
US 20190266665A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2019 / 0266665 A1

Wang et al . (43) Pub . Date : Aug . 29 , 2019

(54) MANAGING SUBSCRIPTION LIFE - CYCLES
(71) Applicant : HEWLETT PACKARD

ENTERPRISE DEVELOPMENT LP ,
Houston , TX (US)

(72) Inventors : Bo Wang , Shanghai (CN) ; Jian - Hua
Yang , Shanghai (CN)

(52) U . S . CI .
CPC G06Q 30 / 0645 (2013 . 01)

(57) ABSTRACT
In some examples , a subscription life - cycle management
system is disclosed . The system may include a memory to
store a set of definitions that define a first state of a finite
state machine representing transition logic of a subscription
life - cycle , a second state of the finite state machine , and an
event capable of causing a transition between the first state
and the second state ; and a set of rules that define possible
transitions between the first state and the second state . The
system may include an execution engine to execute the
transition between the first state and the second state in
response to a determination that the event has taken place .
The system may include a modification engine to receive an
instruction to modify the set of definitions or the set of rules ;
and modify the transition logic based on the received
instruction . A method and a machine - readable medium are
also disclosed .

(21) Appl . No . : 15 / 907 , 757

(22) Filed : Feb . 28 , 2018

Publication Classification
(51) Int . Ci .

G06Q 30 / 06 (2006 . 01)

Purchase product
(Provisioning)

Scheduler
with Interval

Network Charging
Event (Diameter Gy)

Load latest n seconds
subscriotion records Get Product

Info
* Logic to filter applicable

subscriptions

Loop a
subscription

Loop a
subscription

Product need
preactive ? Subscription

2020 state Subscription state ?
?preactive) ? Preactive Create Subscription 11

with (Active] state Active
Get Product Cycle Generate

audit log ?????????????????????

Create Subscription
with [Preactive) state 4 - 1 Get Product

Cycle Info
Info Trigger renew

business logic
YA

Update to
Expired)

Calculate next
renew time by cycle

Calculate next time to
(latest activate time]

Calculate next renew
time by cycle

Calculate
next renew
time by cycle Update next time
Expired ? Update next

time Update to (Active] Update next Update to
Close] time

Loop
ended

202 Loop
ended 206

204 End

Patent Application Publication Aug . 29 , 2019 Sheet 1 of 7 US 2019 / 0266665 A1

102 - Memory . . . 104 Execution
engine

. . . 106 Modification
engine

Fig . 1

wiwiny poniewygwwwwwwwwwwwwwww

w wwwwwwwwwwwwwwwwwwww

Purchase product (Provisioning)

Scheduler with Interval

Network Charging Event (Diameter Gy)

Patent Application Publication

Load latest n seconds subscription records

Get Product Info

Logic to filter applicable subscriptions
1

Loop a subscription

Loop a subscription

2025

l

Product need preactive ?

??????????????????

Subscription state

Prodotto

2020

Subscription state (preactive) ?

Active

Get Product Cycie

w

Create Subscription with (Preactive) state

Create Subscription

Preactive

with Active state

Generate

Get Product

audit log

Cycle Info

Update to

Calculate next renew | | [Expired)

time by cycle

Trigger renew business logic

UY

Calculate next renew time by cycle

Aug . 29 , 2019 Sheet 2 of 7

Calculate next time to latest activate time)

Calculate next renew time by cycle

Update next time

w w

Y

aExpired ? mon Namen

Update next time

Update to (Active]

w w

Update to
(Closel

Update next time

Loop vended

202

mummon man na ma w

Loop ended

206

204

End)

US 2019 / 0266665 A1

1

Figure 2A

Patent Application Publication Aug . 29 , 2019 Sheet 3 of 7 US 2019 / 0266665 A1

212

220 228
Pre - Active

Timer
(Expire without activation) Purchase Product

(Create subscription)
Pre - Activate Product

210
224

}

216

None Network Event
(Activate) Expired

232 Timer
(Renew / Expire)

Renew 222
Timer

(Renew / Expire)
Expire * 226

Purchase Product
(Create subscription)
Immediate Activate

Product Active Timer
(Housekeeping)

230

214 218 / Closed
208

Figure 2B

302

- - 210

- 212

, 214

216

218

Patent Application Publication

Sective

Expired

Closed

Purchase Product

None .

Transition (Create subscription
. Get product info Create subscriptio

• Calculate next time based on pre - ective of

220 , 222

* Register next time (atest activete time Active : Imunediate Acwated Product

Event

224

Transition (Activale Use subscription
Register next time

mov * (next renewal time) Active Transition (Expire without
activation

Generale Audt Log

Transition (RenewiExpre

Aug . 29 , 2019 Sheet 4 of 7

(House Keeping) . Delele dala

226 , 228 , 230 , 232

s the last renew ? Register next time active : Renew Expired : Expire

304

306

308

310

300

Fig . 3

US 2019 / 0266665 A1

Patent Application Publication Aug . 29 , 2019 Sheet 5 of 7 US 2019 / 0266665 A1

400

Store , in a memory , a set of
definitions and a set of rules

Receive an instruction to adjust the
set of definitions or the set of rules

Adjust the transition logic based on
the received adjustment instruction

Fig . 4

Patent Application Publication Aug . 29 , 2019 Sheet 6 of 7 US 2019 / 0266665 A1

500

. . . 402 Store , in a memory , a set of definitions
and a set of rules

Generate , based on the stored definitions and rules ,
a state transition table defining relationships between

the states , the state transitions and the event

wwwwwwwwwwwwwwwwwwwwwwww

Receive an instruction to adjust
the set of definitions or the set of rules

Adjust the transition logic based
on the received adjustment instruction

Arrrrrrrrrrrrvv Avvvvvvvvvvv

Generate , for presentation to an operator , a
representation of the adjusted transition logic

