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APPARATUS AND METHOD FOR 
INTELLIGENT MEMORY PAGE 

MANAGEMENT 

BACKGROUND 

[ 0001 ] Centralized ( e.g. , cloud ) or other data center appli 
cation software runtime environments demand fast execu 
tion of highly complex software processes . Developers of 
such application software programs are therefore constantly 
seeking ways to reduce the propagation and / or execution 
times of these processes . 

FIGURES 

[ 0002 ] FIG . 1 shows a large scale computing architecture ; 
[ 0003 ] FIG . 2 shows a system for determining a memory 
page location : 
[ 0004 ] FIG . 3 shows a neural network ; 
[ 0005 ] FIG . 4 shows a method for predicting future 
memory page active / idle states ; 
[ 0006 ] FIG . 5 shows a system ; 
[ 0007 ] FIG . 6 shows a data center ; 
[ 0008 ] FIG . 7 shows a rack . 

DETAILED DESCRIPTION 

[ 0009 ] FIG . 1 shows a typical large scale computing ( e.g. , 
data center ) architecture . As observed in FIG . 1 , a plurality 
of multi - core processors 101 are communicatively coupled 
to a memory pool 102. Each processor 101 includes a 
number of central processing unit ( CPU ) general pur ose 
processing cores 103 ( hereinafter “ CPU cores ” or simply 
" cores ” ) . For illustrative ease only one of the CPU cores is 
labeled in FIG . 1. The CPU cores typically execute multiple 
respective virtual machines 104. Operating system instances 
typically execute on the VMs and application software 105 
typically executes on the operating system instances . 
[ 0010 ] The processors 101 , or other semiconductor chips 
( not shown in FIG . 1 ) can include accelerators and / or 
specialized processors such as graphics processors , neural 
network engines ( e.g. , for artificial intelligence functions 
such as machine learning and inference execution ) , image 
processors , etc. The CPU cores 103 and accelerators typi 
cally operate out of memory . Here , both the cores 103 and 
accelerators typically operate on large amounts of data 
which are stored in memory . The CPU cores 103 and at least 
some of the accelerators also execute some form of program 
code which is also stored in memory . 
[ 0011 ] There are two kinds of memory observed in FIG . 1 : 
local memory 106 and pooled memory 102 ( for illustrative 
ease only one of the local memories is labeled in FIG . 1 ) . 
Local memory 106 is memory that is physically closer to a 
CPU core or accelerator than the memory pool 102. Typi 
cally , local memory 106 is integrated on or directly coupled 
to the semiconductor logic chip 101 that a core / accelerator 
is integrated on . Local memory 106 is typically packaged 
into a memory module and coupled to the core’s / accelera 
tor's logic chip 101 by a bus and / or point to point link 107 . 
Examples of such memory modules include a dual in - line 
memory module ( DIMM ) and a stacked memory module 
( e.g. , a High Bandwidth Memory ( HBM ) memory stack ) . 
[ 0012 ] Pooled memory 102 , by contrast , is memory that is 
available to the cores and accelerators but is more remote 
( e.g. , is reachable over a local , campus or metropolitan ( or 
larger ) area network 108 ) . The presence of the network 108 

or other remote connection introduces propagation delay 
between the cores / accelerators and the memory pool 102 
that exceeds that of the cores ' / accelerators ' respective local 
memory 106. As such , from the perspective of the cores / 
accelerators , local memory 106 is “ faster ” than pooled 
memory 102 . 
[ 0013 ] The data and / or program code of a particular 
software program 105 that executes on a processing core or 
accelerator is typically organized into “ pages ” that are stored 
in memory ( whether local or pooled ) . Each page keeps the 
data / code for a continuous range of memory addresses . 
Certain addresses across a program's entire range of 
memory space correspond to page boundaries that delineate 
which of the program's addresses correspond to which of the 
program's pages . 
[ 0014 ] For any particular program , typically , certain ones 
of the program's pages are more frequently accessed than 
others of the program’s pages . As such , ideally , the pages 
that are more frequently accessed are kept in local memory 
106 whereas the pages that are less frequently accessed are 
kept in pooled memory 102. By so doing , the program 
observes faster memory responses for its more frequently 
accessed memory addresses and slower memory responses 
for its less frequently accessed memory addresses . 
[ 0015 ] FIG . 2 shows an architecture of a process flow 
( “ #flow ” ) 200 that can be executed by , or on behalf of , a 
software program to determine which of the program's 
pages should be placed in local memory 106 and which of 
the program's pages should be placed in pooled memory 
102. As observed in FIG . 2 the process 201 includes multiple 
stages which are described in detail below . 
[ 0016 ] A first stage , referred to as a page meta data stage 
201 , is responsible for managing statistical data on a soft 
ware program's pages . Here , meta data can be tracked for 
each memory page that is instantiated for the software 
program . Examples of such meta data include ( but are not 
limited to ) : 1 ) a timestamp of when the page was last 
accessed ; 2 ) a set of entries that list respective timestamps of 
the past N accesses of the page ; 3 ) how many times the page 
has been accessed in the past M seconds or minutes ; 4 ) how 
many times the page has been swapped between memory 
and non - volatile storage in the past R seconds or minutes ; 
etc. 
[ 0017 ] As described in more detail below , the meta data 
that is recorded for a software program's pages is further 
processed by the flow's following stages to determine which 
of the program's pages should be resident in local memory 
and which of the program's pages should be resident in 
pooled memory . However , in various embodiments , the page 
meta stage 201 is a more global function that supports other 
processes / functions than just the determination of page 
memory location . 
[ 0018 ] For example , keeping meta data that tracks how 
frequently a page is being moved between memory and 
non - volatile storage is more germane to the handling of the 
software program by the larger computer system that the 
program is executing upon rather than the memory . As such , 
in various embodiments , less than all of the meta data that 
is collected for a program’s pages by the meta data stage 201 
is useful to the flow 200 of FIG . 2 . 
[ 0019 ] A second stage , referred to as a data processing 
stage 202 , extracts the page meta data information that is 
useful to the flow 200 of FIG . 2 , processes it , and then 
organizes the results of the processing into a format that the 
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flow 200 of FIG . 2 accepts as input information . In an 
embodiment , the processing entails making a decision on 
each page that the data processing stage processes the meta 
data of as to whether the page is “ active ” or whether the page 
is “ idle ” . Note that the active / idle characterization that is 
assigned to a page is different than the location of the page 
( at any moment of time , some active pages can be in pooled 
memory and some idle pages can be in local memory ) . 
[ 0020 ] Here , the meta data is processed by the data pro 
cessing stage 202 to produce some metric on how frequently 
the page is accessed ( which can recorded directly in the page 
meta data or determined from the page meta data ) . The 
metric is then compared to a threshold . If the metric crosses 
the threshold the page is deemed “ active ” . Contra - wise , if 
the metric does not cross the threshold , the page is deemed 
“ idle ” . A page's active / idle status can be referred to as the 
page's current state . Thus , the data processing stage 202 
processes page meta data to determine the state of a pro 
gram's pages . 
[ 0021 ] In various embodiments the data processing stage 
202 is continually determining the respective page state for 
a stream of pages that the meta data stage 201 is continually 
compiling the meta data for . That is , for example , in an 
embodiment , the page meta data stage 201 is continually 
monitoring the program’s memory requests and updating , on 
a page by page basis , the meta data for the pages that are 
called out by the program's memory request stream . The 
data processing stage 202 continually scrolls through the 
meta data information and determines , on a page by page 
basis , the page state of each page . 
[ 0022 ] Alternatively , the page meta data stage 201 keeps 
an ordered list of the most recent memory requests that 
identifies the respective page targeted by each request . The 
data processing stage 202 then scrolls through the ordered 
list and processes the meta data for each different page that 
is represented in the list . Processing the meta data in this 
manner focuses the attention of the data processing stage 
202 only on those pages whose meta data is actively being 
updated . 
[ 0023 ] Regardless , the data processing stage 202 emits a 
steady stream of states for the pages that the software 
program is directing memory requests to . 
[ 0024 ] The following history data tracker stage 203 
records the page state history over time of , e.g. , every page 
that has been instantiated for the software program or every 
page that is currently instantiated in memory for the soft 
ware program . As observed in FIG . 2 , in an embodiment , the 
page state history can be represented as a table 211 that 
identifies each page ( e.g. , by base memory address ) along a 
first ( vertical ) axis and identifies page state for each of a 
continuous stream of time increments in the past along a 
second ( horizontal ) axis . 
[ 0025 ] Here , the state of all pages being tracked are 
recorded in time increments tn - 1 , tn - 22 tn - 3 , etc. , where , e.g. , 
an equal amount of time is presumed to exist between each 
successive ( neighboring ) time increment . Here , tn - 1 corre 
sponds to the most recent recorded state history , tn - 2 corre 
sponds to the second most recent recorded state history , etc. 
That is , moving to the right along the horizontal axis of the 
table corresponds to moving backward in time . 
[ 0026 ] The amount of time between successive time incre 
ments can correspond , e.g. , to the amount of time it takes the 
data processing stage 202 to scroll through the meta data for 
all of the pages that the page meta data stage is keeping meta 

