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UNIFIED ADDRESS TRANSLATION FOR 
VIRTUALIZATION OF INPUT / OUTPUT 

DEVICES 

FIELD OF INVENTION 

[ 0001 ] The field of invention relates generally to computer 
architecture , and , more specifically , but without limitation , 
to virtualization in computer systems . 

[ 0015 ] FIG . 10 is a block diagram of a processor that may 
have more than one core , may have an integrated memory 
controller , and may have integrated graphics according to 
embodiments of the invention ; 
[ 0016 ] FIG . 11 is a block diagram of a system in accor 
dance with one embodiment of the present invention ; 
[ 0017 ] FIG . 12 is a block diagram of a first more specific 
exemplary system in accordance with an embodiment of the 
present invention ; 
[ 0018 ] FIG . 13 is a block diagram of a second more 
specific exemplary system in accordance with an embodi 
ment of the present invention ; and 
[ 0019 ] FIG . 14 is a block diagram of a SoC in accordance 
with an embodiment of the present invention . 

BACKGROUND 

DETAILED DESCRIPTION 

[ 0002 ] Computers and other information processing sys 
tems may include one or more subsystems or components , 
such as input / output ( 1/0 ) devices , that may independently 
access a system memory , for example , using direct memory 
access ( DMA ) transactions and / or be accessed by one or 
more processors . Various system capabilities , such as virtu 
alization , may result in different views of system memory 
for different I / O devices . Therefore , various address trans 
lation techniques for virtualization of I / O devices have been 
developed . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] The present invention is illustrated by way of 
example and not limitation in the figures of the accompa 
nying drawings , in which like references indicate similar 
elements and in which : 
[ 0004 ] FIG . 1 is a block diagram illustrating a root com 
plex in a system according to an embodiment of the inven 
tion ; 
[ 0005 ] FIG . 2 is a block diagram illustrating an input / 
output memory management unit ( IOMMU ) according to an 
embodiment of the invention ; 
[ 0006 ] FIGS . 3 and 4 are block diagrams illustrating 
IOMMU architectures according to embodiments of the 
invention ; 
[ 0007 ] FIG . 5A is a flow diagram illustrating a method of 
process address space identifier ( PASID ) management 
according to an embodiment of the invention ; 
[ 0008 ] FIG . 5B is a block diagram illustrating an IOMMU 
architecture for PASID management according to an 
embodiment of the invention ; 
[ 0009 ] FIG . 6A is a flow diagram illustrating a method of 
PASID management according to an embodiment of the 
invention ; 
[ 0010 ] FIG . 6B is a block diagram illustrating an IOMMU 
architecture for PASID management according to an 
embodiment of the invention ; 
[ 0011 ] FIGS . 7A and 7B are flow diagrams illustrating 
software - based approaches to I / O virtual address ( IOVA ) 
virtualization according to embodiments of the invention ; 
[ 0012 ] FIG . 8 is a block diagram illustrating a hardware 
based approach to IOVA virtualization according to an 
embodiment of the invention ; 
[ 0013 ] FIG . 9A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the invention ; 
[ 0014 ] FIG . 9B is a block diagram illustrating both an 
exemplary embodiment of an in - order architecture core and 
an exemplary register renaming , out - of - order issue / execu 
tion architecture core to be included in a processor according 
to embodiments of the invention ; 

[ 0020 ] In the following description , numerous specific 
details , such as component and system configurations , may 
be set forth in order to provide a more thorough understand 
ing of the present invention . It will be appreciated , however , 
by one skilled in the art , that the invention may be practiced 
without such specific details . Additionally , some well 
known structures , circuits , and other features have not been 
shown in detail , to avoid unnecessarily obscuring the present 
invention . 

[ 0021 ] References to “ one embodiment , " " an embodi 
ment , " " example embodiment , ” “ various embodiments , " 
etc. , indicate that the embodiment ( s ) of the invention so 
described may include particular features , structures , or 
characteristics , but more than one embodiment may and not 
every embodiment necessarily does include the particular 
features , structures , or characteristics . Some embodiments 
may have some , all , or none of the features described for 
other embodiments . Moreover , such phrases are not neces 
sarily referring to the same embodiment . When a particular 
feature , structure , or characteristic is described in connection 
with an embodiment , it is submitted that it is within the 
knowledge of one skilled in the art to effect such feature , 
structure , or characteristic in connection with other embodi 
ments whether or not explicitly described . 
[ 0022 ] As used in this description and the claims and 
unless otherwise specified , the use of the ordinal adjectives 
“ first , ” “ second , ” “ third , ” etc. to describe an element merely 
indicate that a particular instance of an element or different 
instances of like elements are being referred to , and is not 
intended to imply that the elements so described must be in 
a particular sequence , either temporally , spatially , in rank 
ing , or in any other manner . 
[ 0023 ] Also , as used in descriptions of embodiments of the 
invention , a “ I ” character between terms may mean that an 
embodiment may include or be implemented using , with , 
and / or according to the first term and / or the second term 
( and / or any other additional terms ) . 
[ 0024 ] Various techniques , for example , single - root I / O 
virtualization ( SR - IOV ) , as defined by the Peripheral Com 
ponent Interconnect Express ( PCIe ) specification , and scal 
able I / O virtualization ( Scalable IOV ) , as described below , 
may provide for virtualization of I / O devices . A system may 
include hardware , such as an I / O memory management unit 
( IOMMU ) to perform address translation and / or remapping 
to support transactions between various I / O devices , system 
memory , and processors . The use of embodiments of the 
invention may be desired to provide a unified approach to 
address translation for virtualization of 1/0 devices , for 
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example , to support various virtualization and / or remapping 
techniques using a single IOMMU . 
[ 0025 ] FIG . 1 is a block diagram illustrating a root com 
plex or other device including or serving as a bridge between 
one or more I / O devices and system memory according to an 
embodiment of the invention . Root complex 100 in FIG . 1 
may be implemented in logic gates , storage elements , and 
any other type of circuitry , all or parts of which may be 
included in a discrete component and / or integrated into the 
circuitry of a processing device or any other apparatus in a 
computer or other information processing system . In FIG . 1 , 
root complex 100 is shown within system 102. Also , FIGS . 
9 through 14 show processors and systems that may include 
embodiments of the invention . For example , root complex 
100 and / or any or all the elements shown in root complex 
100 may be represented by or included in controller hub 
1120 , chipset 1290 , or DMA unit 1432 , each as described 
below . 

[ 0026 ] Root complex 100 may represent any circuitry or 
component , such as a chipset component , including or 
through which I / O , peripheral , and / or other components or 
devices , such as touchscreens , keyboards , microphones , 
speakers , other audio devices , cameras , video or other media 
devices , motion or other sensors , receivers for global posi 
tioning or other information , network interface controllers , 
compute or other accelerators , and / or information storage 
devices , may be connected or coupled to a processor , a 
memory controller , a system memory , and / or any type of 
processor / memory subsystem . 
[ 0027 ] System 102 and any other system embodying the 
invention may include any number of each of these com 
ponents and any other components or other elements . Any or 
all of the components or other elements in this or any system 
embodiment may be connected , coupled , or otherwise in 
communication with each other through any number of 
buses , point - to - point , or other wired or wireless interfaces or 
interconnects , unless specified otherwise . Any components 
or other portions of system 102 , whether shown in FIG . 1 or 
not shown in FIG . 1 , may be integrated or otherwise 
included on or in a single chip ( a system - on - a - chip or SOC ) , 
die , substrate , or package . 

may be referred to in this description as pages ; however , the 
use of the term “ page ” in this description may mean any size 
region of memory . 
[ 0030 ] Processor 144 may represent all or part of a hard 
ware component including one or more processors or pro 
cessor cores integrated on a single substrate or packaged 
within a single package , each of which may include multiple 
execution threads and / or multiple execution cores , in any 
combination . Each processor represented as or in processor 
144 may be any type of processor , including a general 
purpose microprocessor , such as a processor in the Intel® 
Core® Processor Family or other processor family from 
Intel® Corporation or another company , a special purpose 
processor or microcontroller , or any other device or com 
ponent in an information processing system in which an 
embodiment of the present invention may be implemented . 
Processor 144 may be architected and designed to operate 
according to any instruction set architecture ( ISA ) . 
[ 0031 ] Nonvolatile memory 146 may be any type of 
nonvolatile memory and may be used to store any code , data , 
or information to be maintained during various power states 
and through various power cycles of system 102. For 
example , nonvolatile memory 146 may be used to store 
basic input / output system ( BIOS ) or other code that may be 
used for booting , restarting , and / or resetting system 102 or 
any portion of system 102 . 
[ 0032 ] Root complex 100 includes bridge 104 , which may 
include any circuitry , other hardware , or firmware to connect 
a memory side ( e.g. , a subsystem including system memory 
142 ) of system 102 to an 1/0 side ( e.g. , a subsystem 
including I / O devices 132 , 134 , and 136 ) of system 102 , 
and / or to deliver , forward , translate , associate , and / or oth 
erwise bridge transactions or other communications between 
the memory side and the I / O side . 
[ 0033 ] Root complex 100 also includes IOMMU 110 and 
is connected to I / O devices 132 , 134 , and 136 through I / O 
fabric 130. Root complex 100 may also be connected , 
directly or indirectly , to memory controller 140 , system 
memory 142 , processor 144 , and / or nonvolatile memory 
146 , any or all of which may be integrated onto the 
silicon chip or other substrate as root complex 100 . 
[ 0034 ] IOMMU 110 includes address translation unit 112 , 
which may represent or include any address translation 
circuit or logic to translate addresses that may be used by I / O 
or other peripheral devices to request an access to system 
memory 142 to addresses that may be used to access system 
memory 142 ( IOMMU DMA remapping ) . For convenience , 
the first type of address may be referred to as an I / O - side 
memory address , and may include addresses used by I / O 
devices in DMA transactions , addresses used by I / O devices 
in virtual environments , and / or any other addresses used by 
I / O or other peripheral devices or within address spaces as 
seen by I / O or other peripheral devices . The second type of 
address may be referred to as a memory - side memory 
address , and may include addresses used by memory con 
troller 140 to access system memory 142 , such as a host 
physical address ( HPA ) , and / or any other address within an 
address space on the system memory side of root complex 
100. Address translation unit 112 may use any number of 
page tables , extended page tables , nested page tables , or 
other non - hierarchical or hierarchical data structures stored 
in system memory 142 or elsewhere to perform any number 
of page walks , lookups , or other translation techniques . 
IOMMU 110 also includes IOTLB 114 to store translations 

le 

[ 0028 ] System memory 142 may be dynamic random 
access memory ( DRAM ) or any other type of medium 
readable by processor 144. System memory 142 may be 
used to provide a physical memory space from which to 
abstract a system memory space for system 102. The content 
of system memory space , at various times during the opera 
tion of system 102 , may include various combinations of 
data , instructions , code , programs , software , and / or other 
information stored in system memory 142 and / or moved 
from , moved to , copied from , copied to , and / or otherwise 
stored in various memories , storage devices , and / or other 
storage locations ( e.g. , processor caches and registers ) in 
system 102. Memory controller 140 may represent any 
circuitry or component for accessing , maintaining , and / or 
otherwise controlling system memory 142 . 
[ 0029 ] The system memory space may be logically orga 
nized , addressable as , and / or otherwise partitioned ( e.g. , 
using any known memory management , virtualization , par 
titioning , and or other techniques ) into regions of one or 
more sizes . In various embodiments , such regions may 
include 4K - byte pages , so , for convenience , such regions 
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generated by address translation unit 112 or otherwise useful 
for finding memory - side memory addresses corresponding 
to I / O - side memory addresses and / or vice versa . 

create a second VM abstracted from the first VM , in which 
case the second VMM is both host software and guest 
software . 