506 Deliver the state transition table and / or the
representation of the adjusted transition logic for

presentation to an operator

Fig . 5

US 2019 / 0266665 A1

Fig . 6

modification instructions Translation logic

niiniiiiiii

- - - 610

inimii

Aug . 29 , 2019 Sheet 7 of 7

809

instructions Command receipt

- 604

Processor

909

Storage instructions

Patent Application Publication

- 602

WoW .

US 2019 / 0266665 A1 Aug . 29 , 2019

MANAGING SUBSCRIPTION LIFE - CYCLES
BACKGROUND

[0001] Some business models involve the use of a sub
scription - based model , whereby customers subscribe to vari
ous products or services provided by a company . For
example , a telecom provider may provide a range of sub
scription options to its customers , each subscription option
having a different associated cost , and providing a different
level of service .
[0002] Within a subscription - based business model , vari
ous entities may each have their own life - cycle . A life - cycle
of an entity describes occurrences or changes that take place
in respect of the entity in response to particular actions or
events . One entity , such as a subscriber , may have a life
cycle which involves a particular service being provided if
a subscription fee is paid , and wherein that service is not
provided if the subscription fee is not paid . Business logic
used to describe a life - cycle for an entity may be very
detailed and complex and may depend on other entities and
on actions performed in respect of those other entities .
[0003] Subscription life - cycle management (also referred
to as customer or subscriber life - cycle management) refers
to the management of subscription life - cycles , such as the
life - cycle or life - cycles of each entity . The subscription
life - cycle management involves modifying the complex
business logic which describes the life - cycle .

BRIEF DESCRIPTION OF DRAWINGS
[00041 Examples will now be described , by way of non
limiting example , with reference to the accompanying draw
ings , in which :
[0005] FIG . 1 is a simplified schematic of an example of
a subscription life - cycle management system ;
[0006] FIG . 2 is an example of business logic represented
as a flow diagram (FIG . 2A) and as a finite state chart (FIG .
2B) ;
[0007] FIG . 3 is an example of a state transition table of
a finite state machine ;
[0008] FIG . 4 is a flowchart of an example of a subscrip
tion life - cycle management method ;
[0009] FIG . 5 is a flowchart of a further example of a
subscription life - cycle management method ; and
[0010] FIG . 6 is a simplified schematic of an example of
a machine - readable medium and a processor .

package to which the subscriber is subscribed . In other
examples , entities of a business model may include an
account of the subscriber , a monetary balance (e . g . a balance
in a subscriber ' s account) , a quota (e . g . an allowance of
available data , or an allowance of telephone call minutes) or
a counter (e . g . to determine an accumulated usage of data ,
call minutes , money , and the like , in a given duration) . Each
entity may have its own specific life - cycle according to the
particular business model with which they are associated .
[0012] Life - cycles of various entities may be exemplified
using the following scenarios . In a first example , in which
the entity is a subscriber to a service , different levels of
subscription may entitle the subscriber to different grades of
service . For example , a top - level (e . g . VIP) subscriber may
be provided with a grace period in which to top - up his or her
account (e . g . a monetary balance) if the balance of the
account is used up . A regular , lower - level subscriber may , on
the other hand , be blocked if the balance on their account is
used up . In a second example , in which the entity is a
product or package provided by the company to its custom
ers , different products and packages may have different
life - cycles . For example , it may be possible to purchase a
particular product without the product being activated
immediately (e . g . the product may not immediately be
available for use by the customer) . A product may be
activated upon its first use by the subscriber , and the product
may automatically be renewed according to a defined
renewal arrangement (e . g . a payment may be taken on a
monthly basis to enable the product to remain available to
the customer) . Other products , however , may be activated
upon purchase . In a third example , in which the entity is a
monetary balance of a customer ' s account , an account may
behave differently depending on the nature of the monetary
balance . For example , a monetary balance may have a
specific expiration time (i . e . the balance is set to zero if it is
not used by a particular date or within a defined period) . In
some cases , increasing the monetary balance may extend the
expiration time by a defined extended duration which
depends on the amount by which the monetary balance was
increased . In some examples , a life - cycle may involve
multiple entities . For example , increasing a monetary bal
ance in a subscriber ' s account may keep a subscription live
and , if the increase in the monetary balance is above a
threshold level , may result in an additional gift or bonus
relevant to a different entity (e . g . quota) , such as a bonus
data allowance for a month .
[0013] Complex business logic may be used to define the
behaviour of each entity . In some examples , the behaviour of
one entity may depend on the behaviour of another entity ,
thereby increasing the complexity of the business logic . For
example , a subscription may be activated immediately (e . g .
upon purchase) , it may be activated upon first usage , or it
may be activated at some defined time in the future . The
business logic for the subscription entity is therefore
intended to cover all possibilities within the business . In
addition , if a monetary balance associated with the subscrip
tion were to expire , then the subscription may change ,
resulting in a further possibility to be included in the
business logic .
[0014] According to examples disclosed herein , manage
ment of subscription life - cycles is enabled by representing
the business logic using a finite state machine . A finite state
machine (FSM) is a model which can be used to represent
a finite number of states and how a change or transition may

