(19)

US 20210173790A1

a2y Patent Application Publication o) Pub. No.: US 2021/0173790 A1

United States

Kakaiya et al. 43) Pub. Date: Jun. 10, 2021
(54) UNIFIED ADDRESS TRANSLATION FOR GO6F 12/06 (2006.01)
VIRTUALIZATION OF INPUT/OUTPUT GOG6F 9/455 (2006.01)
DEVICES (52) US. CL
CPC GO6F 12/1009 (2013.01); GOGF 12/1081
(71) Applicant: Intel Corporation, Santa Clara, CA (2013.01); GO6F 12/063 (2013.01); GO6F
us) 2009/45579 (2013.01); GO6F 2009/45591
. (2013.01); GOG6F 2009/45583 (2013.01); GO6F
(72) Inventors: Utkarsh Y. Kakaiya, Fo@som, CA 9/45558 (2013.01)
(US); Sanjay Kumar, Hillsboro, OR
(US); Rajesh M. Sankaran, Portland,
OR (US); Philip R. Lantz, Cornelius, (57) ABSTRACT
OR (US); Ashok Raj, Portland, OR
(US); Kun Tian, Shanghai (CN)
. . Embodiments of apparatuses, methods, and systems for
(73) Assignee: Intel Corporation, Santa Clara, CA unified address translation for virtualization of input/output
Us) devices are described. In an embodiment, an apparatus
includes first circuitry to use at least an identifier of a device
(21) Appl. No.: 16/651,786 to locate a context 3try and second circuitry to use at least
. a process address space identifier (PASID) to locate a
(22) PCT Filed: Dec. 29, 2017 PApSID-entry. The cor?text entry is to i(nclude 21t least one of
. a page-table pointer to a page-table translation structure and
(86) PCT No: PCT/US2017/068938 a PASID. The PASID-entry is to include at least one of a
§ 371 (c)(1), first-level page-table pointer to a first-level translation struc-
(2) Date: Mar. 27, 2020 ture and a second-level page-table pointer to a second-level
A . . translation structure. The PASID is to be supplied by the
Publication Classification device. At least one of the apparatus, the contle):gt entry},/ and
(51) Int. CL the PASID entry is to include one or more control fields to
GO6F 12/1009 (2006.01) indicate whether the first-level page-table pointer or the
GO6F 12/1081 (2006.01) second-level page-table pointer is to be used.
e MR
CONTEXT-ENTRY 254 | | PASIDTABLE LEVEL POINTER {FOR
(o= i| PONTER BOTH Al AND VF/PF
b e e -4
| CONTEXT-ENTRYO 4+
o K (EEEaE) J—’
CONTEXT-ENTRY 127 PASID ENTRY Y1
e N B | CONTEXT-ENTRY 128 frmm e e i r FIRST LEVEL PAGE TABLES 384 (GYA -> GPA)
ROOT-ENTRY 255 - - b i
ROOT-ENTRY 254 wP ng%gfggg EQBL": i PASDENTRYQ ‘LL
fomm e mm e | r
b e e e - \\'""'"—"Y"—"“""J
- ROOTENTREN _ 1= INDEXED BY DEVFUNCH) iii;g E?;g: g j
bmo e T SYSTEM WIDE PASID TABLE
ROOT-ENTRY 1 _ 334) SECOND LEVEL PAGE TABLES 364 (GPA <
ROOT-ENTRY 0 e . N HPA OR GIOVA -2 HPA)
CONTEXT-ENTRY 127
ROOT TABLE 314 CONTEXT-ENTRY 126 INDEXED BY PASIDE ~ PASID ENTRY SECOND
S/ S T LEVEL POINTER (FOR
— e | BOTH Al AND VF/PF)
INDEXED BY BUS# | CONTEXTENTRYP
Lo J
CONTEXT-ENTRY | f
CONTEXT-ENTRY 0 g
LOWER CONTEXT TABLE SECOND LEVEL PAGE TABLES 344 (GPA &
_ 324FORBUSH#N J HPA OR GIOVA - HPA)
CONTEXT ENTRY SECOND
UNIFIED IOMMU ARCHITECTURE K__—‘_—Y——‘MJ LEVEL POINTER (FOR VF/PF)

INDEXED BY DEV.FUNC#

Patent Application Publication Jun. 10,2021 Sheet 1 of 17 US 2021/0173790 A1

SYSTEM 102
MEMORY NV
SYSTEMMEMORY | o\reoiier | IPROCESSOR| | vemory
142 140 14 146
ROOT COMPLEX 100
IOMMU 110
BRIDGE TR
104
= TRANSLATION B L
UNIT
112
/O FABRIC
/O DEVICE 136 130
/O DEVICE 132
/O DEVICE 134

FIG. 1

US 2021/0173790 Al

Jun. 10,2021 Sheet 2 of 17

Patent Application Publication

0£Z Unddio dmyjoo) sjgel QISYd

00< NININQOI

02z Hnouo dmjoo] 2igel Xa8oo

012 unoio dmyoo] ojge) ool

Y.

w

£

¥£Z 8lael ISV
9ez Aue-QISvd

P12 8jge] jood
X o 917 Aua-100J
e @lde] Xajuoo
g7z Aus-IxauoD
¢ 2d4NSid

Z 1 isod ejge) ool

US 2021/0173790 Al

Jun. 10,2021 Sheet 3 of 17

Patent Application Publication

(dd/-A HO) ¥IINIOD T3ATT
(NOOES AMING LX3INOD

{VdH € YAOID HO YdH
& YO FFE ST18Y1 39vd TIATT ONOD3S

v

{ddidA ONY I¥ HLOE

#HONNAAZA AG G3X30ON

A

-

~N

\\v

N SN HO4 728

F18YLE IXIINCD ¥3IM0

~

0 AHINT-1IXZINOD

b ARINT-DGEINOD

921 AHINT-LXIUINOD

L2} AHINSIXEINOD

./

#HONNLAIA AG G3X3ANI

A

f

N

N# SNE MO P28

~

A7EVE IXFINQD Haddn

821 AdINI-IXFINOD

LE0 AYINT-IXTINOD

HO4) ¥AINIO TBATT .
ONOOES AHINT Qisyd #ISvd %@xmgzm
{(VdH € VAOID ¥O VeH |7 E, N
£ Vd9) FOE s318YL 39Vd TIATTANGD3S | PEE ™
I19vL QISYd JAIM WTLSAS
0 AHINT QISYd
b AMINT QISVd
e -
e e e J
uuT D AMINT QISYd |
e I et s 1
(Vd9 ¢ VAD) 5E ST18VL 39Vd THATT LS e i
g — L-A AMING ISV
A AYINT (ISVd
\& -/
4di4A ONY 1Y HIOE 3 Eom&
HO4) HIINIO T3ATT 1YL IS
1SHI4 ASING QISYd

Y50 AMINZIXHINOD

G5C AHINT-IXFINOD

./

FUNLOF LHONY NINNGCT QEIING

¢ Old

#5NG A8 GXEANI
A
4 A
s ™
4 yie 41avL LO0Y

0 AMING-LOOY
EAHINT-LO0Y

v492 AMIN-100H
567 AHINT-1O0YH

US 2021/0173790 Al

Jun. 10,2021 Sheet 4 of 17

Patent Application Publication

HONMFAZA AG QXEAN

A
. A

O NESNEUCATIY

1YL IXIINCGO H3aIMo

0 AHINS-IXEINGD
b ASLING-IXEINOD

921 AMINT-IXIINQD

L1 AHINT-IXFINOD
o ./

#H#ONNAAID AL QAN

A
s A

7 ONESNEMHOAFIY N
IIEYL IXIINOD H3ddn
8Z1 AYINT-1LXIINOD
AZ1 AMINT-DEINDD

HALNIOG 13A31
ANOD3S AMING QISYd 40ISYd AS GIXIANI
A
{VdH & YADID MO YdH . _ A
& Vo) FOF ST1aVL 3OVd TIATT ANODES 4 ¥y ™\
I1EYL QISYd JAIM WALSAS
0 AMINT QiSYd
L AMAINT QISYd
7 -
N
HuT D AYINAQISYd
R T I e 7
(VO & VAD) ¥5F S318VL 3DV 13AT7 LSHIH e o e]
o L-A AMINT QISVd
A AMLINT QISYd
Ny -/
HMIINIOC 13ATT H3LNIOd
1SHI AMING QISvd 18V QISYd

¥5¢ AWINZ-IXAINOD

G60 AMINT-1XFINOD
o ./

QISYJEOR] HLIM
FUNLDFLHOYY NWNOL ATIHING
A E
#5N8 A8 (IXE0N!

A,

's A
4 ¥V 37EVL LOOY A
0 AHINT-LOOY
P AHLING-LO0OY
o e e e -

e e .

1D NAYINT-LOOY
o e L
e e e o o o o e]
Y57 AMINI-LO0OY
§G¢ AUINI-100Y
\ =~/

US 2021/0173790 Al

Jun. 10, 2021 Sheet 5 of 17

Patent Application Publication

QISvd 1senb yoes Jojf (JISVd 1soy sejedolie IWINA 0€5

*

SISVd I1senb smopeys WINA 025

t

NININOIA sa1eaJ0 WINA 0L S

006 AOHL3IW
V& JdNOld

US 2021/0173790 Al

Jun. 10, 2021 Sheet 6 of 17

Patent Application Publication

YdH € ¥AOID QIMCOVHS

A N ERTTHE
SV d MOTOVHS =d/HA

L

Yol € YAQID dIMOOVHS

AOHTEY W08 ONY
AOFES mo¢ b@?m@@zﬂz
QIS GAHINA

g6 "Old

(ANOL WOISAHd

YelH € Vdo

J N

PAA HOH 096 2T6VL N
(GisYd MOGVHS mntav

o

(" Tiavi A
LXAINOD LSOH

Lt AN LXEINOD &k

O FIaVLAIsYd
150H 30IM éuhw\,a

M 03AN3S3H (10 0L 0 3
| BONVA QisYd 193719 |

I aUsa BoHT T

VA& TADES IAOT T LIA Ydo€ VAQID 0G5 MINIWOT TWNLEIA
\ &' | [(Tevioamoo 539Y| e e @ | (=18v1 LX3INOD 15309
oo || b | e 3 ns R ar T o
WAD) VL CETEERETSTE B ittt ||| ¥h9) v (X 37) T1avL a16vd e

BAT1LSHH g

@ﬁ

iiiiiii L TEAGT LS

18300 30IM m\ﬁrn»m

18300 QM WILSAS

d

US 2021/0173790 Al

Jun. 10,2021 Sheet 7 of 17

Patent Application Publication

aoeds (JISVd 1eqolb wolj (JISVd saledole WINA 909

i)

QiSvd & sievojie o} WINA sl sisenbal WA y09

t

Sa0IAIBS NININDI Sesodxe pue NININOIA S81eald WINA 209

009 AOHL3IW
VO FdNOId

US 2021/0173790 Al

Jun. 10,2021 Sheet 8 of 17

Patent Application Publication

Y € VAQ!

