
US 20220283951 A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0283951 A1

PATHAPATI et al . (43) Pub . Date : Sep. 8 , 2022

(54) APPARATUS AND METHOD FOR
INTELLIGENT MEMORY PAGE
MANAGEMENT

GOON 3/04 (2006.01)
GOOK 9/62 (2006.01)

(52) U.S. CI .
CPC G06F 12/0882 (2013.01) ; GO6F 9/5016

(2013.01) ; G06N 3/0454 (2013.01) ; G06K
9/6256 (2013.01) ; G06F 2209/5011 (2013.01)

(71) Applicant : Intel Corporation , Santa Clara , CA
(US)

(57) ABSTRACT (72) Inventors : Neha PATHAPATI , San Jose , CA
(US) ; Lidia WARNES , Roseville , CA
(US) ; Durgesh SRIVASTAVA ,
Cupertino , CA (US) ; Francois
DUGAST , Rennes (FR) ; Navneet
SINGH , Bangalore (IN) ; Rasika
SUBRAMANIAN , Redwood City , CA
(US) ; Sidharth N. KASHYAP ,
Edinburgh (GB)

(21) Appl . No .: 17 / 751,557

A method is described . The method includes determining
that a memory page is in one of an active state and an idle
state from meta data that is maintained for the memory page .
The method includes recording a past history of active / idle
state determinations that were previously made for the
memory page . The method includes training a neural net
work on the past history of the memory page . The method
includes using the neural network to predict one of a future
active state and future idle state for the memory page . The
method includes determining a location for the memory
page based on the past history of the memory page and the
predicted future state of the memory page , the location being
one of a faster memory and a slower memory . The method
includes moving the memory page to the location from the
other one of the faster memory and the slower memory .

(22) Filed : May 23 , 2022
Publication Classification

a a (51) Int . Ci .
G06F 12/0882
G06F 9/50

(2006.01)
(2006.01)

Page Meta Data
201

200

Page Meta Data

Data Processing
202

History Data Tracker

Pageldtm - 1.t - 2 An - N Om Idle ,
1 - Active Page State Ox1000 1 1

Ox1003 1 History Tracking
203

Feedback
Verification

207 211

page state predictions

Data Aggregator and Classifier
205

Al Predictor
204

assigned page locations

Page Mover
206

List of page location
assignments 212 new information

Apps 105

Ilu IlU

DIO

UDU DOU

III

ITU DIU

IND

VMs 104

Patent Application Publication

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

CPU

103

101

101

101

Mem Cntrlr

Nwk Intfc

Mem Cntrlr

Nwk Intfc

Mem Cntrir

Nwk Intfc

107

Local Memory

Local Memory

Local Memory

Sep. 8 , 2022 Sheet 1 of 7

106

Network 108

Fig . 1

US 2022/0283951 A1

Pooled Memory 102

Page Meta Data 201

200

Patent Application Publication

Page Meta Data
Data Processing 202

History Data Tracker Pageld En - 1 tn - 2

tron

0 - ldle , 1 - Active

Page State

1

Ox1000
1

1

1

2

Ox1003
1

0

0

History Tracking 203

Feedback Verification 207
211

Sep. 8 , 2022 Sheet 2 of 7

page state predictions

Data Aggregator and Classifier 205

Al Predictor 204

assigned page locations

Page Mover 206

List of page location assignments 212

new information

US 2022/0283951 A1

Fig . 2

300

Patent Application Publication

Wt 1

301

wt_2
Wt 3

wt_n

Input Value (s)

Output Value (s)
Sep. 8 , 2022 Sheet 3 of 7

Fig . 3

US 2022/0283951 A1

5

Patent Application Publication

404
1

1

1 1

1

3

1 1 1 1

I

1 1

w

1

1

1 1 1

}

7

WWW

1st Neural Network

Sep. 8 , 2022 Sheet 4 of 7

}
} 401

2nd Neural Network

402

3rd Neural Network

{
403

Fig . 4

US 2022/0283951 A1

Patent Application Publication Sep. 8 , 2022 Sheet 5 of 7 US 2022/0283951 A1

520 ?
MEMORY SUBSYSTEM

530

PROCESSOR
1

| 522
1
1

MEMORY
532 510

OS

534
APPS MEMORY

CONTROLLER 540 ? ? 512

GRAPHICS
PROCESSES

542 INTERFACE 536

ACCELERATORS

550 S 514 570

NETWORK INTERFACE INTERFACE PERIPHERAL INTER FACE

560
580 D
1 STORAGE SUBSYSTEM

582 2
1 CONTROLLER

VO INTERFACE

1
I

500
STORAGE -584

1
1
1
1
I
1
1
L

CODE / DATA

Fig . 5

Patent Application Publication Sep. 8 , 2022 Sheet 6 of 7 US 2022/0283951 A1

600

RACK
602A

SLED
604A - 1

SLED
604A - 2

RACK
602D

RACK
602B

SLED
604D - 1

SLED
604B - 1 OPTICAL

FABRIC
612 SLED

604D - 2
SLED

604B - 2

SLED
604C - 1

SLED
604C - 2

RACK
602C

Fig . 6

Patent Application Publication Sep. 8 , 2022 Sheet 7 of 7 US 2022/0283951 A1

COMPUTING RACK -704 722

TOR SWITCH
-706 MANAGEMENT

INTERFACE POD MANAGER

-708 -724
(XEON) POOLED COMPUTE DRAWER
CPU CPU CPU CPU o

RACK CONFIGURATION
DATA MEMORY MEMORY MEMORY

DISAGGREGATED SWITCH

(ATOM) POOLED COMPUTE DRAWER 710

MOD MOD MOD MOD MOD

MOD ||| MODI I MOD MOD

DISAGGREGATED SWITCH
NETWORK

POOLED STORAGE DRAWER 712

720

POOLED MEMORY DRAWER .714

nnnn
718

-716
POOLED I / O DRAWER

FPGA FPGA FPGA

INTERCONNECT
ACCEL ACCEL ACCEL

702
702

COMPUTING RACK 700

Fig . 7

US 2022/0283951 A1 Sep. 8 , 2022
1

APPARATUS AND METHOD FOR
INTELLIGENT MEMORY PAGE

MANAGEMENT

BACKGROUND

[0001] Centralized (e.g. , cloud) or other data center appli
cation software runtime environments demand fast execu
tion of highly complex software processes . Developers of
such application software programs are therefore constantly
seeking ways to reduce the propagation and / or execution
times of these processes .

FIGURES

[0002] FIG . 1 shows a large scale computing architecture ;
[0003] FIG . 2 shows a system for determining a memory
page location :
[0004] FIG . 3 shows a neural network ;
[0005] FIG . 4 shows a method for predicting future
memory page active / idle states ;
[0006] FIG . 5 shows a system ;
[0007] FIG . 6 shows a data center ;
[0008] FIG . 7 shows a rack .

