I*I Innovation, Sciences et Innovation, Science and CA 3155227 A1 2021/05/14
Développement économique Canada Economic Development Canada
en 3 165 227

Office de la Propriété Intellectuelle du Canada Canadian Intellectual Property Office

(12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION

13) A1
(86) Date de dépdt PCT/PCT Filing Date: 2020/11/05 (51) ClLInt./Int.Cl. GO6F 11/34(2006.01),
(87) Date publication PCT/PCT Publication Date: 2021/05/14 GO6N 20/20(2019.01)
. . . . (71) Demandeur/Applicant:
(85) Entrée phase nationale/National Entry: 2022/04/19 NETFLIX. INC. US
(86) N° demande PCT/PCT Application No.: US 2020/059211
. o o (72) Inventeurs/Inventors:
(87) N° publication PCT/PCT Publication No.: 2021/092247 GEVORKYAN, DAVID, US;
(30) Priorités/Priorities: 2019/11/07 (US62/932,279); YILMAZ, MEHMET, US;
2020/01/17 (US16/746,795) MORE, AJINKYA, US;

BASILICO, JUSTIN, US;
PADMANABHAN, PRASANNA, US;
KAUSHAL, VIVEK, US;

AGRAWA, GAURAY, US;
WELLINGTON, RICHARD, US

(74) Agent: KIRBY EADES GALE BAKER

(54) Titre : SYSTEME DE SIMULATION DE PAGE
(54) Title: PAGE SIMULATION SYSTEM

415 Pahill
Controfler
452‘\\ 403
| Pmmssuri | Memory i
404\
433
u ;‘lt:d Gommunications Module 5 -\\I =
Structures ser interlace
485~ 406~ »| 424
| Receiver 1 |Transmilteri { [
e ke s J
407\\
); Accessing Module !
408
Services 2 "
Bdars | User intertace Generation Madule |
=AW N so~ | a0~ |

. First Ul Second Ul
"e Dats; {nsfance instance
411 ™y

Comparing Module ;

4 2\ |
421 s identified Differences S
Data store 41 3‘\
422 i Determining Module E
Suapsholled
i Data....J 414~
{ outcome -Denning Eftects {
425\\
F’G, 4 I Mefrics Generating Module i

(57) Abrégé/Abstract:

The disclosed computer-implemented method may include accessing updated data structures that are to be included in a user
interface functionality test, where the updated data structures contribute to a user interface. The method may also include
accessing live or snapshotted data captured from services running in a production environment, initiating generation of a first user
interface instance using the updated data structures and using the accessed live or snapshotted data, and initiating generation of a
second user interface instance using a different version of the data structures and using the same accessed live or shapshotted
data. The method further includes comparing the first user interface instance to the second user interface instance to identify
differences and then determine which outcome-defining effects the updated data structures had on the user interface based on the
identified differences between the user interfaces. Various other methods, systems, and computer-readable media are also
disclosed.

C an a dg http:vopic.ge.ca » Ottawa-Hull K1A 0C9 - aup.:/eipo.ge.ca OPIC

OPIC - CIPO 191

Date Submitted: 2022/04/19

CA App. No.: 3155227

Abstract:

The disclosed computer-implemented method may include accessing updated data structures that are
to be included in a user interface functionality test, where the updated data structures contribute to a
user interface. The method may also include accessing live or snapshotted data captured from
services running in a production environment, initiating generation of a first user interface instance
using the updated data structures and using the accessed live or snapshotted data, and initiating
generation of a second user interface instance using a different version of the data structures and
using the same accessed live or snapshotted data. The method further includes comparing the first
user interface instance to the second user interface instance to identify differences and then
determine which outcome-defining effects the updated data structures had on the user interface based
on the identified differences between the user interfaces. Various other methods, systems, and
computer-readable media are also disclosed.

WO 2021/092247 PCT/US2020/059211
PAGE SIMULATION SYSTEM

CROSS REFERENCE TO RELATED APPLICATION
This application claims the benefit of U.S. Provisional Application No. 62/932,279,
filed November 7, 2019 and U.S. Application No. 16/746,795, filed Januvary 17, 2020, the

5 disclosures of which are incorporated, in their entirety, by this reference.

BACKGROUND
Users typically interact with software applications via a user interface (UI). The user
interface may be generated based on static code, where the Ul is the same each time, or the UT
may be generated based on dynamic code that changes each time. For instance, some user

10 interfaces may be generated based on data from a variety of different sources. These sources
may specify a user’s profile information, past selections, past purchases, browsing tendencies,
or other data. This data may be used by machine learning models or other services to generate
rows, columns, graphics, Ul elements, and other portions of the user interface. As such, some
user interfaces may be based on a complex set of underlying data and algorithms.

15 Traditionally, if a user interface developer in such an instance wanted to change or add
a new aspect to the user interface, that developer would set up an A/B test to test the new
features. The A/B test would include an A group that tested the new user interface with the new
features, while the B group would continue using the old uvser interface lacking the new
features. At the end of the A/B test, the developer would have the data they needed to determine

20 whether the new features were successful or not in providing the desired functionality. Setting
up these A/B tests, however, can take a very long time. In some cases, setting up a proper A/B
test to monitor and test such Ul code may take many weeks or months to implement. Moreover,
the A/B test may interfere with currently running production systems which may lead to users

being served with improper or untested user interfaces.

25 SUMMARY
As will be described in greater detail below, the present disclosure describes systems
and methods for simulating user interfaces and other underlying software code without having
to perform lengthy A/B tests. In one example, a computer-implemented method for simulating
a user interface includes accessing, by a controller, various updated data structures that are to
30 be included in a user interface functionality test. The updated data structures, which may
include software code, machine learning models, configuration files, etc., may contribute at

least partially to a user interface that is to be generated. The method may further include

1
CA 03155227 2022-4- 19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

accessing, by the controller, a portion of live or snapshotted data captured from various services
running in a production environment. The live or snapshotted data may be used in the user
interface funcuonality test.

Still further, the method may include initiating, by the controller, generation of a first

5 wser interface instance using the updated data structures and using the accessed live or
snapshotted data. The method may also include initiating, by the controller, generation of a
second user interface instance using a different version of the data structures and using the
same accessed live or snapshotted data. The first and second user interface instances may be
generated within the production environment but may be inaccessible to external users. The

10 method may further include comparing, by the controller, the first user interface instance to the
second user interface instance to identify differences between the first user interface instance
and the second user interface instance and then, based on the comparison, determine, by the
controller, outcome-defining effects the updated data structures had on the user interface based
on the identified differences between the first user interface instance and the second user

15 interface instance.

In some examples, the controller further coordinates the services to access the live or
snapshotted data starting at a specified point in time. In some examples, the controller further
coordinates the services to access a comnmon clock based on the specified point in time.

In some examples, the controller establishes a contract between the services to ensure

20 that the services use the same version of metadata and to ensure that the services access the
same live or snapshotted data. In some examples, the snapshotted data may include inputs
received at the services in addition to outputs generated by the services. In some examples, the
services comprise stateful services running in the production environment, where at least a
portion of state information being stored for each service.

25 In some examples, the updated data structures include software code, configuration
files, or machine learning models. In some examples, the controller modifies the services, such
that calls for data between services are routed to the modified versions of the services.

In some examples, the modified versions of the services may be instantiated to process
a batch of tasks and may be antomatically shut down upon completion of the batch of tasks. In

30 some examples, the modified versions of the services may be instantiated to process the batch
of tasks may be assigned a specified data snapshot to use when processing the batch of tasks.
In some examples, the controller may switch from live data 1o snapshotted data or may switch

from snapshotted data to live data upon receiving an indication to make a switch.

2
CA 03155227 2022- 4- 19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

In addition, a corresponding system for simulating user interfaces may include at least
one physical processor, and physical memory comprsing computer-executable instructions
that, when executed by the physical processor, cause the physical processor to: access, by a
controller, various updated data structures that are to be included in a user interface

5 functionality test, where the updated data structures contribute at least partially to a user
interface. The physical processor further accesses, by the controller, a portion of live or
snapshotted data captured from various services running in a production environment. The live
or snapshotted data may be used in the user interface functionality test.

The physical processor may further, initiate, by the controller, gencration of a first user

10 interface instance using the updated data structures and using the accessed live or snapshotied
data, and may initiate, by the controller, generation of a second user interface instance using a
different version of the data structures and using the same accessed live or snapshotted data.
The first and secomd user interface imstances may be generated within the production
environment but may be inaccessible to external users. The physical processor may also,

15 compare, by the controller, the first user interface instance to the second user interface instance
1o identify differences between the first user interface instance and the second user interface
instance, and based on the comparison, determine, by the controller, outcome-defining effects
the updated data structures had on the user interface based on the identified differences between
the first user interface instance and the second user interface instance.

20 In some examples, the system further computes metrics to establish a quality level of
simulated behavior indicated by the outcome-defining effects. In some examples, computing
the metrics may include altering user interface objects shown in the user interface to remove
bias in the one or more outcome-defining effects. In some examples, the metrics give at least
partial credit for similarities in outcome-defining effects identified in the comparison between

25 the first user interface instance and the second user interface instance.

In some examples, comparing the first user interface instance to the second user
interface instance may include comparing at least one of the first user interface instance or the
second user interface instance to previous A/B test results. In some examples, the comparison
to the previous A/B tests indicates whether a new A/B test is to be run. In some examples, the

30 second user interface instance is generated using snapshotted data that indicates user inputs
over a specified period of time relative to a version of the user interface that was presented to
the user at the time the snapshol was taken.

In some examples, comparing the first user interface instance to the second user

interface instance to identify one or more differences between the first user interface instance

3
CA 03155227 2022- 4- 19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

and the second user interface instance may include comparing the first user interface instance
generated using the updated data structures to the second uvser interface instance generated
using the snapshotted data with the indicated user inputs over the specified period of time, such
that the comparison indicates how the first user interface instance with the one or more updated

5 data structures compares to the second user interface instance using the same snapshotted user
inputs.

In some examples, the above-described method may be encoded as computer-readable
instructions on a computer-readable medium. For example, a computer-readable medium may
include one or more computer-executable instructions that, when executed by at least one

10 processor of a computing device, may cause the computing device 10 access, by a controller,
updated data structures that are to be included in a user interface functionality test, where the
updated data structures contribute at least partially to a user interface. The instructions also
cause the processor to access, by the controller, a portion of live or snapshotted data captured
from services running in a production environment, wherein the live or snapshotted data is used

15 in the oser interface functionality test.

