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(54) TRAINING A NEURAL NETWORK

(57) A computer implemented method of training a
neural network configured to combine a set of coefficients
with respective input data values, the method comprising:
so as to train a test implementation of the neural network:
applying sparsity to one or more of the coefficients ac-
cording to a sparsity parameter, the sparsity parameter
indicating a level of sparsity to be applied to the set of
coefficients; operating the test implementation of the neu-

ral network on training input data using the coefficients
so as to form training output data; in dependence on the
training output data, assessing the accuracy of the neural
network; and updating the sparsity parameter in depend-
ence on the accuracy of the neural network; and config-
uring a runtime implementation of the neural network in
dependence on the updated sparsity parameter.
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Description

BACKGROUND

[0001] The present disclosure relates to computer implemented neural networks. In particular, the present disclosure
relates to the application of sparsity in computer implemented neural networks.
[0002] Neural networks can be used for machine learning applications. In particular, a neural network can be used in
signal processing applications, including image processing and computer vision applications. For example, convolutional
neural networks (CNNs) are a class of neural network that are often applied to analysing image data, e.g. for image
classification applications, semantic image segmentation applications, super-resolution applications, object detection
applications, etc.
[0003] In image classification applications, image data representing one or more images may be input to the neural
network, and the output of that neural network may be data indicative of a probability (or set of probabilities) that each
of those images belongs to a particular classification (or set of classifications). Neural networks typically comprise multiple
layers between input and output layers. In a layer, a set of coefficients may be combined with data input to that layer.
Convolutional layers and fully-connected layers are examples of neural network layers in which sets of coefficients are
combined with data input to those layers. Neural networks can also comprise other types of layers that are not configured
to combine sets of coefficients with data input to those layers, such as activation layers and element-wise layers. In
image classification applications, the computations performed in the layers enable characteristic features of the input
data to be identified and predictions to be made as to which classification (or set of classifications) that input data belongs
to.
[0004] Neural networks are typically trained to improve the accuracy of their outputs by using training data. In image
classification examples, the training data may comprise data representing one or more images and respective prede-
termined labels for each of those images. Training a neural network may comprise operating the neural network on the
training input data using untrained or partially-trained sets of coefficients so as to form training output data. The accuracy
of the training output data can be assessed, e.g. using a loss function. The sets of coefficients can be updated in
dependence on the accuracy of the training output data through the processes called gradient descent and back-
propagation. For example, the sets of coefficients can be updated in dependence on the loss of the training output data
determined using a loss function.
[0005] The sets of coefficients used within a typical neural network can be highly parameterised. That is, the sets of
coefficients used within a typical neural network often comprise large numbers of non-zero coefficients. Highly param-
eterised sets of coefficients can have large memory footprints. The memory bandwidth required to read highly param-
eterised sets of coefficients in from memory can be large. Highly parameterised sets of coefficients can also place a
large computational demand on a neural network - e.g. by requiring that the neural network perform a large number of
computations (e.g. multiplications) between coefficients and input values. As such, it can be difficult to implement neural
networks on devices with limited processing or memory resources.

SUMMARY

[0006] This Summary is provided to introduce a selection of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
[0007] According to a first aspect of the invention there is provided a method of compressing a set of coefficients for
subsequent use in a neural network, the method comprising: applying sparsity to a plurality of groups of the coefficients,
each group comprising a predefined plurality of coefficients; and compressing the groups of coefficients according to a
compression scheme aligned with the groups of coefficients so as to represent each group of coefficients by an integer
number of one or more compressed values.
[0008] Each group may comprise one or more subsets of coefficients of the set of coefficients, each group may
comprises n coefficients and each subset may comprise m coefficients, where m is greater than 1 and n is an integer
multiple of m, and the method may further comprise: compressing the groups of coefficients according to the compression
scheme by compressing the one or more subsets of coefficients comprised by each group so as to represent each
subset of coefficients by an integer number of one or more compressed values.
[0009] n may be greater than m, and each group of coefficients may be compressed by compressing multiple adjacent
or interleaved subsets of coefficients.
[0010] n may be equal to 2m.
[0011] Each group may comprise 16 coefficients and each subset may comprise 8 coefficients, and each group may
be compressed by compressing two adjacent or interleaved subsets of coefficients.
[0012] n may be equal to m.
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[0013] Applying sparsity to a group of coefficients may comprise setting each of the coefficients in that group to zero.
[0014] Sparsity may be applied to the plurality of groups of the coefficients in dependence on a sparsity mask that
defines which coefficients of the set of coefficients to which sparsity is to be applied.
[0015] The set of coefficients may be a tensor of coefficients, the sparsity mask may be a binary tensor of the same
dimensions as the tensor of coefficients, and sparsity may be applied by performing an element-wise multiplication of
the tensor of coefficients with the sparsity mask tensor. A binary tensor may be tensor consisting of binary 1s and/or 0s.
[0016] The sparsity mask tensor may be formed by: generating a reduced tensor having one or more dimensions an
integer multiple smaller than the tensor of coefficients, wherein the integer being greater than 1; determining elements
of the reduced tensor to which sparsity is to be applied so as to generate a reduced sparsity mask tensor; and expanding
the reduced sparsity mask tensor so as to generate a sparsity mask tensor of the same dimensions as the tensor of
coefficients.
[0017] Generating the reduced tensor may comprise: dividing the tensor of coefficients into multiple groups of coeffi-
cients, such that each coefficient of the set is allocated to only one group and all of the coefficients are allocated to a
group; and representing each group of coefficients of the tensor of coefficients by the maximum coefficient value within
that group.
[0018] The method may further comprise expanding the reduced sparsity mask tensor by performing nearest neighbour
upsampling such that each value in the reduced sparsity mask tensor is represented by a group comprising a plurality
of like values in the sparsity mask tensor.
[0019] Compressing each subset of coefficients may comprise: generating header data comprising h-bits and a plurality
of body portions each comprising b-bits, wherein each of the body portions corresponds to a coefficient in the subset,
wherein b is fixed within a subset, and wherein the header data for a subset comprises an indication of b for the body
portions of that subset.
[0020] The method may further comprise: identifying a body portion size, b, by locating a bit position of a most significant
leading one across all the coefficients in the subset; generating the header data comprising a bit sequence encoding
the body portion size; and generating a body portion comprising b-bits for each of the coefficients in the subset by
removing none, one or more leading zeros from each coefficient.
[0021] The number of groups to which sparsity is to be applied may be determined in dependence on a sparsity
parameter.
[0022] The method may further comprise: dividing the set of coefficients into multiple groups of coefficients, such that
each coefficient of the set is allocated to only one group and all of the coefficients are allocated to a group; determining
a saliency of each group of coefficients; and applying sparsity to the plurality of the groups of coefficients having a
saliency below a threshold value, the threshold value being determined in dependence on the sparsity parameter.
[0023] The threshold value may be a maximum absolute coefficient value or an average absolute coefficient value.
[0024] The method may further comprise storing the compressed groups of coefficients to memory for subsequent
use in a neural network.
[0025] The method may further comprise using the compressed groups of coefficients in a neural network.
[0026] According to a second aspect of the invention there is provided a data processing system for compressing a
set of coefficients for subsequent use in a neural network, the data processing system comprising: pruner logic configured
to apply sparsity to a plurality of groups of the coefficients, each group comprising a predefined plurality of coefficients;
and a compression engine configured to compress the groups of coefficients according to a compression scheme aligned
with the groups of coefficients so as to represent each group of coefficients by an integer number of one or more
compressed values.
[0027] According to a third aspect of the invention there is provided a computer implemented method of training a
neural network comprising a plurality of layers, each layer being configured to combine a respective set of filters with
data input to the layer so as to form output data for the layer, wherein each set of filters comprises a plurality of coefficient
channels, each coefficient channel of the set of filters corresponding to a respective data channel in the data input to
the layer, and the output data comprises a plurality of data channels, each data channel corresponding to a respective
filter of the set of filters, the method comprising: identifying a target coefficient channel of the set of filters of a layer;
identifying a target data channel of the plurality of data channels in the data input to the layer, the target data channel
corresponding to the target coefficient channel of the set of filters; and configuring a runtime implementation of the neural
network in which the set of filters of the preceding layer do not comprise that filter which corresponds to the target data
channel.
[0028] The data input to the layer may depend on the output data for the preceding layer.
[0029] The method may further comprise configuring the runtime implementation of the neural network in which the
set of filters of the preceding layer do not comprise that filter which corresponds to the target data channel such that,
when executing the runtime implementation of the neural network on the data processing system, combining that set of
filters of the preceding layer with data input to the preceding layer does not form the data channel in the output data for
the preceding layer corresponding to the target data channel.
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[0030] The method may further comprise configuring the runtime implementation of the neural network in which each
filter of the set of filters of the layer does not comprise the target coefficient channel.
[0031] The method may further comprise executing the runtime implementation of the neural network on a data
processing system.
[0032] The method may further comprise storing the set of filters of the preceding layer that do not comprise that filter
which corresponds to the target data channel in memory for subsequent use by the runtime implementation of the neural
network.
[0033] The set of filters for the layer may comprise a set of coefficients arranged such that each filter of the set of
filters comprises a plurality of coefficients of the set of coefficients.
[0034] Each filter in the set of filters of the layer may comprise a different plurality of coefficients.
[0035] Two or more of the filters in the set of filters of the layer may comprise the same plurality of coefficients.
[0036] The method may further comprise identifying a target coefficient channel according to a sparsity parameter,
the sparsity parameter indicating a level of sparsity to be applied to the set of filters of the layer.
[0037] The sparsity parameter may indicate a percentage of the set of coefficients that are to be set to zero.
[0038] Identifying a target coefficient channel may comprise applying a sparsity algorithm so as to set all of the
coefficients comprised by a coefficient channel of the set of filters of the layer to zero, and identifying that coefficient
channel as the target coefficient channel of the set of filters.
[0039] The method may further comprise, prior to identifying a target coefficient channel: operating a test implemen-
tation of the neural network on training input data using the set of filters for the layer so as to form training output data;
in dependence on the training output data, assessing the accuracy of the test implementation of the neural network; and
forming a sparsity parameter in dependence on the accuracy of the neural network.
[0040] The method may further comprise, identifying a target coefficient channel, iteratively: applying the sparsity
algorithm according to the sparsity parameter to the coefficient channels of the set of filters of the layer; operating the
test implementation of the neural network on training input data using the set of filters for the layer so as to form training
output data; in dependence on the training output data, assessing the accuracy of the test implementation of the neural
network; and forming an updated sparsity parameter in dependence on the accuracy of the neural network.
[0041] The method may further comprise forming the sparsity parameter in dependence on a parameter optimisation
technique configured to balance the level of sparsity to be applied to the set of filters as indicated by the sparsity parameter
against the accuracy of the network.
[0042] According to a fourth aspect of the invention there is provided a data processing system for training a neural
network comprising a plurality of layers, each layer being configured to combine a respective set of filters with data input
to the layer so as to form output data for the layer, wherein each set of filters comprises a plurality of coefficient channels,
each coefficient channel of the set of filters corresponding to a respective data channel in the data input to the layer,
and the output data comprises a plurality of data channels, each data channel corresponding to a respective filter of the
set of filters, the data processing system comprising coefficient identification logic configured to: identify a target coefficient
channel of the set of filters; and identify a target data channel of the plurality of data channels in the data input to the
layer, the target data channel corresponding to the target coefficient channel of the set of filters; and wherein the data
processing system is arranged to configure a runtime implementation of the neural network in which the set of filters of
the preceding layer do not comprise that filter which corresponds to the target data channel.
[0043] According to a fifth aspect of the invention there is provided a computer implemented method of training a
neural network configured to combine a set of coefficients with respective input data values, the method comprising: so
as to train a test implementation of the neural network: applying sparsity to one or more of the coefficients according to
a sparsity parameter, the sparsity parameter indicating a level of sparsity to be applied to the set of coefficients; operating
the test implementation of the neural network on training input data using the coefficients so as to form training output
data; in dependence on the training output data, assessing the accuracy of the neural network; and updating the sparsity
parameter in dependence on the accuracy of the neural network; and configuring a runtime implementation of the neural
network in dependence on the updated sparsity parameter.
[0044] The method may further comprise iteratively performing the applying, operating, forming and updating steps
so as to train a test implementation of the neural network.
[0045] The method may further comprise iteratively updating the set of coefficients in dependence on the accuracy of
the neural network.
[0046] The method may further comprise implementing the neural network in dependence on the updated sparsity
parameter.
[0047] Applying sparsity to a coefficient may comprise setting that coefficient to zero.
[0048] The accuracy of the neural network may be assessed by comparing the training output data to verified output
data for the training input data.
[0049] The method may further comprise, prior to applying sparsity to one or more coefficients, operating the test
implementation of the neural network on the training input data using the coefficients so as to form the verified output data.
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[0050] The method may further comprise assessing the accuracy of the neural network using a cross-entropy loss
equation that depends on the training output data and the verified output data.
[0051] The method may further comprise updating the sparsity parameter in dependence on a parameter optimisation
technique configured to balance the level of sparsity to be applied to the set to coefficients as indicated by the sparsity
parameter against the accuracy of the network.
[0052] The parameter optimisation technique may use a cross-entropy loss equation that depends on the sparsity
parameter and the accuracy of the neural network.
[0053] Updating the sparsity parameter may be performed further in dependence on a weighting value configured to
bias the test implementation of the neural network towards maintaining the accuracy of the network or increasing the
level of sparsity applied to the set to coefficients as indicated by the sparsity parameter.
[0054] Updating the sparsity parameter may be performed further in dependence on a defined maximum level of
sparsity to be indicated by the sparsity parameter.
[0055] The neural network may comprise a plurality of layers, each layer configured to combine a respective set of
coefficients with respective input data values to that layer so as to form an output for that layer.
[0056] The method may further comprise iteratively updating a respective sparsity parameter for each layer.
[0057] The number of coefficients in the set of coefficients for each layer of the neural network may be variable between
layers, and updating the sparsity parameter may be performed further in dependence on the number of coefficients in
each set of coefficients such that the test implementation of the neural network is biased towards updating the respective
sparsity parameters so as to indicate a greater level of sparsity to be applied to sets of coefficients comprising a larger
number of coefficients relative to sets of coefficients comprising fewer coefficients.
[0058] The sparsity parameter may indicate a percentage of the set of coefficients to which sparsity is to be applied.
[0059] Applying sparsity may comprise applying sparsity to a plurality of groups of the coefficients, each group com-
prising a predefined plurality of coefficients.
[0060] Applying sparsity to a group of coefficients may comprise setting each of the coefficients in that group to zero.
[0061] Configuring a runtime implementation of the neural network may comprise: applying sparsity to a plurality of
groups of the coefficients according to the updated sparsity parameter; compressing the groups of coefficients according
to a compression scheme aligned with the groups of coefficients so as to represent each group of coefficients by an
integer number of one or more compressed values; and storing the compressed groups of coefficients in memory for
subsequent use by the implemented neural network.
[0062] Each group may comprise one or more subsets of coefficients of the set of coefficients, each group may
comprise n coefficients and each subset may comprise m coefficients, where m is greater than 1 and n is an integer
multiple of m, the method may further comprise: compressing the groups of coefficients according to the compression
scheme by compressing the one or more subsets of coefficients comprised by each group so as to represent each
subset of coefficients by an integer number of one or more compressed values.
[0063] Applying sparsity may comprise modelling the set of coefficients using a differentiable function so as to identify
a threshold value in dependence on the sparsity parameter, and applying sparsity in dependence on that threshold
value, such that the sparsity parameter can be updated by modifying the threshold value by backpropagating one or
more gradient vectors using the differentiable function.
[0064] According to a sixth aspect of the invention there is provided a data processing system for training a neural
network configured to combine a set of coefficients with respective input data values, the data processing system
comprising: pruner logic configured to apply sparsity to one or more of the coefficients according to a sparsity parameter,
the sparsity parameter indicating a level of sparsity to be applied to the set of coefficients; a test implementation of the
neural network configured to operate on training input data using the coefficients so as to form training output data;
network accuracy logic configured to assess, in dependence on the training output data, the accuracy of the neural
network; and sparsity learning logic configured to update the sparsity parameter in dependence on the accuracy of the
neural network; and wherein the data processing system is arranged to configure a runtime implementation of the neural
network in dependence on the updated sparsity parameter.
[0065] The data processing system may be embodied in hardware on an integrated circuit. There may be provided a
method of manufacturing, at an integrated circuit manufacturing system, a data processing system. There may be
provided an integrated circuit definition dataset that, when processed in an integrated circuit manufacturing system,
configures the system to manufacture a data processing system. There may be provided a non-transitory computer
readable storage medium having stored thereon a computer readable description of a data processing system that,
when processed in an integrated circuit manufacturing system, causes the integrated circuit manufacturing system to
manufacture an integrated circuit embodying a data processing system.
[0066] There may be provided an integrated circuit manufacturing system comprising: a non-transitory computer
readable storage medium having stored thereon a computer readable description of the data processing system; a layout
processing system configured to process the computer readable description so as to generate a circuit layout description
of an integrated circuit embodying the data processing system; and an integrated circuit generation system configured
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to manufacture the data processing system according to the circuit layout description.
[0067] There may be provided computer program code for performing any of the methods described herein. There
may be provided non-transitory computer readable storage medium having stored thereon computer readable instructions
that, when executed at a computer system, cause the computer system to perform any of the methods described herein.
[0068] The above features may be combined as appropriate, as would be apparent to a skilled person, and may be
combined with any of the aspects of the examples described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0069] Examples will now be described in detail with reference to the accompanying drawings in which:

Figure 1 shows an exemplary implementation of a neural network.

Figure 2a shows an example of the structure of data used in a convolutional layer of a neural network.

Figure 2b schematically illustrates a convolutional layer arranged to combine a set of coefficients with input data so
as to form output data.

Figure 3a illustrates the compression of an exemplary of coefficients in accordance with a compression scheme.

Figure 3b illustrates the compression of a sparse subset of coefficients in accordance with a compression scheme.

Figure 4 shows a data processing system in accordance with the principles described herein.

Figure 5 shows a data processing system implementing logic for compressing a set of coefficients for subsequent
use in a neural network in accordance with the principles described herein.

Figure 6 shows a method of compressing a set of coefficients for subsequent use in a neural network in accordance
with the principles described herein.

Figure 7a shows exemplary pruner logic for applying unstructured sparsity.

Figure 7b shows exemplary pruner logic for applying structured sparsity.

Figure 7c shows alternative exemplary pruner logic for applying unstructured sparsity.

Figure 7d shows alternative exemplary pruner logic for applying structured sparsity.

Figure 8 is a schematic showing an exemplary application of structured sparsity.

Figure 9 shows a data processing system implementing a test implementation of a neural network for learning a
sparsity parameter by training in accordance with the principles described herein.

Figure 10 shows a method of learning a sparsity parameter by training a neural network in accordance with the
principles described herein.

Figure 11a shows an exemplary application of channel pruning in convolutional layers according to the principles
described herein.

Figure 11b shows an exemplary application of channel pruning in fully-connected layers according to the principles
described herein.

Figure 12 shows a method of training a neural network using channel pruning in accordance with the principles
described herein.

Figure 13 shows an integrated circuit manufacturing system for generating an integrated circuit embodying a graphics
processing system.
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Figure 14a shows an example of unstructured sparsity in a set of coefficients.

Figures 14b to d show examples of structured sparsity sets of coefficients.

[0070] The accompanying drawings illustrate various examples. The skilled person will appreciate that the illustrated
element boundaries (e.g., boxes, groups of boxes, or other shapes) in the drawings represent one example of the
boundaries. It may be that in some examples, one element may be designed as multiple elements or that multiple
elements may be designed as one element. Common reference numerals are used throughout the figures, where
appropriate, to indicate similar features.

DETAILED DESCRIPTION

[0071] The following description is presented by way of example to enable a person skilled in the art to make and use
the invention. The present invention is not limited to the embodiments described herein and various modifications to the
disclosed embodiments will be apparent to those skilled in the art.
[0072] Embodiments will now be described by way of example only.

Neural networks

[0073] A data processing system 100 for implementing a neural network is illustrated in Figure 1. Data processing
system 100 may comprise hardware components (e.g. hardware processing units) and software components (e.g.
firmware, and the procedures and tasks for execution at the hardware processing units). Data processing system 100
comprises an accelerator 102 for performing the operations of a neural network. The accelerator 102 may be implemented
in hardware, software, or any combination thereof. The accelerator may be referred to as a Neural Network Accelerator
(NNA). The accelerator comprises a plurality of configurable resources which enable different kinds of neural network,
such as convolutional neural networks, fully-convolutional neural networks, recurrent neural networks, and multi-layer
perceptrons, to be implemented at the accelerator.
[0074] The implementation of a neural network will be described with respect to the data processing system shown
in the particular example of Figure 1 in which the accelerator 102 includes a plurality of processing elements 114 each
comprising a convolution engine, but it will be understood that - unless stated otherwise - the principles described herein
are generally applicable to any data processing system comprising an accelerator capable of performing the operations
of a neural network.
[0075] The data processing system comprises input 101 for receiving data input to the data processing system. In
image classification applications, the input to the neural network may include image data representing one or more
images. For example, for an RGB image, the image data may be in the format x 3 y 3 3, where x and y are the pixel
dimensions of the image across three colour channels (i.e. R, G and B). The input data may be referred to as tensor
data. It will be appreciated that the principles described herein are not limited to use in image classification applications.
For example, the principles described herein could be used in semantic image segmentation applications, object detection
applications, super-resolution applications, speech recognition/speech-to-text applications, or any other suitable types
of applications. The input to the neural network also includes one or more sets of coefficients that are to be combined
with the input data. As used herein, sets of coefficient may also be referred to as weights.
[0076] In Figure 1, the accelerator includes an input buffer 106, a plurality of convolution engines 108, a plurality of
accumulators 110, an accumulation buffer 112, and an output buffer 116. Each convolution engine 108, together with
its respective accumulator 110 and its share of the resources of the accumulation buffer 112, represents a processing
element 114. Three processing elements are shown in Figure 1 but in general there may be any number. Each processing
element may receive a set of coefficients from a coefficient buffer 130 and input values from input buffer 106. The
coefficient buffer may be provided at the accelerator - e.g. on the same semiconductor die and/or in the same integrated
circuit package. By combining the set of coefficients and the input data the processing elements are operable to perform
the operations of a neural network.
[0077] In general, accelerator 102 may implement any suitable processing logic. For instance, in some examples the
accelerator may comprise reduction logic (e.g. for implementing max-pooling or average-pooling operations), element
processing logic for performing per-element mathematical operations (e.g. adding two tensors together), or activation
logic (e.g. for applying activation functions such as sigmoid functions or step functions). Such units are not shown in
Figure 1 for simplicity.
[0078] The processing elements of the accelerator are independent processing subsystems of the accelerator which
can operate in parallel. Each processing element 114 includes a convolution engine 108 configured to perform convolution
operations between sets of coefficients and input values. Each convolution engine 108 may comprise a plurality of
multipliers, each of which is configured to multiply a coefficient and a corresponding input data value to produce a



EP 4 020 325 A1

8

5

10

15

20

25

30

35

40

45

50

55

multiplication output value. The multipliers may be, for example, followed by an adder tree arranged to calculate the
sum of the multiplication outputs. In some examples, these multiply-accumulate calculations may be pipelined.
[0079] Neural networks are typically described as comprising a number of "layers". At a "layer" of the neural network,
a set of coefficients may be combined with a respective set of input data values. A large number of operations must
typically be performed at an accelerator in order to execute each "layer" operation of a neural network. This is because
the input data and sets of coefficients are often very large. Since it may take more than one pass of a convolution engine
to generate a complete output for a convolution operation (e.g. because a convolution engine may only receive and
process a portion of the set of coefficients and input data values) the accelerator may comprise a plurality of accumulators
110. Each accumulator 110 receives the output of a convolution engine 108 and adds the output to the previous con-
volution engine output that relates to the same operation. Depending on the implementation of the accelerator, a con-
volution engine may not process the same operation in consecutive cycles and an accumulation buffer 112 may therefore
be provided to store partially accumulated outputs for a given operation. The appropriate partial result may be provided
by the accumulation buffer 112 to the accumulator at each cycle.
[0080] The accelerator 102 of Figure 1 could be used to implement a "convolution layer". Data input to a convolution
layer may have the dimensions B 3 Cin 3 Hin 3 Win. By way of example, as shown in Figure 2a, the data input to a
convolutional layer may be arranged as Cin channels of data, where each channel has a spatial dimension Hin 3 Win -
where Hin and Win are, respectively, height and weight dimensions. In Figure 2a, the input data is shown comprising
four data channels (i.e. Cin = 4). Data input to a convolution layer may also be defined by a batch size, B. The batch
size, B, is not shown in Figure 2a, but defines the number of sets of data input to a convolution layer. For example, in
image classification applications, the batch size may refer to the number of separate images in the input data.
[0081] A neural network may comprise J layers that are each configured to combine, respectively, a set of coefficients
with data input to that layer. Each of those J layers may have associated therewith a set of coefficients, wj. As described

herein, j is the index of each layer of the J layers. In other words,  represents the sets of coefficients wj for J
layers. In general, the number and value of the coefficients in a set of coefficients may vary between layers such that

for a first layer, the number of coefficients may be defined as  ; for a second layer, the number of coefficients