DETAILED DESCRIPTION

[0009] FIG . 1 shows a typical large scale computing (e.g. ,
data center) architecture . As observed in FIG . 1 , a plurality
of multi - core processors 101 are communicatively coupled
to a memory pool 102. Each processor 101 includes a
number of central processing unit (CPU) general pur ose
processing cores 103 (hereinafter “ CPU cores ” or simply
" cores ”) . For illustrative ease only one of the CPU cores is
labeled in FIG . 1. The CPU cores typically execute multiple
respective virtual machines 104. Operating system instances
typically execute on the VMs and application software 105
typically executes on the operating system instances .
[0010] The processors 101 , or other semiconductor chips
(not shown in FIG . 1) can include accelerators and / or
specialized processors such as graphics processors , neural
network engines (e.g. , for artificial intelligence functions
such as machine learning and inference execution) , image
processors , etc. The CPU cores 103 and accelerators typi
cally operate out of memory . Here , both the cores 103 and
accelerators typically operate on large amounts of data
which are stored in memory . The CPU cores 103 and at least
some of the accelerators also execute some form of program
code which is also stored in memory .
[0011] There are two kinds of memory observed in FIG . 1 :
local memory 106 and pooled memory 102 (for illustrative
ease only one of the local memories is labeled in FIG . 1) .
Local memory 106 is memory that is physically closer to a
CPU core or accelerator than the memory pool 102. Typi
cally , local memory 106 is integrated on or directly coupled
to the semiconductor logic chip 101 that a core / accelerator
is integrated on . Local memory 106 is typically packaged
into a memory module and coupled to the core’s / accelera
tor's logic chip 101 by a bus and / or point to point link 107 .
Examples of such memory modules include a dual in - line
memory module (DIMM) and a stacked memory module
(e.g. , a High Bandwidth Memory (HBM) memory stack) .
[0012] Pooled memory 102 , by contrast , is memory that is
available to the cores and accelerators but is more remote
(e.g. , is reachable over a local , campus or metropolitan (or
larger) area network 108) . The presence of the network 108

or other remote connection introduces propagation delay
between the cores / accelerators and the memory pool 102
that exceeds that of the cores ' / accelerators ' respective local
memory 106. As such , from the perspective of the cores /
accelerators , local memory 106 is “ faster ” than pooled
memory 102 .
[0013] The data and / or program code of a particular
software program 105 that executes on a processing core or
accelerator is typically organized into “ pages ” that are stored
in memory (whether local or pooled) . Each page keeps the
data / code for a continuous range of memory addresses .
Certain addresses across a program's entire range of
memory space correspond to page boundaries that delineate
which of the program's addresses correspond to which of the
program's pages .
[0014] For any particular program , typically , certain ones
of the program's pages are more frequently accessed than
others of the program’s pages . As such , ideally , the pages
that are more frequently accessed are kept in local memory
106 whereas the pages that are less frequently accessed are
kept in pooled memory 102. By so doing , the program
observes faster memory responses for its more frequently
accessed memory addresses and slower memory responses
for its less frequently accessed memory addresses .
[0015] FIG . 2 shows an architecture of a process flow
(“ #flow ”) 200 that can be executed by , or on behalf of , a
software program to determine which of the program's
pages should be placed in local memory 106 and which of
the program's pages should be placed in pooled memory
102. As observed in FIG . 2 the process 201 includes multiple
stages which are described in detail below .
[0016] A first stage , referred to as a page meta data stage
201 , is responsible for managing statistical data on a soft
ware program's pages . Here , meta data can be tracked for
each memory page that is instantiated for the software
program . Examples of such meta data include (but are not
limited to) : 1) a timestamp of when the page was last
accessed ; 2) a set of entries that list respective timestamps of
the past N accesses of the page ; 3) how many times the page
has been accessed in the past M seconds or minutes ; 4) how
many times the page has been swapped between memory
and non - volatile storage in the past R seconds or minutes ;
etc.
[0017] As described in more detail below , the meta data
that is recorded for a software program's pages is further
processed by the flow's following stages to determine which
of the program's pages should be resident in local memory
and which of the program's pages should be resident in
pooled memory . However , in various embodiments , the page
meta stage 201 is a more global function that supports other
processes / functions than just the determination of page
memory location .
[0018] For example , keeping meta data that tracks how
frequently a page is being moved between memory and
non - volatile storage is more germane to the handling of the
software program by the larger computer system that the
program is executing upon rather than the memory . As such ,
in various embodiments , less than all of the meta data that
is collected for a program’s pages by the meta data stage 201
is useful to the flow 200 of FIG . 2 .
[0019] A second stage , referred to as a data processing
stage 202 , extracts the page meta data information that is
useful to the flow 200 of FIG . 2 , processes it , and then
organizes the results of the processing into a format that the

2

US 2022/0283951 A1 Sep. 8 , 2022
2

a

flow 200 of FIG . 2 accepts as input information . In an
embodiment , the processing entails making a decision on
each page that the data processing stage processes the meta
data of as to whether the page is “ active ” or whether the page
is “ idle ” . Note that the active / idle characterization that is
assigned to a page is different than the location of the page
(at any moment of time , some active pages can be in pooled
memory and some idle pages can be in local memory) .
[0020] Here , the meta data is processed by the data pro
cessing stage 202 to produce some metric on how frequently
the page is accessed (which can recorded directly in the page
meta data or determined from the page meta data) . The
metric is then compared to a threshold . If the metric crosses
the threshold the page is deemed “ active ” . Contra - wise , if
the metric does not cross the threshold , the page is deemed
“ idle ” . A page's active / idle status can be referred to as the
page's current state . Thus , the data processing stage 202
processes page meta data to determine the state of a pro
gram's pages .
[0021] In various embodiments the data processing stage
202 is continually determining the respective page state for
a stream of pages that the meta data stage 201 is continually
compiling the meta data for . That is , for example , in an
embodiment , the page meta data stage 201 is continually
monitoring the program’s memory requests and updating , on
a page by page basis , the meta data for the pages that are
called out by the program's memory request stream . The
data processing stage 202 continually scrolls through the
meta data information and determines , on a page by page
basis , the page state of each page .
[0022] Alternatively , the page meta data stage 201 keeps
an ordered list of the most recent memory requests that
identifies the respective page targeted by each request . The
data processing stage 202 then scrolls through the ordered
list and processes the meta data for each different page that
is represented in the list . Processing the meta data in this
manner focuses the attention of the data processing stage
202 only on those pages whose meta data is actively being
updated .
[0023] Regardless , the data processing stage 202 emits a
steady stream of states for the pages that the software
program is directing memory requests to .
[0024] The following history data tracker stage 203
records the page state history over time of , e.g. , every page
that has been instantiated for the software program or every
page that is currently instantiated in memory for the soft
ware program . As observed in FIG . 2 , in an embodiment , the
page state history can be represented as a table 211 that
identifies each page (e.g. , by base memory address) along a
first (vertical) axis and identifies page state for each of a
continuous stream of time increments in the past along a
second (horizontal) axis .
[0025] Here , the state of all pages being tracked are
recorded in time increments tn - 1 , tn - 22 tn - 3 , etc. , where , e.g. ,
an equal amount of time is presumed to exist between each
successive (neighboring) time increment . Here , tn - 1 corre
sponds to the most recent recorded state history , tn - 2 corre
sponds to the second most recent recorded state history , etc.
That is , moving to the right along the horizontal axis of the
table corresponds to moving backward in time .
[0026] The amount of time between successive time incre
ments can correspond , e.g. , to the amount of time it takes the
data processing stage 202 to scroll through the meta data for
all of the pages that the page meta data stage is keeping meta