[ 0035 ] 1/0 fabric 130 may represent any bus , interconnect , 
or fabric , such as a PCIe interconnect , through which I / O 
and / or peripheral devices , such as 1/0 devices 132 , 134 , and 
136 may be coupled or connected to root complex 100. I / O 
devices 132 , 134 , and / or 136 may be devices that may be 
able to perform the role of a requester and / or a completer of 
a PCIe transaction , where a “ requester ” may refer to a device 
that is able to originate a transaction on a I / O fabric 130 , a 
“ completer ” may refer to a device that is addressed and / or 
targeted by a requester , and a “ transaction ” may refer to any 
transaction , command , message , or communication on or 
through I / O fabric 130. Transactions on I / O fabric 130 may 
include DMA and / or other transactions through which I / O 
devices may access and / or request or attempt to access 
system memory 144. More generally , a “ transaction ” may be 
any communication involving an I / O device within a sys 
tem . 

[ 0036 ] In various embodiments , IOMMU 110 may include 
hardware , such as address translation unit 112 , to perform 
and / or support translations and / or remappings for transac 
tions involving any I / O device , whether connected to system 
memory through a bridge such as bridge 104 or directly , 
where the definition of I / O device may include controllers 
( such as bus , interconnect , and / or fabric controllers , network 
interface controllers ( NICs , including Omnipath and 100 G 
Ethernet ) , etc. ) , processors / accelerators ( such as graphics 
processors , cryptographic and / or compression accelerators , 
etc. ) , devices and / or functions implemented in field pro 
grammable gate arrays or with Intel® QuickAssist Technol 
ogy , and any other resources that may use or involve the use 
of addresses in a system , using DMA , Intel® I / O Assist 
Technology , or any other techniques , known and / or as 
described in this specification . The architecture of system 
102 may provide for each such physical 1/0 device to be 
virtualized to provide one or more virtual I / O devices and / or 
functions per physical I / O device , such that the physical I / O 
devices may be assigned / allocated to and / or shared among 
multiple virtual machines , partitions , or containers ( e.g. , 
separate and / or isolated execution environments ) , supported 
by the system software , firmware , and / or hardware of sys 
tem 102 . 

[ 0038 ] For convenience , the use of the term " container 
process ” may mean any context , task , application , software , 
privileged process , unprivileged process , kernel - mode pro 
cess , supervisor - mode process , user - mode process , or any 
other process running or runnable within a container . A 
container may have an address space ( a container address 
space or a guest address space ) that is different from the 
system address space ( e.g. , the address space of system 
memory 142 ) or the host address space ( e.g. the address 
space of the host machine ) . An address with which the 
system address space may be directly accessed ( i.e. , without 
translation ) may be referred to as an HPA . For isolation , 
protection , or any other purpose , any container address 
space may be different from any other container address 
space . Therefore , each container process may access 
memory using addresses that are to be translated , filtered , or 
otherwise processed to HPAs differently than they are trans 
lated , filtered , or otherwise processed for any other con 
tainer . The difference in translation / processing of container 
addresses may be due to virtualization and isolation of 
container address spaces ( e.g. , guest software may use guest 
virtual addresses ( GVAs ) that are translated to guest physical 
address spaces ( GPAs ) that are translated to HPAs ) and may 
also be due to the use of a variety of different types of 
containers ( e.g. , VMS , OS - managed containers , etc. ) and / or 
different container architectures ( e.g. , layered architectures 
including VMs hosting multiple VMs , VMs hosting multiple 
OS - managed containers , etc. ) . 
[ 0039 ] An address used by a container process to access 
memory ( a container address ) may be any of many different 
types of addresses , including an HPA , a virtual address , a 
GPA , a GVA , a DMA address , etc. , and may go through one 
or more of any of a variety of techniques , types , levels , 
layers , rounds , and / or steps of translation , filtering , and / or 
processing , in any combination , using any of a variety of 
data structures ( e.g. , page tables , extended page table , nested 
page tables , DMA translation tables , memory access filters , 
memory type filters , memory permission filters , etc. ) to 
result in an HPA and / or in a fault , error , or any other type of 
determination that a requested access is not allowed . Various 
approaches may include layering and / or nesting of contain 
ers ( e.g. , a VMM hosting a VM running a guest OS , the 
guest OS supporting multiple containers ; a VMM hosting 
multiple VMs each running a guest OS , etc. ) , involving 
various combinations of address translation techniques . 
[ 0040 ] Each physical function within an I / O device in 
system 102 may become usable and / or shareable by one or 
more clients ( e.g. , containers , container processes , host 
processes , etc. ) by reporting to system software the number 
of assignable interfaces ( AIS ) that it supports , where an AI 
is an abstract entity within a device through which software 
may submit work to the device . For example , an Al for a 
NIC may be a paired transmit queue and receive queue ; an 
Al for an InfiniBand , remote DMA ( RDMA ) , or other host 
fabric controller may be a Queue Pair ; an AI for a Non 
Volatile Memory Express or other storage device controller 
may be a Command Queue ; an AI for a graphics processing 
unit ( GPU ) , general purpose computing on GPU ( GPGPU ) , 
or other accelerator may be a schedulable context through 
which work may be submitted ; etc. An AI may have multiple 
command portals , which are typically MMIO addresses that 

[ 0037 ] Any platform , system , or machine , including the 
“ bare metal ” platform shown as system 102 in FIG . 1 as well 
as any VM or other container abstracted from a bare metal 
platform , from which one or more containers are abstracted 
may be referred to as a host or host machine , and each VM 
or other such container abstracted from a host machine may 
be referred to as a guest or guest machine . Accordingly , the 
term " host software ” may mean any hypervisor , virtual 
machine monitor ( VMM ) , operating system ( OS ) , or any 
other software that may run , execute , or otherwise operate 
on a host machine and create , maintain , and / or otherwise 
manage one or more containers , and the term “ guest soft 
ware ” may mean any OS , system , application , user , or other 
software that may run , execute , or otherwise operate on a 
guest machine . Note that in a layered container architecture , 
software may be both host software and guest software . For 
example , a first VMM running on a bare metal platform may 
create a first VM , in which a second VMM may run and 



US 2021/0173790 A1 Jun . 10 , 2021 
4 

software may use to submit work . An AI may be distin 
guished from an admin portal as being an interface for a 
client to submit work , whereas an admin portal is an 
interface through which a container host sets up or config 
ures the Als . 

[ 0041 ] In an embodiment , an AI may be implemented with 
one or more 4 KB pages of memory - mapped I / O ( MMIO ) 
registers which are part of the main device ( PF ) base address 
registers ( BARs ) . Each AI may correspond to an individual 
backend resource ( queue , context , etc. ) and implement the 
minimal MMIO interface to configure and operate the 
respective backend resource . Further , all accesses from a 
guest driver may be divided into control path accesses , 
which are infrequent accesses and hence not performance 
critical , and fast path accesses , which are frequent datapath 
accesses and hence are performance critical . Each Al's 
control path and fast path MMIO registers are laid out in 
different 4 KB pages so that the fast path registers may be 
mapped into the VM for direct access while control path 
registers may be emulated in software . One or more Als may 
be assigned to a VM or as part of a virtual device ( VDEV ) . 
Different Als from the same device may also be assigned to 
different VMs . Virtualization of I / O devices using Als may 
be scalable ( Scalable IOV ) because it is not limited by 
device / function numbers . 

[ 0042 ] An I / O device may report to host software that it 
supports one or more Als for use according to embodiments 
of the present invention , as well as how many Als it 
supports , through capability / attribute information that it 
provides according to a system bus or interconnect specifi 
cation ( e.g. , through a new capability added to the PCIe 
specification ) , by a device driver for the physical function , 
or according to any other known technique for reporting 
physical function capabilities / attributes . 

PASID , while an AI transaction for the same I / O device may 
involve a request including a guest IOVA ( GIOVA ) and a 
PASID . 