data for , or , a time window in which the software program 
issued a sequence memory requests , or a fixed amount of 
runtime of the software program according to some global 
clock , or , some other amount of time that accounts for any 
difference in state observed for a same page across sequen 
tial time increments . 
[ 0027 ] The page state history 211 is then fed to an artificial 
intelligence stage 204 and a data aggregator stage 205. The 
artificial intelligence stage analyzes the history record and 
predicts the state of the pages for time increments yet to 
come ( time increments in the future ) . 
[ 0028 ] In an embodiment , the artificial intelligence stage 
204 makes state predictions for the software program's 
pages for multiple , future time increments . For example , the 
artificial intelligence stage 204 makes an active / idle predic 
tion for each of the software program's pages for three future 
time increments , th + 1 , In + 2 , th + 3 , where tn + 1 is the next / 
immediate time increment in the future , th + 2 is the time 
increment that follows th + 1 in the future and tn + 3 is the time 
increment that follows tn + 2 in the future . 
[ 0029 ] As is known in the art , artificial intelligence func 
tions can be implemented with a neural network circuit 
( and / or software written to perform a neural network algo 
rithm ) . FIG . 3 depicts an exemplary neural network 300. As 
observed in FIG . 3 the inner layers of a neural network can 
largely be viewed as layers of neurons that each receive 
weighted outputs from the neurons of other ( e.g. , preceding ) 
layer ( s ) of neurons in a mesh - like interconnection structure 
between layers . 
[ 0030 ] The weight of the connection from the output of a 
particular preceding neuron to the input of another subse 
quent neuron is set according to the influence or effect that 
the preceding neuron is to have on the subsequent neuron 
( for ease of drawing only one neuron 301 and the weights of 
input connections are labeled ) . Here , the output value of the 
preceding neuron is multiplied by the weight of its connec 
tion to the subsequent neuron to determine the particular 
stimulus that the preceding neuron presents to the subse 
quent neuron . 
[ 0031 ] A neuron's total input stimulus corresponds to the 
combined stimulation of all of its weighted input connec 
tions . According to various implementations , the combined 
stimulation is calculated as a multi - dimensional ( e.g. , vec 
tor ) multiply accumulate operation . Here , output values 
from preceding neurons are multiplied by their respective 
weights to produce a set of products . The set of products are 
then accumulated ( added ) to generate the input stimulus to 
the receiving neuron . 
[ 0032 ] ( e.g. , non - linear or linear ) mathematical function 
is then performed using the stimulus as its input which 
represents the processing performed by the receiving neu 
ron . That is , the output of the mathematical function corre 
sponds to the output of the neuron which is subsequently 
multiplied by the respective weights of the neuron's output 
connections to its following neurons . The neurons of some 
extended neural - networks , referred to as “ thresholding ” 
neural networks , do not trigger execution of their math 
ematical function unless the neuron's total input stimulus 
exceeds some threshold . Although the particular exemplary 
neural network of FIG . 3 is a purely “ feed forward ” struc 
ture , other neural networks may exhibit some feedback , back 
propagation or changing weights based on feedback in their 
data flows . 

- 
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[ 0033 ] In various embodiments , referring back to FIG . 2 , 
the artificial intelligence stage 204 continually executes 
machine learning algorithms upon the past history informa 
tion 211 as the past history information 211 is continually 
updated . The machine learning ( also referred to as training ) , 
e.g. , determines updated weights for the mesh interconnec 
tions of a neural network . In an embodiment , the artificial 
intelligence stage 204 trains multiple neural networks ( one 
neural network for each different expanse of time into the 
future for which a prediction is made ) . 
[ 0034 ] After training , the artificial intelligence stage 204 
next applies input data to its neural networks to generate the 
desired page state predictions ( a process referred to as 
inferencing ) . For example , the artificial intelligence stage 
204 applies the most recent set of page states generated by 
the data processing stage 202 at time to before they are 
entered into the tn - 1 column of the history table 211 . 
[ 0035 ] FIG . 4 depicts a more detailed example of the 
above described training and inferencing processes . In the 
example of FIG . 3 , three different neural networks are 
implemented by the artificial intelligence engine 204 : 1 ) a 
first neural network ( predictor 1 ” ) that is used to make 
predictions for a next time increment tn + 2 ; 2 ) a second neural 
network ( “ predictor 2 ” ' ) that is used to make predictions for 
a second next time increment tn + 2 ; and , 3 ) a third neural 
network ( “ predictor 3 ” ) that is used to make predictions for 
a third next time increment tn + 3 . 
( 0036 ] Here , referring back to the exemplary history 
record 211 of FIG . 2 , with each next time increment , new 
page state information is entered in the tn - 1 column of the 
record 211 , all other information is pushed to the right by 
one column ( the information that previously existed in the 
tn - 1 column is pushed into the tn - 2 column , the information 
that previously existed in the tn - 2 column is pushed into the 
tn_3 column , etc. ) . Thus , the contents of the record 211 
change with each time increment . 
[ 0037 ] FIG . 4 shows a particular approach in which a next 
set of predictions ( inferences ) from all three neural networks 
is generated every thirty time increments . That is , a new set 
of predictions are generated after every thirty times the tn - 1 
column of the history table 211 is updated with new page 
state information . 
[ 0038 ] Here , as observed in FIG . 4 , the first neural net 
work is re - trained 401 from the history data 211 every time 
the history 211 is updated with new information . That is , the 
first neural network is re - trained 401 with the contents of the 
record 211 as it exists at every time increment after a new 
column of information has been inserted into the tn - 1 col 