data for , or , a time window in which the software program
issued a sequence memory requests , or a fixed amount of
runtime of the software program according to some global
clock , or , some other amount of time that accounts for any
difference in state observed for a same page across sequen
tial time increments .
[0027] The page state history 211 is then fed to an artificial
intelligence stage 204 and a data aggregator stage 205. The
artificial intelligence stage analyzes the history record and
predicts the state of the pages for time increments yet to
come (time increments in the future) .
[0028] In an embodiment , the artificial intelligence stage
204 makes state predictions for the software program's
pages for multiple , future time increments . For example , the
artificial intelligence stage 204 makes an active / idle predic
tion for each of the software program's pages for three future
time increments , th + 1 , In + 2 , th + 3 , where tn + 1 is the next /
immediate time increment in the future , th + 2 is the time
increment that follows th + 1 in the future and tn + 3 is the time
increment that follows tn + 2 in the future .
[0029] As is known in the art , artificial intelligence func
tions can be implemented with a neural network circuit
(and / or software written to perform a neural network algo
rithm) . FIG . 3 depicts an exemplary neural network 300. As
observed in FIG . 3 the inner layers of a neural network can
largely be viewed as layers of neurons that each receive
weighted outputs from the neurons of other (e.g. , preceding)
layer (s) of neurons in a mesh - like interconnection structure
between layers .
[0030] The weight of the connection from the output of a
particular preceding neuron to the input of another subse
quent neuron is set according to the influence or effect that
the preceding neuron is to have on the subsequent neuron
(for ease of drawing only one neuron 301 and the weights of
input connections are labeled) . Here , the output value of the
preceding neuron is multiplied by the weight of its connec
tion to the subsequent neuron to determine the particular
stimulus that the preceding neuron presents to the subse
quent neuron .
[0031] A neuron's total input stimulus corresponds to the
combined stimulation of all of its weighted input connec
tions . According to various implementations , the combined
stimulation is calculated as a multi - dimensional (e.g. , vec
tor) multiply accumulate operation . Here , output values
from preceding neurons are multiplied by their respective
weights to produce a set of products . The set of products are
then accumulated (added) to generate the input stimulus to
the receiving neuron .
[0032] (e.g. , non - linear or linear) mathematical function
is then performed using the stimulus as its input which
represents the processing performed by the receiving neu
ron . That is , the output of the mathematical function corre
sponds to the output of the neuron which is subsequently
multiplied by the respective weights of the neuron's output
connections to its following neurons . The neurons of some
extended neural - networks , referred to as “ thresholding ”
neural networks , do not trigger execution of their math
ematical function unless the neuron's total input stimulus
exceeds some threshold . Although the particular exemplary
neural network of FIG . 3 is a purely “ feed forward ” struc
ture , other neural networks may exhibit some feedback , back
propagation or changing weights based on feedback in their
data flows .

-

1

US 2022/0283951 A1 Sep. 8 , 2022
3

a

a

9

2

[0033] In various embodiments , referring back to FIG . 2 ,
the artificial intelligence stage 204 continually executes
machine learning algorithms upon the past history informa
tion 211 as the past history information 211 is continually
updated . The machine learning (also referred to as training) ,
e.g. , determines updated weights for the mesh interconnec
tions of a neural network . In an embodiment , the artificial
intelligence stage 204 trains multiple neural networks (one
neural network for each different expanse of time into the
future for which a prediction is made) .
[0034] After training , the artificial intelligence stage 204
next applies input data to its neural networks to generate the
desired page state predictions (a process referred to as
inferencing) . For example , the artificial intelligence stage
204 applies the most recent set of page states generated by
the data processing stage 202 at time to before they are
entered into the tn - 1 column of the history table 211 .
[0035] FIG . 4 depicts a more detailed example of the
above described training and inferencing processes . In the
example of FIG . 3 , three different neural networks are
implemented by the artificial intelligence engine 204 : 1) a
first neural network (predictor 1 ”) that is used to make
predictions for a next time increment tn + 2 ; 2) a second neural
network (“ predictor 2 ” ') that is used to make predictions for
a second next time increment tn + 2 ; and , 3) a third neural
network (“ predictor 3 ”) that is used to make predictions for
a third next time increment tn + 3 .
(0036] Here , referring back to the exemplary history
record 211 of FIG . 2 , with each next time increment , new
page state information is entered in the tn - 1 column of the
record 211 , all other information is pushed to the right by
one column (the information that previously existed in the
tn - 1 column is pushed into the tn - 2 column , the information
that previously existed in the tn - 2 column is pushed into the
tn_3 column , etc.) . Thus , the contents of the record 211
change with each time increment .
[0037] FIG . 4 shows a particular approach in which a next
set of predictions (inferences) from all three neural networks
is generated every thirty time increments . That is , a new set
of predictions are generated after every thirty times the tn - 1
column of the history table 211 is updated with new page
state information .
[0038] Here , as observed in FIG . 4 , the first neural net
work is re - trained 401 from the history data 211 every time
the history 211 is updated with new information . That is , the
first neural network is re - trained 401 with the contents of the
record 211 as it exists at every time increment after a new
column of information has been inserted into the tn - 1 col

All of these are considered to be sufficient training intervals .
As such , all three neural networks concurrently provide a
new prediction 404 every 30 time increments . In various
embodiments , the predictions 404 provided by each of the
neural networks take the form of a vector with a different
location in the vector being reserved for each different page
that was identified in the history table 211. The neural
network uniquely generates a “ 1 ” or “ O ” in each vector
location thereby articulating the prediction for each loca
tion's particular page (a “ 1 ” corresponds to a prediction that
the page will be active and a “ O ” corresponds to a prediction
that the page will be idle) .
[0041] Notably , the different training schemes 401 , 402 ,
403 for the neural networks correspond to the different
distances into the future that the different neural networks
respectively make predictions for . Specifically , because the
first neural network is expected to predict a page's state in
the immediately next time increment , the first neural net
work is trained 401 to observe page state changes across
successive time increments . By contrast , because the second
neural network is expected to predict a page's state in the
second next time increment , the second neural network is
trained 402 to observe page state changes every other time
increment . Finally , because the third neural network is
expected to predict a page's state in the third next time
increment , the third neural network is trained to observe
page state changes every third time increment .
[0042] In the particular training example of FIG . 4 , a total
time expanse of thirty time increments is used to issue all
three predictions 404. Here , training over an extended
expanse of time increments not only helps the machine
learning processes 401 , 402 , 403 confirm true patterns in the
page states , but also , helps diminish thrashing of pages
between the local and pooled memory locations . Here , if a
page is first deemed to be properly placed in the local
memory and then shortly after deemed to be properly placed
in the pooled memory , and then the reverse , and then the
entire process repeated , the page would continually be
moving back and forth between the local and pooled memo
ries rather than being kept in one of the locations .
[0043] It is pertinent to point out that other embodiments
may choose to make fewer predictions into the future (e.g. ,
just ty + 1 and th + 2) and / or train over longer or shorter time
increment expanses (e.g. , fewer or more than thirty) . As
such , the teachings herein should not be limited to the
specific details of the example of FIG . 4 .
[0044] Referring back to FIG . 2 , the data aggregator and
classifier stage 205 accepts both the predictions from the
artificial intelligence stage 204 and the page state history 211
as input data . The data aggregator and classifier stage 205
then combines both the future predictions and the past
history for a particular page to decide whether the appro
priate memory location for that page is the local memory or
the pooled memory . According to one embodiment , a num
ber (e.g. , K) of past histories of the page are randomly
selected from the history record 211 and listed along with the
(e.g. , three) predictions made for the page by the artificial
intelligence stage 204. Here , again , a prediction or history of
" active " can be assigned a 1 whereas a prediction or history
of “ idle ” can be assigned a 0. Thus , a list / collection of 1s
and / or Os are accumulated for a particular page .
[0045] A numeric average is then taken on the values in
the page's list / collection . If the average is greater than 0.6 or
0.7 , for example , the page is deemed to be appropriately

- 2

umn .