4 ZINA HO4 ™

1YL AISYd ddidn

o

S 30V

YdH € ¥AO!

<

a8 {isvd WHO©

_ yaisvd
0ES 'O Qisvd
'S QISvd

Yo € vdO

o

A1y L diSYd ddidA

4 PAA MOS0V N

{

AOHATEY 908 NV
AOFES HO4 INFWIDYNYI
(iSYd d3IHING

€9 'Old

(ANOL WOISAHd

7 N\
JigvL IX3LINCO

! e e o
3 THTNT SRATNDS S

4 Sy ™

1 O AGING-IXIINOD IV | Iy

(VD &
YAD) 318y
TAATTISHH

@ﬁ

ARIROL TNLMIA

o GISYd
N=HOIAZA

{vdo €
YAD) 318vL
RELERRROSE

A

"l

018 NWNOT TR LAIA

O 69 Qisve
d'0301A30

VA

US 2021/0173790 Al

Jun. 10,2021 Sheet 9 of 17

Patent Application Publication

WAS Joj sBuiddew YdH-0l-vdD sweiboid WINA 022

¢

sBuiddew ya-01-yAOIE) weiboid o) sBuiddew ydo)-01-vACIS) sidasiaiul WINA 0L/

00Z AOHL3IW
V. 3dN9ld

US 2021/0173790 Al

Jun. 10, 2021 Sheet 10 of 17

Patent Application Publication

NANINOIA Wol 1senbal e uo paseq sbuiddew ydH-01-vAO| swielBoid WINA 02/

¢

S3VINIES YAOH sas0dxa pug NIAINGIA sa140 NIAA 094

06, AOHL3IW
d. FdNoid

US 2021/0173790 Al

Jun. 10,2021 Sheet 11 of 17

Patent Application Publication

{veiH € YAQI 318V 1 39Vd

THAFT ANODES

< |

1,

(VdH € vdD) 3181 39vd 13731 GNOD3S

uy

(YdH € YAOI 318V1 39vd

TEADTANOOSS

o

(VdH €~ ¥dD) 3718V 1 39vd

TBAFTANODIS

J

ANLINHLS NOUYISNYHL TEAT
{NODES Q2183N HLIM 008 NIANO!

{Yd9 € YAD) T19Y1 3OV TIATT ALLNT

My

P HONNAATO AS QXN
A
@/ I N
(4d/4A HO4) SHTINIOD T3ATT C NESNEU0H)
GNODES AYINT DXIINOD A8YL IXEINOD H3M0
¥ 0 AMINT-LXTLINOD
e L AMINT-IXTINOD
e -1
(v 404 S¥3INIOd - S ST R
T3ATTONOO3S Tisaaas;u;m
AHINT QISYd . !
HOISYd A AIXEAN 071 AMINTLXIINGD
P A N 171 AMINTLXILINGD)
LN
ey FiavL I
QISVd BAIM WILSAS
DAMINIOISvd |4 HONNAAIC AS G3XIONI
| AMINT QISYd A
¥ - _——— e 3 e A
W sssssssss - 0 ONASNENOS)
L O AYINI QISYd 1 F18YL IXFINOD H3ddn
e e e e e e i 821 AMINI-IXIINGD
L-A AMING QISvd 12} AMINTLXTINGD
A AYINA QISYd B 1
g \} W, - 4
/ P | O AHINSIX3INOD |
T T T T T
|
(44 ONY ¥ HLOE MIINIDG | momm o= o -
MO HAINIOE 13A3T 31GVLGISYd | | FSC AN IXIINGD
1S AMING QISYd \ GSZ AMINT-LXILINOD)

8 Old

#SN4 A8 GDEON
A

s

\\\
A18v1L 100

A
~

0 AHLINT-LO0Y

b AMINS-LO0Y

y5¢ ASINI-100Y

867 AMINZ-100Y

/

US 2021/0173790 Al

Jun. 10, 2021 Sheet 12 of 17

Patent Application Publication

o

b
R 74!
§ LIAWOD

876 -
] LINN 078 LIND
IHOVD AHOWAW
21 LINO €11 YLYa
& &
096 (ShiFL8n70 NOLLNOE
96 (SILINN 256 P
$5300V {ShLinn i
AHOWAN NOLLNDAXS
vy e Y
i
TEE (SLLIND ST H31SI93Y WDISAHA w
JE———— % I -
[o o e o ok e e = 75 | £6 "0l
{956 @%ﬁ%@@%! <) LN INBNENLEY |
A5 i S Y mun
o SIQITIOTIY (IWWNIH INIONI NOLNDIXE
S [
i
[FEroENGIONEISN] A%
3 066 IHOD
TEB LINM 8711 NOLLDNHLSNI 266 LIND
B BEB LIND 3HOYD NOLLONMLSN] NOILLDIQTMd HONY g
T | O _ N N e
onranyi] LR 918 avad AHOWEN 716 ors | §05 | 90 sniaonaal 8
NOlLdEnxal AEOMEN | 30V1S 31n03X3 Jy3y FINA3HOS BNIYNTY 00TV IE00033 ioNgy HO434
e ENET EEINREL I I I e
¥6 Old 006 INM3dld

US 2021/0173790 Al

Jun. 10, 2021 Sheet 13 of 17

Patent Application Publication

G107 (SILINN
HATIOHINDD
8ng

0L "9l
FOTELNG |-~ s
MITIOWINGD T~ moT e e
Adopan L smm.“m; Mﬁ:ﬂ@zm%iozxu (JHuvHS
O3LVHOIINI - e |
555555 o oor 1 0T
| (SILIND M |wme| | (SILND
OI0T LINN | FHOVO 1 FHOVD
INIOV WILSAS | NZ00T 3800 | YZ001 3400

8007 21907
350dHNd
WIS

smcees cooce sooees coooe ool

\

0001
HOSSE00Hd

Patent Application Publication Jun. 10, 2021 Sheet 14 of 17 US 2021/0173790 A1l

I e
r !f_‘ff_‘_‘_f‘am PROCESSOR |™ =
| — /1195]
“‘““E--f': s | _— 1140
co- B ;OHNUTBR%LZLQER B MEMORY
| PROCESSOR SMCH ﬁ“;‘]’ gmaﬁmé;;o;fmi
| ! | TEST
1160 —_ o .E_.._.. _ i Mﬁﬁ é
e o o

o ! OH1150 |
E
| |

FIG. 11

US 2021/0173790 Al

Jun. 10, 2021 Sheet 15 of 17

Patent Application Publication

AN IE
s | YLVO
4! 0£z1
GNY 3009 | s3omag | 3snow
JOVHOLS VIYa Lech WNOD el JOHYOFAII
h 0771 JM M W
GleL veer Vet 8lel
HOSSIN0Ud ol clany SIDIAIA O I9qIHE SNg
a1z, — w _ |
96z} =1 M | zegL —p | EE
967 —1 dd 82T L3SdiHD JEX L gz, m%mmmgmaeom
TETT = SR
¥5Z3)
s — .
571 dd| |dd dd d-d 771
@mmwimwﬂﬁw m /asw% 9.2l
05z1
= 782L el 7
oLl M
¥eel 25l
AHOWEW AHOWIN
HOSSINOUAOD
MHOSSIN0Nd HOSSINONd

ﬁ/ 0ol

US 2021/0173790 Al

Jun. 10, 2021 Sheet 16 of 17

Patent Application Publication

1543
AAOWINW

4543
AHMONIN

oonooooons eoocoooncs eococonel

¢l Old
GIET
Ol ADYDI
0621 967 =1 dil
S 138dH L
%ﬁl\% % Nmﬁs\w %
AN dd d-d d-d dd| §5T
9821 — goz| — \ /...E Loz
8121
05zl
787} wel 7
1 g
HOSSIO0Md HOSSIN0Yd
oW |
| s3oAgaon

/ 0oElL

US 2021/0173790 Al

Jun. 10, 2021 Sheet 17 of 17

Patent Application Publication

L 'Ol
FIOT {SILINN
(a2 — %7 HITIOHINGD
LINM AV TSI cevl LNN vAd LINM INYHS AHOWIN
=N EI
STGT {SILN ~ e
HITIOHLINGD SR
sng e 2077 (SILINM LOBNNODYILNI —
m
M |
| GO0T (SLUNM FHOYD OIMVHS m
| | FwOOT g | YH00L
FHOUIN Y] mmw {SHLUINN
— IHO
BTOT LN by 3HOv0 41 3HOVO
INTOV WALSAS m...7 001 3400 ..m VeDoL 300

Obvl ¥0S8S300dd NOLLYONddV

27T (S)H0SS3ID0Ed00

/ 00!

diHO ¥ NO WHLSAS

US 2021/0173790 Al

UNIFIED ADDRESS TRANSLATION FOR
VIRTUALIZATION OF INPUT/OUTPUT
DEVICES

FIELD OF INVENTION

[0001] The field of invention relates generally to computer
architecture, and, more specifically, but without limitation,
to virtualization in computer systems.

BACKGROUND

[0002] Computers and other information processing sys-
tems may include one or more subsystems or components,
such as input/output (I/O) devices, that may independently
access a system memory, for example, using direct memory
access (DMA) transactions and/or be accessed by one or
more processors. Various system capabilities, such as virtu-
alization, may result in different views of system memory
for different I/O devices. Therefore, various address trans-
lation techniques for virtualization of I/O devices have been
developed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The present invention is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like references indicate similar
elements and in which:

[0004] FIG. 1 is a block diagram illustrating a root com-
plex in a system according to an embodiment of the inven-
tion;

[0005] FIG. 2 is a block diagram illustrating an input/
output memory management unit (IOMMU) according to an
embodiment of the invention;

[0006] FIGS. 3 and 4 are block diagrams illustrating
IOMMU architectures according to embodiments of the
invention;

[0007] FIG. 5A is a flow diagram illustrating a method of
process address space identifier (PASID) management
according to an embodiment of the invention;

[0008] FIG. 5B is a block diagram illustrating an IOMMU
architecture for PASID management according to an
embodiment of the invention;

[0009] FIG. 6A is a flow diagram illustrating a method of
PASID management according to an embodiment of the
invention;

[0010] FIG. 6B is a block diagram illustrating an IOMMU
architecture for PASID management according to an
embodiment of the invention;

[0011] FIGS. 7A and 7B are flow diagrams illustrating
software-based approaches to 1/O virtual address (IOVA)
virtualization according to embodiments of the invention;
[0012] FIG. 8 is a block diagram illustrating a hardware-
based approach to IOVA virtualization according to an
embodiment of the invention;

[0013] FIG. 9A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the invention;

[0014] FIG. 9B is a block diagram illustrating both an
exemplary embodiment of an in-order architecture core and
an exemplary register renaming, out-of-order issue/execu-
tion architecture core to be included in a processor according
to embodiments of the invention;

Jun. 10, 2021

[0015] FIG. 10 is a block diagram of a processor that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention;

[0016] FIG. 11 is a block diagram of a system in accor-
dance with one embodiment of the present invention;
[0017] FIG. 12 is a block diagram of a first more specific
exemplary system in accordance with an embodiment of the
present invention;

[0018] FIG. 13 is a block diagram of a second more
specific exemplary system in accordance with an embodi-
ment of the present invention; and

[0019] FIG. 14 is a block diagram of a SoC in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION

[0020] In the following description, numerous specific
details, such as component and system configurations, may
be set forth in order to provide a more thorough understand-
ing of the present invention. It will be appreciated, however,
by one skilled in the art, that the invention may be practiced
without such specific details. Additionally, some well-
known structures, circuits, and other features have not been
shown in detail, to avoid unnecessarily obscuring the present
invention.