[ 0045 ] Various scenarios may arise in which the use of 
various I / O devices may involve different translation tech 
niques and / or transaction attributes . The use of multiple 
address translation techniques may be incompatible with 
existing IOMMU architectures . Examples include : SR - IOV 
and Scalable IOV use different second level translation 

structures ; a second level translation for an IOVA may not be 
available if it is used to support SVM ; and use by a VM of 
VFs / PFs with dedicated work queues ( using host PASIDs ) 
and shared work queues ( using guest PASIDs ) and / or assign 
ment of both VFs / PFs ( using guest PASIDs ) and Als ( using 
host PASIDs ) to a single VM may result in a single appli 
cation and / or VM using different types of remapping 
requests . 
[ 004 ] Embodiments of the invention provide for transla 
tion of addresses to support a variety of approaches to I / O 
virtualization , including SR - IOV and / or Scalable IOV , using 
a single IOMMU . FIG . 2 illustrates an IOMMU according to 
such an embodiment , and FIG . 3 and FIG . 4 show more 
detailed examples of embodiments . 
[ 0047 ] In FIG . 2 , IOMMU 200 may include root table 
lookup circuitry 210 to find an entry in a root table , such as 
root table 214. Root table 214 may be a data structure in 
local memory of IOMMU 200 , in system memory , and / or 
elsewhere in the system , in which one or more root - entries 
( e.g. , root - entry 216 ) may be stored . Root table 214 may 
have a root table base address stored in a root table pointer 
storage location 212. Root table lookup circuitry 210 may 
include circuitry to add a root table index to the root table 
base address , where the root table index may correspond to 
a bus number in an embodiment in which an identifier of an 
I / O device may include a bus number . For example , an I / O 
device in a system including a PCIe bus may be assigned a 
bus number , device number , and function number ( BDF ) by 
system configuration software or firmware . 
[ 0048 ] IOMMU 200 may also include context table 
lookup circuitry 220 to find an entry in a context table , such 
as context table 224. Context table 224 may be a data 
structure in local memory of IOMMU 200 , in system 
memory , and / or elsewhere in the system , in which one or 
more context - entries ( e.g. , context - entry 226 ) may be stored . 
Embodiments of the invention may include any number of 
context tables , each with any number of context - entry loca 
tions . Context table 224 may have a context table base 
address stored in a root - entry location ( e.g. , root - entry 216 ) . 
Context table lookup circuitry 220 may include circuitry to 
add a context table index to the context table base address , 
where the context table index may correspond to a device 
and function number in an embodiment in which an iden 
tifier of an I / O device may include a device and function 
number ( e.g. , a PCIe BDF ) . 
[ 0049 ] IOMMU 200 may also include PASID table lookup 
circuitry 230 to find an entry in a PASID table , such as 
PASID table 234. PASID table 234 may be a data structure 
in local memory of IOMMU 200 , in system memory , and / or 
elsewhere in the system , in which one or more PASID 
entries ( e.g. , PASID - entry 236 ) may be stored . Embodi 
ments of the present invention may include any number of 
PASID tables , each with any number of PASID - entry loca 
tions . PASID table 234 may have a PASID table base address 
stored in a context - entry location ( e.g. , context - entry 226 ) . 

[ 0043 ] Then , the host software may use the I / O device's 
admin portal to allocate , map , and / or assign each AI to a 
client . This assignment includes assigning a process address 
space identifier ( PASID ) to the AI , where the PASID corre 
sponds to the address space associated with the client . In an 
embodiment , a PASID may be a 20 - bit tag defined by the 
PCIe specification and carried by the translation layer packet 
( TLP ) prefix header in transactions generated by the I / O 
device . After the assignment of an Al has been completed , 
clients may submit work requests to it according to any 
known approach . In an embodiment , clients may submit 
work requests through a shared work queue , using processor 
enqueuing instructions such enqueue command 
( ENQCMD ) and enqueue command as supervisor 
( ENQCMDS ) . 

as 

[ 0044 ] Various approaches to I / O virtualization may 
include support for shared virtual memory ( SVM ) within 
VMs and may involve various translations and nesting of 
translations , including first - level translations ( e.g. , from a 
GVA to a GPA ) and / or second - level translations from ( e.g. , 
from a GPA to a HPA ) , for Als and / or VFs / PFs , with or 
without PASIDs . Furthermore , 1/0 virtualization may 
involve virtualization of PASIDs and translations from guest 
PASIDs to host PASIDs , for example , in connection with 
shared work queues and / or ENQCMD / S instructions . Addi 
tionally , an OS ( e.g. , Linux ) may use I / O virtual addresses 
( IOVA ) to program DMA on I / O devices . A VF / PF trans 
action may involve a request including an IOVA but no 
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PASID table lookup circuitry 230 may include circuitry to 
add a PASID table index to the PASID table base address , 
where the PASID table index may correspond to a PASID . 
[ 0050 ] In translation architecture 300 of FIG . 3 , root table 
314 may store one or more root entries and be indexed by 
bus number . A root entry may include a context table pointer 
to point to a context table ( e.g. , root entry N may point to 
context table 324 ) , which may store one or more scalable 
context entries and be indexed by device / function number . A 
scalable context entry may include a scalable PASID table 
pointer to point to a scalable PASID table ( e.g. , context entry 
O and / or P may point to system - wide PASID table 334 ) , 
which may store one or more scalable PASID entries and be 
indexed by PASID number . A system - wide , global PASID 
table may be maintained by a host OS / VMM such that all 
context entries in all IOMMUs point to the global PASID 
table . In another embodiment , different IOMMUs or differ 
ent context entries within each IOMMU may point to 
different PASID tables . In this case , the host OS / VMM still 
maintains a global PASID space such that PASIDs are 
allocated / freed from a single global ( host ) PASID space and 
only these PASID entries are configured in per - IOMMU or 
per - context PASID tables . 
[ 0051 ] Additionally or alternatively , a context entry may 
include a second level pointer to point to second level page 
tables for translating a GPA or an IOVA / GIOVA to an HPA 
( e.g. , context entry P may include a second level pointer to 
point to second level page tables 344 ) . Therefore , translation 
architecture 300 may support translation requests for a 
VF / PF without a PASID . A context entry may include a 
nesting bit to specify whether a PASID table pointer and a 
second level pointer is to be used to perform nested trans 
lation for translation requests with a PASID . 
[ 0052 ] A scalable PASID entry may include a first level 
pointer to point to first level page tables for translating a 
GVA to a GPA ( e.g. , PASID entry Q may include a first level 
pointer to point to first level page tables 354 ) and / or a second 
level pointer to point to second level page tables for trans 
lating a GPA or an IOVA / GIOVA to an HPA ( e.g. , PASID 
entry Q may include a second level pointer to point to 
second level page tables 364 ) . Therefore , translation archi 
tecture 300 may support translation requests , with a PASID , 
for an AI and a VF / PF . A PASID entry may include one or 
more control fields , such as a translation type field or a 
nesting field , to specify whether a first level pointer or a 
second level pointer or both pointers are to be used to 
perform translation for translation requests with a PASID . 
[ 0053 ] In translation architecture 400 of FIG . 4 , root table 
414 may store one or more root entries and be indexed by 
bus number . A root entry may include a context table pointer 
to point to a context table ( e.g. , root entry N may point to 
context table 424 ) , which may store one or more scalable 
context entries and be indexed by device / function number . A 
scalable context entry may include a scalable PASID table 
pointer to point to a scalable PASID table ( e.g. , context entry 
O and / or P may point to system - wide PASID table 434 ) , 
which may store one or more scalable PASID entries and be 
indexed by PASID number . A system - wide , global PASID 
table may be maintained by a host OS / VMM such that all 
context entries in all IOMMUs point to the global PASID 
table . In another embodiment , different IOMMUs or differ 
ent context entries within each IOMMU may point to 
different PASID tables . In this case , the host OS / VMM still 
maintains a global PASID space such that PASIDs are 

allocated / freed from a single global ( host ) PASID space and 
only these PASID entries are configured in per - IOMMU or 
per - context PASID tables . 
[ 0054 ] Additionally or alternatively , a context entry may 
include , instead of a second level pointer , a RID2PASID 
field , which may be programmed by a VMM to assign a host 
PASID to requests without a PASID . The VMM may also 
program the corresponding PASID table entry with a first 
and / or a second level pointer . For example , context entry P 
may include an RID2PASID field . Therefore , translation 
architecture 400 may support translation requests for a 
VF / PF without a PASID . 

[ 0055 ] A scalable PASID entry may include a first level 
pointer to point to first level page tables for translating a 
GVA to a GPA ( e.g. , PASID entry Q may include a first level 
pointer to point to first level page tables 454 ) and / or a second 
level pointer to point to second level page tables for trans 
lating a GPA or an IOVA / GIOVA to an HPA ( e.g. , PASID 
entry Q may include a second level pointer to point to 
second level page tables 464 ) . Therefore , translation archi 
tecture 400 may support translation requests , with a PASID , 
for an AI and a VF / PF . A PASID entry may include one or 
more control fields , such as a translation type field or a 
nesting field , to specify whether a first level pointer or a 
second level pointer or both pointers are to be used to 
perform translation for translation requests with a PASID . 
[ 0056 ] FIGS . 5A and 5B illustrate unified PASID man 
agement according to embodiments of the invention , includ 
ing an IOMMU virtualization mechanism that presents a 
virtual IOMMU ( VIOMMU ) to a VM for IOVA and SVM 
operations . In one embodiment , the VIOMMU emulates a 
non - Scalable - IOV capable IOMMU ( i.e. , an IOMMU that 
can only support VFs / PFs according to SR - IOV ) . Als are 
encapsulated in virtual devices and presented to VMs as PFs . 
This technique allows the VM to use the same mechanisms 
for VFs / PFs and Als . For supporting GVA on both VFs / PFs 
and Als assigned to a VM , the VMM shadows the guest 
PASID table to create a shadow PASID table for the VM in 
the physical IOMMU . The shadow PASID table is pointed 
to the assigned VF / PF's context entry , while the Al's 
context entry points to the system - wide host PASID table . 
The VMM exposes a smaller PASID table size in the 
VIOMMU so the guest PASIDs occupy only a portion of the 
physical PASID table . The VMM configures guest PASIDs 
in the VM's shadowed PASID table to support assigned 
VFs / PFs . The VMM also allocates host PASIDs correspond 
ing to the VM's guest PASIDs and configures them in the 
system - wide host PASID table to support assigned Als . 
Therefore , if an application in a VM is assigned both 
SVM - capable VFs / PFs and Als , the VMM may configure an 
application's guest PASID for VFs / PFs in the VM's shadow 
PASID table and the application's host PASID for Als in the 
system - wide host PASID table . The VMM may also con 
figure the application's host PASID in the VM's shadow 
PASID table for VFs / PFs that use ENQCMD / S instructions . 
The PASID entry second - level pointer may be configured to 
point to a second - level table for nested GPA - to - HPA trans 
lation for both VFs / PFs and Als . 

[ 0057 ] In block 510 of method 500 of FIG . 5A , a VMM 
creates a virtual IOMMU ( VIOMMU ) for a VM to which a 
VF / PF and an AI may be assigned and / or in which hot - plug 
in of new devices is supported . The VIOMMU ( e.g. , 
VIOMMU 550 in FIG . 5B ) supports a smaller PASID width 
than that supported by the corresponding physical IOMMU . 
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For example , if the PASID width supported by the physical 
IOMMU is 20 bits , the PASID width supported by the 
VIOMMU may be 10 bits . Therefore , the VMM may shadow 
the guest PASID table of the VIOMMU to a scalable PASID 
table , pointed to by the VF / PFs context entry , that is private 
to the VF / PF device ( e.g. , shadow PASID table 560 in FIG . 
5B ) . 