[0039] By contrast , the second neural network is re - trained
402 from the contents of the history record 211 every other
time the record 211 is updated with new information (the
second neural network is trained 403 from the contents of
the record 211 as it exists after every other time increment) .
Further still , the third neural network is re - trained 403 from
the contents of the history record 211 every third time the
record is updated with new information (the third neural
network is trained 403 from the contents of the record 211
as it exists after every third time increment) .
[0040] According to this approach , after thirty time incre
ments , the first neural network will have been updated with
new weights 30 times , the second neural networks will have
been updated with new weights 15 times and the third neural
network will have been updated with new weights 10 times .

US 2022/0283951 A1 Sep. 8 , 2022
4

placed in the local memory , whereas , if the average is less
than 0.4 or 0.3 , for example , the page is deemed to be
appropriately placed in the pooled memory . Here , the algo
rithm is assigning pages to the local memory that are
“ strongly active ” (e.g. , average greater than 0.7) where , e.g. ,
both the predictions and past history together indicate the
page is active and will remain active . Similarly , the algo
rithm is assigning pages to the pooled memory that are
“ strongly idle ” (e.g. , average greater less than 0.3) where ,
e.g. , both the predictions and past history together indicate
the page is idle and will remain idle .
[0046] Skewing the threshold for assignment to the local
memory and the threshold for assignment to the pooled
memory in this manner again avoids thrashing of a page
between local and pooled memories . That is , for averages
near 0.5 , the system is having difficulty determining whether
the page should be stored in local memory or pooled
memory . As such , no assignment is made to these pages . If
over time their meta data causes a change in their numerical
average that forcefully leans in one direction of the other , the
data aggregator and classifier stage 205 can then assign a
memory location to them .
[0047] It is important to note that a myriad of other
approaches can be used to determine the correct memory
location for a page based on the past history record and the
predictions . For example , the same approach as described
can be used but where different coefficient values are
assigned to some or all of the past history data items and the
future predictions . Here , for instance , more recent past
history data items can have a higher coefficient value than
older past history data items , and / or , more distant future
predictions have less weight than more imminent future
predictions , and / or , where at least some past history data
items have higher coefficients than at least some future
predictions (location decision is weighted more from past
history) , and / or , where at least some past history data items
(e.g. , the oldest past history data items) have lower coeffi
cients than future predictions (location decision favors at
least some predictions more heavily than the oldest past
history data)
[0048] After the data aggregator and classifier stage 205
has decided upon the correct memory location for some
number of pages , the identities of the pages and their proper
locations are stored into a persisted list 212 that identifies the
pages that the flow 200 has made decisions on and the proper
locations for those pages as determined by the flow 200. Any
new information provided by the data aggregator and clas
sifier 205 (such as the addition of one or more new pages to
the list 212 , and / or , a change in location of a page that
already exists on the list 212) .
[0049] The page mover stage 206 moves any page asso
ciated with the new information that is presently in a
location that is different than its assigned location as listed
in list 212. That is , those pages that were assigned to local
memory but are physically stored in pooled memory are
moved up to local memory . Similarly , those pages that were
assigned to pooled memory but are physically stored in local
memory are moved down to pooled memory .
[0050] In various embodiments , to protect against situa
tions where the number of pages to be moved is large enough
to clog datapaths to / from local memory and / or pooled
memory , the page mover stage 206 has integrated intelli
gence to control the rate at which page movements are made .
According to one embodiment , the page mover stage 206

does not allow the rate of page movements to exceed the
lesser of : 1) some fixed percentage of available bandwidth at
the memory pool interface ; 2) a bandwidth calculated as
some fixed percentage of the number of pages in the history
record 211 being moved within a single time increment .
[0051] The flow 200 of FIG . 2 also includes an ancillary
feedback and verification stage 207 that detects page loca
tion determination errors made by the flow 200. That is , the
feedback and verification stage 207 compares the assigned
locations of the pages on the list 212 against the active / idle
characterizations of these same pages as determined by the
front end of the flow . Here , recall that the data processing
stage 202 determines the active / idle state of the software
program's pages based on their current meta data .
[0052] If the feedback and verification stage 207 deter
mines that a page has been assigned an incorrect location (a
consistently active page is assigned to the memory pool or
a consistently idle page is assigned to the local memory) , the
feedback and verification stage 207 informs the data aggre
gator and classifier stage 205 of the mistake . In response , the
data aggregator and classifier stage 205 recognizes that
whatever formulation was used to determine the appropriate
location for the page (e.g. , the number past histories used in
the formulation , the coefficients assigned to the past histories
and predictions , etc.) yielded an incorrect result . The data
aggregator and classifier stage 205 therefore proceeds to
determine a new formulation for the page that would have
assigned the correct location for the page (e.g. , to be used in
future assignments for the page) . Multiple instances of
incorrect assignments for multiple pages can also be ana
lyzed to identify patterns and adjust formulations (e.g. ,
globally to all page assignments) accordingly .
[0053] With respect to how the feedback and verification
stage 207 determines that a page has been assigned an
incorrect location , as depicted in FIG . 2 , the active / idle state
characterizations made by the data processing stage 202 is
forwarded to the feedback and verification stage 207 as input
information . In other embodiments the feedback and veri
fication stage 207 can accept the input active / idle input
information from the history record 211 or the meta data
stage 201. In the case of the former (input taken from history
record 211) , for example , if some percentage (e.g. , 60 % ,
70 % , 80 %) of recent state characterizations as recorded in
the history record 211 (e.g. , most recent 10 or 20 time
increments) for any particular page are opposite the page's
location assignment , the feedback and verification stage 207
can decide that the page's assigned location is incorrect .
[0054] In the case of the later (input taken from raw meta
data) , the feedback and verification stage 207 is processing
the page meta data directly and can use some criteria other
than the active / idle characterizations to determine flow
assignment errors .
[0055] The feedback and verification stage 207 can also be
used to detect when the flow is thrashing any particular page
(the flow rapidly toggles a page's location assignment
between local and pooled memory) . For example , the feed
back and verification controller can monitor how often
location changes are being made to a particular page that is
listed on the page location assignment list 212 and flag the
same as a thrash . The thrash can be resolved , for example ,
by preventing location changes until after some period of
time has expired . In a further or alternate embodiment , a
timestamp is associated with each page location entry in the
list 212 that identifies when the last change was made to the

