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MANAGING SUBSCRIPTION LIFE - CYCLES 
BACKGROUND 

[ 0001 ] Some business models involve the use of a sub 
scription - based model , whereby customers subscribe to vari 
ous products or services provided by a company . For 
example , a telecom provider may provide a range of sub 
scription options to its customers , each subscription option 
having a different associated cost , and providing a different 
level of service . 
[ 0002 ] Within a subscription - based business model , vari 
ous entities may each have their own life - cycle . A life - cycle 
of an entity describes occurrences or changes that take place 
in respect of the entity in response to particular actions or 
events . One entity , such as a subscriber , may have a life 
cycle which involves a particular service being provided if 
a subscription fee is paid , and wherein that service is not 
provided if the subscription fee is not paid . Business logic 
used to describe a life - cycle for an entity may be very 
detailed and complex and may depend on other entities and 
on actions performed in respect of those other entities . 
[ 0003 ] Subscription life - cycle management ( also referred 
to as customer or subscriber life - cycle management ) refers 
to the management of subscription life - cycles , such as the 
life - cycle or life - cycles of each entity . The subscription 
life - cycle management involves modifying the complex 
business logic which describes the life - cycle . 

BRIEF DESCRIPTION OF DRAWINGS 
[ 00041 Examples will now be described , by way of non 
limiting example , with reference to the accompanying draw 
ings , in which : 
[ 0005 ] FIG . 1 is a simplified schematic of an example of 
a subscription life - cycle management system ; 
[ 0006 ] FIG . 2 is an example of business logic represented 
as a flow diagram ( FIG . 2A ) and as a finite state chart ( FIG . 
2B ) ; 
[ 0007 ] FIG . 3 is an example of a state transition table of 
a finite state machine ; 
[ 0008 ] FIG . 4 is a flowchart of an example of a subscrip 
tion life - cycle management method ; 
[ 0009 ] FIG . 5 is a flowchart of a further example of a 
subscription life - cycle management method ; and 
[ 0010 ] FIG . 6 is a simplified schematic of an example of 
a machine - readable medium and a processor . 

package to which the subscriber is subscribed . In other 
examples , entities of a business model may include an 
account of the subscriber , a monetary balance ( e . g . a balance 
in a subscriber ' s account ) , a quota ( e . g . an allowance of 
available data , or an allowance of telephone call minutes ) or 
a counter ( e . g . to determine an accumulated usage of data , 
call minutes , money , and the like , in a given duration ) . Each 
entity may have its own specific life - cycle according to the 
particular business model with which they are associated . 
[ 0012 ] Life - cycles of various entities may be exemplified 
using the following scenarios . In a first example , in which 
the entity is a subscriber to a service , different levels of 
subscription may entitle the subscriber to different grades of 
service . For example , a top - level ( e . g . VIP ) subscriber may 
be provided with a grace period in which to top - up his or her 
account ( e . g . a monetary balance ) if the balance of the 
account is used up . A regular , lower - level subscriber may , on 
the other hand , be blocked if the balance on their account is 
used up . In a second example , in which the entity is a 
product or package provided by the company to its custom 
ers , different products and packages may have different 
life - cycles . For example , it may be possible to purchase a 
particular product without the product being activated 
immediately ( e . g . the product may not immediately be 
available for use by the customer ) . A product may be 
activated upon its first use by the subscriber , and the product 
may automatically be renewed according to a defined 
renewal arrangement ( e . g . a payment may be taken on a 
monthly basis to enable the product to remain available to 
the customer ) . Other products , however , may be activated 
upon purchase . In a third example , in which the entity is a 
monetary balance of a customer ' s account , an account may 
behave differently depending on the nature of the monetary 
balance . For example , a monetary balance may have a 
specific expiration time ( i . e . the balance is set to zero if it is 
not used by a particular date or within a defined period ) . In 
some cases , increasing the monetary balance may extend the 
expiration time by a defined extended duration which 
depends on the amount by which the monetary balance was 
increased . In some examples , a life - cycle may involve 
multiple entities . For example , increasing a monetary bal 
ance in a subscriber ' s account may keep a subscription live 
and , if the increase in the monetary balance is above a 
threshold level , may result in an additional gift or bonus 
relevant to a different entity ( e . g . quota ) , such as a bonus 
data allowance for a month . 
[ 0013 ] Complex business logic may be used to define the 
behaviour of each entity . In some examples , the behaviour of 
one entity may depend on the behaviour of another entity , 
thereby increasing the complexity of the business logic . For 
example , a subscription may be activated immediately ( e . g . 
upon purchase ) , it may be activated upon first usage , or it 
may be activated at some defined time in the future . The 
business logic for the subscription entity is therefore 
intended to cover all possibilities within the business . In 
addition , if a monetary balance associated with the subscrip 
tion were to expire , then the subscription may change , 
resulting in a further possibility to be included in the 
business logic . 
[ 0014 ] According to examples disclosed herein , manage 
ment of subscription life - cycles is enabled by representing 
the business logic using a finite state machine . A finite state 
machine ( FSM ) is a model which can be used to represent 
a finite number of states and how a change or transition may 