[0021] References to “one embodiment,” “an embodi-
ment,” “example embodiment,” “various embodiments,”
etc., indicate that the embodiment(s) of the invention so
described may include particular features, structures, or
characteristics, but more than one embodiment may and not
every embodiment necessarily does include the particular
features, structures, or characteristics. Some embodiments
may have some, all, or none of the features described for
other embodiments. Moreover, such phrases are not neces-
sarily referring to the same embodiment. When a particular
feature, structure, or characteristic is described in connection
with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to effect such feature,
structure, or characteristic in connection with other embodi-
ments whether or not explicitly described.

[0022] As used in this description and the claims and
unless otherwise specified, the use of the ordinal adjectives
“first,” “second,” “third,” etc. to describe an element merely
indicate that a particular instance of an element or different
instances of like elements are being referred to, and is not
intended to imply that the elements so described must be in
a particular sequence, either temporally, spatially, in rank-
ing, or in any other manner.

[0023] Also, as used in descriptions of embodiments of the
invention, a “I” character between terms may mean that an
embodiment may include or be implemented using, with,
and/or according to the first term and/or the second term
(and/or any other additional terms).

[0024] Various techniques, for example, single-root 1/O
virtualization (SR-IOV), as defined by the Peripheral Com-
ponent Interconnect Express (PCle) specification, and scal-
able 1/O virtualization (Scalable IOV), as described below,
may provide for virtualization of I/O devices. A system may
include hardware, such as an /O memory management unit
(IOMMU) to perform address translation and/or remapping
to support transactions between various I/O devices, system
memory, and processors. The use of embodiments of the
invention may be desired to provide a unified approach to
address translation for virtualization of I/O devices, for

2 <

US 2021/0173790 Al

example, to support various virtualization and/or remapping
techniques using a single IOMMU.

[0025] FIG. 1 is a block diagram illustrating a root com-
plex or other device including or serving as a bridge between
one or more [/O devices and system memory according to an
embodiment of the invention. Root complex 100 in FIG. 1
may be implemented in logic gates, storage elements, and
any other type of circuitry, all or parts of which may be
included in a discrete component and/or integrated into the
circuitry of a processing device or any other apparatus in a
computer or other information processing system. In FIG. 1,
root complex 100 is shown within system 102. Also, FIGS.
9 through 14 show processors and systems that may include
embodiments of the invention. For example, root complex
100 and/or any or all the elements shown in root complex
100 may be represented by or included in controller hub
1120, chipset 1290, or DMA unit 1432, each as described
below.

[0026] Root complex 100 may represent any circuitry or
component, such as a chipset component, including or
through which /O, peripheral, and/or other components or
devices, such as touchscreens, keyboards, microphones,
speakers, other audio devices, cameras, video or other media
devices, motion or other sensors, receivers for global posi-
tioning or other information, network interface controllers,
compute or other accelerators, and/or information storage
devices, may be connected or coupled to a processor, a
memory controller, a system memory, and/or any type of
processor/memory subsystem.

[0027] System 102 and any other system embodying the
invention may include any number of each of these com-
ponents and any other components or other elements. Any or
all of the components or other elements in this or any system
embodiment may be connected, coupled, or otherwise in
communication with each other through any number of
buses, point-to-point, or other wired or wireless interfaces or
interconnects, unless specified otherwise. Any components
or other portions of system 102, whether shown in FIG. 1 or
not shown in FIG. 1, may be integrated or otherwise
included on or in a single chip (a system-on-a-chip or SOC),
die, substrate, or package.

[0028] System memory 142 may be dynamic random
access memory (DRAM) or any other type of medium
readable by processor 144. System memory 142 may be
used to provide a physical memory space from which to
abstract a system memory space for system 102. The content
of system memory space, at various times during the opera-
tion of system 102, may include various combinations of
data, instructions, code, programs, software, and/or other
information stored in system memory 142 and/or moved
from, moved to, copied from, copied to, and/or otherwise
stored in various memories, storage devices, and/or other
storage locations (e.g., processor caches and registers) in
system 102. Memory controller 140 may represent any
circuitry or component for accessing, maintaining, and/or
otherwise controlling system memory 142.

[0029] The system memory space may be logically orga-
nized, addressable as, and/or otherwise partitioned (e.g.,
using any known memory management, virtualization, par-
titioning, and or other techniques) into regions of one or
more sizes. In various embodiments, such regions may
include 4K-byte pages, so, for convenience, such regions

Jun. 10, 2021

may be referred to in this description as pages; however, the
use of the term “page” in this description may mean any size
region of memory.

[0030] Processor 144 may represent all or part of a hard-
ware component including one or more processors or pro-
cessor cores integrated on a single substrate or packaged
within a single package, each of which may include multiple
execution threads and/or multiple execution cores, in any
combination. Each processor represented as or in processor
144 may be any type of processor, including a general
purpose microprocessor, such as a processor in the Intel®
Core® Processor Family or other processor family from
Intel® Corporation or another company, a special purpose
processor or microcontroller, or any other device or com-
ponent in an information processing system in which an
embodiment of the present invention may be implemented.
Processor 144 may be architected and designed to operate
according to any instruction set architecture (ISA).

[0031] Nonvolatile memory 146 may be any type of
nonvolatile memory and may be used to store any code, data,
or information to be maintained during various power states
and through various power cycles of system 102. For
example, nonvolatile memory 146 may be used to store
basic input/output system (BIOS) or other code that may be
used for booting, restarting, and/or resetting system 102 or
any portion of system 102.

[0032] Root complex 100 includes bridge 104, which may
include any circuitry, other hardware, or firmware to connect
a memory side (e.g., a subsystem including system memory
142) of system 102 to an [/O side (e.g., a subsystem
including /O devices 132, 134, and 136) of system 102,
and/or to deliver, forward, translate, associate, and/or oth-
erwise bridge transactions or other communications between
the memory side and the /O side.

[0033] Root complex 100 also includes IOMMU 110 and
is connected to I/O devices 132, 134, and 136 through 1/O
fabric 130. Root complex 100 may also be connected,
directly or indirectly, to memory controller 140, system
memory 142, processor 144, and/or nonvolatile memory
146, any or all of which may be integrated onto the same
silicon chip or other substrate as root complex 100.

[0034] IOMMU 110 includes address translation unit 112,
which may represent or include any address translation
circuit or logic to translate addresses that may be used by I/O
or other peripheral devices to request an access to system
memory 142 to addresses that may be used to access system
memory 142 (IOMMU DMA remapping). For convenience,
the first type of address may be referred to as an [/O-side
memory address, and may include addresses used by /O
devices in DMA transactions, addresses used by I/O devices
in virtual environments, and/or any other addresses used by
1/O or other peripheral devices or within address spaces as
seen by I/O or other peripheral devices. The second type of
address may be referred to as a memory-side memory
address, and may include addresses used by memory con-
troller 140 to access system memory 142, such as a host
physical address (HPA), and/or any other address within an
address space on the system memory side of root complex
100. Address translation unit 112 may use any number of
page tables, extended page tables, nested page tables, or
other non-hierarchical or hierarchical data structures stored
in system memory 142 or elsewhere to perform any number
of page walks, lookups, or other translation techniques.
IOMMU 110 also includes IOTLB 114 to store translations

US 2021/0173790 Al

generated by address translation unit 112 or otherwise useful
for finding memory-side memory addresses corresponding
to [/O-side memory addresses and/or vice versa.

[0035] 1/O fabric 130 may represent any bus, interconnect,
or fabric, such as a PCle interconnect, through which /O
and/or peripheral devices, such as /O devices 132, 134, and
136 may be coupled or connected to root complex 100. /O
devices 132, 134, and/or 136 may be devices that may be
able to perform the role of a requester and/or a completer of
a PCle transaction, where a “requester”” may refer to a device
that is able to originate a transaction on a /O fabric 130, a
“completer” may refer to a device that is addressed and/or
targeted by a requester, and a “transaction” may refer to any
transaction, command, message, or communication on or
through I/O fabric 130. Transactions on I/O fabric 130 may
include DMA and/or other transactions through which /O
devices may access and/or request or attempt to access
system memory 144. More generally, a “transaction” may be
any communication involving an /O device within a sys-
tem.

[0036] Invarious embodiments, IOMMU 110 may include
hardware, such as address translation unit 112, to perform
and/or support translations and/or remappings for transac-
tions involving any I/O device, whether connected to system
memory through a bridge such as bridge 104 or directly,
where the definition of /O device may include controllers
(such as bus, interconnect, and/or fabric controllers, network
interface controllers (NICs, including Omnipath and 100 G
Ethernet), etc.), processors/accelerators (such as graphics
processors, cryptographic and/or compression accelerators,
etc.), devices and/or functions implemented in field pro-
grammable gate arrays or with Intel® QuickAssist Technol-
ogy, and any other resources that may use or involve the use
of addresses in a system, using DMA, Intel® 1/O Assist
Technology, or any other techniques, known and/or as
described in this specification. The architecture of system
102 may provide for each such physical I/O device to be
virtualized to provide one or more virtual [/O devices and/or
functions per physical /O device, such that the physical I/O
devices may be assigned/allocated to and/or shared among
multiple virtual machines, partitions, or containers (e.g.,
separate and/or isolated execution environments), supported
by the system software, firmware, and/or hardware of sys-
tem 102.

[0037] Any platform, system, or machine, including the
“bare metal” platform shown as system 102 in FIG. 1 as well
as any VM or other container abstracted from a bare metal
platform, from which one or more containers are abstracted
may be referred to as a host or host machine, and each VM
or other such container abstracted from a host machine may
be referred to as a guest or guest machine. Accordingly, the
term “host software” may mean any hypervisor, virtual
machine monitor (VMM), operating system (OS), or any
other software that may run, execute, or otherwise operate
on a host machine and create, maintain, and/or otherwise
manage one or more containers, and the term “guest soft-
ware” may mean any OS, system, application, user, or other
software that may run, execute, or otherwise operate on a
guest machine. Note that in a layered container architecture,
software may be both host software and guest software. For
example, a first VMM running on a bare metal platform may
create a first VM, in which a second VMM may run and

Jun. 10, 2021

create a second VM abstracted from the first VM, in which
case the second VMM is both host software and guest
software.