may be defined as  ; and for the Jth layer, the number of coefficients may be defined as  ; where
the number of coefficients in the first layer is nl,the number of coefficients in the second layer is n2, and the number of
coefficients in the Jth layer is nj.
[0082] In general, the set of coefficients for a layer may be in any suitable format. For example, the set of coefficients
may be represented by a p-dimensional tensor where p≥1, or in any other suitable format. Herein, the format of each
set of coefficients will be defined with reference to a set of dimensions - an input number of channels Cin, an output
number of channels Cout, a height dimension H, and a width dimension W - although it is to be understood that the format
of a set of coefficients could be defined in any other suitable way.
[0083] A set of coefficients for performing a convolution operation on input data having the format shown in Figure 2a
may have dimensions Cout 3 Cin 3 H 3 W. The Cin dimension is not shown for the set of coefficients in Figure 2a - but
typically the number of coefficient channels in a set of coefficients corresponds to (e.g. is equal to) the number of data
channels in the input data with which that set of coefficients is to be combined (e.g. in the example shown in Figure 2a,
Cin = 4). The Cout dimension is not shown in Figure 2a - but denotes the number of channels in the output when the set
of coefficients are combined with the input data. The dimensions of sets of coefficients used by a neural network can
vary greatly. By way of non-limiting examples only, a set of coefficients for use in a convolutional layer may have
dimensions such as 64 3 3 3 3 3 3, 512 3 512 3 3 3 3, or 64 3 3 3 11 3 11.
[0084] In a convolution layer, a set of coefficients can be combined with the input data according to a convolution
operation across a number of steps in direction s and t, as illustrated in Figure 2. That is, in a convolutional layer, the
input data is processed by convolving the input data using a set of coefficients associated with that layer. By way of
example, Figure 2b schematically illustrates a convolutional layer 200 arranged to combine of a set of coefficients 204
with input data 202 so as to form output data 206. Data output by a convolution layer may have the dimensions B 3
Cout 3 Hout 3 Wout. That is, data output by a convolutional layer may be arranged as Cout channels of data, where each
channel has a spatial dimension Hout 3 Wout - where Hout and Wout are, respectively, height and weight dimensions.
Data output by a convolution layer may also be defined by a batch size, B. In this example, the set of coefficients 204
comprises four filters, each filter comprising multiple coefficients of the set of coefficients. Each filter may comprise a
unique set and/or arrangement of coefficients of the set of coefficients, or two or more of the filters may be identical to
each other. The input data 202 has three data channels. Each filter comprises three coefficient channels, corresponding
to the three data channels in the input data 202 (e.g. Cin = 3). That is, the number of coefficient channels in each filter
in a set of coefficients for a layer may correspond with the number of data channels in the data input to that layer. The
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output data 206 has four channels (e.g. Cout = 4). That is, the number of filters comprised by the set of coefficients for
a layer may correspond with a number of data channels in the output data. In Figure 2b, Hout = Hin and Wout = Win,
although it is to be understood that this need not be the case - e.g. Hout may not equal Hin and/or Wout may not equal Win.
[0085] The input data 202 may be combined with the set of coefficients 204 by convolving each filter of the set of
coefficients with the input data - where the first coefficient channel of each filter is convolved with the first data channel
of the input data, the second coefficient channel of each filter is convolved with the second data channel of the input
data, and the third coefficient channel of each filter is convolved with the third data channel of the input data. The results
of said convolution operations with each filter for each input channel can be summed (e.g. accumulated) so as to form
the output data values for each output channel. It is to be understood that a set of coefficients need not be arranged as
a set of filters as shown in Figure 2b, and may in fact be arranged in any other suitable manner.
[0086] Numerous other types of neural network "layer" exist that are configured to a combine a set of coefficients with
data input to that layer. Another example of such a neural network layer is a fully-connected layer. A set of coefficients
for performing a fully-connected operation may have dimensions Cout 3 Cin. A fully-connected layer may perform a
matrix multiplication between a set of coefficients and an input tensor. Fully-connected layers are often utilised in recurrent
neural networks and multi-layer perceptrons. A convolution engine (e.g. one or more of convolution engines 108 shown
in Figure 1) can be used to implement a fully-connected layer. Other examples of neural network layers that are configured
to a combine sets of coefficients with data input to those layer include variations on convolutional layers, such as
depthwise convolutional layers, dilated convolutional layers, grouped convolutional layers, and transposed convolution
(deconvolution) layers. A neural network may consist a combination of different layers. For example, a neural network
may comprise one or more convolution layers (e.g. to extract features from images), followed by one or more fully-
connected layers (e.g. to provide a prediction based on the extracted features).
[0087] For a first layer of a neural network, the ’input data’ can be considered to be the initial input to the neural network.
The first layer processes the input data and generates a first set of intermediate data that is passed to the second layer.
The first set of intermediate data can be considered to form the input data for the second layer which processes the first
intermediate data to produce output data in the form of second intermediate data. Where the neural network contains
a third layer, the third layer receives the second intermediate data as input data and processes that data to produce
third intermediate data as output data. Therefore, reference herein to input data may be interpreted to include reference
to input data for any layer. For example, the term input data may refer to intermediate data which is an output of a
particular layer and an input to a subsequent layer. This is repeated until the final layer produces output data that can
be considered to be the output of the neural network.
[0088] Returning to Figure 1, the accelerator 102 may include an input buffer 106 arranged to store input data required
by the accelerator (e.g. the convolution engines) and a coefficient buffer 130 arranged to store sets of coefficients
required by the accelerator (e.g. the convolution engines) for combination with the input data according to the operations
of the neural network. The input buffer may include some or all of the input data relating to the one or more operations
being performed at the accelerator on a given cycle. The coefficient buffer may include some or all of the sets of
coefficients relating to the one or more operations being processed at the accelerator on a given cycle. The various
buffers of the accelerator shown in Figure 1 may be implemented in any suitable manner - e.g. as any number of data
stores which are local to the accelerator (e.g. on the same semiconductor die and/or provided within the same integrated
circuit package) or accessible to the accelerator over a data bus or other interconnect.
[0089] A memory 104 may be accessible to the accelerator - e.g. the memory may be a system memory accessible
to the accelerator over a data bus. An on-chip memory 128 may be provided for storing sets of coefficients and/or other
data (such as input data, output data, etc.). The on-chip memory may be local to the accelerator such that the data
stored in the on-chip memory may be accessed by the accelerator without consuming memory bandwidth to the memory
104 (e.g. a system memory accessible over a system bus). Data (e.g. sets of coefficients, input data) may be periodically
written into the on-chip memory from memory 104. The coefficient buffer 130 at the accelerator may be configured to
receive coefficient data from the on-chip memory 128 so as to reduce the bandwidth between the memory and the
coefficient buffer. The input buffer 106 may be configured to receive input data from the on-chip memory 128 so as to
reduce the bandwidth between the memory and the input buffer. The memory may be coupled to the input buffer and/or
the on-chip memory so as to provide input data to the accelerator.
[0090] The sets of coefficients received at input 101 may be in a compressed format - e.g. a data format having a
reduced memory footprint. That is, prior to inputting the sets of coefficients to input 101 of data processing system 100,
the sets of coefficients may be compressed so as to be represented by an integer number of one or more compressed
values - as will be described in further detail herein. For this reason, data processing system 100 may comprise a
decompression engine 132. Decompression engine 132 may be configured to decompress any compressed sets of
coefficients read from coefficient buffer 130 into the convolution engines 108. Additionally, or alternatively, the input data
received at input 101 may be in a compressed format. In this example, the data processing system 100 may comprise
a decompression engine (not shown in Figure 1) positioned between the input buffer 106 and the convolution engines
108, and configured to decompress any compressed input data read from the input buffer 106 into the convolution
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engines 108.
[0091] The accumulation buffer 112 may be coupled to an output buffer 116, to allow the output buffer to receive
intermediate output data of the operations of a neural network operating at the accelerator, as well as the output data
of the end operation (i.e. the last operation of a network implemented at the accelerator). The output buffer 116 may be
coupled to the on-chip memory 128 for providing the intermediate output data and output data of the end operation to
the on-chip memory 128.
[0092] Typically, it is necessary to transfer a large amount of data from the memory to the processing elements. If this
is not done efficiently, it can result in a high memory bandwidth requirement, and high power consumption, for providing
the input data and sets of coefficients to the processing elements. This is particularly the case when the memory is "off-
chip" - that is, implemented in a different integrated circuit or semiconductor die from the processing elements. One such
example is system memory accessible to the accelerator over a data bus. In order to reduce the memory bandwidth
requirements of the accelerator when executing a neural network, it is advantageous to provide a memory which is on-
chip with the accelerator at which at least some of the sets of coefficients and/or input data required by an implementation
of a neural network at the accelerator may be stored. Such a memory may be "on-chip" (e.g. on-chip memory 128) when
the memory is provided on the same semiconductor die and/or in the same integrated circuit package.
[0093] The various exemplary connections are shown separately in the example of Figure 1, but, in some embodiments,
some or all of them may be provided by one or more shared data bus connections. It should also be understood that
other connections may be provided, as an alternative to or in addition to those illustrated in Figure 1. For example, the
output buffer 114 may be coupled to the memory 104, for providing output data directly to the memory 104. Likewise,
in some examples, not all of the connections illustrated in Figure 1 may be necessary. For example, the memory 104
need not be coupled to the input buffer 106 which may obtain input data directly from an input data source - e.g. a camera
subsystem configured to capture images at a device comprising the data processing system.
[0094] As described herein, in image classification applications, image data representing one or more images may
be input to the neural network, and the output of that neural network may be data indicative of a probability (or set of
probabilities) that each of those images belongs to a particular classification (or set of classifications). In image classi-
fication applications, in each of a plurality of layers of the neural network a set of coefficients are combined with data
input to that layer in order to identify characteristic features of the input data. Neural networks are typically trained to
improve the accuracy of their outputs by using training data. In image classification examples, the training data may
comprise data indicative of one or more images and respective predetermined labels for each of those images. Training
a neural network may comprise operating the neural network on the training input data using untrained or partially-trained
sets of coefficients so as to form training output data. The accuracy of the training output data can be assessed, e.g.
using a loss function. The sets of coefficients can be updated in dependence on the accuracy of the training output data
through the processes called gradient descent and back-propagation. For example, the sets of coefficients can be
updated in dependence on the loss of the training output data determined using the loss function. Back-propagation can
be considered to be a process of calculating gradients for each coefficient with respect to a loss function. This can be
achieved by using chain rule starting at the final output of the loss function and working backwards to each layer’s
coefficients. Once all gradients are known, a gradient descent (or its derivative) algorithm can be used to update each
coefficient according to its gradients calculated through back-propagation. Gradient descent can be performed in de-
pendence on a learning rate parameter, which indicates the degree to which the coefficients can be changed in depend-
ence on the gradients at each iteration of the training process. These steps can be repeated, so as to iteratively update
the sets of coefficients.
[0095] The sets of coefficients used within a typical neural network can be highly parameterised. That is, the sets of
coefficients used within a typical neural network often comprise large numbers of non-zero coefficients. Highly param-
eterised sets of coefficients for a neural network can have a large memory footprint. As the sets of coefficients are stored
in memory (e.g. memory 104 or on-chip memory 128), rather than a local cache, a significant amount of memory
bandwidth may be also required at run time to read in highly parameterised sets of coefficients (e.g. 50% of the memory
bandwidth in some examples). The time taken to read highly parameterised sets of coefficients in from memory can also
increase time taken for a neural network to provide an output for a given input - thus increasing the latency of the neural
network. Highly parameterised sets of coefficients can also place a large computational demand on the processing
elements 114 of the accelerator 102 - e.g. by causing the processing elements to perform a large number of multiplication
operations between coefficients and respective data values.

Data processing system

[0096] Figure 4 shows a data processing system in accordance with the principles described herein for addressing
one or more of the above identified problems.
[0097] The data processing system 410 shown in Figure 4 comprises memory 104 and processor 400. In an example,
processor 400 includes a software implementation of a neural network 102-1. The software implementation of a neural
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network 102-1 may have the same properties as accelerator 102 described with reference to Figure 1. In another example,
the data processing system 410 includes a hardware implementation of a neural network 102-2. The hardware imple-
mentation of a neural network 102-2 may have the same properties as accelerator 102 described with reference to
Figure 1. In some examples, the data processing system may comprise a neural network accelerator implemented in a
combination of hardware and software.
[0098] Processor 400 shown in Figure 4 also comprises pruner logic 402, compression logic 404, sparsity learning
logic 406, network accuracy logic 408, and coefficient identification logic 412. Each of logic 402, 404, 406, 408 and 412
may be implemented in fixed-function hardware, software running at general purpose hardware within processor 400,
or any combination thereof. The functions of each of logic 402, 404, 406, 408 and 412 will be described in further detail
herein. In some examples (not shown in Figure 4), one or more of pruner logic 402, compression logic 404, sparsity
learning logic 406, network accuracy logic 408 and coefficient identification logic 412 may alternatively, or additionally,
be implemented as logical units within a hardware implementation of a neural network 102-2.
[0099] Memory 104 may be a system memory accessible to the processor 400 and/or hardware implementation of a
neural network 102-2 over a data bus. Alternatively, memory 104 may be on-chip memory local to the processor 400
and/or hardware implementation of a neural network 102-2. Memory 104 may store sets of coefficients to be operated
on by the processor 400 and/or hardware implementation of a neural network 102-2, and/or sets of coefficients that have
been operated on and output by the processor 400 and/or hardware implementation of a neural network 102-2.

