US 20210365716A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2021/0365716 A1

LI et al. 43) Pub. Date: Nov. 25, 2021
(54) METHOD AND SYSTEM OF DEEP (86) PCT No.: PCT/CN2018/105107
SUPERVISION OBJECT DETECTION FOR § 371 (1)
REDUCING RESOURCE USAGE (2) Date: Nov. 6, 2020
(71) Applicant: Intel Corporation, Santa Clara, CA Publication Classification
(Us) (51) Int. CL
GO6K 9/62 (2006.01)
(72) Inventors: Jianguo LI, Beijing (CN); Jiuwei LI, GO6K 9/46 (2006.01)
Beijing (CN); Yuxi LI, Beijing (CN) GO6N 3/04 (2006.01)
(52) US. CL
CPC ... GO6K 9/629 (2013.01); GO6K 9/4628
(73) Assignee: Intel Corporation, Santa Clara, CA (2013.01); GO6N 3/04 (2013.01); GO6K
(US) 9/6267 (2013.01); GO6K 9/6251 (2013.01)
57 ABSTRACT
@ 17/053,706 A system, article, and method of deep supervision object
detection for reducing resource usage is provided for image
(22) Sep. 11, 2018 processing and that uses depth-wise dense blocks.
100

p,,/

102

CBTAIN IMAGE DATA OF PIXELS OF AT LEAST ONE
IJAGE HAVING CONTENT WITH ONE OR MORE OBJECTS

¥

CONVOLUTIONAL LAYER 104

OPERATE A NEURAL NETWORK HAVING AT LEAST ONE
SEQUENCE OF DEFTH-WISE DENSE BLOCKS WHEREIN EACH
DEPTH-WISE DENSE BLOCK HAS AT LEAST ONE DEPTH-WISE

OPERATE AN INDIVIDUAL DEFTH-WISE DENSE BLOCK 108

HAVING MULTIPLE INPUT CHANNELS 108

RECEIVE INPUT FROM A PREVIOUS LAYER AND

v

INPUT CHANNELS 110

SEPARATELY PROPAGATE, AT THE SAME DEPTH-WISE
CONVOLUTIONAL LAYER, CHANNELS OF THE MULTIPLE

OF OTHER CHANNELS 112

APPLY AT LEAST ONE SEPARATE FILTER TO EACH

PROPAGATING CHANNEL TO FORM AT LEAST ONE

SEPARATE FEATURE MAP OF EACH PROPAGATING
CHANNEL THAT IS SEPARTE FROM THE FEATURE MAPS

¥

CONCATENATE TOGETHER RESULTING DATAQF
MULTIPLE DEPTH-WISE DENSE BLOUOKS POSITIONED
PRICR TO A NEXT DEPTH-WISE DENSE BLOCK INTHE

SAME SEQUENCE TO FORM INPUT DATA OF EITHER THE
NEXT DEPTH-WISE DENSE BLOCK IN THE SEQUENCE OR
ANEXT LAYER GF THE NEURAL NETWORK 114

3

CLASSIFY THE ONE OR MORE OBJECTS AT LEAST PARTLY
DEPENDING ON THE QUTPUT OF THE AT LEAST ONE SEQUENCE
OF DEPTH-WISE DENSE BLOCKS IN THE NEURAL NETWORK 116

Patent Application Publication Nov. 25,2021 Sheet 1 of 11 US 2021/0365716 A1

FIG. 1
f"/

COBTAIN IMAGE DATA OF PIXELS OF AT LEAST ONE
IMAGE HAVING CONTENT WITH ONE OR MORE OBJECTS
102

y

OPERATE A NEURAL NETWORK HAVING AT LEAST ONE
SEQUENCE OF DEPTH-WISE DENSE BLOCKS WHEREIN EACH
DEPTH-WISE DENSE BLOCK HAS AT LEAST ONE DEPTH-WISE

CONVOLUTIONAL LAYER 104

OPERATE AN INDIVIDUAL DEPTH-WISE DENSE BLOCK 108

RECEIVE INPUT FROM A PREVIOUS LAYER AND
HAVING MULTIPLE INPUT CHANNELS 108

Y

SEPARATELY PROPAGATE AT THE SAME DEPTH-WISE
CONVOLUTIONAL LAYER, CHANNELS OF THE MULTIPLE
INPUT CHANNELS 118

ARPPLY AT LEAST ONE SEPARATE FILTER TO EACH
PROPAGATING CHANNELTO FORM AT LEAST ONE
SEPARATE FEATURE MAP OF EACH PROPAGATING
CHANNEL THAT IS SEPARTE FROM THE FEATURE MAPS
OF OTHER CHANNELS 112

v

CONCATENATE TOGETHER RESULTING DATA OF
MULTIPLE DEPTH-WISE DENGE BLOGCKS POSITIONED
FPRIOR TO A NEXT DEPTH-WISE DENSE BLOCK INTHE

SAME SEQUENCE TO FORM INPUT DATA OF EITHER THE
NEXT DEPTH-WISE DENSE BLOCK IN THE SEQUENCE OR
ANEXT LAYER OF THE NEURAL NETWORK 114

v

CLASSIFY THE ONE OR MORE OBJECTS AT LEAST PARTLY
DEPENDING ON THE CUTRUT OF THE AT LEAST ONE SEQUENCE
OF DEFTH-WISE DENSE BLOCKS IN THE NEURAL NETWORK 118

US 2021/0365716 Al

Nov. 25,2021 Sheet 2 of 11

Patent Application Publication

0ic

80¢

V&N&N&m\\%&r
9

yve VS 8ee , 98¢ Zee 0SS , 82E
A / wmfm ﬂ / Gee A A.\ / 128 vee A\Nmm\omm 6Le
/ Fi f iy \ o, /, AN [™ / FAY .\
N N N N
O O oo oo
8! o) q Olals O L]
- | 900 | 900 e (O L« D0 i i S 1 1 L9
i i di |1 di 11
d d o d
S Sa 3 0
S 31 31
\\ /;v.mm /@Nm SL \gie
N OFE I
POE HOLOVHIXE
\@_‘m \Em \Nwm \Em \@om \@om
A A A A
............. N i N N
¥ 0 0 O O A
ol o o e BEGTE o & F¥ o m ENE o o
MA O L L O
0z~ ¥0Z \!& d mal i d Ma d 3
N Gm.& 00E - A m Gm&
e
208 W3 LS

Patent Application Publication

FIG. 4

408 428
i

400

W

422
424 426
N o~

406 /

416
DDB

I,

412 414

o S

Nov. 25,2021 Sheet 3 of 11

430 432

AV S

/ |

o

L X | AUQT

)

o)

C X § AUOD MJ

R

D

"L X L AUOD

DDB

o

L X Luog

2

.

© X g AUCD MJ

G

o 4

TLX L AUOD

AN

e

T o

L X | AUQT)

3

£ X g Au0) Md

ERYEE

B

T L X | AUOD

DDB

AN

i

—f | X LUOQ

)

T X © AUCT M

< 2
= TR
o

410 1

US 2021/0365716 Al

Patent Application Publication Nov. 25,2021 Sheet 4 of 11 US 2021/0365716 A1

502

— CH(} FO preece BB FMG

CHy P bl FMy
503 (:/ (-3 (’S 514
310
504 506 508
600
604 g10 f’“"/
602
C
BIB}2]
o 55 - 612
S — = x/
606 — X “ ™
- > >
g &N
/% ! O
© = =
] (]
el { |

614

Patent Application Publication

Nov. 25,2021 Sheet 5 of 11

US 2021/0365716 Al

|

a3 M
o)
o
& -
E\\J’\\t
& R £
S %S
P~ P
R]
=
=
-3
o
s} & g
S ™ ~
T \f\\
Lt
Q.
e
& -
P~ ~
< \f\
o B-
bt
P\\.jj:\"\\
© ©
f \ &
o
- p
2 - <
N~ o0
\\f\"\\i\
P £
[QV
-
. Ng .,
@ \f\ P~
3 f
. ©
=

710

708

\/'\\

¢ deke ucnisuel] !

703

e N

W
701

| JOAET UoHISUB]

t

Patent Application Publication Nov. 25,2021 Sheet 6 of 11 US 2021/0365716 A1
DOWNSAMPLING 800
’ - 802
POO;@Q& 1 x 1 Conv 808 814
812 5/ ~
1x 1 Conv 808 OW Conv 3x 3 810

FIG. 9

UPSAMPLING 900

v

Bilinear Upsampie x2 802

v

DW Conv 3 x 3 904

v

Patent Application Publication Nov. 25,2021 Sheet 7 of 11 US 2021/0365716 A1

1000

FIG. 10A

TRAIN NEURAL NETWORK FROM E
ORIGINAL SAMPLE DATA 1002

— S

CBTAIN IMAGE DATA OF PIXELS OF AT
LEAST ONE IMAGE HAVING CONTENT
WITH ONE OR MORE OBJECTS
1004

v

PERFORM PRE-NN OPERATIONS TO CONVERT RAW
INPUT TO INPUT DATA COMPATIBALE WITH A DEEP
SURERVISION OBJECT DETECTION NEURAL NETWORK
1006

v

PROPAGATE INPUT THROUGH THE DEEP SUPERVISION
OBJECT DETECTHION NEURAL NETWORK BACKBONE 1008

PROPAGATE DATA THROUGH STEM USING AT LEAST
ONE DEPTH-WIGE CONVOLUTION LAYER 1018

PROPAGATE DATA THROUGH EXTRACTOR USING AT
LEAST ONE SEQUENGE OF DEPTH-WISE DENSE BLOCKS
AND AT LEAST ONE TRANSITION LAYER AFTER EACH
BLOCK 1012

Patent Application Publication Nov. 25,2021 Sheet 8 of 11 US 2021/0365716 A1

FIG. 10B

PROPAGATE DATA THROUGH FRONT-END OF THE NEURAL
NETWORK 1014

CBTAIN DATA FROM AT LEAST ONE INTERIOR TRANSITION
LAYER OF THE NEURAL NETWORK BACKBONE 1018

USE DEPTH-WISE FEATURE-PYRAMID NETWORK 1018

PERFORM DOWNSAMPLING OPERATIONS
CONCATENATING A POOLING STACK WITH A DEPTH-
WISE STACK WITH AT LEAST ONE DEPTH-WISE
CONVOLUTIONAL LAYER 1020

PERFORM UPSAMPLING OPERATIONS WITH
BILINEAR INTERPOLATION BEFORE AT LEAST ONE
DEPTH-WISE CONVOLUTIONAL LAYER 1022

SUM ELEMENTS OF UPSAMPLED FEATURE MAP
WITH ELEMENTS OF DOWNSAMPLED FEATURE MAP
AFTER INDIVIDUAL UPSAMPLING OPERATIONS 1024

v

PERFORM POST-NN COMPUTATIONS WITH OUTPUT
PROBABILITIES OF SEMANTIC OBJECT
CLASSIFICATIONS TO IDENTIFY THE ONE OR MORE
OBJECTS 1026

v

USE IDENTITIES OF OBJECTS FOR APPLICATIONS
1028

Patent Application Publication

Nov. 25,2021 Sheet 9 of 11 US 2021/0365716 Al

FIG. 11

IMAGING
DEVICE(S)
1102

v

LOGIC UNITS/MODULES 1104

IMAGE UNIT 1106

BACKBONE UNIT 1410

1 X 1 CONV UNIT 1124

sIEM LN Ll DW CONV UNIT 1126

EXTRACTOR UNIT1116
CONV UNIT 1128

DDB UNIT 1118

POOLING UNIT 1130

FRONT-END UNIT 1112 BIL INTERP. UNIT 1132

DOWNSAMPLE UNIT 1120

NORMALIZATION UNIT 1134

UPSAMPLE UNIT 1122
RELU UNIT 1136

:

Ll

1144

PROCESSOR(S) 1140
ISP 1142 ANTENNA DISPLAY
,,,,,,,,,,,, - 1146 1148
§ —
p __ _NNA 1143 1 v IMAGE
i CODER
1152
MEMORY STORE(S) —==

IMAGE PROCESSING SYSTEM 1100

Patent Application Publication Nov. 25,2021 Sheet 10 of 11 US 2021/0365716 A1l

FIG. 12

DISPLAY 1220

USER INTERFACE 1222

;Piat‘fcsrm 1202 e Anfenna
= e Content Delivery
Device(s)
: 1240
Memory Radio 1218 Storage
1212 1214
Applications
Chipset 1205 1216
: Content
Graphics Services
Processor Subsystem Device(s)
1210 1215 1230

Network
1260

Patent Application Publication Nov. 25,2021 Sheet 11 of 11 US 2021/0365716 Al

FIG. 13

1301 1302

\ 1305 \\ [/?310

ke,
o
o
[§]

00000 000D WODDE 10000 0DDOD 0DOOO GOOOP OOODD KIODDE X000 0DODD 0DDDO 00000 0ooB

-4 1306

00000 00D GODOC KOOI 00D 00O OGODO OOOOD OOOOC KOOI BOOD ODODO 00000 OORY

1312

US 2021/0365716 Al

METHOD AND SYSTEM OF DEEP
SUPERVISION OBJECT DETECTION FOR
REDUCING RESOURCE USAGE

BACKGROUND

[0001] Many computer and electronic devices perform
object detection in order to determine the semantic label of
one or more objects in an image. This may be performed
with 2D data such as with RGB color domain pixel data or
could be based on 3D data, such as with depth maps for
computer-vision or other 3D modeling applications. Other-
wise, object detection also is often desired in other light
spectrum domains such as for medial images and/or multi-
spectrum images, and so forth.

[0002] In order to achieve high accuracy with such object
detection, many object detection systems employ deep neu-
ral networks (DNNs) which can reach very large sizes with
100+ layers and thousands of nodes on each layer. Thus, the
DNN systems are often too computationally heavy for
always-on electronic devices or small devices with limited
resources such as a mobile smart phone or smart speaker for
example. This results in a DNN object detection system that
consumes too much power on such devices or alternatively
sacrifices speed and/or accuracy by using reduced size
neural networks with relatively limited vocabularies.

DESCRIPTION OF THE FIGURES

[0003] The material described herein is illustrated by way
of example and not by way of limitation in the accompa-
nying figures. For simplicity and clarity of illustration,
elements illustrated in the figures are not necessarily drawn
to scale. For example, the dimensions of some elements may
be exaggerated relative to other elements for clarity. Further,
where considered appropriate, reference labels have been
repeated among the figures to indicate corresponding or
analogous elements. In the figures:

[0004] FIG. 1 is a flow chart of a method of object
detection for image processing according to at least one of
the implementations herein;

[0005] FIG. 2 is a schematic flow diagram to demonstrate
dense blocks for a neural network;

[0006] FIG. 3 is a schematic flow diagram showing a deep
supervision object detection neural network according to at
least one of the implementations herein;

[0007] FIG. 4 is a schematic diagram of a sequence of
depth-wise dense blocks for a neural network according to
at least one of the implementations herein;

[0008] FIG. 5 is a schematic diagram of a depth-wise
convolution layer of the depth-wise dense block of FIG. 4 or
6.