All of these are considered to be sufficient training intervals . 
As such , all three neural networks concurrently provide a 
new prediction 404 every 30 time increments . In various 
embodiments , the predictions 404 provided by each of the 
neural networks take the form of a vector with a different 
location in the vector being reserved for each different page 
that was identified in the history table 211. The neural 
network uniquely generates a “ 1 ” or “ O ” in each vector 
location thereby articulating the prediction for each loca 
tion's particular page ( a “ 1 ” corresponds to a prediction that 
the page will be active and a “ O ” corresponds to a prediction 
that the page will be idle ) . 
[ 0041 ] Notably , the different training schemes 401 , 402 , 
403 for the neural networks correspond to the different 
distances into the future that the different neural networks 
respectively make predictions for . Specifically , because the 
first neural network is expected to predict a page's state in 
the immediately next time increment , the first neural net 
work is trained 401 to observe page state changes across 
successive time increments . By contrast , because the second 
neural network is expected to predict a page's state in the 
second next time increment , the second neural network is 
trained 402 to observe page state changes every other time 
increment . Finally , because the third neural network is 
expected to predict a page's state in the third next time 
increment , the third neural network is trained to observe 
page state changes every third time increment . 
[ 0042 ] In the particular training example of FIG . 4 , a total 
time expanse of thirty time increments is used to issue all 
three predictions 404. Here , training over an extended 
expanse of time increments not only helps the machine 
learning processes 401 , 402 , 403 confirm true patterns in the 
page states , but also , helps diminish thrashing of pages 
between the local and pooled memory locations . Here , if a 
page is first deemed to be properly placed in the local 
memory and then shortly after deemed to be properly placed 
in the pooled memory , and then the reverse , and then the 
entire process repeated , the page would continually be 
moving back and forth between the local and pooled memo 
ries rather than being kept in one of the locations . 
[ 0043 ] It is pertinent to point out that other embodiments 
may choose to make fewer predictions into the future ( e.g. , 
just ty + 1 and th + 2 ) and / or train over longer or shorter time 
increment expanses ( e.g. , fewer or more than thirty ) . As 
such , the teachings herein should not be limited to the 
specific details of the example of FIG . 4 . 
[ 0044 ] Referring back to FIG . 2 , the data aggregator and 
classifier stage 205 accepts both the predictions from the 
artificial intelligence stage 204 and the page state history 211 
as input data . The data aggregator and classifier stage 205 
then combines both the future predictions and the past 
history for a particular page to decide whether the appro 
priate memory location for that page is the local memory or 
the pooled memory . According to one embodiment , a num 
ber ( e.g. , K ) of past histories of the page are randomly 
selected from the history record 211 and listed along with the 
( e.g. , three ) predictions made for the page by the artificial 
intelligence stage 204. Here , again , a prediction or history of 
" active " can be assigned a 1 whereas a prediction or history 
of “ idle ” can be assigned a 0. Thus , a list / collection of 1s 
and / or Os are accumulated for a particular page . 
[ 0045 ] A numeric average is then taken on the values in 
the page's list / collection . If the average is greater than 0.6 or 
0.7 , for example , the page is deemed to be appropriately 

- 2 

umn . 

[ 0039 ] By contrast , the second neural network is re - trained 
402 from the contents of the history record 211 every other 
time the record 211 is updated with new information ( the 
second neural network is trained 403 from the contents of 
the record 211 as it exists after every other time increment ) . 
Further still , the third neural network is re - trained 403 from 
the contents of the history record 211 every third time the 
record is updated with new information ( the third neural 
network is trained 403 from the contents of the record 211 
as it exists after every third time increment ) . 
[ 0040 ] According to this approach , after thirty time incre 
ments , the first neural network will have been updated with 
new weights 30 times , the second neural networks will have 
been updated with new weights 15 times and the third neural 
network will have been updated with new weights 10 times . 
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placed in the local memory , whereas , if the average is less 
than 0.4 or 0.3 , for example , the page is deemed to be 
appropriately placed in the pooled memory . Here , the algo 
rithm is assigning pages to the local memory that are 
“ strongly active ” ( e.g. , average greater than 0.7 ) where , e.g. , 
both the predictions and past history together indicate the 
page is active and will remain active . Similarly , the algo 
rithm is assigning pages to the pooled memory that are 
“ strongly idle ” ( e.g. , average greater less than 0.3 ) where , 
e.g. , both the predictions and past history together indicate 
the page is idle and will remain idle . 
[ 0046 ] Skewing the threshold for assignment to the local 
memory and the threshold for assignment to the pooled 
memory in this manner again avoids thrashing of a page 
between local and pooled memories . That is , for averages 
near 0.5 , the system is having difficulty determining whether 
the page should be stored in local memory or pooled 
memory . As such , no assignment is made to these pages . If 
over time their meta data causes a change in their numerical 
average that forcefully leans in one direction of the other , the 
data aggregator and classifier stage 205 can then assign a 
memory location to them . 
[ 0047 ] It is important to note that a myriad of other 
approaches can be used to determine the correct memory 
location for a page based on the past history record and the 
predictions . For example , the same approach as described 
can be used but where different coefficient values are 
assigned to some or all of the past history data items and the 
future predictions . Here , for instance , more recent past 
history data items can have a higher coefficient value than 
older past history data items , and / or , more distant future 
predictions have less weight than more imminent future 
predictions , and / or , where at least some past history data 
items have higher coefficients than at least some future 
predictions ( location decision is weighted more from past 
history ) , and / or , where at least some past history data items 
( e.g. , the oldest past history data items ) have lower coeffi 
cients than future predictions ( location decision favors at 
least some predictions more heavily than the oldest past 
history data ) 
[ 0048 ] After the data aggregator and classifier stage 205 
has decided upon the correct memory location for some 
number of pages , the identities of the pages and their proper 
locations are stored into a persisted list 212 that identifies the 
pages that the flow 200 has made decisions on and the proper 
locations for those pages as determined by the flow 200. Any 
new information provided by the data aggregator and clas 
sifier 205 ( such as the addition of one or more new pages to 
the list 212 , and / or , a change in location of a page that 
already exists on the list 212 ) . 
[ 0049 ] The page mover stage 206 moves any page asso 
ciated with the new information that is presently in a 
location that is different than its assigned location as listed 
in list 212. That is , those pages that were assigned to local 
memory but are physically stored in pooled memory are 
moved up to local memory . Similarly , those pages that were 
assigned to pooled memory but are physically stored in local 
memory are moved down to pooled memory . 
[ 0050 ] In various embodiments , to protect against situa 
tions where the number of pages to be moved is large enough 
to clog datapaths to / from local memory and / or pooled 
memory , the page mover stage 206 has integrated intelli 
gence to control the rate at which page movements are made . 
According to one embodiment , the page mover stage 206 