Coefficient compression

[0100] One way of reducing the memory footprint of the sets of coefficients, and thereby reducing the bandwidth
required to read the coefficient data from memory at run time, is to compress the sets of coefficients. That is, each set
of coefficients can be compressed such that it is represented by an integer number of one or more compressed data
values. Said compression may be performed by compression logic 404 shown in Figure 4. Sets of uncompressed
coefficients stored in memory 104 may be input to compression logic 404 for compression. Compression logic 404 may
output a compressed set of coefficients to memory 104.
[0101] The sets of coefficients may be compressed at compression logic 404 in accordance with a compression
scheme. One example of such a compression scheme is the Single Prefix Grouped Coding 8 (SPGC8) compression
scheme. It is to be understood that numerous other suitable compression schemes exist, and that the principles described
herein are not limited to application with the SPGC8 compression scheme. The SPGC8 compression scheme is described
in full (although not identified by the SPGC8 name) in UK patent application: GB2579399.
[0102] Figure 3a illustrates the compression of an exemplary set of coefficients in accordance with a compression
scheme. The compression scheme may be the SPGC8 compression scheme, although the principles described herein
may apply to other compression schemes. Figure 3a shows a set of coefficients 300 represented by a 16x16 tensor of
coefficients. Set of coefficients 300 may be all of or part of a two-dimensional tensor of coefficients, as shown, or one
plane of a p-dimensional tensor of coefficients where p≥3. As described herein, a set of coefficients may comprise any
number of coefficients, and take any suitable format.
[0103] A number of subsets of the set of coefficients may be compressed in order to compress the set coefficients.
Each subset of coefficients comprises a plurality of coefficients. For example, a subset of coefficients may comprise
eight coefficients. The coefficients in a subset may be contiguous in the set of coefficients. For example, a subset of
coefficients is shown in the hatched area overlaying set of coefficients 300. This subset of coefficients comprise eight
contiguous coefficients arranged in a single row (e.g. a subset of coefficients having dimensions 1x8). More generally,
a subset of coefficients could have any dimensions, such as, for example, 2x2, 4x4 etc. In examples where the set of
coefficients is a p-dimensional tensor where p≥1, the subset of coefficients may also be a p-dimensional tensor where p≥1.
[0104] Each coefficient may be an integer number. For example, exemplary 138 subset of coefficients 302 comprises
coefficients 31, 3, 1, 5, 3, 4, 5, 6. Each coefficient may be encoded in a binary number. Each coefficient in the subset
shown in Figure 3a is a positive (e.g. unsigned) binary number. In an example, each coefficient may be encoded in a
16-bit binary number - as shown at 304 - although more or fewer bits may be selected. Sixteen bits may be provided to
encode each coefficient in order that coefficients up to a value of 65,536 can be encoded. Thus, in this example, 128
bits are required to encode a subset of eight coefficients, as shown in 304. However, often 16 bits are not required to
encode each coefficient. That is, most coefficients in a set of coefficients have a value below, or even significantly below,
the maximum encodable value.
[0105] If any of the coefficient values in the set of coefficients are negative coefficient values, the set of coefficients
may first be transformed such that all of the coefficient values are positive (e.g. unsigned). For example, negative
coefficients may be transformed to be odd values whereas positive coefficients may be transformed to be even values
in the unsigned representation. This transformed set of coefficients may be used as an input to the SPGC8 compression
scheme.
[0106] According to the SPGC8 compression scheme, a number of bits is identified that is sufficient to encode the
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largest coefficient value in the subset of coefficients. That number of bits is then used to encode each coefficient in the
subset of coefficients. Header data associated with the subset of coefficients indicates the number of bits has been used
to encode each of the coefficients in the subset.
[0107] For example, a compressed subset of coefficients can be represented by header data and a plurality of body
portions (V0-V7), as shown in 306. In subset of coefficients 302, the largest coefficient value is 31, which can be encoded
using 5 bits of data. In this example, the header data indicates that 5 bits are going to be used to encode each coefficient
in the subset of coefficients. The header data itself has a bit cost - for example, 3 bits - whilst each body portion encodes
the coefficient values using 5 bits. For example, the number of bits used in the header portion may be the minimum
number of bits required to encode the number of bits per body portion (e.g. in the example shown in Figure 3a, 3 bits
can be used to encode the number 5 in binary). In this example, the subset of coefficients 302 can therefore be encoded
in a compressed for using 43 bits of data, as shown in 308, rather than in 128 bits in its uncompressed form, as shown
in 304.
[0108] In other words, in order to compress a subset of coefficients, header data is generated that comprises h-bits
and a plurality of body portions are generated each comprising b-bits. Each of the body portions corresponds to a
coefficient in the subset. The value of b is fixed within the subset and the header data for a subset comprises an indication
of b for the body portions of that subset. The body portion size, b, is identified by locating a bit position of a most significant
leading one across all the coefficients in the uncompressed subset. The header data is generated so as to comprise a
bit sequence encoding the body portion size, and a body portion comprising b-bits is generated for each of the coefficients
in the subset by removing none, one or more leading zeros from each coefficient of the uncompressed subset.
[0109] In some examples, two adjacent subsets of coefficients can be interleaved during compression according to
the SPGC8 compression scheme. For example, a first subset of eight coefficients may comprise coefficients V0, V1, V2,
V3, V4, V5, V6 and V7. An adjacent subset of eight coefficients may comprise V8, V9, V10, V11, V12, V13, V14 and V15.
When the first and second subsets of coefficients are compressed according to a compression scheme that uses inter-
leaving, the first compressed subset of coefficients may comprise an integer number of compressed values representing
coefficients V0, V2, V4, V6, V8, V10, V12 and V14. The second compressed subset of coefficients may comprise an integer
number of compressed values representing coefficients V1, V3, V5, V7, V9, V11, V13 and V15.

Unstructured sparsity

[0110] Sets of coefficients used by a neural network can comprise one or more coefficient values that are zero. Sets
of coefficients that include a significant number of zero coefficients can be said to be sparse. As described herein, a
neural network comprises a plurality of layers, each of which is configured to, respectively, combine a set of coefficients
with input data values to that layer - e.g. by multiplying each coefficient in the set of coefficients with a respective input
data value. Consequently, for sparse sets of coefficients, a significant number of operations in a layer of the neural
network can result in a zero output.
[0111] Sparsity can be artificially inserted into a set of coefficients. That is, sparsity can be applied to one or more
coefficients in a set of coefficients. Applying sparsity to a coefficient comprises setting that coefficient to zero. This may
be achieved by applying a sparsity algorithm to the coefficients of a set of coefficients. Pruner logic 402 shown in Figure
4 may be configured to apply sparsity to one or more coefficients in a set of coefficients. In one example, pruner logic
402 may apply sparsity to a set of coefficients by performing a process called magnitude-based pruning. Trained sets
of coefficients often comprise a number of coefficient values that are close to (or even very close to) zero, but are non-
zero. Magnitude-based pruning involves applying sparsity to a percentage, fraction, or portion of the coefficients in the
set of coefficients that are closest to zero. The proportion of the coefficients to be set to zero may be determined in
dependence on a sparsity parameter, which indicates a level of sparsity to be applied to the set of coefficients. The
result of magnitude-based pruning is that the level of sparsity in a set of coefficients can be increased, often without
significantly impacting the accuracy of the network - as it is the lower value (and hence typically least salient) coefficients
that have been set to zero. Figure 14a shows an example of a set of coefficients to which sparsity has been applied,
e.g. by a process such as magnitude-based pruning. In Figure 14a, sparse coefficients are shown using hatching. Figure
14a is an example of unstructured sparsity. Coefficients values that have low magnitude (i.e. a magnitude close to zero)
may be distributed randomly (e.g. in an unstructured manner) throughout a set of coefficients. Thus, for this reason, the
sparsity resulting from approaches such as magnitude-based pruning can be said to be unstructured.
[0112] Magnitude-based pruning is just one example of a process for applying sparsity to a set of coefficients. Numerous
other approaches can be used to apply sparsity to a set of coefficients. For example, the pruner logic 402 may be
configured to randomly select a percentage, fraction, or portion of the coefficients of a set of coefficients to which sparsity
is to be applied.
[0113] As described herein, for sparse sets of coefficients, a significant number of operations in layers of the neural
network can result in a zero output. For this reason, a neural network can be configured to skip (i.e. not perform) ’multiply
by zero’ operations (e.g. operations that involve multiplying an input data value with a zero coefficient value). Thus, in
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this way, and by artificially inserting sparsity into a set of coefficients, the computational demand on the neural network
(e.g. the processing elements 114 of accelerator 102 shown in Figure 1) can be reduced by requiring fewer multiplications
to be performed.
[0114] Figure 7a shows exemplary pruner logic for applying unstructured sparsity. In some examples, pruner logic
402 shown in Figure 4 has the properties of pruner logic 402a described with reference to Figure 7a. It is to be understood
that pruner logic 402a shown in Figure 7a is just one example of logic configured to apply sparsity to a set of coefficients.
Other forms of logic could be used to apply sparsity to a set of coefficients.
[0115] The inputs to pruner logic 402a include wj 502, which represents the set of coefficients for the jth layer of the
neural network. As described herein, the set of coefficients for a layer may be in any suitable format. For example, the
set of coefficients may be represented by a p-dimensional tensor of coefficients where p≥1, or by in any other suitable
format.
[0116] The inputs to pruner logic 402a also include sj 504, which represents a sparsity parameter for the jth layer of

the neural network. In other words,  represents the sparsity parameters sj for J layers. The sparsity parameter
may indicate a level of sparsity to be applied to the set of coefficients, wj, by the pruner logic 402a. For example, the
sparsity parameter may indicate a percentage, fraction, or portion of the set of coefficients to which sparsity is to be
applied by the pruner logic 402a. The sparsity parameter, sj, may be set (e.g. somewhat arbitrarily by a user) in dependence
on an assumption of how much sparsity can be introduced into a set of coefficients without significantly affecting the
accuracy of the neural network. In other examples, as described in further detail herein, the sparsity parameter, sj, can
be learned as part of the training process for a neural network.
[0117] The sparsity parameter, sj, may be provided in any suitable form. For example, the sparsity parameter may be
a decimal number in the range 0 to 1 (inclusive) -that number representing the percentage of the set of coefficients to
which sparsity is to be applied. For example, a sparsity parameter sj of 0.4 may indicate that sparsity is to be applied to
40% of the coefficients in the set of coefficients, wj.
[0118] In other examples, the sparsity parameter may be provided as a number in any suitable range (e.g. between
-5 and 5). In these examples, pruner logic 402a may comprise a normalising logic 704 configured to normalise the
sparsity parameter such that it lies in range between 0 and 1. One exemplary way of achieving said normalisation is to

use a sigmoid function - e.g. σ(x) =  .. For example, the sigmoid function may transition between a minimum y-
value approaching 0 at an x-value of -5 to a maximum y-value approaching 1 at an x-value of 5. In this way, the sigmoid
function can be used to convert an input sparsity parameter in the range -5 to 5 to a normalised sparsity parameter in

the range 0 to 1. In an example, the normalising logic 704 may use the sigmoid function,  , so as to
normalise the sparsity parameter sj. The output of the normalising logic 704 may be a normalised sparsity parameter