[0009] FIG. 6 is a schematic flow diagram of another
sequence of depth-wise dense blocks of a neural network in
accordance with at least one if the implementations herein;
[0010] FIG. 7 is a schematic diagram of a depth-wise
feature-pyramid network in accordance with at least one if
the implementations herein;

[0011] FIG. 8 is a schematic diagram of upsampling
feature maps for a depth-wise feature-pyramid network in
accordance with at least one if the implementations herein;
[0012] FIG. 9 is a schematic diagram of downsampling
feature maps for a depth-wise feature-pyramid network in
accordance with at least one if the implementations herein;

Nov. 25, 2021

[0013] FIGS.10A-10B is a detailed flow chart of a method
of deep supervision object detection in accordance with the
implementations herein;

[0014] FIG. 11 is an illustrative diagram of an example
system,
[0015] FIG. 12 is an illustrative diagram of another

example system; and

[0016] FIG. 13 illustrates another example device, all
arranged in accordance with at least some implementations
of the present disclosure.

DETAILED DESCRIPTION

[0017] One or more implementations are now described
with reference to the enclosed figures. While specific con-
figurations and arrangements are discussed, it should be
understood that this is performed for illustrative purposes
only. Persons skilled in the relevant art will recognize that
other configurations and arrangements may be employed
without departing from the spirit and scope of the descrip-
tion. It will be apparent to those skilled in the relevant art
that techniques and/or arrangements described herein also
may be employed in a variety of other systems and appli-
cations other than what is described herein.

[0018] While the following description sets forth various
implementations that may be manifested in architectures
such as system-on-a-chip (SoC) architectures for example,
implementation of the techniques and/or arrangements
described herein are not restricted to particular architectures
and/or computing systems and may be implemented by any
architecture and/or computing system for similar purposes.
For instance, various architectures employing, for example,
multiple integrated circuit (IC) chips and/or packages, and/
or various computing devices and/or consumer electronic
(CE) devices such as imaging devices, digital cameras,
smart phones, webcams, video game panels or consoles, set
top boxes, tablets, and so forth, any of which may have light
projectors and/or sensors for performing object detection,
depth measurement, and other tasks, and may implement the
techniques and/or arrangements described herein. Further,
while the following description may set forth numerous
specific details such as logic implementations, types and
interrelationships of system components, logic partitioning/
integration choices, and so forth, claimed subject matter may
be practiced without such specific details. In other instances,
some material such as, for example, control structures and
full software instruction sequences, may not be shown in
detail in order not to obscure the material disclosed herein.
The material disclosed herein may be implemented in hard-
ware, firmware, software, or any combination thereof.
[0019] The material disclosed herein also may be imple-
mented as instructions stored on a machine-readable
medium or memory, which may be read and executed by one
or more processors. A machine-readable medium may
include any medium and/or mechanism for storing or trans-
mitting information in a form readable by a machine (for
example, a computing device). For example, a machine-
readable medium may include read-only memory (ROM);
random access memory (RAM); magnetic disk storage
media; optical storage media; flash memory devices; elec-
trical, optical, acoustical or other forms of propagated sig-
nals (e.g., carrier waves, infrared signals, digital signals, and
so forth), and others. In another form, a non-transitory
article, such as a non-transitory computer readable medium,
may be used with any of the examples mentioned above or

US 2021/0365716 Al

other examples except that it does not include a transitory
signal per se. It does include those elements other than a
signal per se that may hold data temporarily in a “transitory”
fashion such as RAM and so forth.

[0020] References in the specification to “one implemen-
tation”, “an implementation”, “an example implementa-
tion”, and so forth, indicate that the implementation
described may include a particular feature, structure, or
characteristic, but every implementation may not necessarily
include the particular feature, structure, or characteristic.
Moreover, such phrases are not necessarily referring to the
same implementation. Further, when a particular feature,
structure, or characteristic is described in connection with an
implementation, it is submitted that it is within the knowl-
edge of one skilled in the art to affect such feature, structure,
or characteristic in connection with other implementations
whether or not explicitly described herein.

[0021] Systems, articles, and methods of deep supervision
object detection for reducing resource usage.

[0022] As mentioned, low resource devices such as bat-
tery-operated computing devices that perform object detec-
tion on captured or stored images often do not have the
capacity to operate high quality neural network object
detection at speeds acceptable to a user. Most conventional
object detection DNNs use various convolutional neural
network (CNN) based object detection frameworks. This
includes two-stage based methods that first generates pro-
posed regions of interest (Rols or bounding boxes) around
each object in an image and then runs the image data of the
regions in the neural networks. Such two-stage object detec-
tion systems include regional-CNN (R-CNN) (see Girshick,
R. et al., “Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation”, Conference on
Computer Vision and Pattern Recognition (CVPR) (2014));
Fast-R-CNN (see Girshick, R., “Fast R-CNN”, International
Conference on Computer Vision (ICCV), (2015)); Faster
R-CNN (see Ren, S., et al, “Faster R-CNN: Towards
real-time object detection with region proposal networks”,
Neural Information Processing Systems Proceedings (NIPS)
(2015)); and R-FCN (see Li, Y., et al., “R-FCN: Object
detection via region-based Fully Convolutional Networks”,
NIPS (2016)). Otherwise, one-stage based methods that omit
the region proposals include YOLO (see Redmon, . et al.,
“You Only Look Once: Unified, real-time object detection”,
CVPR (2016)); Single Shot Multi-box Detector (SSD) (see
Liu, W. et al., “SSD: Single shot multibox detector”, Euro-
pean Conference on Computer Vision (ECCV) (2016)), and
so forth. The single-stage based methods are relatively faster
than two-stage based methods, but with somewhat relatively
lower accuracy. All of these more accurate methods, how-
ever, have computing costs (or in other words, computa-
tional loads) that are much too large for devices with limited
power, memory, and processing resources.

[0023] To attempt to avoid these problems, lightweight
(efficient and small-size) object detection neural networks
have been developed for resource-restricted usages. Such
networks include SqueezeDet (see Wu, B. et al., “Squeeze-
Det: Unified, small, low power fully convolutional neural
networks for real-time object detection for autonomous
driving”, CVPR Workshops (2017)). SqueezeDet introduces
an efficient SqueezeNet-based backbone into a single-stage
framework for efficient detection, and which achieves com-
parable results on Pattern Analysis, Statistical Modeling and
Computational Learning standard for Visual Object Classes

Nov. 25, 2021

(PASCAL VOC) 2007 (see Everingham, M., et al., “The
PASCAL visual object classes (VOC) challenge”, 1ICV,
88(2):303-338 (2010)) and Karlsruhe Institute of Technol-
ogy and Toyota Technological Institute Chicago (KITTI)
standards for vision benchmarks (see Geiger, A., et al., “Are
we ready for autonomous driving? the KITTI vision bench-
mark suite”, CVPR (2012)). For SqueezeNet, see landola, F.
N. et al., “SqueezeNet: Alexnet-level accuracy with 50x
fewer parameters and <0.5 mb model size”, International
Conference on Learning Representations (ICLR) Committee
(2016).

[0024] Other attempts to reduce the computational load of
an object detection neural network include depth-wise con-
volution that has shown great parameter and computing
efficiency in generic image classification tasks (see Chollet,
F., “Xception: Deep learning with depth-wise separable
convolutions”, CVPR (2016)). Such depth-wise convolution
also was introduced into the SSD framework for object
detection purpose as a backbone and named as MobileNet-
SSD (see Sandler, M. et al., “Inverted residuals and linear
bottlenecks: Mobile networks for classification, detection
and segmentation”, arXiv preprint arXiv:1801.04381,
CVPR (2018)). Another technique is Pelee which utilizes a
two-way densely connected structure to reduce computation
consumption while keeping detection accuracy for mobile
applications (see Li, X. et al., “Pelee: A real-time object
detection system on mobile devices”, ICLR Workshop
(2018)). Yet another technique is Tiny YOLO which further
improves processing speed of YOLO by compressing the
backbone networks with some accuracy drops (see Redmon
cited above).

[0025] Despite these efforts, a large accuracy gap still
exists between efficient yet tiny networks (SqueezeDet,
MobileNet-SSD, Pelee, Tiny-YOLO, etc.) and those of
full-sized counterparts. For instance, SqueezeNet-SSD and
MobileNet-SSD achieve 64.3% and 68.0% mean Average
Precision (mAP) accuracy on PASCAL VOC 2007 respec-
tively, while full-sized SSD reaches 77.2% mAP under the
same parameters. Thus, these techniques still do not achieve
a desired trade-off between accuracy and resources such as
power consumption, processing speed, and/or required
memory capacity. The computational load of a neural net-
work that affects the power consumption and processing
speed can be measured by number of parameters (weights
and so forth for a neural network) and/or floating point
operations per second (FLOPs).

[0026] To achieve a better trade-off between resources and
accuracy while performing neural network object detection,
a system and method is disclosed herein that provides a tiny
deep supervision object detection (Tiny-DSOD) framework
that includes highly efficient architecture including (1) a
depth-wise dense block (DDB) based backbone that per-
forms detection of the objects, (2) depth-wise feature-pyra-
mid-network (D-FPN) based front-end that performs the
semantic classifying of the objects, or both (1) and (2).
[0027] In more detail, the present Tiny-DSOD is built
upon deep supervision object detection (DSOD) as disclosed
by Shen, Z. et al.,, “DSOD: Learning deeply supervised
object detectors from scratch”, ICCV, pp. 1937-1945 (2017),
which is incorporated herein in its entirety for all purposes.
This network provides a sequence of dense blocks where the
output of each dense block is transitioned to each subsequent
dense block in the same sequence. Such dense blocks were
introduced in DenseNet-like (see Huang, G., et al, “Densely

US 2021/0365716 Al

connected convolutional networks”, CVPR (2017). This
provides the output, and in turn the knowledge, of earlier
blocks directly to all later blocks in the same sequence
thereby providing an inherent system of deep layer super-
vision (or just deep supervision).

[0028] The present method and system uses a sequence of
dense blocks except significantly modified by adding at least
one depth-wise convolutional layer to each depth-wise dense
block. Image data is often provided with multiple channels,
and the method here analyzes each channel of input feature
maps separately by performing per-channel 2D filtering.
Each channel may have a different 2D filter kernel. Cross-
channel results are then analyzed through a 1x1 point-wise
convolution layer. This results in a more efficient computing
and parameter analysis than regular convolution while main-
taining accuracy with few or no visible drops. By one form,
this depth-wise convolutional layer will be accompanied by
a prior 1x1 convolutional bottleneck layer alone or with a
subsequent 1x1 convolutional point-wise layer. Such a com-
bined structure of dense blocks with depth-wise layers
results in an extremely efficient neural network that signifi-
cantly reduces resource usage by reducing the number of
required computations while maintaining a sufficiently high
accuracy. This DDB-based backbone also is much easier to
train from “scratch” from sample data rather than fine-tuning
known standard networks and models since relatively fewer
training sets (or iterations) are needed. This is useful for
many usages that are not in the RGB domain (and where
fine-tuning is not feasible) such as medical images, depth
images, multi-spectrum images, and so forth. The backbone
also may use a stem that includes depth-wise convolutional
layers to increase efficiency without lowering accuracy.

[0029] In addition, the object classifying front-end of the
neural network has been made more efficient by providing a
depth-wise feature pyramid structure that includes a down-
sampling pyramid followed by an upsampling pyramid that
is significantly improved for efficiency as disclosed herein.
In detail, a conventional front-end in SSD and/or DSOD
structured networks have a downsampling part with increas-
ingly smaller feature maps the deeper the feature map (or
prediction layer) thereby forming a downsampling pyramid.
Output from each prediction layer is provided directly for
prediction analysis. A limitation of this structure, however,
is that the shallower prediction layers at the start of the
front-end often lack semantic information of objects since
the data has not had a chance to be refined through many
layers. This causes inaccuracy, especially with small objects,
because the relatively large feature maps of the shallower
layers will not have sufficiently precise information to
capture details of smaller objects. This reduces the amount
and precision of the data used as the basis of the prediction.

[0030] To overcome this problem, a two pyramid structure
is used to re-direct the information flow from deeper and
smaller feature maps at the deeper end of the conventional
single pyramid structure, near the end of a first downsam-
pling pyramid for example, to shallower larger layers near
the start of the downsampling pyramid. This is accomplished
by using a downsampling path and a reverse upsampling
path that forms an upsampling pyramid, and the reverse
upsampling path has been found to be very effective for
small object detection. (see for example, Fu, C. Y. et al.,
“DSSD: Deconvolutional single shot detector”, arXiv pre-
print arXiv:1701.06659 (2017)), and feature-pyramid-net-
works (FPN) (see Lin, T. Y., et al., “Feature pyramid

Nov. 25, 2021

networks for object detection”, CVPR, pp. 936-944 (2017)).
However, most of these conventional pyramid front end
systems implement the reverse-path via deconvolution
operations, which greatly increases the model complexity
because deconvolution has about the same computing com-
plexity of a convolutional layer thereby adding a computa-
tionally heavy layer to the network.

[0031] To resolve this difficulty and improve the efficiency
of the front end, the present method and system provide a
down sampling of the feature maps that includes the use of
concatenation of output from a pooling stack and a depth-
wise stack that includes at least one depth-wise convolu-
tional layer to form the feature map for a next prediction
layer in the downsampling pyramid. Then, the upsampling
of feature maps includes a bilinear interpolation followed by
a depth-wise convolutional layer to form a larger interme-
diate feature map for a next prediction layer in an upsam-
pling pyramid. The intermediate feature map is then
summed, element by element, with a feature map from the
downloading pyramid that has a corresponding size to the
current intermediate feature map, thereby forming a final
upsampled feature map for the next prediction layer. This
permits information from the shallower layers in the down-
loading pyramid to contribute to the information in the much
later and refined layers in the upsampling pyramid, where
the information is obtained to form predictions.

[0032] The results of this Tiny-DSOD structure include a
significant reduction in the computational load while main-
taining very good accuracy such that Tiny-DSOD is an
excellent lightweight object detection system for low
resource devices or other low power priority systems, such
as with “always on” applications. Particularly, the network
architecture described herein results in about %6 parameters
and about %5 FLOPs relative to the smallest DSOD model
(DSOD-smallest), and still maintains a similar accuracy.
Also, Tiny-DSOD described herein has slightly less FLOPs
relative to MobileNet-SSD, SqueezeNet-SSD, and Pelee
networks, while only about ¥5-% the number of parameters
and about 2-8% better accuracy. Tiny-YOLO is considered
the fastest conventional object detector with about 16 times
more parameter size, about 7 times more FLLOPs, and about
15% less accuracy than the Tiny-DSOD described herein.
Thus, the described present Tiny-DSOD outperforms state-
of-the-art methods (MobileNet-SSD-v1/v2, SqueezeDet,
Pelee, Tiny YOLO, etc.) in all the three metrics (parameter-
size, FLOPs, and accuracy) in each compared benchmark
(PASCAL VOC 2007, KITTI, and Microsoft’s confidential
consortiums (COCO) framework). For instance, the dis-
closed tiny-DSOD achieves 72.1% mAP with only 0.95 M
parameters and 1.06B FLOPs, which shows much improved
and reduced resource requirements compared to the conven-
tional systems.