[0038] For convenience, the use of the term “container
process” may mean any context, task, application, software,
privileged process, unprivileged process, kernel-mode pro-
cess, supervisor-mode process, user-mode process, or any
other process running or runnable within a container. A
container may have an address space (a container address
space or a guest address space) that is different from the
system address space (e.g., the address space of system
memory 142) or the host address space (e.g. the address
space of the host machine). An address with which the
system address space may be directly accessed (i.e., without
translation) may be referred to as an HPA. For isolation,
protection, or any other purpose, any container address
space may be different from any other container address
space. Therefore, each container process may access
memory using addresses that are to be translated, filtered, or
otherwise processed to HPAs differently than they are trans-
lated, filtered, or otherwise processed for any other con-
tainer. The difference in translation/processing of container
addresses may be due to virtualization and isolation of
container address spaces (e.g., guest software may use guest
virtual addresses (GVAs) that are translated to guest physical
address spaces (GPAs) that are translated to HPAs) and may
also be due to the use of a variety of different types of
containers (e.g., VMs, OS-managed containers, etc.) and/or
different container architectures (e.g., layered architectures
including VMs hosting multiple VMs, VMs hosting multiple
OS-managed containers, etc.).

[0039] An address used by a container process to access
memory (a container address) may be any of many different
types of addresses, including an HPA, a virtual address, a
GPA, a GVA, a DMA address, etc., and may go through one
or more of any of a variety of techniques, types, levels,
layers, rounds, and/or steps of translation, filtering, and/or
processing, in any combination, using any of a variety of
data structures (e.g., page tables, extended page table, nested
page tables, DMA translation tables, memory access filters,
memory type filters, memory permission filters, etc.) to
result in an HPA and/or in a fault, error, or any other type of
determination that a requested access is not allowed. Various
approaches may include layering and/or nesting of contain-
ers (e.g., a VMM hosting a VM running a guest OS, the
guest OS supporting multiple containers; a VMM hosting
multiple VMs each running a guest OS, etc.), involving
various combinations of address translation techniques.

[0040] Each physical function within an /O device in
system 102 may become usable and/or shareable by one or
more clients (e.g., containers, container processes, host
processes, etc.) by reporting to system software the number
of assignable interfaces (Als) that it supports, where an Al
is an abstract entity within a device through which software
may submit work to the device. For example, an Al for a
NIC may be a paired transmit queue and receive queue; an
Al for an InfiniBand, remote DMA (RDMA), or other host
fabric controller may be a Queue Pair; an Al for a Non-
Volatile Memory Express or other storage device controller
may be a Command Queue; an Al for a graphics processing
unit (GPU), general purpose computing on GPU (GPGPU),
or other accelerator may be a schedulable context through
which work may be submitted; etc. An Al may have multiple
command portals, which are typically MMIO addresses that

US 2021/0173790 Al

software may use to submit work. An Al may be distin-
guished from an admin portal as being an interface for a
client to submit work, whereas an admin portal is an
interface through which a container host sets up or config-
ures the Als.

[0041] Inanembodiment, an Al may be implemented with
one or more 4 KB pages of memory-mapped I/O (MMIO)
registers which are part of the main device (PF) base address
registers (BARs). Each Al may correspond to an individual
backend resource (queue, context, etc.) and implement the
minimal MMIO interface to configure and operate the
respective backend resource. Further, all accesses from a
guest driver may be divided into control path accesses,
which are infrequent accesses and hence not performance
critical, and fast path accesses, which are frequent datapath
accesses and hence are performance critical. Each Al’s
control path and fast path MMIO registers are laid out in
different 4 KB pages so that the fast path registers may be
mapped into the VM for direct access while control path
registers may be emulated in software. One or more Als may
be assigned to a VM or as part of a virtual device (VDEV).
Different Als from the same device may also be assigned to
different VMs. Virtualization of I/O devices using Als may
be scalable (Scalable IOV) because it is not limited by
device/function numbers.

[0042] An /O device may report to host software that it
supports one or more Als for use according to embodiments
of the present invention, as well as how many Als it
supports, through capability/attribute information that it
provides according to a system bus or interconnect specifi-
cation (e.g., through a new capability added to the PCle
specification), by a device driver for the physical function,
or according to any other known technique for reporting
physical function capabilities/attributes.

[0043] Then, the host software may use the [/O device’s
admin portal to allocate, map, and/or assign each Al to a
client. This assignment includes assigning a process address
space identifier (PASID) to the Al, where the PASID corre-
sponds to the address space associated with the client. In an
embodiment, a PASID may be a 20-bit tag defined by the
PCle specification and carried by the translation layer packet
(TLP) prefix header in transactions generated by the 1/O
device. After the assignment of an Al has been completed,
clients may submit work requests to it according to any
known approach. In an embodiment, clients may submit
work requests through a shared work queue, using processor
enqueuing instructions such as enqueue command
(ENQCMD) and enqueue command as supervisor
(ENQCMDS).

[0044] Various approaches to /O virtualization may
include support for shared virtual memory (SVM) within
VMs and may involve various translations and nesting of
translations, including first-level translations (e.g., from a
GVA to a GPA) and/or second-level translations from (e.g.,
from a GPA to a HPA), for Als and/or VFs/PFs, with or
without PASIDs. Furthermore, /O virtualization may
involve virtualization of PASIDs and translations from guest
PASIDs to host PASIDs, for example, in connection with
shared work queues and/or ENQCMD/S instructions. Addi-
tionally, an OS (e.g., Linux) may use 1/O virtual addresses
(IOVA) to program DMA on 1/O devices. A VF/PF trans-
action may involve a request including an IOVA but no

Jun. 10, 2021

PASID, while an Al transaction for the same [/O device may
involve a request including a guest IOVA (GIOVA) and a
PASID.

[0045] Various scenarios may arise in which the use of
various /O devices may involve different translation tech-
niques and/or transaction attributes. The use of multiple
address translation techniques may be incompatible with
existing IOMMU architectures. Examples include: SR-IOV
and Scalable IOV use different second level translation
structures; a second level translation for an IOVA may not be
available if it is used to support SVM; and use by a VM of
VFs/PFs with dedicated work queues (using host PASIDs)
and shared work queues (using guest PASIDs) and/or assign-
ment of both VFs/PFs (using guest PASIDs) and Als (using
host PASIDs) to a single VM may result in a single appli-
cation and/or VM using different types of remapping
requests.

[0046] Embodiments of the invention provide for transla-
tion of addresses to support a variety of approaches to I/O
virtualization, including SR-IOV and/or Scalable IOV, using
a single IOMMU. FIG. 2 illustrates an IOMMU according to
such an embodiment, and FIG. 3 and FIG. 4 show more
detailed examples of embodiments.

[0047] In FIG. 2, IOMMU 200 may include root table
lookup circuitry 210 to find an entry in a root table, such as
root table 214. Root table 214 may be a data structure in
local memory of IOMMU 200, in system memory, and/or
elsewhere in the system, in which one or more root-entries
(e.g., root-entry 216) may be stored. Root table 214 may
have a root table base address stored in a root table pointer
storage location 212. Root table lookup circuitry 210 may
include circuitry to add a root table index to the root table
base address, where the root table index may correspond to
a bus number in an embodiment in which an identifier of an
1/0O device may include a bus number. For example, an [/O
device in a system including a PCle bus may be assigned a
bus number, device number, and function number (BDF) by
system configuration software or firmware.

[0048] IOMMU 200 may also include context table
lookup circuitry 220 to find an entry in a context table, such
as context table 224. Context table 224 may be a data
structure in local memory of IOMMU 200, in system
memory, and/or elsewhere in the system, in which one or
more context-entries (e.g., context-entry 226) may be stored.
Embodiments of the invention may include any number of
context tables, each with any number of context-entry loca-
tions. Context table 224 may have a context table base
address stored in a root-entry location (e.g., root-entry 216).
Context table lookup circuitry 220 may include circuitry to
add a context table index to the context table base address,
where the context table index may correspond to a device
and function number in an embodiment in which an iden-
tifier of an 1/O device may include a device and function
number (e.g., a PCle BDF).

[0049] IOMMU 200 may also include PASID table lookup
circuitry 230 to find an entry in a PASID table, such as
PASID table 234. PASID table 234 may be a data structure
in local memory of IOMMU 200, in system memory, and/or
elsewhere in the system, in which one or more PASID-
entries (e.g., PASID-entry 236) may be stored. Embodi-
ments of the present invention may include any number of
PASID tables, each with any number of PASID-entry loca-
tions. PASID table 234 may have a PASID table base address
stored in a context-entry location (e.g., context-entry 226).

US 2021/0173790 Al

PASID table lookup circuitry 230 may include circuitry to
add a PASID table index to the PASID table base address,
where the PASID table index may correspond to a PASID.
[0050] In translation architecture 300 of FIG. 3, root table
314 may store one or more root entries and be indexed by
bus number. A root entry may include a context table pointer
to point to a context table (e.g., root entry N may point to
context table 324), which may store one or more scalable
context entries and be indexed by device/function number. A
scalable context entry may include a scalable PASID table
pointer to point to a scalable PASID table (e.g., context entry
O and/or P may point to system-wide PASID table 334),
which may store one or more scalable PASID entries and be
indexed by PASID number. A system-wide, global PASID
table may be maintained by a host OS/VMM such that all
context entries in all IOMMUSs point to the global PASID
table. In another embodiment, different IOMMUSs or differ-
ent context entries within each IOMMU may point to
different PASID tables. In this case, the host OS/VMM still
maintains a global PASID space such that PASIDs are
allocated/freed from a single global (host) PASID space and
only these PASID entries are configured in per-IOMMU or
per-context PASID tables.

[0051] Additionally or alternatively, a context entry may
include a second level pointer to point to second level page
tables for translating a GPA or an IOVA/GIOVA to an HPA
(e.g., context entry P may include a second level pointer to
point to second level page tables 344). Therefore, translation
architecture 300 may support translation requests for a
VF/PF without a PASID. A context entry may include a
nesting bit to specify whether a PASID table pointer and a
second level pointer is to be used to perform nested trans-
lation for translation requests with a PASID.