does not allow the rate of page movements to exceed the 
lesser of : 1 ) some fixed percentage of available bandwidth at 
the memory pool interface ; 2 ) a bandwidth calculated as 
some fixed percentage of the number of pages in the history 
record 211 being moved within a single time increment . 
[ 0051 ] The flow 200 of FIG . 2 also includes an ancillary 
feedback and verification stage 207 that detects page loca 
tion determination errors made by the flow 200. That is , the 
feedback and verification stage 207 compares the assigned 
locations of the pages on the list 212 against the active / idle 
characterizations of these same pages as determined by the 
front end of the flow . Here , recall that the data processing 
stage 202 determines the active / idle state of the software 
program's pages based on their current meta data . 
[ 0052 ] If the feedback and verification stage 207 deter 
mines that a page has been assigned an incorrect location ( a 
consistently active page is assigned to the memory pool or 
a consistently idle page is assigned to the local memory ) , the 
feedback and verification stage 207 informs the data aggre 
gator and classifier stage 205 of the mistake . In response , the 
data aggregator and classifier stage 205 recognizes that 
whatever formulation was used to determine the appropriate 
location for the page ( e.g. , the number past histories used in 
the formulation , the coefficients assigned to the past histories 
and predictions , etc. ) yielded an incorrect result . The data 
aggregator and classifier stage 205 therefore proceeds to 
determine a new formulation for the page that would have 
assigned the correct location for the page ( e.g. , to be used in 
future assignments for the page ) . Multiple instances of 
incorrect assignments for multiple pages can also be ana 
lyzed to identify patterns and adjust formulations ( e.g. , 
globally to all page assignments ) accordingly . 
[ 0053 ] With respect to how the feedback and verification 
stage 207 determines that a page has been assigned an 
incorrect location , as depicted in FIG . 2 , the active / idle state 
characterizations made by the data processing stage 202 is 
forwarded to the feedback and verification stage 207 as input 
information . In other embodiments the feedback and veri 
fication stage 207 can accept the input active / idle input 
information from the history record 211 or the meta data 
stage 201. In the case of the former ( input taken from history 
record 211 ) , for example , if some percentage ( e.g. , 60 % , 
70 % , 80 % ) of recent state characterizations as recorded in 
the history record 211 ( e.g. , most recent 10 or 20 time 
increments ) for any particular page are opposite the page's 
location assignment , the feedback and verification stage 207 
can decide that the page's assigned location is incorrect . 
[ 0054 ] In the case of the later ( input taken from raw meta 
data ) , the feedback and verification stage 207 is processing 
the page meta data directly and can use some criteria other 
than the active / idle characterizations to determine flow 
assignment errors . 
[ 0055 ] The feedback and verification stage 207 can also be 
used to detect when the flow is thrashing any particular page 
( the flow rapidly toggles a page's location assignment 
between local and pooled memory ) . For example , the feed 
back and verification controller can monitor how often 
location changes are being made to a particular page that is 
listed on the page location assignment list 212 and flag the 
same as a thrash . The thrash can be resolved , for example , 
by preventing location changes until after some period of 
time has expired . In a further or alternate embodiment , a 
timestamp is associated with each page location entry in the 
list 212 that identifies when the last change was made to the 
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page's location assignment . Any subsequent changes to be 
applied to the page are ignored until after some period of 
time has elapsed beyond the timestamp . 
[ 0056 ] Although embodiments above have stressed that 
the memory that is more distant than the local memory is a 
pooled memory , more generally , the pooled memory can be 
viewed as a type of remote memory ( being architecturally 
farther from the local memory ) . Other kinds of remote 
memories can exist ( e.g. , where the local memory is on chip 
and the remote memory is off chip ) . Furthermore , other 
characteristics can result in one memory being faster and 
another memory being slower from the perspective of a CPU 
core or accelerator that can execute out of both memories . 
For example , the faster memory can be implemented with 
DRAM memory while the slower memory can be imple 
mented with , e.g. , three - dimensionally stacked , resistive 
non - volatile cells that are byte addressable ( e.g. , OptaneTM 
memory from Intel Corporation of Santa Clara , Calif . ) . As 
such , the teachings above can apply not only more generally 
to local / remote memory environments but also even more 
generally to any tiered memory in which one level / tier 
exhibits faster response times than another level / tier . 
[ 0057 ] CPU cores , accelerators , specialized processors 
and the like that can execute out of a tiered memory can each 
be viewed , more generally , as a type of processor . 
[ 0058 ] The following discussion concerning FIGS . 5 , 6 , 
and 7 are directed to systems , data centers and rack imple 
mentations , generally . FIG . 5 generally describes possible 
features of an electronic system that can perform the page 
memory location determination process described above . 
FIG . 6 describes possible features of a data center that can 
include such electronic systems . FIG . 7 describes possible 
features of a rack having one or more such electronic 
systems installed into it . 
[ 0059 ] FIG . 5 depicts an example system . System 500 
includes processor 510 , which provides processing , opera 
tion management , and execution of instructions for system 
500. Processor 510 can include any type of microprocessor , 
central processing unit ( CPU ) , graphics processing unit 
( GPU ) , processing core , or other processing hardware to 
provide processing for system 500 , or a combination of 
processors . Processor 510 controls the overall operation of 
system 500 , and can be or include , one or more program 
mable general - purpose or special - purpose microprocessors , 
digital signal processors ( DSPs ) , programmable controllers , 
application specific integrated circuits ( ASICs ) , program 
mable logic devices ( PLDs ) , or the like , or a combination of 
such devices . 
[ 0060 ] Certain systems also perform networking functions 
( e.g. , packet header processing functions such as , to name a 
few , next nodal hop lookup , priority / flow lookup with cor 
responding queue entry , etc. ) , as a side function , or , as a 
point of emphasis ( e.g. , a networking switch or router ) . Such 
systems can include one or more network processors to 
perform such networking functions ( e.g. , in a pipelined 
fashion or otherwise ) . 
[ 0061 ] In one example , system 500 includes interface 512 
coupled to processor 510 , which can represent a higher 
speed interface or a high throughput interface for system 
components that needs higher bandwidth connections , such 
as memory subsystem 520 or graphics interface components 
540 , or accelerators 542. Interface 512 represents an inter 
face circuit , which can be a standalone component or 
integrated onto a processor die . Where present , graphics 

