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METHOD AND SYSTEM FOR DATA - DRIVEN 
AND MODULAR DECISION MAKING AND 

TRAJECTORY GENERATION OF AN 
AUTONOMOUS AGENT 

works ) ; sample sparsity ( e.g. , the ability to capture all 
possible samples [ driving scenarios ) that the vehicle will be 
encountering in the real world ) ; a lack of interpretability 
and / or explainability ; and others . 
[ 0005 ] Thus , there is a need in the autonomous vehicle 
field to create an improved and useful system and method for 
decision making and trajectory generation . 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

a BRIEF DESCRIPTION OF THE FIGURES [ 0001 ] This application is a continuation of U.S. applica 
tion Ser . No. 17 / 125,668 , filed 17 Dec. 2020 , which claims 
the benefit of U.S. Provisional Application No. 63 / 035,401 , 
filed 5 Jun . 2020 , and U.S. Provisional Application No. 
63 / 055,763 , filed 23 Jul . 2020 , each of which is incorporated 
in its entirety by this reference . 

TECHNICAL FIELD 

[ 0002 ] This invention relates generally to the autonomous 
vehicle field , and more specifically to a new and useful 
system and method for data - driven , modular decision mak 
ing and trajectory generation in the autonomous vehicle 
field . 

[ 0006 ] FIG . 1 is a schematic of a system for modular 
decision making and trajectory generation . 
[ 0007 ] FIG . 2 is a schematic of a method for modular 
decision making and trajectory generation . 
[ 0008 ] FIGS . 3A - 3C depict a variation of a system for 
modular decision making , a variation of a deep decision 
network ( set of 1st learning modules ) , and a variation of a 
deep trajectory network , respectively . 
[ 0009 ] FIG . 4 depicts a variation of a deep decision 
network ( set of 1st learning modules ) . 
[ 0010 ] FIG . 5 depicts a naturalistic trajectory versus a 
programmed trajectory . 
[ 0011 ] FIG . 6 depicts a variation of a high - level architec 
ture of a planning module of the system 100 . 
[ 0012 ] FIG . 7 depicts a schematic variation of an overall 
system of the autonomous agent . 
[ 0013 ] FIG . 8 depicts a schematic variation of context 
aware decision making and trajectory planning . 
[ 0014 ] FIGS . 9A - 9B depict a variation of a use case of an 
autonomous vehicle in fixed - route deliveries and a sche 
matic of fixed routes driven by the vehicles . 
[ 0015 ] FIG . 10 depicts a variation of a set of contexts . 
[ 0016 ] FIG . 11 is a schematic of a variation of the method 
200 . 

BACKGROUND 

DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

[ 0017 ] The following description of the preferred embodi 
ments of the invention is not intended to limit the invention 
to these preferred embodiments , but rather to enable any 
person skilled in the art to make and use this invention . 

1. Overview 

[ 0003 ] Making safe and effective decisions in an autono 
mous vehicle is a complex and difficult task . This type of 
decision - making requires understanding of the current envi 
ronment around the vehicle , an understanding of how this 
environment will evolve in the future , along with other 
factors involved in achieving safe and continuous progress 
towards the predefined driving goal . All decisions have to be 
continuously constrained by both driving rules of the road 
and human driving conventions , which is a difficult problem 
even for humans at times , and therefore an exceptionally 
challenging problem to implement with autonomous 
vehicles . Both the complicated nature of the driving inter 
actions and the immense number of possible interactions 
makes decision - making and trajectory generation a tremen 
dously difficult problem for autonomous systems . Regard 
less of the complexity , autonomous vehicles are tasked with 
solving this problem continuously ; thus , a feasible solution 
which ensures scalability along with the safety of all road 
users is essential . 
[ 0004 ] Conventional systems and methods have 
approached this problem in one of two ways- programmed 
or learned . Programmed motion planners produce a set of 
rules and constraints hand tuned and optimized by experts . 
Examples of this include conventional decision tree archi 
tectures employing data - driven models , which have only 
been utilized in restricted capacities such as perception . 
Conventional programmed approaches suffer from numer 
ous limitations , such as , but not limited to : the production of 
unnatural decisions and motions ( e.g. , as shown in the 
programmed trajectory in FIG . 5 ) ; an exhaustive list of 
scenarios to program ; and others . In contrast , learned motion 
planners involve analyzing large amounts of human driving 
data and / or running driving simulations . Examples of this 
include holistic end - to - end systems and single monolithic 
networks to address an entire driving policy module ( e.g. , 
mid - to - mid systems ) . Learned approaches also suffer from 
numerous limitations and drawbacks , such as , but not lim 
ited to : lack of safety assurances ( e.g. , as a result of treating 
the problem of motion planning in an end - to - end fashion , 
traditional learning algorithms are not able to provide safety 
assurances regarding the trajectories created by their net 

[ 0018 ] As shown in FIG . 1 , a system 100 for data - driven , 
modular decision making and trajectory generation includes 
a computing system . Additionally or alternatively , the sys 
tem can include and / or interface with any or all of : an 
autonomous agent ( equivalently referred to herein as an 
autonomous vehicle and / or an ego vehicle ) ; any number of 
modules of the autonomous agent ( e.g. , perception module , 
localization module , planning module , etc. ) ; a vehicle con 
trol system ; a sensor system ; and / or any other suitable 
components or combination of components . 
[ 0019 ] Additionally or alternatively , the system 100 can 
include and / or interface with any or all of the systems , 
components , embodiments , and / or examples described in 
U.S. application Ser . No. 17 / 116,810 , filed 9 Dec. 2020 , 
which is incorporated herein in its entirety by this reference . 
[ 0020 ] As shown in FIG . 2 , a method 200 for data - driven , 
modular decision making and trajectory generation includes : 
receiving a set of inputs S205 ; selecting a learning module 
( equivalently referred to herein as a learned model , a trained 
model , and a machine learning model , a micro module , 
and / or any other suitable term ) from a set of learning 
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modules S210 ; producing an output based on the learning 
module S220 ; repeating any or all of the above processes 
S230 ; and / or any other suitable processes . Additionally or 
alternatively , the method 200 can include training any or all 
of the learning modules ; validating one or more outputs ; 
and / or any other suitable processes and / or combination of 
processes . 
[ 0021 ] Additionally or alternatively , the method 200 can 
include and / or interface with any or all of the methods , 
processes , embodiments , and / or examples described in U.S. 
application Ser . No. 17 / 116,810 , filed 9 Dec. 2020 , which is 
incorporated herein in its entirety by this reference . 
[ 0022 ] In preferred variations of the method 200 as shown 
in FIG . 11 , the method for data - driven , modular decision 
making and trajectory generation includes : receiving a set of 
inputs S205 ; as part of S210 , selecting a 1st learning module 
( equivalently referred to herein as a deep decision network ) 
S212 ; as part of S220 , defining an action space and / or 
selecting an action S222 ; as part of S210 , selecting a 2nd 
learning module ( equivalently referred to herein as a deep 
trajectory network ) based on the action S214 ; as part of 
S220 , generating a vehicle trajectory based on the 2nd 
learning module S224 ; and validating the vehicle trajectory 
S260 . Additionally or alternatively , the method 200 can 
include any or all of : receiving and / or determining a vehicle 
context S205 ; determining a latent space representation 
S222 ; repeating any or all of the above processes S230 ; 
and / or any other suitable processes . Additionally or alterna 
tively , the method 200 can include any other suitable pro 

a 

system and / or method ( e.g. , for adding new routes ) ; a 
minimizing and / or elimination of edge cases ; and / or any 
other suitable benefits or outcomes . 
[ 0027 ] In a third set of variations , additional or alternative 
to those described above , the system and / or method confers 
the benefit of utilizing an awareness of the vehicle's context 
to hypertune loss functions of the learning modules to these 
particular contexts when training them . This can subse 
quently function to increase an accuracy and confidence in 
scenario - specific events . In specific examples , training each 
of a set of decision making learning modules ( 1st set of 
learning modules ) includes hypertuning a loss function to a 
particular context associated with the learning module in a 
1 : 1 mapping 
[ 0028 ] In a fourth set of variations , additional or alterna 
tive to those described above , the system and / or method 
confers the benefit of maintaining explainability while gen 
erating naturalistic trajectories for the agent which accu 
rately mirror human driving through the programmed selec 
tion of modular learning modules at the decision - making 
stage ( 1st set of learning modules ) and at the trajectory 
generation stage ( 2nd set of learning modules ) . 
[ 0029 ] In a fifth set of variations , additional or alternative 
to those described above , the system and / or method confers 
the benefit of enabling a data - driven approach to the modu 
lar decision making and trajectory generation . 
[ 0030 ] In a sixth set of variations , additional or alternative 
to those described above , the system and / or method confers 
the benefit of improving the operation of one or more 
computing systems involved in decision making and trajec 
tory generation , which can be enabled , for instance , through 
any or all of : the organization of the computing process 
and / or system into a modular architecture of smaller learn 
ing modules ; reducing the information processed in trajec 
tory generation by localizing the environment of the vehicle 
based on a selected action ; hypertuning each of a 1st set of 
micro learning modules to a particular context of the 
vehicle ; hypertuning each of a 2nd set of micro learning 
modules to a particular action of the vehicle ; creating a 
centralized and parallel computing model which enables a 
high concurrency of task execution , low latency , and high 
throughput ; and / or through creating any other suitable 
framework . 
[ 0031 ] Additionally or alternatively , the system and 
method can confer any other benefit ( s ) . 

cesses . 

[ 0023 ] The method 200 is preferably performed with a 
system 100 as described above , but can additionally or 
alternatively be performed with any other suitable system ( s ) 
for autonomous driving , semi - autonomous driving , and / or 
any other autonomous or partially autonomous system ( s ) . 

a 

2. Benefits 

a 

3. System 
9 

[ 0024 ] The system and method for data - driven , modular 
decision making and trajectory generation can confer several 
benefits over current systems and methods . 
[ 0025 ] In a first set of variations , the system and / or method 
confer the benefit of capturing the flexibility of machine 
learning ( e.g. , deep learning ) approaches while ensuring 
safety and maintaining a level of interpretability and / or 
explainability . In specific examples , the system establishes 
and the method implements a hybrid architecture , which 
refers to an architecture including both programmed and 
learned portions ( e.g. , processes ) , which can have numerous 
advantages over and / or minimize the limitations of either of 
the individual approaches . In specific examples of the sys 
tem and / or method , this approach and its advantages are 
enabled through a limited ODD and fixed route framework . 
[ 0026 ] In a second set of variations , additional or alterna 
tive to those described above , the system and / or method 
confer the benefit of reducing an amount of data required to 
train each of a set of learning modules ( e.g. , 1st and 2nd 
learning modules ) . In specific examples a limited ODD and 
fixed route architecture enables the system and / or method to 
overfit the learning modules for fixed routes , which can 
subsequently enable any or all of : faster learning due to the 
reduced model scale and complexity of any or all of the 
learning modules ; a need for exponentially less data to build 
a safe urban autonomy stack ; a validation of the learning 
modules leading to guaranteed safety ; a scalability of the 

[ 0032 ] As shown in FIG . 1 , the system 100 for data 
driven , modular decision making and trajectory generation 
includes a computing system . Additionally or alternatively , 
the system can include and / or interface with any or all of : an 
autonomous agent ( equivalently referred to herein as an 
autonomous vehicle and / or an ego vehicle ) ; any number of 
modules of the autonomous agent ( e.g. , perception module , 
localization module , planning module , etc. ) ; a vehicle con 
trol system ; a sensor system ; and / or any other suitable 
components or combination of components . 
[ 0033 ] The system 100 functions to enable modular deci 
sion making and trajectory generation of an autonomous 
agent and includes : a computing system , wherein the com 
puting system can include and / or implement a set of learning 
modules ( e.g. , 1st set of learning modules , 2nd set of learning 
modules , etc. ) and optionally a trajectory generator , a tra 
jectory validator , and / or any other suitable components 
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agents can interface with residences ( e.g. , customer homes ) , 
and / or any other suitable locations / facilities . 
[ 0037 ] Additionally or alternatively , the system 100 can be 
implemented in any other suitable way ( s ) . 