DETAILED DESCRIPTION
[0011] A subscription - based business model may include a
plurality of entities . In one example , a telecommunications
service provision business (hereinafter “ telecoms com
pany ”) may provide telecommunications services to its
customers . For example , the telecoms company may provide
a service by which a customer is able to make telephone
calls from his or her mobile device . The telecoms company
may , in some examples , provide the mobile device to the
customer as part of its service . The various services may be
provided to a customer if the customer has paid a subscrip
tion fee and , similarly , services may be taken away from the
customer or restricted (e . g . the service provision may be
terminated) if the customer fails to pay the subscription fee .
In such an example , the “ entities ” of the business model may
include subscribers , devices (e . g . the mobile devices pro -
vided to the subscribers) , and the type of subscription

US 2019 / 0266665 A1 Aug . 29 , 2019

be made between those states in response to an external
input , referred to as an event . By representing complex
business logic using a finite state machine , the business logic
may be simplified and may be made easier to understand .
[0015] FIG . 1 is a simplified schematic of a system 100 for
managing subscription life - cycles . The system 100 may be
referred to as a subscription life - cycle management system
or a subscriber life - cycle management system . The system
100 comprises a memory 102 , an execution engine 104 and
a modification engine 106 . The execution engine 104 and the
modification engine 106 may , in some examples , form part
of a single engine , and either or both may comprise a
processor (or multiple processors) to perform functions of
the execution engine and / or the modification engine .
[0016] The memory 102 may store , or may be capable of
storing , a set of definitions that define a first state of a finite
state machine representing transition logic of a subscription
life - cycle , a second state of the finite state machine , and an
event capable of causing a transition between the first state
and the second state . The memory 102 may also store , or
may be capable of storing , a set of rules that define possible
transitions between the first state and the second state . In
some examples , the finite state machine may include addi
tional states , such as a third state , a fourth state , a fifth state ,
and so on , and rules that define possible transitions between
any of the states .
[0017] The execution engine 104 is to execute the transi
tion between the first state and the second state in response
to a determination that the event has taken place . Imple
mentations of the execution engine 104 include electronic
circuitry (i . e . , hardware) such as an integrated circuit , pro
grammable circuit , application integrated circuit (ASIC) ,
controller , processor , semiconductor , processing resource ,
chipset , or other type of hardware component capable of
executing the transition between the first state and the
second state in response to a determination that the event has
taken place . Alternatively , the execution engine 104 may
include instructions (e . g . , stored on a machine - readable
medium) that , when executed by a hardware component
(e . g . , controller and / or processor) causes the transition
between the first state and the second state to be executed in
response to a determination that the event has taken place ,
accordingly . The modification engine 106 is to receive an
instruction to modify the set of definitions or the set of rules .
The modification engine 106 is further to modify the tran
sition logic based on the received instruction . Implementa
tions of the modification engine 106 include electronic
circuitry (i . e . , hardware) such an integrated circuit , program
mable circuit , application integrated circuit (ASIC) , control
ler , processor , semiconductor , processing resource , chipset ,
or other type of hardware component capable of receiving an
instruction to modify the set of definitions or the set of rules ,
and modifying the transition logic based on the received
instruction . Alternatively , the modification engine 106 may
include instructions (e . g . , stored on a machine - readable
medium) that , when executed by a hardware component
(e . g . , controller and / or processor) causes an instruction to
modify the set of definitions or the set of rules to be received ,
and modifies the transition logic based on the received
instruction , accordingly .
[0018] The states of the finite state machine may corre
spond to states relevant to a particular entity . Thus , in some
examples , each entity may have an associated finite state
machine or multiple associated finite state machines .