interface 540 interfaces to graphics components for provid 
ing a visual display to a user of system 500. In one example , 
graphics interface 540 can drive a high definition ( HD ) 
display that provides an output to a user . High definition can 
refer to a display having a pixel density of approximately 
100 PPI ( pixels per inch ) or greater and can include formats 
such as full HD ( e.g. , 1080p ) , retina displays , 4K ( ultra - high 
definition or UHD ) , or others . In one example , the display 
can include a touchscreen display . In one example , graphics 
interface 540 generates a display based on data stored in 
memory 530 or based on operations executed by processor 
510 or both . In one example , graphics interface 540 gener 
ates a display based on data stored in memory 530 or based 
on operations executed by processor 510 or both . 
[ 0062 ] Accelerators 542 can be a fixed function offload 
engine that can be accessed or used by a processor 510. For 
example , an accelerator among accelerators 542 can provide 
compression ( DC ) capability , cryptography services such as 
public key encryption ( PKE ) , cipher , hash / authentication 
capabilities , decryption , or other capabilities or services . In 
some embodiments , in addition or alternatively , an accel 
erator among accelerators 542 provides field select control 
ler capabilities as described herein . In some cases , accelera 
tors 542 can be integrated into a CPU socket ( e.g. , a 
connector to a motherboard or circuit board that includes a 
CPU and provides an electrical interface with the CPU ) . For 
example , accelerators 542 can include a single or multi - core 
processor , graphics processing unit , logical execution unit 
single or multi - level cache , functional units usable to inde 
pendently execute programs or threads , application specific 
integrated circuits ( ASICs ) , neural network processors 
( NNPs ) , “ X ” processing units ( XPUs ) , programmable con 
trol logic circuitry , and programmable processing elements 
such as field programmable gate arrays ( FPGAs ) . Accelera 
tors 542 , processor cores , or graphics processing units can 
be made available for use by artificial intelligence ( AI ) or 
machine learning ( ML ) models . For example , the Al model 
can use or include any or a combination of a reinforcement 
learning scheme , Q - learning scheme , deep - Q learning , or 
Asynchronous Advantage Actor - Critic ( A3C ) , convolutional 
neural network , recurrent convolutional neural network , or 
other Al or ML model . Multiple neural networks , processor 
cores , or graphics processing units can be made available for 
use by Al or ML models . 
[ 0063 ] Memory subsystem 520 represents the main 
memory of system 500 and provides storage for code to be 
executed by processor 510 , or data values to be used in 
executing a routine . Memory subsystem 520 can include one 
or more memory devices 530 such as read - only memory 
( ROM ) , flash memory , volatile memory , or a combination of 
such devices . Memory 530 stores and hosts , among other 
things , operating system ( OS ) 532 to provide a software 
platform for execution of instructions in system 500. Addi 
tionally , applications 534 can execute on the software plat 
form of OS 532 from memory 530. Applications 534 rep 
resent programs that have their own operational logic to 
perform execution of one or more functions . Processes 536 
represent agents or routines that provide auxiliary functions 
to OS 532 or one or more applications 534 or a combination . 
OS 532 , applications 534 , and processes 536 provide soft 
ware functionality to provide functions for system 500. In 
one example , memory subsystem 520 includes memory 
controller 522 , which is a memory controller to generate and 
issue commands to memory 530. It will be understood that 

a 
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memory controller 522 could be a physical part of processor 
510 or a physical part of interface 512. For example , 
memory controller 522 can be an integrated memory con 
troller , integrated onto a circuit with processor 510. In some 
examples , a system on chip ( SOC or SoC ) combines into one 
SoC package one or more of : processors , graphics , memory , 
memory controller , and Input / Output ( I / O ) control logic 
circuitry . 
[ 0064 ] A volatile memory is memory whose state ( and 
therefore the data stored in it ) is indeterminate if power is 
interrupted to the device . Dynamic volatile memory requires 
refreshing the data stored in the device to maintain state . 
One example of dynamic volatile memory incudes DRAM 
( Dynamic Random Access Memory ) , or some variant such 
as Synchronous DRAM ( SDRAM ) . A memory subsystem as 
described herein may be compatible with a number of 
memory technologies , such as DDR3 ( Double Data Rate 
version 3 , original release by JEDEC ( Joint Electronic 
Device Engineering Council ) on Jun . 27 , 2007 ) . DDR4 
( DDR version 4 , initial specification published in September 
2012 by JEDEC ) , DDR4E ( DDR version 4 ) , LPDDR3 ( Low 
Power DDR version3 , JESD209-3B , August 2013 by 
JEDEC ) , LPDDR4 ) LPDDR version 4 , JESD209-4 , origi 
nally published by JEDEC in August 2014 ) , WIO2 ( Wide 
Input / Output version 2 , JESD229-2 originally published by 
JEDEC in August 2014 , HBM ( High Bandwidth Memory ) , 
JESD235 , originally published by JEDEC in October 2013 , 
LPDDR5 , HBM2 ( HBM version 2 ) , or others or combina 
tions of memory technologies , and technologies based on 
derivatives or extensions of such specifications . 
[ 0065 ] In various implementations , memory resources can 
be “ pooled ” . For example , the memory resources of memory 
modules installed on multiple cards , blades , systems , etc. 
( e.g. , that are inserted into one or more racks ) are made 
available as additional main memory capacity to CPUs 
and / or servers that need and / or request it . In such imple 
mentations , the primary purpose of the cards / blades / systems 
is to provide such additional main memory capacity . The 
cards / blades / systems are reachable to the CPUs / servers that 
use the memory resources through some kind of network 
infrastructure such as CXL , CAPI , etc. 
[ 0066 ] The memory resources can also be tiered ( different 
access times are attributed to different regions of memory ) , 
disaggregated ( memory is a separate ( e.g. , rack pluggable ) 
unit that is accessible to separate ( e.g. , rack pluggable ) CPU 
units ) , and / or remote ( e.g. , memory is accessible over a 
network ) . 
[ 0067 ] While not specifically illustrated , it will be under 
stood that system 500 can include one or more buses or bus 
systems between devices , such as a memory bus , a graphics 
bus , interface buses , or others . Buses or other signal lines 
can communicatively or electrically couple components 
together , or both communicatively and electrically couple 
the components . Buses can include physical communication 
lines , point - to - point connections , bridges , adapters , control 
lers , or other circuitry or a combination . Buses can include , 
for example , one or more of a system bus , a Peripheral 
Component Interconnect express ( PCIe ) bus , a HyperTrans 
port or industry standard architecture ( ISA ) bus , a small 
computer system interface ( SCSI ) bus , Remote Direct 
Memory Access ( RDMA ) , Internet Small Computer Sys 
tems Interface ( iSCSI ) , NVM express ( NVMe ) , Coherent 
Accelerator Interface ( CXL ) , Coherent Accelerator Proces 
sor Interface ( CAPI ) , Cache Coherent Interconnect for 