DETAILED DESCRIPTION 
[ 0011 ] A subscription - based business model may include a 
plurality of entities . In one example , a telecommunications 
service provision business ( hereinafter “ telecoms com 
pany ” ) may provide telecommunications services to its 
customers . For example , the telecoms company may provide 
a service by which a customer is able to make telephone 
calls from his or her mobile device . The telecoms company 
may , in some examples , provide the mobile device to the 
customer as part of its service . The various services may be 
provided to a customer if the customer has paid a subscrip 
tion fee and , similarly , services may be taken away from the 
customer or restricted ( e . g . the service provision may be 
terminated ) if the customer fails to pay the subscription fee . 
In such an example , the “ entities ” of the business model may 
include subscribers , devices ( e . g . the mobile devices pro - 
vided to the subscribers ) , and the type of subscription 
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be made between those states in response to an external 
input , referred to as an event . By representing complex 
business logic using a finite state machine , the business logic 
may be simplified and may be made easier to understand . 
[ 0015 ] FIG . 1 is a simplified schematic of a system 100 for 
managing subscription life - cycles . The system 100 may be 
referred to as a subscription life - cycle management system 
or a subscriber life - cycle management system . The system 
100 comprises a memory 102 , an execution engine 104 and 
a modification engine 106 . The execution engine 104 and the 
modification engine 106 may , in some examples , form part 
of a single engine , and either or both may comprise a 
processor ( or multiple processors ) to perform functions of 
the execution engine and / or the modification engine . 
[ 0016 ] The memory 102 may store , or may be capable of 
storing , a set of definitions that define a first state of a finite 
state machine representing transition logic of a subscription 
life - cycle , a second state of the finite state machine , and an 
event capable of causing a transition between the first state 
and the second state . The memory 102 may also store , or 
may be capable of storing , a set of rules that define possible 
transitions between the first state and the second state . In 
some examples , the finite state machine may include addi 
tional states , such as a third state , a fourth state , a fifth state , 
and so on , and rules that define possible transitions between 
any of the states . 
[ 0017 ] The execution engine 104 is to execute the transi 
tion between the first state and the second state in response 
to a determination that the event has taken place . Imple 
mentations of the execution engine 104 include electronic 
circuitry ( i . e . , hardware ) such as an integrated circuit , pro 
grammable circuit , application integrated circuit ( ASIC ) , 
controller , processor , semiconductor , processing resource , 
chipset , or other type of hardware component capable of 
executing the transition between the first state and the 
second state in response to a determination that the event has 
taken place . Alternatively , the execution engine 104 may 
include instructions ( e . g . , stored on a machine - readable 
medium ) that , when executed by a hardware component 
( e . g . , controller and / or processor ) causes the transition 
between the first state and the second state to be executed in 
response to a determination that the event has taken place , 
accordingly . The modification engine 106 is to receive an 
instruction to modify the set of definitions or the set of rules . 
The modification engine 106 is further to modify the tran 
sition logic based on the received instruction . Implementa 
tions of the modification engine 106 include electronic 
circuitry ( i . e . , hardware ) such an integrated circuit , program 
mable circuit , application integrated circuit ( ASIC ) , control 
ler , processor , semiconductor , processing resource , chipset , 
or other type of hardware component capable of receiving an 
instruction to modify the set of definitions or the set of rules , 
and modifying the transition logic based on the received 
instruction . Alternatively , the modification engine 106 may 
include instructions ( e . g . , stored on a machine - readable 
medium ) that , when executed by a hardware component 
( e . g . , controller and / or processor ) causes an instruction to 
modify the set of definitions or the set of rules to be received , 
and modifies the transition logic based on the received 
instruction , accordingly . 
[ 0018 ] The states of the finite state machine may corre 
spond to states relevant to a particular entity . Thus , in some 
examples , each entity may have an associated finite state 
machine or multiple associated finite state machines . 