US 2022/0283951 A1 Sep. 8 , 2022
5

a

page's location assignment . Any subsequent changes to be
applied to the page are ignored until after some period of
time has elapsed beyond the timestamp .
[0056] Although embodiments above have stressed that
the memory that is more distant than the local memory is a
pooled memory , more generally , the pooled memory can be
viewed as a type of remote memory (being architecturally
farther from the local memory) . Other kinds of remote
memories can exist (e.g. , where the local memory is on chip
and the remote memory is off chip) . Furthermore , other
characteristics can result in one memory being faster and
another memory being slower from the perspective of a CPU
core or accelerator that can execute out of both memories .
For example , the faster memory can be implemented with
DRAM memory while the slower memory can be imple
mented with , e.g. , three - dimensionally stacked , resistive
non - volatile cells that are byte addressable (e.g. , OptaneTM
memory from Intel Corporation of Santa Clara , Calif .) . As
such , the teachings above can apply not only more generally
to local / remote memory environments but also even more
generally to any tiered memory in which one level / tier
exhibits faster response times than another level / tier .
[0057] CPU cores , accelerators , specialized processors
and the like that can execute out of a tiered memory can each
be viewed , more generally , as a type of processor .
[0058] The following discussion concerning FIGS . 5 , 6 ,
and 7 are directed to systems , data centers and rack imple
mentations , generally . FIG . 5 generally describes possible
features of an electronic system that can perform the page
memory location determination process described above .
FIG . 6 describes possible features of a data center that can
include such electronic systems . FIG . 7 describes possible
features of a rack having one or more such electronic
systems installed into it .
[0059] FIG . 5 depicts an example system . System 500
includes processor 510 , which provides processing , opera
tion management , and execution of instructions for system
500. Processor 510 can include any type of microprocessor ,
central processing unit (CPU) , graphics processing unit
(GPU) , processing core , or other processing hardware to
provide processing for system 500 , or a combination of
processors . Processor 510 controls the overall operation of
system 500 , and can be or include , one or more program
mable general - purpose or special - purpose microprocessors ,
digital signal processors (DSPs) , programmable controllers ,
application specific integrated circuits (ASICs) , program
mable logic devices (PLDs) , or the like , or a combination of
such devices .
[0060] Certain systems also perform networking functions
(e.g. , packet header processing functions such as , to name a
few , next nodal hop lookup , priority / flow lookup with cor
responding queue entry , etc.) , as a side function , or , as a
point of emphasis (e.g. , a networking switch or router) . Such
systems can include one or more network processors to
perform such networking functions (e.g. , in a pipelined
fashion or otherwise) .
[0061] In one example , system 500 includes interface 512
coupled to processor 510 , which can represent a higher
speed interface or a high throughput interface for system
components that needs higher bandwidth connections , such
as memory subsystem 520 or graphics interface components
540 , or accelerators 542. Interface 512 represents an inter
face circuit , which can be a standalone component or
integrated onto a processor die . Where present , graphics

interface 540 interfaces to graphics components for provid
ing a visual display to a user of system 500. In one example ,
graphics interface 540 can drive a high definition (HD)
display that provides an output to a user . High definition can
refer to a display having a pixel density of approximately
100 PPI (pixels per inch) or greater and can include formats
such as full HD (e.g. , 1080p) , retina displays , 4K (ultra - high
definition or UHD) , or others . In one example , the display
can include a touchscreen display . In one example , graphics
interface 540 generates a display based on data stored in
memory 530 or based on operations executed by processor
510 or both . In one example , graphics interface 540 gener
ates a display based on data stored in memory 530 or based
on operations executed by processor 510 or both .
[0062] Accelerators 542 can be a fixed function offload
engine that can be accessed or used by a processor 510. For
example , an accelerator among accelerators 542 can provide
compression (DC) capability , cryptography services such as
public key encryption (PKE) , cipher , hash / authentication
capabilities , decryption , or other capabilities or services . In
some embodiments , in addition or alternatively , an accel
erator among accelerators 542 provides field select control
ler capabilities as described herein . In some cases , accelera
tors 542 can be integrated into a CPU socket (e.g. , a
connector to a motherboard or circuit board that includes a
CPU and provides an electrical interface with the CPU) . For
example , accelerators 542 can include a single or multi - core
processor , graphics processing unit , logical execution unit
single or multi - level cache , functional units usable to inde
pendently execute programs or threads , application specific
integrated circuits (ASICs) , neural network processors
(NNPs) , “ X ” processing units (XPUs) , programmable con
trol logic circuitry , and programmable processing elements
such as field programmable gate arrays (FPGAs) . Accelera
tors 542 , processor cores , or graphics processing units can
be made available for use by artificial intelligence (AI) or
machine learning (ML) models . For example , the Al model
can use or include any or a combination of a reinforcement
learning scheme , Q - learning scheme , deep - Q learning , or
Asynchronous Advantage Actor - Critic (A3C) , convolutional
neural network , recurrent convolutional neural network , or
other Al or ML model . Multiple neural networks , processor
cores , or graphics processing units can be made available for
use by Al or ML models .
[0063] Memory subsystem 520 represents the main
memory of system 500 and provides storage for code to be
executed by processor 510 , or data values to be used in
executing a routine . Memory subsystem 520 can include one
or more memory devices 530 such as read - only memory
(ROM) , flash memory , volatile memory , or a combination of
such devices . Memory 530 stores and hosts , among other
things , operating system (OS) 532 to provide a software
platform for execution of instructions in system 500. Addi
tionally , applications 534 can execute on the software plat
form of OS 532 from memory 530. Applications 534 rep
resent programs that have their own operational logic to
perform execution of one or more functions . Processes 536
represent agents or routines that provide auxiliary functions
to OS 532 or one or more applications 534 or a combination .
OS 532 , applications 534 , and processes 536 provide soft
ware functionality to provide functions for system 500. In
one example , memory subsystem 520 includes memory
controller 522 , which is a memory controller to generate and
issue commands to memory 530. It will be understood that

a

US 2022/0283951 A1 Sep. 8 , 2022
6

2

memory controller 522 could be a physical part of processor
510 or a physical part of interface 512. For example ,
memory controller 522 can be an integrated memory con
troller , integrated onto a circuit with processor 510. In some
examples , a system on chip (SOC or SoC) combines into one
SoC package one or more of : processors , graphics , memory ,
memory controller , and Input / Output (I / O) control logic
circuitry .
[0064] A volatile memory is memory whose state (and
therefore the data stored in it) is indeterminate if power is
interrupted to the device . Dynamic volatile memory requires
refreshing the data stored in the device to maintain state .
One example of dynamic volatile memory incudes DRAM
(Dynamic Random Access Memory) , or some variant such
as Synchronous DRAM (SDRAM) . A memory subsystem as
described herein may be compatible with a number of
memory technologies , such as DDR3 (Double Data Rate
version 3 , original release by JEDEC (Joint Electronic
Device Engineering Council) on Jun . 27 , 2007) . DDR4
(DDR version 4 , initial specification published in September
2012 by JEDEC) , DDR4E (DDR version 4) , LPDDR3 (Low
Power DDR version3 , JESD209-3B , August 2013 by
JEDEC) , LPDDR4) LPDDR version 4 , JESD209-4 , origi
nally published by JEDEC in August 2014) , WIO2 (Wide
Input / Output version 2 , JESD229-2 originally published by
JEDEC in August 2014 , HBM (High Bandwidth Memory) ,
JESD235 , originally published by JEDEC in October 2013 ,
LPDDR5 , HBM2 (HBM version 2) , or others or combina
tions of memory technologies , and technologies based on
derivatives or extensions of such specifications .
[0065] In various implementations , memory resources can
be “ pooled ” . For example , the memory resources of memory
modules installed on multiple cards , blades , systems , etc.
(e.g. , that are inserted into one or more racks) are made
available as additional main memory capacity to CPUs
and / or servers that need and / or request it . In such imple
mentations , the primary purpose of the cards / blades / systems
is to provide such additional main memory capacity . The
cards / blades / systems are reachable to the CPUs / servers that
use the memory resources through some kind of network
infrastructure such as CXL , CAPI , etc.
[0066] The memory resources can also be tiered (different
access times are attributed to different regions of memory) ,
disaggregated (memory is a separate (e.g. , rack pluggable)
unit that is accessible to separate (e.g. , rack pluggable) CPU
units) , and / or remote (e.g. , memory is accessible over a
network) .
[0067] While not specifically illustrated , it will be under
stood that system 500 can include one or more buses or bus
systems between devices , such as a memory bus , a graphics
bus , interface buses , or others . Buses or other signal lines
can communicatively or electrically couple components
together , or both communicatively and electrically couple
the components . Buses can include physical communication
lines , point - to - point connections , bridges , adapters , control
lers , or other circuitry or a combination . Buses can include ,
for example , one or more of a system bus , a Peripheral
Component Interconnect express (PCIe) bus , a HyperTrans
port or industry standard architecture (ISA) bus , a small
computer system interface (SCSI) bus , Remote Direct
Memory Access (RDMA) , Internet Small Computer Sys
tems Interface (iSCSI) , NVM express (NVMe) , Coherent
Accelerator Interface (CXL) , Coherent Accelerator Proces
sor Interface (CAPI) , Cache Coherent Interconnect for