and / or modules . Additionally or alternatively , the system can 
include and / or interface with any or all of : a localization 
module ; a prediction module ; a perception module ; the 
autonomous agent ( equivalently referred to herein as an 
autonomous vehicle and / or an ego vehicle ) ; a vehicle control 
system ; a sensor system , and / or any other suitable compo 
nents or combination of components . 
[ 0034 ] The system 100 is preferably configured to imple 
ment and / or interface with a hybrid architecture of decision 
making and / or trajectory generation ( e.g. , as shown in FIG . 
6 , as shown in FIG . 7 , as shown in FIG . 8 , as shown in FIG . 
3A , etc. ) , the hybrid architecture implementing both classi 
cal , rule - based approaches and machine learning 
approaches . This is preferably enabled by a constrained 
and / or structured ODD ( e.g. , well - defined , specified , etc. ) 
and fixed route driving framework ( e.g. , a non - geofenced 
driving framework ) , which functions to maintain explain 
ability of the vehicle's decision making while enabling the 
vehicle to drive with human - like driving behavior on routes 
validated with minimal training data . Additionally or alter 
natively , the system 100 can be any or all of : configured to 
implement and / or interface with any suitable architecture 
configured to produce any suitable outputs at any part of 
autonomous vehicle operation ( e.g. , in planning , in motion 
planning , in trajectory planning , in perception , in localiza 
tion , etc. ) ; the autonomous agent can interface with any 
other driving framework ( e.g. , large ODD , non - fixed routes , 
geofenced , etc. ) ; and / or the system 100 can be otherwise 
suitably configured . 
[ 0035 ] In preferred variations , for instance , the system 100 
defines a modular , hybrid architecture which is configured to 
implement both programmed and learned processes of the 
method 200. The system preferably functions to achieve the 
safety assurances and explainability / interpretability from 
programmed processes while maintaining the naturalistic 
and adaptive principles of learning processes . In preferred 
variations , the system 100 achieves this using a hybrid 
architecture which decomposes the task of motion planning 
and combines sets of micro - learning algorithms ( which form 
and / or are integrated within the set of learning modules ) 
sandwiched between a set of programmed safety constraints , 
wherein each of the learning modules ' intended functional 
ity is restricted to specific , explainable ( and thus verifiable ) 
tasks ( e.g. , based on a context and / or other environmental 
features of the vehicle ) . The system 100 can optionally 
implement and / or interface with ( e.g. , integrate with ) a set of 
rule - based fallback and validation systems which are built 
around these learning modules to guarantee target safety and 
to ensure the safety of the resulting trajectory . With this 
architecture , a validation of the performance and underlying 
properties of each of these learning modules can be 
achieved , thereby enabling a much safer and more effective 
system to be built . 
[ 0036 ] In specific examples ( e.g. , as shown in FIGS . 
9A - 9B ) , the system 100 is implemented in autonomous 
short - haul ( e.g. , between 5 and 400 miles ) B2B fixed - route 
applications . In these variations , the autonomous agents 
preferably receive inventory from sorting centers , but can 
additionally or alternatively receive inventory for parcel 
hubs and / or warehouses . The agent then preferably delivers 
the inventory to and / or between any or all of : sorting centers , 
micro - fulfillment centers , distribution centers , retail stores , 
and local delivery centers . Additionally or alternatively , the 

3.1 System Components 
[ 0038 ] The system 100 includes a computing system , 
which functions to enable modular decision making ( e.g. , 
motion planning ) and / or trajectory generation of an autono 
mous agent . Additionally or alternatively , the computing 
system can function to perform any or all of : route planning 
of the vehicle at a planning module ; validating a trajectory 
of the vehicle ; localization of the vehicle and / or surrounding 
objects at a localization module ; path prediction of the 
vehicle and / or objects surrounding the vehicle at a predic 
tion module ; storage of information ; and / or any other suit 
able functions . 
[ 0039 ] The computing system is preferably configured to 
implement centralized and parallel computing which 
enables any or all of : high concurrency of task execution , 
low latency , high data throughput , and / or any other suitable 
benefits . Additionally or alternatively , the computing system 
can be configured to perform any other computing and / or 
processing ( e.g. , decentralized computing , distributed com 
puting , serial computing , etc. ) and / or can confer any other 
suitable benefits . 
[ 0040 ] Additionally or alternatively , the system and / or 
computing system can be otherwise configured and / or 
designed . 
[ 0041 ] The computing system is preferably arranged at 
least partially onboard ( e.g. , integrated within ) the autono 
mous agent . 
[ 0042 ] In preferred variations , the autonomous agent 
includes an autonomous vehicle that is preferably a fully 
autonomous vehicle and / or able to be operated as a fully 
autonomous vehicle , but can additionally or alternatively be 
any semi - autonomous or fully autonomous vehicle , a tele 
operated vehicle , and / or any other suitable vehicle . The 
autonomous vehicle is preferably an automobile ( e.g. , car , 
driverless car , bus , shuttle , taxi , ride - share vehicle , truck , 
semi - truck , etc. ) . Additionally or alternatively , the autono 
mous vehicle can include any or all of : a watercraft ( e.g. , 
boat , water taxi , etc. ) , aerial vehicle ( e.g. , plane , helicopter , 
drone , etc. ) , terrestrial vehicle ( e.g. , 2 - wheeled vehicle , bike , 
motorcycle , scooter , etc. ) , and / or any other suitable vehicle 
and / or transportation device , autonomous machine , autono 
mous device , autonomous robot , and / or any other suitable 
device . 
[ 0043 ] The computing system can additionally or alterna 
tively be arranged remote from the autonomous agent , such 
as a cloud computing system . The remote computing system 
is preferably in communication with the onboard computing 
system ( e.g. , to collect information from the onboard com 
puting system , to provide updated models to the onboard 
computing system , etc. ) , but can additionally or alternatively 
be in communication with any other suitable components . 
[ 0044 ] The computing system preferably includes active 
and redundant subsystems , but can additionally or alterna 
tively include any other suitable subsystems . 
[ 0045 ] The computing system preferably includes a plan 
ning module of the computing system , which further pref 
erably includes any or all of : a set of learning modules ( e.g. , 
deep learning models ) ; a trajectory generator ; a trajectory 
validator , and / or any other suitable components . The set of 
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tial measurement units [ IMUS ] , speedometers , etc. ) , location 
sensors ( e.g. , Global Navigation Satellite System ( GNSS ] 
sensors , Inertial Navigation System [ INS ] sensors , Global 
Positioning System [ GPS ] sensors , any combination , etc. ) , 
ultrasonic sensors , and / or any suitable sensors . 
[ 0056 ] In a set of variations , the sensor system includes : 
16 - beam LIDARs ( e.g. , for high fidelity obstacle detection , 
etc. ) ; short range RADARs ( e.g. , for blind spot detection , 
cross traffic alert , emergency braking , etc. ) ; ultrasonic sen 
sors ( e.g. , for park assist , collision avoidance , etc. ) ; 360 
degree coverage cameras ( e.g. , for surround view for pedes 
trian / cyclist / urban obstacle detection and avoidance , etc. ) ; 
128 - beam LIDAR ( e.g. , for localization of vehicle with high 
precision ) ; long range ultra - high resolution cameras ( e.g. , 
for traffic sign and traffic light detection ) ; long range 
RADARs ( e.g. , for long range obstacle tracking and avoid 
ance ) ; GNSS / INS ( e.g. , for ultra high precision localiza 
tion ) ; and / or any other suitable sensors . 
[ 0057 ] In a first variation of the system 100 , the system 
includes a computing system which includes the agent's 
planning module and includes and / or interfaces with the 
agent's perception and / or localization module ( s ) , which 
includes the vehicle's sensor system ( s ) . 
[ 0058 ] Additionally or alternatively , the system 100 can 
include any other suitable components or combination of 
components . 

4. Method 

learning modules preferably includes a set of deep decision 
networks ( neural networks ) which function to determine an 
action of the agent ( based on context ) and a set of deep 
trajectory networks ( neural networks ) which function to 
determine a trajectory for the agent ( based on the action ) . 
[ 0046 ] The computing system further preferably includes 
a processing system , which functions to process the inputs 
received at the computing system . The processing system 
preferably includes a set of central processing units ( CPUs ) 
and a set of graphical processing units ( GPUs ) , but can 
additionally or alternatively include any other components 
or combination of components ( e.g. , processors , micropro 
cessors , system - on - a - chip ( SOC ) components , etc. ) . 
[ 0047 ] The computing system can optionally further 
include any or all of : memory , storage , and / or any other 
suitable components . 
[ 0048 ] The computing system is further preferably con 
figured to ( e.g. , able to , organized to , etc. ) perform the 
computing associated with one or more modular sets of 
learning modules ( equivalently referred to herein as learning 
agents or learning models ) , wherein each learning module 
includes a set of one or algorithms and / or models configured 
to produce a set of one or more outputs based a set of one 
or more inputs . 
[ 0049 ] A single computing system can be used to do the 
computing for all of these modules , separate computing 
systems can be used ( e.g. , with an individual computing 
system for each learning module ) , and / or any combination 
of computing systems can be used . 
[ 0050 ] The computing system can optionally include 
middleware framework , which extracts dependencies from 
modules and links them all together ( e.g. , with a topological 
ordering process such as a directed acylic graph , etc. ) . 
[ 0051 ] In addition to the planning module , the computing 
system can include and / or interface with any or all of : a 
localization module , prediction module , perception module , 
and / or any other suitable modules for operation of the 
autonomous agent . 
[ 0052 ] The computing system ( e.g. , onboard computing 
system ) is preferably in communication with ( e.g. , in wire 
less communication with , in wired communication with , 
coupled to , physically coupled to , electrically coupled to , 
etc. ) a vehicle control system , which functions to execute 
commands determined by the computing system . 
[ 0053 ] The computing system can include and / or interface 
with a map , which functions to at least partially enable the 
determination of a context associated with the autonomous 
agent . The map is preferably a high definition , hand - labeled 
map as described below , which prescribes the context of the 
autonomous agent based on its location and / or position 
within the map , but can additionally or alternatively include 
any other map ( e.g. , automatically generated map ) and / or 
combination of maps . 
[ 0054 ] The system 100 preferably includes and / or inter 
faces with a sensor system , which functions to enable any or 
all of : a localization of the autonomous agent ( e.g. , within a 
map ) , a detection of surrounding objects ( e.g. , dynamic 
objects , static objects , etc. ) of the autonomous agent , and / or 
any other suitable function . 
[ 0055 ] The sensor system can include any or all of : 
cameras ( e.g. , 360 - degree coverage cameras , ultra - high 
resolution cameras , etc. ) , light detection and ranging ( Li 
DAR ) sensors , radio detection and ranging ( RADAR ) sen 
sors , motion sensors ( e.g. , accelerometers , gyroscopes , iner 
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[ 0059 ] As shown in FIG . 2 , a method 200 for data - driven , 
modular decision making and trajectory generation includes : 
receiving a set of inputs S205 ; selecting a learning module 
( equivalently referred to herein as a learned model , a trained 
model , and a machine learning model , a micro module , 
and / or any other suitable term ) from a set of learning 
modules S210 ; producing an output based on the learning 
module S220 ; repeating any or all of the above processes 
S230 ; and / or any other suitable processes . Additionally or 
alternatively , the method 200 can include training any or all 
of the learning modules ; validating one or more outputs ; 
and / or any other suitable processes and / or combination of 
processes . 
[ 0060 ] In preferred variations of the method 200 as shown 
in FIG . 11 , the method for data - driven , modular decision 
making and trajectory generation includes : receiving a set of 
inputs S205 ; as part of S210 , selecting a 154 learning module 
S212 ; as part of S220 , defining an action space and / or 
selecting an action S222 ; as part of S210 , selecting a 2nd 
learning module based on the action S214 ; as part of S220 , 
generating a vehicle trajectory based on the 2nd learning 
module S224 ; and validating the vehicle trajectory S260 . 
Additionally or alternatively , the method 200 can include 
any or all of : receiving and / or determining a vehicle context 
S205 ; determining a latent space representation S222 ; and / or 
any other suitable processes . Additionally or alternatively , 
the method 200 can include any other suitable processes . 
[ 0061 ] The method 200 preferably functions to perform 
decision making and trajectory generation of an autonomous 
agent , further preferably based on a context of the vehicle . 
Additionally or alternatively , the method 200 can function to 
perform only decision making , perform only trajectory gen 
eration , perform any part or process of vehicle planning 
( e.g. , motion planning , path planning , maneuver planning , 
etc. ) , perform any other part or process of autonomous 
vehicle operation ( e.g. , perception , localization , etc. ) , select 