The instructions also cause the processor to initiate, by the controller, generation of a
first user interface instance using the updated data structures and using the accessed live or
snapshotted data and to initiate, by the controller, generation of a second user interface instance
using a different version of the data structures and using the same accessed live or snapshotted

20 dara, where the first and second user interface instances are generated within the production
environment but are inaccessible to external users. The instructions further cause the processor
to compare, by the controller, the first user interface instance to the second user interface
instance to identify one or more differences between the first user interface instance and the
second user interface instance, and based on the comparison, determine, by the controller,

25 outcome-defining effects the updated data structures had on the user interface based on the
identified differences between the first user interface instance and the second user interface
instance.

Features from any of the embodiments described herein may be used in combination
with one another in accordance with the general principles described herein. These and other

30 embodiments, features, and advantages will be more fully understood upon reading the

following detailed description in conjunction with the accompanying drawings and claims.

4
CA 03155227 2022+ 4- 19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings illustrate a normber of exemplary embodiments and are a

part of the specification. Together with the following description, these drawings demonstrate
5 and explain various principles of the present disclosure.

FIG. 1 is a block diagram of an exemplary content distribution ecosystem.

FIG. 2 is a block diagram of an exemplary distribution infrastructure within the content
distribution ecosystem shown in FIG. 1.

FIG. 3 is a block diagram of an exemplary content player within the content distribution

10 ecosystemn shown in FIG. 1.

FIG. 4 illustrates a computing architecture in which user interfaces may be simulated
within a production system.

FIG. 5 is a flow diagram of an exemplary method for simulating a user interface within
a production system.

15 FIG. 6 illustrates an alternative computing architecture in which user interfaces may be
simulated within a production system.

FIG. 7 illustrates a computing environment in which a contract is implemented to
coordinate communications and data transfers between services.

FIG. 8 illustrates a computing environment in which production services are permiued

20 to communicate outside of a production environment, while modified services are prevented
from such communication.

Throughout the drawings, identical reference characters and descriptions indicate
similar, but not necessarily identical, elements. While the exemplary embodiments described
herein are susceptible to various modifications and alternative forms, specific embodiments

25 have been shown by way of example in the drawings and will be described in detail herein.
However, the exemplary embodiments described herein are not intended to be limited to the
particular forms disclosed. Rather, the present disclosure covers all modifications, equivalents,

and alternatives falling within the scope of the appended claims.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
30 The present disclosure is generally directed to simulating user interfaces in a production
environment. As will be explained in greater detail below, embodiments of the present

disclosure may be directed to methods and systems for simulating user interface home pages

5
CA 03155227 2022- 4- 19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

so that time- and resource-consuming A/B tests may be avoided. In traditional development
environments, if a developer wanted to tweak and test an aspect of a software application, that
developer would need to run an A/B test on the new features. For instance, if a developer of a
user interface wanted to change one or more aspects of that user interface, the developer would
5 make the changes and then set up an A/B test where the “A” code had the updated features,
while the “B” code being tested did not have the new features. As users used and interacted
with the new user interface, the developer would be able to see how the “A” code performed
relative to the “B™ code.
In some embodiments herein, a developer or other user may be developing or otherwise
10 providing a user interface home page. This user interface homepage may display different user
interface elements to each user based on a complex series of recommendations from different
types of services, different machine leaming models, and other data sources. Setting up an A/B
test to monitor the results of changes to such a user interface may take many weeks or months,
as the complexity of the system may necessitate many controls and configurations to monitor
15 each of the services, each of the machine learning models, etc. Accordingly, in such cases,
applying new changes to the underlying user interface code may be prohibitively expensive to
implement, either in time or in cost. As such, at least in some cases, the underlying code may
go for long periods of time without an update, and may lack features that are desired by users.
Moreover, security updates that need to be implemented may be delayed due to the long A/B
20 test cycle to ensure that the security fixes do not degrade performance or the overall user
experience.
In contrast, the embodiments described herein may allow developers to create a
simulated Ul home page running on development code and determine whether the simulated
UI displayed the expected functionality. The simulation may involve real user data and may
25 simulate what each user would have seen had the simulated user interface actually been
exposed to the public {or exposed to its subscribed users). In some cases, the embodiments
described herein may involve coordinating multiple disparate services that each apply different
types of logic and algorithms to create the user interface.
For example, one of these services may include a layout service that determines a layout
30 for elements in the user interface. Another service may include a recommendation service that
determines which items are to be shown in the user interface in the selected layout. Another
service may include an ordering service that determines the order in which the recommended
items are shown in the user interface. Many other types of services may provide input into what

is ultimately presented in the user interface. In some cases, the embodiments described herein

6
CA 03155227 2022- 4- 19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

may provide, as a data feed, live or snapshot data to each of these disparate services. This live
and snapshot data may be used to produce a simulation that accurately portrays how the updates
to the UI would function on a production server. Although the services operate using actual
client and service data and although the simulations may be generated directly on production

5 systems, none of the simulation data may be stored on production caches. This maintains a
separation between production data and simulation data. In this manner, developers can quickly
and reliably test changes to a user interface (or other complex software code) on production
systems without having worry about whether end users will see the test results.

The following will provide, with reference to FIG. 1, detailed descriptions of exemplary

10 ecosystems in which content is provisioned to end nodes and in which requests for content are
steered to specific end nodes. The discussion corresponding to FIGS. 2 and 3 presents an
overview of an exemplary distribution infrastructure and an exemplary content player used
during playback sessions, respectively. Detailed descriptions of corresponding compuler-
implemented methods for adaptive streaming of multimedia content will be provided in

15 connection with FIG. 4.

FIG. 1 is a block diagram of a content distribution ecosystem 100 that includes a
distribution infrastructure 110 in communication with a content player 12(. In some
embodiments, distribution infrastructure 110 is configured to encode data at a specific data rate
and to transfer the encoded data to content player 120. Content player 120 is configured to

20 receive the encoded data via distribution infrastructure 110 and to decode the data for playback
to a user. The data provided by distribution infrastructure 110 includes, for example, audio,
video, text, images, animations, interactive content, haptic data, virtual or augmented reality
data, location data, gaming data, or any other type of data that is provided via streaming.

Distribution infrastructure 110 generally represents any services, hardware, software,

25 or other infrastructure components configured to deliver content to end users. For example,
distribution infrastructure 110 includes content aggregation systems, media transcoding and
packaging services, network components, and/or a variety of other types of hardware and
software. In some cases, distribution infrastructure 110 is implemented as a highly complex
distribution system, a single media server or device, or anything in between. In some examples,

30 regardless of size or complexity, distribution infrastructure 110 includes at least one physical
processor 112 and at least one memory device 114. One or more modules 116 are stored or
loaded into memory 114 to enable adaptive streaming, as discussed herein.

Content player 120 generally represents any type or form of device or system capable

of playing audio and/or video content that has been provided over distribution infrastructure

7
CA 03155227 2022- 4- 19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

110. Examples of content player 120 include, without limitation, mobile phones, tablets, laptop
computers, desktop computers, televisions, set-top boxes, digital media players, virtual reality
headsets, augmented reality glasses, and/or any other type or form of device capable of
rendering digital content. As with distribution infrastructure 110, content player 120 includes

5 a physical processor 122, memory 124, and one or more modules 126. Some or all of the
adaptive streaming processes described herein is performed or enabled by modules 126, and in
some examples, modules 116 of distribution infrastructure 110 coordinate with modules 126
of content player 120 to provide adaptive streaming of multimedia content.

In certain embodiments, one or more of modules 116 and/or 126 in FIG. 1 represent

10 one or more software applications or programs that, when executed by a computing device,
cause the computing device to perform one or more tasks. For example, and as will be described
in greater detail below, one or more of modules 116 and 126 represent modules stored and
configured Lo run on one or more general-purpose computing devices. One or more of modules
116 and 126 in FIG. 1 also represent all or portions of one or more special-purpose computers

15 configured to perform one or more tasks.

In addition, one or more of the modules, processes, algorithms, or steps described herein
transform data, physical devices, and/or representations of physical devices from one form to
another. For example, one or more of the modules recited herein receive audio data to be
encoded, transform the audio data by encoding it, output a result of the encoding for use in an

20 adaptive audio bit-rate system, transmit the result of the transformation to a content player, and
render the transformed data to an end user for consumption. Additionally or alternatively, one
or more of the modules recited herein transform a processor, volatile memory, non-volatile
memory, and/or any other portion of a physical computing device from one form to another by
executing on the computing device, storing data on the computing device, and/or otherwise

25 interacting with the computing device.

Physical processors 112 and 122 generally represent any type or form of hardware-
implemented processing unit capable of interpreting and/or executing computer-readable
instructions. In one example, physical processors 112 and 122 access and/or modify one or
more of modules 116 and 126, respectively. Additionally or alternatively, physical processors

30 112 and 122 execute one or more of modules 116 and 126 to facilitate adaptive streaming of
muliimedia content. Examples of physical processors 112 and 122 include, without limitation,
MiCroprocessors, microcontrollers, central processing units (CPUs), field-programmable gate

arrays (FPGAs) that implement softcore processors, application-specific integrated circuits

3
CA 03155227 2022- 4- 19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

{ASICs), portions of one or more of the same, variations or combinations of one or more of the
same, and/or any other suitable physical processor.

Memory 114 and 124 generally represent any type or form of volatile or non-volatile
storage device or medium capable of storing data and/or computer-readable instructions. In one

5 example, memory 114 and/or 124 stores, loads, and/or maintains one or more of modules 116
and 126. Examples of memory 114 and/for 124 include, without limitation, random access
memory (RAM), read only memory {ROM), flash memory, hard disk drives (HDDs), solid-
state drives (S5Ds), optical disk drives, caches, variations or combinations of one or more of
the same, and/or any other suitable memory device or system.

10 FIG. 2 is a block diagram of exemplary components of content distribution
infrastructure 110 according to certain embodiments. Distribution infrastructure 110 includes
storage 210, services 220, and a network 230. Storage 210 generally represents any device, set
of devices, and/or systems capable of storing content for delivery to end users. Storage 210
includes a central repository with devices capable of storing terabytes or petabytes of data

15 and/or includes distributed storage systems {e.g., appliances that mirror or cache content at
Internet interconnect locations to provide faster access to the mirrored content within certain
regions). Storage 210 is also configured in any other suitable manner.

As shown, storage 210 may store a variety of different items including content 212,
user data 214, and/or log data 216. Content 212 inclodes television shows, movies, video

20 games, user-generated content, and/or any other suitable type or form of content. User data 214
includes personally identifiable information (PII), payment information, preference settings,
language and accessibility settings, and/or any other information associated with a particular
user or content player. Log data 216 includes viewing history information, network throughput
information, and/or any other metrics associaled with a user’s connection to or interactions

25 with distribution infrastructure 110.

Services 220 includes personalization services 222, transcoding services 224, and/or
packaging services 226. Personalization services 222 personalize recommendations, content
streams, andfor other aspects of a user’s experience with distribution infrastructore 110.
Encoding services 224 compress media at different bitrates which, as described in greater detail

30 below, enable real-time switching between different encodings. Packaging services 226
package encoded video before deploying it o a delivery network, such as network 230, for
streaming.