[0033] Such reduction in resources, and better trade-off
between accuracy and resources, permits small devices to
have more capacity to use other applications while perform-
ing object detection and/or have longer lasting battery
power, more processing capacity, and more memory capac-
ity thereby improving the functioning of these small com-
puting or computer devices. Thus, due to its high accuracy,
small model size, and fast processing speed, Tiny-DSOD
may have many potential applications on real-time video
surveillance, mobile phone usages, autonomous driving
usages, and usages for battery-powered devices, always-on
devices, and so forth.

US 2021/0365716 Al

[0034] Referring to FIG. 1, a process 100 is provided for
a method and system of deep supervision object detection
for reducing resource usage. In the illustrated implementa-
tion, process 100 may include one or more operations,
functions or actions 102 to 114 numbered evenly. By way of
non-limiting example, process 100 may be described herein
with reference to example image processing system 1100 of
FIG. 11, and/or neural networks of FIGS. 3-9, and where
relevant.

[0035] Process 100 may include “obtain image data of
pixels of at least one image having content with one or more
objects” 102. This operation may include obtaining pre-
processed raw image data with RGB, YUV, or other color
space values that include chroma and/or luminance values,
and including non-human-visible color spaces such as infra-
red, and so forth. The pixel values may be provided in many
different additional forms such as gradients, histograms, and
so forth. This also may include depth data such as from a
depth map, model, and the like. This operation also may
include any pre-processing necessary to convert raw image
data into data that is compatible with input for the neural
network described herein.

[0036] Process 100 may include “operate a neural network
having at least one sequence of depth-wise dense blocks
wherein each depth-wise dense block has at least one
convolutional layer” 104. Thus, a deep supervision object
detection neural network may have a backbone with at least
one sequence of depth-wise dense blocks (DDBs). By one
form, each sequence has four or six DDBs, and the backbone
may have four sequences. By one example, a first sequence
may have four DDBs while three more subsequent
sequences may have six DDBs each. The sequences (or
dense stages) may be separated by transition stages where
each transition stage (or layer) may have a 1x1 point-wise
convolutional layer to perform cross-channel analysis. By
one form, the transition stages also each include a pooling
layer, such as max pooling, but by other options, some but
not all of the transition stages have a pooling layer, and by
one particular form, the first two transition stages have
pooling layers, but the last two transition stages do not have
a pooling layer. Thus, by one example, for four dense stages,
there are a total of four transition stages, one after each
DDB. Other alternatives for the layer order in the neural
network and the one or more sequences of the DDBs is
provided below.

[0037] As to the propagation of image data (or more
particularly, feature map values) through the DDB itself, and
in order to “operate an individual depth-wise dense block”
106, this first may involve process 100 including “receive
input from a previous layer and having multiple input
channels” 108. Initially, image data may be provided to the
neural networks in color space channels such as R, G, B
channels for example for three channels at 300x300 pixels
each, but could be other image data parameters and resolu-
tions as described herein. Thereafter, each filter or kernel
applied on a convolutional layer may form a separate output
channel, and in turn a separate data input (or feature map) for
the next layer. Thus, by one of the examples provided herein,
the input channels per layer received by a DDB range from
128 to 256, although many variations could be used.
[0038] Then, process 100 may include “separately propa-
gate, at the same depth-wise convolutional layer, channels of
the multiple input channels” 110. For instance, the DDBs
described herein have a 3x3 (referring to a 3x3 pixel filter

Nov. 25, 2021

or kernel) depth-wise (DW) convolutional layer where the
filter has a stride of 1. By one form, the DDB also has a
previous (or prior) 1x1 bottleneck convolutional layer that is
a cross-channel layer that initially sets the number of chan-
nels that is to be input to the for the depth-wise layer. By one
form, a predetermined bottleneck ratio is used, and/or a
predetermined growth rate is used, to set and control (or is)
the number of channels, and as described below. By one
example, the growth rate may change from DDB sequence
to sequence, and may change according to different formu-
las. Also, in the example herein, the number of output
channels of a DDB change linearly from small to large as the
DDB sequences are positioned along the neural network and
from the first layer toward the last layer of the neural
network (or in other words, as the network goes deeper for
example).

[0039] This operation also may include “apply at least one
separate filter to each propagating channel to form at least
one separate feature map of each propagating channel that is
separate from the feature maps of other channels” 112. Thus,
each filter may have its own output channel from the
depth-wise convolutional layer. Each filter may have differ-
ent coefficient values to attempt to match a different small
part of an object from a model of the neural network. By one
form, an additional 1x1 point-wise convolutional layer may
be provided after the depth-wise layer to remix the image
data of the different channels.

[0040] Process 100 may include “concatenate together
resulting data of multiple depth-wise dense blocks posi-
tioned prior to a next depth-wise dense block in the same
sequence and to form input data of either the next depth-wise
dense block in the sequence or a next layer of the neural
network” 114. Thus, for this operation, once data is provided
from the last layer within one of the DDBs, that output is
directly forwarded to each of the subsequent DDB in the
same sequence of DDBs. Directly here refers to avoiding
other intercepting convolutional layers, and it will be under-
stood that before or after each convolutional layer, other
types of layers may be provided such as auxiliary layers
including normalization such as batch normalization (BN),
and sign changing layers such as rectified linear unit (ReL.U)
operation layers mentioned herein. Another way to describe
the dense operation of the DDB sequence is to state that the
input of each DDB, except the first DDB in the sequence,
directly receives the concatenated image data output from
each prior DDB in the same sequence as the current (or next)
DDB receiving the data. The last DDB of a sequence of
DDBs provides the concatenated image data to the next
layer in the neural network, which may be a layer in a
transition stage of the network.

[0041] By other alternatives, the backbone of the neural
network also may have a stem including multiple convolu-
tional layers before providing the resulting output feature
maps to an extractor that has the DDB sequence(s). By one
form, the stem has at least one depth-wise convolutional
layer as well, and by one specific example, has depth-wise
convolutional layers alternating with non-depth-wise con-
volutional layers.

[0042] Process 100 may include “classify the one or more
objects at least partly depending on the output of the at least
one sequence of depth-wise dense blocks in the neural
network™ 116. Once the data is ready for classification, a
classifying front-end of the neural network may be used to
determine the classifications of the objects detected at the

US 2021/0365716 Al

backbone. By one form, this includes processing the image
data (or feature maps) received from one or more of the
transition layers (or stages) in the backbone. By one form,
this may include obtaining the feature maps of the first and
third transition stages of the backbone. Otherwise by another
option, the feature maps of the last transition layer of the
backbone is used.

[0043] By one form, a depth-wise feature pyramid net-
work (D-FPN) is used as the front end, and this may include
first downsampling the feature maps in a downsampling
pyramid and then upsampling the feature maps in an upsam-
pling pyramid, where the pyramids are placed tip to tip to
form an hourglass side profile. The downsampling is per-
formed by concatenating data from a pooling stack, which
may be max pooling, and a DW stack with at least one DW
convolutional layer. The DW stack may have a bottleneck
1x1 convolutional layer before the DW convolutional layer,
and the pooling stack may have a 1x1 point-wise convolu-
tional layer after the pooling layer. The upsampling may
include bilinear interpolation applied to a feature map and
then applying a DW convolutional layer. The resulting
intermediate feature map is then summed element by ele-
ment to a feature map from the downsampling pyramid, and
by one form, to a down-sampled feature map with a size
corresponding to the size of the intermediate results of the
upsampling DW convolutional layer. The resulting data
forms a prediction layer and the data is provided to a
prediction unit that compares the values of the prediction
layer to one or more thresholds for different objects, or parts
of objects, for example, to determine semantic labels of the
objects.

[0044] Referring now to FIG. 2, a sequence 200 of dense
blocks 204, 206, 208, and 210 is provided to demonstrate
dense block-to-block propagation that may be used in the
DDB sequences of the disclosed neural network. By one

Nov. 25, 2021

gated, the operation of the depth-wise layer on the DDBs
and control of the number of channels is provided below.
[0045] When the input layer is not part of the DDB
sequence, the input data may be provided only to the first
DDB 204, but alternatively, could also be provided directly
to each of the DDBs 204, 206, 208, and 210 of the sequence
as if the input layer 202 is a DDB. Otherwise, if input layer
202 is a DDB that is part of the sequence, each of the DDBs
204, 206, 208, and 210 of the sequence 200 will receive the
output from the input layer 202. Each DDB provides its
output to each subsequent DDB in the sequence 200. Thus,
DDB 204 provides its output to DDBs 206, 208, and 210;
DDB 206 provides its output to DDB 208 and 210; and DDB
208 just provides its output to DDB 210. From the input
perspective, all of the output data, or more particularly
feature maps, from each of the DDBs is concatenated or
fused together as one input vector (or matrix) to be input to
a subsequent “next” DDB or before being providing to the
next non-DDB layer after the DDB sequence. Thus, the
output from DDBs 202 and 204 are fused before being
provided to DDB 206, the output from DDBs 202, 204, and
206 are fused before being provided to DDB 208, and so on.
[0046] Referring to FIG. 3, a detailed architecture or layer
order of a backbone 301 of a Tiny-DSOD network is
provided to first detect the objects before a front-end of the
neural network classifies the objects. Table 1 below lists the
example layers and the parameters of the layers that may
form the backbone 301. The backbone 301 may have a stem
302 followed by an extractor 304. The stem 302 provides an
efficient way to simultaneously reduce feature map resolu-
tion while keeping a sufficient amount of object information
during resolution downsampling with several lightweight
convolution and/or depthwise convolution layers. Generally
thereafter, the extractor 304 provides feature maps with
values that indicate whether an object exists as well as the
shape and position of the object.

TABLE 1

Example Layer Order of Backbone of a Deep
Supervision Object Detection Neural Network

Layer Type Output Size Component No.

Stem (302) Convolution 64 x 150 x 150 3 x 3 Conv, stride 2 306
Convolution 64 x 150 x 150 1 x 1 Conv, stride 1 308

DW Convolution 64 x 150 x 150 3 x 3 DWconv, stride 1 310

Convolution 128 x 150 x 150 1 x 1 Conv, stride 1 312

DW Convolution 128 x 150 x 150 3 x 3 DWconv, stride 1 314

Pooling 128 x 75 x 75 2 x 2 max pool, stride 2 316

Extractor (304) Dense Stage 0 256 x 75 x 75 DDB (32) *4 318
Transition Stage 0 (320) 128 x 38 x 38 1 x 1 Conv, stride 1 322

2 x 2 max pool, stride 2 324

Dense Stage 1 416 x 38 x 38 DDB (48) *6 326

Transition Stage 1 (328) 128 x 19 x 19 1 x 1 Conv, stride 1 330

2 x 2 max pool, stride 2 332

Dense Stage 2 512 x 19 % 19 DDB (64) *6 334

Transition Stage 2 (336) 256 x 19 x 19 1 x 1 Conv, stride 1 338

Dense Stage 3 736 x 19 x 19 DDB (80) *6 340

Transition Stage 3 (342) 64 x 19 x 19 1 x 1 Conv, stride 1 344

form, the dense blocks 204, 206, 208, and 210 are the DDBs
described herein. An input layer 202, may be a DDB itself
or may be a neural network layer before the sequence 200 of
DDBs. The input layer 202 may provide input data of
multiple channels. As explained below, each DDB 204, 206,
208, and 210 may have its own depth-wise convolutional
layer that separately analyzes the channels being propa-

[0047]

The backbone 301 may receive an input with

multiple channels such as 3 channel 300x300 images where
the channels are the RGB pixel color data for the present
example. The stem 302 starts with one 3x3 regular convo-
Iutional layer 306 and one 1x1 pointwise convolutional layer
308, and then two depth-wise layers 310 and 314 are used
with a 1x1 convolutional layer 312 between them. The

US 2021/0365716 Al

depth-wise layers are provided to attempt to reduce compu-
tational load and parameters while maintaining accuracy as
mentioned above. A pooling layer 316 is then used to reduce
the data size. The pooling used is max pooling, but averag-
ing or other pooling technique could be used instead. As
shown on Table 1, the output size of each layer for both stem
and extractor is provided as: (number of channels (or
filters)xfeature map widthxfeature map height), and the
filter size as well as layer type and stride for each layer is
shown in the component column.

[0048] Four DDB stages labeled dense stage 0 to 3 on
Table 1 and DS 318, 326, 334, and 340 on backbone 301 are
provided in the extractor 304 where each dense stage 0 to 3
has at least one sequence 319, 327, 335, and 341 of DDB
blocks respectively. While each dense stage 0 to 3 has one
sequence of DDBs here, other variations are possible where
one or more of the dense stages may have sequences of
dense blocks (DBs) but without depth-wise layers (for
example, non-DDB blocks instead) as long as at least one
the dense stages includes a sequence of DDBs. Also, while
each DDB sequence is shown with consecutive DDB blocks,
individual dense stages may have a DDB sequence without
consecutive DDB blocks, where consecutive here, refers to
convolutional layers considered within a DDB block versus
other types of layers that could be placed between DDB
blocks such as pooling layers or other non-convolutional
layers, but not considering auxiliary layers such as normal-
ization layers such as batch normalization (BN) layers, or
sign changing layers such ReL.U layers. By one form, a BN
and ReLU layer directly follows each convolutional layer
although not shown on the backbone 301 (or table 1). Thus,
a single DS could have multiple sequences of consecutive
DDBs, divided by one or more non-DS layers, or could have
a single sequence with non-consecutive DDBs divided by
non-DDB layers.

[0049] Also as shown on table 1, for each dense stage O to
3, the DDB sequence has (or is repeated) the number of
times after the symbol “*”. Thus, in the example shown, the
first dense stage O has a DDB sequence 319 with four
consecutive DDBs while the DDB sequences 1 to 3 each
have a DDB sequence 327, 335, and 341 with six consecu-
tive DDBs. While all four sequences could have the same
number of DDBs, each or individual DDB sequences could
have a different number of DDBs. Many variations of the
components mentioned here are contemplated.

[0050] The number in the parenthesis DDB(g) is a growth
rate g that also is the number of output channels (or filters)
output from individual DDBs of a sequence of DDBs as
explained elsewhere herein.