US 2021/0380132 A1 Dec. 9 , 2021 
5 

a 

a 

> 

an action for the vehicle from an action space , validate a 
vehicle trajectory and / or any other output , and / or can per 
form any other suitable function ( s ) . 
[ 0062 ] The method 200 further preferably functions to 
perform decision making and trajectory generation ( and / or 
any other suitable processes ) with a modular framework of 
learning modules ( e.g. , 1st set of learning modules , 2nd set of 
learning modules , etc ) , wherein each of the learning mod 
ules is configured to process inputs associated with particu 
lar ( e.g. , predefined , predetermined , etc. ) information ( e.g. , 
a particular vehicle context for the 1st learning modules , a 
particular vehicle action for the 2nd learning modules , etc. ) . 
[ 0063 ] The method 200 further preferably functions to 
utilize programmed processes ( e.g. , selection of 1st learning 
modules based on context , selection of 2nd learning modules 
based on action , trajectory validation , etc. ) along with the 
learned processes ( e.g. , machine learning models , deep 
learning models , neural networks , etc. ) implemented by the 
learning modules , which functions to maintain an explain 
ability and / or interpretability ( e.g. , relative to an end - to - end 
system , relative to a mid - to - mid system , etc. ) of the outputs 
( e.g. , actions , trajectories , etc. ) . 
[ 0064 ] Additionally or alternatively , the method 200 can 
function to perform any or all of these processes indepen 
dently of a context of the vehicle , in light of other informa 
tion associated with the autonomous agent ( e.g. , historical 
information , dynamic information , vehicle state , etc. ) , 
within any other suitable framework , and / or the method 200 
can be performed in any other suitable way ( s ) to perform 
any suitable function ( s ) . 
[ 0065 ] Additionally or alternatively , the method 200 can 
perform any other suitable function ( s ) . 
[ 0066 ] The method 200 is preferably performed through 
out the operation of the autonomous agent , such as through 
out the duration of the agent's traversal ( e.g. , according to a 
map which assigns a set of contexts ) of a route ( e.g. , fixed 
route , dynamically determined route , etc. ) , but can addition 
ally or alternatively be performed at any or all of : a prede 
termined frequency ( e.g. , constant frequency ) , in i response to 
a trigger , at a set of intervals ( e.g. , random intervals ) , once , 
and / or at any other suitable times . 
[ 0067 ] The method 200 is preferably performed with a 
system 100 as described above , further preferably with a 
computing system at least partially arranged onboard the 
autonomous agent , but can additionally or alternatively be 
performed with any suitable computing system and / or sys 
tem . 

[ 0069 ] S205 is preferably performed throughout the 
method 200 , such as any or all of continuously , at a 
predetermined frequency , at random intervals , prior to each 
of a set of processes of the method 200 , and / or at any other 
suitable times . S205 can additionally or alternatively be 
performed in response to a trigger ( e.g. , based on a map , in 
response to a context being selected , based on sensor infor 
mation , etc. ) , at a set of intervals ( e.g. , random intervals ) , 
and / or at any other suitable time ( s ) during the method 200 . 
[ 0070 ] S205 is preferably performed with a system 100 as 
described above , further preferably with an onboard com 
puting system and an onboard sensor system of the autono 
mous agent , but can additionally or alternatively be per 
formed with any other components of the system and / or any 
other suitable systems . 
[ 0071 ] The set of inputs preferably includes information 
received from a perception module of the autonomous agent , 
such as the sensor system , and / or determined ( e.g. , calcu 
lated ) based on sensors in the sensor system ( e.g. , via a 
perception module ) , but can additionally or alternatively be 
received from any suitable sources ( e.g. , internet , autono 
mous agent , historical information , remote computing sys 
tem , etc. ) . 
[ 0072 ] The set of inputs can include any or all of : a current 
state of the agent ( e.g. , position , heading , pitch , acceleration , 
deceleration , etc. ) ; information associated with a set of 
dynamic objects ( e.g. , current position , size , previous path , 
predicted path , etc. ) such as those proximal to the agent ; 
information associated with a set of static objects ( e.g. , 
traffic cones , mailboxes , etc. ) such as those proximal to the 
agent ( e.g. , current state of static object , historical informa 
tion associated with static object , etc. ) ; a map and / or infor 
mation from a map ( e.g. , HD map ; hand - labeled map 
indicating a set of assigned contexts ; automatically - labeled 
map indicating a set of assigned contexts ; map indicating 
lane boundaries , connections between lane lines , positions 
of lanes , connectivity of lanes , semantic information , etc .; 
etc. ) ; routing information required to reach a destination 
( e.g. , ideal path to take , sequence of lanes to take , etc. ) ; one 
or more uncertainty values and / or estimates ( e.g. , epistemic 
uncertainty , aleatoric uncertainty , etc. ) ; autonomous agent 
state ( equivalently referred to herein as the ego vehicle 
state ) ; and / or any other suitable inputs . 
[ 0073 ] In one set of variations , for instance , the set of 
inputs includes a high definition , labeled ( e.g. , hand - labeled , 
automatically - labeled , etc. ) map which prescribes the con 
text of the autonomous agent at any given time based on its 
location and / or orientation ( e.g. , pose ) within the map , but 
can additionally or alternatively include any other map ( e.g. , 
map labeled in an automated fashion , map labeled through 
both manual and automated processes , etc. ) and / or combi 
nation of maps . In additional or alternative variations , the 
map information includes any or all of : road infrastructure 
information and / or other static environment information , 
route information , and / or any other suitable information . 
[ 0074 ] In specific examples , the map prescribes one or 
more contexts ( and / or transition zones ) selected based on 
( e.g. , predetermined / assigned to ) a region / location of the 
autonomous agent ( e.g. , as determined based on sensor 
information as described above ) . 
[ 0075 ] The set of inputs preferably includes sensor infor 
mation collected at a sensor system of the autonomous 
agent , such as any or all of : a sensor system onboard the 
autonomous agent , a sensor system remote from the autono 
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4.1 Method — Receiving a Set of Inputs S205 
[ 0068 ] The method 200 preferably includes receiving a set 
of inputs S205 , which functions to receive information with 
which to select one or more learning modules ( e.g. , one of 
a 1st set of learning modules , one of a 2nd set of learning 
modules , etc. ) . Additionally or alternatively , S205 can func 
tion to receive information which serves as an input to one 
or more learning modules ( e.g. , input to a 1st learning 
module , input to a 2nd learning module , etc. ) , receive infor 
mation with which to perform other processes of the method 
( e.g. , determining one or more latent space representations , 
determining one or more environmental representations , 
etc. ) and / or to trigger one or more processes , receive infor 
mation with which to otherwise operate the agent ( e.g. , 
during perception , during localization , etc. ) , and / or can 
perform any other suitable function ( s ) . 
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mous agent , and / or a sensor system in communication with 
the autonomous agent and / or a computing system ( e.g. , 
onboard computing system , remote computing system , etc. ) 
of the autonomous agent . Additionally or alternatively , the 
sensor information can be collected from any other suitable 
sensor ( s ) and / or combination of sensors , S205 can be per 
formed in absence of collecting sensor inputs , and / or S205 
can be performed in any other suitable way ( s ) . 
[ 0076 ] The sensor information can include and / or be used 
to determine location information associated with the 
autonomous agent , such as any or all of : position , orientation 
( e.g. , heading angle ) , pose , geographical location ( e.g. , using 
global positioning system ( GPS ) coordinates , using other 
coordinates , etc. ) , location within a map , and / or any other 
suitable location information . In preferred variations , for 
instance , S205 includes receiving pose information from a 
localization module of the sensor subsystem , wherein the 
localization module includes any or all of : GPS sensors , 
IMUS , LIDAR sensors , cameras , and / or any other sensors 
( e.g. , as described above ) . Additionally or alternatively , any 
other sensor information can be received from any suitable 
sensors . 

[ 0077 ] The sensor information can additionally or alter 
natively include and / or be used to determine motion infor 
mation and / or other dynamic information associated with 
the autonomous agent , such as , but not limited to , any or all 
of : velocity / speed , acceleration , and / or any other suitable 
information . 
[ 0078 ] The sensor information can additionally or alter 
natively include and / or be used to determine ( e.g. , at a 
perception module ) location information and / or motion 
information associated with one or more dynamic objects in 
an environment of the autonomous agent , such as any or all 
of the location information described above , location infor 
mation relative to the autonomous agent , motion informa 
tion of the dynamic objects , predicted information ( e.g. , 
predicted trajectory ) , historical information ( e.g. , historical 
trajectory ) , and / or any other suitable information . The 
dynamic objects can include , but are not limited to , any or 
all of : other vehicles ( e.g. , autonomous vehicles , non - au 
tonomous vehicles , 4 - wheeled vehicles , 2 - wheeled vehicles 
such as bicycles , etc. ) , pedestrians ( e.g. , walking , running , 
rollerblading , skateboarding , etc. ) , animals , and / or any other 
moving objects ( e.g. , ball rolling across street , rolling shop 
ping cart , etc. ) . Additionally or alternatively , the sensor 
information can include any other information associated 
with one or more dynamic objects , such as the size of the 
dynamic objects , an identification of the type of object , other 
suitable information , and / or the information collected in 
S205 can be collected in absence of dynamic object infor 
mation . 

[ 0079 ] The sensor information can additionally or alter 
natively include and / or be used to determine ( e.g. , at a 
perception module ) location information and / or other infor 
mation associated with one or more static objects ( e.g. , 
stationary pedestrians , road infrastructure , construction site 
and / or construction equipment , barricade ( s ) , traffic cone ( s ) , 
parked vehicles , etc. ) in an environment of the autonomous 
agent , such as any or all of the information described above 
( e.g. , identification of object type , etc. ) . Additionally or 
alternatively , the sensor information can include any other 
information associated with one or more static objects 
and / or the information collected in S205 can be collected in 
absence of static object information . 

[ 0080 ] The set of inputs can include a vehicle context , 
which specifies an environment of the vehicle , and can 
function to characterize a driving context of the vehicle . The 
context is preferably prescribed based on a fixed route 
selected for the vehicle , and based on a map ( e.g. , high 
definition , hand labeled map ) , such as a map as described 
above and / or any other suitable map ( s ) . The context can 
additionally or alternatively be determined based on any or 
all of : sensor information from the sensor system such as the 
location of the agent , and / or any other suitable information . 
[ 0081 ] In preferred variations , for instance , the contexts 
are assigned to locations and / or regions within the map . 
Each location and / or region in the map can be assigned any 
or all of : a single context ; multiple contexts ( e.g. , indicating 
an intersection of multiple routes , wherein a single context 
is selected based on additional information such as any or all 
of the inputs received in S205 , etc. ) ; no context ( e.g. , 
indicating a location and / or region not on a fixed route 
option for the autonomous agent ) ; and / or any combination 
of contexts . The particular context ( s ) assigned to the loca 
tion and / or region are preferably determined based on the 
static environment at that location and / or within that region , 
such as any or all of : features of the roadway within that 
region ( e.g. , number of lanes , highway vs. residential road , 
one - way vs. two - way , dirt and / or gravel vs. asphalt , curva 
ture , shoulder vs. no shoulder , etc. ) ; landmarks and / or fea 
tures within that region ( e.g. , parking lot , roundabout , etc. ) ; 
a type of zone associated with that location and / or region 
( e.g. , school zone , construction zone , hospital zone , residen 
tial zone , etc. ) ; a type of dynamic objects encountered at the 
location and / or region ( e.g. , pedestrians , bicycles , vehicles , 
animals , etc. ) ; traffic parameters associated with that loca 
tion and / or region ( e.g. , speed limit , traffic sign types , height 
limits for semi trucks , etc. ) ; and / or any other environmental 
information . 