[0052] A scalable PASID entry may include a first level
pointer to point to first level page tables for translating a
GVA to a GPA (e.g., PASID entry Q may include a first level
pointer to point to first level page tables 354) and/or a second
level pointer to point to second level page tables for trans-
lating a GPA or an IOVA/GIOVA to an HPA (e.g., PASID
entry Q may include a second level pointer to point to
second level page tables 364). Therefore, translation archi-
tecture 300 may support translation requests, with a PASID,
for an Al and a VF/PF. A PASID entry may include one or
more control fields, such as a translation type field or a
nesting field, to specify whether a first level pointer or a
second level pointer or both pointers are to be used to
perform translation for translation requests with a PASID.
[0053] In translation architecture 400 of FIG. 4, root table
414 may store one or more root entries and be indexed by
bus number. A root entry may include a context table pointer
to point to a context table (e.g., root entry N may point to
context table 424), which may store one or more scalable
context entries and be indexed by device/function number. A
scalable context entry may include a scalable PASID table
pointer to point to a scalable PASID table (e.g., context entry
O and/or P may point to system-wide PASID table 434),
which may store one or more scalable PASID entries and be
indexed by PASID number. A system-wide, global PASID
table may be maintained by a host OS/VMM such that all
context entries in all IOMMUSs point to the global PASID
table. In another embodiment, different IOMMUSs or differ-
ent context entries within each IOMMU may point to
different PASID tables. In this case, the host OS/VMM still
maintains a global PASID space such that PASIDs are

Jun. 10, 2021

allocated/freed from a single global (host) PASID space and
only these PASID entries are configured in per-IOMMU or
per-context PASID tables.

[0054] Additionally or alternatively, a context entry may
include, instead of a second level pointer, a RID2PASID
field, which may be programmed by a VMM to assign a host
PASID to requests without a PASID. The VMM may also
program the corresponding PASID table entry with a first
and/or a second level pointer. For example, context entry P
may include an RID2PASID field. Therefore, translation
architecture 400 may support translation requests for a
VF/PF without a PASID.

[0055] A scalable PASID entry may include a first level
pointer to point to first level page tables for translating a
GVA to a GPA (e.g., PASID entry Q may include a first level
pointer to point to first level page tables 454) and/or a second
level pointer to point to second level page tables for trans-
lating a GPA or an IOVA/GIOVA to an HPA (e.g., PASID
entry Q may include a second level pointer to point to
second level page tables 464). Therefore, translation archi-
tecture 400 may support translation requests, with a PASID,
for an Al and a VF/PF. A PASID entry may include one or
more control fields, such as a translation type field or a
nesting field, to specify whether a first level pointer or a
second level pointer or both pointers are to be used to
perform translation for translation requests with a PASID.
[0056] FIGS. 5A and 5B illustrate unified PASID man-
agement according to embodiments of the invention, includ-
ing an IOMMU virtualization mechanism that presents a
virtual IOMMU (vIOMMU) to a VM for IOVA and SVM
operations. In one embodiment, the vIOMMU emulates a
non-Scalable-IOV capable IOMMU (i.e., an IOMMU that
can only support VFs/PFs according to SR-IOV). Als are
encapsulated in virtual devices and presented to VMs as PFs.
This technique allows the VM to use the same mechanisms
for VFs/PFs and Als. For supporting GVA on both VFs/PFs
and Als assigned to a VM, the VMM shadows the guest
PASID table to create a shadow PASID table for the VM in
the physical IOMMU. The shadow PASID table is pointed
to by the assigned VF/PF’s context entry, while the Al’s
context entry points to the system-wide host PASID table.
The VMM exposes a smaller PASID table size in the
vIOMMU so the guest PASIDs occupy only a portion of the
physical PASID table. The VMM configures guest PASIDs
in the VM’s shadowed PASID table to support assigned
VFs/PFs. The VMM also allocates host PASIDs correspond-
ing to the VM’s guest PASIDs and configures them in the
system-wide host PASID table to support assigned Als.
Therefore, if an application in a VM is assigned both
SVM-capable VFs/PFs and Als, the VMM may configure an
application’s guest PASID for VFs/PFs in the VM’s shadow
PASID table and the application’s host PASID for Als in the
system-wide host PASID table. The VMM may also con-
figure the application’s host PASID in the VM’s shadow
PASID table for VFs/PFs that use ENQCMD/S instructions.
The PASID entry second-level pointer may be configured to
point to a second-level table for nested GPA-to-HPA trans-
lation for both VFs/PFs and Als.

[0057] In block 510 of method 500 of FIG. 5A, a VMM
creates a virtual IOMMU (vIOMMU) for a VM to which a
VF/PF and an Al may be assigned and/or in which hot-plug-
in of new devices is supported. The vIOMMU (e.g.,
vIOMMU 550 in FIG. 5B) supports a smaller PASID width
than that supported by the corresponding physical [IOMMU.

US 2021/0173790 Al

For example, if the PASID width supported by the physical
IOMMU is 20 bits, the PASID width supported by the
vIOMMU may be 10 bits. Therefore, the VMM may shadow
the guest PASID table of the vIOMMU to a scalable PASID
table, pointed to by the VF/PFs context entry, that is private
to the VF/PF device (e.g., shadow PASID table 560 in FIG.
5B).

[0058] In block 520, for each guest PASID in the guest
PASID table, the VMM creates a corresponding entry in the
shadowed PASID table, with nesting enabled to provide for
first-level translation from the guest PASID table (GVA to
GPA) and second-level translation using the host GPA-to-
HPA table. If the PASID is used with a VF/PF (without
ENQCMDY/S), the device operates directly using the guest
PASID. Since the guest PASID space is smaller than the
physical PASID space, there are more PASID entries avail-
able (above the guest PASID range) in the shadowed PASID
table. The PASID space above the guest PASID range is not
visible to the VM, so it may be used by the VMM to
configure host PASIDs in the shadowed PASID table. Addi-
tionally, the VMM never allocates or configures any host
PASID values in the guest PASID range for any VMs in the
system-wide host PASID table.

[0059] In block 530, to support PASID virtualization, the
VMM may allocate a host PASID (above the guest PASID
range) for each guest PASID used by an Al or ENQCMD/S
instructions. The corresponding host PASID entry in the
shadowed PASID table is also programmed with nesting
enabled, with first-level table translation from the guest
PASID table (GVA to GPA), and second-level translation
using the host GPA-to-HPA table. The VMM also configures
the host PASID entry in the system-wide host PASID table
with nesting enabled for with first-level translation using the
guest-PASID table (GVA to GPA), and second-level trans-
lation using the host GPA-to-HPA table.

[0060] Since the VM can program arbitrary guest PASIDs
(including a guest PASID value above the guest PASID
range) into the VF/PF, the VM can cause the VF/PF to use
a host PASID illegally. However, it will not cause any harm
to any other VM or the VMM because the VMM configures
only host PASIDs that correspond to the particular VM’s
guest PASIDs in its shadow PASID table. Therefore, an
invalid guest PASID value programmed in the VE/PF will
cause an [IOMMU fault (if the guest PASID is not configured
in the shadow PASID table) or will cause the VF/PF to
access an address belonging to another PASID of the same
VM (if the guest PASID is configured in the shadow PASID
table).

[0061] For example, an application inside VM1 may be
assigned both a VF/PF (physical context entry P) and an Al
(physical context entry O). If the VF/PF uses a guest PASID
(non ENQCMD/S based method), the IOMMU performs
DMA remapping using the guest PASID in the shadowed
PASID table. If the VF/PF uses a host PASID (ENQCMD/S
based method), the IOMMU performs DMA remapping
using the host PASID in the shadowed PASID table. If an Al
does a DMA request (irrespective of ENQCMDY/S), it will
always be with a host PASID. In this case, the IOMMU uses
the host PASID entry in the system wide host PASID table
to perform DMA remapping. Since all three PASID entries
are pointing to the same set of first-level and second-level
translation tables, all of these DMA remapping requests will
result in the same HPA addresses for the application.

Jun. 10, 2021

[0062] An application inside a misbehaving VM2 may be
assigned a VF/PF (physical context entry N) which may
program an arbitrary guest PASID to the VF/PF. VM2
programs guest PASID r in its vIOMMU PASID table,
which causes the VMM to configure the guest PASID r in
VM2’s shadow PASID table as well as allocate a host
PASID R and configure it in VM2’s shadow PASID table. So
even if VM2 programs the VF/PF to use host PASID Q
(which belongs to VM1), it cannot access VM1’s memory
because VM2’s shadow PASID table does not have host
PASID Q configured. VM2’s attempt will result in an
IOMMU fault instead.

[0063] FIGS. 6A and 6B illustrate unified PASID man-
agement according to yet another embodiment of the inven-
tion, including an IOMMU para-virtualization mechanism in
which a VMM presents a vIOMMU to a VM and exposes a
set of services to configure a physical IOMMU for IOVA and
SVM operations. Als may be encapsulated in virtual devices
and presented to VMs as PFs. This technique allows the VM
to use the same mechanisms for VFs/PFs and Als. For IOVA
and SVM operations, the VMM uses a global PASID space
rather than requiring each VM to implement its own PASID
space (guest PASIDs). The VMM manages a global pool of
PASIDs which is used to allocate PASIDs for Scalable IOV
Als’ second-level translations (IOVA operation) and to
allocate PASIDs for SVM applications running inside VMs
requesting GVA operation for devices (VF/PF devices or
virtual devices made-up of Als). The VMM may control the
maximum number of PASIDs allocated to a particular VM
to assure a fair share of PASID space between different VM
and the VMM. The VMM may use a scalable PASID table
that is private to a VF/PF device or to a VM, pointed to by
the VF/PF’s context entry, to support SVM operations on a
VF/PF device. The VMM may use a system-wide scalable
PASID table or one scalable PASID table for each physical
IOMMU to support SVM operations on Als.

[0064] In block 602 of method 600 of FIG. 6A, a VMM
creates a vVIOMMU for a VM to which a VF/PF and an Al
may be assigned and/or in which hot-plug-in of new devices
is supported. The vIOMMU (e.g., vVIOMMU 610 in FIG. 6B)
may not allocate its own translation tables or PASIDs, but
may rely on IOMMU services provided by the VMM to
achieve SVM and IOVA functionality. For each operation on
vIOMMU that involves modification of IOMMU registers or
IOMMU ftranslation tables, VIOMMU software running
inside a VM calls into the VMM and requests the VMM to
perform the operation on its behalf. The VMM may service
the request or may deny it if invalid parameters are passed
in the call. The VMM creates a global PASID space (e.g.
global PASID space 620 in FIG. 6B) and allocates or frees
PASIDs from this PASID space based on its own needs or as
a result of operations that are initiated by VMs through the
vIOMMU. To enable GVA operation, vVIOMMU software
running in a VM may utilize IOMMU services provided by
the VMM to acquire PASIDs (in block 604) to be pro-
grammed in the device and to communicate a base for
GVA-10-GPA paging structures for first-level translation.

[0065] In block 606, for each vVIOMMU request to enable
GVA operation for the application, the VMM allocates a host
PASID (e.g. PASID 630 in FIG. 6B) if one is not already
allocated for it. The VMM creates a corresponding entry in
the particular VM’s scalable PASID table (e.g. PASID table
640 in FIG. 6B) if the request is for a VF/PF device and in
the AT’s scalable PASID table (e.g. PASID table 650 in FIG.

US 2021/0173790 Al

6B) if the request is for an Al with nesting enabled to
provide for first-level translation using guest GVA-to-GPA
table (e.g. arrow 660 in FIG. 6B) and second-level transla-
tion using the host GPA-to-HPA table (e.g. arrow 670 or
arrow 680 in FIG. 6B). The VMM also returns the host
PASID to the vIOMMU software in the VM, which can be
used as the guest PASID (PASID 690 in FIG. 6B) for normal
guest PASID usages.