[0051] The transition stages (or layers) 320, 328, 336, and
342 are labeled TS and are positioned to alternate with the
dense stages so that one transition stage operates after each
dense stage, although other variations could be used. The
transition stages act to fuse channel-wise information from
the previous dense stage and compress the channel number
for computing and parameter efficiency. By one approach,
each TS has a point-wise convolutional layer (PT Conv)
322, 330, 338, and 344 respectively, but only the first two
TSs 320 and 328 have a pooling layer 324 and 332 respec-
tively, and here max pooling while other techniques such as
average pooling could be used. It will be understood that all
or more or less of the transition stages may have one or more
pooling layers. Other details of the DDB sequences are
provided below.

Nov. 25, 2021

[0052] Referring to FIGS. 4-6, two example DDB
sequences 400 and 600 are provided and that are alterna-
tively used at a single dense stage. Table 1 refers to the DDB
sequence 600 (FIG. 6). Sequence 400 is explained first.
[0053] Referring to FIG. 4, one example DDB-sequence
400 provides four consecutive DDBs A (402), B (404), C
(406), and D (408) respectively and in a single dense stage,
such as dense stage O described above. The I-circle 434
indicates the input to the first DDB A (402) and has n output
channels from a previous network layer and is now the
number of input channels to DDB A 402.

[0054] Each DDB A to D here has a number of convolu-
tional layers, such as three, and then ends with a concat-
enation operation shown as a C-circle 436, 438, or 442. To
provide dense network operations, each concatenation
C-circle concatenates or fuses output data from all previous
DDBs in the sequence. The number under the C-circle (n+g)
to (n+4g) indicates the number of output channels of the
DDB as explained below. By one approach shown, the
I-circle input data is provided to the first DDB and also is
concatenated directly to each C-circle at the output of each
DDB, as shown by the dotted line. By an alternative form,
however, the input from I-circle to the first DDB A 402 is
only provided to the first DDB A 402 and is not directly
concatenated at the outputs of any of the DDBs A to D. By
other forms, the I-circle input is provided to the first DDB
A 402 and is only concatenated at C-circle 436 with the first
DDB A 402 output and/or other selected individual DDBs.
[0055] Each DDB Ato D in this example has three layers,
a first point-wise bottleneck layer that is a 1x1 convolutional
layer 410, 416, 422, or 428 respectively, each here with a
stride of 1. Then, a 3x3 depth-wise convolutional (DW
conv) layer 412, 418, 424, or 430 is used respectively in each
DDB, and each with a stride of 1. Finally, a data reducing
point-wise 1x1 convolutional layer 414, 420, 426, or 432 is
used respectively, and each with a stride of 1. The bottleneck
layers 410, 416, 422, or 428 are provided to reduce the
number of inputs provided to the DW layers 412, 418, 424,
or 430, while the second or subsequent point-wise layers are
used to perform cross-channel analysis of the feature data
separate from the individual channel analysis at the depth-
wise layer for more accurate results with less parameters.
[0056] Referring to FIG. 5, an example depth-wise con-
volutional layer 500, that is the same or similar to the layers
412, 418, 424, or 430, is shown to explain the depth-wise
operation. Input 502 may have a number of channels 503
that are provide to the DW layer 500. The channels are
separated (or at least treated separately) as shown by chan-
nels 0 to N (504), and then one separate 2D (for instance
3x3) filter (or kernel) F, to F,, may be applied to each
channel. The operation of applying a filter to a channel is
shown by the dot-circle (506). In the current example, one
3x3 filter is applied to each channel as shown here, and the
filters may have different coeflicients, and as generated
during training of the neural network. More precisely, each
channel has one 2D filter so that the number of input
channels and output channels are the same for a depthwise
convolutional layer. For instance, if the number of input
channels is 64, the corresponding output channels is also 64.
By one form, each channel may have a 3x3 2D filter kernel,
or other size such as 5x5. The result is a set of feature maps
FM, to FM,, with one feature map per channel and per filter.
In this example, as mentioned, one separate filter is applied
to each channel. Thus, the term “separate” here refers to its

US 2021/0365716 Al

application to an individual channel and not necessarily the
contents of the filter. Thus, the filters could have a different
size or shape, or simply different coefficients, or these could
all be the same for the filter applied to all channels.
[0057] The output 512 with channels 514 then may be
provided to the second 1x1 convolutional layer 414, 420,
426, or 432 in order to reduce the number of output channels
generated by the DW layer 500 so that the number of output
channels provided for concatenation (at a C-circle) is less
than the number of output channels N. For DDB sequence
600 described below, the 1x1 point-wise layer is omitted,
and the set of output feature maps N are provided for
concatenation at the DDB instead.

[0058] Returning again to FIG. 4, and with regard to the
control of the number of output channels for each layer, the
DDB sequence 400 also may be described as stacked DDBs
parameterized by growth rate g and bottleneck (or expan-
sion) ratio w. Particularly, the three layer arrangement
(bottleneck-DW-PW) of the DDB first expands the input
channels w times to generate wxn output channels of the
layer 410, where n also is the number of input channels input
to the first DDB A 402 as mentioned above, and bottleneck
ratio w is an integer hyperparameter to control the model
capacity. The bottleneck ratio w may be set the same for all
DDBs in the same DDB sequence, but could be set the same
for all sequences in the same extractor as well. While
bottleneck ratio w acts to expand the number of output
channels from the input I-circle 434 to the DW convolu-
tional layer 412 by using the bottleneck layer 410, the
bottleneck ratio w also acts to set a limit to the growth of the
number of output channels. The bottleneck ratio w is pre-
determined during training of the neural network until
satisfactory results are reached, and then may be fixed for
the actual run-time of the neural network.

[0059] When the depth-wise convolution layer 412 is
applied, the same number of output channels (wxn) is
maintained by providing one filter per channel. Then, the
second 1x1 convolutional layer 414 obtains the output from
the DW convolutional layer 412 and projects feature maps
to g output channels, where g is the growth rate of the DDB
A 402. Finally, concatenation is used to merge the input and
output feature maps together, instead of the residual addition
operation in MobileNet-v2. See Sandler, M., et al., “Inverted
residuals and linear bottlenecks: Mobile networks for clas-
sification, detection and segmentation”, arXiv preprint
arXiv:1801.04381 (2018). The resulting number of output
channels of DDB A (402) is n+g. The growth g also is
predetermined during training of the neural network until
satisfactory results are reached, and then may be fixed for a
particular DDB during the actual run-time of the neural
network.

[0060] Since DDB sequence 400 has two hyper-param-
eters w and g, the DDB sequence 400 is denoted as DDB(w,
g). If L DDB blocks are stacked in one stage, the Overall
complexity of the stacked structure is O(L*g?), where L is
the number of blocks in a sequence. Thus, resources will
grow rapidly with L so that g should be controlled to be a
relatively small number.

[0061] The three layer pattern (bottleneck-DW-PW)
repeats for each DDB so that the bottleneck layer sets the
number of output channels to be repeated for the DW layer,
and the point-wise layer after the DW layer reduces the
number of output channels to n plus some multiple of g. The
number of output channels changes for each DDB block

Nov. 25, 2021

since the number of inputted channels from the concatena-
tion at the previous block also changes. Thus, since the
output channels for DDB A 402 is n+g, the output channels
for the three interior layers of the next DDB B 404 in order
are wx(n+g), wx(n+g), and g. After the concatenation with
the previous DDB output, the final number of output chan-
nels of DDB B is n+2g. Likewise, the number of output
channels of each layer of DDB C is wx(n+2g), wx(n+2g),
and g so that the number of output channels of the DDB C
after concatenation is n+3g; while the number of output
channels of each layer of DDB D is wx(n+3g), wx(n+3g),
and g so that the number of output channels of the DDB D
after concatenation is n+4g.

[0062] Referring now to FIG. 6, a dense stage has a DDB
sequence 600 with a couple of the DDB blocks is shown (not
all DDB blocks in the sequence are shown). While only two
DDBs 602 and 604 are shown, it will be understood a
sequence of four, six or some other number of DDBs may be
provided in a single DDB sequence. The DDB sequences
600 here are listed on Table 1.

[0063] It was observed that the piece-wise layer after the
DW layer in a DDB from DDB sequence 400 was at least
mostly redundant to the bottleneck layer of the next adjacent
DDB so that one of the 1x1 convolutional piecewise layers
could be eliminated without significantly reducing the
improved characteristics of the neural network. Thus, DDB
sequence 600 has two layers in each or individual DDBs 602
or 604 instead of three layers, and includes the 1x1 convo-
Iutional bottleneck layer 606 that first compresses the input
channels to the size of growth rate g, and then has a 3x3 DW
convolutional layer 608 or 612 to perform depth-wise con-
volution. The resulting data is the output channels (or set of
feature maps) of the depth-wise convolution (DW conv)
layer 612 which is directly concatenated with the output of
the other prior DDBs (and/or the input from I-circle) without
the extra point-wise 1x1 convolutional layer projection. This
is repeated for each DDB in the sequence.

[0064] In this case, the bottleneck ratio w is not used, and
the DDB sequence 600 may be described as a stacked DDB
sequence parameterized by growth rate g. The overall com-
plexity O(L?g?) of L stacked DDBs on DDB(g) sequence
600 is much lower than that of DDB(wxn) sequence 400
because the first two layers in each DDB(wxn) block are
functional depending on variable n, while the DDB(g) only
has the first layer functional depending on variable n, so that
the complexity of DDB(wxn) is O(L’g?). Consequently,
when the number of DDB blocks is fixed as L, DDB(g)
allows for a much larger g value compared to DDB(wxn)
when putting the whole network into processor memory
during a training procedure. The larger g will compensate for
possible accuracy loss. This also results in better accuracy
than the DDB(wxn) sequence 400 under similar resource
constraints in addition to the increase in efficiency.

[0065] For these examples of DDB sequences 400 and
600, while growth rate g may be set the same for all DDBs
in the same sequence, a variational growth rate strategy can
be used that sets g differently for different DDB sequences
in the neural network by assigning a smaller g to shallower
(towards the start of the neural network) stages with large
spatial size, and increasing g linearly with each deeper stage
(towards the end of the neural network). Thus, by the present
example on table 1 and backbone 301, the growth rate g may
be varied from sequence to sequence, and here by a linear
formula g=16(DS)+32, where DS=0 to 3 as on Table 1 so

US 2021/0365716 Al

that g is 32, 48, 64, and 80 respectively for DS 0 to 3. Other
variations could be used instead of a linearly increasing
strategy.

[0066] Otherwise, the operation of the depth-wise dense
blocks 602 and 604 is the same or similar to that as shown
for DDB sequence 400.

[0067] Referring to FIG. 7, a depth-wise feature pyramid
network (D-FPN) based predictor or front-end 700 is pro-
vided to semantically classify detected objects in a cost-
efficient manner that uses information from the shallow
layers of a downloading pyramid while efficiently obtaining
information for predictions without using complex decon-
volution operations as mentioned above. To accomplish one
or more of these advantages, front-end or predictor 700 has
a downsampling pyramid 701 followed by an upsampling
pyramid 703 placed tip to tip to form an hour glass profile.
This configuration performs the upsampling and downsam-
pling in a much more efficient way by using depth-wise
convolution as explained in detail in the following. On front
end 700, the circled down-arrow symbol represents a down-
sampling operation, the circled up-arrow symbol represents
an upsampling operation, the C-circle represents concatena-
tion, and the circled plus symbol represents a summation
operation all as described below. Each prediction layer
shown 712 to 728 numbered evenly has a depicted size that
represents an upsampled or downsampled size of the one or
more feature maps of that particular prediction layer to show
the relative size of the feature maps among the upsampled or
downsampled prediction layers. The details are provided as
follows.

[0068] The front end 700 first obtains data in the form of
feature maps from one or more transition stages (or layers)
of the backbone, such as backbone 301 (FIG. 3). Here, one
or more feature maps are obtained from transition layer 1
702 (328 on Table 1 and backbone 301) and transition layer
3706 (342 on Table 1 and backbone 301) which is the last
transition layer (and the last layer generally) of the backbone
301. However, it will be understood that many different
variations could be used, including obtaining data from
more or less of the transition layers, or from different layers
of the backbone 301, and/or in a different order than that
shown on front-end 700

[0069] The feature map or maps of transition layer 1 may
be downsampled 704 and then concatenated 708 with the
feature maps of transition layer 3 before being downsampled
710 again to form a downsampled feature map or maps for
a prediction layer 712 that is considered a first layer of the
downsampling pyramid 701. The down sampling is then
repeated to form at least three other prediction layers 714,
716, and 718 with the downsampling operations 732, 734,
and 736 respectively, although less or more such down-
sampled layers (each with one or more feature maps) could
be used instead.

[0070] Referring to FIG. 8, a downsampling operation 800
(same as downsampling operation 704, 710, 732, 734, and
736) is explained and includes providing input image data
802 of a feature map and provided to both a pooling stack
812 and a depth-wise (DW) stack 814. The pooling stack
812 has a pool layer 804 that may be a 2x2 max pooling
layer with a stride of 2, but could use averaging or other
pooling technique instead. This provides downsampling by
a factor of two which is maintained for each downsampling
operation 704, 710, 732, 734, and 736, but could be varied
from operation to operation. The pooled feature map is then

Nov. 25, 2021

provided as input to a 1x1 point-wise convolutional layer
806 with a stride of 1 and resulting in 64 output channels as
the result of the pooling stack 812.

[0071] For the depth-wise stack 814, the same input is
received by a 1x1 piece-wise convolutional layer 808 with
a stride of 2 and resulting in 64 output channels, which are
then provided to a depth-wise convolutional layer 810 with
a stride of 2 and also providing 64 output channels. The
results of the pooling stack 812 and depth-wise stack 814 are
then concatenated 816 for fusing to form a single feature
map. This is repeated for downsampling of each or indi-
vidual feature maps of a prediction layer being analyzed.
[0072] Returning to FIG. 7, the upsampling pyramid 703
of the front end 700 upsamples the resulting feature map(s)
of the last prediction layer 718 from the downsampling
pyramid 701. The upsampling is then repeated to generate
upsampled prediction layers 720, 722, 724, 726, and finally
728 each with one or more upsampled feature maps,
although less or more prediction layers could be generated
as desired. In particular, the upsampling pyramid 703 starts
by applying an upsampling operation 738 to the feature
maps of the last prediction layer 718 of the downsampling
pyramid 701. An upsampled feature map is considered an
intermediate feature map that is then summed element-by-
element to one of the downsampled feature maps from the
downsampling pyramid 701, and here to feature map of
prediction layer 716 which has a size corresponding to the
size of the feature map resulting from the upsampling of the
feature map of prediction layer 718. This results in a main
or final upsampled feature map for prediction layer 720 that
is formed by factoring the information from both the pre-
vious feature map but also an earlier feature map of the
downsampling pyramid 701 to better capture shallower
information. This is represented by the arrow from the
downsampling prediction layer with a similar size (such as
layer 716) to the summation symbol 739. These operations
of upsampling 738, 740, 744, 748, 752 and then summation
739, 742, 746, 750, and 754 with a downsampled feature
map of a corresponding size are respectively repeated to
generate each upsampled feature map of prediction layers
720, 722, 724, 726, and finally 728, but could be used to
generate less than all feature maps by using other techniques
as well to generate at least some of the upsampled feature
maps.