Examples of such states will be described with reference to 
FIG . 2 , which shows an example of business logic for a 
subscription - based telecoms company ( in FIG . 2A ) , and an 
example of part of the business logic represented as a finite 
state machine ( in FIG . 2B ) . 
[ 0019 ] In FIG . 2A , first business logic portion 202 , second 
business logic portion 204 and third business logic portion 
206 represent three parts of a subscription life - cycle logic 
representation . In this example , the first business logic 
portion 202 relates to provisioning a purchased product , and 
includes , at blocks 202a and 202b , creating two different 
types of subscription . At block 202a , a subscription is 
created having a “ pre - active ” state , and at block 202b , a 
subscription is created having an " active ” state . Thus , " pre 
active ” and “ active ” are to possible states associated with the 
" subscription " entity . 
[ 0020 ] FIG . 2B includes a representation 208 of a finite 
state machine representing part of the business logic 202 , 
204 , 206 . Specifically , the representation 208 is a state chart 
for the “ subscription " entity of the business logic . The state 
chart 208 includes all possible states 210 to 218 associated 
with the entity ( i . e . subscription ) , and all possible transitions 
220 to 232 between the states . In this example , the possible 
states associated with the subscription entity include “ none ” 
210 , “ pre - active ” 212 , " active ” 214 , “ expired ” 216 and 
“ closed ” 218 . Various inputs , or events , may result in 
transitions between the various states . According to the 
example of FIG . 2B , purchasing a product may lead to a 
subscription being created , the subscription requiring acti 
vation before it can be used . Such an event may result in a 
transition 220 from the " none " state 210 to the pre - active " 
state 212 . In other examples , purchasing a product may lead 
to the creation of a subscription which is activated imme 
diately . Such an event may result in a transition 222 from the 
" none " state 210 to the “ active ” state 214 . A subscription in 
the “ pre - active ” state 212 may be activated by some event , 
such as a network event , resulting in a transition 224 from 
the “ pre - active ” state 212 to the “ active ” state 214 . While a 
subscription is in the " active " state 214 , the subscription 
may be renewed or expire , for example after a defined period 
of time has elapsed . If a subscription is renewed , then the 
subscription a transition from the “ active ” state 214 back to 
itself via a transition 226 . If a subscription is the “ pre - active ” 
state 212 is not activated within a defined period of time , 
then the subscription may undergo a transition 228 from the 
" pre - active ” state 212 to the " expired ” state 216 . Similarly , 
a subscription in the " active ” state 214 may undergo a 
transition 230 to the " expired ” state 216 if subscription is not 
renewed within a defined period of time . If a subscription in 
the " expired ” state 216 remains in that state for a defined 
period of time , then it may undergo a transition 232 to a 
" closed ” state 218 . 
[ 0021 ] Thus , a state transition , such as the transitions 220 
to 232 in FIG . 2B may represent the logic which is executed 
when an event is triggered in respect of a particular state . 
The set of rules that define the possible transitions between 
states ( e . g . between the first state and the second state ) may , 
in some examples , comprise a rule chain , defining multiple 
transitions ( e . g . between multiple states ) which may take 
place upon detection of a particular event . 
[ 0022 ] When it is determined that an event ( i . e . an event 
defined in the set of definitions ) has taken place which is 
capable of causing a transition between the first state and the 
second state , the execution engine 104 executes the transi 
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tion from the first state to the second state , in accordance 
with the set of rules . In some examples , the execution engine 
104 may execute multiple transitions in response to a 
determination that the event has taken place . For example , 
an entity may transition between the first state and a third 
state , via the second state . In another example , performing 
the event may cause one entity to transition between the first 
state and the second state , and another entity to transition 
between a third state and a fourth state . 
[ 0023 ] The determination that an event has taken place 
may be made , for example , by a processing apparatus in the 
system 100 , or associated with the system . The processing 
apparatus performing the determination may comprise the 
execution engine 104 . 
[ 0024 ] It may be intended that the business logic be 
modified , for example to include a new state or to incorpo 
rate an additional transition between various states . Making 
changes to the business logic 202 , 204 , 206 may be particu 
larly challenging due to the complex nature of the business 
logic when presented in that manner . For example , the 
telecoms company may wish to add into the business logic 
an additional “ blocked ” state , which applies to a customer 
who has failed to pay a subscription fee . Modifying the 
business logic 202 , 204 , 206 is not a straightforward task as 
the introduction of a new state may involve consequential 
changes being made in respect of multiple entities . More 
over , adding a new state by modifying the business logic 
202 , 204 , 206 may involve consequential changes being 
made to other existing transitions within the business logic . 
Thus , the modification engine 106 is capable of modifying 
the transition logic of the finite state machine based on a 
received instruction to modify a definition in the set defi 
nitions and / or a rule in the set of rules . 
[ 0025 ] In some examples , an instruction to modify a 
definition or a rule may be received by an operator , such as 
an operator of the subscription life - cycle management sys 
tem 100 . For example , the operator may input the modifi 
cation instruction using a user interface presented to them 
via a computing device . In other examples , the instruction to 
modify a definition or a rule may be received in an auto 
mated manner . For example , an instruction may be gener 
ated by an associated processing device in response to an 
event or trigger , and the instruction may be delivered to the 
modification engine automatically . 
[ 0026 ] The business logic may , in some examples , be 
represented in the form of a state transition table . A state 
transition table may show the state into which a finite state 
machine will move or transition , based on the current state 
of the finite state machine and other inputs or events . In 
some examples , the execution engine 104 generate , or be 
capable of generating , based on the stored definitions and 
rules , a state transition table that defines relationships 
between the states , the state transitions and the event . 
[ 0027 ] FIG . 3 is an example of a state transition table 300 
corresponding to the state chart shown in FIG . 2B . In the 
state transition table 300 , the states 210 to 218 are presented 
at the tops of columns along the top of the table , and the 
possible transitions 220 to 232 between the states are 
presented down the left - hand side of the table . In this 
example , the transitions 220 and 222 are grouped together in 
a first row , labelled “ Purchased product ” , the transition 224 
is presented in the second row , labelled “ Network event " , 
and the transitions 226 , 228 , 230 and 232 are grouped 
together in a third row , labelled “ Timer " . The possible 