 . It is to be understood that the normalising logic may use other functions, for example hard - sigmoid() that achieve
the same normalisation with a different set of mathematical operations on the input sparsity parameter. For the purpose
of the example equations provided herein , a sparsity parameter in the range 0 to 1 (either as provided, or after normal-

isation by a normalisation function) will be denoted by  .
[0119] As described herein, each coefficient in a set of coefficients may be an integer number. In some examples, a
set of coefficients may include one or more positive integer value coefficients, and one or more negative integer values.
In these examples, pruner logic 402a may include logic 700 configured to determine the absolute value of each coefficient
in the set of coefficients, wj. In this way, each of the values in set of coefficients at the output of unit 700 is a positive
integer value.
[0120] Pruner logic 402a shown in Figure 7a includes quantile logic 706, which is configured to determine a threshold

in dependence on the sparsity parameter,  , and the set of coefficients comprising absolute coefficient values. For
example, the sparsity parameter may indicate a percentage of sparsity to be applied to a set of coefficients - e.g. 40%.
In this example, quantile logic 706 would determine a threshold value, below which 40% of the absolute coefficient
values exist. In this example, the quantile logic can be described as using a non-differentiable quantile methodology.
That is, the quantile logic 706 shown in Figure 7a does not attempt to model the set of coefficients using a function, but
rather empirically sorts the absolute coefficient values (e.g. in ascending or descending order) and sets the threshold
at the appropriate value. For example, quantile logic 706 may determine a threshold τ in accordance with Equation (1). 
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[0121] Pruner logic 402a comprises subtraction logic 708, which is configured to subtract the threshold value deter-
mined by quantile logic 706 from each of the determined absolute coefficient values. In Figures 7a to d, the "minus"
symbol on one of the inputs to subtraction logic (e.g. subtraction logic 708 in Figure 7a) is used to show that that input
is being subtracted from the other input, labelled with a "plus" symbol. As a result, any of the absolute coefficient values
having a value less than the threshold value will be represented by a negative number, whilst any of the absolute
coefficient values having a value greater than the threshold value will be represented by a positive number. In this way,
pruner logic 402a has identified the least salient coefficients (e.g. the coefficients of least importance to the set of
coefficients). In this example, the least salient coefficients are those having an absolute value below the threshold value.
In other words, the pruner logic has identified the required percentage of coefficients in the input set of coefficients, wj,
having a value closest to zero.
[0122] Pruner logic 402a comprises step logic 710, which is configured to convert each of the negative coefficient
values in the output of subtraction logic 708 to zero, and convert each of the positive coefficient values in the output of
subtraction logic 708 to one. One exemplary way of achieving this is to use a step function. For example, the step function
may output a value of 0 for negative input values, and output a value of 1 for a positive input value. The output of step
logic 710 is a binary tensor having the same dimensions as the input set of coefficients, wj. A binary tensor is a tensor
consisting of binary values 0 and 1. The binary tensor output by step logic 710 can be used as a "sparsity mask".
[0123] The pruner logic 402a comprises multiplication logic 714, which is configured to perform an element-wise
multiplication of the sparsity mask and the input set of coefficients, wj. That is, in each coefficient position where the
binary sparsity mask includes a "0", the coefficient in the set of coefficients wj will be multiplied by 0 - giving an output
will be zero. In this way, sparsity has been applied to that coefficient - i.e. it has been set to zero. In each coefficient
position where the binary sparsity mask includes a "1", the coefficient in the set of coefficients wj will be multiplied by 1
- and so its value will be unchanged. The output of pruner logic 402a is an updated set of coefficients, w’j 506 to which
sparsity has been applied. For example, multiplication logic 714 may perform a multiplication in accordance with Equation
(2), where Step(abs(Wj) - τ) represents the binary tensor output by step logic 710. 

[0124] Figure 7c shows alternative exemplary pruner logic for applying unstructured sparsity. In some examples,
pruner logic 402 shown in Figure 4 has the properties of pruner logic 402c described with reference to Figure 7c. It is
to be understood that pruner logic 402c shown in Figure 7c is just one example of logic configured to apply sparsity to
a set of coefficients. Other forms of logic could be used to apply sparsity to a set of coefficients.
[0125] The inputs to pruner logic 402c shown in Figure 7c include wj 502 and sj 504, as described with reference to
Figure 7a. Pruner logic 402c shown in Figure 7c also comprises normalising logic 704, which performs the same function
as normalising logic 704 described with reference to Figure 7a.
[0126] The pruner logic 402c shown in Figure 7c may be particularly suitable when the coefficients in the set of
coefficients are normally distributed. A normal (or Gaussian) distribution can be fully described by its mean, m, and
standard deviation, Ψ. Pruner logic 402c shown in Figure 7c comprises logic 714 configured to determine the standard
deviation, Ψwj, of the coefficients in set of coefficients 502, and logic 716 configured to determine the mean, mwj, of the
coefficients in set of coefficients 502.
[0127] Pruner logic 402c shown in Figure 7c comprises quantile logic 706-2. The quantile logic 702-2 may use a
differentiable function, such as the inverse error function (e.g. erƒ-1), to model the set of coefficients using the mean,
mwj, and standard deviation, Ψwj, of that set of coefficients (as determined in logic 714 and 716). Quantile logic 706-2 is

configured to determine a threshold τ in dependence on the sparsity parameter  . For example, when the differentiable
function is an inverse error function, this can be achieved in accordance with Equations (3), where Ψwj is the standard
deviation determined by logic 714 and mwj is the mean determined by logic 716. 

[0128] Pruner logic 402c shown in Figure 7c comprises subtraction logic 708a configured to subtract the mean mwj
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determined by logic 716 from the threshold τ. Thus, with reference to Equation (3), the output of subtraction logic 708a

is  .
[0129] Pruner logic 402c shown in Figure 7c comprises subtraction logic 708b configured to subtract the mean mwj
determined by logic 716 from each coefficient in the set of coefficients wj 502. This has the effect of centring the distribution
of the coefficients in the set of coefficients about 0.
[0130] Pruner logic 402c shown in Figure 7c comprises logic 700 configured to determine the absolute value of each
value in the output of subtraction logic 708b. In this way, each of the values in the output of unit 700 is a positive integer
value.
[0131] Pruner logic 402c shown in Figure 7c comprises subtraction logic 708c configured to subtract the output of
subtraction logic 708a from each of the absolute values determined by logic 700. As a result, any of the absolute values

having a value less than the output of subtraction logic 708a (e.g.  will be represented by a negative
number, whilst any of the absolute values having a value greater than the output of subtraction logic 708a (e.g.

 ) will be represented by a positive number. In this way, pruner logic 402c has identified the least
salient coefficients (e.g. the coefficients of least importance to the set of coefficients). In this example, the least salient
coefficients are those in positions where the output of subtraction logic 708c is negative.
[0132] Pruner logic 402c comprises step logic 710, which performs the same function as step logic 710 described with
reference to Figure 7a. The output of step logic 710 is a binary tensor having the same dimensions as the input set of
coefficients, wj. A binary tensor is a tensor consisting of binary values 0 and 1. The binary tensor output by step logic
710 can be used as a "sparsity mask".
[0133] The pruner logic 402c comprises multiplication logic 714, which is configured to perform an element-wise
multiplication of the sparsity mask and the input set of coefficients, wj - as described with reference to multiplication logic
714 described with reference to Figure 7a. The output of pruner logic 402c is an updated set of coefficients, w’j 506 to
which sparsity has been applied. For example, multiplication logic 714 may perform a multiplication in accordance with
Equation (4), where Step (abs (wj - mwj) - (τ - mwj)) represents the binary tensor output by step logic 710. 

[0134] As described herein, the pruner logic 402c described with reference to Figure 7c may be particularly suitable
when the coefficients in the set of coefficients are normally distributed. Thus, the distribution of the sets of coefficients
wj may be tested or inferred so as to decide which implementation of the pruner logic to use to apply sparsity to those
coefficients (e.g. the pruner logic described with reference to Figure 7a or 7c). That is, if the sets of coefficients are not
normally distributed, it may be preferable to apply sparsity using the pruner logic described with reference to Figure 7a.
If the sets of coefficients are (or are approximately) normally distributed, it may be preferable to apply sparsity using the
pruner logic described with reference to Figure 7c.

Structured Sparsity

[0135] According to the principles described herein, synergistic benefits can be achieved by applying sparsity to a
plurality of coefficients of a set of coefficients in a structured manner that is aligned with the compression scheme that
will be used to compress that set of coefficients. This can be achieved by logically arranging pruner logic 402 and
compression logic 404 of Figure 4 as shown in Figure 5.
[0136] Figure 5 shows a data processing system implementing logic for compressing a set of coefficients for subsequent
use in a neural network in accordance with the principles described herein. The method of compressing a set of coefficients
for subsequent use in a neural network will be described with reference to Figure 6.
[0137] The inputs to pruner logic 402 include wj 502, which represents the set of coefficients for the jth layer of the
neural network as described herein. The inputs to pruner logic 402 also include sj 504, which represents a sparsity
parameter for the jth layer of the neural network as described herein. Both wj 502 and sj 504 may be read into the pruner
logic 402 from memory (such as memory 104 in Figure 4). The sparsity parameter may indicate a level of sparsity to be
applied to the set of coefficients, wj, by the pruner logic 402.
[0138] Pruner logic 402 is configured to apply sparsity to a plurality of groups of the coefficients, each group comprising
a predefined plurality of coefficients. This is method step 602 in Figure 6. A group of coefficients may be a plurality of
coefficients occupying contiguous positions in the set of coefficients, although this need not be the case. The group of
coefficients may have any suitable format. For example, the group of coefficients may comprise a p-dimensional tensor
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of coefficients where p≥1, or any other suitable format. In one example, each group of coefficients comprises sixteen
coefficients arranged in a single row (e.g. a group of coefficients having dimensions 1 3 16). More generally, a groups
of coefficients could have any dimensions, such as, for example, 2 3 2, 4 3 4 etc. As described herein, a set of coefficients
for performing a convolution operation on input data may have dimensions Cout 3 Cin 3 H 3 W. A group of said set of
coefficients may have dimensions 1 3 16 3 1 3 1 (i.e. where the 16 coefficients in each group are in corresponding
positions in each of 16 input channels). As described herein, a set of coefficients for performing a fully-connected
operation may have dimensions Cout 3 Cin. A group of said set of coefficients may have dimensions 1 3 16 (i.e. where
the 16 coefficients in each group are in corresponding positions in each of 16 input channels). In another example, a
coefficient channel of one or more of the filters of a set of filters of a layer (e.g. as described with reference to Figure
2b) can be treated as a group of coefficients to which sparsity can be applied.
[0139] Applying sparsity to a group of coefficients may comprise setting each of the coefficients in that group to zero.
This may be achieved by applying a sparsity algorithm to the coefficients of a set of coefficients. The number of groups
of coefficients to which sparsity is to be applied may be determined in dependence on the sparsity parameter, sj, which
can indicate a percentage, fraction, or portion of the set of coefficients to which sparsity is to be applied by the pruner
logic 402. The sparsity parameter, sj, may be set (e.g. somewhat arbitrarily by a user) in dependence on an assumption
of how much sparsity can be introduced into a set of coefficients without significantly affecting the accuracy of the neural
network. In other examples, as described in further detail herein, the sparsity parameter, sj, can be learned as part of
the training process for a neural network. The output of pruner logic 402 is an updated set of coefficients, w’j 506
comprising a plurality of sparse groups of coefficients (e.g. a plurality of groups of coefficients each consisting of coef-
ficients having a value of ’0’).
[0140] Figure 7b shows exemplary pruner logic for applying structured sparsity. In some examples, pruner logic 402
shown in Figures 4 and 5 has the properties of pruner logic 402b described with reference to Figure 7b. It is to be
understood that pruner logic 402b shown in Figure 7b is just one example of logic configured to apply structured sparsity
to a set of coefficients. Other forms of logic could be used to apply sparsity to a set of coefficients.
[0141] The inputs to pruner logic 402b shown in Figure 7b include wj 502 and sj 504, as described with reference to
Figure 7a. Pruner logic 402b shown in Figure 7b also comprises normalising logic 704 and logic 700, each of which
perform the same function as the respective logic described with reference to Figure 7a.
[0142] Pruner logic 402b shown in Figure 7b includes reduction logic 702, which is configured to divide the set of
coefficients received from logic 700 into multiple groups of coefficients, such that each coefficient of the set is allocated
to only one group and all of the coefficients are allocated to a group. Each group of coefficients may comprise a plurality
of coefficients. Each group of coefficients identified by the reduction logic may comprise the same number of coefficients
and may have the same dimensions. The reduction logic is configured to represent each group of coefficients by a single
value. For example, the single value representing a group could be the average (e.g. mean, medium or mode) of the
plurality of coefficients within that group. In another example, the single value for a group could be the maximum coefficient
value within that group. This may be termed max pooling. In an example, a group may comprise a channel of the set of
coefficients, as described herein. Reducing a channel of coefficients to a single value may be termed global pooling.
Reducing a channel of coefficients to the maximum coefficient value within that channel may be termed global max
pooling. The output of reduction logic 702 may be a reduced tensor having one or more dimensions an integer multiple
smaller than the tensor representing the set of coefficients, the integer being greater than 1. Each value in the reduced
tensor may represent a group of coefficients of the set of absolute coefficients input to reduction logic 702. Where
reduction logic 702 performs a pooling operation, such as max pooling, global pooling, or global max pooling, the reduced
tensor may be referred to as a pooled tensor.
[0143] The function performed by the reduction logic 702 is schematically illustrated in Figure 8. In Figure 8, 2 3 2
pooling 702 is performed on set of coefficients 502. Set of coefficients 502 may be those output by logic 700 shown in
Figure 7b. In this example, the set of coefficients 502 is represented by an 8 3 8 tensor of coefficients. The set of
coefficients 502 is logically divided into 16 groups of four coefficients (e.g. each group represented by a 2 3 2 tensor of
coefficients). The groups are indicated in Figure 8 by a thick border around each group of four coefficients in set of
coefficients 502. By performing 2 3 2 pooling 702, each group of four coefficients in the set of coefficients 502 is
represented by a single value in reduced tensor 800 as described herein. For example, the top-left group of coefficients
in set of coefficients 502 may be represented by the top-left value in reduced tensor 800. The reduced tensor 800 shown
in Figure 8 is represented by a tensor having dimensions 4 3 4. That is, the reduced tensor 800 has dimensions two
times smaller than the 8 3 8 tensor representing set of coefficients 502.
[0144] Returning to Figure 7b, pruner logic 402b includes quantile logic 706, which is configured to determine a

threshold in dependence on the sparsity parameter,  , and the reduced tensor. For example, the sparsity parameter
may indicate a percentage of sparsity to be applied to a set of coefficients - e.g. 25%. In this example, quantile logic 706
would determine a threshold value, below which 25% of the values in the reduced tensor exist. In this example, the
quantile logic can be described as using a non-differentiable quantile methodology. That is, the quantile logic 702 does
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not attempt to model the values in the reduced tensor using a function, but rather empirically sorts the values in the
reduced tensor (e.g. in ascending or descending order) and sets the threshold at the appropriate value. For example,
quantile logic 706 may determine a threshold τ in accordance with Equation (5). 