[ 0058 ] In block 520 , for each guest PASID in the guest 
PASID table , the VMM creates a corresponding entry in the 
shadowed PASID table , with nesting enabled to provide for 
first - level translation from the guest PASID table ( GVA to 
GPA ) and second - level translation using the host GPA - to 
HPA table . If the PASID is used with a VF / PF ( without 
ENQCMD / S ) , the device operates directly using the guest 
PASID . Since the guest PASID space is smaller than the 
physical PASID space , there are more PASID entries avail 
able ( above the guest PASID range ) in the shadowed PASID 
table . The PASID space above the guest PASID range is not 
visible to the VM , so it may be used by the VMM to 
configure host PASIDs in the shadowed PASID table . Addi 
tionally , the VMM never allocates or configures any host 
PASID values in the guest PASID range for any VMs in the 
system - wide host PASID table . 
[ 0059 ] In block 530 , to support PASID virtualization , the 
VMM may allocate a host PASID ( above the guest PASID 
range ) for each guest PASID used by an Al or ENQCMD / S 
instructions . The corresponding host PASID entry in the 
shadowed PASID table is also programmed with nesting 
enabled , with first - level table translation from the guest 
PASID table ( GVA to GPA ) , and second - level translation 
using the host GPA - to - HPA table . The VMM also configures 
the host PASID entry in the system - wide host PASID table 
with nesting enabled for with first - level translation using the 
guest - PASID table ( GVA to GPA ) , and second - level trans 
lation using the host GPA - to - HPA table . 
[ 0060 ] Since the VM can program arbitrary guest PASIDs 
( including a guest PASID value above the guest PASID 
range ) into the VF / PF , the VM can cause the VF / PF to use 
a host PASID illegally . However , it will not cause any harm 
to any other VM or the VMM because the VMM configures 
only host PASIDs that correspond to the particular VM's 
guest PASIDs in its shadow PASID table . Therefore , an 
invalid guest PASID value programmed in the VF / PF will 
cause an IOMMU fault ( if the guest PASID is not configured 
in the shadow PASID table ) or will cause the VF / PF to 
access an address belonging to another PASID of the same 
VM ( if the guest PASID is configured in the shadow PASID 
table ) . 
[ 0061 ] For example , an application inside VM1 may be 
assigned both a VF / PF ( physical context entry P ) and an AI 
( physical context entry O ) . If the VF / PF uses a guest PASID 
( non ENQCMD / S based method ) , the IOMMU performs 
DMA remapping using the guest PASID in the shadowed 
PASID table . If the VF / PF uses a host PASID ( ENQCMD / S 
based method ) , the IOMMU performs DMA remapping 
using the host PASID in the shadowed PASID table . If an AI 
does a DMA request ( irrespective of ENQCMD / S ) , it will 
always be with a host PASID . In this case , the IOMMU uses 
the host PASID entry in the system wide host PASID table 
to perform DMA remapping . Since all three PASID entries 
are pointing to the same set of first - level and second - level 
translation tables , all of these DMA remapping requests will 
result in the same HPA addresses for the application . 

[ 0062 ] An application inside a misbehaving VM2 may be 
assigned a VF / PF ( physical context entry N ) which may 
program an arbitrary guest PASID to the VF / PF . VM2 
programs guest PASID r in its VIOMMU PASID table , 
which causes the VMM to configure the guest PASID r in 
VM2's shadow PASID table as well as allocate a host 

PASIDR and configure it in VM2's shadow PASID table . So 
even if VM2 programs the VF / PF to use host PASID Q 
( which belongs to VM1 ) , it cannot access VMI's memory 
because VM2's shadow PASID table does not have host 
PASID Q configured . VM2's attempt will result in an 
IOMMU fault instead . 

[ 0063 ] FIGS . 6A and 6B illustrate unified PASID man 
agement according to yet another embodiment of the inven 
tion , including an IOMMU para - virtualization mechanism in 
which a VMM presents a VIOMMU to a VM and exposes a 
set of services to configure a physical IOMMU for IOVA and 
SVM operations . Als may be encapsulated in virtual devices 
and presented to VMs as PFs . This technique allows the VM 
to use the same mechanisms for VFs / PFs and Als . For IOVA 
and SVM operations , the VMM uses a global PASID space 
rather than requiring each VM to implement its own PASID 
space ( guest PASIDs ) . The VMM manages a global pool of 
PASIDs which is used to allocate PASIDs for Scalable IOV 
Als ' second - level translations ( IOVA operation ) and to 
allocate PASIDs for SVM applications running inside VMs 
requesting GVA operation for devices ( VF / PF devices or 
virtual devices made - up of Als ) . The VMM may control the 
maximum number of PASIDs allocated to a particular VM 
to assure a fair share of PASID space between different VMs 
and the VMM . The VMM may use a scalable PASID table 
that is private to a VF / PF device or to a VM , pointed to by 
the VF / PF's context entry , to support SVM operations on a 
VF / PF device . The VMM may use a system - wide scalable 
PASID table or one scalable PASID table for each physical 
IOMMU to support SVM operations on Als . 
[ 0064 ] In block 602 of method 600 of FIG . 6A , a VMM 
creates a VIOMMU for a VM to which a VF / PF and an AI 
may be assigned and / or in which hot - plug - in of new devices 
is supported . The VIOMMU ( e.g. , VIOMMU 610 in FIG . 6B ) 
may not allocate its own translation tables or PASIDs , but 
may rely on IOMMU services provided by the VMM to 
achieve SVM and IOVA functionality . For each operation on 
VIOMMU that involves modification of IOMMU registers or 
IOMMU translation tables , VIOMMU software running 
inside a VM calls into the VMM and requests the VMM to 
perform the operation on its behalf . The VMM may service 
the request or may deny it if invalid parameters are passed 
in the call . The VMM creates a global PASID space ( e.g. 
lobal PASID space 620 in FIG . and allocates or frees 
PASIDs from this PASID space based on its own needs or as 
a result of operations that are initiated by VMs through the 
VIOMMU . To enable GVA operation , VIOMMU software 
running in a VM may utilize IOMMU services provided by 
the VMM to acquire PASIDs ( in block 604 ) to be pro 
grammed in the device and to communicate a base for 
GVA - to - GPA paging structures for first - level translation . 
[ 0065 ] In block 606 , for each VIOMMU request to enable 
GVA operation for the application , the VMM allocates a host 
PASID ( e.g. PASID 630 in FIG . 6B ) if one is not already 
allocated for it . The VMM creates a corresponding entry in 
the particular VM's scalable PASID table ( e.g. PASID table 
640 in FIG . 6B ) if the request is for a VF / PF device and in 
the AI's scalable PASID table ( e.g. PASID table 650 in FIG . 
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6B ) if the request is for an Al , with nesting enabled to 
provide for first - level translation using guest GVA - to - GPA 
table ( e.g. arrow 660 in FIG . 6B ) and second - level transla 
tion using the host GPA - to - HPA table ( e.g. arrow 670 or 
arrow 680 in FIG . 6B ) . The VMM also returns the host 
PASID to the VIOMMU software in the VM , which can be 
used as the guest PASID ( PASID 690 in FIG . 6B ) for normal 
guest PASID usages . 
[ 0066 ] Since the VM can program arbitrary PASIDs ( in 
cluding a PASID value not allocated to it by the VMM ) into 
the VF / PF , the VM can cause the VF / PF to use a PASID 
illegally . However , it will not cause any harm to any other 
VM or the VMM because the VMM configures a context 
entry for the VF / PF device to use the particular VM's PASID 
table , in which valid entries correspond only to PASIDs that 
have been allocated to the particular VM by the VMM . 
Therefore , an invalid PASID value programmed in the 
VF / PF will cause an IOMMU fault ( if the PASID is not 
configured in the particular VM's PASID table ) or will cause 
the VF / PF to access an address belonging to another PASID 
of the same VM ( if the PASID is configured in the particular 
VM's PASID table ) . 
[ 0067 ] For example , an application inside VM1 may be 
assigned both a VF / PF ( physical context entry P ) and an AI 
( physical context entry O ) . If the VF / PF uses a PASID Q 
( irrespective of ENQCMD / S ) , the IOMMU performs DMA 
remapping using the PASID Q in the VM1’s PASID table . If 
an AI does a DMA request ( irrespective of ENQCMD / S ) , the 
IOMMU uses the PASID Q entry in the AI PASID table to 
perform DMA remapping . Since both the PASID Q entries 
are pointing to the same set of first - level and second - level 
translation tables , all of these DMA remapping requests will 
result in the same HPA addresses for the application . 
[ 0068 ] An application inside a misbehaving VM2 may be 
assigned a VF / PF ( physical context entry N ) which may 
program an arbitrary PASID to the VF / PF . When VM2 
requests SVM enable for an application , the VMM allocates 
a PASID R and configures it in VM2's PASID table . So even 
if VM2 programs the VF / PF to use host PASID Q ( which 
belongs to VM1 ) , it cannot access VMl's memory because 
VM2's PASID table does not have PASID Q configured . 
VM2's attempt will result in an IOMMU fault instead . 
[ 0069 ] FIGS . 7A , 7B , and 8 illustrate IOVA virtualization 
according to embodiments of the invention . The software 
based embodiment of FIG . 7A includes shadowing of the 
VIOMMU's second - level table ( GIOVA - to - GPA ) to create 
( GIOVA - to - HPA ) mappings in the physical IOMMU's cor 
responding second - level table , i.e. , for VFs / PFs , the context 
entry second - level table is used , and for Als , the PASID 
entry second - level table is used . The software - based 
embodiment of FIG . 7B includes a VIOMMU utilizing 
VMM services to add or remove mappings in an IOVA - to 
HPA table allocated by the VMM representing I / O space of 
the VM or the I / O space of device and the VMM configuring 
a physical IOMMU's context entry ( for VFs / PFs ) and 
PASID entry ( for Als ) to use this table for second - level 
translation . The hardware - based embodiment of FIG . 8 
includes enhancing the physical IOMMU to perform nested 
second level ( GIOVA - to - GPA - to - HPA ) translations from the 
VIOMMU's second - level table ( GIOVA - to - GPA ) to the 
physical IOMMU's second level ( GPA - to - HPA ) table . 
[ 0070 ] FIG . 7A illustrates a software - based approach to 
IOVA virtualization according to an embodiment of the 
invention . In method 700 , the VMM shadows the GIOVA 