Accelerators (CCIX) , Open Coherent Accelerator Processor
(Open CAPI) or other specification developed by the Gen - z
consortium , a universal serial bus (USB) , or an Institute of
Electrical and Electronics Engineers (IEEE) standard 1394
bus .
[0068] In one example , system 500 includes interface 514 ,
which can be coupled to interface 512. In one example ,
interface 514 represents an interface circuit , which can
include standalone components and integrated circuitry . In
one example , multiple user interface components or periph
eral components , or both , couple to interface 514. Network
interface 550 provides system 500 the ability to communi
cate with remote devices (e.g. , servers or other computing
devices) over one or more networks . Network interface 550
can include an Ethernet adapter , wireless interconnection
components , cellular network interconnection components ,
USB (universal serial bus) , or other wired or wireless
standards - based or proprietary interfaces . Network interface
550 can transmit data to a remote device , which can include
sending data stored in memory . Network interface 550 can
receive data from a remote device , which can include storing
received data into memory . Various embodiments can be
used in connection with network interface 550 , processor
510 , and memory subsystem 520 .
[0069] In one example , system 500 includes one or more
input / output (I / O) interface (s) 560. I / O interface 560 can
include one or more interface components through which a
user interacts with system 500 (e.g. , audio , alphanumeric ,
tactile / touch , or other interfacing) . Peripheral interface 570
can include any hardware interface not specifically men
tioned above . Peripherals refer generally to devices that
connect dependently to system 500. A dependent connection
is one where system 500 provides the software platform or
hardware platform or both on which operation executes , and
with which a user interacts .
[0070] In one example , system 500 includes storage sub
system 580 to store data in a nonvolatile manner . In one
example , in certain system implementations , at least certain
components of storage 580 can overlap with components of
memory subsystem 520. Storage subsystem 580 includes
storage device (s) 584 , which can be or include any conven
tional medium for storing large amounts of data in a non
volatile manner , such as one or more magnetic , solid state ,
or optical based disks , or a combination . Storage 584 holds
code or instructions and data in a persistent state (e.g. , the
value is retained despite interruption of power to system
500) . Storage 584 can be generically considered to be a
" memory , " although memory 530 is typically the executing
or operating memory to provide instructions to processor
510. Whereas storage 584 is nonvolatile , memory 530 can
include volatile memory (e.g. , the value or state of the data
is indeterminate if power is interrupted to system 500) . In
one example , storage subsystem 580 includes controller 582
to interface with storage 584. In one example controller 582
is a physical part of interface 514 or processor 510 or can
include circuits in both processor 510 and interface 514 .
[0071] A non - volatile memory (NVM) device is a memory
whose state is determinate even if power is interrupted to the
device . In one embodiment , the NVM device can comprise
a block addressable memory device , such as NAND tech
nologies , or more specifically , multi - threshold level NAND
flash memory (for example , Single - Level Cell (" SLC ") ,
Multi - Level Cell (“ MLC ”) , Quad - Level Cell (“ QLC ”) , Tri
Level Cell (“ TLC ”) , or some other NAND) . ANVM device

US 2022/0283951 A1 Sep. 8 , 2022
7

a

can also comprise a byte - addressable write - in - place three
dimensional cross point memory device , or other byte
addressable write - in - place NVM device (also referred to as
persistent memory) , such as single or multi - level Phase
Change Memory (PCM) or phase change memory with a
switch (PCMS) , NVM devices that use chalcogenide phase
change material (for example , chalcogenide glass) , resistive
memory including metal oxide base , oxygen vacancy base ,
and Conductive Bridge Random Access Memory (CB
RAM) , nanowire memory , ferroelectric random access
memory (FeRAM , FRAM) , magneto resistive random
access memory (MRAM) that incorporates memristor tech
nology , spin transfer torque (STT) -MRAM , a spintronic
magnetic junction memory based device , a magnetic tun
neling junction (MTJ) based device , a DW (Domain Wall)
and SOT (Spin Orbit Transfer) based device , a thyristor
based memory device , or a combination of any of the above ,
or other memory .
[0072] Such non - volatile memory devices can be placed
on a DIMM and cooled according to the teachings above .
[0073] A power source (not depicted) provides power to
the components of system 500. More specifically , power
source typically interfaces to one or multiple power supplies
in system 500 to provide power to the components of system
500. In one example , the power supply includes an AC to
DC (alternating current to direct current) adapter to plug into
a wall outlet . Such AC power can be renewable energy (e.g. ,
solar power) power source . In one example , power source
includes a DC power source , such as an external AC to DC
converter . In one example , power source or power supply
includes wireless charging hardware to charge via proximity
to a charging field . In one example , power source can
include an internal battery , alternating current supply ,
motion - based power supply , solar power supply , or fuel cell