[0073] Referring to FIG. 9, the upsampling operation 900
(which is the same as operation 738, 740, 744, 748, and 752)
first includes a bilinear upsampling layer 902 that upsamples
by a factor of two, and this is the same for the generation of
each of the upsampling layers although varying factors, or a
different uniform factor, could be used instead. The resulting
upsampled feature maps are then provided to a depth-wise
3x3 convolutional layer 904 with a stride of 2 and that
generates a layer with 128 output channels (or feature maps)
as the result of the upsampling operation 900. By one
approach, thereafter the channels are treated separately
throughout the upsampling pyramid 703 without cross-
channel re-combination, such as by 1x1 point-wise layers
for example. Also, it will be noted that BN, Rel.U, and/or
other auxiliary layers may be applied before or after each
convolutional layer of the front end as well.

[0074] Once the feature maps are upsampled, the feature
maps, starting with the feature map(s) of prediction layer
718 that is the last downsampled feature map, are provided
to a prediction unit 730 that compares the values of the

US 2021/0365716 Al

feature maps, or values based on the feature maps, to
thresholds for example to semantically classify the detected
objects, although other techniques could be used. The evalu-
ations below show that D-FPN can achieve a considerable
detection accuracy boost with very slight increases of com-
putation cost.

[0075] Referring to FIGS. 10A-10B, a process 1000 is
provided for a method and system of deep supervision object
detection for reducing resource usage. In the illustrated
implementation, process 1000 may include one or more
operations, functions or actions 1002 to 1028 numbered
evenly. By way of non-limiting example, process 1000 may
be described herein with reference to example image pro-
cessing system 1100 of FIG. 11, and/or neural networks of
FIGS. 3-9, and where relevant.

[0076] Process 1000 may include “train neural network
from original sample data” 1002. This is a preliminary
off-line operation, and the advantage here is that the neural
network with DDBs is easier to train from scratch (or from
original sample data) rather than fine-tuning a standard
pre-trained neural network. Specifically, the training of the
above mentioned architecture of a tiny-DSOD neural net-
work in supervised-learning settings may include a training
set of RGB (or other domain) images where each image has
semantic information. The semantic information may be
mapped to determine a ground truth of object bounding
boxes in the images, which can be obtained by estimating
the bounding box of every object in each image through the
prediction layer or by other known automatic methods. The
training then may involve initialization by training a stan-
dard object localization network to match the prediction
output to the ground truth as a loss function for the super-
vision. The next training operation may involve data prepa-
ration, which refers to generating training data for the
present Tiny-DSOD neural network architecture using the
ground truth outputs to provide a supervised system and
adjusting tunable parameters such as state weights and filter
coeflicients to be used for the final run-time neural network.
Since the DDB sequences are so efficient, significantly fewer
training iterations are needed to perform the parameter
tuning compared to conventional neural networks for object
detection with sematic classification. The training from
scratch also proves to be less dependent on the number of
training samples. The training can be completed with a
relatively small number of training samples. It will be
understood, however, that fine-tuning or other types of
training could be used instead.

[0077] Then during run-time, process 1000 may include
“obtain image data of pixels of at least one image having
content with one or more objects” 1004. This operation may
include obtaining pre-processed raw image data with RGB,
YUYV, or other color space values that include chroma and/or
luminance values, and including non-human-visible color
spaces such as infra-red, and so forth.

[0078] Process 1000 may include “perform pre-NN opera-
tions to convert raw input to input data compatible with a
deep supervision object detection neural network™ 1006.
This operation also may include any pre-processing neces-
sary to convert raw image data into data that is compatible
with input for the neural network described herein. The
pre-processing may include demosaicing, noise reduction,
pixel linearization, shading compensation, resolution reduc-
tion, vignette elimination, and/or 3A related operations
including automatic white balance (AWB), automatic focus

Nov. 25, 2021

(AF), and/or automatic exposure (AE) modifications, and so
forth. Also, the raw pixel values may be converted to many
different alternative forms such as gradients, histograms,
depth values such as on a depth map, and so forth. Thus, the
conversion of image data to be compatible with the neural
network also may include an initial feature extraction opera-
tion, such as those using gradients to identify (or provide
probabilities for) object edges or corners for example where
the probabilities may be used as inputs to the neural net-
work. It will be understood that the neural network herein is
not limited to any one particular format and type of image
data as the input.

[0079] Process 1000 may include “propagate input
through the deep supervision object detection neural net-
work backbone” 1008, and this may include “propagate data
through stem using at least one depth-wise convolution
layer” 1010, and through a stem of a backbone of the neural
network. As described above, the stem may have a series of
convolutional layers including at least one, but here two,
depth-wise convolutional layers either consecutive or as
here spaced apart by at least one regular convolutional layer.
The stem may end with a pooling layer after the second DW
layer by one example.

[0080] The process 1000 may include “propagate data
through extractor using at least one sequence of depth-wise
dense blocks and at least one transition layer after each
block™” 1012. The extractor of the backbone may include at
least one, but here four, sequences of DDBs forming a dense
stage where the dense stages are either positioned consecu-
tively or spaced from each other by at least one transition
stage. The individual DDB may have at least a bottleneck
layer and at least one depth-wise convolutional layer as
described above. By some options, a final point-wise con-
volutional layer may be provided after the depth-wise con-
volutional layer and within the DDB as well. The DDBs may
be consecutive within a single sequence or may be spaced
from each other by other types of layers. The DDB sequence
forms the denseness by having each DDB in a sequence
directly forward its output to each subsequent DDB in the
same sequence that concatenates the output from previous
DDBs with the its own current output before passing the
concatenated output to be input to a next DDB. The transi-
tion layers at least have one cross-channel point-wise con-
volutional layer but also may have a pooling layer as well.
By one example, the earlier (or shallower) transition stages
have the pooling layer while the deeper transition stages do
not have the pooling layer. The combination of depth-wise
convolutional layer and dense block data connections pro-
vides a very efficient neural network with reduces FL.OPs
and parameters while maintaining relatively high accuracy.

[0081] Next, process 1000 may include “propagate data
through front-end of the neural network™ 1014, and as
described above, may include “obtain data from at least one
interior transition layer of the neural network backbone”
1016. This refers to the fact that the input data for the front
end not only receives data from the last layer of the
backbone, which in the current example is a transition layer
(or stage), but also at least one transition layer (or stage)
before the last transition layer in the backbone. For example,
out of four transition stages, the second and fourth transition
stages are used to provide data to the front end. The
transition image data (or feature maps) may be immediately
downsampled and concatenated as described above for front
end 700 (FIG. 7).

US 2021/0365716 Al

[0082] Then, process 1000 may include “use depth-wise
feature-pyramid network™ 1018, which first includes “per-
form downsampling operations concatenating a pooling
stack with a depth-wise stack with at least one depth-wise
convolutional layer” 1020. Thus, a pooling stack and a
depth-wise stack are separately applied to input data from a
previous layer (or feature map) and then concatenated back
together. The pooling stack may have a 2x2 max pooling
layer while the depth-wise stack has a 3x3 depth-wise
convolutional layer that outputs 64 channels by one
example. Both stacks may have point-wise cross-channel
layers as well, and the result of the downsampling operation
is 64 output channels that are concatenated together. This is
repeated to downsample each feature map in the downsam-
pling pyramid, thereby forming a series of downsampled
prediction layers having the downsampled feature maps.

[0083] Then, for the upsampling pyramid, process 1000
may include “perform upsampling operations with bilinear
interpolation before at least one depth-wise convolutional
layer” 1022. The bilinear interpolation performs upsampling
by a factor of 2. The DW layer may be a 3x3 convolutional
layer providing 128 output channels of intermediate feature
maps. This is repeated to generate each intermediate
upsampled feature map for a prediction layer. Using the
depth-wise convolutional layers to perform the upsampling
or downsampling or both creates a very efficient system with
reduced parameters while maintaining very good accuracy.
[0084] Process 1000 also may include “sum elements of
upsampled feature map with elements of downsampled
feature map after individual upsampling operations™ 1024.
As described above, after each or individual upsampling
operation, an upsampled intermediate feature map is formed,
and a summation operation is performed to form a final
upsampled feature map for a next prediction layer. The
summation includes an element-by-element summation of
values from the upsampled intermediate feature map and a

Nov. 25, 2021

can use the identification of the objects whether automatic
vehicle driving (or self-driving, autonomous driving, or
autopilot) applications, robotics, computer vision applica-
tions, medical diagnosis applications, augmented and/or
mixed reality headsets, and so forth.

Experiments

[0087] Experiments were conducted on three popular
benchmarks (PASCAL VOC 2007 (see Everingham, M., et
al., cited above), KITTI (see Geiger, A., et al., cited above),
and COCO (see Lin, T. Y., et al.,, “Microsoft COCO:
Common objects in context”, ECCV (2014)), and compared
Tiny-DSOD to state-of-the-art ultra-efficient object detec-
tion solutions such as Tiny-YOLO (see Redmond, J., et al.
cited above), MobileNet-SSD (vl & v2) (see Howard, A, et
al., “Mobilenets: Efficient convolutional neural networks for
mobile vision applications”, arXiv preprint arXiv:1704.
04861 (2017)); (see Sandler, M. et al. cited above), Squeeze-
Det (see Wu, B. et al., cited above), Pelee (see Li, X. et al.,
cited above), and so forth. Results show that Tiny-DSOD
outperforms these solutions in all three metrics (parameter-
size, floating point operations per second (FLOPs), accu-
racy) in each comparison. For instance, Tiny-DSOD
achieves 72.1% mean Average Precision (mAP) (https://
medium.cony/@jonathan_hui/map-mean-average-precision-
for-object-detection-45¢121a31173) with only 095 M
parameters and 1.06B FLOPs, which is significantly better
than the conventional systems while providing a low
resource requirement.

[0088] Configuration Alternative Comparisons

[0089] The configuration settings of the different alterna-
tive backbones extractors and front end of the Tiny-DSOD
framework described above were compared to each other by
using a PASCAL VOC 2007 dataset. Table-2 summarizes
the results.

TABLE 2

Ablation Study on PASCAL VOC2007 test set

DDB-b D-FPN Configuration #Params FLOPs mAP(%)

G/8-8-8-24, w = 2
G/8-8-16-16, w = 2
G/32-40-56-80
G/48-48-64-64
G/56-56-56-56
G/32-48-64-80

v (/32-48-64-80

0.90M 1.68B 63.1
0.97M 1.73B 64.6
0.82M 0.92B 69.3
0.89M 1.25B 70.3
0.90M 1.35B 70.5
0.90M 1.03B 70.2
0.95M 1.06B 72.1

NNSNSNSN

downsampled feature map from the downsampling pyramid.
By one form, the downsampled feature map selected for the
summation has a size corresponding to the size of the
upsampled intermediate feature map it is being summed
with.

[0085] Process 1000 may include “perform post-NN com-
putations with output probabilities of semantic object clas-
sifications to identify the one or more objects” 1026, where
the upsampled feature maps, or the data based on the feature
maps, are provided from the prediction layers to a prediction
unit to compare the values to thresholds for example to
determine the semantic label of the detected objects. Other
methods could be used instead.

[0086] Process 1000 may include “use identities of objects
for applications” 1028, where many different applications

where DDB-a is a DDB(g) configuration, DDB-b is a
DDB(w,g) configuration, and D-FPN is the front end con-
figuration using depth-wise convolutional layers as well as
other structure as described above. The number-series G/g0-
gl-g2-g3 in the “configuration” column is used to describe
the network settings where “gi” is the growth rate of DDB
in the i-th dense stage, and w is the expansion (or bottleneck)
ratio of DDB(w, g). A checkmark “4” indicates a certain
configuration identified for the column is adopted in the
evaluated network (row-wise), and otherwise a blank space
indicates the configuration was not used. Table 2 shows that
under similar resource usages (#parameters), DDB-b based
backbone performs much better (on FLLOPs and accuracy)
than that of DDB-a. Also, D-FPN can bring noticeable
accuracy improvement with very small parameter and FLOP
increases.

US 2021/0365716 Al
1

[0090] Benchmark on PASCAL VOC 2007

[0091] Tiny-DSOD on the PASCAL VOC 2007 testset
also was compared to existing full-sized and lightweight
models under the same settings for training. Table-3 shows
the results.

TABLE 3

Nov. 25, 2021
1

implementation optimization. On the other hand, Tiny-
DSOD directly uses Caffe without any additional optimiza-
tion, where Caffe has less efficient implementation for the
depth-wise convolution. Thus, Tiny-DSOD could run at a
much faster speed when an object detection system provides

Comparison to Conventional Object Detection Neural Networks

Method Input size Backbone FPS #Params FLOPs mAP(%)
Faster-RCNN 600 x 1000 VGGNet 7 134.70M 181.12B 73.2
R-FCN 600 x 1000 ResNet-50 11 31.90M — 77.4
SSD 300 x 300 VGGNet 46 26.30M 31.75B 77.2
YOLO 448 x 448 — 45 188.25M 40.19B 63.4
YOLOv2 416 x 416 Darknet-19 67 48.20M 34.90B 76.8
DSOD 300 x 300 DS/64-192-48-1 17.4 14.80M 15.07B 77.7
Tiny-YOLO 416 x 416 — 207 15.12M 6.97B 57.1
SqueezeNet-SSD*! 300 x 300 SqueezeNet 44.7 5.50M 1.18B 64.3
MobileNet-SSD*? 300 x 300 MobileNet 59.3 5.50M 1.14B 68.0
DSOD small 300 x 300 DS/64-64-16-1 27.8 5.90M 5.29B 73.6
Pelee 300 x 300 PeleeNet — 5.98M 1.21B 70.9
Tiny-DSOD 300 x 300 (G/32-48-64-80 78 0.95M 1.06B 72.1
where “*” indicates that these open-source models were customized implementations and/or optimizations for depth-

tested for these experiments because known speed reports
could not be obtained, and FPS stand for frames per second
to show the object detection analysis speed. The networks
above the double line are full-sized models, while networks
below the double line are lightweight models. Each of these
models has been described in articles already cited above).
[0092] The Tiny-DSOD achieves 72.1% mAP, which is
significantly better than most lightweight detectors, except
DSOD-smallest model. However, Tiny-DSOD has only %
parameters and %5 FLOPs compared to the DSOD-smallest
model. When comparing the Tiny-DSOD model with the
state-of-the-art full-sized models, there is still marginal

wise convolution.
[0094] Benchmark on KITTI 2D Object Detection

[0095] Next, the Tiny-DSOD was tested with autonomous
driving usages for a KITTI 2D object detection task. Dif-
ferent from PASCAL VOC, the KITTI dataset is composed
of extremely wide images of size 1242x375. To avoid the
vanishing of small objects, the input image was resized to
1200x300 instead of 300x300. This resolution will increase
the FLOPs for the Tiny-DSOD but will maintain good
detection accuracy. The results on a validation set are
reported in Table-4.