to - GPA page table from the VIOMMU in the VM to a 
GIOVA - to - HPA page table in the physical IOMMU in the 
host . In block 710 , when the VM configures the VIOMMU's 
GIOVA - to - GPA mappings , the VMM intercepts and pro 
grams the corresponding GIOVA - to - HPA mappings in the 
physical IOMMU's corresponding context entry's second 
level table for the VF / PF . In block 720 , if the VM also uses 
SVM on the VF / PF , the VMM programs the GPA - to - HPA 
mappings in the VM's shadow PASID table's corresponding 
scalable PASID entry second - level table . Both the guest 
PASID entry and the corresponding host PASID entry are 
configured to point to the GPA - to - HPA table ( arrows 570 in 
shadow PASID tables of FIG . 5B ) . This approach enables 
the VM to use both IOVA and SVM on the VF / PF simul 
taneously . It may be preferred over a hardware approach 
using nested translation , as described below , if the VM 
updates its GIOVA - to - GPA table infrequently . 
[ 0071 ] FIG . 7B illustrates a software - based approach to 
IOVA virtualization according to an embodiment of the 
invention . In block 760 of method 700 , the VMM creates a 
VIOMMU and exposes IOMMU services for GVA and IOVA 
operations that are invoked by VIOMMU software running 
inside the VM . The VMM creates an IOVA - to - HPA table 
that is representing I / O space of the VM and configures the 
physical IOMMU's context - entry ( for VFs / PFs ) or PASID 
entry ( for Als ) to use this table . In block 770 , the VMM adds 
or removes a mapping in the IOVA - to - HPA table based on 
the request from the VIOMMU . 
[ 0072 ] FIG . 8 illustrates a hardware - based approach to 
IOVA virtualization according to an embodiment of the 
invention . Physical IOMMU 800 is enhanced to support a 
2nd - over - 2nd nested translation , i.e. , IOMMU 800 has the 
ability to do GIOVA - to - GPA - to - HPA nested translations . 
The scalable PASID entry is extended to include an addi 
tional second level pointer for GIOVA nested translation 
requests with a PASID ( for scalable IOVAS ) . Additionally , 
the scalable context entry is extended to include an addi 
tional second level pointer for the GIOVA nested translation 
requests without PASID ( for VF / PF ) . Since now there are 
different tables for IOVA - to - HPA and GPA - to - HPA , it 
allows VMs to use both IOVA and SVM on the assigned I / O 
device ( VF / PF or AI ) . This approach may be preferred over 
a software approach , as described above , because it can 
perform GIOVA - to - GPA - to - HPA translations without VMM 
intercept and shadowing overhead . 

Exemplary Core Architectures , Processors , and Computer 
Architectures 

[ 0073 ] The figures below detail exemplary architectures 
and systems to implement embodiments of the above . 
[ 0074 ] Processor cores may be implemented in different 
ways , for different purposes , and in different processors . For 
instance , implementations of such cores may include : 1 ) a 
general purpose in - order core intended for general - purpose 
computing ; 2 ) a high performance general purpose out - of 
order core intended for general - purpose computing ; 3 ) a 
special purpose core intended primarily for graphics and / or 
scientific ( throughput ) computing . Implementations of dif 
ferent processors may include : 1 ) a CPU including one or 
more general purpose in - order cores intended for general 
purpose computing and / or one or more general purpose 
out - of - order cores intended for general - purpose computing ; 
and 2 ) a coprocessor including one or more special purpose 
cores intended primarily for graphics and / or scientific 
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( throughput ) . Such different processors lead to different 
computer system architectures , which may include : 1 ) the 
coprocessor on a separate chip from the CPU ; 2 ) the 
coprocessor on a separate die in the same package as a CPU ; 
3 ) the coprocessor on the same die as a CPU ( in which case , 
such a coprocessor is sometimes referred to as special 
purpose logic , such as integrated graphics and / or scientific 
( throughput ) logic , or as special purpose cores ) ; and 4 ) a 
system on a chip that may include on the same die the 
described CPU ( sometimes referred to as the application 
core ( s ) or application processor ( s ) ) , the above described 
coprocessor , and additional functionality . Exemplary core 
architectures are described next , followed by descriptions of 
exemplary processors and computer architectures . 

Exemplary Core Architectures 

In - Order and Out - of - Order Core Block Diagram 

[ 0075 ] FIG . 9A is a block diagram illustrating both an 
exemplary in - order pipeline and an exemplary register 
renaming , out - of - order issue / execution pipeline according 
to embodiments of the invention . FIG . 9B is a block diagram 
illustrating both an exemplary embodiment of an in - order 
architecture core and an exemplary register renaming , out 
of - order issue / execution architecture core to be included in 
a processor according to embodiments of the invention . The 
solid lined boxes in FIGS . 9A - B illustrate the in - order 
pipeline and in - order core , while the optional addition of the 
dashed lined boxes illustrates the register renaming , out - of 
order issue / execution pipeline and core . Given that the 
in - order aspect is a subset of the out - of - order aspect , the 
out - of - order aspect will be described . 
[ 0076 ] In FIG . 9A , a processor pipeline 900 includes a 
fetch stage 902 , a length decode stage 904 , a decode stage 
906 , an allocation stage 908 , a renaming stage 910 , a 
scheduling ( also known as a dispatch or issue ) stage 912 , a 
register read / memory read stage 914 , an execute stage 916 , 
a write back / memory write stage 918 , an exception handling 
stage 922 , and a commit stage 924 . 
[ 0077 ] FIG . 9B shows processor core 990 including a 
front end unit 930 coupled to an execution engine unit 950 , 
and both are coupled to a memory unit 970. The core 990 
may be a reduced instruction set computing ( RISC ) core , a 
complex instruction set computing ( CISC ) core , a very long 
instruction word ( VLIW ) core , or a hybrid or alternative 
core type . As yet another option , the core 990 may be a 
special - purpose core , such as , for example , a network or 
communication core , compression engine , coprocessor core , 
general purpose computing graphics processing unit 
( GPGPU ) core , graphics core , or the like . 
[ 0078 ] The front end unit 930 includes a branch prediction 
unit 932 , which is coupled to an instruction cache unit 934 , 
which is coupled to an instruction translation lookaside 
buffer ( TLB ) 936 , which is coupled to an instruction fetch 
unit 938 , which is coupled to a decode unit 940. The decode 
unit 940 ( or decoder ) may decode instructions , and generate 
as an output one or more micro - operations , micro - code entry 
points , microinstructions , other instructions , or other control 
signals , which are decoded from , or which otherwise reflect , 
or are derived from , the original instructions . The decode 
unit 940 may be implemented using various different mecha 
nisms . Examples of suitable mechanisms include , but are not 
limited to , look - up tables , hardware implementations , pro 
grammable logic arrays ( PLAs ) , microcode read only 

memories ( ROMs ) , etc. In one embodiment , the core 990 
includes a microcode ROM or other medium that stores 

microcode for certain macroinstructions ( e.g. , in decode unit 
940 or otherwise within the front end unit 930 ) . The decode 
unit 940 is coupled to a rename / allocator unit 952 in the 
execution engine unit 950 . 
[ 0079 ] The execution engine unit 950 includes the renamel 
allocator unit 952 coupled to a retirement unit 954 and a set 
of one or more scheduler unit ( s ) 956. The scheduler unit ( s ) 
956 represents any number of different schedulers , including 
reservations stations , central instruction window , etc. The 
scheduler unit ( s ) 956 is coupled to the physical register 
file ( s ) unit ( s ) 958. Each of the physical register file ( s ) units 
958 represents one or more physical register files , different 
ones of which store one or more different data types , such as 
scalar integer , scalar floating point , packed integer , packed 
floating point , vector integer , vector floating point , status 
( e.g. , an instruction pointer that is the address of the next 
instruction to be executed ) , etc. In one embodiment , the 
physical register file ( s ) unit 958 comprises a vector registers 
unit , a write mask registers unit , and a scalar registers unit . 
These register units may provide architectural vector regis 
ters , vector mask registers , and general purpose registers . 
The physical register file ( s ) unit ( s ) 958 is overlapped by the 
retirement unit 954 to illustrate various ways in which 
register renaming and out - of - order execution may be imple 
mented ( e.g. , using a reorder buffer ( s ) and a retirement 
register file ( s ) ; using a future file ( s ) , a history buffer ( s ) , and 
a retirement register file ( s ) ; using a register maps and a pool 
of registers ; etc. ) . The retirement unit 954 and the physical 
register file ( s ) unit ( s ) 958 are coupled to the execution 
cluster ( s ) 960. The execution cluster ( s ) 960 includes a set of 
one or more execution units 962 and a set of one or more 

memory access units 964. The execution units 962 may 
perform various operations ( e.g. , shifts , addition , subtrac 
tion , multiplication ) and on various types of data ( e.g. , scalar 
floating point , packed integer , packed floating point , vector 
integer , vector floating point ) . While some embodiments 
may include a number of execution units dedicated to 
specific functions or sets of functions , other embodiments 
may include only one execution unit or multiple execution 
units that all perform all functions . The scheduler unit ( s ) 
956 , physical register file ( s ) unit ( s ) 958 , and execution 
cluster ( s ) 960 are shown as being possibly plural because 
certain embodiments create separate pipelines for certain 
types of data / operations ( e.g. , a scalar integer pipeline , a 
scalar floating point / packed integer / packed floating point / 
vector integer / vector floating point pipeline , and / or a 
memory access pipeline that each have their own scheduler 
unit , physical register file ( s ) unit , and / or execution cluster 
and in the case of a separate memory access pipeline , certain 
embodiments are implemented in which only the execution 
cluster of this pipeline has the memory access unit ( s ) 964 ) . 
It should also be understood that where separate pipelines 
are used , one or more of these pipelines may be out - of - order 
issue / execution and the rest in - order . 