transitions relevant to each row in the table are presented in 
row / column intersection cells 302 to 310 . For example , the 
transition 220 , whereby purchasing a particular product may 
result in a transition from the “ none ” state 210 to the 
" pre - active ” state 212 , is presented as an alternative in the 
cell 302 along with the transition 222 , whereby purchasing 
a particular product may result in a transition from the 
" none " state 210 to the “ active ” state 214 . 
0028 ] The row / column intersection cells 302 to 310 may 

also include additional information regarding the business 
logic , which may not be presented in the state chart , such as 
the state chart of FIG . 2B . For example , the row / column 
intersection cells may include information regarding a rule 
or a rule chain relevant to the corresponding state , such that 
a viewer of the state transition table 300 may be provided 
with a better understanding of the business logic presented 
therein . In the example state transition table 300 shown in 
FIG . 3 , the row / column intersection cell 302 includes details 
of the general type of transition ( i . e . create subscription in 
response to a product being purchased ) , and the two possible 
transitions which might take place ( i . e . pre - active or active ) , 
depending on the type of product purchased . The intersec 
tion 302 also includes four rules , namely “ Get product info ” , 
“ Create subscription " , " Calculate next time based on pre 
active or active immediate ” and “ Register next time ( latest 
activate time ) ” . These rules may be considered additional 
information which may aid a viewer of the state transition 
table 300 in better understanding the business logic . 
[ 0029 ] Thus , in some examples , the state transition table 
may be presented to an operator , for example via a user 
interface and / or a display , so that the operator is able to see 
the additional information relating to the business logic . 
10030 ] In some examples , the execution engine 104 may 
comprise a timing engine to effect the transition between the 
first state and the second state after expiry of a defined 
duration or at a defined time . The timing engine may , for 
example , comprise a timing mechanism . The timing engine 
may , in some examples , determine when a defined duration 
of time has elapsed after a particular event . In some 
examples , a state transition may take place after a defined 
duration has passed or expired . For example , a timer may 
begin upon detection of a particular event , such as the first 
use of a product by a subscriber . The execution engine 104 
may perform a particular action , such as terminating a 
service , upon expiry of the defined duration . In an example , 
the execution engine 104 may use the timing engine , or 
timer , to determine when a state transition is to take place . 
For example , a subscriber may subscribe to a particular 
service on a month - by - month basis , and the timing engine 
may cause a transitions from an " active ” state ( 214 in FIG . 
2B ) to an " expired ” state ( 216 in FIG . 2B ) after a month has 
passed from the initiation of the service . In other examples , 
the timing engine may measure absolute time , such that the 
execution engine 104 may perform a particular action at a 
particular defined time . A state transition may take place on 
a particular date or at a particular time , for example . In some 
examples , a subscription service may expire ( i . e . a transition 
may occur from an " active ” state ( 214 in FIG . 2B ) to an 
“ expired ” state ( 216 in FIG . 2B ) at midnight on the last day 
of a particular month . 
[ 0031 ] The transitions 226 , 228 , 230 and 232 may , in some 
examples , be effected using the timing engine of the execu 
tion engine 104 . In some examples , the set of rules stored in 
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the memory 102 may include rules based on timings mea 
sured or determined using the timing engine . 
[ 0032 ] As noted above , subscription - based business 
model may include a plurality of entities , and business logic 
for each entity may be represented using a finite state 
machine , or multiple finite state machines . In some 
examples , the memory 102 may store , or be capable of 
storing , a set of entity definitions that define entities having 
subscription life - cycles . The memory 102 may store , or be 
capable of storing , a set of entity rules that define the 
subscription life - cycle of each entity . If it is intended that a 
portion of the business logic be modified or adapted , then a 
state transition chart and / or a state transition table for each 
finite state machine may be generated and / or presented to an 
operator so that the operator can observe the business logic 
for each entity . By storing the entity definitions and entity 
rules in the memory 102 , any consequential changes in a 
second entity resulting from a change made to a first entity 
may also be effected . In some examples , the execution 
engine 104 may be to execute the transition between the first 
state and the second state for an entity based on the entity 
rules for that entity . Thus , the transitions may differ for each 
entity . 
10033 ] Representing the business logic as a finite state 
machine , or as a plurality of finite state machines , and 
presenting each finite state machine in the form of a state 
transition chart and / or a state transition table may enable 
changes to be made to the business logic in a user - friendly 
way . According to an example , an operator who intends to 
add a new “ blocked ” state into the business logic may take 
the following actions . First , the operator may view the state 
transition table for the relevant finite state machine intended 
to be updated . Then , the operator may add the new state ( i . e . 
“ blocked ” ) , along with an event or a plurality of events that 
would cause a transition from other states to the “ blocked ” 
state and / or from the " blocked ” state to other states . The 
operator may then add rules , such as transition rules or rule 
chains defining the possible transitions . For example , the 
transitions may be added into the row / column intersection 
cells ( 302 to 310 in FIG . 3 ) . 
[ 0034 ] Once the intended changes or additions have been 
made in the state transition table , the modification engine 
106 may generate , or be capable of generating , based on the 
modified transition logic , a state transition chart representing 
the modified transition logic . In other words , once the 
operator has updated the state transition table , a correspond 
ing state transition chart may be generated . The operator 
may view the modified state chart corresponding to the 
modified state transition table to view the updated business / 
transition logic and to verify that any changes made to the 
states , events and / or transitions are as intended . 
[ 0035 ] As discussed above , the state chart may be pre 
sented in the form as shown in FIG . 2B , with the various 
states and the possible transitions between states . In some 
examples , the modified state chart may be generated or built 
one part at a time ( e . g . first the states , then the events , then 
the transitions , and so on ) so that an operator can see clearly 
the effect of adding the new state or modifying the logic . In 
some examples , the state chart may be generated by popu 
lating the chart with all of the states , then iteratively adding 
each event , then , for each event , iterating the corresponding 
transition , then adding lines connecting the states , based on 
the transitions . In some examples , additional information 
may be added , based on the additional information included 