[0066] Since the VM can program arbitrary PASIDs (in-
cluding a PASID value not allocated to it by the VMM) into
the VE/PF, the VM can cause the VE/PF to use a PASID
illegally. However, it will not cause any harm to any other
VM or the VMM because the VMM configures a context-
entry for the VE/PF device to use the particular VM’s PASID
table, in which valid entries correspond only to PASIDs that
have been allocated to the particular VM by the VMM.
Therefore, an invalid PASID value programmed in the
VF/PF will cause an IOMMU fault (if the PASID is not
configured in the particular VM’s PASID table) or will cause
the VF/PF to access an address belonging to another PASID
of'the same VM (if the PASID is configured in the particular
VM’s PASID table).

[0067] For example, an application inside VM1 may be
assigned both a VF/PF (physical context entry P) and an Al
(physical context entry O). If the VF/PF uses a PASID Q
(irrespective of ENQCMDY/S), the IOMMU performs DMA
remapping using the PASID Q in the VM1’s PASID table. If
an Al does a DMA request (irrespective of ENQCMDY/S), the
IOMMU uses the PASID Q entry in the Al PASID table to
perform DMA remapping. Since both the PASID Q entries
are pointing to the same set of first-level and second-level
translation tables, all of these DMA remapping requests will
result in the same HPA addresses for the application.
[0068] An application inside a misbehaving VM2 may be
assigned a VF/PF (physical context entry N) which may
program an arbitrary PASID to the VF/PF. When VM2
requests SVM enable for an application, the VMM allocates
a PASID R and configures it in VM2’s PASID table. So even
if VM2 programs the VF/PF to use host PASID Q (which
belongs to VM1), it cannot access VM1’s memory because
VM2’s PASID table does not have PASID Q configured.
VM2’s attempt will result in an IOMMU fault instead.
[0069] FIGS. 7A, 7B, and 8 illustrate IOVA virtualization
according to embodiments of the invention. The software-
based embodiment of FIG. 7A includes shadowing of the
vIOMMU’s second-level table (GIOVA-to-GPA) to create
(GIOVA-to-HPA) mappings in the physical IOMMU’s cor-
responding second-level table, i.e., for VFs/PFs, the context
entry second-level table is used, and for Als, the PASID
entry second-level table is used. The software-based
embodiment of FIG. 7B includes a vIOMMU utilizing
VMM services to add or remove mappings in an IOVA-to-
HPA table allocated by the VMM representing I/O space of
the VM or the I/O space of device and the VMM configuring
a physical IOMMU’s context entry (for VFs/PFs) and
PASID entry (for Als) to use this table for second-level
translation. The hardware-based embodiment of FIG. 8
includes enhancing the physical IOMMU to perform nested
second level (GIOVA-to-GPA-to-HPA) translations from the
vIOMMU’s second-level table (GIOVA-to-GPA) to the
physical IOMMU’s second level (GPA-to-HPA) table.
[0070] FIG. 7A illustrates a software-based approach to

IOVA virtualization according to an embodiment of the
invention. In method 700, the VMM shadows the GIOVA-

Jun. 10, 2021

to-GPA page table from the vVIOMMU in the VM to a
GIOVA-to-HPA page table in the physical IOMMU in the
host. In block 710, when the VM configures the vIOMMU’s
GIOVA-to-GPA mappings, the VMM intercepts and pro-
grams the corresponding GIOVA-to-HPA mappings in the
physical IOMMU’s corresponding context entry’s second-
level table for the VF/PF. In block 720, if the VM also uses
SVM on the VE/PF, the VMM programs the GPA-to-HPA
mappings in the VM’s shadow PASID table’s corresponding
scalable PASID entry second-level table. Both the guest
PASID entry and the corresponding host PASID entry are
configured to point to the GPA-to-HPA table (arrows 570 in
shadow PASID tables of FIG. 5B). This approach enables
the VM to use both IOVA and SVM on the VF/PF simul-
taneously. It may be preferred over a hardware approach
using nested translation, as described below, if the VM
updates its GIOVA-to-GPA table infrequently.

[0071] FIG. 7B illustrates a software-based approach to
IOVA virtualization according to an embodiment of the
invention. In block 760 of method 700, the VMM creates a
vIOMMU and exposes IOMMU services for GVA and IOVA
operations that are invoked by vIOMMU software running
inside the VM. The VMM creates an IOVA-to-HPA table
that is representing I/O space of the VM and configures the
physical IOMMU’s context-entry (for VFs/PFs) or PASID
entry (for Als) to use this table. In block 770, the VMM adds
or removes a mapping in the IOVA-to-HPA table based on
the request from the vVIOMMU.

[0072] FIG. 8 illustrates a hardware-based approach to
IOVA virtualization according to an embodiment of the
invention. Physical IOMMU 800 is enhanced to support a
2nd-over-2nd nested translation, i.e., IOMMU 800 has the
ability to do GIOVA-to-GPA-to-HPA nested translations.
The scalable PASID entry is extended to include an addi-
tional second level pointer for GIOVA nested translation
requests with a PASID (for scalable IOVAs). Additionally,
the scalable context entry is extended to include an addi-
tional second level pointer for the GIOVA nested translation
requests without PASID (for VF/PF). Since now there are
different tables for IOVA-to-HPA and GPA-to-HPA, it
allows VMs to use both IOVA and SVM on the assigned /O
device (VF/PF or Al). This approach may be preferred over
a software approach, as described above, because it can
perform GIOVA-to-GPA-to-HPA translations without VMM
intercept and shadowing overhead.

Exemplary Core Architectures, Processors, and Computer
Architectures

[0073] The figures below detail exemplary architectures
and systems to implement embodiments of the above.

[0074] Processor cores may be implemented in different
ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific

US 2021/0173790 Al

(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.

Exemplary Core Architectures

In-Order and Out-of-Order Core Block Diagram

[0075] FIG. 9A is a block diagram illustrating both an
exemplary in-order pipeline and an exemplary register
renaming, out-of-order issue/execution pipeline according
to embodiments of the invention. FIG. 9B is a block diagram
illustrating both an exemplary embodiment of an in-order
architecture core and an exemplary register renaming, out-
of-order issue/execution architecture core to be included in
a processor according to embodiments of the invention. The
solid lined boxes in FIGS. 9A-B illustrate the in-order
pipeline and in-order core, while the optional addition of the
dashed lined boxes illustrates the register renaming, out-of-
order issue/execution pipeline and core. Given that the
in-order aspect is a subset of the out-of-order aspect, the
out-of-order aspect will be described.

[0076] In FIG. 9A, a processor pipeline 900 includes a
fetch stage 902, a length decode stage 904, a decode stage
906, an allocation stage 908, a renaming stage 910, a
scheduling (also known as a dispatch or issue) stage 912, a
register read/memory read stage 914, an execute stage 916,
a write back/memory write stage 918, an exception handling
stage 922, and a commit stage 924.

[0077] FIG. 9B shows processor core 990 including a
front end unit 930 coupled to an execution engine unit 950,
and both are coupled to a memory unit 970. The core 990
may be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 990 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, COprocessor core,
general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

[0078] The front end unit 930 includes a branch prediction
unit 932, which is coupled to an instruction cache unit 934,
which is coupled to an instruction translation lookaside
buffer (TLB) 936, which is coupled to an instruction fetch
unit 938, which is coupled to a decode unit 940. The decode
unit 940 (or decoder) may decode instructions, and generate
as an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode
unit 940 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only

Jun. 10, 2021

memories (ROMs), etc. In one embodiment, the core 990
includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit
940 or otherwise within the front end unit 930). The decode
unit 940 is coupled to a rename/allocator unit 952 in the
execution engine unit 950.

[0079] The execution engine unit 950 includes the rename/
allocator unit 952 coupled to a retirement unit 954 and a set
of one or more scheduler unit(s) 956. The scheduler unit(s)
956 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 956 is coupled to the physical register
file(s) unit(s) 958. Each of the physical register file(s) units
958 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 958 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general purpose registers.
The physical register file(s) unit(s) 958 is overlapped by the
retirement unit 954 to illustrate various ways in which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and
a retirement register file(s); using a register maps and a pool
of registers; etc.). The retirement unit 954 and the physical
register file(s) unit(s) 958 are coupled to the execution
cluster(s) 960. The execution cluster(s) 960 includes a set of
one or more execution units 962 and a set of one or more
memory access Units 964. The execution units 962 may
perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
956, physical register file(s) unit(s) 958, and execution
cluster(s) 960 are shown as being possibly plural because
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
scalar floating point/packed integer/packed floating point/
vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster—
and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution
cluster of this pipeline has the memory access unit(s) 964).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

[0080] The set of memory access units 964 is coupled to
the memory unit 970, which includes a data TLB unit 972
coupled to a data cache unit 974 coupled to a level 2 (L2)
cache unit 976. In one exemplary embodiment, the memory
access units 964 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 972 in the memory unit 970. The instruction
cache unit 934 is further coupled to a level 2 (1.2) cache unit

US 2021/0173790 Al

976 in the memory unit 970. The 1.2 cache unit 976 is
coupled to one or more other levels of cache and eventually
to a main memory.

[0081] By way of example, the exemplary register renam-
ing, out-of-order issue/execution core architecture may
implement the pipeline 900 as follows: 1) the instruction
fetch 938 performs the fetch and length decoding stages 902
and 904; 2) the decode unit 940 performs the decode stage
906; 3) the rename/allocator unit 952 performs the allocation
stage 908 and renaming stage 910; 4) the scheduler unit(s)
956 performs the schedule stage 912; 5) the physical register
file(s) unit(s) 958 and the memory unit 970 perform the
register read/memory read stage 914; the execution cluster
960 perform the execute stage 916; 6) the memory unit 970
and the physical register file(s) unit(s) 958 perform the write
back/memory write stage 918; 7) various units may be
involved in the exception handling stage 922; and 8) the
retirement unit 954 and the physical register file(s) unit(s)
958 perform the commit stage 924.

[0082] The core 990 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 990 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

[0083] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-
threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
ogy).

[0084] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes separate instruction and data cache units 934/974
and a shared L2 cache unit 976, alternative embodiments
may have a single internal cache for both instructions and
data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

[0085] FIG. 10 is a block diagram of a processor 1000 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments of the invention. The solid lined
boxes in FIG. 10 illustrate a processor 1000 with a single
core 1002A, a system agent 1010, a set of one or more bus
controller units 1016, while the optional addition of the
dashed lined boxes illustrates an alternative processor 1000
with multiple cores 1002A-N, a set of one or more integrated
memory controller unit(s) 1014 in the system agent unit
1010, and special purpose logic 1008.