Examples of such states will be described with reference to
FIG . 2 , which shows an example of business logic for a
subscription - based telecoms company (in FIG . 2A) , and an
example of part of the business logic represented as a finite
state machine (in FIG . 2B) .
[0019] In FIG . 2A , first business logic portion 202 , second
business logic portion 204 and third business logic portion
206 represent three parts of a subscription life - cycle logic
representation . In this example , the first business logic
portion 202 relates to provisioning a purchased product , and
includes , at blocks 202a and 202b , creating two different
types of subscription . At block 202a , a subscription is
created having a “ pre - active ” state , and at block 202b , a
subscription is created having an " active ” state . Thus , " pre
active ” and “ active ” are to possible states associated with the
" subscription " entity .
[0020] FIG . 2B includes a representation 208 of a finite
state machine representing part of the business logic 202 ,
204 , 206 . Specifically , the representation 208 is a state chart
for the “ subscription " entity of the business logic . The state
chart 208 includes all possible states 210 to 218 associated
with the entity (i . e . subscription) , and all possible transitions
220 to 232 between the states . In this example , the possible
states associated with the subscription entity include “ none ”
210 , “ pre - active ” 212 , " active ” 214 , “ expired ” 216 and
“ closed ” 218 . Various inputs , or events , may result in
transitions between the various states . According to the
example of FIG . 2B , purchasing a product may lead to a
subscription being created , the subscription requiring acti
vation before it can be used . Such an event may result in a
transition 220 from the " none " state 210 to the pre - active "
state 212 . In other examples , purchasing a product may lead
to the creation of a subscription which is activated imme
diately . Such an event may result in a transition 222 from the
" none " state 210 to the “ active ” state 214 . A subscription in
the “ pre - active ” state 212 may be activated by some event ,
such as a network event , resulting in a transition 224 from
the “ pre - active ” state 212 to the “ active ” state 214 . While a
subscription is in the " active " state 214 , the subscription
may be renewed or expire , for example after a defined period
of time has elapsed . If a subscription is renewed , then the
subscription a transition from the “ active ” state 214 back to
itself via a transition 226 . If a subscription is the “ pre - active ”
state 212 is not activated within a defined period of time ,
then the subscription may undergo a transition 228 from the
" pre - active ” state 212 to the " expired ” state 216 . Similarly ,
a subscription in the " active ” state 214 may undergo a
transition 230 to the " expired ” state 216 if subscription is not
renewed within a defined period of time . If a subscription in
the " expired ” state 216 remains in that state for a defined
period of time , then it may undergo a transition 232 to a
" closed ” state 218 .
[0021] Thus , a state transition , such as the transitions 220
to 232 in FIG . 2B may represent the logic which is executed
when an event is triggered in respect of a particular state .
The set of rules that define the possible transitions between
states (e . g . between the first state and the second state) may ,
in some examples , comprise a rule chain , defining multiple
transitions (e . g . between multiple states) which may take
place upon detection of a particular event .
[0022] When it is determined that an event (i . e . an event
defined in the set of definitions) has taken place which is
capable of causing a transition between the first state and the
second state , the execution engine 104 executes the transi

US 2019 / 0266665 A1 Aug . 29 , 2019

tion from the first state to the second state , in accordance
with the set of rules . In some examples , the execution engine
104 may execute multiple transitions in response to a
determination that the event has taken place . For example ,
an entity may transition between the first state and a third
state , via the second state . In another example , performing
the event may cause one entity to transition between the first
state and the second state , and another entity to transition
between a third state and a fourth state .
[0023] The determination that an event has taken place
may be made , for example , by a processing apparatus in the
system 100 , or associated with the system . The processing
apparatus performing the determination may comprise the
execution engine 104 .
[0024] It may be intended that the business logic be
modified , for example to include a new state or to incorpo
rate an additional transition between various states . Making
changes to the business logic 202 , 204 , 206 may be particu
larly challenging due to the complex nature of the business
logic when presented in that manner . For example , the
telecoms company may wish to add into the business logic
an additional “ blocked ” state , which applies to a customer
who has failed to pay a subscription fee . Modifying the
business logic 202 , 204 , 206 is not a straightforward task as
the introduction of a new state may involve consequential
changes being made in respect of multiple entities . More
over , adding a new state by modifying the business logic
202 , 204 , 206 may involve consequential changes being
made to other existing transitions within the business logic .
Thus , the modification engine 106 is capable of modifying
the transition logic of the finite state machine based on a
received instruction to modify a definition in the set defi
nitions and / or a rule in the set of rules .
[0025] In some examples , an instruction to modify a
definition or a rule may be received by an operator , such as
an operator of the subscription life - cycle management sys
tem 100 . For example , the operator may input the modifi
cation instruction using a user interface presented to them
via a computing device . In other examples , the instruction to
modify a definition or a rule may be received in an auto
mated manner . For example , an instruction may be gener
ated by an associated processing device in response to an
event or trigger , and the instruction may be delivered to the
modification engine automatically .
[0026] The business logic may , in some examples , be
represented in the form of a state transition table . A state
transition table may show the state into which a finite state
machine will move or transition , based on the current state
of the finite state machine and other inputs or events . In
some examples , the execution engine 104 generate , or be
capable of generating , based on the stored definitions and
rules , a state transition table that defines relationships
between the states , the state transitions and the event .
[0027] FIG . 3 is an example of a state transition table 300
corresponding to the state chart shown in FIG . 2B . In the
state transition table 300 , the states 210 to 218 are presented
at the tops of columns along the top of the table , and the
possible transitions 220 to 232 between the states are
presented down the left - hand side of the table . In this
example , the transitions 220 and 222 are grouped together in
a first row , labelled “ Purchased product ” , the transition 224
is presented in the second row , labelled “ Network event " ,
and the transitions 226 , 228 , 230 and 232 are grouped
together in a third row , labelled “ Timer " . The possible