Accelerators ( CCIX ) , Open Coherent Accelerator Processor 
( Open CAPI ) or other specification developed by the Gen - z 
consortium , a universal serial bus ( USB ) , or an Institute of 
Electrical and Electronics Engineers ( IEEE ) standard 1394 
bus . 
[ 0068 ] In one example , system 500 includes interface 514 , 
which can be coupled to interface 512. In one example , 
interface 514 represents an interface circuit , which can 
include standalone components and integrated circuitry . In 
one example , multiple user interface components or periph 
eral components , or both , couple to interface 514. Network 
interface 550 provides system 500 the ability to communi 
cate with remote devices ( e.g. , servers or other computing 
devices ) over one or more networks . Network interface 550 
can include an Ethernet adapter , wireless interconnection 
components , cellular network interconnection components , 
USB ( universal serial bus ) , or other wired or wireless 
standards - based or proprietary interfaces . Network interface 
550 can transmit data to a remote device , which can include 
sending data stored in memory . Network interface 550 can 
receive data from a remote device , which can include storing 
received data into memory . Various embodiments can be 
used in connection with network interface 550 , processor 
510 , and memory subsystem 520 . 
[ 0069 ] In one example , system 500 includes one or more 
input / output ( I / O ) interface ( s ) 560. I / O interface 560 can 
include one or more interface components through which a 
user interacts with system 500 ( e.g. , audio , alphanumeric , 
tactile / touch , or other interfacing ) . Peripheral interface 570 
can include any hardware interface not specifically men 
tioned above . Peripherals refer generally to devices that 
connect dependently to system 500. A dependent connection 
is one where system 500 provides the software platform or 
hardware platform or both on which operation executes , and 
with which a user interacts . 
[ 0070 ] In one example , system 500 includes storage sub 
system 580 to store data in a nonvolatile manner . In one 
example , in certain system implementations , at least certain 
components of storage 580 can overlap with components of 
memory subsystem 520. Storage subsystem 580 includes 
storage device ( s ) 584 , which can be or include any conven 
tional medium for storing large amounts of data in a non 
volatile manner , such as one or more magnetic , solid state , 
or optical based disks , or a combination . Storage 584 holds 
code or instructions and data in a persistent state ( e.g. , the 
value is retained despite interruption of power to system 
500 ) . Storage 584 can be generically considered to be a 
" memory , " although memory 530 is typically the executing 
or operating memory to provide instructions to processor 
510. Whereas storage 584 is nonvolatile , memory 530 can 
include volatile memory ( e.g. , the value or state of the data 
is indeterminate if power is interrupted to system 500 ) . In 
one example , storage subsystem 580 includes controller 582 
to interface with storage 584. In one example controller 582 
is a physical part of interface 514 or processor 510 or can 
include circuits in both processor 510 and interface 514 . 
[ 0071 ] A non - volatile memory ( NVM ) device is a memory 
whose state is determinate even if power is interrupted to the 
device . In one embodiment , the NVM device can comprise 
a block addressable memory device , such as NAND tech 
nologies , or more specifically , multi - threshold level NAND 
flash memory ( for example , Single - Level Cell ( " SLC " ) , 
Multi - Level Cell ( “ MLC ” ) , Quad - Level Cell ( “ QLC ” ) , Tri 
Level Cell ( “ TLC ” ) , or some other NAND ) . ANVM device 
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can also comprise a byte - addressable write - in - place three 
dimensional cross point memory device , or other byte 
addressable write - in - place NVM device ( also referred to as 
persistent memory ) , such as single or multi - level Phase 
Change Memory ( PCM ) or phase change memory with a 
switch ( PCMS ) , NVM devices that use chalcogenide phase 
change material ( for example , chalcogenide glass ) , resistive 
memory including metal oxide base , oxygen vacancy base , 
and Conductive Bridge Random Access Memory ( CB 
RAM ) , nanowire memory , ferroelectric random access 
memory ( FeRAM , FRAM ) , magneto resistive random 
access memory ( MRAM ) that incorporates memristor tech 
nology , spin transfer torque ( STT ) -MRAM , a spintronic 
magnetic junction memory based device , a magnetic tun 
neling junction ( MTJ ) based device , a DW ( Domain Wall ) 
and SOT ( Spin Orbit Transfer ) based device , a thyristor 
based memory device , or a combination of any of the above , 
or other memory . 
[ 0072 ] Such non - volatile memory devices can be placed 
on a DIMM and cooled according to the teachings above . 
[ 0073 ] A power source ( not depicted ) provides power to 
the components of system 500. More specifically , power 
source typically interfaces to one or multiple power supplies 
in system 500 to provide power to the components of system 
500. In one example , the power supply includes an AC to 
DC ( alternating current to direct current ) adapter to plug into 
a wall outlet . Such AC power can be renewable energy ( e.g. , 
solar power ) power source . In one example , power source 
includes a DC power source , such as an external AC to DC 
converter . In one example , power source or power supply 
includes wireless charging hardware to charge via proximity 
to a charging field . In one example , power source can 
include an internal battery , alternating current supply , 
motion - based power supply , solar power supply , or fuel cell 

optical fabric 612 provides to any given sled may include 
connectivity both to other sleds in a same rack and sleds in 
other racks . 
[ 0077 ] Data center 600 includes four racks 602A to 602D 
and racks 602A to 602D house respective pairs of sleds 
604A - 1 and 604A - 2 , 604B - 1 and 604B - 2 , 604C - 1 and 
604C - 2 , and 604D - 1 and 604D - 2 . Thus , in this example , 
data center 600 includes a total of eight sleds . Optical fabric 
612 can provide sled signaling connectivity with one or 
more of the seven other sleds . For example , via optical fabric 
612 , sled 604A - 1 in rack 602A may possess signaling 
connectivity with sled 604A - 2 in rack 602A , as well as the 
six other sleds 604B - 1 , 604B - 2 , 604C - 1 , 604C - 2 , 604D - 1 , 
and 604D - 2 that are distributed among the other racks 602B , 
602C , and 602D of data center 600. The embodiments are 
not limited to this example . For example , fabric 612 can 
provide optical and / or electrical signaling . 
[ 0078 ] FIG . 7 depicts an environment 700 that includes 
multiple computing racks 702 , each including a Top of Rack 
( TOR ) switch 704 , a pod manager 706 , and a plurality of 
pooled system drawers . Generally , the pooled system draw 
ers may include pooled compute drawers and pooled storage 
drawers to , e.g. , effect a disaggregated computing system . 
Optionally , the pooled system drawers may also include 
pooled memory drawers and pooled Input / Output ( 1/0 ) 
drawers . In the illustrated embodiment the pooled system 
drawers include an INTEL® XEON® pooled computer 
drawer 708 , and INTEL® ATOMTM pooled compute drawer 
710 , a pooled storage drawer 712 , a pooled memory drawer 
714 , and a pooled I / O drawer 716. Each of the pooled system 
drawers is connected to TOR switch 704 via a high - speed 
link 718 , such as a 40 Gigabit / second ( Gb / s ) or 100 Gb / s 
Ethernet link or an 100+ Gb / s Silicon Photonics ( SiPh ) 
optical link . In one embodiment high - speed link 718 com 
prises an 600 Gb / s SiPh optical link . 
[ 0079 ] Again , the drawers can be designed according to 
any specifications promulgated by the Open Compute Proj 
ect ( OCP ) or other disaggregated computing effort , which 
strives to modularize main architectural computer compo 
nents into rack - pluggable components ( e.g. , a rack plug 
gable processing component , a rack pluggable memory 
component , a rack pluggable storage component , a rack 
pluggable accelerator component , etc. ) . 
[ 0080 ] Multiple of the computing racks 700 may be inter 
connected via their TOR switches 704 ( e.g. , to a pod - level 
switch or data center switch ) , as illustrated by connections 
to a network 720. In some embodiments , groups of com 
puting racks 702 are managed as separate pods via pod 
manager ( s ) 706. In one embodiment , a single pod manager 
is used to manage all of the racks in the pod . Alternatively , 
distributed pod managers may be used for pod management 
operations . RSD environment 700 further includes a man 
agement interface 722 that is used to manage various aspects 
of the RSD environment . This includes managing rack 
configuration , with corresponding parameters stored as rack 
configuration data 724 . 
[ 0081 ] Any of the systems , data centers or racks discussed 
above , apart from being integrated in a typical data center , 
can also be implemented in other environments such as 
within a bay station , or other micro - data center , e.g. , at the 
edge of a network . 
[ 0082 ] Embodiments herein may be implemented in vari 
ous types of computing , smart phones , tablets , personal 
computers , and networking equipment , such as switches , 

source . 

