragments.

8. The method according to claim 1, wherein the vector is
a plasmid.

9. The method according to claim 1, wherein the vector is
a viral vector.

10. The method according to claim 9, wherein the viral
vector is a lentiviral vector.

11. The method according to claim 1, wherein the inte-
grated fragments comprising enhancer activity is identified
by measuring a ratio of a number of RNA sequencing reads
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comprising a fragment to the representation of the fragment
in a non-transfected vector library.

12. The method according to claim 1, wherein the inte-
grated fragments comprising enhancer activity is identified
by comparing a sequenced genomic fragment to the chro-
matin state of a genomic locus of the fragment in the cell
line, wherein fragments present in an enhancer chromatin
state are selected.

13. The method according to claim 12, wherein the
enhancer chromatin state comprises H3K27ac (histone H3
lysine 27 acetylation) and H3K4mel (histone H3 lysine 4
mono-methylation).

14. The method according to claim 1, wherein the inte-
grated fragments comprising enhancer activity is identified
by comparing a sequenced genomic fragment to Long-
Terminal-Repeat (LTR) retrotransposon sequences, wherein
LTR sequences are not selected.

15. The method according to claim 1, further comprising
detecting expression of the reporter gene in the cell line and
sorting cells in the cell line based on expression levels of the
reporter gene.

16. The method according to claim 1, wherein the popu-
lation of cells is obtained from a tissue sample.

17. The method according to claim 1, wherein the popu-
lation of cells is a tissue-specific cell line.

18. The method according to claim 1, wherein the popu-
lation of cells is obtained by pooling cells or tissues from
more than one individual.

19. The method according to claim 1, wherein the popu-
lation of cells comprise immune cells.

20. The method according to claim 1, wherein the popu-
lation of cells comprise cancer cells.
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