Network 230 generally represents any medivm or architecture capable of facilitating

communication or data transfer. Network 230 facilitates communication or data transfer using

9
CA 03155227 2022- 4- 19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

wireless and/or wired connections. Examples of network 230 include, without limitation, an
intranet, a wide area network (WAN), a local area network (LAN), a personal area network
{PAN), the Internet, power line communications (PLC), a cellular network (e.g., a global
system for mobile communications {(GSM) network), portions of one or more of the same,

5 variations or combinations of one or more of the same, and/or any other suitable network. For
example, as shown in FIG. 2, network 230 includes an Internet backbone 232, an internet
service provider 234, and/or a local network 236. As discussed in greater detail below,
bandwidth limitations and bottlenecks within one or more of these network segments triggers
video and/or audio bit rate adjustments.

10 FIG. 3 is a block diagram of an exemplary implementation of content player 120
of FIG. 1. Content player 120 generally represents any type or form of computing device
capable of reading computer-executable instructions. Content player 120 includes, without
limitation, laptops, tablets, desktops, servers, cellular phones, multimedia players, embedded
systems, wearable devices {e.g., smart watches, smart glasses, etc.), smart vehicles, gaming

15 consoles, intemet-of-things (IoT) devices such as smart appliances, variations or combinations
of one or more of the same, and/or any other suitable computing device.

As shown in FIG. 3, in addition to processor 122 and memory 124, content player 120
includes a communication infrastructure 302 and a communication interface 322 coupled to a
network connection 324. Content player 120 also includes a graphics interface 326 coupled to

20 a graphics device 328, an input interface 334 coupled to an input device 336, and a storage
interface 338 coupled to a storage device 34(.

Communication infrastructure 302 generally represents any type or form of
infrastructure capable of facilitating communication between one or more components of a
computing device. Examples of communication infrastructure 302 include, without limitation,

25 any type or form of communication bus {e.g., a peripheral component interconnect {PCI) bus,
PCI Express (PCle) bus, a memory bus, a frontside bus, an integrated drive electronics (IDE)
bus, a control or register bus, a host bus, etc.).

As noted, memory 124 generally represents any type or form of volatile or non-volatile
storage device or medium capable of storing data and/or other computer-readable instructions.

30 Insome examples, memory 124 stores and/or loads an operating system 308 for execution by
processor 122. In one example, operating system 308 includes and/or represents software that
manages compuier hardware and software resources and/or provides common services (o

computer programs and/or applications on content player 120.

10
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

Operating system 308 performs various system management functions, such as
managing hardware components {e.g., graphics interface 326, audio interface 330, input
interface 334, and/or storage interface 338). Operating system 308 also provides process and
memory management models for playback application 310. The modules of playback

5 application 310 includes, for example, a content buffer 312, an audio decoder 318, and a video
decoder 320.

Playback application 310 is configured to retrieve digital content via communication
interface 322 and play the digital content through graphics interface 326. Graphics interface
326 is configured to transmit a rendered video signal to graphics device 328. In normal

10 operation, playback application 310 receives a request from a user to play a specific title or
specific content. Playback application 310 then identifies one or more encoded video and audio
streams associated with the requested title. After playback application 310 has located the
encoded streams associated with the requested title, playback application 310 downloads
sequence header indices associated with each encoded stream associated with the requested

15 title from distribution infrastructure 110. A sequence header index associated with encoded
content includes information related to the encoded sequence of data included in the encoded
content.

In one embodiment, playback application 310 begins downloading the content
associated with the requested title by downloading sequence data encoded to the lowest andio

20 and/or video playback bit rates to minimize startup time for playback. The requested digital
content file is then downloaded into content buffer 312, which is configured to serve as a first-
in, first-out quene. In one embodiment, each unit of downloaded data includes a unit of video
data or a unit of audio data. As units of video data associated with the requested digital content
file are downloaded to the content player 120, the units of video data are pushed into the content

25 buffer 312. Similarly, as units of audio data associated with the requested digital content file
are downloaded to the content player 120, the units of audio data are pushed into the content
buffer 312. In one embodiment, the units of video data are stored in video buffer 316 within
content buffer 312 and the units of audio data are stored in audio buffer 314 of content buffer
312.

30 A video decoder 320 reads units of video data from video buffer 316 and outputs the
units of video data in a sequence of video frames corresponding in duration (o the fixed span
of playback time. Reading a unit of video data from video bulfer 316 effectively de-queues the
unit of video data from video buffer 316. The sequence of video frames is then rendered by
graphics interface 326 and transmitted to graphics device 328 to be displayed to a user.

11
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

An audio decoder 318 reads units of audio data from audio buffer 314 and output the
units of audio data as a sequence of audio samples, generally synchronized in time with a
sequence of decoded video frames. In one embodiment, the sequence of audio samples are
transmitted to awdio interface 330, which converts the sequence of audio samples into an

5 electrical audio signal. The electrical audio signal is then transmitted to a speaker of audio
device 332, which, in response, generates an acoustic output.

In sitvations where the bandwidth of distribution infrastructure 110 is limited and/or
variable, playback application 310 downloads and buffers consecutive portions of video data
and/or audio data from video encodings with different bit rates based on a variety of factors

10 {(e.g., scene complexity, audio complexity, network bandwidth, device capabilities, e(c.). In
some embodiments, video playback quality is prioritized over audio playback quality. Audio
playback and video playback gquality are also balanced with each other, and in some
embodiments audio playback quality is prioritized over video playback quality.

Graphics interface 326 is configured to generate frames of video data and transmit the

15 frames of video data to graphics device 328. In cne embodiment, graphics interface 326 is
included as part of an integrated circuit, along with processor 122. Alternatively, graphics
interface 326 is configured as a hardware accelerator that is distinct from (i.e., is not integrated
within) a chipset that includes processor 122.

Graphics interface 326 generally represents any type or form of device configured to

20 forward images for display on graphics device 328. For example, graphics device 328 is
fabricated using liquid crystal display (LCD) technology, cathode-ray technelogy, and light-
emifting diode (LLED) display technology (either organic or inorganic). In some embodiments,
graphics device 328 also includes a virtual reality display andfor an augmented reality display.
Graphics device 328 includes any technically feasible means for generating an image for

25 display. In other words, graphics device 328 generally represents any type or form of device
capable of visually displaying information forwarded by graphics interface 326.

As illustrated in FIG. 3, content player 120 also includes at least one input device 336
coupled to commumication infrastructure 302 via input interface 334. Input device 336
generally represents any type or form of computing device capable of providing input, either

30 computer or human generated, to content player 120. Examples of input device 336 include,
without limitation, a keyboard, a pointing device, a speech recognition device, a touch screen,
a wearable device (e.£., a glove, a walch, etc.), a controller, variations or combinations of one

or more of the same, and/or any other type or form of electronic input mechanism.

12
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

Content player 120 also includes a storage device 340 coupled to communication
infrastructure 302 via a storage interface 338. Storage device 340 generally represents any type
or form of storage device or medium capable of stworing data and/or other computer-readable
instructions. For example, storage device 340 may be a magnetic disk drive, a solid-state drive,

5 anoptical disk drive, a flash drive, or the like. Storage interface 338 generally represents any
type or form of interface or device for transferring data between storage device 340 and other
components of content player 120.

Many other devices or subsystems are included in or connected to content player 120.

Conversely, one or more of the components and devices illustrated in FIG. 3 need not be present

10 1o practice the embodiments described and/or illustrated herein. The devices and subsystems
referenced above are also interconnected in different ways from that shown in FIG. 3. Content
player 120 is also employed in any number of software, firmware, and/or hardware
configurations. For example, one or more of the example embodiments disclosed herein are
encoded as a computer program {also referred to as computer software, software applications,

15 computer-readable instructions, or computer control logic) on a computer-readable medium.
The term “computer-readable medium,” as used herein, refers to any form of device, carrier,
or medium capable of storing or carrying computer-readable instructions. Examples of
computer-readable media include, without limitation, transmission-type media, such as carrier
waves, and non-transitory-type media, such as magnetic-storage media {e.g., hard disk drives,

20 ape drives, etc.), optical-storage media {e.g.. Compact Disks {CDs), Digital Video Disks
{DVDs), and BLU-RAY disks), electronic-storage media {e.g., solid-state drives and flash
media), and other digital storage systems.

A computer-readable mediom containing a computer program is loaded into content
player 120. All or a portion of the computer program stored on the computer-readable medium

25 is then stored in memory 124 and/or storage device 340. When executed by processor 122, a
computer program loaded into memory 124 causes processor 122 to perform andfor be a means
for performing the functions of one or more of the example embodiments described and/for
illustrated herein. Additonally or alternatively, one or more of the example embodiments
described and/or illustrated herein are implemented in firmware and/or hardware. For example,

30 content player 120 is configured as an Application Specific Integrated Circuit (ASIC) adapted
1o implement one or more of the example embodiments disclosed herein.

FIG. 4 illustrates a computing environment 400 that includes a controller 401. The
controller 401 may be a sofiware module, an embedded hardware component such as a

processor, or a computer system. In cases where the controller 401 is a computer system, the

13
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

computer system may be substantially any type of computing system including a local
computing system or a distributed (e.g., cloud) computing system. [n some cases, the controller
401 may include at least one processor 402 and at least some systemm memory 403. The
controller 401 may include program modules for performing a variety of different functions.
5 The program modules may be hardware-based, software-based, or may include a combination
of hardware and software. Each program module uses computing hardware and/or software to

perform specified functions, including those described herein below.
The controller 401 may also include a communications module 404 that is configured
1o communicate with other computer systems. The communications module 404 includes any
10 wired or wireless communication means that can receive and/or transmit data to or from other
computer systems. These communication means include hardware interfaces including
Ethernet adapters, WIFI adapters, hardware radios including, for example, a hardware-based
receiver 405, a hardware-based transmitter 406, or a combined hardware-based transceiver
capable of both receiving and transmitting data. The radios are cellular radios, Bluetooth radios,
15 global positioning system (GPS) radios, or other types of radios. The communications module
404 is configured to interact with databases, mobile computing devices (such as mobile phones

or lablets), embedded or other types of computing systems.