transitions relevant to each row in the table are presented in
row / column intersection cells 302 to 310 . For example , the
transition 220 , whereby purchasing a particular product may
result in a transition from the “ none ” state 210 to the
" pre - active ” state 212 , is presented as an alternative in the
cell 302 along with the transition 222 , whereby purchasing
a particular product may result in a transition from the
" none " state 210 to the “ active ” state 214 .
0028] The row / column intersection cells 302 to 310 may

also include additional information regarding the business
logic , which may not be presented in the state chart , such as
the state chart of FIG . 2B . For example , the row / column
intersection cells may include information regarding a rule
or a rule chain relevant to the corresponding state , such that
a viewer of the state transition table 300 may be provided
with a better understanding of the business logic presented
therein . In the example state transition table 300 shown in
FIG . 3 , the row / column intersection cell 302 includes details
of the general type of transition (i . e . create subscription in
response to a product being purchased) , and the two possible
transitions which might take place (i . e . pre - active or active) ,
depending on the type of product purchased . The intersec
tion 302 also includes four rules , namely “ Get product info ” ,
“ Create subscription " , " Calculate next time based on pre
active or active immediate ” and “ Register next time (latest
activate time) ” . These rules may be considered additional
information which may aid a viewer of the state transition
table 300 in better understanding the business logic .
[0029] Thus , in some examples , the state transition table
may be presented to an operator , for example via a user
interface and / or a display , so that the operator is able to see
the additional information relating to the business logic .
10030] In some examples , the execution engine 104 may
comprise a timing engine to effect the transition between the
first state and the second state after expiry of a defined
duration or at a defined time . The timing engine may , for
example , comprise a timing mechanism . The timing engine
may , in some examples , determine when a defined duration
of time has elapsed after a particular event . In some
examples , a state transition may take place after a defined
duration has passed or expired . For example , a timer may
begin upon detection of a particular event , such as the first
use of a product by a subscriber . The execution engine 104
may perform a particular action , such as terminating a
service , upon expiry of the defined duration . In an example ,
the execution engine 104 may use the timing engine , or
timer , to determine when a state transition is to take place .
For example , a subscriber may subscribe to a particular
service on a month - by - month basis , and the timing engine
may cause a transitions from an " active ” state (214 in FIG .
2B) to an " expired ” state (216 in FIG . 2B) after a month has
passed from the initiation of the service . In other examples ,
the timing engine may measure absolute time , such that the
execution engine 104 may perform a particular action at a
particular defined time . A state transition may take place on
a particular date or at a particular time , for example . In some
examples , a subscription service may expire (i . e . a transition
may occur from an " active ” state (214 in FIG . 2B) to an
“ expired ” state (216 in FIG . 2B) at midnight on the last day
of a particular month .
[0031] The transitions 226 , 228 , 230 and 232 may , in some
examples , be effected using the timing engine of the execu
tion engine 104 . In some examples , the set of rules stored in

US 2019 / 0266665 A1 Aug . 29 , 2019

the memory 102 may include rules based on timings mea
sured or determined using the timing engine .
[0032] As noted above , subscription - based business
model may include a plurality of entities , and business logic
for each entity may be represented using a finite state
machine , or multiple finite state machines . In some
examples , the memory 102 may store , or be capable of
storing , a set of entity definitions that define entities having
subscription life - cycles . The memory 102 may store , or be
capable of storing , a set of entity rules that define the
subscription life - cycle of each entity . If it is intended that a
portion of the business logic be modified or adapted , then a
state transition chart and / or a state transition table for each
finite state machine may be generated and / or presented to an
operator so that the operator can observe the business logic
for each entity . By storing the entity definitions and entity
rules in the memory 102 , any consequential changes in a
second entity resulting from a change made to a first entity
may also be effected . In some examples , the execution
engine 104 may be to execute the transition between the first
state and the second state for an entity based on the entity
rules for that entity . Thus , the transitions may differ for each
entity .
10033] Representing the business logic as a finite state
machine , or as a plurality of finite state machines , and
presenting each finite state machine in the form of a state
transition chart and / or a state transition table may enable
changes to be made to the business logic in a user - friendly
way . According to an example , an operator who intends to
add a new “ blocked ” state into the business logic may take
the following actions . First , the operator may view the state
transition table for the relevant finite state machine intended
to be updated . Then , the operator may add the new state (i . e .
“ blocked ”) , along with an event or a plurality of events that
would cause a transition from other states to the “ blocked ”
state and / or from the " blocked ” state to other states . The
operator may then add rules , such as transition rules or rule
chains defining the possible transitions . For example , the
transitions may be added into the row / column intersection
cells (302 to 310 in FIG . 3) .
[0034] Once the intended changes or additions have been
made in the state transition table , the modification engine
106 may generate , or be capable of generating , based on the
modified transition logic , a state transition chart representing
the modified transition logic . In other words , once the
operator has updated the state transition table , a correspond
ing state transition chart may be generated . The operator
may view the modified state chart corresponding to the
modified state transition table to view the updated business /
transition logic and to verify that any changes made to the
states , events and / or transitions are as intended .
[0035] As discussed above , the state chart may be pre
sented in the form as shown in FIG . 2B , with the various
states and the possible transitions between states . In some
examples , the modified state chart may be generated or built
one part at a time (e . g . first the states , then the events , then
the transitions , and so on) so that an operator can see clearly
the effect of adding the new state or modifying the logic . In
some examples , the state chart may be generated by popu
lating the chart with all of the states , then iteratively adding
each event , then , for each event , iterating the corresponding
transition , then adding lines connecting the states , based on
the transitions . In some examples , additional information
may be added , based on the additional information included