optical fabric 612 provides to any given sled may include
connectivity both to other sleds in a same rack and sleds in
other racks .
[0077] Data center 600 includes four racks 602A to 602D
and racks 602A to 602D house respective pairs of sleds
604A - 1 and 604A - 2 , 604B - 1 and 604B - 2 , 604C - 1 and
604C - 2 , and 604D - 1 and 604D - 2 . Thus , in this example ,
data center 600 includes a total of eight sleds . Optical fabric
612 can provide sled signaling connectivity with one or
more of the seven other sleds . For example , via optical fabric
612 , sled 604A - 1 in rack 602A may possess signaling
connectivity with sled 604A - 2 in rack 602A , as well as the
six other sleds 604B - 1 , 604B - 2 , 604C - 1 , 604C - 2 , 604D - 1 ,
and 604D - 2 that are distributed among the other racks 602B ,
602C , and 602D of data center 600. The embodiments are
not limited to this example . For example , fabric 612 can
provide optical and / or electrical signaling .
[0078] FIG . 7 depicts an environment 700 that includes
multiple computing racks 702 , each including a Top of Rack
(TOR) switch 704 , a pod manager 706 , and a plurality of
pooled system drawers . Generally , the pooled system draw
ers may include pooled compute drawers and pooled storage
drawers to , e.g. , effect a disaggregated computing system .
Optionally , the pooled system drawers may also include
pooled memory drawers and pooled Input / Output (1/0)
drawers . In the illustrated embodiment the pooled system
drawers include an INTEL® XEON® pooled computer
drawer 708 , and INTEL® ATOMTM pooled compute drawer
710 , a pooled storage drawer 712 , a pooled memory drawer
714 , and a pooled I / O drawer 716. Each of the pooled system
drawers is connected to TOR switch 704 via a high - speed
link 718 , such as a 40 Gigabit / second (Gb / s) or 100 Gb / s
Ethernet link or an 100+ Gb / s Silicon Photonics (SiPh)
optical link . In one embodiment high - speed link 718 com
prises an 600 Gb / s SiPh optical link .
[0079] Again , the drawers can be designed according to
any specifications promulgated by the Open Compute Proj
ect (OCP) or other disaggregated computing effort , which
strives to modularize main architectural computer compo
nents into rack - pluggable components (e.g. , a rack plug
gable processing component , a rack pluggable memory
component , a rack pluggable storage component , a rack
pluggable accelerator component , etc.) .
[0080] Multiple of the computing racks 700 may be inter
connected via their TOR switches 704 (e.g. , to a pod - level
switch or data center switch) , as illustrated by connections
to a network 720. In some embodiments , groups of com
puting racks 702 are managed as separate pods via pod
manager (s) 706. In one embodiment , a single pod manager
is used to manage all of the racks in the pod . Alternatively ,
distributed pod managers may be used for pod management
operations . RSD environment 700 further includes a man
agement interface 722 that is used to manage various aspects
of the RSD environment . This includes managing rack
configuration , with corresponding parameters stored as rack
configuration data 724 .
[0081] Any of the systems , data centers or racks discussed
above , apart from being integrated in a typical data center ,
can also be implemented in other environments such as
within a bay station , or other micro - data center , e.g. , at the
edge of a network .
[0082] Embodiments herein may be implemented in vari
ous types of computing , smart phones , tablets , personal
computers , and networking equipment , such as switches ,

source .

[0074] In an example , system 500 can be implemented as
a disaggregated computing system . For example , the system
500 can be implemented with interconnected compute sleds
of processors , memories , storages , network interfaces , and
other components . High speed interconnects can be used
such as PCIe , Ethernet , or optical interconnects (or a com
bination thereof) . For example , the sleds can be designed according to any specifications promulgated by the Open
Compute Project (OCP) or other disaggregated computing
effort , which strives to modularize main architectural com
puter components into rack - pluggable components (e.g. , a
rack pluggable processing component , a rack pluggable
memory component , a rack pluggable storage component , a
rack pluggable accelerator component , etc.) .
[0075] Although a computer is largely described by the
above discussion of FIG . 5 , other types of systems to which
the above described invention can be applied and are also
partially or wholly described by FIG . 5 are communication
systems such as routers , switches , and base stations .
[0076] FIG . 6 depicts an example of a data center . Various
embodiments can be used in or with the data center of FIG .
6. As shown in FIG . 6 , data center 600 may include an
optical fabric 612. Optical fabric 612 may generally include
a combination of optical signaling media (such as optical
cabling) and optical switching infrastructure via which any
particular sled in data center 600 can send signals to (and
receive signals from) the other sleds in data center 600 .
However , optical , wireless , and / or electrical signals can be
transmitted using fabric 612. The signaling connectivity that

US 2022/0283951 A1 Sep. 8 , 2022
8

a

routers , racks , and blade servers such as those employed in
a data center and / or server farm environment . The servers
used in data centers and server farms comprise arrayed
server configurations such as rack - based servers or blade
servers . These servers are interconnected in communication
via various network provisions , such as partitioning sets of
servers into Local Area Networks (LANs) with appropriate
switching and routing facilities between the LANs to form
a private Intranet . For example , cloud hosting facilities may
typically employ large data centers with a multitude of
servers . A blade comprises a separate computing platform
that is configured to perform server - type functions , that is , a
" server on a card . ” Accordingly , each blade includes com
ponents common to conventional servers , including a main
printed circuit board (main board) providing internal wiring
(e.g. , buses) for coupling appropriate integrated circuits
(ICs) and other components mounted to the board .
[0083] Various examples may be implemented using hard
ware elements , software elements , or a combination of both .
In some examples , hardware elements may include devices ,
components , processors , microprocessors , circuits , circuit
elements (e.g. , transistors , resistors , capacitors , inductors ,
and so forth) , integrated circuits , ASICS , PLDs , DSPs ,
FPGAs , memory units , logic gates , registers , semiconductor
device , chips , microchips , chip sets , and so forth . In some
examples , software elements may include software compo
nents , programs , applications , computer programs , applica
tion programs , system programs , machine programs , oper
ating system software , middleware , firmware , software
modules , routines , subroutines , functions , methods , proce
dures , software interfaces , APIs , instruction sets , computing
code , computer code , code segments , computer code seg
ments , words , values , symbols , or any combination thereof .
Determining whether an example is implemented using
hardware elements and / or software elements may vary in
accordance with any number of factors , such as desired
computational rate , power levels , heat tolerances , processing
cycle budget , input data rates , output data rates , memory
resources , data bus speeds , and other design or performance
constraints , as desired for a given implementation .
[0084) Some examples may be implemented using or as an
article of manufacture or at least one computer - readable
medium . A computer - readable medium may include a non
transitory storage medium to store program code . In some
examples , the non - transitory storage medium may include
one or more types of computer - readable storage media
capable of storing electronic data , including volatile
memory or non - volatile memory , removable or non - remov
able memory , erasable or non - erasable memory , writeable or
re - writeable memory , and so forth . In some examples , the
program code implements various software elements , such
as software components , programs , applications , computer
programs , application programs , system programs , machine
programs , operating system software , middleware , firm
ware , software modules , routines , subroutines , functions ,
methods , procedures , software interfaces , API , instruction
sets , computing code , computer code , code segments , com
puter code segments , words , values , symbols , or any com
bination thereof .
[0085] According to some examples , a computer - readable
medium may include a non - transitory storage medium to
store or maintain instructions that when executed by a
machine , computing device or system , cause the machine ,
computing device or system to perform methods and / or

operations in accordance with the described examples . The
instructions may include any suitable type of code , such as
source code , compiled code , interpreted code , executable
code , static code , dynamic code , and the like . The instruc
tions may be implemented according to a predefined com
puter language , manner or syntax , for instructing a machine ,
computing device or system to perform a certain function .
The instructions may be implemented using any suitable
high - level , low - level , object - oriented , visual , compiled , and /
or interpreted programming language .
[0086] To the extent any of the teachings above can be
embodied in a semiconductor chip , a description of a circuit
design of the semiconductor chip for eventual targeting
toward a semiconductor manufacturing process can take the
form of various formats such as a (e.g. , VHDL or Verilog)
register transfer level (RTL) circuit description , a gate level
circuit description , a transistor level circuit description or
mask description or various combinations thereof . Such
circuit descriptions , sometimes referred to as “ IP Cores ” , are
commonly embodied on one or more computer readable
storage media (such as one or more CD - ROMs or other type
of storage technology) and provided to and / or otherwise
processed by and / or for a circuit design synthesis tool and / or
mask generation tool . Such circuit descriptions may also be
embedded with program code to be processed by a computer
that implements the circuit design synthesis tool and / or
mask generation tool .
[0087] The appearances of the phrase " one example ” or
“ an example ” are not neces cessarily all referring to the same
example or embodiment . Any aspect described herein can be
combined with any other aspect or similar aspect described
herein , regardless of whether the aspects are described with
respect to the same figure or element . Division , omission or
inclusion of block functions depicted in the accompanying
figures does not infer that the hardware components , cir
cuits , software , and / or elements for implementing these
functions would necessarily be divided , omitted , or included
in embodiments .