[ 0074 ] In an example , system 500 can be implemented as 
a disaggregated computing system . For example , the system 
500 can be implemented with interconnected compute sleds 
of processors , memories , storages , network interfaces , and 
other components . High speed interconnects can be used 
such as PCIe , Ethernet , or optical interconnects ( or a com 
bination thereof ) . For example , the sleds can be designed according to any specifications promulgated by the Open 
Compute Project ( OCP ) or other disaggregated computing 
effort , which strives to modularize main architectural com 
puter components into rack - pluggable components ( e.g. , a 
rack pluggable processing component , a rack pluggable 
memory component , a rack pluggable storage component , a 
rack pluggable accelerator component , etc. ) . 
[ 0075 ] Although a computer is largely described by the 
above discussion of FIG . 5 , other types of systems to which 
the above described invention can be applied and are also 
partially or wholly described by FIG . 5 are communication 
systems such as routers , switches , and base stations . 
[ 0076 ] FIG . 6 depicts an example of a data center . Various 
embodiments can be used in or with the data center of FIG . 
6. As shown in FIG . 6 , data center 600 may include an 
optical fabric 612. Optical fabric 612 may generally include 
a combination of optical signaling media ( such as optical 
cabling ) and optical switching infrastructure via which any 
particular sled in data center 600 can send signals to ( and 
receive signals from ) the other sleds in data center 600 . 
However , optical , wireless , and / or electrical signals can be 
transmitted using fabric 612. The signaling connectivity that 
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routers , racks , and blade servers such as those employed in 
a data center and / or server farm environment . The servers 
used in data centers and server farms comprise arrayed 
server configurations such as rack - based servers or blade 
servers . These servers are interconnected in communication 
via various network provisions , such as partitioning sets of 
servers into Local Area Networks ( LANs ) with appropriate 
switching and routing facilities between the LANs to form 
a private Intranet . For example , cloud hosting facilities may 
typically employ large data centers with a multitude of 
servers . A blade comprises a separate computing platform 
that is configured to perform server - type functions , that is , a 
" server on a card . ” Accordingly , each blade includes com 
ponents common to conventional servers , including a main 
printed circuit board ( main board ) providing internal wiring 
( e.g. , buses ) for coupling appropriate integrated circuits 
( ICs ) and other components mounted to the board . 
[ 0083 ] Various examples may be implemented using hard 
ware elements , software elements , or a combination of both . 
In some examples , hardware elements may include devices , 
components , processors , microprocessors , circuits , circuit 
elements ( e.g. , transistors , resistors , capacitors , inductors , 
and so forth ) , integrated circuits , ASICS , PLDs , DSPs , 
FPGAs , memory units , logic gates , registers , semiconductor 
device , chips , microchips , chip sets , and so forth . In some 
examples , software elements may include software compo 
nents , programs , applications , computer programs , applica 
tion programs , system programs , machine programs , oper 
ating system software , middleware , firmware , software 
modules , routines , subroutines , functions , methods , proce 
dures , software interfaces , APIs , instruction sets , computing 
code , computer code , code segments , computer code seg 
ments , words , values , symbols , or any combination thereof . 
Determining whether an example is implemented using 
hardware elements and / or software elements may vary in 
accordance with any number of factors , such as desired 
computational rate , power levels , heat tolerances , processing 
cycle budget , input data rates , output data rates , memory 
resources , data bus speeds , and other design or performance 
constraints , as desired for a given implementation . 
[ 0084 ) Some examples may be implemented using or as an 
article of manufacture or at least one computer - readable 
medium . A computer - readable medium may include a non 
transitory storage medium to store program code . In some 
examples , the non - transitory storage medium may include 
one or more types of computer - readable storage media 
capable of storing electronic data , including volatile 
memory or non - volatile memory , removable or non - remov 
able memory , erasable or non - erasable memory , writeable or 
re - writeable memory , and so forth . In some examples , the 
program code implements various software elements , such 
as software components , programs , applications , computer 
programs , application programs , system programs , machine 
programs , operating system software , middleware , firm 
ware , software modules , routines , subroutines , functions , 
methods , procedures , software interfaces , API , instruction 
sets , computing code , computer code , code segments , com 
puter code segments , words , values , symbols , or any com 
bination thereof . 
[ 0085 ] According to some examples , a computer - readable 
medium may include a non - transitory storage medium to 
store or maintain instructions that when executed by a 
machine , computing device or system , cause the machine , 
computing device or system to perform methods and / or 

operations in accordance with the described examples . The 
instructions may include any suitable type of code , such as 
source code , compiled code , interpreted code , executable 
code , static code , dynamic code , and the like . The instruc 
tions may be implemented according to a predefined com 
puter language , manner or syntax , for instructing a machine , 
computing device or system to perform a certain function . 
The instructions may be implemented using any suitable 
high - level , low - level , object - oriented , visual , compiled , and / 
or interpreted programming language . 
[ 0086 ] To the extent any of the teachings above can be 
embodied in a semiconductor chip , a description of a circuit 
design of the semiconductor chip for eventual targeting 
toward a semiconductor manufacturing process can take the 
form of various formats such as a ( e.g. , VHDL or Verilog ) 
register transfer level ( RTL ) circuit description , a gate level 
circuit description , a transistor level circuit description or 
mask description or various combinations thereof . Such 
circuit descriptions , sometimes referred to as “ IP Cores ” , are 
commonly embodied on one or more computer readable 
storage media ( such as one or more CD - ROMs or other type 
of storage technology ) and provided to and / or otherwise 
processed by and / or for a circuit design synthesis tool and / or 
mask generation tool . Such circuit descriptions may also be 
embedded with program code to be processed by a computer 
that implements the circuit design synthesis tool and / or 
mask generation tool . 
[ 0087 ] The appearances of the phrase " one example ” or 
“ an example ” are not neces cessarily all referring to the same 
example or embodiment . Any aspect described herein can be 
combined with any other aspect or similar aspect described 
herein , regardless of whether the aspects are described with 
respect to the same figure or element . Division , omission or 
inclusion of block functions depicted in the accompanying 
figures does not infer that the hardware components , cir 
cuits , software , and / or elements for implementing these 
functions would necessarily be divided , omitted , or included 
in embodiments . 