[ 0082 ] Additionally or alternatively , the assignment of 
contexts can take into account a set of fixed routes of the 
vehicle , wherein the map prescribes a sequential series of 
contexts which the vehicle encounters along the fixed route , 
wherein the vehicle's location within the map specifies 
which of these sequential contexts the vehicle is arranged 
within , and wherein the vehicle switches contexts proximal 
to ( e.g. , at ) the transition between contexts . 
[ 0083 ] In some variations , the map includes ( e.g. , assigns , 
prescribes , etc. ) one or more transition zones which are 
arranged between different contexts , and can indicate , for 
instance , a change in context ( e.g. , along a fixed route , along 
a dynamically determined route , etc. ) , thereby enabling a 
switching of contexts to occur smoothly ( e.g. , by defining an 
action space . Assigning transition zones can function , for 
instance , to define an action space subsequently in the 
method which smoothly transitions the vehicle from one 
context to the next ( e.g. , preventing the availability of 
certain actions , prescribing that the agent maintain his or her 
lane , preventing a turn , etc. ) and / or triggers any other 
process ( e.g. , the selection of a new 1st learning module ) . 
The transition zones can be any or all of : overlapping with 
( e.g. , partially overlapping with , fully overlapping with , etc. ) 
one or more contexts ; non - overlapping with one or more 
contexts ; and / or any combination of overlapping and non 
overlapping . Additionally or alternatively , the transition 
zones can be contexts themselves ; the method can be 
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information , wherein the context of the agent is determined 
based on the location and / or orientation of the agent within 
the map . 
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performed in absence of labeled transition zones ( e.g. , by 
anticipating the subsequent context ) ; and / or be otherwise 
performed 
[ 0084 ] Examples of contexts can include , but are not 
limited to , any or all of : a one - lane residential road ( e.g. , in 
which the agent cannot change contexts due to road geom 
etry ) ; a one - lane non - residential road ; a multi - lane highway 
( e.g. , in which the agent can learn it is less likely to see 
pedestrians ) ; a single lane road in a parking lot ; a single lane 
road with a yellow boundary on the side ; a multi - lane fast 
moving road ; regions connecting to roads ( e.g. , parking lot , 
driveway , etc. ) ; and / or any other suitable contexts . 
[ 0085 ] The vehicle context is preferably used in subse 
quent processes of the method , further preferably in the 
selection of a 1st learning module ( e.g. , as described below ) , 
which simplifies and / or specifies the available actions to the 
autonomous agent . Additionally or alternatively , the context 
can be used to determine a scenario which is used in 
subsequent processes of the method , wherein the scenario 
functions to further specify the context , such as based on any 
or all of the information described above ( e.g. , speed limit , 
sensor information of objects surrounding vehicle , etc. ) . 
Examples of scenarios for a first context of ( e.g. , a two - way 
residential road ) include , but are not limited to , any or all of : 
a right turn opportunity ; an addition of a right turn lane ; a 
stop sign ; a traffic light ; a yield sign ; a crosswalk ; a speed 
bump ; and / or any other scenarios . Examples of scenarios for 
a second context ( e.g. , a multi - lane highway ) include , but 
are not limited to , any or all of : lane changing ; merging ; 
overtaking a slow - moving vehicle ; and / or any other sce 
narios . In some variations , for instance , the context triggers 
the selection of a model and / or algorithm ( e.g. , a highly 
tuned , context - aware custom inverse reinforcement learning 
( IRL ) algorithm ) , which makes high - level scenario selection 
and calls a scenario - specific learning module ( e.g. , a 15 
learning module as described below ) to select an action of 
the vehicle . Additionally or alternatively , any other suitable 
algorithms or processes for selecting a scenario can be 
implemented , an action can be selected in absence of a 
scer rio , a context can be used to select another parameter , 
and / or the method 200 can be otherwise performed . 
[ 0086 ] Additionally or alternatively , the method 200 can 
include determining the vehicle context and / or scenario 
( e.g. , from the map and sensor information , from sensor 
information alone , from other information , etc. ) and / or oth 
erwise using a vehicle context , scenario , and / or other infor 
mation relevant to an environment of the vehicle . 
[ 0087 ] Further additionally or alternatively , any other suit 
able inputs can be received in S205 . 
[ 0088 ] In a first set of variations , S205 includes receiving 
sensor information from a sensor system of the autonomous 
agent and a labeled map indicating a set of contexts assigned 
to a route ( e.g. , fixed route ) and / or a potential route of the 
agent , wherein a context of the agent is determined based on 
the map and the sensor information . Any or all of the set of 
inputs ( e.g. , sensor information ) are preferably received 
continuously throughout the method 200 , but can addition 
ally or alternatively be received at any other suitable times . 
[ 0089 ] In a set of specific examples , the sensor informa 
tion includes at least a location and / or orientation of the 
agent ( e.g. , a pose ) , information ( e.g. , location , orientation , 
motion , etc. ) associated with dynamic and / or static objects 
in an environment of the agent , and optionally any other 

[ 0090 ] In a second set of variations , additional or alterna 
tive to the first , S205 includes receiving sensor information 
from a sensor system of the autonomous agent and a context 
of the agent ( e.g. , a current context , an approaching context , 
etc. ) . The set of inputs are preferably received continuously 
throughout the method 200 , but can additionally or alterna 
tively be received at any other suitable times . 
[ 0091 ] In a set of specific examples , the context is deter 
mined based on a map and a pose of agent , wherein the 
context is used subsequently in the method to select one of 
a 1st set of learning modules . 
4.2 Method — Selecting a Learning Module from a Set of 
Learning Modules S210 
[ 0092 ] The method 200 includes selecting a learning mod 
ule from a set of learning modules S210 , which functions to 
select a specific ( e.g. , most relevant , optimal , specifically 
trained , etc. ) learned model with which to determine a set of 
one or more outputs . S210 further preferably functions to 
utilize known ( e.g. , determined , selected , etc. ) information 
associated with the agent ( e.g. , a selected context , a selected 
action , etc. ) to increase the accuracy and / or confidence of 
the outputs of the learning modules . Additionally or alter 
natively , the learning modules can function to reduce and / or 
minimize the number of available outputs to choose from , 
based on this information , which can confer these above 
benefits and / or reduce computing processing time , and / or 
perform any other suitable functions . 
[ 0093 ] The selection of learning module is an informed 
selection of a learing module , further preferably a pro 
grammed and / or rule - based selection of which of the set of 
multiple learning modules to implement based on informa 
tion known to the vehicle ( e.g. , context and / or scenario for 
selecting a 1st set of learning modules , an action for selecting 
a 2nd set of learning modules , any other environmental 
feature , sensor information , etc. ) of the vehicle . Additionally 
or alternatively , learned processes and / or any other types of 
determination of a learning module can be implemented . 
[ 0094 ] The learning module preferably includes one or 
more learned models and / or algorithms , further preferably a 
learned model and / or algorithm trained through one or more 
machine learning ( e.g. , deep learning ) processes . In pre 
ferred variations , each of the learning modules includes one 
or more neural networks ( e.g. , deep learning network 
[ DNN ] , deep Q - learning network , convolutional neural net 
work [ CNN ] ) , but can additionally or alternatively include 
any other suitable models , algorithms , decision trees , lookup 
tables , and / or other tools . 
[ 0095 ] S210 is preferably performed with a system 100 as 
described above , further preferably with an onboard com 
puting system of the autonomous agent , but can additionally 
or alternatively be performed with any other components of 
the system loo and / or any other suitable systems . 
[ 0096 ] S210 can be performed once and / or multiple times 
throughout the method , such as any or all of : continuously , 
at a predetermined frequency , at a set of intervals ( e.g. , 
random intervals , etc. ) , in response to a change ( e.g. , pre 
determined change ) in the set of inputs received in S205 
( e.g. , change in context ) , in response to an output produced 
by a prior learning module ( e.g. , selecting one of a 2nd set of 
learning modules in response to an action and / or action 
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space produced by a 1st learning module ) , in response to any 
other suitable trigger ( s ) , and / or at any other suitable times 
during the method 200 . 
[ 0097 ] S210 is preferably performed ( e.g. , partially per 
formed , fully performed , etc. ) in response to receiving 
inputs in S205 , but can additionally or alternatively be 
performed at any other times and / or in response to any other 
suitable triggers . 
[ 0098 ] In a preferred set of variations , S210 is performed 
multiple times throughout the method ( e.g. , from context 
selection to trajectory generation ) , such as described below 
in S212 and S214 , which functions to increase the explain 
ability and / or interpretability of the method 200 ( e.g. , in 
comparison to only performing S210 once ) . In variations in 
which one of a 1st set of learning modules is used to 
determine an action and / or action space for the vehicle in 
light of the vehicle's context and one of a 2nd set of learning 
modules is used to generate a trajectory for the agent based 
on the action and / or action space , each of these intermediate 
outputs maintains explainability and interpretability . Fur 
ther , by having these highly focused micro modules , each of 
the modules can be trained to a highly tuned loss function 
specific to the environment ( e.g. , context ) and / or actions of 
the agent . Additionally or alternatively , having multiple 
processes in which a learning module is selected can confer 
any other suitable benefits . 
[ 0099 ] In an alternative set of variations , S210 is per 
formed once during the method 200 ( e.g. , only S212 , only 
S214 , in a single learning module from context to trajectory 
generation , in a single learning module which effectively 
combines the learning modules of S212 and S214 , etc. ) . 
[ 0100 ] Additionally or alternatively , S210 can be per 
formed any number of times and to produce any suitable 
outputs during the method 200 . 

a 

time ( s ) during the method 200. Further additionally or 
alternatively , the method 200 can be performed in absence 
of S212 . 
[ 0104 ] In some variations , S212 is performed in response 
to a trigger indicating that a context of the vehicle ( e.g. , as 
determined based on its location on a map ) has changed 
and / or is about to change . This trigger can be determined 
based on any or all of : a predicted and / or known time at 
which the context will change ( e.g. , based on the map and 
a fixed route , based on historical information , etc. ) ; a pre 
dicted and / or known distance until a new context ( e.g. , based 
on the map and a fixed route , based on historical informa 
tion , etc. ) ; the location of the agent within a transition zone 
on the map ; and / or any other suitable information . Addi 
tionally or alternatively , S212 can be performed based on 
other triggers , continuously and / or at a predetermined fre 
quency , in absence of a trigger , and / or in any other ways 
( e.g. , as described above ) . 
[ 0105 ] A single learning module from a 1st set of learning 
modules is preferably selected based on a context of the 
vehicle and / or a scenario determined based on the context . 
Additionally or alternatively , the particular learning module 
can be determined and / or selected based on other informa 
tion received in S205 and / or any other suitable information . 
Further additionally or alternatively , multiple learning mod 
ules from the 1st set of learning modules can be selected 
( e.g. , to be processed in series , to be processed in parallel , 
etc. ) . 
[ 0106 ] The learning module is further preferably selected 
based on a mapping between contexts and learning modules . 
In preferred variations , each context is associated with a 
single learning module of the 1st set of learning modules in 
a 1 : 1 mapping , wherein each context is only associated with 
a single 1st learning module and wherein each of the 1st 
learning modules is only associated with a single context . 
The mappings are preferably predetermined ( e.g. , pro 
grammed , rule - based , etc. ) , but can additionally or alterna 
tively be dynamically determined . Additionally or alterna 
tively , a single context can be associated with multiple 
learning modules , wherein one is selected ( e.g. , further 
based on the set of inputs ) and / or the module outputs are 
aggregated ; a module can be associated with multiple con 
texts ; and / or any other association can be established 
between contexts and learning modules . 
[ 0107 ] Additionally or alternatively , the learning module 
can be selected based on other information ( e.g. , to further 
narrow down the selection of a learning module ) . 
[ 0108 ] The learning module is preferably in the form of 
and / or includes a machine learning model , further preferably 
in the form of one or more neural networks and / or models 
( e.g. , deep Q - learning network , convolutional neural net 
work ( CNN ) , inverse reinforcement learning [ IRL ] model , 
reinforcement learning [ RL ] model , imitation learning [ IL ] 
model , etc. ) trained for a particular context and / or contexts , 
but can additionally or alternatively include any other suit 
able models , algorithms , decision trees , lookup tables , and / 
or other tools . 
[ 0109 ] In preferred variations , each of the learning mod 
ules is a deep learning network ( DNN ) ( e.g. , neural net 
work ) , further preferably a deep Q - learning network trained 
using an Inverse Reinforcement learning technique and / or 
process , wherein the number of layers ( e.g. , hidden layers ) 
of the neural network can vary for different contexts and / or 
actions ( e.g. , between 3-8 layers , 3 or less layers , 8 or more 