Jun. 10, 2021

[0086] Thus, different implementations of the processor
1000 may include: 1) a CPU with the special purpose logic
1008 being integrated graphics and/or scientific (through-
put) logic (which may include one or more cores), and the
cores 1002A-N being one or more general purpose cores
(e.g., general purpose in-order cores, general purpose out-
of-order cores, a combination of the two); 2) a coprocessor
with the cores 1002A-N being a large number of special
purpose cores intended primarily for graphics and/or scien-
tific (throughput); and 3) a coprocessor with the cores
1002A-N being a large number of general purpose in-order
cores. Thus, the processor 1000 may be a general-purpose
processor, coprocessor or special-purpose processor, such
as, for example, a network or communication processor,
compression engine, graphics processor, GPGPU (general
purpose graphics processing unit), a high-throughput many
integrated core (MIC) coprocessor (including 30 or more
cores), embedded processor, or the like. The processor may
be implemented on one or more chips. The processor 1000
may be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

[0087] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache
units 1006, and external memory (not shown) coupled to the
set of integrated memory controller units 1014. The set of
shared cache units 1006 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 1012 interconnects the integrated
graphics logic 1008 (integrated graphics logic 1008 is an
example of and is also referred to herein as special purpose
logic), the set of shared cache units 1006, and the system
agent unit 1010/integrated memory controller unit(s) 1014,
alternative embodiments may use any number of well-
known techniques for interconnecting such units. In one
embodiment, coherency is maintained between one or more
cache units 1006 and cores 1002-A-N.

[0088] In some embodiments, one or more of the cores
1002A-N are capable of multithreading. The system agent
1010 includes those components coordinating and operating
cores 1002A-N. The system agent unit 1010 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 1002A-N and the
integrated graphics logic 1008. The display unit is for
driving one or more externally connected displays.

[0089] The cores 1002A-N may be homogenous or het-
erogeneous in terms of architecture instruction set; that is,
two or more of the cores 1002A-N may be capable of
execution the same instruction set, while others may be
capable of executing only a subset of that instruction set or
a different instruction set.

Exemplary Computer Architectures

[0090] FIGS. 11-14 are block diagrams of exemplary
computer architectures. Other system designs and configu-
rations known in the arts for laptops, desktops, handheld
PCs, personal digital assistants, engineering workstations,
servers, network devices, network hubs, switches, embed-
ded processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,

US 2021/0173790 Al

and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

[0091] Referring now to FIG. 11, shown is a block dia-
gram of a system 1100 in accordance with one embodiment
of the present invention. The system 1100 may include one
or more processors 1110, 1115, which are coupled to a
controller hub 1120. In one embodiment, the controller hub
1120 includes a graphics memory controller hub (GMCH)
1190 and an Input/Output Hub (IOH) 1150 (which may be
on separate chips); the GMCH 1190 includes memory and
graphics controllers to which are coupled memory 1140 and
a coprocessor 1145; the IOH 1150 couples input/output (/O)
devices 1160 to the GMCH 1190. Alternatively, one or both
of'the memory and graphics controllers are integrated within
the processor (as described herein), the memory 1140 and
the coprocessor 1145 are coupled directly to the processor
1110, and the controller hub 1120 in a single chip with the
IOH 1150.

[0092] The optional nature of additional processors 1115 is
denoted in FIG. 11 with broken lines. Each processor 1110,
1115 may include one or more of the processing cores
described herein and may be some version of the processor
1000.

[0093] The memory 1140 may be, for example, dynamic
random access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 1120 communicates with the
processor(s) 1110, 1115 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as Quick-
Path Interconnect (QPI), or similar connection 1195.
[0094] In one embodiment, the coprocessor 1145 is a
special-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication
processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 1120 may include an integrated graphics accel-
erator.

[0095] There can be a variety of differences between the
physical resources 1110, 1115 in terms of a spectrum of
metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.
[0096] In one embodiment, the processor 1110 executes
instructions that control data processing operations of a
general type. Embedded within the instructions may be
coprocessor instructions. The processor 1110 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 1145. Accordingly,
the processor 1110 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 1145.
Coprocessor(s) 1145 accept and execute the received copro-
cessor instructions.

[0097] Referring now to FIG. 12, shown is a block dia-
gram of a first more specific exemplary system 1200 in
accordance with an embodiment of the present invention. As
shown in FIG. 12, multiprocessor system 1200 is a point-
to-point interconnect system, and includes a first processor
1270 and a second processor 1280 coupled via a point-to-
point interconnect 1250. Each of processors 1270 and 1280
may be some version of the processor 1000. In one embodi-
ment of the invention, processors 1270 and 1280 are respec-
tively processors 1110 and 1115, while coprocessor 1238 is

Jun. 10, 2021

coprocessor 1145. In another embodiment, processors 1270
and 1280 are respectively processor 1110 and coprocessor
1145.

[0098] Processors 1270 and 1280 are shown including
integrated memory controller (IMC) units 1272 and 1282,
respectively. Processor 1270 also includes as part of its bus
controller units point-to-point (P-P) interfaces 1276 and
1278; similarly, second processor 1280 includes P-P inter-
faces 1286 and 1288. Processors 1270, 1280 may exchange
information via a point-to-point (P-P) interface 1250 using
P-P interface circuits 1278, 1288. As shown in FIG. 12,
IMCs 1272 and 1282 couple the processors to respective
memories, namely a memory 1232 and a memory 1234,
which may be portions of main memory locally attached to
the respective processors.

[0099] Processors 1270, 1280 may each exchange infor-
mation with a chipset 1290 via individual P-P interfaces
1252, 1254 using point to point interface circuits 1276,
1294, 1286, 1298. Chipset 1290 may optionally exchange
information with the coprocessor 1238 via a high-perfor-
mance interface 1292. In one embodiment, the coprocessor
1238 is a special-purpose processor, such as, for example, a
high-throughput MIC processor, a network or communica-
tion processor, compression engine, graphics processor,
GPGPU, embedded processor, or the like.

[0100] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0101] Chipset 1290 may be coupled to a first bus 1216 via
an interface 1296. In one embodiment, first bus 1216 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present invention
is not so limited.

[0102] As shown in FIG. 12, various I/O devices 1214
may be coupled to first bus 1216, along with a bus bridge
1218 which couples first bus 1216 to a second bus 1220. In
one embodiment, one or more additional processor(s) 1215,
such as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators
or digital signal processing (DSP) units), field program-
mable gate arrays, or any other processor, are coupled to first
bus 1216. In one embodiment, second bus 1220 may be a
low pin count (LPC) bus. Various devices may be coupled to
a second bus 1220 including, for example, a keyboard and/or
mouse 1222, communication devices 1227 and a storage
unit 1228 such as a disk drive or other mass storage device
which may include instructions/code and data 1230, in one
embodiment. Further, an audio I/O 1224 may be coupled to
the second bus 1220. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 12, a system may implement a multi-drop bus
or other such architecture.

[0103] Referring now to FIG. 13, shown is a block dia-
gram of a second more specific exemplary system 1300 in
accordance with an embodiment of the present invention.
Like elements in FIGS. 12 and 13 bear like reference
numerals, and certain aspects of FIG. 12 have been omitted
from FIG. 13 in order to avoid obscuring other aspects of
FIG. 13.

US 2021/0173790 Al

[0104] FIG. 13 illustrates that the processors 1270, 1280
may include integrated memory and /O control logic
(“CL”) 1272 and 1282, respectively. Thus, the CL 1272,
1282 include integrated memory controller units and include
1/O control logic. FIG. 13 illustrates that not only are the
memories 1232, 1234 coupled to the CL. 1272, 1282, but also
that 1/0O devices 1314 are also coupled to the control logic
1272, 1282. Legacy 1/O devices 1315 are coupled to the
chipset 1290.

[0105] Referring now to FIG. 14, shown is a block dia-
gram of a SoC 1400 in accordance with an embodiment of
the present invention. Similar elements in FIG. 10 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 14, an interconnect
unit(s) 1402 is coupled to: an application processor 1410
which includes a set of one or more cores 1002A-N, which
include cache units 1004A-N, and shared cache unit(s)
1006; a system agent unit 1010; a bus controller unit(s)
1016; an integrated memory controller unit(s) 1014; a set or
one or more coprocessors 1420 which may include inte-
grated graphics logic, an image processor, an audio proces-
sor, and a video processor; an static random access memory
(SRAM) unit 1430; a direct memory access (DMA) unit
1432; and a display unit 1440 for coupling to one or more
external displays. In one embodiment, the coprocessor(s)
1420 include a special-purpose processor, such as, for
example, a network or communication processor, compres-
sion engine, GPGPU, a high-throughput MIC processor,
embedded processor, or the like.

[0106] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodi-
ments of the invention may be implemented as computer
programs or program code executing on programmable
systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage
elements), at least one input device, and at least one output
device.

[0107] Program code, such as code 1230 illustrated in
FIG. 12, may be applied to input instructions to perform the
functions described herein and generate output information.
The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[0108] The program code may be implemented in a high
level procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

[0109] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and

Jun. 10, 2021

supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

[0110] Such machine-readable storage media may include,
without limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritables
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media suitable for storing electronic instructions.

[0111] Accordingly, embodiments of the invention also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

[0112] In an embodiment, an apparatus may include root-
table lookup circuitry and context-table lookup circuitry.
The root-table lookup circuitry is to find a root-entry in a
root table. The root-entry to include a context pointer to the
context table. The context-table lookup circuitry is to find a
context entry in a context table. The context entry is to
include a first nesting bit to indicate whether the entry is for
an address translation in which a process address space
identifier (PASID) is to be used. The context entry to also
include at least one of a PASID pointer to a PASID table and
apage-table pointer to a page-table translation structure. The
PASID-table pointer is to be used in response a first nesting-
bit indication that the address translation is to use a PASID.
The page-table pointer is to be used in response to a second
nesting-bit indication that the address translation is not to
use a PASID.

[0113] The page-table translation structure may be used to
translate for single-root I/O virtualization. The page-table
translation structure may also be used to translate for a
virtual function corresponding to a physical function of an
1/0 device. The page-table translation structure may also be
used to translate a guest physical address to a host physical
address. The page-table translation structure may also be
used to translate an I/O virtual address to a host physical
address. The apparatus may also include PASID-table
lookup circuitry to find a PASID-entry in the PASID table,
the PASID-entry to include a second nesting bit to indicate
whether the entry is to point to a first-level translation
structure or a second-level translation structure. The first-
level translation structure may be used to translate a guest
virtual address to a guest physical address. The first-level
translation structure may also be used to translate for a
virtual function corresponding to a physical function of an
1/0O device. The first-level translation structure may also be
used to translate for an assignable interface of an /O device.
The second-level translation structure may be used to trans-
late a guest physical address to a host physical address. The
second-level translation structure may also be used to trans-
late for a virtual function corresponding to a physical

US 2021/0173790 Al

function of an I/O device. The second-level translation
structure may also be used to translate for an assignable
interface of an I/O device. The second-level translation
structure may also be used to translate an I/O virtual address
to a host physical address. The second-level translation
structure may also be used to translate for a virtual function
corresponding to a physical function of an I/O device. The
second-level translation structure may also be used to trans-
late for an assignable interface of an I/O device.