[0145] Pruner logic 402b comprises subtraction logic 708, which is configured to subtract the threshold value deter-
mined by quantile logic 706 from each of the values in the reduced tensor. As a result, any of the values in the reduced
tensor having a value less than the threshold value will be represented by a negative number, whilst any of the values
in the reduced tensor having a value greater than the threshold value will be represented by a positive number. In this
way, pruner logic 402b has identified the least salient values in the reduced tensor. In this example, the least salient
values in the reduced tensor are those having a value below the threshold value. The least salient values in the reduced
tensor correspond to the least salient groups of coefficients in the set of coefficients (e.g. the groups of coefficients of
least importance to the set of coefficients).
[0146] Pruner logic 402b comprises step logic 710, which is configured to convert each of the negative coefficient
values in the output of subtraction logic 708 to zero, and convert each of the positive coefficient values in the output of
subtraction logic 708 to one. One exemplary way of achieving this is to use a step function. For example, the step function
may output a value of 0 for negative input values, and output a value of 1 for a positive input value. The output of step
logic 710 is a binary tensor having the same dimensions as the reduced tensor output by reduction logic 702. A binary
tensor is a tensor consisting of binary values 0 and 1. Said binary tensor may be referred to as a reduced sparsity mask
tensor. Where reduction logic 702 performs a pooling operation, such as max pooling or global pooling, the reduced
sparsity mask tensor may be referred to as a pooled sparsity mask tensor.
[0147] The functions performed by quantile logic 706, subtraction logic 708 and step logic 710 can collectively be
referred to as mask generation 802. Mask generation 802 is schematically illustrated in Figure 8. In Figure 8, mask
generation 802 is performed on reduced tensor 800 (e.g. using quantile logic 706 and subtraction logic 708 as described
with reference to Figure 7b) so as to generate reduced sparsity mask tensor 804. The reduced sparsity mask tensor
804 comprises four binary "0"s represented by hatching, and 12 binary "1"s.
[0148] Returning to Figure 7b, pruner logic 402b comprises expansion logic 712, which is configured to expand the
reduced sparsity mask tensor so as to generate a sparsity mask tensor of the same dimensions as the tensor of coefficients
input to the reduction logic 702. Expansion logic 712 may perform upsampling, e.g. nearest neighbour upsampling. For
example, where the reduced sparsity mask tensor comprises a binary "0", the sparsity mask tensor would comprise a
corresponding group consisting of a plurality of binary "0"s, said group having the same dimensions as the groups into
which the set of coefficients was divided by reduction logic 702. For example, where reduction logic 702 performs a
global pooling operation, expansion logic 712 may perform an operation termed global upsampling. The binary tensor
output by expansion logic 712 can be used as a "sparsity mask", and so may be referred to herein as a sparsity mask
tensor. In an example, nearest neighbour upsampling can be achieved by expansion logic 712 with deconvolution, also
known as convolution transpose, layers that are implemented by configuring convolution engines (e.g. convolution
engines 108 shown in Figure 1) in appropriate manner.
[0149] The functions performed by the expansion logic 712 are schematically illustrated in Figure 8. In Figure 8, 2 3
2 upsampling, e.g. nearest neighbour upsampling, is performed on reduced sparsity mask tensor 804 so as to generate
sparsity mask tensor 505. For each binary "0" in reduced sparsity mask tensor 804, the sparsity mask tensor comprises
a corresponding 2 3 2 group of binary "0"s. As described herein, binary "0"s are shown in Figure 8 by hatching. The
sparsity mask tensor 505 has the same dimensions (i.e. 8 3 8) as tensor of coefficients 502.
[0150] The pruner logic 402b comprises multiplication logic 714, which is configured to perform an element-wise
multiplication of the sparsity mask tensor and the input set of coefficients, wj - as described with reference to multiplication
logic 714 described with reference to Figure 7a. As the sparsity mask tensor comprises groups of binary "0"s, sparsity
will be applied to groups of coefficients of the set of coefficients, wj. The output of pruner logic 402b is an updated set
of coefficients, w’j 506 to which sparsity has been applied. For example, multiplication logic 714 may perform a multipli-
cation in accordance with Equation (6), where Expansion(Step(Reduction(abs(wj)) - τ)) represents the binary tensor
output by expansion logic 712. 

[0151] Figure 7d shows alternative exemplary pruner logic for applying structured sparsity. In some examples, pruner
logic 402 shown in Figures 4 and 5 has the properties of pruner logic 402d described with reference to Figure 7d. It is
to be understood that pruner logic 402d shown in Figure 7d is just one example of logic configured to apply structured



EP 4 020 325 A1

18

5

10

15

20

25

30

35

40

45

50

55

sparsity to a set of coefficients. Other forms of logic could be used to apply structured sparsity to a set of coefficients.
[0152] The inputs to pruner logic 402d shown in Figure 7d include wj 502 and sj 504, as described with reference to
Figure 7a. Pruner logic 402d shown in Figure 7d also comprises normalising logic 704, which performs the same function
as normalising logic 704 described with reference to Figure 7a.
[0153] Pruner logic 402d comprises logic 716 configured to determine the mean, mwj, of the coefficients in set of
coefficients 502, and subtraction logic 708d to subtract the mean, mwj, determined by logic 716 from each coefficient
value in the input set of coefficient values 502.
[0154] Pruner logic 702 also comprises logic 700 configured to determine the absolute value of each value in the
output of subtraction logic 708d. In this way, each of the values in the output of unit 700 is a positive integer value.
[0155] Pruner logic 702 comprises reduction logic 702, which performs the same function as reduction logic 702
described with reference to Figure 7b. That is, the reduction logic 702 is configured to divide the set of coefficients
received from logic 700 into multiple groups of coefficients and represent each group of coefficients by a single value.
For example, the single value for a group could be the maximum coefficient value within that group. This process is
termed "max pooling". The output of reduction logic 702 is a reduced tensor having one or more dimensions an integer
multiple smaller than the tensor representing the set of coefficients, the integer being greater than 1. Each value in the
reduced tensor represents a group of coefficients of the set of coefficients input to reduction logic 702.
[0156] As with the pruner logic 402c described with reference to Figure 7c, the pruner logic 402d shown in Figure 7d
may be particularly suitable when the coefficients in the set of coefficients are normally distributed. However, when
reduction, e.g. max pooling or global max pooling, is performed on a normally distributed set of values, the distribution
of those values approach a Gumbel distribution. A Gumbel distribution can be described by a scale parameter, β and a
location parameter, ø. Thus, pruner logic 402d comprises logic 718 configured to determine the scale parameter, βwj,
of the output of reduction logic 702, Reduction(abs(wj - mwj), according to Equation (7), and logic 720 configured to
determine the location parameter, φwj, of the output of reduction logic 702 according to Equation (8), where γ is the Euler-
Mascheroni constant (i.e. 0.577216 - rounded to six decimal places). 

[0157] Pruner logic 702 shown in Figure 7d comprises quantile logic 706-3. The quantile logic 702 may use a differ-
entiable function to model the set of values in the reduced tensor using the scale parameter, βwj and a location parameter,
φwj, determined by logic 718 and 720 respectively. Quantile logic 706-3 is configured to determine a threshold τ in

dependence on the sparsity parameter  . For example, this can be achieved using a differentiable function in accord-
ance with Equation (9). 

[0158] Pruner logic 702 shown in Figure 7d comprises subtraction logic 708e configured to subtract the threshold τ
from each of the values in the reduced tensor output by reduction logic 702. As a result, any of the values in the reduced
tensor having a value less than the threshold τ will be represented by a negative number, whilst any of the values in the
reduced tensor having a value greater than the threshold τ will be represented by a positive number. In this way, pruner
logic 402d has identified the least salient values in the reduced tensor. In this example, the least salient values in the
reduced tensor are those having a value below the threshold τ. The least salient values in the reduced tensor correspond
to the least salient groups of coefficients in the set of coefficients (e.g. the groups of coefficients of least importance to
the set of coefficients).
[0159] Pruner logic 402d comprises step logic 710, which is configured to convert each of the negative coefficient
values in the output of subtraction logic 708e to zero, and convert each of the positive coefficient values in the output
of subtraction logic 708e to one. One exemplary way of achieving this is to use a step function. For example, the step
function may output a value of 0 for negative input values, and output a value of 1 for a positive input value. The output
of step logic 710 is a binary tensor having the same dimensions as the reduced tensor. A binary tensor is a tensor
consisting of binary values 0 and 1. Said binary tensor may be referred to as a reduced sparsity mask tensor. The
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functions performed by quantile logic 706-3, logic 718, logic 720, subtraction logic 708e and step logic 710 can collectively
be referred to as mask generation 802.
[0160] Pruner logic 402d shown in Figure 7d comprises expansion logic 712, which is configured to expand the reduced
sparsity mask tensor so as to generate a sparsity mask tensor of the same dimensions as the tensor of coefficients input
to the reduction logic 702 - as described with reference to expansion logic 712 shown in Figure 7b. The binary tensor
output by expansion logic 712 can be used as a "sparsity mask", and so may be referred to herein as a sparsity mask tensor.
[0161] Pruner logic 402d comprises multiplication logic 714, which is configured to perform an element-wise multipli-
cation of the sparsity mask tensor and the input set of coefficients, wj - as described with reference to multiplication logic
714 described with reference to Figure 7a. As the sparsity mask tensor comprises groups of binary "0"s, sparsity will be
applied to groups of coefficients of the set of coefficients, wj. The output of pruner logic 402d is an updated set of
coefficients, w’j 506 to which sparsity has been applied. For example, multiplication logic 714 may perform a multiplication
in accordance with Equation (10), where
[0162] Expansion(Step(Reduction(abs(Wj - mwj)) - τ)) represents the binary tensor output by expansion logic 712. 