4.3 Method — Selecting a 1st Learning Module S212 
[ 0101 ] S210 preferably includes selecting a 1st learning 
module S212 , which functions to select a learning module 
tuned to ( e.g. , trained based on , with a highly tuned loss 
function corresponding to ) the particular environment of the 
agent , further preferably a context ( and / or scenario ) of the 
agent . In preferred variations , for instance , S212 functions to 
select a particular learned model ( e.g. , decision network ) 
from a set of multiple learned models based on the particular 
context ( e.g. , as described above ) of the vehicle . S212 can 
additionally or alternatively function to define an action 
space available to the agent , inform a trajectory of the agent 
as determined by a trajectory planner , select a learning 
module based on other environmental information relative to 
the agent , select a learning module based on other informa 
tion relative to the agent ( e.g. historical information , object 
information , etc. ) , eliminate available options to the agent 
( e.g. , eliminate available actions ) , and / or can perform any 
other suitable functions . 
( 0102 ] Selecting a 15 learning module is equivalently 
described herein as selecting one of a 15 set of learning 
modules and / or selecting one of a set of 1st learning mod 
ules . 
[ 0103 ] S212 is preferably performed in response to ( e.g. , 
after , based on , etc. ) S205 ( e.g. , a most recent instance of 
S205 ) , but can additionally or alternatively be performed as 
part of S214 and / or concurrently with S214 , in absence of 
S214 , multiple times throughout the method ( e.g. , in 
response to the context changing ) , and / or at any other 
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layers , between 2 and 10 layers , between 1 and 15 layers , 
etc. ) . Additionally or alternatively , any other suitable net 
works , algorithms , and / or models can be used in the learning 
module ( s ) , such as , but not limited to , any or all of : policy 
gradient methods , finite state machines [ FSMs ] , probabilis 
tic methods ( e.g. , Partially Observable Markov Decision 
Process [ POMDP ] ) , imitation learning ( IL ) , RL or variations 
of IRL , and / or any other suitable models and / or networks 
and / or algorithms . Each of the learning modules is prefer 
ably the same type of neural network ( e.g. , with different 
numbers of layers , different weights , etc. ) and / or algorithm 
and / or model , but can alternatively be different ( e.g. , have 
different architectures , different neural network types , etc. ) . 
[ 0110 ] Each of the learning modules is preferably trained 
based on data occurring within the particular context type or 
context types associated with the learning module and 
optionally additionally based on data occurring within one 
or more fixed routes which pass through the context and / or 
contain regions / paths which are identified as being that 
context . In some variations , for instance , a single learning 
module applies to a particular context type , wherein the 
single learning module is trained based on data from loca 
tions which satisfy that context . In other variations , a single 
learning module applies to a particular context within a 
particular route , wherein the single learning module is 
trained based on data associated with that particular context 
in the particular fixed route . Additionally or alternatively , the 
learning module ( s ) can be trained with any suitable data . 
[ 0111 ] Each of the learning modules is further preferably 
trained with inverse reinforcement learning , which functions 
to determine a reward function and / or an optimal driving 
policy for each of the context - aware learning modules . The 
output of this training is further preferably a compact 
fully - connected network model that represents the reward 
function and an optimal policy for each learning module . 
Additionally or alternatively , the learning modules can be 
otherwise suitably trained ( e.g. , with reinforcement learning , 
etc. ) and / or implemented . 
[ 0112 ] In a first variation , S212 includes selecting a con 
text - aware learning module ( equivalently referred to herein 
as a context - aware learning agent ) based on a determined 
context of the agent . In specific examples , a single context 
aware learning module is assigned to each context . The 
context - aware learning module is preferably trained with an 
inverse reinforcement learning model , but can additionally 
or alternatively be otherwise trained ( e.g. , with supervised 
learning , with semi - supervised learning , with unsupervised 
learning , etc. ) . 
[ 0113 ] In a second variation , S212 includes selecting from 
multiple context - aware learning models assigned to and / or 
available to a particular context , wherein the particular 
context - aware learning module is selected based on any or 
all of : machine learning , a decision tree , statistical methods , 
an algorithm , and / or with any other suitable tool ( s ) . 
[ 0114 ] Additionally or alternatively , any other suitable 
learning modules can be selected , used , and / or trained . 

tionally or alternatively , the output ( s ) can be used in any 
other process of operation of the autonomous agent . 
[ 0116 ] In preferred variations , S220 includes defining an 
action space and / or selecting an action S222 and generating 
a trajectory S224 , but can additionally or alternatively 
include one of S222 and S224 , and / or any other suitable 
output ( s ) . 
4.4 Method — Defining an Action Space and / or Selecting an 
Action S222 
[ 0117 ] The method 200 preferably includes defining an 
action space and / or selecting an action S222 , which func 
tions to define a set of actions ( equivalently referred to 
herein as behaviors and / or maneuvers ) available to the agent 
in light of the vehicle's context and / or environment . Addi 
tionally or alternatively , S222 can function to minimize a 
number of available actions to the agent as informed by the 
context , which functions to simplify the process ( e.g. , reduce 
the time , prevent selection of an incompatible action , etc. ) 
required to select an action for the vehicle . In some varia 
tions , for instance , the extra information and restriction from 
the context type can reduce the amount of data that is needed 
to train the different learning modules and better tune the 
learning module to a specific context to increase accuracy 
and confidence . The method 200 can optionally additionally 
or alternatively include selecting an action from the action 
space , which functions to determine a next behavior ( e.g. , 
switching and / or transitioning to a different behavior than 
current behavior , maintaining a current behavior , etc. ) of the 
vehicle . 
[ 0118 ] S222 is preferably performed in response to ( e.g. , 
after , based on , etc. ) S212 , but can additionally or alterna 
tively be performed in response to S210 , as part of S212 
and / or concurrently with S212 , in absence of S212 , in 
response to S205 , multiple times throughout the method , 
and / or at any other time ( s ) during the method 200. Further 
additionally or alternatively , the method 200 can be per 
formed in absence of S222 ( e.g. , in variations in which a 
single learning module is used to determine a trajectory 
based on context ) . 
[ 0119 ] S222 preferably includes determining an action 
space of actions available to the vehicle based on the vehicle 
context and selecting an action from the action space , but 
can additionally or alternatively include determining one of 
these and / or determining any other suitable outputs . 
[ 0120 ] S222 is preferably performed with the selected 1st 
learning module described above , wherein an action space 
and / or action is produced as an output ( e.g. , intermediate 
output , final output , etc. ) of the learning module ; addition 
ally or alternatively , the learning module can produce any 
other suitable outputs . In preferred variations , a determina 
tion of the context and processing with a learning module 
selected for this context allows the action space to be 
relatively small ( e.g. , relative to all available actions ) . In 
preferred variations , each of the 15+ learning modules 
includes a set of one or more neural networks and / or other 
models ( e.g. , trained using an IRL algorithm and / or process , 
trained using an RL algorithm and / or process , CNN , RNNs , 
etc. ) , wherein any or all of the neural networks are used to 
determine an action for the vehicle . 
[ 0121 ] S222 preferably receives a set of inputs , such as 
any or all of those described S205 , which are received as 
inputs to the 1st learning module , thereby enabling the 
learning module to select an optimal action . The set of inputs 
is preferably received from and / or determined based on one 

a 

4.4 . Method Producing an Output Based on the Learning 
Module S220 

[ 0115 ] The method 200 includes producing an output 
based on the learning module S220 , which functions to 
produce information with which to perform decision making 
and / or trajectory generation of the autonomous agent . Addi 
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or more sensors of the sensor system , but can additionally or 
alternatively be received from any suitable sources . In 
preferred variations , the 1st learning module receives as an 
input information associated with a set of detected dynamic 
objects surrounding the agent ( e.g. , including the object's 
current position , size , previous path , and predicted path into 
the future ) . Additionally or alternatively , the 1 % learning 
module can be designed to perform self - prediction of 
dynamic object motion , which can , for instance , simplify the 
learning process ( e.g. , in terms of time and / or data required ) . 
The set of inputs further preferably includes information 
associated with a set of static objects ( e.g. , current state of 
the static objects including location ) ; a map ( e.g. , high 
definition , hand labeled map specific a series of contexts 
along a fixed route of the agent ) ; routing information 
required to reach the agent destination ; the routing informa 
tion required to reach the destination ; the state of the agent ; 
static and dynamic object information ( along with their 
predicted future paths ) ; and / or any other suitable informa 
tion . 
[ 0122 ] The selected 1st learning module preferably 
receives as an input an environmental representation of the 
surroundings of the agent ( e.g. , as shown in FIG . 3B ) . This 
representation preferably includes not only information 
from the current time step but also from previous time steps , 
but can additionally or alternatively receive information 
associated with any suitable time ( s ) . 
[ 0123 ] Determining the environmental representation can 
optionally include determining a latent space representation 
based on any or all of the set of inputs , which functions to 
distill an extremely high order and complex amount of 
information into a smaller latent space representation prior 
to presenting an environmental representation as an input to 
the 1st learning module . The latent space representation is 
preferably determined based on static and dynamic object 
information input into a first neural network ( e.g. , CNN ) of 
the 1st learning module , which produces as an output a more 
effective latent space representation , granting order invari 
ance for the inputs of the objects . These inputs can then be 
combined with other inputs ( e.g. , HD map , routing infor 
mation , and vehicle state ) into a second neural network ( e.g. , 
CNN , neural network different than the 1st neural network , 
same neural network as the 1st neural network , etc. ) that 
represents the entire input space as the most effective latent 
space representation . Additionally or alternatively , the latent 
space representation can be otherwise determined and / or 
S222 can be performed in absence of a latent space repre 
sentation . 
[ 0124 ] In specific examples ( e.g. , as shown in FIG . 3C ) , 
the learning agent takes as the following information : the set 
of detected dynamic objects including their current position , 
size , previous path , and predicted path into the future ; the set 
of all static objects and their current states ; a map ( e.g. , a 
high - definition map , a high - definition hand - labeled map , 
etc. ) ; routing information required to reach the destination ; 
the current ego state ; and / or any other suitable information . 
A first neural network ( e.g. , an order independent represen 
tation recurrent neural network [ RNN ] , a CNN , etc. ) is used 
to output a more effective intermediate latent space repre 
sentation which grants order invariance for the object inputs . 
This data is then combined along with the map , routing 
information , and vehicle state and fed into the latent space 
network which represents the entire input space as the most 
effective latent space representation . Additionally or alter 

natively , any or all of this information can be received in 
absence of a latent space representation and / or a different 
latent space representation , the latent space representation 
can include any number of neural networks and / or interme 
diate neural networks , the latent space representation can be 
determined in absence of an intermediate network , any other 
information can be received , any or all of this information 
can be determined by the learning module ( e.g. , the pre 
dicted path of dynamic objects ) , and / or S222 can be other 
wise suitably performed . 
[ 0125 ] The method 200 can optionally include training 
any or all of the 1st set of learning modules . The learning 
modules are preferably trained at a remote computing sys 
tem of the system 100 , but can additionally or alternatively 
be trained at any suitable location ( s ) . Each module is pref 
erably trained based on the full environmental representation 
as presented above as input and the correct action at every 
planning cycle . The training process preferably includes two 
phases , wherein the 1st phase functions to train the latent 
space representation networks , which can be implemented 
using a single temporary deep network responsible for 
classifying all driving actions regardless of the current 
context . In order to achieve this , this training is done on a 
complete set of data available in the data set . The 2nd phase 
uses the latent space representation learned in the 1st phase 
to train the deep networks to work on a specific context or 
action . This can be accomplished by fixing the weights of the 
latent space network ( e.g. , stopping all training for the 
network ) , the weights determined based on a loss function 
( e.g. , a hyper - optimized loss function for a context , a hyper 
optimized loss function for an action , etc. ) , thereby remov 
ing the temporary deep network , and creating the full set of 
networks which will be used to make the final decision . Each 
of the deep networks is preferably trained on the subset of 
the data within the context that it is configured to classify . 
[ 0126 ] Additionally or alternatively , the 1st learning mod 
ules can be otherwise configured and / or trained ( e.g. , with 
supervised learning , with semi - supervised learning , with 
unsupervised learning , etc. ) . 
[ 0127 ] In a preferred set of variations , The 1st set of 
learning modules ( equivalently referred to herein as deep 
decision networks ( DDNs ) , learning agents , learned models , 
etc. ) ( e.g. , as shown in FIG . 3A , as shown in FIG . 3B , as 
shown in FIG . 4 , etc. ) use the current context of the agent as 
well as a full representation of the environment around the 
agent to select an action for the vehicle to take during the 
current planning cycle . Vehicle actions can include , for 
instance , but are not limited to , any or all of : stopping behind 
a vehicle , yielding to a vehicle , merging onto a road , and / or 
any other suitable actions . A depiction of a set of actions 
determined for two different contexts can be seen in FIG . 10 . 
[ 0128 ] The actions can include , but are not limited to , any 
or all of : maintaining a lane , changing lanes , turning ( e.g. , 
turning right , turning left , performing a U - turn , etc. ) , merg 
ing , creeping , following a vehicle in front of the agent , 
parking in a lot , pulling over , nudging , passing a vehicle , 
and / or any other suitable actions such as usual driving 
actions for human - operated and / or autonomous vehicles . 
[ 0129 ] Each action is preferably associated with a set of 
parameters , which are determined based on the particular 
context of the agent and optionally any other suitable inputs 
( e.g. , sensor information , fixed route information , etc. ) . The 
parameter values can be any or all of : predetermined ( e.g. 
assigned values for a particular context ) , dynamically deter 

a 
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to creep at a stop sign or before merging on a highway to 
cautiously gauge any oncoming traffic and pace the speed of 
the vehicle to merge without collisions or annoyance to road 
users . Depending on the particular context and optionally 
action , the value of this parameter is different . In specific 
examples , for the context of a parking lot and the action of 
turning right and / or stopping at a stop sign , the creep 
distance is 2 meters , whereas for the context of a multi lane 
highway and the action of merging , the creep distance is 17 
meters . 