[ 0080 ] The set of memory access units 964 is coupled to 
the memory unit 970 , which includes a data TLB unit 972 
coupled to a data cache unit 974 coupled to a level 2 ( L2 ) 
cache unit 976. In one exemplary embodiment , the memory 
access units 964 may include a load unit , a store address 
unit , and a store data unit , each of which is coupled to the 
data TLB unit 972 in the memory unit 970. The instruction 
cache unit 934 is further coupled to a level 2 ( L2 ) cache unit 
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976 in the memory unit 970. The L2 cache unit 976 is 
coupled to one or more other levels of cache and eventually 
to a main memory . 
[ 0081 ] By way of example , the exemplary register renam 
ing , out - of - order issue / execution core architecture may 
implement the pipeline 900 as follows : 1 ) the instruction 
fetch 938 performs the fetch and length decoding stages 902 
and 904 ; 2 ) the decode unit 940 performs the decode stage 
906 ; 3 ) the rename / allocator unit 952 performs the allocation 
stage 908 and renaming stage 910 ; 4 ) the scheduler unit ( s ) 
956 performs the schedule stage 912 ; 5 ) the physical register 
file ( s ) unit ( s ) 958 and the memory unit 970 perform the 
register read / memory read stage 914 ; the execution cluster 
960 perform the execute stage 916 ; 6 ) the memory unit 970 
and the physical register file ( s ) unit ( s ) 958 perform the write 
back / memory write stage 918 ; 7 ) various units may be 
involved in the exception handling stage 922 ; and 8 ) the 
retirement unit 954 and the physical register file ( s ) unit ( s ) 
958 perform the commit stage 924 . 
[ 0082 ] The core 990 may support one or more instructions 
sets ( e.g. , the x86 instruction set ( with some extensions that 
have been added with newer versions ) ; the MIPS instruction 
set of MIPS Technologies of Sunnyvale , Calif .; the ARM 
instruction set ( with optional additional extensions such as 
NEON ) of ARM Holdings of Sunnyvale , Calif . ) , including 
the instruction ( s ) described herein . In one embodiment , the 
core 990 includes logic to support a packed data instruction 
set extension ( e.g. , AVX1 , AVX2 ) , thereby allowing the 
operations used by many multimedia applications to be 
performed using packed data . 
[ 0083 ] It should be understood that the core may support 
multithreading ( executing two or more parallel sets of 
operations or threads ) , and may do so in a variety of ways 
including time sliced multithreading , simultaneous multi 
threading ( where a single physical core provides a logical 
core for each of the threads that physical core is simultane 
ously multithreading ) , or a combination thereof ( e.g. , time 
sliced fetching and decoding and simultaneous multithread 
ing thereafter such as in the Intel® Hyperthreading technol 
ogy ) . 
[ 0084 ] While register renaming is described in the context 
of out - of - order execution , it should be understood that 
register renaming may be used in an in - order architecture . 
While the illustrated embodiment of the processor also 
includes separate instruction and data cache units 934/974 
and a shared L2 cache unit 976 , alternative embodiments 
may have a single internal cache for both instructions and 
data , such as , for example , a Level 1 ( L1 ) internal cache , or 
multiple levels of internal cache . In some embodiments , the 
system may include a combination of an internal cache and 
an external cache that is external to the core and / or the 
processor . Alternatively , all of the cache may be external to 
the core and / or the processor . 
[ 0085 ] FIG . 10 is a block diagram of a processor 1000 that 
may have more than one core , may have an integrated 
memory controller , and may have integrated graphics 
according to embodiments of the invention . The solid lined 
boxes in FIG . 10 illustrate a processor 1000 with a single 
core 1002A , a system agent 1010 , a set of one or more bus 
controller units 1016 , while the optional addition of the 
dashed lined boxes illustrates an alternative processor 1000 
with multiple cores 1002A - N , a set of one or more integrated 
memory controller unit ( s ) 1014 in the system agent unit 
1010 , and special purpose logic 1008 . 

[ 0086 ] Thus , different implementations of the processor 
1000 may include : 1 ) a CPU with the special purpose logic 
1008 being integrated graphics and / or scientific ( through 
put ) logic ( which may include one or more cores ) , and the 
cores 1002A - N being one or more general purpose cores 
( e.g. , general purpose in - order cores , general purpose out 
of - order cores , a combination of the two ) ; 2 ) a coprocessor 
with the cores 1002A - N being a large number of 
purpose cores intended primarily for graphics and / or scien 
tific ( throughput ) ; and 3 ) a coprocessor with the cores 
1002A - N being a large number of general purpose in - order 
cores . Thus , the processor 1000 may be a general - purpose 
processor , coprocessor or special - purpose processor , such 
as , for example , a network or communication processor , 
compression engine , graphics processor , GPGPU ( general 
purpose graphics processing unit ) , a high - throughput many 
integrated core ( MIC ) coprocessor ( including 30 or more 
cores ) , embedded processor , or the like . The processor may 
be implemented on one or more chips . The processor 1000 
may be a part of and / or may be implemented on one or more 
substrates using any of a number of process technologies , 
such as , for example , BiCMOS , CMOS , or NMOS . 
[ 0087 ] The memory hierarchy includes one or more levels 
of cache within the cores , a set or one or more shared cache 
units 1006 , and external memory ( not shown ) coupled to the 
set of integrated memory controller units 1014. The set of 
shared cache units 1006 may include one or more mid - level 
caches , such as level 2 ( L2 ) , level 3 ( L3 ) , level 4 ( L4 ) , or 
other levels of cache , a last level cache ( LLC ) , and / or 
combinations thereof . While in one embodiment a ring 
based interconnect unit 1012 interconnects the integrated 
graphics logic 1008 ( integrated graphics logic 1008 is an 
example of and is also referred to herein as special purpose 
logic ) , the set of shared cache units 1006 , and the system 
agent unit 1010 / integrated memory controller unit ( s ) 1014 , 
alternative embodiments may use any number of well 
known techniques for interconnecting such units . In one 
embodiment , coherency is maintained between one or more 
cache units 1006 and cores 1002 - A - N . 

[ 0088 ] In some embodiments , one or more of the cores 
1002A - N are capable of multithreading . The system agent 
1010 includes those components coordinating and operating 
cores 1002A - N . The system agent unit 1010 may include for 
example a power control unit ( PCU ) and a display unit . The 
PCU may be or include logic and components needed for 
regulating the power state of the cores 1002A - N and the 
integrated graphics logic 1008. The display unit is for 
driving one or more externally connected displays . 
[ 0089 ] The cores 1002A - N may be homogenous or het 
erogeneous in terms of architecture instruction set ; that is , 
two or more of the cores 1002A - N may be capable of 
execution the same instruction set , while others may be 
capable of executing only a subset of that instruction set or 
a different instruction set . 

Exemplary Computer Architectures 
[ 0090 ] FIGS . 11-14 are block diagrams of exemplary 
computer architectures . Other system designs and configu 
rations known in the arts for laptops , desktops , handheld 
PCs , personal digital assistants , engineering workstations , 
servers , network devices , network hubs , switches , embed 
ded processors , digital signal processors ( DSPs ) , graphics 
devices , video game devices , set - top boxes , micro control 
lers , cell phones , portable media players , hand held devices , 
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coprocessor 1145. In another embodiment , processors 1270 
and 1280 are respectively processor 1110 and coprocessor 
1145 . 

and various other electronic devices , are also suitable . In 
general , a huge variety of systems or electronic devices 
capable of incorporating a processor and / or other execution 
logic as disclosed herein are generally suitable . 
[ 0091 ] Referring now to FIG . 11 , shown is a block dia 
gram of a system 1100 in accordance with one embodiment 
of the present invention . The system 1100 may include one 
or more processors 1110 , 1115 , which are coupled to a 
controller hub 1120. In one embodiment , the controller hub 
1120 includes a graphics memory controller hub ( GMCH ) 
1190 and an Input / Output Hub ( IOH ) 1150 ( which may be 
on separate chips ) ; the GMCH 1190 includes memory and 
graphics controllers to which are coupled memory 1140 and 
a coprocessor 1145 ; the IOH 1150 couples input / output ( 1/0 ) 
devices 1160 to the GMCH 1190. Alternatively , one or both 
of the memory and graphics controllers are integrated within 
the processor ( as described herein ) , the memory 1140 and 
the coprocessor 1145 are coupled directly to the processor 
1110 , and the controller hub 1120 in a single chip with the 
IOH 1150 . 

[ 0092 ] The optional nature of additional processors 1115 is 
denoted in FIG . 11 with broken lines . Each processor 1110 , 
1115 may include one or more of the processing cores 
described herein and may be some version of the processor 

[ 0098 ] Processors 1270 and 1280 are shown including 
integrated memory controller ( IMC ) units 1272 and 1282 , 
respectively . Processor 1270 also includes as part of its bus 
controller units point - to - point ( P - P ) interfaces 1276 and 
1278 ; similarly , second processor 1280 includes P - P inter 
faces 1286 and 1288. Processors 1270 , 1280 may exchange 
information via a point - to - point ( P - P ) interface 1250 using 
P - P interface circuits 1278 , 1288. As shown in FIG . 12 , 
IMCs 1272 and 1282 couple the processors to respective 
memories , namely a memory 1232 and a memory 1234 , 
which may be portions of main memory locally attached to 
the respective processors . 
[ 0099 ] Processors 1270 , 1280 may each exchange infor 
mation with a chipset 1290 via individual P - P interfaces 
1252 , 1254 using point to point interface circuits 1276 , 
1294 , 1286 , 1298. Chipset 1290 may optionally exchange 
information with the coprocessor 1238 via a high - perfor 
mance interface 1292. In one embodiment , the coprocessor 
1238 is a special - purpose processor , such as , for example , a 
high - throughput MIC processor , a network or communica 
tion processor , compression engine , graphics processor , 
GPGPU , embedded processor , or the like . 
[ 0100 ] A shared cache ( not shown ) may be included in 
either processor or outside of both processors , yet connected 
with the processors via P - P interconnect , such that either or 
both processors ' local cache information may be stored in 
the shared cache if a processor is placed into a low power 
mode . 

1000 . 

[ 0101 ] Chipset 1290 may be coupled to a first bus 1216 via 
an interface 1296. In one embodiment , first bus 1216 may be 
a Peripheral Component Interconnect ( PCI ) bus , or a bus 
such as a PCI Express bus or another third generation I / O 
interconnect bus , although the scope of the present invention 
is not so limited . 

[ 0093 ] The memory 1140 may be , for example , dynamic 
random access memory ( DRAM ) , phase change memory 
( PCM ) , or a combination of the two . For at least one 
embodiment , the controller hub 1120 communicates with the 
processor ( s ) 1110 , 1115 via a multi - drop bus , such as a 
frontside bus ( FSB ) , point - to - point interface such as Quick 
Path Interconnect ( QPI ) , or similar connection 1195 . 
[ 0094 ] In one embodiment , the coprocessor 1145 is a 
special - purpose processor , such as , for example , a high 
throughput MIC processor , a network or communication 
processor , compression engine , graphics processor , GPGPU , 
embedded processor , or the like . In one embodiment , con 
troller hub 1120 may include an integrated graphics accel 
erator . 