[0163] As described herein, the pruner logic 402d described with reference to Figure 7d may be particularly suitable
when the coefficients in the set of coefficients are normally distributed. Thus, the distribution of the sets of coefficients
wj may be tested or inferred so as to decide which implementation of the pruner logic to use to apply structured sparsity
to those coefficients (e.g. the pruner logic described with reference to Figure 7b or 7d). That is, if the sets of coefficients
are not normally distributed, it may be preferable to apply sparsity using the pruner logic described with reference to
Figure 7b. If the sets of coefficients are (or are approximately) normally distributed, it may be preferable to apply sparsity
using the pruner logic described with reference to Figure 7d.
[0164] As described herein, Figure 7d gives an example where reduction, e.g. max pooling or global max pooling, is
performed by reduction logic 702 on a normally distributed set of values such that the distribution of those values approach
a Gumbel distribution. A Gumbel distribution can be referred to as an extreme value distribution. It is to be understood
that other types of extreme value distribution could be used in place of the Gumbel distribution, such as the Weibull
distribution or the Frechet distribution. In these examples, the logic depicted in Figure 7d could be modified such that
quantile logic models the appropriate distribution so as to determine a threshold. It is to be understood that other types
of reduction, e.g. mean, mode or median pooling, could be performed by reduction logic 702 such that the normally
distributed set of values approach a different type of distribution. In these examples, the logic depicted in Figure 7d could
be modified such that quantile logic models the appropriate distribution so as to determine a threshold.
[0165] Returning to Figure 5, the updated set of coefficients, w’j 506 may be written directly from pruner logic 402 into
compression logic 404 for compression. In other examples, the updated set of coefficients, w’j 506 may first be written
back to memory, such as memory 104 in Figure 4, prior to being read into compression logic 404 for compression.
[0166] Figures 14b to d show some examples of structured sparsity applied to sets of coefficients in accordance with
the principles described herein. The set of coefficients shown in Figures 14b to d may be used by a fully connected
layer. In Figures 14b to d, coefficient channels are depicted as horizontal rows of the set of coefficients and filters of
coefficients are depicted as vertical columns of the set of coefficients. In Figures 14b to d, sparse coefficients are shown
using hatching. In each of Figures 14b to d, sparsity has been applied to groups of coefficients as described herein. In
Figure 14b, each group comprises a 2 3 2 tensor of coefficients. In Figure 14c, each group comprises a channel of
coefficients. In Figure 14d, each group comprises a filter of coefficients.
[0167] Compression logic 404 is configured to compress the updated set of coefficients, w’j, according to a compression
scheme aligned with the groups of coefficients so as to represent each group of coefficients by an integer number of
one or more compressed values. This is method step 604 in Figure 6.
[0168] The compression scheme may be the SPGC8 compression scheme. As described herein with reference to
Figure 3a, the SPGC8 compression scheme compresses sets of coefficients by compressing a plurality of subsets of
those coefficients. Each group of coefficients to which sparsity is applied by the pruner logic 402 may comprise one or
more subsets of coefficients of the set of coefficients according to the compression scheme. For example, each group
may comprise n coefficients and each subset according to the compression scheme may comprise m coefficients, where
m is greater than 1 and n is an integer multiple of m. In some examples, n is equal to m. That is, in some examples each
group of coefficients is a subset of coefficients according to the compression scheme. In other examples, n may be
greater than m. In these examples, each group of coefficients may be compressed by compressing multiple adjacent
or interleaved subsets of coefficients. For example, n may be equal to 2m. Each group may comprise 16 coefficients
and each subset may comprise 8 coefficients. In this way, each group can be compressed by compressing two adjacent
subsets of coefficients. Alternatively, each group can be compressed by compressing two interleaved subsets of coef-
ficients as described herein.
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[0169] It is to be understood that n need not be an integer multiple of the number of coefficients in a set of coefficients.
In the case where n is not a multiple of the number of coefficients in a set of coefficients, the remaining coefficients once
the set of coefficients has been divided into groups of n coefficients can be padded with zero coefficients (e.g. "zero
padded") so as to form a final (e.g. remainder) group of n coefficients to be compressed according to the compression
scheme.
[0170] The output of compression logic 404 may be stored in memory (such as memory 104 shown in Figure 4) for
subsequent use in a neural network. For example, the sets of coefficients may be compressed as described with reference
to Figures 5 and 6 in an ’offline phase’ (e.g. at ’design time’), before being stored for subsequent use in a ’runtime’
implementation of a neural network. For example, the compressed sets of coefficients output by compression logic 404
in Figure 5 may form an input for a neural network (e.g. an input 101 to the implementation of a neural network as shown
in Figure 1).
[0171] The advantage of compressing groups of coefficients according to a compression scheme aligned with the
groups of coefficients to which sparsity has been applied can be understood with reference to Figure 3b.
[0172] Figure 3b illustrates the compression of a sparse subset of coefficients in accordance with a compression
scheme. The compression scheme may be the SPGC8 compression scheme as described herein. Here we consider a
sparse subset of coefficients 310, where all eight coefficients in the subset have the value 0 (e.g. as a result of applying
sparsity to a group of coefficients comprising that subset of coefficients). As described herein, typically, in uncompressed
form, each coefficient may be encoded in a 16-bit binary number - as shown at 312 - although more or fewer bits may
be selected. Thus, in this example, 128 bits are required to encode a sparse subset of eight zero coefficients, as shown
in 312. As described herein, according to the SPGC8 compression scheme a compressed subset of coefficients can be
represented by header data and a plurality of body portions. In sparse subset of coefficients 310, the largest coefficient
value is 0, which can be encoded using 0 bits of data. Thus, in this example, the header data indicates that 0 bits are
going to be used to encode each coefficient in the subset of coefficients. The header data itself has a bit cost - for
example, 1 bit (e.g. as only 1 bit is required to encode the number 0 in binary - the number of bits each body portion will
comprise) - whilst each body portion encodes the coefficient values using 0 bits. In this example, the subset of coefficients
310 can therefore be encoded in a compressed form using 1 bit of data, as shown in 314, rather than in 128 bits in its
uncompressed form, as shown in 312. Thus, compressing set of coefficients for subsequent use in a neural network in
accordance with the principles described herein is greatly advantageous, as large compression ratios can be achieved,
the memory footprint of the sets of coefficients can be significantly reduced, and the memory bandwidth required to read
the sets of coefficients from memory can be significantly reduced. In addition, compressing set of coefficients for sub-
sequent use in a neural network in accordance with the principles described herein significantly reduces the memory
footprint of the model file/graph/representation of the neural network.
[0173] On the other hand, if sparsity were to be applied in an unstructured manner and even one of the coefficients
in a subset of coefficients were to be non-zero, the compression scheme would use one or more bits to encode each
coefficient value in that subset - thus, potentially significantly increasing the memory footprint of the compressed subset.
For example, following the reasoning explained with reference to subset 302 with reference to Figure 3a, a subset of
coefficients 31, 0, 0, 0, 0, 0, 0, 0 would require 43 bits to be encoded (as the maximum value 31 requires 5 bits to be
encoded and, so each body portion would be encoded using 5 bits). Hence, it is particularly advantageous to apply
sparsity to groups of coefficients so as to cause the subsets of coefficients of those groups to be compressed to comprise
exclusively ’0’ coefficient values.
[0174] It is to be understood that numerous other suitable compression schemes exist, and that the principles described
herein are not limited to application with the SPGC8 compression scheme. For example, the principles described herein
may be applicable with any compression scheme that compresses sets of coefficients by compressing a plurality of
subsets of those sets of coefficients.
[0175] It is to be understood that the structured sparsity principles described herein are applicable to the sets of
coefficients of convolutional layers, fully-connected layers and any other type of neural network layer configured to
combine a set of coefficients of suitable format with data input to that layer

Channel Pruning

[0176] The logic units of data processing system 410 shown in Figure 4 can be used in other ways so as to address
one or more of the problems identified herein. For example, coefficient identification logic 412 can be used to perform
channel pruning.
[0177] Figure 11a shows an exemplary application of channel pruning in convolutional layers according to the principles
described herein. Figure 11a shows two convolutional layers, 200-1a and 200-2a. It is to be understood that a neural
network may comprise any number of layers. The data input to layer 200-2a depends on the output data for the layer
200-1a - referred to herein as the "preceding layer". That is, the data input to layer 200-2a may be the data output from
preceding layer 200-1a. Alternatively, further processing logic (such as element-wise addition, subtraction or multiplication
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logic - not shown) may exist between layers 200-1a and 200-2a, and perform an operation on output data 200-1a so as
to provide input data 200-2a.
[0178] Each layer shown in Figure 11a is configured to combine a respective set of filters with data input to the layer
so as to form output data for the layer. For example, layer 200-2a is configured to combine a set of filters 204-2a with
data 202-2a input to the layer so as to form output data 206-2a for the layer. Each filter of the set of filters of a layer may
comprise a plurality of coefficients of the set of coefficients of that layer. Each filter in the set of filters of the layer may
comprise a different plurality of coefficients. That is, each filter may comprise a unique set of coefficients of the set of
coefficients. Alternatively, two or more of the filters in the set of filters of the layer may comprise the same plurality of
coefficients. That is, two or more of the filters in a set of filters may be identical to each other.
[0179] The set of filters for each layer shown in Figure 11a comprises a plurality of coefficient channels, each coefficient
channel of the set of filters corresponding to a respective data channel in the data input to the layer. For example, input
data 202-2a comprises four channels and each filter (e.g. each individual filter) in set of filters 204-2a comprises four
coefficient channels. The first, or uppermost, filter of set of filters 204-2a comprises coefficient channels a, b, c and d,
which correspond with channels A, B, C, D of input data 202-2a respectively. For simplicity, the coefficient channels of
each of the other two filters in set of filters 204-2a are not labelled - although it will be appreciated that the same principles
apply to those filters. Thus, the set of filters (e.g. as a collective) of a layer can be described as comprising a plurality of
coefficient channels, each coefficient channel of the set of filters (e.g. as a collective) including the coefficient channel
of each filter (e.g. each individual filter) of the set of filters that corresponds to the same data channel in the data input
to that layer.
[0180] The output data for each layer shown in Figure 11a comprises a plurality of data channels, each data channel
corresponding to a respective filter of the set of filters of that layer. That is, each filter of the set of filters of a layer may
be responsible for forming a data channel in the output data for that layer. For example, the set of filters 204-2a of layer
200-2a comprises three filters and the output data 206-2a for that layer comprises three data channels. Each of the
three filters in set of filters 204-2a may correspond with (e.g. and be responsible for forming) a respective one of the
data channels in output data 206-2a.
[0181] Figure 12 shows a method of training a neural network using channel pruning in accordance with the principles
described herein.
[0182] In step 1202, a target coefficient channel of the set of filters of a layer is identified. This step is performed by
coefficient identification logic 412 as shown in Figure 4. For example, in Figure 11a, an identified target coefficient
channel of set of filters 204-2a is shown in hatching. The target coefficient channel includes coefficient channel d of the
first, or uppermost, filter of set of filters 204-2a, and the coefficient channels in the other two filters of set of filters 204-2a
that correspond with the same data channel in input data 202-2a. Figure 11a illustrates the identification of one target
coefficient channel in set of filters 204-2a - although it is to be understood that any number of target coefficient channels
may be identified in a set of filters in step 1202.
[0183] The target coefficient channel may be identified in accordance with a sparsity parameter. For example, the
sparsity parameter may indicate a percentage of sparsity to be applied to the set of filters 204-2a - e.g. 25%. The
coefficient identification logic 412 may identify that 25% sparsity could be achieved in the set of filters 204-2a by applying
sparsity to the hatched coefficient channel. The target coefficient channel may be the least salient coefficient channel
in the set of filters. The coefficient channel may use logic similar to that described with reference to pruner logic 402b
or 402d shown in Figures 7b and 7d respectively so as to identify one or more least salient coefficient channels in the
set of filters. For example, the coefficient identification logic may comprise the same arrangement of logical units as
either pruner logic 702b or 702d shown in Figures 7b and 7d respectively, other than the multiplication logic 714, so as
to provide a binary mask in which the target channel is identified by binary ’0’s. Alternatively, coefficient identification
logic 412 may cause the set of filters to be processed using pruner logic 402b or 402d itself so as to identify the target
coefficient channel. It is to be understood that, in the channel pruning examples described herein, sparsity may, or may
not, actually be applied to said target coefficient channel. For example, coefficient identification logic may identify, flag,
or determine the target coefficient channel in accordance with a sparsity parameter for use in steps 1204 and 1206
without actually applying sparsity to the target coefficient channel. Alternatively, sparsity may be applied to the target
coefficient channel in a test implementation of a neural network so as to determine how removing that coefficient channel
would affect the accuracy of the network, before performing steps 1204 and 1206 - as will be described in further detail
herein.
[0184] In step 1204, a target data channel of the plurality of data channels in the data input to the layer is identified.
This step is performed by coefficient identification logic 412 as shown in Figure 4. The target data channel is the data
channel corresponding to the target coefficient channel of the set of filters. For example, in Figure 11a, the identified
target data channel in the input data 202-2a is data channel D, and is shown in hatching.
[0185] Steps 1202 and 1204 may be performed by coefficient identification logic 412 in an "offline", "training" or "design"
phase. The coefficient identification logic 412 may report the identified target coefficient channel and the identified target
data channel to the data processing system 410. In step 1206, a runtime implementation of the neural network is
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configured in which the set of filters of the preceding layer do not comprise that filter which corresponds to the target
data channel. As such, when executing the runtime implementation of the neural network on the data processing system,
combining the set of filters of the preceding layer with data input to the preceding layer does not form the data channel
in the output data for the preceding layer corresponding to the target data channel. Step 1206 may be performed by the
data processing system 410 itself configuring the software and/or hardware implementations of the neural network 102-1
or 102-2 respectively. Step 1206 may further comprise storing the set of filters of the preceding layer that do not comprise
that filter which corresponds to the target data channel in memory (e.g. memory 102 shown in Figure 4) for subsequent
use by the runtime implementation of the neural network. Step 1206 may further comprise configuring the runtime
implementation of the neural network in which each filter of the set of filters of the layer does not comprise the target
coefficient channel. Step 1206 may further comprise storing the set of filters of the layer that do not comprise the target
coefficient channel in memory (e.g. memory 102 shown in Figure 4) for subsequent use by the runtime implementation
of the neural network.
[0186] For example, in Figure 11a, the filter 1100a (shown in hatching) in set of filters 204-1a of the preceding layer
200-1a corresponds to the identified target data channel (e.g. data channel D in input data 204-2a). This is because, as
described herein, each of the filters in the set of filters of a layer may be responsible for forming a respective one of the
data channels in output data for that layer. The data input to layer 200-2a depends on the output data for the preceding
layer 200-1a. Thus, in Figure 11a, filter 1100a is responsible for forming data channel D in output data 206-1a. Data
channel D in input data 202-2a depends on data channel D in output data 206-1a. In this way, filter 1100a corresponds
with data channel D in input data 202-2a. By configuring a runtime implementation of the neural network in which the
set of filters of the preceding layer 200-1a do not comprise filter 1100a, when executing the runtime implementation of
the neural network on the data processing system, the data channel D in output data 206-1a will not be formed. Thus,
the input data 202-2a will not comprise data channel D. As a result, the target coefficient channel shown in hatching
may also be omitted from the set of filters in 204-2a when configuring the runtime implementation of the neural network.
Alternatively, the target coefficient channel may be included in the set of filters in 204-2a, but, when executing the runtime
implementation of the neural network on the data processing system, any computations involving the coefficients in the
target coefficient channel may be bypassed.
[0187] As described herein, Figure 11a shows an exemplary application of channel pruning in convolutional layers.
That said, sets of coefficients used by other types of neural network layer, such as fully-connected layers, can also be
arranged as a set of filters as described herein. Thus, it is to be understood that the principles described herein are
applicable to the sets of coefficients of convolutional layers, fully-connected layers and any other type of neural network
layer configured to combine a set of coefficients of suitable format with data input to that layer.
[0188] For example, Figure 11b shows an exemplary application of channel pruning in fully-connected layers according
to the principles described herein. Figure 11b shows two fully-connected layers, 200-1b and 200-2b. It is to be understood
that a neural network may comprise any number of layers. The data input to layer 200-2b depends on the output data
for the layer 200-1b - referred to herein as the "preceding layer". That is, the data input to layer 200-2b may be the data
output from preceding layer 200-1b. Alternatively, further processing logic (such as element-wise addition, subtraction
or multiplication logic - not shown) may exist between layers 200-1b and 200-2b that performs an operation on output
data 200-1b so as to provide input data 200-2b.
[0189] Each layer shown in Figure 11b is configured to combine a respective set of filters with data input to the layer
so as to form output data for the layer. For example, layer 200-2b is configured to combine set of filters 204-2b with data
202-2b input to the layer so as to form output data 206-2b for the layer. In Figure 11b, individual filters are depicted as
vertical columns of the set of filters. That is, set of filters 204-2b comprises three filters. Each filter of the set of filters of
a layer may comprise a plurality of coefficients of the set of coefficients of that layer. Each filter in the set of filters of the
layer may comprise a different plurality of coefficients. That is, each filter may comprise a unique set of coefficients of
the set of coefficients. Alternatively, two or more of the filters in the set of filters of the layer may comprise the same
plurality of coefficients. That is, two or more of the filters in a set of filters may be identical to each other.
[0190] The set of filters for each layer shown in Figure 11b comprises a plurality of coefficient channels, each coefficient
channel of the set of filters corresponding to a respective data channel in the data input to the layer. In Figure 11b,
coefficient channels are depicted as horizontal rows of the set of filters. That is, set of filters 204-2b comprises four
coefficient channels. In Figure 11b, data channels are depicted as vertical columns of the set of input and output data.
That is, input data 202-2b comprises four coefficient channels. In Figure 11b, the set of filters 204-2b comprises coefficient
channels a, b, c and d, which correspond with channels A, B, C, D of input data 202-2b respectively.
[0191] The output data for each layer shown in Figure 11b comprises a plurality of data channels, each data channel
corresponding to a respective filter of the set of filters of that layer. That is, each filter of the set of filters of a layer may
be responsible for forming a data channel in the output data for that layer. For example, the set of filters 204-2b of layer
200-2a comprises three filters (shown as vertical columns) and the output data 206-2b for that layer comprises three
data channels (shown as vertical columns. Each of the three filters in set of filters 204-2b may correspond with (e.g. and
be responsible for forming) a respective one of the data channels in output data 206-2b.
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[0192] Referring again to Figure 12, in step 1202, a target coefficient channel of the set of filters of a layer is identified
as described herein. For example, in Figure 11b, an identified target coefficient channel of set of filters 204-2b is coefficient
channel a, and is shown in hatching. In step 1204, a target data channel of the plurality of data channels in the data
input to the layer is identified as described herein. For example, in Figure 11b, the identified target data channel in the
input data 202-2b is data channel A, and is shown in hatching. In step 1206, a runtime implementation of the neural
network is configured in which the set of filters of the preceding layer do not comprise that filter which corresponds to
the target data channel as described herein. For example, in Figure 11b, the filter 1100b (shown in hatching) in set of
filters 204-1b of the preceding layer 200-1a corresponds to the identified target data channel (e.g. data channel A in
input data 204-2b).
[0193] Two different bandwidth requirements affecting the performance of a neural network are weight bandwidth and
activation bandwidth. The weight bandwidth relates to the bandwidth required to read weights from memory. The activation
bandwidth relates to the bandwidth required to read the input data for a layer from memory, and write the corresponding
output data for that layer back to memory. By performing channel pruning, both the weight bandwidth and the activation
bandwidth can be reduced. The weight bandwidth is reduced because, with fewer filters of a layer (e.g. where one or
more filters of a set of filters is omitted when configuring the runtime implementation of the neural network) and/or smaller
filters of a layer (e.g. where one or more coefficient channels of a set of filters is omitted when configuring the runtime
implementation of the neural network), the number of coefficients in the set of coefficients for that layer is reduced - and
thus fewer coefficients are read from memory whist executing the runtime implementation of the neural network. For the
same reasons, channel pruning also reduces the total memory footprint of the sets of coefficients for use in a neural
network (e.g. when stored in memory 104 as shown in Figures 1 and 4). The activation bandwidth is reduced because,
with fewer filters in a layer (e.g. where one or more filters of a set of filters is omitted when configuring the runtime
implementation of the neural network), the number of channels in the output for that layer is reduced. This means that
less output data is written to memory, and less input data for the subsequent layer is read from memory. Channel pruning
also reduces the computational requirements of a neural network by reducing the number of operations to be performed
(e.g. multiplications between coefficients and respective input data values).