The controller 401 also includes an accessing module 407. The accessing module 407
may be configured to access updated data structures 417. The updated data structures 417 may
20 be accessed from another computer system (e.g., 415), from a client device used by a user {e.g.,
416), from a data store (e.g., 421), or from some other source. The updated data structures 417
may include software code or software modules, machine leaming models, application
programming interfaces {APIs), configuration files, user profile data, or any other type of data
or software code that may be used as part of a user interface or may be used in generating a
25 user interface or performing some other software function. The updated data structures 417
may inclode new data or changes to old data that are to be applied to the user interface 423.
The updated data structures 417 may include new Ul components 424, or may include changes
to how the Ul components are arranged, or may include changes to which Ul components are
shown on a given user interface. In the embodiments herein, the Ul 423 may include
30 substantially any number of potential components which may be arranged or ordered and
displayed in substantially any configuration. Some of these UL components 424 may include
text or graphics that are gencrated on the fly. Each UL 423 may be specific (o a given user and
may be based on that user’s preferences, past selections, or other data that would personalize

the UT to that user.

14
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

Many different services 419 may be implemented when determining which Ul
components 424 to show and when determining how those components are shown in Ul 423.
As noted above, the services 419 may include services that determine which movies or tv
shows, for example, to show in a given row or column, or may include services that determine

5 which order various rows of tv or movie display cards are shown to a user, or may include
services that fetch and surface data indicating which tv shows or movies the user has watched
in the past or which shows the user may be interested in viewing in the future. Any or all of
these services may implement one or more machine learning models to more accurately tailor
recommendations to a user in the way and the order they would most likely want to see. As can

10 beseen, the services and data accessed to generale any one given instance of user interface 423
may be very large.

These services 419 may run in a production environment 418. This preduction
environment 418 may be local or distributed, and may include a single server to many
thousands of servers or more, distributed all over the world. The production environment 418

15 may have access to live data 420 including user interface interactions coming in from users all
over the world. This live data 420 may also be accessed by the accessing module 407.
Addidonally or alternatively, the accessing module 407 may access snapshotted data 422, This
snapshotted data 422 may include user interaction data along with state data representing a
point in time or 2 given time window (e.g., six hours). The snapshotted data 422 may include

20 not only indications of which items the user selected within the Ul 423, but may also include
state data showing which items were presented to the user, which itemns the user had chosen in
the past, which items were trending on that day, etc. Thus, the snapshotted data 422 may
represent a “whole picture” view of a given user interface instance, recording not just what was
show to the user and how the user responded, but also why given items were shown in the user

25 interface.

Thus, the accessing module 407 may access different types of data from a variety of
different sources. The user interface generation module 408 of controller 401 may be
configured to generate different user interface instances (e.g., 409 and 410). Each user interface
instance may be a single instantiation of Ul 423, tailored to a given user or other entity. The Ul

30 instance may draw on the same services used for other Ul instances, but may be unique in that
it is built on different data (e.g., data that is specific to a given user). Thus, each Ul instance
may be unique. In some cases, when simulating functionality, the same user data and the same
input data is used in both the first Ul instance 409 and the second Ul instance 41(. For example,
the first Ul instance 409 may be generated by module 408 using updated data structures 417,

15
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

while UI instance 410 is generated using older or cument (non-updated) data structures.
Because both Ul instances are generated using the same user data (e.g., the live or snapshotted
data received from the services 419), the Ul developer may be able to see the differences in
how each of the Ul instances 409/410 is generated. In at least some cases, the first and second

5 Ul instances may be accessible to the developer, but may be inaccessible to users that are
external to the developer or the developer's organization. Thus, the simulations may be
performed on a production environment, while avoiding presenting any of the test UT instances
to the public.

The comparing module 411 may access the generated Ul instances 409/410 and may

10 analyze the Ul instances to identifly differences 412. These differences may include changes in
Ul components 424 used, Ul component placement, inclusion {or exclusion) of certain Ul
elements (such as tv show or movie display cards), or other differences 412. The determining
module 413 may then determine one or more outcome-defining effects 414 for the test. These
outcome-defining effects 414 may indicate, for example, that the updated data stractures 417

15 impacted the UI 423 in a positive way or in a negaltive way. The outcome-defining effects 414
may indicate which specific changes were valuable and which were not. Thus, the outcome-
defining effects 414 may indicate to the developer whether the updated data structures 417
were successful in their intended purpose or whether they were unsuccessful. As will be
explained further below, a metrics generating module 425 may be configured to generate

20 metrics indicating why a given change was successful or not.

FIG. 5 is a flow diagram of an exemplary computer-implemented method 500 for
simulating a user interface within a production system. The steps shown in FIG. 5 may be
performed by any suitable computer-executable code and/or computing system, including the
system 400 illustrated in FIG. 4. In one example, each of the steps shown in FIG. 5 may

25 represent an algorithm whose structure includes and/or is represented by multiple sub-steps,
examples of which will be provided in greater detail below.

As illustrated in FIG. 5, at step 510, the accessing module 407 of controller 401 may
access one or more updated data structures 417 that are to be included in a user interface
functionality test. The updated data structures 417 contribute at least partially to a nser interface

30 423. The method 500 may further include, at step 520, accessing a portion of live 420 or
snapshotted data 422 captured from one or more services 419 running in a production
environment 418. The live 420 or snapshotted data 422 may be vsed in the user interface
functionality test. Method 300 may further include initiating, by the controller 401, generation

of a first user interface instance 409 using the updated data structures 417 and uvsing the

16
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

accessed live 420 or snapshotted data 422 (at step 530) and initiating generation of a second

user interface instance 410 vsing a different version of the data structures and using the same

accessed live 420 or snapshotted data 422 (at step 540). These first and second user interface

instances may be generated within the production environment 418 but may be inaccessible to
5 external users.

The method 500 may further include, comparing, by the controller, the first user
interface instance to the second user interface instance to identify one or more differences
between the first user interface instance and the second user interface instance {at step 550)
and, based on the comparison, determining, by the controller, one or more outcome-defining

10 effects the updated data structures had on the user interface based on the identified differences
between the first user interface instance and the second user interface instance {(at step 560).
These steps will be described further below with regard to the computing environments 400
and 600) of FIGS. 4 and 6, respectively.

FIG. 6 illustrates a computing environment 600 in which various embodiments may be

15 carried cut. For example, a user 601 may wish te define and run one or more experiments.
These experiments may be performed in order to improve a piece of software code such as
code that creates an interactive user interface. In some examples, these experiments may be
performed in order to improve a user interface, such as a user interface that presents movies or
tv shows for streaming to an electronic device. The Ul may be designed to show personalized

20 content to a user. As such, at least some embodiments may implement a recommendation
system that uses many different machine learning algorithms to create personalized movie and
tv show recommendations that are presented on the user interface. Additional Ul features may
include logic that handles constraints such as maturity filtering and deduplication.

Any or all of these algorithms and logic may be vsed together in a UI generation system

25 (e.g., 600 of FIG. 6) to produce each personalized Ul homepage. As noted above, while a
diverse set of algorithms working together can produce a very personalized and highly efficient
UL innovating on such a complex system can be difficult. For instance, adding a single feature
to one of the recommendation algorithms may change how the whole personalized Ul
homepage is put together. Or, conversely, a big change to such a ranking system may only have

30 a small incremental impact, for instance because it makes the ranking of a row similar to that
of another existing row.

Moreover, when systems such as the Ul generation sysiem 600 implement components
driven by machine learning, the system may also measure the overall outcome of a change in

the model to a change in the overall system, and not just the local impact for the model itself.

17
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

In the embodiments herein, various offline metrics may be used to measure the performance of
machine learning (ML) model] changes on historical data. By implementing offline metrics, the
system may ascertain a reasonable idea of how well an ML model change would perform online
{i.e., in production). The embodiments herein may allow changes in any of the models or logic

5 involved to be tested on the production servers, but in a manner that separates the simulated
tests from the real-life production data.

To address this, the system 600 may be designed to simulate what a user’s homepage
would have looked like with a specific code change or model change, and compare it against
the page a user actually saw in the service to get an indication of the overall quality of the

10 change. While the system primarily uses this for evaluating modifications to machine leaming
algorithms, such as what happens when the system has a new row selection or ranking
algorithm, the system can also use the simulation to evaloate any changes in the code used to
construct the page, from filtering rules o new types of rows for displaying selectable items
{e.g., ULcomponents 424 of UL 423 in FIG. 4). This type of simulation allows the system to try

15 out many more new ideas and evaluate them without needing to expose users to them first.

In some cases, the system 600 may be configured to perform tests using past data (e.g.,
snapshotted data 422). The snapshotted data allows the system Lo reconstruct a view of the data
for a Ul page at certain points in the past. As such, the system may implement “time-travel
mechanisms™ that track all of the session state and inputs that led to certain Ul presentations.

20 These time travel mechanisms may be implemented to provide precise reconstruction of an
experience thal extends beyond features (0 run an entire system and o coordinate time-travel
across multiple services or systems.

When a user builds a simulation system (e.g., 600), that system may be run nsing a large
number of samples to generate reliable results. In some case, this may mean generating millions

25 of Ul pages ranking movies and tv shows. Simulating such numbers of Ul instances may lead
to problems of scale for the simulation system. For instance, the system may need to ensure
that the executions min within a reasonable time frame, or may need to coordinate work despite
the distributed nature of the system, or may need to ensure that the simulation system is easy
to use and easy to extend for future types of experiments. In short, the simulation system may

30 strive to work at scale while also being fast, reliable, and easy to use.

Thus, as noted above, the user 601 may provide an experiment scope that defines what
user profile characteristics the simulation system is (0 simulate Ul pages for. The experiment
scope may specify something relatively simple such as a random sample of all active profiles.

Or, the experiment scope may specify that the Ul tests are to focus on generating Ul pages for

18
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

a specific type of device (e.g. iPads). Thus, the user may atiempt to tailor the scope to the
metrics the experiment aims to calculate. This may involve defining three aspects: 1) a data
source, 2) stratification rules for profile selection, and 3) a number of profiles for the
experiment.

5 Regarding a data source, the user 601 may one or a combination of two different
mechanisms for data retrieval: data retrieval via time travel and data retrieval via live service
calls. In the time travel approach, the system 600 uses snapshotted data to compute the Ul page
as the Ul page (607) would have been generated at some point in the past. In the
experimentation landscape, time traveled (e.g., snapshotted) data provides the ability to

10 compute metrics that allow the system o back-test the performance of any page generation
model with a high level of accuracy. In particular, using snapshotted data allows the system
600 to compare a new Ul page against a Ul page that a user (e.g., a system subscriber or system
member) had seen and interacted with in the past, including which actions they took in the
section relative to the Ul page.