in the state transition table (e . g . in the row / column intersec
tion cells 302 to 310) . In this way , all of the relevant
information from the state transition table may be displayed
to an operator in the state chart .
[0036] In some examples , the additional information from
the state transition table may be displayed in the state chart
in response to a particular action taken by an operator . For
example , moving or hovering a cursor over a particular
transition presented in the state chart , or selecting a particu
lar transition (e . g . by clicking a mouse button) may cause the
additional information to be displayed (e . g . temporarily) , so
that the operator can view the additional information at a
particular time . In this way , the state chart may not perma
nently be populated with all of the available information
and , therefore , an operator may not be presented with too
much information , which could otherwise cause confusion
or make the state chart difficult to interpret .
[0037] In examples where the business logic is represented
using a plurality of finite state machines , the modification
engine 106 may modify the transition logic corresponding to
a first finite state machine , and may also modify transition
logic corresponding to other finite state machines of the
plurality of finite state machines . In some examples , the
modification engine 106 may comprise a sub - modification
engine to effect a modification to transition logic corre
sponding to a second finite state machine based on the
modification made to the transition logic corresponding to a
first finite state machine . Thus , if a modification (e . g . an
addition of a state) made to the transition logic correspond
ing to a first finite state machine as a consequential effect on
transition logic corresponding to a second finite state
machine (e . g . a finite state machine of a different entity) ,
then the sub - modification engine may make the correspond
ing modification to the second finite state machine logic , or
the logic of any other finite state machines which may be
affected .
[0038] According to examples disclosed herein , a sub
scription life - cycle management is disclosed . FIG . 4 is a
flowchart of an example of a method 400 . The method 400
may , for example , comprise a subscription life - cycle man
agement method . The method 400 comprises , at block 402 ,
storing , in a memory , a set of definitions and a set of rules .
The set of definitions define a first state of a finite state
machine representing transition logic of a subscription life
cycle , a second state of the finite state machine , and an event
capable of causing a state transition between the first state
and the second state . The set of rules define possible state
transitions between the first state and the second state . At
block 404 , the method 400 comprises receiving an instruc
tion to adjust the set of definitions or the set of rules . As
explained in the above examples , the adjustment instruction
may be received manually (e . g . as an input by an operator)
or automatically (e . g . as an input triggered by some action
or event) . The method 400 comprises , at block 406 , adjust
ing the transition logic based on the received adjustment
instruction .
0039] Thus , in response to receiving an instruction to
adjust or modify a definition or a rule defining states , events
or transitions of a finite state machine , the method may make
a corresponding adjustment to the transition logic repre
sented by the finite state machine . In this way , an adjustment
to the transition logic may be made by an operator even
though the operator may not fully understand or comprehend
the complex business logic .

US 2019 / 0266665 A1 Aug . 29 , 2019

[0040] FIG . 5 is a flowchart of a further example of a
subscription life - cycle management method 500 . The
method 500 may include blocks of the method 400 . The
method 500 may comprise , at block 502 , generating , based
on the stored definitions and rules , a state transition table
that defines relationships between the states , the state tran
sitions and the event . In some examples , the state transition
table may be generated after the set of definitions and the set
of rules have been stored in the memory (block 402) , and
before an adjustment instruction has been received (block
404) . The state transition table , such as the state transition
table 300 shown in FIG . 3 , generated at block 502 may be
presented to an operator , for example via a user interface .
Such a state transition table may include details of the first
and second states of the finite state machine , details of the
event or events capable of causing a state transition , and
details of the possible state transitions that may occur . In
some examples , the state transition table may further include
additional information , such as the information shown in the
row / column intersection cells 302 to 310 of FIG . 3 .
[0041] At block 504 , the method 500 may comprise gen
erating , for presentation to an operator , a representation of
the adjusted transition logic . The representation of the
adjusted transition logic may be generated after the transi
tion logic has been adjusted based on the received adjust
ment instruction (block 406) . In some examples , the repre
sentation of the adjusted transition logic may comprise a
state transition chart , or state chart . Generating the repre
sentation (block 504) may , in some examples , comprise
constructing a representation including the states , the state
transitions , the events and the relationships between the
states , the state transitions and the events .
[0042] The method 500 may comprise , at block 506 ,
delivering the state transition table and / or the representation
of the adjusted transition logic for presentation to an opera
tor . By presenting the state transition table and / or the state
transition chart to an operator , the operator may be able to
understand the business logic represented by the finite state
machine , and may not be overwhelmed with complex details
in the business logic .
10043) According to examples described herein , a
machine - readable medium is disclosed . FIG . 6 is a simpli
fied schematic of an example of a machine - readable medium
602 and a processor 604 . The machine - readable medium 602
comprises instructions which , when executed by a proces
sor , such as the processor 604 , cause the processor to
perform the methods disclosed herein . In some examples ,
the machine - readable medium 602 may comprise instruc
tions which , when executed by the processor 604 , cause the
processor to store , in a memory , a set of definitions that
define a first state of a finite state machine representing
transition logic of a subscription life - cycle , a second state of
the finite state machine , and an event capable of causing a
state transition between the first state and the second state ;
and a set of rules that define possible state transitions
between the first state and the second state . In some
examples , the storing may be performed by executing stor
age instructions 606 . The machine - readable medium 602
may comprise instructions which , when executed by the
processor 604 , cause the processor to receive a command to
edit , add to or delete from the set of definitions or the set of
rules . In some examples , receiving a command may be
performed by executing command receipt instructions 608 .
The machine - readable medium 602 may comprise instruc