in the state transition table ( e . g . in the row / column intersec 
tion cells 302 to 310 ) . In this way , all of the relevant 
information from the state transition table may be displayed 
to an operator in the state chart . 
[ 0036 ] In some examples , the additional information from 
the state transition table may be displayed in the state chart 
in response to a particular action taken by an operator . For 
example , moving or hovering a cursor over a particular 
transition presented in the state chart , or selecting a particu 
lar transition ( e . g . by clicking a mouse button ) may cause the 
additional information to be displayed ( e . g . temporarily ) , so 
that the operator can view the additional information at a 
particular time . In this way , the state chart may not perma 
nently be populated with all of the available information 
and , therefore , an operator may not be presented with too 
much information , which could otherwise cause confusion 
or make the state chart difficult to interpret . 
[ 0037 ] In examples where the business logic is represented 
using a plurality of finite state machines , the modification 
engine 106 may modify the transition logic corresponding to 
a first finite state machine , and may also modify transition 
logic corresponding to other finite state machines of the 
plurality of finite state machines . In some examples , the 
modification engine 106 may comprise a sub - modification 
engine to effect a modification to transition logic corre 
sponding to a second finite state machine based on the 
modification made to the transition logic corresponding to a 
first finite state machine . Thus , if a modification ( e . g . an 
addition of a state ) made to the transition logic correspond 
ing to a first finite state machine as a consequential effect on 
transition logic corresponding to a second finite state 
machine ( e . g . a finite state machine of a different entity ) , 
then the sub - modification engine may make the correspond 
ing modification to the second finite state machine logic , or 
the logic of any other finite state machines which may be 
affected . 
[ 0038 ] According to examples disclosed herein , a sub 
scription life - cycle management is disclosed . FIG . 4 is a 
flowchart of an example of a method 400 . The method 400 
may , for example , comprise a subscription life - cycle man 
agement method . The method 400 comprises , at block 402 , 
storing , in a memory , a set of definitions and a set of rules . 
The set of definitions define a first state of a finite state 
machine representing transition logic of a subscription life 
cycle , a second state of the finite state machine , and an event 
capable of causing a state transition between the first state 
and the second state . The set of rules define possible state 
transitions between the first state and the second state . At 
block 404 , the method 400 comprises receiving an instruc 
tion to adjust the set of definitions or the set of rules . As 
explained in the above examples , the adjustment instruction 
may be received manually ( e . g . as an input by an operator ) 
or automatically ( e . g . as an input triggered by some action 
or event ) . The method 400 comprises , at block 406 , adjust 
ing the transition logic based on the received adjustment 
instruction . 
0039 ] Thus , in response to receiving an instruction to 
adjust or modify a definition or a rule defining states , events 
or transitions of a finite state machine , the method may make 
a corresponding adjustment to the transition logic repre 
sented by the finite state machine . In this way , an adjustment 
to the transition logic may be made by an operator even 
though the operator may not fully understand or comprehend 
the complex business logic . 