15 The second approach to data retrieval uses a live data retrieval mechanism that, at least
in some cases, may be the same as that used in a live production system {(e.g., 418). This live
data retrieval mechanism may call live microservices that have the most recent production data.
To simulate production systems very closely, in this mode, the system 600 typically selects
profiles that have recently used their device to log into the production system. When using live

20 data, the system may only be able to compute a limited set of metrics compared to time-travel
mode due 10 having an incomplete set of data. However, these kinds of live data experiments
may still illustrate various advantages and disadvantages to an updated data structure (e.g., 417
of FIG. 4). For example, live data experiments may allow the experimenter to perform final
checks before the system allocates a new A/B test, or may roll out and experiment on a new

25 feature to look for bugs or unexpected problems before exposing live traffic to it. Live data
experiments may also allow the system to analyze changes in Ul page composition, which are
measures of the rows and videos on the page, to validate that the changes the experimenter is
making are having the intended effect without unexpected side-effects. The live data
experiments may also aid in determining whether two different approaches are producing Ul

30 pages that are similar enough that the experimenter 601 may not need to test both approaches.
Stll further, the live data experiments may allow early detection of any negative interactions
between (two features that are assigned to be rolled out simultaneously.

Once the data source is specified, a combination of different stratification types may be

applied to refine the user’s test data selections. Some examples of stratification types are:

19
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

country {where the system selects profiles based on their country), tenure {where the system
selects profiles based on their membership tenure), long-term members vs members in a trial
period, login device (where the system selects users based on their active device type {e.g.,
smart tv, Android device, Apple device, etc.)), or devices supporting only certain feature sets,
5 et

Once the experiment scope is determined, experimenters may specify which
modifications (e.g., which updated data structures 417) they would like 1o test within the page
generation framework. Generally, these changes can either be made by modifying the
configuration of the existing system or by implementing new code and then deploying the new

10 code to the simulation system. There are several ways to conirol which code is run in the
simulation system 600, including but not limited to: 1) A/B test allocations, where the system
collects metrics of the behavior of an A/B test that is not yet allocated, analyzes the behavior
across cells using custom metrics, and/or inspects the effect of allocating members to multiple
A/B tests, 2) page generation models which compare performance of different Ul page

15 generation models, such that when a Ul page is constructed using multiple models, the system
evaluates interactions between different models, 3) device capabilities & page geometry, where
geometry is the number of rows and columns for the device and may differ drastically between
different devices {(e.g., the number of rows or columns displayed on a mobile device may be
much smaller than the number of rows and columns displayed on a smart tv).

20 In some cases, multiple modifications may be grouped together to define different
variants. During metrics computation, the system 600 may collect each metric at the level of
variant and stratification. This detailed breakdown of metrics allows for a fine-grained
attribution of any shifts in page characteristics.

Thus, once the experiment is configured, the experimenter 601 submits the experiment

25 for execution. The execution workflow for the experiment may proceed using some or all of
the following stages: partitioning the experiment into smaller chunks, computing pages
asynchronously for each partition, and computing experiment metrics. Even though
experiments may be configured as a single entity by experiment owners, the coordinator 603
of system 600 may break the execution of an experiment down into multiple independent tasks.

30 The coordinator may break down the experiment in order to handle certain system limitations
and/or different latency profiles. For example, in some cases, retrieving profile-specific data
from a time-travel database might need some warm-up time for a subset of dates. Some
modifications to the Ul page algorithm might impact the latency of page generation more

significantly than other changes. When time traveling to different times in the past, different

20
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

computing clusters hosting page generation services may be needed for each selected snapshot
time. As such, the coordinator 603 {which may be the same as or different than controller 401
of FIG. 4) may break the experiment into different partitions.
Once the partitions are defined, for each partition, the system may send out an event to
5 a Request Poster 605 via a message queue {e.g., a simple queue service (SQS) 604A. The
Request Poster may be responsible for reading data and applying stratification 1o select profiles
for each partition. For each selected profile, the system then generates page computation
requests that are written to a dedicated queue per partition (e.g., queue 604B). Each queue may
then be drained by a (potentially) separate cluster hosting a Page Generator service 606 that is
10 launched to serve a particular partition. These clusters may be application container stacks that
are each programmatically configured using custom bootstrapping code that is executed before
the service is fully initialized. This setup enables the system 600 to create different server
environments, for example to initialize the containers with different ML model feed versions
and other data to precisely replicate time traveled state in the past. Once the Ul Page Generator
15 606 is running, it processes the requests in the queue 604B to compute the simulated pages 607
under the definition of the requested variant. Generated Ul pages 607 may then be persisted to
a database table for metrics processing.
Thus, at least some embodiments implement queue-based communication between the
systems to decouple the systems and allow for easy retries of each request, as well as individual
20 partitions. Writing the generated pages to a data store (e.g., 421 of FIG. 4) and separating the
Maetrics Cormnputation stage (e.g., 608-610) allows the system 600 to change the metrics without
the need of regenerating all pages and provides the system with the ability to compute new
metrics on previously generated pages that might have been very expensive to compule.
As mentioned previously, the system 600 may create application container stacks to
25 define a miniatare multimedia content streaming ecosystem on-the-fly for each simulation.
Because there may be multiple services involved in Ul page construction and because the
system 600 may be designed to time travel all of them together to replicate a specific point in
time in the past, the application stacks of multiple services may be started with a common time
configuration. Moreover, traffic may be routed between the application stacks on the fly in
30 each experiment. This common time configuration and traffic routing may be provided by the
coordinator 603 and/or the staws keeper 602. These components may provide the precision
needed o be able to simulate and correlate metrics correctly with actions of users that happened
in the past. This coordination also allows the system 600 to test how changes in those systems

end up impacting the final Ul page output.

21
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

Achieving high temporal accuracy across multiple systems and data sources may be
computationally and organizationally demanding. To ensure such temporal accuracy, the
system 600 may include one or more tools that compare actual Ul pages generated by the live
{production) system with UI pages generated by the simulator {e.g., page generator 606), both

5 in terms of the final UI output but also the features involved in the ML models. To ensure that
temporal accuracy is maintained going forward, the systermn may implement automated checks
to avoid regressions in future changes and also to determine whether new data sources have
come online that should be included in the Ul page generation. As such, the system 600 may
be architected in a very flexible way so that, in the future, users can define more downstream

10 systems that should be initialized and to which traffic should be routed.

Once the generated Ul pages 607 are saved to a data store, the coordinator 603 may
send a signal to a workflow manager {e.g., a page experimentation service) to complete Ul
page generation. This may trigger a service or a metrics processor {e.g., 608) to calculate one
or more metrics, normalize the results (e.g., 609), and save both the raw and normalized data

15 to areporting dashboard {e.g., 610). From there, experimenters can access the results of their
simulation either using preconfigured reports or access their results from notebooks that pull
the raw data from the data store. Or, further, the experimenters may access the raw Ul pages to
compute experiment-specific metrics.

Given the asynchronous nature of the experiment workflow and the need to govern the

20 life-cycle of multiple services potentially running on multiple clusters dedicated for each
partition, the coordinator 603 (or, perhaps, 401 of FIG. 4) may be configured 1o manage the
experiment workflow. Thus, a workflow management system may be implemented with one
or more of the following capabilities: automatic retry of single or multiple workflow steps in
case of a transient failure, conditional execution of workflow steps, specific workflow

25 execution rules, or maintaining execution history records. The workflow engine may be
implemented to execute tasks including: governing the lifecycle of page generation services
dedicated for each partition (e.g., external startup, shutdown tasks), initializing metrics
computation when page generation for all partitions is complete, terminating the simulation
when the simulation does not have a sufficient page yield (high error rate), sending out

30 notifications to simulation owners on the status of the simulation, and listening to the heartbeat
of each component in the simulation system and terminate the simulation when an issue is
detected.

To facilitate life-cycle management and to monitor the overall health of a simulation or

experiment, the system may implement a separate micro-service referred to as a Status Keeper

22
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

602. This service may provide any one or more of the following capabilities: giving a detailed
report with granular metrics about different steps {e.g., Coordinator / Request Poster / Page
Generator and Metric Analyzer) in the system to let the experimenter make the decision on
whether or not they can rely on the results, aiding in lifecycle decisions to fast fail the

5 experiment if failure threshold has been reached, and storing and retrieving status and
aggregating counter information.

Once the experimenter kicks off the experiment, each application in the simulation
system 600 may report its status to the Status Keeper service 602. This status may include
several values such as App running, App completed, Step failed, etc. These indicators allow

10 the experimenter to know about the status of their experiment as well as allow the life-cycle
manager to know the next step to take in managing the simulation system. To create a complete
status report, all the status and counter data recorded by each application may be combined in
the system to get a view of the overall health of the system.

One part of improving UI page generation models may include having accurate and

15 reliable offline metrics to track model performance and to compare different model variants.
In some cases, there may not be a perfect correspondence between offline results and results
from A/B testing. For example, if model variants M1 and M2 are built such that M1 is better
than M2 in terms of the offline metric m by x%. The online A/B test performance may be
measured by a different metric ¢ and it may turn out that M1 is better than M2 by a margin

20 significantly different from x or indeed that M2 is actually the better variant. Given A/B tests’
need to run for a relatively lengthy amount of time (o measure long-term metrics, generating
an offline metric that provides an accurate pulse of how the testing might be completed may
be very beneficial. As such, the Ul page simulation systern 600 may implement offline metrics
that lead to an improved correspondence to online A/B metrics.

25 One source of discrepancy between online and offline results may be presentation bias.
The real Ul pages presented to members in the production system are the result of ranking
media items and rows from current production Ul page generation models. The engagement
data (what members click, watch, touch, or otherwise interact with) that results from the Ul
changes is thus strongly influenced by those models. For example, members may only be able

30 tosee and engage with media items from rows that the production system served to them in the
UL Thus, one characteristic provided by the offline metrics is to mitigate this bias so that the
system doesn’t unduly favor or disfavor the production model.

In the absence of A/B testing results on new candidate models, the system may lack a

basic ground truth with which to compare offline metrics. However, because of the above-

23
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

described system for page simulation and time travel, the embodiments described herein may

simulate how a member’s page might have looked at time t when if instead of the production

model P, the Ul page presented to them was generated by the new model M. Indeed because

of time travel, the system could also build model M based on the data available at time t so as

5 to armive as close as possible to the unobserved counterfactual Ul page that model M would

have shown. Then, to validate the effectiveness of the offline metrics, various numerical

metrics may be implemented. The system 600 may use past A/B tests to ascertain how well the

offline metrics computed on the simulated Ul pages correlated with the actual online metrics

for those A/B tests. That is, the system may be configured to take the hypothetical UI pages

10 generated by certain models, evalvate those Ul pages according to an offline metric, and then

see how well those offline metrics correspond to online metrics. The system may thus be able

to implement a suite of metrics that has a strong correlation with corresponding online metrics
generated across multiple past A/B tests.

Having such offline metrics that strongly correlate with online metrics allows the

15 system 600 to experiment more rapidly and reject model variants which may not be
significantly better than the current production model, thus saving valuable A/B testing
bandwidth. These offline metrics may also be used to detect bugs early in the model
development process when the offline metrics go vigorously against a cument testing
hypothesis. This may save many developer cycles and experimentation cycles, and may allow

20 experimenters to run more simulations.