[0114] In an embodiment, a method may include creating,
for a VM by a VMM, a virtual IOMMU corresponding to a
physical IOMMU, the virtual IOMMU having a PASID
entry width that is smaller than the PASID entry width of the
physical IOMMU; and shadowing, by the VMM, a guest
PASID from the virtual IOMMU in the physical IOMMU.
The method may also include storing, by the VMM, a host
PASID in the physical IOMMU, the host PASID correspond-
ing to the guest PASID. The guest PASID may be used by
a virtual function of a physical function of an /O device
assigned to the VM. The host PASID may be used by an
assignable interface of an 1/O device assigned to the VM.

[0115] In an embodiment, an apparatus may include
means for performing any of the methods described above.
In an embodiment, a machine-readable tangible medium
may store instructions, which, when executed by a machine,
cause the machine to perform any of the methods described
above.

[0116] Inan embodiment, a system may include a plurality
of physical 1/O devices; a processor to create one or more
VMs to which to assign one or more virtual /O devices to
be abstracted from the plurality of physical /O devices; and
an IOMMU to perform address translation to support virtu-
alization of the plurality of I/O devices according to a
plurality of translation techniques, the IOMMU including
context-table lookup circuitry to find a context entry in a
context table, the context entry to include a first nesting bit
to indicate whether the entry is for an address translation in
which a PASID is to be used, the context entry to also
include at least one of a PASID pointer to a PASID table and
a page-table pointer to a page-table translation structure, the
PASID-table pointer to be used in response a first nesting-bit
indication that the address translation is to use a PASID and
the page-table pointer to be used in response to a second
nesting-bit indication that the address translation is not to
use a PASID.

[0117] The IOMMU may also include root-table lookup
circuitry to find a root-entry in a root table, the root-entry to
include a context pointer to the context table. The page-table
translation structure may be used to translate for single-root
1/0O virtualization. The page-table translation structure may
also be used to translate for a virtual function corresponding
to a physical function of an I/O device. The page-table
translation structure may also be used to translate a guest
physical address to a host physical address. The page-table
translation structure may also be used to translate an I/O
virtual address to a host physical address. The IOMMU may
also include PASID-table lookup circuitry to find a PASID-
entry in the PASID table, the PASID-entry to include a
second nesting bit to indicate whether the entry is to point to
a first-level translation structure or a second-level translation
structure. The first-level translation structure may be used to
translate a guest virtual address to a guest physical address.
The first-level translation structure may also be used to
translate for a virtual function corresponding to a physical

Jun. 10, 2021

function of an I/O device. The first-level translation structure
may also be used to translate for an assignable interface of
an [/O device. The second-level translation structure may be
used to translate a guest physical address to a host physical
address. The second-level translation structure may also be
used to translate for a virtual function corresponding to a
physical function of an 1/O device. The second-level trans-
lation structure may also be used to translate for an assign-
able interface of an I/O device. The second-level translation
structure may also be used to translate an I/O virtual address
to a host physical address. The second-level translation
structure may also be used to translate for a virtual function
corresponding to a physical function of an I/O device. The
second-level translation structure may also be used to trans-
late for an assignable interface of an I/O device.

[0118] In an embodiment, a PASID entry may be extended
to include a second-level table pointer (when a first-level
table pointer is already there) that can be used to do
GPA-to-HPA or IOVA-to-HPA translations. In an embodi-
ment, a PASID entry may include a translation-type field to
indicate whether the translation is first-level only, second-
level only and a nesting bit to indicate if it is a nested
translation. In an embodiment, a context entry may be
extended to include an RID2PASID field, and the second
level table pointer may be removed from the context entry.
The RID2PASID field may contain a PASID that may
indicate which PASID to use to index into the system-wide
PASID table for requests-without-PASID. In an embodi-
ment, the PASID entry may be extended to include another
second-level table pointer for doing GIOVA-to-GPA trans-
lations, which may be used to do nested IOVA translations
(GIOVA-to-GPA-to-HPA) for requests with a PASID. In
embodiments, the context entry may be extended to include
another second-level table pointer for doing IOVA-to-GPA
translations which may be used to do nested IOVA transla-
tions (GIOVA-to-GPA-t0-HPA) for requests-without-
PASID. In embodiments, the VMM may create a separate
PASID table per VM to support SVM operations for
assigned VFs/PFs. In an embodiment, the VMM may create
a single system-wide host PASID table (or a per-IOMMU
PASID table but maintain a single host PASID space). In an
embodiment, the VM’s PASID table is pointed to by the
context entry of VFs/PFs assigned to the VM, whereas the
system-wide host PASID table is pointed to by the context
entry of Als and other VFs/PFs assigned to the VMM. In an
embodiment, the VMM can expose one of the two types of
virtual IOMMUS to the VM: a virtual IOMMU that allocates
and manages its own guest PASID space and PASID table
(for example, a fully emulated Intel IOMMU); and a para-
virtualized IOMMU which doesn’t maintain its own guest
PASID space or PASID table but instead uses VMM services
(hypercalls) to get system-wide host PASIDs from the host
IOMMU driver. For vIOMMUS of the first type, the VMM
shadows the guest PASID table into the VM’s physical
PASID table, exposes a PASID width which is smaller than
the physical PASID width, and configures the guest PASIDs
from the guest PASID table into the VM’s shadow PASID
table. The VMM also configures the host PASID corre-
sponding to the guest PASID into the shadow PASID table
to support VFs/PFs that do SVM using EMQCMD and
ENQCMDS instructions. For vIOMMU s of the second type,
the VMM configures system-wide host PASIDs allocated for
the VM in the VM’s PASID table to support both
ENQCMD/S and non-ENQCMDY/S based SVM.

US 2021/0173790 Al

What is claimed is:
1. An apparatus comprising:
first circuitry to use at least an identifier of a device to
locate a context entry, the context entry to include at
least one of a page-table pointer to a page-table trans-
lation structure and a process address space identifier
(PASID); and

second circuitry to use at least the PASID to locate a
PASID-entry, the PASID-entry to include at least one of
a first-level page-table pointer to a first-level translation
structure and a second-level page-table pointer to a
second-level translation structure;

wherein the PASID is to be supplied by the device; and

wherein at least one of the apparatus, the context entry,

and the PASID entry is to include one or more control
fields to indicate whether the first-level page-table
pointer or the second-level page-table pointer is to be
used.

2. The apparatus of claim 1, wherein the second-level
translation structure of a PASID-entry is to be used to
translate a guest physical address or an I/O virtual address to
a host physical address for an address translation in which a
PASID is provided.

3. The apparatus of claim 1, wherein the control fields in
the PASID-entry indicate whether a nested translation is to
be performed using the first-level page-table pointer and one
of the page-table pointer in the context entry and the
second-level page-table pointer in the PASID entry.

4. The apparatus of claim 2, wherein the PASID-entry is
also to include an additional second-level pointer to a
second-level translation table to be used to translate a guest
1/0 virtual address to a guest physical address for an address
translation in which a PASID is provided.

5. The apparatus of claim 2, wherein the context entry is
also to include an additional second-level pointer to a
second-level translation table to be used to translate a guest
1/0 virtual address to a guest physical address for an address
translation in which a PASID is not provided.

6. The apparatus of claim 1, wherein the PASID table is
one of a plurality of PASID tables, each of the plurality of
PASID tables to be created by a virtual machine monitor
(VMM) to support shared virtual memory (SVM) operations
for a virtual function (VF) or a physical function (PF).

7. The apparatus of claim 6, wherein the VMM is to
maintain a single system-wide host PASID space.

8. The apparatus of claim 7, wherein the context entry is
associated with a VF or PF assigned to a virtual machine
(VM) and the PASID table is associated with the VM.

9. The apparatus of claim 7, wherein the context entry is
associated with a plurality of assignable interfaces and VF or
PF assigned to the VMM and the PASID table is the single
system-wide host PASID table.

10. The apparatus of claim 8, wherein the VMM is to
expose a virtual /O memory management unit {OMMU) to
the VM, the virtual IOMMU to allocate and manage its own
guest PASID space.

11. The apparatus of claim 8, wherein the VMM is to
expose a virtual /O memory management unit {OMMU) to
the VM, the virtual IOMMU to use system-wide host
PASIDs, provided by the VMM, from a host IOMMU driver.

13

Jun. 10, 2021

12. The apparatus of claim 10, wherein the VMM is also
to shadow a guest PASID table for the VM in a physical
PASID table.

13. The apparatus of claim 12, wherein the VMM is also
to configure a host PASID corresponding to a guest PASID
in a shadow PASID table to support SVM operations with
enqueuing instructions.

14. The apparatus of claim 11, wherein the VMM is also
to allocate a private PASID table to the VM and to allocate
and configure system-wide host PASIDs for the VM in the
private PASID table to support SVM operations with and
without enqueuing instructions.

15. The apparatus of claim 1, wherein the PASID, if not
supplied by the device, is to be configured in the context
entry for the IOMMU to use for address translation instead
of the context entry’s translation structures.

16. A method comprising:

creating, for a virtual machine (VM) by a virtual machine
monitor (VMM), a virtual input/output memory man-
agement unit (IOMMU) corresponding to a physical
IOMMU, the virtual IOMMU having a process address
space identifier (PASID) entry width that is smaller
than the PASID entry width of the physical IOMMU;
and

shadowing, by the VMM, a guest PASID from the virtual
IOMMU in the physical IOMMU.

17. The method of claim 16, further comprising config-
uring, by the VMM, a host PASID in the physical IOMMU
PASID table, the host PASID corresponding to the guest
PASID.

18. The method of claim 17, wherein the guest PASID is
to be used by a virtual function or a physical function of an
input/output device assigned to the VM.

19. The method of claim 17, wherein the host PASID is to
be used by an assignable interface (Al) of an input/output
device assigned to the VM.

20. A system comprising:

a plurality of physical input/output (I/0O) devices;

a processor to create one or more virtual machines (VMs)
to which to assign one or more virtual I/O devices to be
abstracted from the plurality of physical 1/O devices;

an 1/0 memory management unit (IOMMU) to perform
address translation to support virtualization of the plu-
rality of 1/O devices according to a plurality of trans-
lation techniques, the IOMMU including:

first circuitry to use at least an identifier of a device to
locate a context entry, the context entry to include at
least one of a page-table pointer to a page-table trans-
lation structure and a process address space identifier
(PASID); and

second circuitry to use at least the PASID to locate a
PASID-entry, the PASID-entry to include at least one of
a first-level page-table pointer to a first-level translation
structure and a second-level page-table pointer to a
second-level translation structure;

wherein the PASID is to be supplied by the device; and

wherein at least one of the apparatus, the context entry,
and the PASID entry is to include one or more control
fields to indicate whether the first-level page-table
pointer or the second-level page-table pointer is to be
used