US 2019 / 0266665 A1 Aug . 29 , 2019 

[ 0040 ] FIG . 5 is a flowchart of a further example of a 
subscription life - cycle management method 500 . The 
method 500 may include blocks of the method 400 . The 
method 500 may comprise , at block 502 , generating , based 
on the stored definitions and rules , a state transition table 
that defines relationships between the states , the state tran 
sitions and the event . In some examples , the state transition 
table may be generated after the set of definitions and the set 
of rules have been stored in the memory ( block 402 ) , and 
before an adjustment instruction has been received ( block 
404 ) . The state transition table , such as the state transition 
table 300 shown in FIG . 3 , generated at block 502 may be 
presented to an operator , for example via a user interface . 
Such a state transition table may include details of the first 
and second states of the finite state machine , details of the 
event or events capable of causing a state transition , and 
details of the possible state transitions that may occur . In 
some examples , the state transition table may further include 
additional information , such as the information shown in the 
row / column intersection cells 302 to 310 of FIG . 3 . 
[ 0041 ] At block 504 , the method 500 may comprise gen 
erating , for presentation to an operator , a representation of 
the adjusted transition logic . The representation of the 
adjusted transition logic may be generated after the transi 
tion logic has been adjusted based on the received adjust 
ment instruction ( block 406 ) . In some examples , the repre 
sentation of the adjusted transition logic may comprise a 
state transition chart , or state chart . Generating the repre 
sentation ( block 504 ) may , in some examples , comprise 
constructing a representation including the states , the state 
transitions , the events and the relationships between the 
states , the state transitions and the events . 
[ 0042 ] The method 500 may comprise , at block 506 , 
delivering the state transition table and / or the representation 
of the adjusted transition logic for presentation to an opera 
tor . By presenting the state transition table and / or the state 
transition chart to an operator , the operator may be able to 
understand the business logic represented by the finite state 
machine , and may not be overwhelmed with complex details 
in the business logic . 
10043 ) According to examples described herein , a 
machine - readable medium is disclosed . FIG . 6 is a simpli 
fied schematic of an example of a machine - readable medium 
602 and a processor 604 . The machine - readable medium 602 
comprises instructions which , when executed by a proces 
sor , such as the processor 604 , cause the processor to 
perform the methods disclosed herein . In some examples , 
the machine - readable medium 602 may comprise instruc 
tions which , when executed by the processor 604 , cause the 
processor to store , in a memory , a set of definitions that 
define a first state of a finite state machine representing 
transition logic of a subscription life - cycle , a second state of 
the finite state machine , and an event capable of causing a 
state transition between the first state and the second state ; 
and a set of rules that define possible state transitions 
between the first state and the second state . In some 
examples , the storing may be performed by executing stor 
age instructions 606 . The machine - readable medium 602 
may comprise instructions which , when executed by the 
processor 604 , cause the processor to receive a command to 
edit , add to or delete from the set of definitions or the set of 
rules . In some examples , receiving a command may be 
performed by executing command receipt instructions 608 . 
The machine - readable medium 602 may comprise instruc 