In addition to tracking online results, these offline metrics may enable the system (o
perform other tasks including: comparing models trained with different objective functions,
comparing molels trained on different datasets, comparing Ul page construction-related
changes outside of the machine learning model, and reconciling changes in a hybrid model that

25 may contain reasonably non-interacting changes arising out of many A/B tests running
simultaneously.

Tuarning now to FIG. 7, an embodiment is illustrated in which a controller 701 (which
may be the same as or different than controller 401 of FIG. 4 or coordinator 603 of FIG. 6)
implements a contract 702 when using services 707 in production environment 706. As noted

30 above, the controller 701 may be implemented to coordinate the disparate services used to
provide data for generating a user inierface. The controller may be configured (o access live
data from the production environment 706 or may access snapshotied data that starts at a
specified point in time that occurred in the past. In some embodiments, the controller 701 may

establish a contract 702 between any or all of the services 707 used to provide Ul data. The

24
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

contract 702 may specify, a common clock time 703 that each of the services is to use. Because

the services are contracted to use the common clock time 703, each service will provide live or

snapshotted data using the same notion of time. This increases accuracy and continuity when

ronning simulations. Using the common clock time 703, the experimenter may provide a

5 specified starting and specified stopping time, so that data will be provided for the intervening

timeframe. The services 707 may then replay the actual incoming requests received over the

specified timeframe, using the time of request back when it occurred (not necessarily the
current time).

The contract 702 between the controller 701 and the services 707 may also be used to

10 ensure that the services use the same version of metadata 704 when providing data for the Ul
simulations. Still further, the contract 702 may ensure that the services 707 access the same
live or snapshot data 705. As such, when the controller 701 is coordinating generation of
simulated UI page, the contract 702 established between the controller and the services 707
may ensure that the same notion of time 703 is used between the services, the same metadata

15 704 is used, and the same live or snapshot data 705 is used. This coordination between services
allows the simulation system to provide consistent and reliable testing results, even across
many disparate services or data sources.

In some cases, the snapshot data 705 may not only include the resulting Ul pages that
were served to users during the timespan, but may also include user inputs received at the

20 services. Thus, the snapshot data 705 may track each input and each request received at the
various services, and may wrack each output generated by the services. This provides a
comprehensive view of the state of the services at the time the production Ul pages were
generated and served (o users. The services may be stateful services running in the production
environment, maintaining state data, metadata, or other information that provides insights as to

25 why a given Ul was generated the way it was. Then, when updated data structures are provided
for testing (e.g., software code, configuration files, machine learning models, etc.), those
updated data strnctures are tested using the same inputs, the same outputs, and the same general
state that existed in each of the services when those services originally created the production
Ul pages.

30 FIG. § illustrates an embodiment in which a controller modifies the at least some of the
services 801-803 in production environment 800. The modifications may be very slight, or may
be more substantial. In some cases, the modifications may change the services 801-803 such
that calls for data between services are routed to the modified versions of the services 801A-

803A. Thus, within the production environment 800, modified services S01A-803A may be

25
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

instantiated alongside the production services 801-803. The production services 801-803 may

be “online” or live services working with live, user-facing data, while the modified services

801A-803A may be running on the same production servers, but may be modified so that when

the services call other services for data during a Ul generation process, the calls go to the

5 modified versions of the services. Moreover, the modified services 801A-803A may be

changed such that their data calls and output data are not seen by extemal users 805. Thus, for

example, within the same production environment 800, production services 801-803 may be

permitted to make calls and provide output data (e.g., Ul pages or Ul components) that are seen

by external users 805, while modified services 801A-803A may be permitted only to make

10 calls to other modified services and may be prevented (e.g., by firewall 804 or by some other
mechanism) from providing their results to external users 805.

Using this implementation, modified services 801A-803A may run in a normal
production environment that is generating and serving live Ul pages, while at the same lime
running medified services 801 A-803A that are used to simulate Ul pages using the updated

15 data structures. In some cases, the modified versions of the services 801A-803A may be
configured to process a baich of tasks. The batch may include substantially any number of tasks
including providing data for Ul pages, determining which Ul components to surface and in
which order, generating UI pages, and other tasks. In some cases, these modified services may
be instantiated for the specific purpose of processing the batch of tasks. Then, after the batch

20 has been processed, the modified services 801A-803A may be automatically shut down so that
computing resources may be returned to the computing clusters of the production environment
800. In some cases, the modified services 801A-803A that are instantiated to process the batch
of tasks may be assigned a specified data snapshot to use when processing the batch of tasks.
This snapshot data is then used when performing each of the tasks in the batch of tasks. While

25 the batch is being processed, the controller may switch from processing a batch of tasks using
live data to a batch of tasks using snapshotted data or vice versa. This switch between batches
may occur at the direction of the experimenter (e.g., upon receiving an indication to make a
switch from the experimenter), or may occur automatically when running multiple simulations
at the same time.

30 Regardless of which type of data is used when generating simulated Ul pages, systems
may be put in place (o track the effectiveness of the new code. For instance, as indicated in
FIG. 6, a metrics processor 608 may generate one Or more metrics (o establish a quality level
of simulated behavior. This simulated behavior may be indicated by the outcome-defining

effects 414 of FIG. 4. The metrics may indicate, for example, that an increased number of users

26
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

selected a media item that was presented in a “Recommended for You™ section, or may indicate
that the user found a tv show or movie to watch within the first or second row of displayed
shows. Conversely, the metrics may indicate that a Ul change would have resulted in fewer
successful media item selections or that users had to move down rows or columns further than
5 anticipated. Thus, the outcome-determining effect of the test may indicate that the change was
not effective in its intended purposes, or that the test had unintended consequences, or that the
test was effective as designed. The metrics may thus provide a real-time indication of whether

the test is going well or is providing negative results.
In some embodiments, computing the metrics may include altering user interface
10 objects shown in the wvser interface to remove bias in the outcome-defining effects. For
example, to be able to say that updated code A is better than existing code B, various Ul objects
may be changed, added, or removed. This removal of objects or otherwise changing what is
shown on the Ul may reduce bias to better indicate whether the new code is more likely to
show desired media items (e.g., movies actually watched by users). In some cases, the metrics
15 processor 608 may be configured to give at least partial credit for similarities in outcome-
defining effects identified in the comparison between user interface instances. For example, if
the comparing module 411 of FIG. 4 identifies one matching Ul element, two partially
matching elements, and three UL elements that do not match between Ul instances, the metrics
processor 608 may be configured to give partial credit to Ul elements that match between Ul
20 instances. By giving partial credit to elements that partially match (e.g., a sequel of a first
movie), the metrics processor 608 may help reduce variance which may lead 1o more reliable

data.

In some cases, as noted above, when the comparing module 411 compares two or more
Ul instances to each other, the comparing may include comparing the user interface instances
25 to previous A/B test results. For instance, previous A/B test results may show outcomes for
new code A tested against existing code B. These test results may indicate that the test was
generally successful or generally unsuccessful (among other test results). In cases where the
new code to be tested is similar or where the intended outcome of the new code is similar to
previously A/B tested code, the comparing module 411 may compare the simulated Ul
30 instances (e.g., 409 and 410) to the outputs of the previous A/B test. In some cases, the
comparison o the previous A/B tests may indicate that the new code to be tested is sufficiently
similar (o the previously tested code and that a new A/B test does not need (0 be run.

Conversely, the comparison to the previous A/B tests may indicate that the new code to be

27
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

tested is not sufficiently similar to the previously tested code and that a new A/B test does need
to be run.

In some cases, the user interface instances may be generated using snapshotted data.
The snapshotted data may include user inputs over a specified period of time relative to a

5 version of the wser interface that was presented to the user at the time the snapshot was taken.
By using this snapshotted data in the simulation test, the experimenter can gain an idea of what
the past user would have input had the user been exposed to the new, updated UT code. When
comparing user interface instance to each other to identify differences between them, the
comparing may include analyzing the one user interface instance generated using the updated

10 data structures to another vser interface instance generated using the snapshotied data with the
included user inputs over the specified period of time. As such, the comparison may indicate
how the first user interface instance with the updated data structures compares to the second
user interface instance using the same snapshotted user inputs. Accordingly, the simulations
may compare how the user would react to and use the new Ul with the updated code to what

15 the user actually did using the same inputs on the older code. In this manner, an experimenter
may ascertain whether their updated code is beneficial to the Ul or not.

In some embodiments, a system may be provided for simulating Ul pages in a
production environment. The system may include at least one physical processor, and physical
memory comprising computer-executable instructions that, when executed by the physical

20 processor, cause the physical processor to: access, by a controller, various updated data
structures that are to be included in a user interface functionality test, where the updated data
structures contribute at least partially to a user interface. The physical processor further
accesses, by the controller, a portion of live or snapshotted data captured from various services
manning in a production environment. The live or snapshotted data may be vsed in the user

25 interface functionality test.

The physical processor may further, initiate, by the controller, generation of a first user
interface instance using the updated data structures and using the accessed live or snapshotied
data, and may initiate, by the controller, generation of a second user interface instance using a
different version of the data structures and using the same accessed live or snapshotted data.

30 The first and second user interface instances may be generated within the production
environmenl but may be inaccessible to external users. The physical processor may also,
compare, by the controller, the first user interface instance o the second user interface instance
to identify differences between the first user interface instance and the second user interface

instance, and based on the comparison, determine, by the controller, outcome-defining effects

28
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

the updated data structures had on the user interface based on the identified differences between
the first user interface instance and the second user interface instance.

A corresponding non-transitory computer-readable medium comprising one or more
computer-executable instructions that, when executed by at least one processor of a computing

5 device, cause the computing device to access, by a controller, updated data structures that are
to be included in a user interface functionality test, where the updated data structures contribute
at least partially to a user interface. The instructions also cause the processor o access, by the
controller, a portion of live or snapshotted data captured from services running in a production
environment, wherein the live or snapshotted data is used in the user interface functionality

10 test.

The instructions also cause the processor to initiate, by the controller, generation of a
first user interface instance using the updated data structures and using the accessed live or
snapshotted data and to initiate, by the controller, generation of a second user interface instance
using a different version of the data structures and using the same accessed live or snapshotted

15 data, where the first and second user interface instances are generated within the production
environment but are inaccessible to external users. The instructions further cause the processor
to compare, by the controller, the first user interface instance to the second user interface
instance to identify one or more differences between the first user interface instance and the
second user interface instance, and based on the comparison, determine, by the controller,

20 outcome-defining effects the updated data structures had on the user interface based on the
identified differences between the first user interface instance and the second user interface
instance.