[ 0137 ] In a second variation , the context of the agent is 
determined to be a multi - lane highway in which the agent 
can learn ( e.g. , in the learning module ) it is less likely to see 
pedestrians . The actions of the action space can include , for 
instance : lane swap left , lane swap right , maintain speed , and 
stop . 
[ 0138 ] Additionally or alternatively , S222 can include any 
other suitable processes performed in any suitable way ( s ) . 

a 

mined ( e.g. , with the learning module and based on addi 
tional information such as an environmental representation ) , 
any combination , and / or otherwise determined . This high 
lights a potential benefit of this architecture , which is that it 
can enable various parameter values to be associated with an 
action , wherein the context specifies the particular value or 
range of values , thereby enabling the action learned for 
different contexts to be associated with parameter values 
optimal to that context . In contrast , in conventional methods 
where the method is entirely programmed , for instance , one 
would need to either generalize the parameter ( e.g. , creep 
distance ) to have an overly conservative value or program 
multiple values for different cases ; and in methods including 
only learning based approaches , this would lead to an 
oversimplification of the action across cases , which could 
result in unpredictable agent behavior at times ( e.g. , robotic 
behavior , the ultimate production of an infeasible trajectory , 
etc. ) . 
[ 0130 ] In preferred variations , an output layer of each 
learning module is a softmax layer where the number of 
output nodes is the number of available actions . In specific 
examples , for instance , the softmax layer assigns a confi 
dence to each action in the action space , wherein the action 
with the highest confidence is provided as an output of the 
learning module . Additionally or alternatively , an action 
space and / or available actions can be determined in any 
other suitable way ( s ) . 
[ 0131 ] In a specific example , a multi - lane highway context 
produces , with a multi - lane highway learning module , a 
corresponding action space including : maintaining speed , 
lane change left , and lane change right . In contrast , a 
different context such as a residential road produces actions 
such as those in the highway context and additional actions 
such as stop , yield , creep , left turn , and right turn . 
[ 0132 ] In additional or alternative variations , an output 
layer ( e.g. , linear output layer ) can be used to generate an 
embedding ( e.g. , a vector , a vector of real numbers , etc. ) for 
the action , wherein the embedding could be matched to 
stored embeddings associated with particular actions ( e.g. , at 
a lookup table ) . In specific examples , for instance , a length 
and / or angle of an embedding vector produced by an output 
layer can be used to match it to a vector associated with a 
particular action . 
[ 0133 ] Selecting an action can be performed by any or all 
of : the context - aware learning module , performed with 
another model and / or algorithm and / or process , determined 
based on other information ( e.g. , any or all of the set of 
inputs from S212 , based on the particular route , based on a 
next context in the map , etc. ) , and / or otherwise determined . 
[ 0134 ] In preferred variations , the action is produced as an 
output ( e.g. , single output , multiple outputs , etc. ) of the 
context - aware learning agent . 
[ 0135 ] In additional or alternative variations , the action 
can be determined based on a state machine or other 
rule - based method for choosing an action based on context . 
[ 0136 ] In a first variation , the context of the agent is 
determined from a map to be a one - lane residential road 
( e.g. , in which the agent cannot change contexts due to road 
geometry as shown in FIG . 10 ) . A set of actions determined 
for this context can include , for instance : maintaining speed , 
creeping , left turning , right turning , and yielding . For creep 
ing , a major parameter is creep distance , which refers to the 
distance the agent should creep forward with extra caution 
( e.g. , before deciding to merge ) . For instance , humans tend 

4.5 Method — Selecting a 2nd Learning Module S214 
[ 0139 ] S210 preferably includes selecting a 2nd learning 
module ( equivalently referred to herein as a deep trajectory 
network ) S214 , which functions to select a learning module 
based on the action , which preferably additionally functions 
to select an action - specific module with which to determine 
the agent's trajectory . The 2nd learning module is preferably 
tuned to ( e.g. , trained based on , with a highly tuned loss 
function corresponding to ) the particular action ( and / or 
multiple actions in an action space ) of the agent . In preferred 
variations , for instance , S214 functions to select a particular 
learned model ( e.g. , decision network ) from a set of multiple 
learned models based on the particular action ( e.g. , as 
described above ) selected for the vehicle ( e.g. , based on 
context ) . S214 can additionally or alternatively function to 
determine a trajectory of the agent , select a learning module 
based on other environmental information relative to the 
agent , select a learning module based on other information 
relative to the agent ( e.g. historical information , object 
information , etc. ) , eliminate available options to the agent 
( e.g. , eliminate available trajectories ) , and / or can perform 
any other suitable functions . 
[ 0140 ] Selecting a 2nd learning module is equivalently 
described herein as selecting one of a 2nd set of learning 
modules and / or selecting one of a set of 2nd learning mod 
ules . 
[ 0141 ] S214 is preferably performed in response to ( e.g. , 
after , based on , etc. ) S222 ( e.g. , a most recent instance of 
S222 ) , wherein S222 is preferably performed in response to 
S212 , such that the 2nd learning module is selected based on 
an action which is determined based on a context of the 
agent . Additionally or alternatively , S214 can be performed 
as part of and / or combined with S212 , concurrently with 
S212 , in absence of S212 , multiple times throughout the 
method ( e.g. , in response to the context changing ) , and / or at 
any other time ( s ) during the method 200. Further addition 
ally or alternatively , the method 200 can be performed in 
absence of S214 . 
[ 0142 ] In some variations , S214 is automatically per 
formed in response to S212 being performed and an action 
being determined and / or a trigger indicating that a context of 
the vehicle ( e.g. , as determined based on its location on a 
map ) has changed and / or is about to change . Additionally or 
alternatively , S214 can be performed based on other triggers , 
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continuously and / or at a predetermined frequency , in 
absence of a trigger , and / or in any other ways ( e.g. , as 
described above ) . 
[ 0143 ] A single learning module from the 2nd set of 
learning modules is preferably selected based an action 
selected for the vehicle in S222 . Additionally or alterna 
tively , the particular learning module can be determined 
and / or selected based on an action determined in any other 
suitable way , the selected 1st learning module , information 
received in S205 , and / or any other suitable information . 
Further additionally or alternatively , multiple learning mod 
ules from the 2nd set of learning modules can be selected 
( e.g. , to be processed in series , to be processed in parallel , 
etc. ) . 
[ 0144 ] The 2nd learning module is further preferably 
selected based on a mapping between actions and 2nd 
learning modules . In preferred variations , each action is 
associated with a single learning module of the 2nd set of 
learning modules in a 1 : 1 mapping ( e.g. , as stored in lookup 
table and / or database ) , wherein each action is only associ 
ated with a single and learning module and wherein each of 
the 2nd learning modules is only associated with a single 
action . The mappings are preferably predetermined ( e.g. , 
programmed , rule - based , etc. ) , but can additionally or alter 
natively be dynamically determined . Additionally or alter 
natively , a single action can be associated with multiple 2nd 
learning modules , wherein one of the set of 2nd learning 
modules is selected ( e.g. , further based on the set of inputs ) 
and / or the module outputs are aggregated ; a module can be 
associated with multiple contexts ; and / or any other associa 
tion can be established between actions and learning mod 
ules . 
[ 0145 ] Additionally or alternatively , the 2nd learning mod 
ule can be selected based on other information ( e.g. , to 
further narrow down the selection of a learning module ) . In 
some variations , for instance , each ( context , action ) pair is 
associated with a single 2nd learning module . 
[ 0146 ] The 2nd learning module ( equivalently referred to 
herein as an action - aware learning agent , a deep trajectory 
network [ DTN ] , etc. ) is preferably in the form of and / or 
includes a machine learning model , further preferably in the 
form of one or more neural networks ( e.g. , deep Q - learning 
network , convolutional neural network [ CNN ] , etc. ) trained 
for a particular action and / or actions , but can additionally or 
alternatively include any other suitable models , algorithms , 
decision trees , lookup tables , and / or other tools . The deep 
trajectory networks ( DTN ) are preferably selected based on 
the action selected by the deep decision network ( DDN ) and 
preferably function to generate highly optimized safe tra 
jectories with action - driven safety constraints during the 
current planning cycle . 
[ 0147 ] The 2nd set of learning modules are preferably 
selected , optimized , and safely constrained based on a 
specific action ( e.g. , as described above ) . In specific 
examples , each of the 2nd set of learning modules uses a 
localized view around the vehicle ( e.g. , including informa 
tion associated with only the proximal dynamic and static 
objects , including information associated with only proxi 
mal road features , etc. ) to ultimately plan a safe , effective 
and naturalistic trajectory which the vehicle should follow 
( e.g. , as described in S224 ) . This data - driven modular 
approach leads to deterministic models which need expo 
nentially less data compared to other conventional architec 
tures . 

[ 0148 ] In preferred variations , each of the 2nd set of 
learning modules is a deep neural network ( DNN ) ( e.g. , 
neural network ) , further preferably a deep Q - learning net 
work trained using Inverse Reinforcement learning , wherein 
the number of layers ( e.g. , hidden layers ) of the neural 
network can vary for different actions ( e.g. , between 3-8 
layers , 3 or less layers , 8 or more layers , between 2 and 10 
layers , between 1 and 15 layers , etc. ) and / or based on any 
other information . Additionally or alternatively , any other 
suitable networks , algorithms , and / or models can be used in 
the learning module ( s ) , such as any or all of those described 
above . Each of the set of multiple 2nd learning modules is 
preferably the same type of neural network ( e.g. , with 
different numbers of layers ) and / or algorithm and / or model , 
but can alternatively be different ( e.g. , have different archi 
tectures , different neural network types , etc. ) . In a set of 
specific examples , the 2nd learning modules has the same 
architecture as the 1st set of learning modules . In alterna 
tively examples , the 1st set and 2nd set of learning modules 
have different architectures . 
[ 0149 ] Each of the 2nd learning modules is preferably 
trained based on data occurring within the particular action 
type associated with the 2nd learning module and optionally 
additionally based on data occurring within any or all of : a 
route ( e.g. , fixed route ) being traveled by the vehicle , the 
context of the vehicle , and / or any other suitable information . 
In some variations , for instance , a single 2nd learning module 
applies to a particular action type , wherein the single and 
learning module is trained based on data wherein the vehicle 
is performing the action . Additionally or alternatively , the 
single 2nd learning module is trained based on data associ 
ated with the context selected prior in S212 . Additionally or 
alternatively , the 2nd learning module ( s ) can be trained with 
any suitable data . 
[ 0150 ] Each of the 2nd learning modules is further prefer 
ably trained with inverse reinforcement learning , which 
functions to determine a reward function and / or an optimal 
driving policy for each of the context - aware learning mod 
ules . The output of this training is further preferably a 
compact fully - connected network model that represents the 
reward function and an optimal policy for each learning 
module . Additionally or alternatively , the learning modules 
can be otherwise suitably trained ( e.g. , with reinforcement 
learning , supervised learning , semi - supervised learning , 
unsupervised learning , etc. ) and / or implemented . 
[ 0151 ] In a first variation , S214 includes selecting a 2nd 
learning module ( equivalently referred to herein as an 
action - aware learning module ) based on a determined action 
of the agent . In specific examples , a single action - aware 
learning module is assigned to each action . The action - aware 
learning module is preferably trained with an inverse rein 
forcement learning model , but can additionally or alterna 
tively be otherwise trained . 
[ 0152 ] In a second variation , S214 includes selecting a 2nd 
learning module ( equivalently referred to herein as an 
action - aware learning module ) based on a determined action 
of the agent along with the context that led to the action . In 
specific examples , a single action - aware learning module is 
assigned to each ( context , action ) pair . 
[ 0153 ] In a third variation , S214 includes selecting from 
multiple action - aware learning modules assigned to / avail 
able to a particular action , wherein the particular action 
aware learning module is selected based on any or all of : 
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machine learning , a decision tree , statistical methods , an 
algorithm , and / or with any other suitable tool ( s ) . 
[ 0154 ] Additionally or alternatively , any other suitable 
learning modules can be selected , used , and / or trained . 