TABLE 4

KITTI 2D object detection results.

Method Input size #Params FLOPs Car Cyclist Person mAP(%)
MS-CNN 1242 x 375 80M — 85.0 752 75.3 78.5
FRCN 2000 x 604 121.2M — 86.0 — — —
ConvDet 1242 x 375 8.78M 61.3B 867 80.0 61.5 76.1
SqueezeDet 1242 x 375 1.98M 9.7B 829 768 70.4 76.7
Tiny-DSOD 1200 x 300 0.85M 41B 883 736 69.1 77.0

accuracy drops such that Tiny-DSOD has lightly lower
accuracy compared to some of the full size models. How-
ever, Tiny-DSOD requires much smaller persistent memory
for model storage and much less computing cost. For
instance, Faster-RCNN is just 1.1% higher in accuracy than
Tiny-DSOD, while with more than 140x larger model-size
and 180x more theoretic computing cost (practically, 10x
slower in fps). These comparisons show that Tiny-DSOD
achieves a much better trade-off between resources (model
size (indicated by number of parameters) and FLOPs) and
detection accuracy, which is extremely useful for resource-
restricted usages.

[0093] Note the Tiny-DSOD has much smaller FLOPs
than Tiny-YOLO but the practical speed is much slower than
the Tiny-YOLO. The difference in speed is due to Tiny-
YOLO’s desirably plain network structure, which is easy for
optimization, and the Tiny-YOLO tested has tailored GPU

where the numbers under each category (car, cyclist, person)
are the corresponding average precision (AP in %). The
column “mAP” is the mean AP over three categories. While
the lightweight models are detailed in articles cited above,
the full size model MS-CNN is disclosed by Cai, Z., et al.,
“A unified multi-scale deep convolutional neural network
for fast object detection”, ECCV (2016), FRCN is disclosed
by Ashraf, K. et al., “Shallow networks for high-accuracy
road object detection”, arXiv preprint arXiv:1606.01561
(2016), and ConvDet is disclosed by Wu, B. et al., “Squeeze-
det: Unified, small, low power fully convolutional neural
networks for real-time object detection for autonomous
driving”, CVPR Workshops (2017).

[0096] The Tiny-DSOD achieves a competitive result of
77.0% mAP, which is slightly better than state-of-the-art
SqueezeDet (77.0% vs 76.7%), while the Tiny-DSOD model
has only %2 model size and Y2 FLOPs of computing com-

US 2021/0365716 Al

pared to SqueezeDet, indicating that Tiny-DSOD is much
more efficient under this scenario.

[0097] Benchmark on COCO

[0098] Finally, the performance of the disclosed method
was evaluated on a large-scale COCO dataset. The test
results are summarized in Table-5

TABLE 5

12

Nov. 25, 2021

those elements other than a signal per se that may hold data
temporarily in a “transitory” fashion such as RAM and so
forth.

[0101] As used in any implementation described herein,
the term “module” refers to any combination of software
logic, firmware logic and/or hardware logic configured to

COCO object detection results.

AP (%), IOU

Method Input size FLOPs #Params 0.5:0.95 0.5 0.75
SSD 300 x 300 34.36B 34.30M 251 431 2538
YOLOv2 416 x 416 17.50B 67.43M 21.6 440 192
MobileNet-SSDLite 300 x 300 1.30B 5.10M 222 — —
MobileNetv2-SSDLite 300 x 300 0.80B 4.30M 22.1 — —
Pelee 304 x 304 1.29B 5.98M 224 383 229
Tiny-DSOD 300 x 300 1.12B 1.15M 232 404 228

where MobileNet-SSDLite and MobileNetv2 are disclosed
in Sandler, M. et al., “Inverted residuals and linear bottle-
necks: Mobile networks for classification, detection and
segmentation”, CVPR (2018). Tiny-DSOD achieves 23.2%
mAP on the ‘test-dev’ set in the metric of AP@IOU[0.5:0.
95] where IOU stands for Intersection over Union. This
outperforms the lightweight counterparts MobileNet-SSD
(vl & v2) and PeleeNet, and even outperforms the full-sized
detector (YOLOV2) (see Redmon, J. et al.,, “Yolo9000:
Better, faster, stronger”, CVPR (2017)). In addition, Tiny-
DSOD has a significantly smaller model compared to all of
the listed methods in Table 5.

[0099] Overall, Tiny-DSOD realizes a better trade-off
between resources (parameters, FLOPs, and memory) and
accuracy. Experiments show that Tiny-DSOD outperforms
state-of-the-art methods (Tiny YOLO, MobileNet-SSD vl &
v2, SqueezeDet, Pellee, and so forth, in each benchmark on
all three metrics (accuracy, speed in term of FLLOPs, and
parameter-size).

[0100] In addition, any one or more of the operations
explained with the methods of FIGS. 1 and 10A-10B, and
neural networks of FIGS. 2 to 9 may be undertaken in
response to instructions provided by one or more computer
program products. Such program products may include
signal bearing media providing instructions that, when
executed by, for example, a processor, may provide the
functionality described herein. The computer program prod-
ucts may be provided in any form of one or more machine-
readable media. Thus, for example, a processor including
one or more processor core(s) may undertake one or more of
the operations of the example processes herein in response
to program code and/or instructions or instruction sets
conveyed to the processor by one or more computer or
machine-readable media. In general, a machine-readable
medium may convey software in the form of program code
and/or instructions or instruction sets that may cause any of
the devices and/or systems to perform as described herein.
The machine or computer readable media may be a non-
transitory article or medium, such as a non-transitory com-
puter readable medium, and may be used with any of the
examples mentioned above or other examples except that it
does not include a transitory signal per se. It does include

provide the functionality described herein. The software
may be embodied as a software package, code and/or
instruction set or instructions, and “hardware”, as used in
any implementation described herein, may include, for
example, singly or in any combination, hardwired circuitry,
programmable circuitry, state machine circuitry, and/or fixed
function firmware that stores instructions executed by pro-
grammable circuitry. The modules may, collectively or indi-
vidually, be embodied as circuitry that forms part of a larger
system, for example, an integrated circuit (IC), system
on-chip (SoC), and so forth. For example, a module may be
embodied in logic circuitry for the implementation via
software, firmware, or hardware of the coding systems
discussed herein.

[0102] As used in any implementation described herein,
the term “logic unit” refers to any combination of firmware
logic and/or hardware logic configured to provide the func-
tionality described herein. The logic units may, collectively
or individually, be embodied as circuitry that forms part of
a larger system, for example, an integrated circuit (IC),
system on-chip (SoC), and so forth. For example, a logic
unit may be embodied in logic circuitry for the implemen-
tation firmware or hardware of the coding systems discussed
herein. One of ordinary skill in the art will appreciate that
operations performed by hardware and/or fixed function
firmware may alternatively be implemented via software,
which may be embodied as a software package, code and/or
instruction set or instructions, and also appreciate that logic
unit may also utilize a portion of software to implement its
functionality.

[0103] As used in any implementation described herein,
the term “component” may refer to a module or to a logic
unit, as these terms are described above. Accordingly, the
term “component” may refer to any combination of software
logic, firmware logic, and/or hardware logic configured to
provide the functionality described herein. For example, one
of ordinary skill in the art will appreciate that operations
performed by hardware and/or firmware may alternatively
be implemented via a software module, which may be
embodied as a software package, code and/or instruction set,
and also appreciate that a logic unit may also utilize a
portion of software to implement its functionality.

[0104] Referring to FIG. 11, an example image processing
system 1100 is arranged in accordance with at least some

US 2021/0365716 Al

implementations of the present disclosure. In various imple-
mentations, the example image processing system 1100 may
have an imaging device 1102 to form or receive captured
image data. This can be implemented in various ways. Thus,
in one form, the image processing system 1100 may be one
or more digital cameras or other image capture devices, and
imaging device 1102, in this case, may be the camera
hardware and camera sensor software, module, or compo-
nent. In other examples, imaging processing system 1100
may have an imaging device 1102 that includes or may be
one or more cameras, and logic modules 1104 may com-
municate remotely with, or otherwise may be communica-
tively coupled to, the imaging device 1102 for further
processing of the image data.

[0105] Thus, image processing system 1100 may be a
single camera alone or on a multi-camera device either of
which may be a smartphone, tablet, laptop, computer, or
other mobile device, or could be computer vision cameras
and sensors, and/or VR, AR, or MR headsets, glasses or
other headwear positioned over a person’s eyes. The cam-
eras may capture images in either visible or non-visible
spectrums. Otherwise, image processing system 1100 may
be the device with multiple cameras where the processing
occurs at one of the cameras or at a separate processing
location communicating with the cameras whether on-board
or off of the device, and whether the processing is performed
at a mobile device or not.

[0106] Inany of these cases, such technology may include
a camera such as a digital camera system, a dedicated
camera device, or multi-purpose device such as an imaging
phone or tablet. Thus, in one form, imaging device 1102 may
include camera hardware and optics including one or more
sensors as well as auto-focus, zoom, aperture, ND-filter,
auto-exposure, flash, and actuator controls. These controls
may be part of a sensor module or component for operating
the sensor that can be used to generate images for a
viewfinder and take still pictures or video. The imaging
device 1102 also may have a lens, an image sensor with a
RGB Bayer color filter, an analog amplifier, an A/D con-
verter, other components to convert incident light into a
digital signal, the like, and/or combinations thereof, and/or
other components when camera or sensor captures images
that are not in the visible domain. The digital signal also may
be referred to as the raw image data herein.

[0107] Other forms include a camera sensor-type imaging
device or the like (for example, a webcam or webcam sensor
or other complementary metal-oxide-semiconductor-type
image sensor (CMOS)) in addition to, or instead of, the use
of a red-green-blue (RGB) depth camera and/or micro-
phone-array to locate who is speaking. The camera sensor
also may support other types of electronic shutters, such as
global shutter in addition to, or instead of, rolling shutter,
and many other shutter types. In other examples, an RGB-
Depth camera and/or microphone-array might be used in the
alternative to a camera sensor. In these examples, in addition
to a camera sensor, the same sensor or a separate sensor may
be provided as well as light projector, such as an IR projector
to provide a separate depth image that can be used for
triangulation with the camera image. Otherwise, the imaging
device may have any other known technology for providing
depth maps by using multiple camera or imaging devices, or
a single imaging device.

[0108] In the illustrated example and relevant here, the
logic modules 1104 may include an image unit 1106 that

Nov. 25, 2021

performs pre-processing on the raw image data sufficient for
object detection and semantic segmentation. This may
include conversion of image data to whatever formats are
needed such as generating a depth map or depth image. The
logic modules also may have a back bone unit 1110 and a
front end unit 1112. The backbone unit 1110 has a stem unit
1114 and an extractor unit 1116. The extractor unit 1116 has
a DDB unit 1118 to operate the DDBs. The front-end unit
1112 has a downsampling unit and an upsampling unit that
perform the relevant tasks related to upsampling or down-
sampling. These specific-purpose units perform or activate
the specific tasks related to the title of the unit. Other general
neural network units may be operated or controlled accord-
ing to the instructions of the specific purpose units. Thus,
such general neural network units may include a 1x1 con-
volutional unit 1124, a DW convolutional unit 1126, a
convolutional unit 1128, a pooling unit 1130, a bilinear
interpolation unit 1132, a normalization unit 1134, and a
RELU unit 1136 to name a few examples. The tasks per-
formed by each of these units are related to the title of the
unit and is described in detail above.

[0109] The image processing system 1100 may have one
or more processors 1140 which may include a dedicated
image signal processor (ISP) 1142 such as the Intel Atom, or
neural network accelerator (NNA), memory stores 1144, one
or more displays 1148 to provide images 1150, a coder 1152,
and antenna 1146. In one example implementation, the
image processing system 1100 may have the display 1148,
at least one processor 1140 communicatively coupled to the
display, and memory stores 1144 communicatively coupled
to the processor. The coder 1152 may be an encoder,
decoder, or both. Otherwise, the processed image 1150 may
be displayed on display 1148 or stored in memory stores
1144. As illustrated, any of these components may be
capable of communication with one another and/or commu-
nication with portions of logic modules 1104 and/or imaging
device 1102. Thus, processors 1140 may be communica-
tively coupled to both the image device 1102 and the logic
modules 1104 for operating those components. By one
approach, although image processing system 1100, as shown
in FIG. 11, may include one particular set of blocks or
actions associated with particular components or modules,
these blocks or actions may be associated with different
components or modules than the particular component or
module illustrated here.

[0110] Referring to FIG. 12, an example system 1200 in
accordance with the present disclosure operates one or more
aspects of the image processing system described herein. It
will be understood from the nature of the system compo-
nents described below that such components may be asso-
ciated with, or used to operate, certain part or parts of the
image processing system 1200 described above, and there-
fore, used to operate the methods described herein. In
various implementations, system 1200 may be a media
system although system 1200 is not limited to this context.
For example, system 1200 may be incorporated into a digital
still camera, digital video camera, mobile device with cam-
era or video functions such as an imaging phone, webcam,
personal computer (PC), laptop computer, ultra-laptop com-
puter, tablet with multiple cameras, touch pad, portable
computer, handheld computer, palmtop computer, personal
digital assistant (PDA), cellular telephone, combination cel-
Iular telephone/PDA, television, smart device (e.g., smart

US 2021/0365716 Al

phone, smart tablet or smart television), mobile internet
device (MID), messaging device, data communication
device, and so forth.

[0111] In various implementations, system 1200 includes
a platform 1202 coupled to a display 1220. Platform 1202
may receive content from a content device such as content
services device(s) 1230 or content delivery device(s) 1240
or other similar content sources. A navigation controller
1250 including one or more navigation features may be used
to interact with, for example, platform 1202 and/or display
1220. Each of these components is described in greater
detail below.

[0112] In various implementations, platform 1202 may
include any combination of a chipset 1205, processor 1210,
memory 1212, storage 1214, graphics subsystem 1215,
applications 1216 and/or radio 1218. Chipset 1205 may
provide intercommunication among processor 1210,
memory 1212, storage 1214, graphics subsystem 1215,
applications 1216 and/or radio 1218. For example, chipset
1205 may include a storage adapter (not depicted) capable of
providing intercommunication with storage 1214.

[0113] Processor 1210 may be implemented as a Complex
Instruction Set Computer (CISC) or Reduced Instruction Set
Computer (RISC) processors; x86 instruction set compatible
processors, multi-core, or any other microprocessor or cen-
tral processing unit (CPU). In various implementations,
processor 1210 may be dual-core processor(s), dual-core
mobile processor(s), and so forth.