Accordingly, in this manner, the embodiments described herein may be configured to
simulate and test user interface pages within a production environment without allowing users

25 outside of the production environment to see the tests. Experimenters may avoid the lengthy
time- and resource-consuming process of rnning user-facing A/B tests, and may simply run
simulated tests to determine, using snapshotted data, how a user would have responded to a
user interface had it included the updated features. The simulated test may be run much more
quickly and may be more accurate due to the use of actual user and state data stored in the

30 snapshots.

1. A computer-implemented method comprising: accessing, by a coniroller, one or
more updated data structures that are o be included in a user interface functionality test, the
updated data structures contributing at least partially to a user interface; accessing, by the

controller, a portion of live or snapshotted data captured from one or more services running in

29
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

a production environment, the live or snapshotted data being used in the user interface
functionality test; initiating, by the controller, generation of a first user interface instance using
the updated data structures and using the accessed live or snapshotted data; initiating, by the
controller, generation of a second uvser interface instance using a different version of the data
5 structures and using the same accessed live or snapshotted data, wherein the first and second
user interface instances are generated within the production environment but are inaccessible
to external users; comparing, by the controller, the first user interface instance to the second
user interface instance to identify one or more differences between the first uvser interface
instance and the second user interface instance; and based on the comparison, determining, by

10 the controller, one or more outcome-defining effects the vpdated data structures had on the user
interface based on the identified differences between the first user interface instance and the
second user interface instance.

2. The computer-implemented method of claim 1, wherein the controller further
coordinates the one or more services to access the live or snapshotted data starting at a specified

15 point in time.

3. The computer-implemented method of claim 2, wherein the controller further
coordinates the one or more services Lo access a common clock based on the specified point in
time.

4. The computer-implemented method of claim 2, wherein the controller establishes a

20 contract between the one or more services to ensure that the services vse the same version of
metadata and (o ensure that the services access the same live or snapshotted data,

5. The computer-implemented method of claim 1, wherein the snapshotted data
includes inputs received at the one or more services in addition to outputs generated by the one
Of MOTe Services.

25 6. The computer-implemented method of claim 1, wherein the one or more services
comprise stateful services mnning in the production environment, at least a portion of state
information being stored for each service.

7. The computer-implemented method of c¢laim 1, wherein the one or more npdated
data structures comprise at least one of software code, configuration files, or machine leaming

30 models.

8. The computer-implemented method of claim 1, wherein the controller modifies the
one or more services, such that calls for data between services are routed to the modified

versions of the services.

30
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

9. The computer-implemented method of claim 8, wherein the one or more modified
versions of the services are instantiated to process a batch of tasks and are automatically shut
down upon completion of the batch of tasks.

10. The computer-implemented method of claim 9, wherein the modified versions

5 of the services are instantiated to process the batch of tasks are assigned a specified data
snapshot to use when processing the batch of tasks.

11. The computer-implemented method of claim 1, wherein the controller switches
from live data to snapshotted data or switches from snapshotted data to live data upon receiving
an indication to make a switch.

10 12. A system comprising: at least one physical processor; physical memory
comprising computer-cxecutable instructions that, when executed by the physical processor,
cause the physical processor to: access, by a controller, one or more updated data structures
that are to be included in a user interface functionality test, the updated data structures
contributing at least partially to a user interface; access, by the controller, a portion of live or

15 snapshotted data captured from one or more services running in a production envirenment, the
live or snapshotted data being used in the user interface functionality test; initiate, by the
controller, generation of a first user interface instance using the updated data structures and
using the accessed live or snapshotted data; initiate, by the controller, generation of a second
user interface instance using a different version of the data structures and using the same

20 accessed live or snapshotted data, wherein the first and second user interface instances are
generated within the production environment but are inaccessible w external users; compare,
by the controller, the first user interface instance to the second user interface instance to identify
one or more differences between the first user interface instance and the second user interface
instance; and based on the comparison, determine, by the controller, one or more outcome-

25 defining effects the updated data structures had on the user interface based on the identified
differences between the first nser interface instance and the second user interface instance.

13. The system of claim 12, further comprising computing one or more metrics to
establish a quality level of simulated behavior indicated by the outcome-defining effects.

14. The system of claim 13, wherein computing the one or more metrics includes

30 altering one or more user interface objects shown in the user interface to remove bias in the
one or more outcome-defining effects.

15. The system of claim 13, wherein the metrics give at least partial credic for
similarities in outcome-defining effects identified in the comparison between the first user

interface instance and the second user interface instance.

31
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

16. The system of claim 12, wherein comparing the first user interface instance to
the second wuser interface instance comprises comparing at least one of the first user interface
instance or the second user interface instance to previous A/B test results.

17. The system of claim 16, wherein the comparison to the previous A/B tests

5 indicates whether a new A/B test is to be run.

18. The system of claim 12, wherein the second user interface instance is generated
using snapshotted data that indicates user inputs over a specified period of time relative to a
version of the user interface that was presented to the user at the time the snapshot was taken.

19. The system of claim 18, wherein comparing the first user interface instance to

10 the second wser interface instance (o identify one or more differences between the first user
interface instance and the second user interface instance includes comparing the first user
interface instance generated using the updated data stmctures to the second user interface
instance generated using the snapshotted data with the indicated user inputs over the specified
period of time, such that the comparison indicates how the first user interface instance with the

15 one or more updated data structures compares to the second user interface instance using the
same snapshotted user inputs.

20. A non-transitory computer-readable medium comprising one or more computer-
executable instructions that, when executed by at least one processor of a computing device,
cause the computing device to: access, by a controller, one or more updated data structures that

20 areto be included in a user interface functionality test, the updated data structures contributing
at least partially to a user interface; access, by the controller, a portion of live or snapshotted
data captured from one or more services running in a production environment, the live or
snapshotted data being used in the user interface functionality test; initiate, by the controller,
generation of a first user interface instance using the updated data structures and using the

25 accessed live or snapshotted data; initiate, by the controller, generation of a second user
interface instance using a different version of the data structures and using the same accessed
live or snapshotted data, wherein the first and second user interface instances are generated
within the production environment but are inaccessible to external users; compare, by the
controller, the first user interface instance to the second user interface instance to identify one

30 or more differences between the first user interface instance and the second user interface
instance; and based on the comparison, determine, by the controller, one or more oulcome-
defining effects the updated data structures had on the user interface based on the identified

differences between the first user interface instance and the second vser interface instance.

32
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

As detailed above, the computing devices and systems described and/or illustrated
herein broadly represent any type or form of computing device or system capable of executing
computer-readable instructions, such as those contained within the modules described herein.
In their most basic configuration, these computing device(s) may each include at least one

5 memory device and at least one physical processor.

In some examples, the term “memory device” generally refers to any type or form of
volatile or non-volatile storage device or medium capable of storing data and/or computer-
readable instructions. In one example, a memory device may store, load, and/or maintain one
or more of the modules described herein. Examples of memory devices include, without

10 limitation, Random Access Memory (RAM), Read Only Memory (ROM), flash memory, Hard
Disk Drves (HDDs), Solid-State Drives (85Ds), optical disk drives, caches, variations or
combinations of one or more of the same, or any other suitable storage memory.

In some examples, the term “physical processor” generally refers to any type or form
of hardware-implemented processing unit capable of interpreting and/or executing computer-

15 readable instructions. In one example, a physical processor may access and/or modify one or
more modules stored in the above-described memory device. Examples of physical processors
include, without limitation, microprocessors, microcontrollers, Central Processing Units
{CPUs), Field-Programmable Gate Arrays (FPGAs) that implement softcore processors,
Application-Specific Integrated Circuits {(ASICs), portions of one or more of the same,

20 variations or combinations of one or more of the same, or any other suitable physical processor.

Although illustrated as separate elements, the modules described andfor illustrated
herein may represent portions of a single module or application. In addition, in certain
embodiments one or more of these modules may represent one or more software applications
or programs that, when executed by a computing device, may cause the computing device to

25 perform one or more tasks. For example, one or more of the modules described and/or
illustrated herein may represent modules stored and configured to mn on one or more of the
computing devices or systems described and/or illustrated herein. One or more of these
modules may also represent all or portions of one or more special-purpose computers
configured to perform one or more tasks.

30 In addition, one or more of the modules described herein may transform data, physical
devices, and/or representations of physical devices from one form to another. For example, one
or more of the modules recited herein may receive data to be transformed, transform the data,
output a result of the transformation to initialize a test, use the result of the transformation to

perform the test, and store the result of the transformation as test results. Additionally or

33
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

alternatively, one or more of the modules recited herein may transform a processor, volatile
memory, non-volatile memory, and/or any other portion of a physical computing device from
one form to another by executing on the computing device, storing data on the computing
device, and/or otherwise interacting with the computing device.

5 In some embodiments, the term “computer-readable medium”™ generally refers to any
form of device, carrier, or medium capable of storing or camrying computer-readable
instructions. Examples of computer-readable media include, without limitation, transmission-
type media, such as carrier waves, and non-transitory-type media, such as magnetic-storage
media (e.g., hard disk drives, tape drives, and floppy disks), optical-storage media {e.g.,

10 Compact Disks (CDs), Digital Yideo Disks (DVDs), and BLU-RAY disks), electronic-storage
media (e.g., solid-state drives and flash media), and other distribution systems.

The process parameters and sequence of the steps described and/or illustrated herein
are given by way of example only and can be varied as desired. For example, while the steps
illustrated and/or described herein may be shown or discussed in a particular order, these steps

15 do not necessarily need to be performed in the order illustrated or discussed. The varicus
exemplary methods described and/or illustrated herein may also omit one or more of the steps
described or illustrated herein or include additional steps in addition to those disclosed.

The preceding description has been provided to enable others skilled in the art to best
utilize various aspects of the exemplary embodiments disclosed herein. This exemplary

20 description is not intended to be exhaustive or to be limited to any precise form disclosed.
Many modifications and variations are possible without departing from the spirit and scope of
the present disclosure. The embodiments disclosed herein should be considered in all respects
illustrative and not restrictive. Reference should be made to the appended claims and their
equivalents in determining the scope of the present disclosure.

25 Unless otherwise noted, the terms “connected to” and “coupled to” (and their
derivatives), as used in the specification and claims, are to be construed as permitting both
direct and indirect {i.e., via other elements or components) connection. In addition, the terms
“a” or “an,” as used in the specification and claims, are to be construed as meaning “at least
one of.” Finally, for ease of use, the terms “including™ and “having” (and their derivatives), as

30 used in the specification and claims, are interchangeable with and have the same meaning as

the word “comprising.”