tions which , when executed by the processor 604 , cause the 
processor to modify the transition logic based on the 
received command . In some examples , modifying the tran 
sition logic may be performed by executing transition logic 
modification instructions 610 . 
[ 0044 ] In some examples , the machine - readable medium 
602 may comprise instructions ( e . g . state transition table 
generation instructions ) which , when executed by the pro 
cessor 604 , cause the processor to generate , based on the 
stored definitions and rules , a state transition table that 
defines relationships between the states , the state transitions 
and the event . In some examples , instructions ( e . g . state 
transition chart generation instructions ) , when executed by 
the processor 604 , may cause the processor to generate , 
based on the modified transition logic , a state transition chart 
representing the modified transition logic . 
[ 0045 ] In some examples , the machine - readable medium 
602 may comprise instructions ( e . g . state transition table 
delivery instructions ) which , when executed by the proces 
sor 604 , cause the processor to deliver the state transition 
table for presentation to an operator . 
10046 ] The machine - readable medium 602 may , in some 
examples , comprise instructions ( e . g . state transition chart 
construction instructions ) which , when executed by the 
processor 604 , cause the processor to construct the state 
transition chart by including in the chart the states , the state 
transitions , the events and the relationships between the 
states , the state transitions and the events . 
10047 ] In some examples , the machine - readable medium 
602 may comprise instructions ( e . g . state transition chart 
delivery instructions ) which , when executed by the proces 
sor 604 , cause the processor to deliver the state transition 
chart for presentation to an operator . 
[ 0048 ] The machine - readable medium 602 may , in some 
examples , comprise instructions ( e . g . modification instruc 
tions ) which , when executed by the processor 604 , cause the 
processor to effect a modification to transition logic corre 
sponding to a second finite state machine based on the 
modification made to the transition logic corresponding to a 
first finite state machine . 
( 0049 ] Examples in the present disclosure can be provided 
as methods , systems or machine readable instructions , such 
as any combination of software , hardware , firmware or the 
like . Such machine readable instructions may be included on 
a computer readable storage medium ( including but is not 
limited to disc storage , CD - ROM , optical storage , etc . ) 
having computer readable program codes therein or thereon . 
[ 0050 ] The present disclosure is described with reference 
to flow charts and / or block diagrams of the method , devices 
and systems according to examples of the present disclosure . 
Although the flow diagrams described above show a specific 
order of execution , the order of execution may differ from 
that which is depicted . Blocks described in relation to one 
flow chart may be combined with those of another flow 
chart . It shall be understood that each flow and / or block in 
the flow charts and / or block diagrams , as well as combina 
tions of the flows and / or diagrams in the flow charts and / or 
block diagrams can be realized by machine readable instruc 
tions . 
[ 0051 ] The machine readable instructions may , for 
example , be executed by a general purpose computer , a 
special purpose computer , an embedded processor or pro 
cessors of other programmable data processing devices to 
realize the functions described in the description and dia 
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grams . In particular , a processor or processing apparatus 
may execute the machine readable instructions . Thus func 
tional modules of the apparatus and devices may be imple 
mented by a processor executing machine readable instruc 
tions stored in a memory , or a processor operating in 
accordance with instructions embedded in logic circuitry . 
The term “ processor ’ is to be interpreted broadly to include 
a CPU , processing unit , ASIC , logic unit , or programmable 
gate array etc . The methods and functional modules may all 
be performed by a single processor or divided amongst 
several processors . 
[ 0052 ] Such machine readable instructions may also be 
stored in a computer readable storage that can guide the 
computer or other programmable data processing devices to 
operate in a specific mode . 
[ 0053 ] Such machine readable instructions may also be 
loaded onto a computer or other programmable data pro 
cessing devices , so that the computer or other programmable 
data processing devices perform a series of operations to 
produce computer - implemented processing , thus the instruc 
tions executed on the computer or other programmable 
devices realize functions specified by flow ( s ) in the flow 
charts and / or block ( s ) in the block diagrams . 
[ 0054 ] Further , the teachings herein may be implemented 
in the form of a computer software product , the computer 
software product being stored in a storage medium and 
comprising a plurality of instructions for making a computer 
device implement the methods recited in the examples of the 
present disclosure . 
[ 0055 ] While the method , apparatus and related aspects 
have been described with reference to certain examples , 
various modifications , changes , omissions , and substitutions 
can be made without departing from the spirit of the present 
disclosure . It is intended , therefore , that the method , appa 
ratus and related aspects be limited only by the scope of the 
following claims and their equivalents . It should be noted 
that the above - mentioned examples illustrate rather than 
limit what is described herein , and that those skilled in the 
art will be able to design many alternative implementations 
without departing from the scope of the appended claims . 
Features described in relation to one example may be 
combined with features of another example . 
[ 0056 ] The word " comprising ” does not exclude the pres 
ence of elements other than those listed in a claim , “ a ” or 
“ an ” does not exclude a plurality , and a single processor or 
other unit may fulfil the functions of several units recited in 
the claims . 
00571 . The features of any dependent claim may be com 

bined with the features of any of the independent claims or 
other dependent claims . 

1 . A subscription life - cycle management system compris 

receive an instruction to modify the set of definitions or 
the set of rules ; and 

modify the transition logic based on the received 
instruction . 