[0114] Memory 1212 may be implemented as a volatile
memory device such as, but not limited to, a Random Access
Memory (RAM), Dynamic Random Access Memory
(DRAM), or Static RAM (SRAM).

[0115] Storage 1214 may be implemented as a non-vola-
tile storage device such as, but not limited to, a magnetic
disk drive, optical disk drive, tape drive, an internal storage
device, an attached storage device, flash memory, battery
backed-up SDRAM (synchronous DRAM), and/or a net-
work accessible storage device. In various implementations,
storage 1214 may include technology to increase the storage
performance enhanced protection for valuable digital media
when multiple hard drives are included, for example.

[0116] Graphics subsystem 1215 may perform processing
of images such as still or video for display. Graphics
subsystem 1215 may be a graphics processing unit (GPU) or
a visual processing unit (VPU), for example. An analog or
digital interface may be used to communicatively couple
graphics subsystem 1215 and display 1220. For example, the
interface may be any of a High-Definition Multimedia
Interface, Display Port, wireless HDMI, and/or wireless HD
compliant techniques. Graphics subsystem 1215 may be
integrated into processor 1210 or chipset 1205. In some
implementations, graphics subsystem 1215 may be a stand-
alone card communicatively coupled to chipset 1205.

[0117] The graphics and/or video processing techniques
described herein may be implemented in various hardware
architectures. For example, graphics and/or video function-
ality may be integrated within a chipset. Alternatively, a
discrete graphics and/or video processor may be used. As
still another implementation, the graphics and/or video
functions may be provided by a general purpose processor,
including a multi-core processor. In further implementa-
tions, the functions may be implemented in a consumer
electronics device.

Nov. 25, 2021

[0118] Radio 1218 may include one or more radios
capable of transmitting and receiving signals using various
suitable wireless communications techniques. Such tech-
niques may involve communications across one or more
wireless networks. Example wireless networks include (but
are not limited to) wireless local area networks (WLANs),
wireless personal area networks (WPANs), wireless metro-
politan area network (WMANSs), cellular networks, and
satellite networks. In communicating across such networks,
radio 1218 may operate in accordance with one or more
applicable standards in any version.

[0119] In various implementations, display 1220 may
include any television type monitor or display. Display 1220
may include, for example, a computer display screen, touch
screen display, video monitor, television-like device, and/or
a television. Display 1220 may be digital and/or analog. In
various implementations, display 1220 may be a holo-
graphic display. Also, display 1220 may be a transparent
surface that may receive a visual projection. Such projec-
tions may convey various forms of information, images,
and/or objects. For example, such projections may be a
visual overlay for a mobile augmented reality (MAR) appli-
cation. Under the control of one or more software applica-
tions 1216, platform 1202 may display user interface 1222
on display 1220.

[0120] In wvarious implementations, content services
device(s) 1230 may be hosted by any national, international
and/or independent service and thus accessible to platform
1202 via the Internet, for example. Content services device
(s) 1230 may be coupled to platform 1202 and/or to display
1220. Platform 1202 and/or content services device(s) 1230
may be coupled to a network 1260 to communicate (e.g.,
send and/or receive) media information to and from network
1260. Content delivery device(s) 1240 also may be coupled
to platform 1202 and/or to display 1220.

[0121] In various implementations, content services
device(s) 1230 may include a cable television box, personal
computer, network, telephone, Internet enabled devices or
appliance capable of delivering digital information and/or
content, and any other similar device capable of unidirec-
tionally or bidirectionally communicating content between
content providers and platform 1202 and/display 1220, via
network 1260 or directly. It will be appreciated that the
content may be communicated unidirectionally and/or bidi-
rectionally to and from any one of the components in system
1200 and a content provider via network 1260. Examples of
content may include any media information including, for
example, video, music, medical and gaming information,
and so forth.

[0122] Content services device(s) 1230 may receive con-
tent such as cable television programming including media
information, digital information, and/or other content.
Examples of content providers may include any cable or
satellite television or radio or Internet content providers. The
provided examples are not meant to limit implementations in
accordance with the present disclosure in any way.

[0123] In various implementations, platform 1202 may
receive control signals from navigation controller 1250
having one or more navigation features. The navigation
features of controller 1250 may be used to interact with user
interface 1222, for example. In implementations, navigation
controller 1250 may be a pointing device that may be a
computer hardware component (specifically, a human inter-
face device) that allows a user to input spatial (e.g., con-

US 2021/0365716 Al

tinuous and multi-dimensional) data into a computer. Many
systems such as graphical user interfaces (GUI), and tele-
visions and monitors allow the user to control and provide
data to the computer or television using physical gestures.
[0124] Movements of the navigation features of controller
1250 may be replicated on a display (e.g., display 1220) by
movements of a pointer, cursor, focus ring, or other visual
indicators displayed on the display. For example, under the
control of software applications 1216, the navigation fea-
tures located on navigation controller 1250 may be mapped
to virtual navigation features displayed on user interface
1222, for example. In implementations, controller 1250 may
not be a separate component but may be integrated into
platform 1202 and/or display 1220. The present disclosure,
however, is not limited to the elements or in the context
shown or described herein.

[0125] In various implementations, drivers (not shown)
may include technology to enable users to instantly turn on
and off platform 1202 like a television with the touch of a
button after initial boot-up, when enabled, for example.
Program logic may allow platform 1202 to stream content to
media adaptors or other content services device(s) 1230 or
content delivery device(s) 1240 even when the platform is
turned “off.” In addition, chipset 1205 may include hardware
and/or software support for 8.1 surround sound audio and/or
high definition (7.1) surround sound audio, for example.
Drivers may include a graphics driver for integrated graph-
ics platforms. In implementations, the graphics driver may
comprise a peripheral component interconnect (PCI)
Express graphics card.

[0126] In various implementations, any one or more of the
components shown in system 1200 may be integrated. For
example, platform 1202 and content services device(s) 1230
may be integrated, or platform 1202 and content delivery
device(s) 1240 may be integrated, or platform 1202, content
services device(s) 1230, and content delivery device(s) 1240
may be integrated, for example. In various implementations,
platform 1202 and display 1220 may be an integrated unit.
Display 1220 and content service device(s) 1230 may be
integrated, or display 1220 and content delivery device(s)
1240 may be integrated, for example. These examples are
not meant to limit the present disclosure.

[0127] In various implementations, system 1200 may be
implemented as a wireless system, a wired system, or a
combination of both. When implemented as a wireless
system, system 1200 may include components and inter-
faces suitable for communicating over a wireless shared
media, such as one or more antennas, transmitters, receivers,
transceivers, amplifiers, filters, control logic, and so forth.
An example of wireless shared media may include portions
of'a wireless spectrum, such as the RF spectrum and so forth.
When implemented as a wired system, system 1200 may
include components and interfaces suitable for communi-
cating over wired communications media, such as input/
output (I/O) adapters, physical connectors to connect the [/O
adapter with a corresponding wired communications
medium, a network interface card (NIC), disc controller,
video controller, audio controller, and the like. Examples of
wired communications media may include a wire, cable,
metal leads, printed circuit board (PCB), backplane, switch
fabric, semiconductor material, twisted-pair wire, co-axial
cable, fiber optics, and so forth.

[0128] Platform 1202 may establish one or more logical or
physical channels to communicate information. The infor-

Nov. 25, 2021

mation may include media information and control infor-
mation. Media information may refer to any data represent-
ing content meant for a user. Examples of content may
include, for example, data from a voice conversation, vid-
eoconference, streaming video, electronic mail (“email”)
message, text (“texting”) message, social media formats,
voice mail message, alphanumeric symbols, graphics,
image, video, text and so forth. Data from a voice conver-
sation may be, for example, speech information, silence
periods, background noise, comfort noise, tones and so
forth. Control information may refer to any data represent-
ing commands, instructions or control words meant for an
automated system. For example, control information may be
used to route media information through a system, or
instruct a node to process the media information in a
predetermined manner. The implementations, however, are
not limited to the elements or in the context shown or
described in FIG. 12.

[0129] Referring to FIG. 13, a small form factor device
1300 is one example of the varying physical styles or form
factors in which systems 1100 or 1200 may be embodied. By
this approach, device 1300 may be implemented as a mobile
computing device having wireless capabilities. A mobile
computing device may refer to any device having a process-
ing system and a mobile power source or supply, such as one
or more batteries, for example.

[0130] As described above, examples of a mobile com-
puting device may include a digital still camera, digital
video camera, mobile devices with camera or video func-
tions such as imaging phones, webcam, personal computer
(PC), laptop computer, ultra-laptop computer, tablet, touch
pad, portable computer, handheld computer, palmtop com-
puter, personal digital assistant (PDA), cellular telephone,
combination cellular telephone/PDA, television, smart
device (e.g., smart phone, smart tablet or smart television),
mobile internet device (MID), messaging device, data com-
munication device, and so forth.

[0131] Examples of a mobile computing device also may
include computers that are arranged to be worn by a person,
such as a wrist computer, finger computer, ring computer,
eyeglass computer, belt-clip computer, arm-band computer,
shoe computers, clothing computers, and other wearable
computers. In various implementations, for example, a
mobile computing device may be implemented as a smart
phone capable of executing computer applications, as well
as voice communications and/or data communications.
Although some implementations may be described with a
mobile computing device implemented as a smart phone by
way of example, it may be appreciated that other implemen-
tations may be implemented using other wireless mobile
computing devices as well. The implementations are not
limited in this context.

[0132] As shown in FIG. 13, device 1300 may include a
housing with a front 1301 and a back 1302. Device 1300
includes a display 1304, an input/output (I/0) device 1306,
and an integrated antenna 1308. Device 1300 also may
include navigation features 1312. I/O device 1306 may
include any suitable I/O device for entering information into
a mobile computing device. Examples for 1/0 device 1306
may include an alphanumeric keyboard, a numeric keypad,
a touch pad, input keys, buttons, switches, microphones,
speakers, voice recognition device and software, and so
forth. Information also may be entered into device 1300 by
way of microphone 1314, or may be digitized by a voice

US 2021/0365716 Al

recognition device. As shown, device 1300 may include a
camera 1305 (e.g., including at least one lens, aperture, and
imaging sensor) and an illuminator 1310, such as those
described herein, integrated into back 1302 (or elsewhere) of
device 1300. The implementations are not limited in this
context.

[0133] Various forms of the devices and processes
described herein may be implemented using hardware ele-
ments, software elements, or a combination of both.
Examples of hardware elements may include processors,
microprocessors, circuits, circuit elements (e.g., transistors,
resistors, capacitors, inductors, and so forth), integrated
circuits, application specific integrated circuits (ASIC), pro-
grammable logic devices (PLD), digital signal processors
(DSP), field programmable gate array (FPGA), logic gates,
registers, semiconductor device, chips, microchips, chip
sets, and so forth. Examples of software may include soft-
ware components, programs, applications, computer pro-
grams, application programs, system programs, machine
programs, operating system software, middleware, firm-
ware, software modules, routines, subroutines, functions,
methods, procedures, software interfaces, application pro-
gram interfaces (API), instruction sets, computing code,
computer code, code segments, computer code segments,
words, values, symbols, or any combination thereof. Deter-
mining whether an implementation is implemented using
hardware elements and/or software elements may vary in
accordance with any number of factors, such as desired
computational rate, power levels, heat tolerances, processing
cycle budget, input data rates, output data rates, memory
resources, data bus speeds and other design or performance
constraints.

[0134] One or more aspects of at least one implementation
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0135] While certain features set forth herein have been
described with reference to various implementations, this
description is not intended to be construed in a limiting
sense. Hence, various modifications of the implementations
described herein, as well as other implementations, which
are apparent to persons skilled in the art to which the present
disclosure pertains are deemed to lie within the spirit and
scope of the present disclosure.

[0136] The following examples pertain to further imple-
mentations.
[0137] By one example, a computer-implemented method

of object detection for image processing comprises obtain-
ing image data of pixels of at least one image having content
with one or more objects; and operating a neural network
having at least one sequence of depth-wise dense blocks
wherein each depth-wise dense block has at least one
depth-wise convolutional layer, operating of an individual
depth-wise dense block comprising: receiving input from a
previous layer and having multiple input channels, and
separately propagating, at the same depth-wise convolu-
tional layer, channels of the multiple input channels, and
comprising applying at least one separate filter to each

Nov. 25, 2021

propagating channel to form at least one separate feature
map of each propagating channel that is separate from the
feature maps of other channels: concatenating together
resulting data of multiple depth-wise dense blocks posi-
tioned prior to a next depth-wise dense block in the same
sequence and to form input data of either the next depth-wise
dense block in the sequence or a next layer of the neural
network, and classifying the one or more objects at least
partly depending on the output of the at least one sequence
of depth-wise dense blocks in the neural network.

[0138] Otherwise, the method may include that (1)
wherein at least one of the depth-wise dense blocks com-
prises convolutional layers of, in order, one 1x1 convolu-
tional layer, one of the depth-wise convolutional layers, and
then another 1x1 convolutional layer, or (2) wherein at least
one of the depth-wise dense blocks comprises convolutional
layers of, in order, one 1x1 convolutional layer, and then one
of the depth-wise convolutional layers, wherein at least one
of'the sequences has four of the depth-wise dense blocks and
at least another of the sequences has six depth-wise dense
blocks. The method also comprises separately forwarding
the resulting data of each depth-wise dense block in one of
the sequences to all subsequent depth-wise dense blocks in
the same sequence, and either (a) wherein the resulting data
is a set of the feature maps to be concatenated with the
resulting data of other depth-wise dense blocks in the same
sequence, or (b) wherein the resulting data is a combination
of the feature maps by 1x1 convolution, and wherein the
combination is concatenated with the resulting data of other
depth-wise dense blocks in the same sequence. The method
also comprises operating a transition layer directly after at
least one of the depth-wise dense layer sequences and
comprising at least a 1x1 point-wise layer, and wherein
some of the transition layers being less than all of the
transition layers having a pooling layer, wherein the transi-
tion layer is provided after each depth-wise dense block
sequence.

[0139] The method also may comprise wherein operating
the neural network comprises operating a stem portion
before an extractor portion, wherein the at least one
sequence is operated during the extractor portion; the oper-
ating comprising operating at least two depth-wise convo-
Iutional layers alternatingly with at least two non-depth-wise
convolutional layers during the stem portion operation,
wherein the depth-wise output of the at least one depth-wise
convolutional layer has a number of channels determined by
setting at least one hyper-parameter to control a size of the
output data of the at least one depth-wise convolutional
layer, wherein the depth-wise dense blocks are used in a
backbone portion of the neural network to detect objects.

[0140] The method may further comprise operating a front
end portion of the neural network to classity detected objects
and comprising performing a feature pyramid network com-
prising: downsampling feature maps comprising concatenat-
ing data from a pooling stack and data from a separate
depth-wise convolution layer stack initially using the same
input data as the pooling layer, and after the downsampling,
upsampling feature maps comprising performing, in order:
bilinear interpolation of input data followed by a depth-wise
convolution for separately forming intermediate output fea-
ture maps, and thereafter the interpolation, an element by
element summation of the intermediate feature map with
data of an upsampled feature map of the upsampling pyra-
mid.