ments , dynamically determined assignments , an output of 
the 1st learning module , and / or based on any other informa 
tion . The safety tunnel is preferably calculated at each 
planning cycle ( e.g. , running 30 times per second , running 
10 times per second , running 50 times per second , running 
between 0 and 60 times per second , running greater than 60 
times per second , etc. ) , but can additionally or alternatively 
be calculated at any or all of : continuously , at a predeter 
mined frequency , at a set of intervals ( e.g. , random inter 
vals ) , in response to a trigger , and / or at any other suitable 
times . The safety tunnel functions to represent all possible 
locations that the agent can occupy for the current selected 
action . The safety tunnel is preferably constrained by the 
current lane of the agent unless the action identifies a change 
lane action , but can additionally or alternatively be other 
wise constrained . 
[ 0160 ] In a specific example where the agent is stopped at 
a stop sign and where the possible actions are to continue 
yielding for other traffic or to merge onto the lane , if the 
action is to continue yielding for vehicles , the safety tunnel 
would only extend to the stop sign and not beyond , limiting 
the movement of the agent ( equivalently referred to herein 
as an ego vehicle ) . If the action switches to merge onto the 
lane , the safety tunnel is programmatically switched to 
encapsulate the full space of the lane the agent is meant to 
merge into . 

a 

4.6 Method_Generating a Vehicle Trajectory S224 
[ 0155 ] The method preferably includes generating a 
vehicle trajectory S224 , which functions to generate a tra 
jectory for the agent to follow to perform the selected action . 
Additionally or alternatively , S214 can function to generate 
a most optimal trajectory for the agent ( e.g. , by eliminating 
trajectories from consideration based on the action ) , reduce 
a time and / or processing required to generate a trajectory , 
and / or perform any other suitable functions . 
( 0156 ] S224 is preferably performed in response to ( e.g. , 
after , based on , etc. ) S214 , but can additionally or alterna 
tively be performed in response to S210 and / or S212 , as part 
of S214 and / or concurrently with S214 , in absence of S212 
and / or S214 , in response to S205 , multiple times throughout 
the method , and / or at any other time ( s ) during the method 
200. Further additionally or alternatively , the method 200 
can be performed in absence of S224 . 
[ 0157 ] S224 is preferably performed with a selected and 
learning module as described above , wherein the trajectory 
is produced as an output of the 2nd learning module and / or 
determined based on an output of the 2nd learning module , 
but can additionally or alternatively be performed with a 1st 
learning module , a combined 1st and 2nd learning module , 
multiple learning modules , any deep learning process , any 
programmed process , and / or any other suitable processes . 
[ 0158 ] S224 preferably includes determining ( e.g. , calcu 
lating ) a safety tunnel and a set of safety tunnel constraints 
associated with the agent , which defines a constrained 
driving region for the autonomous agent based on the 
selected action . The safety tunnel is preferably determined 
based on the selected action and functions to constrain the 
set of all available trajectories to the agent by sharpening the 
environment for where the future trajectory can be . In some 
variations , for instance , this functions to limit the environ 
ment to only the environment evant to the selected action 
and where the vehicle might be in the future based on the 
selected action . The safety tunnel is further preferably 
calculated based on a set of inputs including a location of the 
agent as well as map information such as : road boundaries , 
location of stop signs , location of traffic lights , but can 
additionally or alternatively take into account any other suitable inputs . Additionally or alternatively , the safety 
tunnel can be calculated based on any other suitable infor 
mation . 
[ 0159 ] The safety tunnel is preferably a region defined 
relative to a fixed point , plane , and / or surface of the autono 
mous agent ( e.g. , front wheel , outermost surface of front 
bumper , etc. ) and / or associated with the autonomous agent 
( e.g. , a virtual point and / or plane and / or surface relative to 
and moving with the autonomous agent ) and which extends 
to any or all of : a predetermined distance ( e.g. , 100 meters , 
between 50 meters and 100 meters , less than 50 meters , 
between 100 and 150 meters , 150 meters , between 150 
meters and 200 meters , greater than 200 meters , etc. ) , a 
planning horizon , a stopping object ( e.g. , yielding sign , stop 
sign , traffic light , etc. ) at which the vehicle must stop , and / or 
any other suitable information . The parameters of the safety 
tunnel are preferably determined based on the action , such 
as , but not limited to , any or all of : predetermined assign 

[ 0161 ] In another specific example , another vehicle that is 
100 meters behind the ego vehicle on a neighboring lane is 
not relevant ( e.g. , outside the safety tunnel ) if the current 
action is to keep driving straight in the current lane . This , 
however , becomes relevant ( e.g. , in the safety tunnel ) if the 
action is instead to perform a lane change action . 
[ 0162 ] Additionally or alternatively , the safety tunnel can 
be otherwise designed and / or implemented ; the method can 
be performed in absence of the safety tunnel ; and / or the 
method can be otherwise performed . 
[ 0163 ] The safety tunnel can optionally be used to select 
which static and dynamic objects are within the safety 
tunnel , wherein only those objects are used for consideration 
and / or further processing ( e.g. , in determining the localized 
environmental representation , in determining a latent space 
representation , etc. ) . In some variations , for instance , local 
ized dynamic and static object selectors ( e.g. , in the com 
puting system ) select the relevant surrounding objects based 
on the action output from the 1st learning module , its 
associated safety tunnel , as well as any information about 
these objects such as their location , distance from the ego 
vehicle , speed , and direction of travel ( e.g. , to determine if 
they will eventually enter the safety tunnel ) . Additionally or 
alternatively , relevant static and dynamic objects can be 
determined in absence of and / or independently from a safety 
tunnel ( e.g. , just based on the selected action , based on a 
predetermined set of action constraints , etc. ) , all static and 
dynamic objects can be considered , and / or S224 can be 
otherwise suitably performed . 
[ 0164 ] In a first set of variations of the safety tunnel , the 
safety tunnel is used as a constraint in trajectory generation , 
wherein the safety tunnel sharpens ( e.g. , localizes based on 
action , constrains based on action , etc. ) the environment of 
the vehicle by incorporating planning information such as a 
future horizon planning lookahead . In specific examples , the 
safety tunnel is used in part to generate a latent space 
representation used in the final trajectory generation . 
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[ 0165 ] S224 preferably includes receiving a set of inputs , 
such as any or all of those described above , in S205 , in S222 , 
and / or any other suitable inputs . 
[ 0166 ] The set of inputs can include any or all of the inputs 
described above ; additional inputs ; different inputs ; and / or 
any suitable set or combination of inputs . In preferred 
variations , the set of inputs received in S224 includes any or 
all of : dynamic object information ( e.g. , within the safety 
tunnel ) and their predicted paths ; static object information 
( e.g. , within the safety tunnel ) ; one or more uncertainty 
estimates ( e.g. , calculated throughout the method , calculated 
at every 1st learning module , calculated at every 2nd learning 
module , etc. ) ; a map and / or inputs from the map ; the state of 
and / or dynamic information associated with the agent ; and / 
or any other suitable information . 
[ 0167 ] The set of inputs are preferably used to determine 
a localized environmental representation , which takes into 
account the information collected to determine an environ 
mental representation ( e.g. , as described previously ) , along 
with action - based constraints ( e.g. , based on parameters 
from the safety tunnel and / or the safety tunnel constraints 
such as a more limited field of view ) , thereby producing a 
more targeted , relevant , and localized environmental repre 
sentation for the agent based on the action selected , which 
is equivalently referred to herein as a localized environmen 
tal representation . This can function , for instance , to reduce 
the amount of information that needs to be considered by 
and / or processed by the 2nd learning module ( e.g. , for faster 
processing ) . Additionally or alternatively , the same environ 
mental representation as described previously , the localized 
environmental representation can include other information 
and / or be otherwise constrained , and / or the localized envi 
ronmental representation can be otherwise formed . 
[ 0168 ] Determining the localized environmental represen 
tation can optionally include determining a latent space 
representation . The latent space representation is preferably 
determined with the same processes and / or a similar process 
for determining the latent space representation as described 
above , but can additionally or alternatively include any other 
suitable latent space representation and / or process for deter 
mining a latent space representation . Further additionally or 
alternatively , S214 can be performed in absence of a latent 
space representation . 
[ 0169 ] In a preferred set of variations , the safety tunnel 
constraints and localized dynamic and static objects , the 
routing information required to reach the destination , and 
the current agent state , are passed to a latent space repre 
sentation , which reduces the overall size of the environmen 
tal representation . This latent space representation is then 
used by the set of deep trajectory networks , which are 
optimized and selected based on a single action to create the 
final trajectory that is proposed for the agent to follow . 
Additionally or alternatively , these inputs can be received at 
the deep trajectory networks in absence of the latent space 
representation . In specific examples , using a single deep 
trajectory network for each action of the agent allows each 
network to be hyper - tuned and optimized in terms of loss 
function to correctly output an optimal trajectory for each 
situation . 
[ 0170 ] The method 200 can optionally include training 
any or all of the 2nd set of learning modules . The learning 
modules are preferably trained at a remote computing sys 
tem of the system 100 , but can additionally or alternatively 
be trained at any suitable location ( s ) . The 2nd set of learning 

modules can be trained separately / independently from the 
1st set of learning modules and with different sets of inputs 
and outputs , or can additionally or alternatively be trained 
together ( e.g. , based on the same processes , based on the 
same data , etc. ) . The 2nd set of learning modules are pref 
erably trained with the same training processes as described 
above , but can additionally or alternatively be trained with 
any suitable processes . 
[ 0171 ] In a first variation of training , for instance , each of 
the 2nd learning modules uses the action from the training 
data to programmatically build action - based constraints . 
These constraints are used to build the localized environ 
mental representation around the safety tunnel which is used 
as an input to the network , wherein the DTN is trained on the 
trajectory from the training data . While preferably trained on 
a different set of inputs and outputs than the 1st set of 
learning modules , each of the 2nd set of learning modules is 
preferably trained with the 1st and 2nd training phases as 
described above . In specific examples , for instance , the 
weights of the loss function take into account the particular 
action and what needs to be optimized for it based on the 
defined safety tunnel . Additionally or alternatively , the 2nd 
set of learning modules can be otherwise trained . 
[ 0172 ] Additionally or alternatively , the 2nd learning mod 
ules can be otherwise configured and / or trained . 
[ 0173 ] In a first set of variations , S224 includes determin 
ing a trajectory for the agent with a 2nd learning module 
selected from a set of multiple and learning modules in S214 , 
wherein the 2nd learning module receives a localized envi 
ronmental representation as input , wherein the localized 
environmental representation is determined based on action 
specific - based constraints along with a safety tunnel . 
[ 0174 ] In a second set of variations , S224 includes deter 
mining an intermediate output from a 2nd learning module , 
wherein the intermediate output is used to determine a 
trajectory . 
[ 0175 ] Additionally or alternatively , S224 can include any 
other suitable processes and / or be otherwise performed . 