[0088] Some examples may be described using the expres
sion “ coupled ” and “ connected ” along with their derivatives .
These terms are not necessarily intended as synonyms for
each other . For example , descriptions using the terms " con
nected ” and / or " coupled ” may indicate that two or more
elements are in direct physical or electrical contact with each
other . The term “ coupled , ” however , may also mean that two
or more elements are not in direct contact with each other ,
but yet still co - operate or interact with each other .
[0089] The terms “ first , ” “ second , ” and the like , herein do
not denote any order , quantity , or importance , but rather are
used to distinguish one element from another . The terms “ a ”
and “ an ” herein do not denote a limitation of quantity , but
rather denote the presence of at least one of the referenced
items . The term “ asserted ” used herein with reference to a
signal denote a state of the signal , in which the signal is
active , and which can be achieved by applying any logic
level either logic 0 or logic 1 to the signal . The terms
“ follow " or " after " can refer to immediately following or
following after some other event or events . Other sequences
may also be performed according to alternative embodi
ments . Furthermore , additional sequences may be added or
removed depending on the particular applications . Any
combination of changes can be used and one of ordinary

a

US 2022/0283951 A1 Sep. 8 , 2022
9

a .

)

' a

skill in the art with the benefit of this disclosure would
understand the many variations , modifications , and alterna
tive embodiments thereof .
[0090] Disjunctive language such as the phrase “ at least
one of X , Y , or Z , ” unless specifically stated otherwise , is
otherwise understood within the context as used in general
to present that an item , term , etc. , may be either X , Y , or Z ,
or any combination thereof (e.g. , X , Y , and / or Z) . Thus , such
disjunctive language is not generally intended to , and should
not , imply that certain embodiments require at least one of
X , at least one of Y , or at least one of Z to each be present .
Additionally , conjunctive language such as the phrase " at
least one of X , Y , and Z , ” unless specifically stated other
wise , should also be understood to mean X , Y , Z , or any
combination thereof , including “ X , Y , and / or Z. ”

1. A method , comprising :
determining that a memory page is in one of an active

state and an idle state from meta data that is maintained
for the memory page ;

recording a past history of active / idle state determinations
that were previously made for the memory page ;

training a neural network on the past history of the
memory page ;

using the neural network to predict one of a future active ?
state and future idle state for the memory page ;

determining a location for the memory page based on the
past history of the memory page and the predicted
future state of the memory page , the location being one
of a faster memory and a slower memory ; and ,

moving the memory page to the location from the other
one of the faster memory and the slower memory .

2. The method of claim 1 wherein the faster memory is a
local memory and the slower memory is a remote memory .

3. The method of claim 2 wherein the remote memory is
a pooled memory .

4. The method of claim 1 wherein the method further
comprises :

training a second neural network on the past history of the
memory page ; and ,

using the second neural network to predict one of a second
future active state and second future idle state for the
memory page that is farther out in the future than the
one future active state or future idle state .

5. The method of claim 4 wherein the training of the
second neural network samples active / idle determinations
from the past history with more time between samples than
the training of the neural network .

6. The method of claim 1 wherein the method further
comprises :

observing active / idle state determinations made for the
page after the moving of the page ;

recognizing that the location was an incorrect determina
tion for the memory page ; and , changing a formulation
used for the determining .

7. The method of claim 1 wherein the method further
comprises maintaining a list of memory pages and their
determined locations .

8. A machine readable storage medium containing pro
gram code that when processed by a processor , cause the
processor to perform a method , comprising :

determining that a memory page is in one of an active
state and an idle state from meta data that is maintained
for the memory page ;

recording a past history of active / idle state determinations
that were previously made for the memory page ;

training a neural network on the past history of the
memory page ;

using the neural network to predict one of a future active
state and future idle state for the memory page ;

determining a location for the memory page based on the
past history of the memory page and the predicted
future state of the memory page , the location being one
of a faster memory and a slower memory ; and ,

moving the memory page to the location from the other
one of the faster memory and the slower memory .

9. The machine readable storage medium of claim 8
wherein the faster memory is a local memory and the slower
memory is a remote memory .

10. The machine readable storage medium of claim 9
wherein the remote memory is a pooled memory .

11. The machine readable storage medium of claim 8
wherein the method further comprises :

training a second neural network on the past history of the
memory page ; and ,

using the second neural network to predict one of a second
future active state and second future idle state for the
memory page that is farther out in the future than the
one future active state or future idle state .

12. The machine readable storage medium of claim 11
wherein the training of the second neural network samples
active / idle determinations from the past history with more
time between samples than the training of the neural net
work .

13. The machine readable storage medium of claim 12
wherein the method further comprises :

observing active / idle state determinations made for the
page after the moving of the page ;

recognizing that the location was an incorrect determina
tion for the memory page ; and ,

changing a formulation used for the determining .
14. The machine readable storage medium of claim 8

wherein the method further comprises maintaining a list of
memory pages and their determined locations .

15. A data center , comprising :
a plurality of rack mounted computers communicatively

coupled by a network ;
a memory pool coupled to the network ;
a processor of one of the rack mounted computers to

execute program code stored in a machine readable
medium to perform a method , comprising :

determining that a memory page is in one of an active
state and an idle state from meta data that is maintained
for the memory page ;

recording a past history of active / idle state determinations
that were previously made for the memory page ;

training a neural network on the past history of the
memory page ;

using the neural network to predict one of a future active
state and future idle state for the memory page ;

determining a location for the memory page based on the
past history of the memory page and the predicted
future state of the memory page , the location being one
of a local memory to the processor and the memory
pool ; and ,

moving the memory page to the location from the other
one of the local memory and the memory pool .

a

US 2022/0283951 A1 Sep. 8 , 2022
10

16. The data center of claim 15 wherein the method
further comprises :

training a second neural network on the past history of the
memory page ; and ,

using the second neural network to predict one of a second
future active state and second future idle state for the
memory page that is farther out in the future than the
one future active or future idle state .

17. The data center of claim 16 wherein the training of the
second neural network samples active / idle determinations
from the past history with more time between samples than
the training of the neural network .

18. The data center of claim 16 wherein the method
further comprises :

training a third neural network on the past history of the
memory page ; and ,

using the third neural network to predict one of a third
future active state and third future idle state for the
memory page that is farther out in the future than the
one second future active state or second future idle
state .

19. The data center of claim 15 wherein the method
further comprises :

observing active / idle state determinations made for the
page after the moving of the page ;

recognizing that the location was an incorrect determina
tion for the memory page ; and ,

changing a formulation used for the determining .
20. The data center of claim 15 wherein the method

further comprises maintaining a list of memory pages and
their determined locations .

a