[ 0088 ] Some examples may be described using the expres 
sion “ coupled ” and “ connected ” along with their derivatives . 
These terms are not necessarily intended as synonyms for 
each other . For example , descriptions using the terms " con 
nected ” and / or " coupled ” may indicate that two or more 
elements are in direct physical or electrical contact with each 
other . The term “ coupled , ” however , may also mean that two 
or more elements are not in direct contact with each other , 
but yet still co - operate or interact with each other . 
[ 0089 ] The terms “ first , ” “ second , ” and the like , herein do 
not denote any order , quantity , or importance , but rather are 
used to distinguish one element from another . The terms “ a ” 
and “ an ” herein do not denote a limitation of quantity , but 
rather denote the presence of at least one of the referenced 
items . The term “ asserted ” used herein with reference to a 
signal denote a state of the signal , in which the signal is 
active , and which can be achieved by applying any logic 
level either logic 0 or logic 1 to the signal . The terms 
“ follow " or " after " can refer to immediately following or 
following after some other event or events . Other sequences 
may also be performed according to alternative embodi 
ments . Furthermore , additional sequences may be added or 
removed depending on the particular applications . Any 
combination of changes can be used and one of ordinary 
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skill in the art with the benefit of this disclosure would 
understand the many variations , modifications , and alterna 
tive embodiments thereof . 
[ 0090 ] Disjunctive language such as the phrase “ at least 
one of X , Y , or Z , ” unless specifically stated otherwise , is 
otherwise understood within the context as used in general 
to present that an item , term , etc. , may be either X , Y , or Z , 
or any combination thereof ( e.g. , X , Y , and / or Z ) . Thus , such 
disjunctive language is not generally intended to , and should 
not , imply that certain embodiments require at least one of 
X , at least one of Y , or at least one of Z to each be present . 
Additionally , conjunctive language such as the phrase " at 
least one of X , Y , and Z , ” unless specifically stated other 
wise , should also be understood to mean X , Y , Z , or any 
combination thereof , including “ X , Y , and / or Z. ” 

1. A method , comprising : 
determining that a memory page is in one of an active 

state and an idle state from meta data that is maintained 
for the memory page ; 

recording a past history of active / idle state determinations 
that were previously made for the memory page ; 

training a neural network on the past history of the 
memory page ; 

using the neural network to predict one of a future active ? 
state and future idle state for the memory page ; 

determining a location for the memory page based on the 
past history of the memory page and the predicted 
future state of the memory page , the location being one 
of a faster memory and a slower memory ; and , 

moving the memory page to the location from the other 
one of the faster memory and the slower memory . 

2. The method of claim 1 wherein the faster memory is a 
local memory and the slower memory is a remote memory . 

3. The method of claim 2 wherein the remote memory is 
a pooled memory . 

4. The method of claim 1 wherein the method further 
comprises : 

training a second neural network on the past history of the 
memory page ; and , 

using the second neural network to predict one of a second 
future active state and second future idle state for the 
memory page that is farther out in the future than the 
one future active state or future idle state . 

5. The method of claim 4 wherein the training of the 
second neural network samples active / idle determinations 
from the past history with more time between samples than 
the training of the neural network . 

6. The method of claim 1 wherein the method further 
comprises : 

observing active / idle state determinations made for the 
page after the moving of the page ; 

recognizing that the location was an incorrect determina 
tion for the memory page ; and , changing a formulation 
used for the determining . 

7. The method of claim 1 wherein the method further 
comprises maintaining a list of memory pages and their 
determined locations . 

8. A machine readable storage medium containing pro 
gram code that when processed by a processor , cause the 
processor to perform a method , comprising : 

determining that a memory page is in one of an active 
state and an idle state from meta data that is maintained 
for the memory page ; 

recording a past history of active / idle state determinations 
that were previously made for the memory page ; 

training a neural network on the past history of the 
memory page ; 

using the neural network to predict one of a future active 
state and future idle state for the memory page ; 

determining a location for the memory page based on the 
past history of the memory page and the predicted 
future state of the memory page , the location being one 
of a faster memory and a slower memory ; and , 

moving the memory page to the location from the other 
one of the faster memory and the slower memory . 

9. The machine readable storage medium of claim 8 
wherein the faster memory is a local memory and the slower 
memory is a remote memory . 

10. The machine readable storage medium of claim 9 
wherein the remote memory is a pooled memory . 

11. The machine readable storage medium of claim 8 
wherein the method further comprises : 

training a second neural network on the past history of the 
memory page ; and , 

using the second neural network to predict one of a second 
future active state and second future idle state for the 
memory page that is farther out in the future than the 
one future active state or future idle state . 

12. The machine readable storage medium of claim 11 
wherein the training of the second neural network samples 
active / idle determinations from the past history with more 
time between samples than the training of the neural net 
work . 

13. The machine readable storage medium of claim 12 
wherein the method further comprises : 

observing active / idle state determinations made for the 
page after the moving of the page ; 

recognizing that the location was an incorrect determina 
tion for the memory page ; and , 

changing a formulation used for the determining . 
14. The machine readable storage medium of claim 8 

wherein the method further comprises maintaining a list of 
memory pages and their determined locations . 

15. A data center , comprising : 
a plurality of rack mounted computers communicatively 

coupled by a network ; 
a memory pool coupled to the network ; 
a processor of one of the rack mounted computers to 

execute program code stored in a machine readable 
medium to perform a method , comprising : 

determining that a memory page is in one of an active 
state and an idle state from meta data that is maintained 
for the memory page ; 

recording a past history of active / idle state determinations 
that were previously made for the memory page ; 

training a neural network on the past history of the 
memory page ; 

using the neural network to predict one of a future active 
state and future idle state for the memory page ; 

determining a location for the memory page based on the 
past history of the memory page and the predicted 
future state of the memory page , the location being one 
of a local memory to the processor and the memory 
pool ; and , 

moving the memory page to the location from the other 
one of the local memory and the memory pool . 
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16. The data center of claim 15 wherein the method 
further comprises : 

training a second neural network on the past history of the 
memory page ; and , 

using the second neural network to predict one of a second 
future active state and second future idle state for the 
memory page that is farther out in the future than the 
one future active or future idle state . 

17. The data center of claim 16 wherein the training of the 
second neural network samples active / idle determinations 
from the past history with more time between samples than 
the training of the neural network . 

18. The data center of claim 16 wherein the method 
further comprises : 

training a third neural network on the past history of the 
memory page ; and , 

using the third neural network to predict one of a third 
future active state and third future idle state for the 
memory page that is farther out in the future than the 
one second future active state or second future idle 
state . 

19. The data center of claim 15 wherein the method 
further comprises : 

observing active / idle state determinations made for the 
page after the moving of the page ; 

recognizing that the location was an incorrect determina 
tion for the memory page ; and , 

changing a formulation used for the determining . 
20. The data center of claim 15 wherein the method 

further comprises maintaining a list of memory pages and 
their determined locations . 
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