tions which , when executed by the processor 604 , cause the
processor to modify the transition logic based on the
received command . In some examples , modifying the tran
sition logic may be performed by executing transition logic
modification instructions 610 .
[0044] In some examples , the machine - readable medium
602 may comprise instructions (e . g . state transition table
generation instructions) which , when executed by the pro
cessor 604 , cause the processor to generate , based on the
stored definitions and rules , a state transition table that
defines relationships between the states , the state transitions
and the event . In some examples , instructions (e . g . state
transition chart generation instructions) , when executed by
the processor 604 , may cause the processor to generate ,
based on the modified transition logic , a state transition chart
representing the modified transition logic .
[0045] In some examples , the machine - readable medium
602 may comprise instructions (e . g . state transition table
delivery instructions) which , when executed by the proces
sor 604 , cause the processor to deliver the state transition
table for presentation to an operator .
10046] The machine - readable medium 602 may , in some
examples , comprise instructions (e . g . state transition chart
construction instructions) which , when executed by the
processor 604 , cause the processor to construct the state
transition chart by including in the chart the states , the state
transitions , the events and the relationships between the
states , the state transitions and the events .
10047] In some examples , the machine - readable medium
602 may comprise instructions (e . g . state transition chart
delivery instructions) which , when executed by the proces
sor 604 , cause the processor to deliver the state transition
chart for presentation to an operator .
[0048] The machine - readable medium 602 may , in some
examples , comprise instructions (e . g . modification instruc
tions) which , when executed by the processor 604 , cause the
processor to effect a modification to transition logic corre
sponding to a second finite state machine based on the
modification made to the transition logic corresponding to a
first finite state machine .
(0049] Examples in the present disclosure can be provided
as methods , systems or machine readable instructions , such
as any combination of software , hardware , firmware or the
like . Such machine readable instructions may be included on
a computer readable storage medium (including but is not
limited to disc storage , CD - ROM , optical storage , etc .)
having computer readable program codes therein or thereon .
[0050] The present disclosure is described with reference
to flow charts and / or block diagrams of the method , devices
and systems according to examples of the present disclosure .
Although the flow diagrams described above show a specific
order of execution , the order of execution may differ from
that which is depicted . Blocks described in relation to one
flow chart may be combined with those of another flow
chart . It shall be understood that each flow and / or block in
the flow charts and / or block diagrams , as well as combina
tions of the flows and / or diagrams in the flow charts and / or
block diagrams can be realized by machine readable instruc
tions .
[0051] The machine readable instructions may , for
example , be executed by a general purpose computer , a
special purpose computer , an embedded processor or pro
cessors of other programmable data processing devices to
realize the functions described in the description and dia

US 2019 / 0266665 A1 Aug . 29 , 2019

grams . In particular , a processor or processing apparatus
may execute the machine readable instructions . Thus func
tional modules of the apparatus and devices may be imple
mented by a processor executing machine readable instruc
tions stored in a memory , or a processor operating in
accordance with instructions embedded in logic circuitry .
The term “ processor ’ is to be interpreted broadly to include
a CPU , processing unit , ASIC , logic unit , or programmable
gate array etc . The methods and functional modules may all
be performed by a single processor or divided amongst
several processors .
[0052] Such machine readable instructions may also be
stored in a computer readable storage that can guide the
computer or other programmable data processing devices to
operate in a specific mode .
[0053] Such machine readable instructions may also be
loaded onto a computer or other programmable data pro
cessing devices , so that the computer or other programmable
data processing devices perform a series of operations to
produce computer - implemented processing , thus the instruc
tions executed on the computer or other programmable
devices realize functions specified by flow (s) in the flow
charts and / or block (s) in the block diagrams .
[0054] Further , the teachings herein may be implemented
in the form of a computer software product , the computer
software product being stored in a storage medium and
comprising a plurality of instructions for making a computer
device implement the methods recited in the examples of the
present disclosure .
[0055] While the method , apparatus and related aspects
have been described with reference to certain examples ,
various modifications , changes , omissions , and substitutions
can be made without departing from the spirit of the present
disclosure . It is intended , therefore , that the method , appa
ratus and related aspects be limited only by the scope of the
following claims and their equivalents . It should be noted
that the above - mentioned examples illustrate rather than
limit what is described herein , and that those skilled in the
art will be able to design many alternative implementations
without departing from the scope of the appended claims .
Features described in relation to one example may be
combined with features of another example .
[0056] The word " comprising ” does not exclude the pres
ence of elements other than those listed in a claim , “ a ” or
“ an ” does not exclude a plurality , and a single processor or
other unit may fulfil the functions of several units recited in
the claims .
00571 . The features of any dependent claim may be com

bined with the features of any of the independent claims or
other dependent claims .