34
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

WHAT IS CLAIMED IS:

1. A computer-implemented method comprising:
accessing, by a controller, one or more updated data structures that are to be included
5 in a vser interface functionality test, the updated data structures contributing at least partially
to a user interface;
accessing, by the controller, a portion of live or snapshotted data captured from one or
more services running in a production environment, the live or snapshotted data being used in
the user interface functionality test;
10 initiating, by the controller, generation of a first user interface instance using the
updated data structures and using the accessed live or snapshotted data;
initiating, by the controller, generation of a second user interface instance using a
different version of the data structures and using the same accessed live or snapshotted data,
wherein the first and second user interface instances are generated within the production
15 environment but are inaccessible to external users;
comparing, by the controller, the first user interface instance to the second user interface
instance to identify one or more differences between the first user interface instance and the
second user interface instance; and
based on the comparison, determining, by the controller, one or more outcome-defining
20 effects the updated data structures had on the vser interface based on the identified differences

between the first user interface instance and the second user interface instance.

2. The computer-implemented method of claim 1, wherein the controller further
coordinates the one or more services to access the live or snapshotted data starting at a specified

25 point in time.

3. The computer-implemented method of claim 2, wherein the controller further
coordinates the one or more services (o access a common clock based on the specified point in
time.

30

4, The compuier-implemented method of claim 2, wherein the contoller

establishes a contract between the one or more services (o ensure that the services use the same

version of metadata and to ensure that the services access the same live or snapshotted data.

35
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

5. The computer-implemented method of claim 1, wherein the snapshotted data
includes inputs received at the one or more services in addition to outputs generated by the one

O MOTE SErvices.

5 6. The computer-implemented method of claim 1, wherein the one or more
services comprise stateful services running in the production environment, at least a portion of

state information being stored for each service.

T The computer-implemented method of claim 1, wherein the one or more
10 updated data structures comprise at least one of software code, configuration files, or machine

learning models.

8. The computer-implemented method of c¢laim 1, wherein the controller modifies
the one or more services, such that calls for data between services are routed to the modified

15 versions of the services.

9. The computer-implemented method of claim 8, wherein the one or more
modified versions of the services are instantiated to process a baich of tasks and are
automatically shut down upon completion of the batch of tasks.

20

10. The computer-implemented methed of claim 9, wherein the modified versions

of the services are instantiated to process the batch of tasks are assigned a specified data

snapshot to use when processing the batch of tasks.

25 11. The computer-implemented method of claim 1, wherein the controller switches
from live data to snapshotted data or switches from snapshotted data to live data upon receiving

an indication o make a switch.

12. A system comprising:
30 at least one physical processor;
physical memory comprising computer-executable insuructions that, when executed by

the physical processor, cause the physical processor (o:

36
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

access, by a controller, one or more updated data structures that are to be
included in a wser interface functionality test, the updated data structures contributing
at least partially to a user interface;
access, by the controller, a portion of live or snapshotted data captured from one
5 or more services running in a production environment, the live or snapshotted data
being used in the user interface functionality test;
initiate, by the controller, generation of a first user interface instance using the
updated data structures and using the accessed live or snapshotted data;
initiate, by the controller, generation of a second user interface instance using a
10 different version of the data structures and using the same accessed live or snapshotted
data, wherein the first and second uvser interface instances are generated within the
production environment but are inaccessible to external users;
compare, by the controller, the first user interface instance to the second user
interface instance to identify one or more differences between the first user interface
15 instance and the second user interface instance; and
based on the comparison, determine, by the controller, one or more outcome-
defining effects the updated data structures had on the user interface based on the
identified differences between the first user interface instance and the second user
interface instance.
20
13 The system of claim 12, further comprising computing one or more metrics o

establish a quality level of simulated behavior indicated by the outcome-defining effects

14. The system of claim 13, wherein computing the one or more metrics includes
25 altering one or more user interface objects shown in the user interface to remove bias in the

one or more outcome-defining effects.

15. The system of claim 13, wherein the metrics give at least partial credit for
similarities in outcome-defining effects identified in the comparison between the first user

30 interface instance and the second user interface instance.

16. The system of claim 12, wherein comparing the first user interface instance ©
the second user interface instance comprises comparing at least one of the first user interface

instance or the second user interface instance to previous A/B test results.

37
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

17. The system of claim 16, wherein the comparison to the previous A/B tests

indicates whether a new A/B test is to be run.

5 18. The system of claim 12, wherein the second vser interface instance is generated
using snapshotted data that indicates user inputs over a specified period of time relative to a

version of the user interface that was presented to the user at the time the snapshot was taken.

19. The system of claim 18, wherein comparing the first user interface instance to

10 the second wser interface instance (o identify one or more differences between the first user
interface instance and the second user interface instance includes comparing the first user
interface instance generated using the updated data stmctures to the second user interface
instance generated using the snapshotted data with the indicated user inputs over the specified
period of time, such that the comparison indicates how the first user interface instance with the

15 one or more updated data structures compares to the second user interface instance using the

same snapshotted user inputs.

20. A non-transitory computer-readable medium comprising one or more computer-
executable instructions that, when executed by at least one processor of a computing device,
20 cause the computing device to:
access, by a controller, one or more updated data structures that are to be
included in a user interface functionality test, the updated data structures contributing
at least partially to a user interface;
access, by the controller, a portion of live or snapshotted data captured from one
25 or more services runming in a production environment, the live or snapshotted data
being used in the user interface functionality test;
initiate, by the controller, generation of a first user interface instance using the
updated data structures and using the accessed live or snapshotted data;
initiate, by the controller, generation of a second user interface instance using a
30 different version of the data structures and using the same accessed live or snapshotted
data, wherein the first and second uvser interface instances are generated within the

production environment but are inaccessible (o external users;

38
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

WO 2021/092247 PCT/US2020:/059211

compare, by the controller, the first user interface instance to the second user
interface instance to identify one or more differences between the first user interface
instance and the second user interface instance; and
based on the comparison, determine, by the controller, one or more outcome-
5 defining effects the updated data structures had on the user interface based on the
identified differences between the first user interface instance and the second user

interface instance.

39
CA 03155227 2022-4-19 SUBSTITUTE SHEET (RULE 26)

CA 03155227 2022-4-19

WO 2021/092247

100

PCT/US2020/059211

1/6

Distribution Infrasfruciure
110

Physical Processor
112

Memory
114

Modules
116

I

Conlent Player
120

Physical Processor
122

Memory
124

126

Modules I

FIiG. 1

PCT/US2020/059211

WO 2021/092247

2/6

¢ "Oid

%z vEe e
HOMION [BD07 BUOOORE 1BWE|

NomaN
JBMAOL] BOIAIBS [BUISYY)

(154
SHOMBN

§2e ¥eZ b4
Bulbexoed Buipoosues | UONEZHBUOSIG

1144
SA0jAIG
4 7z paxs
ejeq Bo Bleq 28N juguoy
” 24
abeioig
[1]%8

SMDNASEHU] UOINGLISIC

CA 03155227 2022-4-19

PCT/US2020/059211

WO 2021/092247

3/6

443
aoBpa
UORESIUNLILIOTS

¥eE
MOIDELLD?)

MOMBN

£ 'Ol

19484 [uaILCD

[254 9tt 2t 8t
Suneg 0Men Tyl SR
afeio}g nduy ojpny soydels

L:i44 ¥et 1144 :143
soBpeI SORJIEL BORMOIL) SoBLIaI}
efeicig nduj olpny sondein

gre
07e Jayng ospip L7 A
lapoaer) vepip ; $INPON
¥t
Jeyng opny
1% »iE
Jepoosd] oipny 18Ng WBWOD wdmw
WeISAS
[1]55
uoneoliddy yoeqie|d Bugeiado
1744
Aiowisiyy
[i:44

Z0e
anonyseu;
LOHEDIUNLUUIS:)

et
10888501

CA 03155227 2022-4-19

CA 03155227 2022-4-19

WO 2021/092247

421

tipdated
Data
Struciures

Environment

418

Data store

422
Sanapshotied
Dats

PCT/US2020/059211
4/6
Ve 401
Controller
402\ 403-\
Processor Memory
404
- s :!,23-\L
Communications Module
User Interface
405'\‘ 406'\\ .
Receiver Transmilter
BT~
Accessing Module
408\,’
User interface Generation Module
409\ 41 0-\
First Ui Second LH
instance instance
411 ~N
Comparing Module
41 2-\
S identified Differences S
413 ™~ &
Determining Module
41 4-\ ¥
S Qutcome - Defining Effects S
425-\
Metrics Generating Module

FIG. 4

CA 03155227 2022-4-19

WO 2021/092247 PCT/US2020/059211
5/6
Method
500
510 ~
Access updated data siructures |
520\\ ¥
Accass live or snapshotied data
530\ "
initiate generafion of first Ui insiance l
540\‘ 5
initiate generation of second Ul instance
550~\ \
Compare first Ul instance to second Ul Enstancel
30 v
Determine outcome-defining effects
600
602*\
Status
Keeper [l = = = = = = = = = = o Dt ———
601 = i : i
{ i
I
€03 G044 | i
Define & Run 2 60S 604B @06~ | }
Expsrimenis | N || e {
Coordinator e : . . page "
oster . Generaior||f |
SAS Queue S0S Gueus ;
H
808 }
608~ ;
810~ Reporting Normalized Metrics f
Dashboards Biotrics Procassor ;
H
i

FIG. 6

WO 2021/092247 PCT/US2020/059211

6/6

708
732-\
Contract
703
- Services
i Wl

704
Metadata

705
Preduction

Environment

i

FIG. 7

805

Extemat
Users

O

Production Environment

* i /—801,&\
[/ 801~ vl
” . Serice Modlfqeu!
Senvice
Fire ‘ (T
Wall §
A 804 \ \ ¥ A ¥
— . Modified . Modified
Searvice Service Service Service

803

CA 03155227 2022-4-19

4158
Stiuctures

Senices
=418

f401

Production
Environment

421

Daia store

422
SnaBs hotted
ata

FIG. 4

Controlier
402~ 403
Processor i I Mermory i
404\
Communications Module
A5~ 406
| Recelver i ITransmIl!ari
407\
i} Accessing Morule !
408\
| User interface Generation Madule |
409\ I 41 0-\ |
insance Sstance.

| Comparing Module i

H2~, I
‘) jdentied Differences S

413~ l
I Determining Module ;

414~

425~
I Metrics Qenerating Module i

423*-\

User Interface|
424

Ui
Compenents,

{ outcome - Defining Ertects §

	Page 1 - COVER_PAGE
	Page 2 - ABSTRACT
	Page 3 - DESCRIPTION
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - CLAIMS
	Page 38 - CLAIMS
	Page 39 - CLAIMS
	Page 40 - CLAIMS
	Page 41 - CLAIMS
	Page 42 - DRAWINGS
	Page 43 - DRAWINGS
	Page 44 - DRAWINGS
	Page 45 - DRAWINGS
	Page 46 - DRAWINGS
	Page 47 - DRAWINGS
	Page 48 - REPRESENTATIVE_DRAWING