a 

a 

C 

4.7 Method — Validating the Vehicle Trajectory S260 
[ 0176 ] The method 200 can optionally include validating 
the vehicle trajectory S260 , which functions to ensure that 
the trajectory is safe and effective ( e.g. , in reaching the 
destination ) for the agent . 
[ 0177 ] S260 is preferably performed in response to ( e.g. , 
after , based on , etc. ) S224 , but can additionally or alterna 
tively be performed in response to any other suitable pro 
cess , as part of S224 and / or concurrently with S224 , mul 
tiple times throughout the method , and / or at any other 
time ( s ) during the method 200. Further additionally or 
alternatively , the method 200 can be performed in absence 
of S260 . 
[ 0178 ] The trajectory is preferably validated based on a 
programmed set of rules , which can include any or all of : 
checking for collisions that would or may occur with static 
and / or dynamic objects ( e.g. , with a likelihood and / or con 
fidence above a predetermined threshold , with a likelihood 
and / or confidence above 10 % , with a likelihood and / or 
confidence between 5 % and 100 % , with a likelihood and / or 
confidence of 5 % or below , with a likelihood and / or confi 
dence between 10 % and 30 % , with a likelihood and / or 
confidence between 30 % and 50 % , with a likelihood and / or 
confidence between 50 % and 70 % , with a likelihood and / or 
confidence between 70 % and 90 % , with a likelihood and / or 
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confidence of at least 90 % , etc. ) ; checking if the trajectory 
follows the rules of the road ( e.g. , traffic laws , best practices , 
road infrastructure , etc. ) ; and / or checking for any other 
suitable rules . In an event that the generated trajectory is 
found to violate one or more rules ( e.g. , single rule , all rule , 
etc. ) and / or an uncertainty associated with the trajectory 
( e.g. , uncertainty associated with the determination of the 
trajectory , uncertainty associated with inputs used to deter 
mine the trajectory such as a probability of input data being 
out - of - distribution , both , etc. ) exceeds a threshold , a backup 
programmed trajectory ( e.g. , from a fallback motion plan 
ner ) can be implemented and / or any other suitable fallback 
can be implemented . 
[ 0179 ] In preferred variations , for instance , the set of rules 
includes a first set of one or more rules which check for 
collisions with static or dynamic objects that would and / or 
may occur with the generated trajectory and a second set of 
one or more rules which check if the trajectory follows the 
rules of the road . 
[ 0180 ] Additionally or alternatively , validating the trajec 
tory can optionally include checking to see if the agent stays 
within the safety tunnel used to determine the trajectory . 
Additionally or alternatively , validating the trajectory can 
include any other rules . 
[ 0181 ] Further additionally or alternatively , S260 can 
include any other suitable processes , S260 can include one 
or more learned processes , the method 200 can be performed 
in absence of S260 , and / or S260 can be otherwise suitably 
performed . 
[ 0182 ] In an event that the generated trajectory does not 
satisfy one or more of these rules , the method 200 preferably 
includes implementing a backup programmed trajectory 
and / or otherwise implementing a fail - safe mechanism ( e.g. , 
triggering a fallback trajectory planner , repeating S224 , 
pulling the vehicle over to the side of the road , stopping the 
vehicle , etc. ) . Additionally or alternatively , the method 200 
can trigger any other suitable process . 
[ 0183 ] The method 200 can optionally include operating 
the vehicle according to the validated vehicle trajectory . 
Additionally or alternatively , the method 200 can include 
operating the vehicle according the trajectory generated in 
S214 , determining a set of control commands based on the 
trajectory and / or the validated trajectory , operating the 
vehicle based on the set of control commands , and / or any 
other suitable processes . 

mental representation ; validating the vehicle trajectory 
based on a set of rules and / or based on a set of one or more 
uncertainties associated with the trajectory ; in an event that 
the vehicle trajectory is not validated ( e.g. , based on the set 
of rules , based on uncertainty estimates , etc. ) , defaulting to 
a fallback mechanism and / or fallback motion planner ; and in 
an event that the trajectory is validated , operating the vehicle 
based on the validated trajectory . Additionally or alterna 
tively , the method 200 can include determining one or more 
latent space representations , determining ( e.g. , defining ) a 
safety tunnel , training any or all of the learning modules , 
and / or any other processes performed in any suitable order . 
[ 0185 ] In a set of specific examples , the method 200 
includes : receiving a set of inputs , wherein the set of inputs 
includes a high definition , labeled ( e.g. , hand - labeled , auto 
matically - labeled , etc. ) map which prescribes the context of 
the autonomous agent at any given time based on its location 
and / or orientation ( e.g. , pose ) within the map , a set of 
detected dynamic objects and associated information ( e.g. , 
current position , size , previous path , and predicted path into 
the future ) , a set of all static objects and their current states , 
routing information required to reach the destination , the 
current ego state , and / or any other suitable information ; 
determining a latent space representation based on the set of 
input and determining a full environmental representation 
based on the latent space representation ; selecting first 
learning module based on the context of the agent , wherein 
the selected 1st learning module is determined based on a 1 : 1 
mapping from the context to 1st learning module , and 
wherein the 1st learning module includes a deep Q - learning 
network trained based on an inverse reinforcement learning 
algorithm ; selecting an action for the agent with the 1st 
learning module and the full environmental representation ; 
defining a safety tunnel based on the selected action ; deter 
mining a latent space representation with the set of inputs 
and the safety tunnel and determining a localized environ 
mental representation based on the latent space representa 
tion ; selecting a 2nd learning module based on the action , 
wherein the selected and learning module is determined 
based on a 1 : 1 mapping from the action to the 2nd learning 
module ( e.g. , in light of the context ) and wherein the 2nd 
learning module includes a deep Q - learning network trained 
with an inverse reinforcement learning algorithm ; generat 
ing a trajectory for the autonomous agent with the 2nd 
learning module and the localized environmental represen 
tation ; validating the trajectory with a set of rules ; and if the 
trajectory is validated , operating the vehicle based on the 
trajectory . Additionally or alternatively , the method 200 can 
include any other processes and / or combination of pro 

5. Variations 
a 

cesses . 

[ 0184 ] In a first set of variations , the method 200 includes : 
receiving a set of inputs including any or all of : agent state 
and / or dynamic information ; static object information ; 
dynamic object information ( e.g. , past trajectory , predicted 
trajectory , etc. ) ; sensor information ; and / or any other suit 
able information ; receiving and / or determining a context for 
the vehicle , the context determined based on a location 
parameter ( e.g. , pose ) of the agent and a map ; selecting a 1st 
learning module based on the context and with a mapping 
( e.g. , a 1 : 1 mapping ) ; determining an action for the vehicle 
with the 1st learning module , wherein the 1st learning module 
receives an environmental representation as input , the envi 
ronmental representation determined based on the set of 
inputs ; selecting a 2nd learning module based on the action 
and with a mapping ( e.g. , a 1 : 1 mapping ) ; determining a 
vehicle trajectory with the 2nd learning module , wherein the 
2nd learning module receives as input a localized environ 

[ 0186 ] In a second set of variations , the method 200 
includes : receiving a set of inputs including any or all of : 
agent state and / or dynamic information ; static object infor 
mation ; dynamic object information ( e.g. , past trajectory , 
predicted trajectory , etc. ) ; sensor information ; and / or any 
other suitable information ; receiving and / or determining a 
context for the vehicle , the context determined based on a 
location parameter ( e.g. , pose ) of the agent and a map ; 
selecting a 1st learning module based on the context and with 
a mapping ( e.g. , a 1 : 1 mapping ) ; determining a vehicle 
trajectory with the 1st learning module , wherein the 2nd 
learning module receives as input an environmental repre 
sentation ; validating the vehicle trajectory based on a set of 
rules ; in an event that the vehicle trajectory is not validated 
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( e.g. , based on the set of rules , based on uncertainty esti 
mates , etc. ) , defaulting to a fallback mechanism and / or 
fallback motion planner , and in an event that the trajectory 
is validated , operating the vehicle based on the validated 
trajectory . Additionally or alternatively , any number of 
learning modules can be implemented to generate the tra 
jectory 
[ 0187 ] In a third set of variations , the method 200 
includes : receiving a set of inputs including any or all of : 
agent state and / or dynamic information ; static object infor 
mation ; dynamic object information ( e.g. , past trajectory , 
predicted trajectory , etc. ) ; sensor information ; and / or any 
other suitable information ; receiving and / or determining a 
context for the vehicle , the context determined based on a 
location parameter ( e.g. , pose ) of the agent and a map ; 
selecting a 1st learning module based on the context and with 
a learned model and / or algorithm and / or decision tree and / or 
mapping ; determining an action for the vehicle with the 1st 
learning module , wherein the 1st learning module receives 
an environmental representation as input , the environmental 
representation determined based on the set of inputs ; select 
ing a 2nd learning module based on the action and with a 
learned model and / or algorithm and / or decision tree and / or 
mapping ; determining a vehicle trajectory with the 2nd 
learning module , wherein the 2nd learning module receives 
as input a localized environmental representation ; validating 
the vehicle trajectory based on a set of rules ; in an event that 
the vehicle trajectory is not validated ( e.g. , based on the set 
of rules , based on uncertainty estimates , etc. ) , defaulting to 
a fallback mechanism and / or fallback motion planner ; and in 
an event that the trajectory is validated , operating the vehicle 
based on the validated trajectory . Additionally or alterna 
tively , the method 200 can include determining one or more 
latent space representations , determining a safety tunnel , 
training any or all of the learning modules , and / or any other 
processes performed in any suitable order . 
[ 0188 ] Additionally or alternatively , the method 200 can 
include any other suitable processes performed in any suit 
able order . 
[ 0189 ] Although omitted for conciseness , the preferred 
embodiments include every combination and permutation of 
the various system components and the various method 
processes , wherein the method processes can be performed 
in any suitable order , sequentially or concurrently . 
[ 0190 ] As a person skilled in the art will recognize from 
the previous detailed description and from the figures and 
claims , modifications and changes can be made to the 
preferred embodiments of the invention without departing 
from the scope of this invention defined in the following 
claims . 
We claim : 
1. A method for operating an autonomous agent , the 

method comprising : 
receiving a set of inputs ; 
selecting a first learned model from a first set of learned 

models based on the set of inputs ; 
selecting a second learned model from a second set of 

learned models based on an output of the first learned 
model ; 

determining a trajectory for the autonomous agent based 
on the second learned model ; and 

operating the autonomous agent based on the trajectory . 
2. The method of claim 1 , further comprising validating 

the trajectory . 

3. The method of claim 2 , wherein the trajectory is 
validated based on at least one of : an uncertainty associated 
with the trajectory and a satisfaction of a set of predeter 
mined rules . 

4. The method of claim 1 , wherein the set of inputs 
comprises a set of sensor inputs collected from a sensor 
system onboard the autonomous agent . 

5. The method of claim wherein the set of inputs further 
comprises a context of the autonomous agent . 

6. The method of claim 5 , further comprising determining 
the context based on a map . 

7. The method of claim 6 , wherein the map prescribes a 
set of multiple contexts , wherein the context is selected from 
the set of multiple contexts . 

8. The method of claim 5 , wherein the context is at least 
partially determined based on a fixed route associated with 
the autonomous agent . 

9. The method of claim 1 , wherein the output comprises 
an action of the autonomous agent . 

10. The method of claim 1 , wherein at least one of the first 
learned model and the second learned model is selected 
based on a set of mappings . 

11. The method of claim 1 , wherein the first and second 
set of learned models comprise neural networks , wherein the 
neural networks are trained with at least one of : inverse 
reinforcement learning and reinforcement learning . 

12. A system for operating an autonomous agent , the 
system comprising : 

a sensor system ; 
first set of learned models ; 

a second set of learned models ; and 
a computing system , wherein the computing system : 

receives a set of inputs , wherein at least a portion of the 
set of inputs is received from the sensor system ; 

determines a first learned model based on the set of 
inputs and a first set of learned models ; 

determines a second learned model based on an output 
of the first learned model and a second set of learned 
models ; 

determines a trajectory for the autonomous agent based 
on the second learned model ; and 

operates the autonomous agent based on the trajectory . 
13. The system of claim 12 , wherein the sensor system 

comprises a location sensor and an orientation sensor , and 
wherein the set of inputs comprises a set of poses associated 
with the autonomous agent . 

14. The system of claim 12 , wherein the set of inputs 
comprises a context associated with the autonomous agent . 

15. The system of claim 14 , further comprising a map , 
wherein the context is determined based on the map . 

16. The system of claim 15 , wherein the map comprises 
a set of labeled contexts , wherein the context is selected 
from the set of labeled contexts based on a location of the 
autonomous agent . 

17. The system of claim 14 , wherein the context is 
determined based on a fixed route associated with the 
autonomous agent . 

18. The system of claim 12 , wherein the computing 
system further validates the trajectory based on at least one 
of : an uncertainty associated with the trajectory and a 
satisfaction of a set of predetermined rules . 

19. The system of claim 12 , wherein the output comprises 
an action of the autonomous agent . 
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20. The system of claim 12 , wherein each of the first and 
second learned models comprises a neural network , wherein 
the neural network is trained with inverse reinforcement 
learning 

* 