[ 0095 ] There can be a variety of differences between the 
physical resources 1110 , 1115 in terms of a spectrum of 
metrics of merit including architectural , microarchitectural , 
thermal , power consumption characteristics , and the like . 
[ 0096 ] In one embodiment , the processor 1110 executes 
instructions that control data processing operations of a 
general type . Embedded within the instructions may be 
coprocessor instructions . The processor 1110 recognizes 
these coprocessor instructions as being of a type that should 
be executed by the attached coprocessor 1145. Accordingly , 
the processor 1110 issues these coprocessor instructions ( or 
control signals representing coprocessor instructions ) on a 
coprocessor bus or other interconnect , to coprocessor 1145 . 
Coprocessor ( s ) 1145 accept and execute the received copro 
cessor instructions . 
[ 0097 ] Referring now to FIG . 12 , shown is a block dia 
gram of a first more specific exemplary system 1200 in 
accordance with an embodiment of the present invention . As 
shown in FIG . 12 , multiprocessor system 1200 is a point 
to - point interconnect system , and includes a first processor 
1270 and a second processor 1280 coupled via a point - to 
point interconnect 1250. Each of processors 1270 and 1280 
may be some version of the processor 1000. In one embodi 
ment of the invention , processors 1270 and 1280 are respec 
tively processors 1110 and 1115 , while coprocessor 1238 is 

[ 0102 ] As shown in FIG . 12 , various I / O devices 1214 
may be coupled to first bus 1216 , along with a bus bridge 
1218 which couples first bus 1216 to a second bus 1220. In 
one embodiment , one or more additional processor ( s ) 1215 , 
such as coprocessors , high - throughput MIC processors , 
GPGPU's , accelerators ( such as , e.g. , graphics accelerators 
or digital signal processing ( DSP ) units ) , field program 
mable gate arrays , or any other processor , are coupled to first 
bus 1216. In one embodiment , second bus 1220 may be a 
low pin count ( LPC ) bus . Various devices may be coupled to 
a second bus 1220 including , for example , a keyboard and / or 
mouse 1222 , communication devices 1227 and a storage 
unit 1228 such as a disk drive or other mass storage device 
which may include instructions / code and data 1230 , in one 
embodiment . Further , an audio I / O 1224 may be coupled to 
the second bus 1220. Note that other architectures are 

possible . For example , instead of the point - to - point archi 
tecture of FIG . 12 , a system may implement a multi - drop bus 
or other such architecture . 

[ 0103 ] Referring now to FIG . 13 , shown is a block dia 
gram of a second more specific exemplary system 1300 in 
accordance with an embodiment of the present invention . 
Like elements in FIGS . 12 and 13 bear like reference 

numerals , and certain aspects of FIG . 12 have been omitted 
from FIG . 13 in order to avoid obscuring other aspects of 
FIG . 13 . 
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access 

[ 0104 ] FIG . 13 illustrates that the processors 1270 , 1280 
may include integrated memory and I / O control logic 
( " CL " ) 1272 and 1282 , respectively . Thus , the CL 1272 , 
1282 include integrated memory controller units and include 
I / O control logic . FIG . 13 illustrates that not only are the 
memories 1232 , 1234 coupled to the CL 1272 , 1282 , but also 
that I / O devices 1314 are also coupled to the control logic 
1272 , 1282. Legacy I / O devices 1315 are coupled to the 
chipset 1290 . 

[ 0105 ] Referring now to FIG . 14 , shown is a block dia 
gram of a SoC 1400 in accordance with an embodiment of 
the present invention . Similar elements in FIG . 10 bear like 
reference numerals . Also , dashed lined boxes are optional 
features on more advanced SoCs . In FIG . 14 , an interconnect 
unit ( s ) 1402 is coupled to : an application processor 1410 
which includes a set of one or more cores 1002A - N , which 
include cache units 1004A - N , and shared cache unit ( s ) 
1006 ; a system agent unit 1010 ; a bus controller unit ( s ) 
1016 ; an integrated memory controller unit ( s ) 1014 ; a set or 
one or more coprocessors 1420 which may include inte 
grated graphics logic , an image processor , an audio proces 
sor , and a video processor ; an static random access memory 
( SRAM ) unit 1430 ; a direct memory access ( DMA ) unit 
1432 ; and a display unit 1440 for coupling to one or more 
external displays . In one embodiment , the coprocessor ( s ) 
1420 include a special - purpose processor , such as , for 
example , a network or communication processor , compres 
sion engine , GPGPU , a high - throughput MIC processor , 
embedded processor , or the like . 
[ 0106 ] Embodiments of the mechanisms disclosed herein 
may be implemented in hardware , software , firmware , or a 
combination of such implementation approaches . Embodi 
ments of the invention may be implemented as computer 
programs or program code executing on programmable 
systems comprising at least one processor , a storage system 
( including volatile and non - volatile memory and / or storage 
elements ) , at least one input device , and at least one output 
device . 

supplied to various customers or manufacturing facilities to 
load into the fabrication machines that actually make the 
logic or processor . 
[ 0110 ] Such machine - readable storage media may include , 
without limitation , non - transitory , tangible arrangements of 
articles manufactured or formed by a machine or device , 
including storage media such as hard disks , any other type 
of disk including floppy disks , optical disks , compact disk 
read - only memories ( CD - ROMs ) , compact disk rewritables 
( CD - RWs ) , and magneto - optical disks , semiconductor 
devices such as read - only memories ( ROMs ) , random 
access memories ( RAMs ) such as dynamic random access 
memories ( DRAMs ) , static random memories 
( SRAMs ) , erasable programmable read - only memories 
( EPROMs ) , flash memories , electrically erasable program 
mable read - only memories ( EEPROMs ) , phase change 
memory ( PCM ) , magnetic or optical cards , or any other type 
of media suitable for storing electronic instructions . 
[ 0111 ] Accordingly , embodiments of the invention also 
include non - transitory , tangible machine - readable media 
containing instructions or containing design data , such as 
Hardware Description Language ( HDL ) , which defines 
structures , circuits , apparatuses , processors and / or system 
features described herein . Such embodiments may also be 
referred to as program products . 
[ 0112 ] In an embodiment , an apparatus may include root 
table lookup circuitry and context - table lookup circuitry . 
The root - table lookup circuitry is to find a root - entry in a 
root table . The root - entry to include a context pointer to the 
context table . The context - table lookup circuitry is to find a 
context entry in a context table . The context entry is to 
include a first nesting bit to indicate whether the entry is for 
an address translation in which a process address space 
identifier ( PASID ) is to be used . The context entry to also 
include at least one of a PASID pointer to a PASID table and 
a page - table pointer to a page - table translation structure . The 
PASID - table pointer is to be used in response a first nesting 
bit indication that the address translation is to use a PASID . 
The page - table pointer is to be used in response to a second 
nesting - bit indication that the address translation is not to 
use a PASID . 
[ 0113 ] The page - table translation structure may be used to 
translate for single - root I / O virtualization . The page - table 
translation structure may also be used to translate for a 
virtual function corresponding to a physical function of an 
I / O device . The page - table translation structure may also be 
used to translate a guest physical address to a host physical 
address . The page - table translation structure may also be 
used to translate an I / O virtual address to a host physical 
address . The apparatus may also include PASID - table 
lookup circuitry to find a PASID - entry in the PASID table , 
the PASID - entry to include a second nesting bit to indicate 
whether the entry is to point to a first - level translation 
structure or a second - level translation structure . The first 
level translation structure may be used to translate a guest 
virtual address to a guest physical address . The first - level 
translation structure may also be used to translate for a 
virtual function corresponding to a physical function of an 
I / O device . The first - level translation structure may also be 
used to translate for an assignable interface of an I / O device . 
The second - level translation structure may be used to trans 
late a guest physical address to a host physical address . The 
second - level translation structure may also be used to trans 
late for a virtual function corresponding to a physical 

[ 0107 ] Program code , such as code 1230 illustrated in 
FIG . 12 , may be applied to input instructions to perform the 
functions described herein and generate output information . 
The output information may be applied to one or more 
output devices , in known fashion . For purposes of this 
application , a processing system includes any system that 
has a processor , such as , for example ; a digital signal 
processor ( DSP ) , a microcontroller , an application specific 
integrated circuit ( ASIC ) , or a microprocessor . 
[ 0108 ] The program code may be implemented in a high 
level procedural or object oriented programming language to 
communicate with a processing system . The program code 
may also be implemented in assembly or machine language , 
if desired . In fact , the mechanisms described herein are not 
limited in scope to any particular programming language . In 
any case , the language may be a compiled or interpreted 
language . 

[ 0109 ] One or more aspects of at least one embodiment 
may be implemented by representative instructions stored on 
a machine - readable medium which represents various logic 
within the processor , which when read by a machine causes 
the machine to fabricate logic to perform the techniques 
described herein . Such representations , known as “ IP cores ” 
may be stored on a tangible , machine readable medium and 
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function of an I / O device . The first - level translation structure 

may also be used to translate for an assignable interface of 
an I / O device . The second - level translation structure may be 
used to translate a guest physical address to a host physical 
address . The second - level translation structure may also be 
used to translate for a virtual function corresponding to a 
physical function of an I / O device . The second - level trans 
lation structure may also be used to translate for an assign 
able interface of an I / O device . The second - level translation 

structure may also be used to translate an I / O virtual address 
to a host physical address . The second - level translation 
structure may also be used to translate for a virtual function 
corresponding to a physical function of an I / O device . The 
second - level translation structure may also be used to trans 
late for an assignable interface of an I / O device . 