US 2021/0365716 Al

[0141] By yet another implementation, a computer-imple-
mented system of object detection for image processing
comprising at least one image capture device; at least one
display; at least one memory; at least one processor com-
municatively coupled to the display and the memory and to
operate by: obtaining image data of pixels of at least one
image having content with one or more objects; and oper-
ating a neural network having at least one sequence of
depth-wise dense blocks wherein each depth-wise dense
block has at least one depth-wise convolutional layer, oper-
ating of an individual depth-wise dense block comprising:
receiving input from a previous layer and having multiple
input channels, and separately propagating, at the same
depth-wise convolutional layer, channels of the multiple
input channels, and comprising applying at least one sepa-
rate filter to each propagating channel to form at least one
separate feature map of each propagating channel that is
separate from the feature maps of other channels; concat-
enating together resulting data of multiple depth-wise dense
blocks positioned prior to a next depth-wise dense block in
the same sequence and to form input data of either the next
depth-wise dense block in the sequence or a next layer of the
neural network; and classifying the one or more objects at
least partly depending on the output of the at least one
sequence of depth-wise dense blocks in the neural network.

[0142] By another example, the system provides that
either (1) wherein each depth-wise dense block in at least
one same sequence has three convolution layers forming a
bottleneck arrangement with a first 1x1 bottleneck convo-
Iution layer having a number of output channels set accord-
ing to a hyper-parameter bottleneck ratio, a second 3x3
depth-wise convolution layer having the same number of
output channels as the first layer, and a third 1x1 convolution
layer having the number of output channels set by a hyper-
parameter growth rate that is a number of output channels of
a layer; or (2) wherein each depth-wise dense block in at
least one same sequence has two convolution layers forming
a bottleneck arrangement with a first 1x1 bottleneck con-
volution layer having a number of output channels set
according to a hyper-parameter growth rate that is a number
of output channels of a layer, and a second 3x3 depth-wise
convolution layer having the same number of output chan-
nels as the first layer. The processor(s) also may operate such
that wherein a batch normalization operation and Rel.U
layer is provide after each convolutional layer in the neural
network; and either (a) wherein the resulting data is a set of
the feature maps to be concatenated with the resulting data
of other depth-wise dense blocks in the same sequence; or
(b) wherein the resulting data is a combination of the feature
maps by 1x1 convolution, and wherein the combination is
concatenated with the resulting data of other depth-wise
dense blocks in the same sequence; wherein operating the
neural network comprises operating a stem portion before an
extractor portion, wherein the at least one sequence is
operated during the extractor portion; the operating com-
prising operating at least two depth-wise convolutional
layers alternatingly with at least two non-depth-wise con-
volutional layers during the stem portion operation.

[0143] By one approach, at least one non-transitory com-
puter readable medium having stored thereon instructions
that when executed cause a computing device to operate by:
obtaining image data of pixels of at least one image having
content with one or more objects; and operating a neural
network having at least one sequence of depth-wise dense

Nov. 25, 2021

blocks wherein each depth-wise dense block has at least one
depth-wise convolutional layer, wherein the operating of an
individual depth-wise dense block comprising: receiving
input from a previous layer and having multiple input
channels, and separately propagating, at the same depth-
wise convolutional layer, channels of the multiple input
channels, and comprising applying a separate filter to each
propagating channel to form at least one separate feature
map of each propagating channel that is separate from the
feature maps of other channels; concatenating together
resulting data of multiple depth-wise dense blocks posi-
tioned prior to a next depth-wise dense block in the same
sequence and to form input data of either the next depth-wise
dense block in the sequence or a next layer of the neural
network; and classifying the one or more objects at least
partly depending on the output of the at least one sequence
of depth-wise dense blocks in the neural network.

[0144] By another approach, the instructions cause the
computing device to operate so that wherein the instructions
cause the computing device to operate by separately for-
warding the resulting data of each depth-wise dense block in
one of the sequences to all subsequent depth-wise dense
blocks in the same sequence; wherein the depth-wise dense
blocks are used in a backbone portion of the neural network
to detect objects, and the instructions cause the computing
device to operate by operating a front end portion of the
neural network to classify detected objects and comprising
performing a feature pyramid network comprising: down-
sampling feature maps comprising downsampling concat-
enating data from both a pooling stack and a depth-wise
stack, wherein the pooling stack and depth-wise stack ini-
tially use the same layer input data, wherein the pooling
stack has a first 2x2 pooling layer and second a 1x1
convolutional layer and wherein the depth-wise stack first
has a 1x1 convolutional layer and then a 3x3 depth-wise
convolutional layer; and repeating the downsampling to
form a series of increasingly smaller feature maps; wherein
after the downsampling, the instructions cause the comput-
ing device to operate by upsampling feature maps and
comprising performing, in order: bilinear interpolation of
input data, a depth-wise convolution of the interpolated
input data for separately forming intermediate output feature
maps, an element by element summation of the data of one
of'the intermediate output feature maps with data of a feature
map of the upsampling pyramid with a size corresponding to
a size of the intermediate output feature map; and repeating
the upsampling to form a series of increasingly larger feature
maps.

[0145] In a further example, at least one machine readable
medium may include a plurality of instructions that in
response to being executed on a computing device, causes
the computing device to perform the method according to
any one of the above examples.

[0146] In astill further example, an apparatus may include
means for performing the methods according to any one of
the above examples.

[0147] The above examples may include specific combi-
nation of features. However, the above examples are not
limited in this regard and, in various implementations, the
above examples may include undertaking only a subset of
such features, undertaking a different order of such features,
undertaking a different combination of such features, and/or
undertaking additional features than those features explicitly
listed. For example, all features described with respect to

US 2021/0365716 Al

any example methods herein may be implemented with
respect to any example apparatus, example systems, and/or
example articles, and vice versa.

1-25. (canceled)

26. A computer-implemented method of object detection
for image processing, comprising:

obtaining image data of pixels of at least one image

having content with one or more objects;

operating a neural network having at least one sequence

of depth-wise dense blocks wherein each depth-wise

dense block has at least one depth-wise convolutional

layer, operating of an individual depth-wise dense

block comprising:

receiving input from a previous layer and having mul-
tiple input channels, and

separately propagating, at the same depth-wise convo-
lutional layer, channels of the multiple input chan-
nels, and comprising applying at least one separate
filter to each propagating channel to form at least one
separate feature map of each propagating channel
that is separate from the feature maps of other
channels;

concatenating together resulting data of multiple depth-

wise dense blocks positioned prior to a next depth-wise
dense block in the same sequence and to form input
data of either the next depth-wise dense block in the
sequence or a next layer of the neural network; and
classifying the one or more objects at least partly depend-
ing on the output of the at least one sequence of
depth-wise dense blocks in the neural network.

27. The method of claim 26 wherein at least one of the
depth-wise dense blocks comprises convolutional layers of,
in order, one 1x1 convolutional layer, one of the depth-wise
convolutional layers, and then another 1x1 convolutional
layer.

28. The method of claim 26 wherein at least one of the
depth-wise dense blocks comprises convolutional layers of,
in order, one 1x1 convolutional layer, and then one of the
depth-wise convolutional layers.

29. The method of claim 26 wherein at least one of the
sequences has four of the depth-wise dense blocks and at
least another of the sequences has six depth-wise dense
blocks.

30. The method of claim 26 comprising separately for-
warding the resulting data of each depth-wise dense block in
one of the sequences to all subsequent depth-wise dense
blocks in the same sequence.

31. The method of claim 26 wherein the resulting data is
a set of the feature maps to be concatenated with the
resulting data of other depth-wise dense blocks in the same
sequence.

32. The method of claim 26 wherein the resulting data is
a combination of the feature maps by 1x1 convolution, and
wherein the combination is concatenated with the resulting
data of other depth-wise dense blocks in the same sequence.

33. The method of claim 26 comprising operating a
transition layer directly after at least one of the depth-wise
dense layer sequences and comprising at least a 1x1 point-
wise layer, and wherein some of the transition layers being
less than all of the transition layers having a pooling layer.

34. The method of claim 33 wherein the transition layer
is provided after each depth-wise dense block sequence.

35. The method of claim 26 wherein operating the neural
network comprises operating a stem portion before an

Nov. 25, 2021

extractor portion, wherein the at least one sequence is
operated during the extractor portion; the operating com-
prising operating at least two depth-wise convolutional
layers alternatingly with at least two non-depth-wise con-
volutional layers during the stem portion operation.

36. The method of claim 26 wherein the depth-wise
output of the at least one depth-wise convolutional layer has
a number of channels determined by setting at least one
hyper-parameter to control a size of the output data of the at
least one depth-wise convolutional layer.

37. The method of claim 26 wherein the depth-wise dense
blocks are used in a backbone portion of the neural network
to detect objects, and the method comprising operating a
front end portion of the neural network to classify detected
objects and comprising performing a feature pyramid net-
work comprising:

downsampling feature maps comprising concatenating

data from a pooling stack and data from a separate
depth-wise convolution layer stack initially using the
same input data as the pooling layer, and

after the downsampling, upsampling feature maps com-

prising performing, in order:

bilinear interpolation of input data followed by a depth-
wise convolution for separately forming intermedi-
ate output feature maps, and

thereafter the interpolation, an element by element
summation of the intermediate feature map with data
of an upsampled feature map of the upsampling
pyramid.

38. A computer-implemented system of object detection
for image processing, comprising:

at least one image capture device;

at least one display;

at least one memory;

at least one processor communicatively coupled to the

display and the memory and to operate by:
obtaining image data of pixels of at least one image
having content with one or more objects; and
operating a neural network having at least one sequence
of depth-wise dense blocks wherein each depth-wise
dense block has at least one depth-wise convolu-
tional layer, operating of an individual depth-wise
dense block comprising:
receiving input from a previous layer and having
multiple input channels, and
separately propagating, at the same depth-wise con-
volutional layer, channels of the multiple input
channels, and comprising applying at least one
separate filter to each propagating channel to form
at least one separate feature map of each propa-
gating channel that is separate from the feature
maps of other channels;
concatenating together resulting data of multiple depth-
wise dense blocks positioned prior to a next depth-
wise dense block in the same sequence and to form
input data of either the next depth-wise dense block
in the sequence or a next layer of the neural network;
and
classifying the one or more objects at least partly
depending on the output of the at least one sequence
of depth-wise dense blocks in the neural network.

39. The system of claim 38 wherein each depth-wise
dense block in at least one same sequence has three convo-
Iution layers forming a bottleneck arrangement with a first

US 2021/0365716 Al

1x1 bottleneck convolution layer having a number of output
channels set according to a hyper-parameter bottleneck
ratio, a second 3x3 depth-wise convolution layer having the
same number of output channels as the first layer, and a third
1x1 convolution layer having the number of output channels
set by a hyper-parameter growth rate that is a number of
output channels of a layer.

40. The system of claim 38 wherein each depth-wise
dense block in at least one same sequence has two convo-
Iution layers forming a bottleneck arrangement with a first
1x1 bottleneck convolution layer having a number of output
channels set according to a hyper-parameter growth rate that
is a number of output channels of a layer, and a second 3x3
depth-wise convolution layer having the same number of
output channels as the first layer.

41. The system of claim 38 wherein a batch normalization
operation and Rel.U layer is provide after each convolu-
tional layer in the neural network.

42. The system of claim 38 wherein the resulting data is
a set of the feature maps to be concatenated with the
resulting data of other depth-wise dense blocks in the same
sequence.

43. The system of claim 38 wherein the resulting data is
a combination of the feature maps by 1x1 convolution, and
wherein the combination is concatenated with the resulting
data of other depth-wise dense blocks in the same sequence.

44. The system of claim 38 wherein operating the neural
network comprises operating a stem portion before an
extractor portion, wherein the at least one sequence is
operated during the extractor portion; the operating com-
prising operating at least two depth-wise convolutional
layers alternatingly with at least two non-depth-wise con-
volutional layers during the stem portion operation.

45. At least one non-transitory computer-readable
medium having stored thereon instructions that when
executed cause a computing device to operate by:

obtaining image data of pixels of at least one image

having content with one or more objects; and
operating a neural network having at least one sequence
of depth-wise dense blocks wherein each depth-wise
dense block has at least one depth-wise convolutional
layer, wherein the operating of an individual depth-
wise dense block comprising:
receiving input from a previous layer and having mul-
tiple input channels, and
separately propagating, at the same depth-wise convo-
lutional layer, channels of the multiple input chan-
nels, and comprising applying a separate filter to
each propagating channel to form at least one sepa-
rate feature map of each propagating channel that is
separate from the feature maps of other channels;
concatenating together resulting data of multiple depth-
wise dense blocks positioned prior to a next depth-wise

Nov. 25, 2021

dense block in the same sequence and to form input
data of either the next depth-wise dense block in the
sequence or a next layer of the neural network; and
classifying the one or more objects at least partly depend-
ing on the output of the at least one sequence of
depth-wise dense blocks in the neural network.

46. The medium of claim 45 wherein the instructions
cause the computing device to operate by separately for-
warding the resulting data of each depth-wise dense block in
one of the sequences to all subsequent depth-wise dense
blocks in the same sequence.

47. The medium of claim 45 wherein the depth-wise
dense blocks are used in a backbone portion of the neural
network to detect objects, and the instructions cause the
computing device to operate by operating a front end portion
of the neural network to classify detected objects and
comprising performing a feature pyramid network compris-
ing:

downsampling feature maps comprising downsampling

concatenating data from both a pooling stack and a

depth-wise stack,

wherein the pooling stack and depth-wise stack initially
use the same layer input data,

wherein the pooling stack has a first 2x2 pooling layer
and second a 1x1 convolutional layer and

wherein the depth-wise stack first has a 1x1 convolu-
tional layer and then a 3x3 depth-wise convolutional
layer; and

repeating the downsampling to form a series of increas-

ingly smaller feature maps.

48. The medium of claim 47 wherein after the downsam-
pling, the instructions cause the computing device to operate
by upsampling feature maps and comprising performing, in
order:

bilinear interpolation of input data,

a depth-wise convolution of the interpolated input data for

separately forming intermediate output feature maps,
an element by element summation of the data of one of the
intermediate output feature maps with data of a feature
map of the upsampling pyramid with a size correspond-
ing to a size of the intermediate output feature map; and
repeating the upsampling to form a series of increasingly
larger feature maps.

49. The medium of claim 47 wherein the resulting data is
a set of the feature maps to be concatenated with the
resulting data of other depth-wise dense blocks in the same
sequence.

50. The medium of claim 47 wherein at least one of the
depth-wise dense blocks comprises convolutional layers of,
in order, one 1x1 convolutional layer, one of the depth-wise
convolutional layers, and then another 1x1 convolutional
layer.