1 . A subscription life - cycle management system compris

receive an instruction to modify the set of definitions or
the set of rules ; and

modify the transition logic based on the received
instruction .

2 . A system according to claim 1 , wherein the modifica
tion engine is to :

generate , based on the stored definitions and rules , a state
transition table that defines relationships between the
states , the state transitions and the event .

3 . A system according to claim 1 , wherein the execution
engine comprises a timing engine to effect the transition
between the first state and the second state after expiry of a
defined duration or at a defined time .

4 . A system according to claim 1 , wherein the memory is
further to store :

a set of entity definitions that define entities having
subscription life - cycles ; and

a set of entity rules that define the subscription life - cycle
of each entity .

5 . A system according to claim 4 , wherein the execution
engine is to execute the transition between the first state and
the second state for an entity based on the entity rules for that
entity .

6 . A system according to claim 1 , wherein the modifica
tion engine is to :

generate , based on the modified transition logic , a state
transition chart representing the modified transition
logic .

7 . A system according to claim 1 , wherein the modifica
tion engine comprises a sub - modification engine to effect a
modification to transition logic corresponding to a second
finite state machine based on the modification made to the
transition logic corresponding to a first finite state machine .

8 . A subscription life - cycle management method compris
ing :

storing , in a memory :
a set of definitions that define a first state of a finite state
machine representing transition logic of a subscrip
tion life - cycle , a second state of the finite state
machine , and an event capable of causing a state
transition between the first state and the second state ;
and

a set of rules that define possible state transitions
between the first state and the second state ;

receiving an instruction to adjust the set of definitions or
the set of rules ; and

adjusting the transition logic based on the received adjust
ment instruction .

9 . A method according to claim 8 , further comprising :
generating , based on the stored definitions and rules , a

state transition table that defines relationships between
the states , the state transitions and the event .

10 . A method according to claim 8 , further comprising :
generating , for presentation to an operator , a representa

tion of the adjusted transition logic .
11 . A method according to claim 10 , wherein the repre

sentation of the adjusted transition logic comprises a state
transition chart .

12 . A method according to claim 11 , wherein generating
the representation comprises constructing a representation
including the states , the state transitions , the events and the
relationships between the states , the state transitions and the
events .

ing :
a memory to store :

a set of definitions that define a first state of a finite state
machine representing transition logic of a subscrip
tion life - cycle , a second state of the finite state
machine , and an event capable of causing a transition
between the first state and the second state ; and

a set of rules that define possible transitions between
the first state and the second state ;

an execution engine to execute the transition between the
first state and the second state in response to a deter
mination that the event has taken place ; and

a modification engine to :

US 2019 / 0266665 A1 Aug . 29 , 2019

13 . A method according to claim 9 , further comprising :
delivering the state transition table and / or a representation

of the adjusted transition logic for presentation to an
operator .

14 . A machine - readable medium comprising instructions
which , when executed by a processor , cause the processor
to :

store , in a memory :
a set of definitions that define a first state of a finite state
machine representing transition logic of a subscrip -
tion life - cycle , a second state of the finite state
machine , and an event capable of causing a state
transition between the first state and the second state ;
and

deliver the state transition table for presentation to an
operator .

17 . A machine - readable medium according to claim 14 ,
wherein the instructions , when executed by a processor ,
cause the processor to :

generate , based on the modified transition logic , a state
transition chart representing the modified transition
logic .

18 . A machine - readable medium according to claim 17 ,
wherein the instructions , when executed by a processor ,
cause the processor to :

construct the state transition chart by including in the
chart the states , the state transitions , the events and the
relationships between the states , the state transitions
and the events .

19 . A machine - readable medium according to claim 17 ,
wherein the instructions , when executed by a processor ,
cause the processor to :

deliver the state transition chart for presentation to an
operator .

20 . A machine - readable medium according to claim 14 ,
wherein the instructions , when executed by a processor ,
cause the processor to :

effect a modification to transition logic corresponding to
a second finite state machine based on the modification
made to the transition logic corresponding to a first
finite state machine .

a set of rules that define possible state transitions
between the first state and the second state ;

receive a command to edit , add to or delete from the set
of definitions or the set of rules ; and

modify the transition logic based on the received com
mand .

15 . A machine - readable medium according to claim 14 ,
wherein the instructions , when executed by a processor ,
cause the processor to :

generate , based on the stored definitions and rules , a state
transition table that defines relationships between the
states , the state transitions and the event .

16 . A machine - readable medium according to claim 15 ,
wherein the instructions , when executed by a processor ,
cause the processor to :