function of an 1/0 device . The second - level translation 
structure may also be used to translate for an assignable 
interface of an I / O device . The second - level translation 
structure may also be used to translate an I / O virtual address 
to a host physical address . The second - level translation 
structure may also be used to translate for a virtual function 
corresponding to a physical function of an I / O device . The 
second - level translation structure may also be used to trans 
late for an assignable interface of an I / O device . 
[ 0114 ] In an embodiment , a method may include creating , 
for a VM by a VMM , a virtual IOMMU corresponding to a 
physical IOMMU , the virtual IOMMU having a PASID 
entry width that is smaller than the PASID entry width of the 
physical IOMMU ; and shadowing , by the VMM , a guest 
PASID from the virtual IOMMU in the physical IOMMU . 
The method may also include storing , by the VMM , a host 
PASID in the physical IOMMU , the host PASID correspond 
ing to the guest PASID . The guest PASID may be used by 
a virtual function of a physical function of an I / O device 
assigned to the VM . The host PASID may be used by an 
assignable interface of an I / O device assigned to the VM . 
[ 0115 ] In an embodiment , an apparatus may include 
means for performing any of the methods described above . 
In an embodiment , a machine - readable tangible medium 
may store instructions , which , when executed by a machine , 
cause the machine to perform any of the methods described 
above . 
[ 0116 ] In an embodiment , a system may include a plurality 
of physical I / O devices ; a processor to create one or more 
VMs to which to assign one or more virtual I / O devices to 
be abstracted from the plurality of physical I / O devices ; and 
an IOMMU to perform address translation to support virtu 
alization of the plurality of I / O devices according to a 
plurality of translation techniques , the IOMMU including 
context - table lookup circuitry to find a context entry in a 
context table , the context entry to include a first nesting bit 
to indicate whether the entry is for an address translation in 
which a PASID is to be used , the context entry to also 
include at least one of a PASID pointer to a PASID table and 
page - table pointer to a page - table translation structure , the 

PASID - table pointer to be used in response a first nesting - bit 
indication that the address translation is to use a PASID and 
the page - table pointer to be used in response to a second 
nesting - bit indication that the address translation is not to 
use a PASID . 
[ 0117 ] The IOMMU may also include root - table lookup 
circuitry to find a root - entry in a root table , the root - entry to 
include a context pointer to the context table . The page - table 
translation structure may be used to translate for single - root 
I / O virtualization . The page - table translation structure may 
also be used to translate for a virtual function corresponding 
to a physical function of an 1/0 device . The page - table 
translation structure may also be used to translate a guest 
physical address to a host physical address . The page - table 
translation structure may also be used to translate an I / O 
virtual address to a host physical address . The IOMMU may 
also include PASID - table lookup circuitry to find a PASID 
entry in the PASID table , the PASID - entry to include a 
second nesting bit to indicate whether the entry is to point to 
a first - level translation structure or a second - level translation 

structure . The first - level translation structure may be used to 
translate a guest virtual address to a guest physical address . 
The first - level translation structure may also be used to 
translate for a virtual function corresponding to a physical 

[ 0118 ] In an embodiment , a PASID entry may be extended 
to include a second - level table pointer ( when a first - level 
table pointer is already there ) that can be used to do 
GPA - to - HPA or IOVA - to - HPA translations . In an embodi 
ment , a PASID entry may include a translation - type field to 
indicate whether the translation is first - level only , second 
level only and a nesting bit to indicate if it is a nested 
translation . In an embodiment , a context entry may be 
extended to include an RID2PASID field , and the second 
level table pointer may be removed from the context entry . 
The RID2PASID field may contain a PASID that may 
indicate which PASID to use to index into the system - wide 
PASID table for requests - without - PASID . In an embodi 
ment , the PASID entry may be extended to include another 
second - level table pointer for doing GIOVA - to - GPA trans 
lations , which may be used to do nested IOVA translations 
( GIOVA - to - GPA - to - HPA ) for requests with a PASID . In 
embodiments , the context entry may be extended to include 
another second - level table pointer for doing IOVA - to - GPA 
translations which may be used to do nested IOVA transla 
tions ( GIOVA - to - GPA - to - HPA ) for requests - without 
PASID . In embodiments , the VMM may create a separate 
PASID table per VM to support SVM operations for 
assigned VFs / PFs . In an embodiment , the VMM may create 
a single system - wide host PASID table ( or a per - IOMMU 
PASID table but maintain a single host PASID space ) . In an 
embodiment , the VM's PASID table is pointed to by the 
context entry of VFs / PFs assigned to the VM , whereas the 
system - wide host PASID table is pointed to by the context 
entry of Als and other VFs / PFs assigned to the VMM . In an 
embodiment , the VMM can expose one of the two types of 
virtual IOMMUs to the VM : a virtual IOMMU that allocates 
and manages its own guest PASID space and PASID table 
( for example , a fully emulated Intel IOMMU ) ; and a para 
virtualized IOMMU which doesn't maintain its own guest 
PASID space or PASID table but instead uses VMM services 
( hypercalls ) to get system - wide host PASIDs from the host 
IOMMU driver . For VIOMMUs of the first type , the VMM 
shadows the guest PASID table into the VM's physical 
PASID table , exposes a PASID width which is smaller than 
the physical PASID width , and configures the guest PASIDs 
from the guest PASID table into the VM's shadow PASID 
table . The VMM also configures the host PASID corre 
sponding to the guest PASID into the shadow PASID table 
to support VFs / PFs that do SVM using EMQCMD and 
ENQCMDS instructions . For VIOMMUs of the second type , 
the VMM configures system - wide host PASIDs allocated for 
the VM in the VM's PASID table to support both 
ENQCMD / S and non - ENQCMD / S based SVM . 
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What is claimed is : 
1. An apparatus comprising : 
first circuitry to use at least an identifier of a device to 

locate a context entry , the context entry to include at 
least one of a page - table pointer to a page - table trans 
lation structure and a process address space identifier 
( PASID ) ; and 

second circuitry to use at least the PASID to locate a 
PASID - entry , the PASID - entry to include at least one of 
a first - level page - table pointer to a first - level translation 
structure and a second - level page - table pointer to a 
second - level translation structure ; 

wherein the PASID is to be supplied by the device ; and 
wherein at least one of the apparatus , the context entry , 

and the PASID entry is to include one or more control 
fields to indicate whether the first - level page - table 
pointer or the second - level page - table pointer is to be 
used . 

2. The apparatus of claim 1 , wherein the second - level 
translation structure of a PASID - entry is to be used to 
translate a guest physical address or an I / O virtual address to 
a host physical address for an address translation in which a 
PASID is provided . 

3. The apparatus of claim 1 , wherein the control fields in 
the PASID - entry indicate whether a nested translation is to 
be performed using the first - level page - table pointer and one 
of the page - table pointer in the context entry and the 
second - level page - table pointer in the PASID entry . 

4. The apparatus of claim 2 , wherein the PASID - entry is 
also to include an additional second - level pointer to a 
second - level translation table to be used to translate a guest 
I / O virtual address to a guest physical address for an address 
translation in which a PASID is provided . 

5. The apparatus of claim 2 , wherein the context entry is 
also to include an additional second - level pointer to a 
second - level translation table to be used to translate a guest 
I / O virtual address to a guest physical address for an address 
translation in which a PASID is not provided . 

6. The apparatus of claim 1 , wherein the PASID table is 
one of a plurality of PASID tables , each of the plurality of 
PASID tables to be created by a virtual machine monitor 
( VMM ) to support shared virtual memory ( SVM ) operations 
for a virtual function ( VF ) or a physical function ( PF ) . 

7. The apparatus of claim 6 , wherein the VMM is to 
maintain a single system - wide host PASID space . 

8. The apparatus of claim 7 , wherein the context entry is 
associated with a VF or PF assigned to a virtual machine 
( VM ) and the PASID table is associated with the VM . 

9. The apparatus of claim 7 , wherein the context entry is 
associated with a plurality of assignable interfaces and VF or 
PF assigned to the VMM and the PASID table is the single 
system - wide host PASID table . 

10. The apparatus of claim 8 , wherein the VMM is to 
expose a virtual I / O memory management unit ( IOMMU ) to 
the VM , the virtual IOMMU to allocate and manage its own 
guest PASID space . 

11. The apparatus of claim 8 , wherein the VMM is to 
expose a virtual I / O memory management unit ( IOMMU ) to 
the VM , the virtual IOMMU to use system - wide host 
PASIDs , provided by the VMM , from a host IOMMU driver . 

12. The apparatus of claim 10 , wherein the VMM is also 
to shadow a guest PASID table for the VM in a physical 
PASID table . 

13. The apparatus of claim 12 , wherein the VMM is also 
to configure a host PASID corresponding to a guest PASID 
in a shadow PASID table to support SVM operations with 
enqueuing instructions . 

14. The apparatus of claim 11 , wherein the VMM is also 
to allocate a private PASID table to the VM and to allocate 
and configure system - wide host PASIDs for the VM in the 
private PASID table to support SVM operations with and 
without enqueuing instructions . 

15. The apparatus of claim 1 , wherein the PASID , if not 
supplied by the device , is to be configured in the context 
entry for the IOMMU to use for address translation instead 
of the context entry's translation structures . 

16. A method comprising : 
creating , for a virtual machine ( VM ) by a virtual machine 

monitor ( VMM ) , a virtual input / output memory man agement unit ( IOMMU ) corresponding to a physical 
IOMMU , the virtual IOMMU having a process address 
space identifier ( PASID ) entry width that is smaller 
than the PASID entry width of the physical IOMMU ; 
and 

shadowing , by the VMM , a guest PASID from the virtual 
IOMMU in the physical IOMMU . 

17. The method of claim 16 , further comprising config 
uring , by the VMM , a host PASID in the physical IOMMU 
PASID table , the host PASID corresponding to the guest 
PASID . 

18. The method of claim 17 , wherein the guest PASID is 
to be used by a virtual function or a physical function of an 
input / output device assigned to the VM . 

19. The method of claim 17 , wherein the host PASID is to 
be used by an assignable interface ( AI ) of an input / output 
device assigned to the VM . 

20. A system comprising : 
a plurality of physical input / output ( 1/0 ) devices ; 
a processor to create one or more virtual machines ( VMs ) 

to which to assign one or more virtual I / O devices to be 
abstracted from the plurality of physical I / O devices ; 

an I / O memory management unit ( IOMMU ) to perform 
address translation to support virtualization of the plu 
rality of I / O devices according to a plurality of trans 
lation techniques , the IOMMU including : 

first circuitry to use at least an identifier of a device to 
locate a context entry , the context entry to include at 
least one of a page - table pointer to a page - table trans 
lation structure and a process address space identifier 
( PASID ) ; and 

second circuitry to use at least the PASID to locate a 
PASID - entry , the PASID - entry to include at least one of 
a first - level page - table pointer to a first - level translation 
structure and a second - level page - table pointer to a 
second - level translation structure ; 

wherein the PASID is to be supplied by the device ; and 
wherein at least one of the apparatus , the context entry , 

and the PASID entry is to include one or more control 
fields to indicate whether the first - level page - table 
pointer or the second - level page - table pointer is to be 
used 