2 . A system according to claim 1 , wherein the modifica 
tion engine is to : 

generate , based on the stored definitions and rules , a state 
transition table that defines relationships between the 
states , the state transitions and the event . 

3 . A system according to claim 1 , wherein the execution 
engine comprises a timing engine to effect the transition 
between the first state and the second state after expiry of a 
defined duration or at a defined time . 

4 . A system according to claim 1 , wherein the memory is 
further to store : 

a set of entity definitions that define entities having 
subscription life - cycles ; and 

a set of entity rules that define the subscription life - cycle 
of each entity . 

5 . A system according to claim 4 , wherein the execution 
engine is to execute the transition between the first state and 
the second state for an entity based on the entity rules for that 
entity . 

6 . A system according to claim 1 , wherein the modifica 
tion engine is to : 

generate , based on the modified transition logic , a state 
transition chart representing the modified transition 
logic . 

7 . A system according to claim 1 , wherein the modifica 
tion engine comprises a sub - modification engine to effect a 
modification to transition logic corresponding to a second 
finite state machine based on the modification made to the 
transition logic corresponding to a first finite state machine . 

8 . A subscription life - cycle management method compris 
ing : 

storing , in a memory : 
a set of definitions that define a first state of a finite state 
machine representing transition logic of a subscrip 
tion life - cycle , a second state of the finite state 
machine , and an event capable of causing a state 
transition between the first state and the second state ; 
and 

a set of rules that define possible state transitions 
between the first state and the second state ; 

receiving an instruction to adjust the set of definitions or 
the set of rules ; and 

adjusting the transition logic based on the received adjust 
ment instruction . 

9 . A method according to claim 8 , further comprising : 
generating , based on the stored definitions and rules , a 

state transition table that defines relationships between 
the states , the state transitions and the event . 

10 . A method according to claim 8 , further comprising : 
generating , for presentation to an operator , a representa 

tion of the adjusted transition logic . 
11 . A method according to claim 10 , wherein the repre 

sentation of the adjusted transition logic comprises a state 
transition chart . 

12 . A method according to claim 11 , wherein generating 
the representation comprises constructing a representation 
including the states , the state transitions , the events and the 
relationships between the states , the state transitions and the 
events . 

ing : 
a memory to store : 

a set of definitions that define a first state of a finite state 
machine representing transition logic of a subscrip 
tion life - cycle , a second state of the finite state 
machine , and an event capable of causing a transition 
between the first state and the second state ; and 

a set of rules that define possible transitions between 
the first state and the second state ; 

an execution engine to execute the transition between the 
first state and the second state in response to a deter 
mination that the event has taken place ; and 

a modification engine to : 
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13 . A method according to claim 9 , further comprising : 
delivering the state transition table and / or a representation 

of the adjusted transition logic for presentation to an 
operator . 

14 . A machine - readable medium comprising instructions 
which , when executed by a processor , cause the processor 
to : 

store , in a memory : 
a set of definitions that define a first state of a finite state 
machine representing transition logic of a subscrip - 
tion life - cycle , a second state of the finite state 
machine , and an event capable of causing a state 
transition between the first state and the second state ; 
and 

deliver the state transition table for presentation to an 
operator . 

17 . A machine - readable medium according to claim 14 , 
wherein the instructions , when executed by a processor , 
cause the processor to : 

generate , based on the modified transition logic , a state 
transition chart representing the modified transition 
logic . 

18 . A machine - readable medium according to claim 17 , 
wherein the instructions , when executed by a processor , 
cause the processor to : 

construct the state transition chart by including in the 
chart the states , the state transitions , the events and the 
relationships between the states , the state transitions 
and the events . 

19 . A machine - readable medium according to claim 17 , 
wherein the instructions , when executed by a processor , 
cause the processor to : 

deliver the state transition chart for presentation to an 
operator . 

20 . A machine - readable medium according to claim 14 , 
wherein the instructions , when executed by a processor , 
cause the processor to : 

effect a modification to transition logic corresponding to 
a second finite state machine based on the modification 
made to the transition logic corresponding to a first 
finite state machine . 

a set of rules that define possible state transitions 
between the first state and the second state ; 

receive a command to edit , add to or delete from the set 
of definitions or the set of rules ; and 

modify the transition logic based on the received com 
mand . 

15 . A machine - readable medium according to claim 14 , 
wherein the instructions , when executed by a processor , 
cause the processor to : 

generate , based on the stored definitions and rules , a state 
transition table that defines relationships between the 
states , the state transitions and the event . 

16 . A machine - readable medium according to claim 15 , 
wherein the instructions , when executed by a processor , 
cause the processor to : 