Learnable Sparsity Parameter

[0194] Approaches to "unstructured sparsity", "structured sparsity" and "channel pruning" have been described herein.
In each of these approaches, reference has been made to a sparsity parameter. As described herein, the sparsity
parameter may be set (e.g. somewhat arbitrarily by a user) in dependence on an assumption of what proportion of the
coefficients in a set of coefficients can be set to zero, or removed, without significantly affecting the accuracy of the
neural network. That said, further advantages can be gained in each of the described "sparsity", "structured sparsity"
and "channel pruning" approaches by learning a value for the sparsity parameter, for example, an optimal value for the
sparsity parameter. As described herein, the sparsity parameter can be learned, or trained, as part of the training process
for a neural network. This can be achieved by logically arranging pruner logic 402, network accuracy logic 408, and
sparsity learning logic 406 of Figure 4, as shown in Figure 9. Network accuracy logic 408 and sparsity learning logic 406
can be referred to collectively as learning logic 414.
[0195] Figure 9 shows a data processing system implementing a test implementation of a neural network for learning
a sparsity parameter by training in accordance with the principles described herein. The test implementation of the neural
network shown in Figure 9 comprises three neural network layers 900-1, 900-2, and 900-j. Neural network layers 900-1,
900-2, and 900-j can be implemented in hardware, software, or any combination thereof (e.g. in software implementation
of a neural network 102-1 and/or hardware implementation of a neural network 102-2 as shown in Figure 4). Although
three neural network layers are shown in Figure 9, it is to be understood that the test implementation of the neural
network may comprise any number of layers. The test implementation of the neural network may include one or more
convolutional layer, one or more fully-connected layer, and/or one or more of any other type of neural network layer
configured to combine a set of coefficients with respective data values input to that layer. That is, it is to be understood
that the learnable sparsity parameter principles described herein are applicable to the sets of coefficients of convolutional
layers, fully-connected layers and any other type of neural network layer configured to combine a set of coefficients of
suitable format with data input to that layer. It is to be understood that the test implementation of the neural network may
also comprise other types of layers (not shown) that are not configured to combine sets of coefficients with data input
to those layers, such as activation layers and element-wise layers.
[0196] The test implementation of the neural network also includes three instances of pruner logic 402-1, 402-2, and
402-j, each of which receive as inputs a respective set of coefficients, w1, w2, wj, and a respective sparsity parameter,
s1, s2, sj, for the respective neural network layer 900-1, 900-2, and 900-j. As described herein, the set of coefficients
may be in any suitable format. The sparsity parameter may indicate a level of sparsity to be applied to the set of coefficients
by the pruner logic. For example, the sparsity parameter may indicate a percentage, fraction, or portion of the set of
coefficients to which sparsity is to be applied by the pruner logic.
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[0197] The pruner logic shown in Figure 9 may have the same features as any of pruner logic 402a, 402b, 402c or
402d as described with reference to Figures 7a, 7b, 7c and 7d respectively. The type of pruner logic used in the test
implementation of the neural network may depend on the approach for which the sparsity parameter is being trained
(e.g. "unstructured sparsity", "structured sparsity" or "channel pruning") and/or the distribution of the set of coefficients
received by the pruner logic (e.g. whether that set of coefficients is, or is approximately, normally distributed). For
example, if the test implementation of the neural network shown in Figure 9 is being used to learn a sparsity parameter
for the application of structured sparsity to a normally distributed set of coefficients, instances of pruner logic 402-1,
402-2, and 402-j may have the same features as pruner logic 702d described with reference to Figure 7d.
[0198] The test implementation of the neural network shown in Figure 9 also comprises network accuracy logic 408,
which is configured to assess the accuracy of the test implementation of the neural network, and sparsity learning logic
406 configured to update one or more of the sparsity parameters, s1, s2, sj, in dependence on the accuracy of the
network- as will be described in further detail herein.
[0199] Figure 10 shows a method of learning a sparsity parameter by training a neural network in accordance with
the principles described herein. Steps 1002, 1004, 1006, 1008, and 1010 of Figure 10 may be performed using the test
implementation of the neural network shown in Figure 9. In the following description, the method of learning sparsity is
described with reference to neural network layer 900-j. It is to be understood that the same method may be performed
simultaneously, or sequentially, for each of the other layers of the test implementation of the neural network.
[0200] In step 1002, sparsity is applied to one or more of the coefficients of set of coefficients, wj, according to a
sparsity parameter, sj. This step is performed by pruner logic 402-j. This may be achieved by applying a sparsity algorithm
to the set of coefficients. Sparsity can be applied by pruner logic 402-j in the manner described herein with reference to
the "unstructured sparsity", "structured sparsity" or "channel pruning" approaches.
[0201] In step 1004, the test implementation of the neural network is operated on training input data using the set of
coefficients output by pruner logic 402-j so as to form training output data. This step can be described as a forward pass.
The forward pass is shown by solid arrows in Figure 9. For example, in Figure 9, neural network layer 900-j combines
the set of coefficients output by pruner logic 402-j with data input into that layer so as to form output data for that layer.
In the example shown in Figure 9, the output data for the final layer in the sequence of layers (e.g. layer 900-j) is to be
the training output data.
[0202] In step 1006, the accuracy of the neural network is assessed in dependence on the training output data. This
step is performed by network accuracy logic 408. The accuracy of the neural network may be assessed by comparing
the training output data to verified output data for the training input data. The verified output data may be formed prior
to applying sparsity in step 1002 by operating the test implementation of the neural network on the training input data
using the original set of coefficients (e.g. the set of coefficients before sparsity was artificially applied in step 1002). In
another example, verified output data may be provided with the training input data. For example, in image classification
applications where the training input data comprises a number of images, the verified output data may comprise a
predetermined class or set of classes for each of those images. In one example, step 1006 comprises assessing the
accuracy of the neural network using a cross-entropy loss equation that depends on the training output data (e.g. the
training output data formed in dependence on the set of coefficients output by pruner logic 402-j, in which sparsity has
been applied to one or more of the coefficients of set of coefficients, wj, according to the sparsity parameter, sj) and the
verified output data. For example, the accuracy of the neural network may be assessed by determining a loss of the
training output data using the cross-entropy loss function.
[0203] In step 1008, the sparsity parameter sj is updated in dependence on the accuracy of the neural network as
assessed in step 1006. This step is performed by sparsity learning logic 406. This step can be described as a backward
pass of the network. Step 1008 may comprise updating the sparsity parameter sj in dependence on a parameter opti-
misation technique configured to balance the level of sparsity to be applied to the set to coefficients wj as indicated by
the sparsity parameter sj against the accuracy of the network. That is, in the examples described herein, the sparsity
parameter for a layer is a learnable parameter that can be updated in an equivalent manner to the set of coefficients for
that layer. In one example, the parameter optimisation technique uses a cross-entropy loss equation that depends on
the sparsity parameter and the accuracy of the network. For example, the sparsity parameter sj can be updated in
dependence on the loss of the training output data determined using the cross-entropy loss function by back-propagation
and gradient descent. Back-propagation can be considered to be a process of calculating a gradient for the sparsity
parameter with respect to the cross-entropy loss function. This can be achieved by using chain rule starting at the final
output of the cross-entropy loss function and working backwards to the sparsity parameter sj. Once the gradient is known,
a gradient descent (or its derivative) algorithm can be used to update the sparsity parameter according to its gradient
calculated through back-propagation. Gradient descent can be performed in dependence on a learning rate parameter,
which indicates the degree to which the sparsity parameter can be changed in dependence on the gradient at each
iteration of the training process.
[0204] Step 1008 may be performed in dependence on a weighting value configured to bias the test implementation
of the neural network towards maintaining the accuracy of the network or increasing the level of sparsity applied to the
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set to coefficients as indicated by the sparsity parameter. The weighting value may be a factor in the cross-entropy loss
equation. The weighting value may be set by a user of the data processing system. For example, the weighting value
may be set in dependence on the memory and/or processing resources available on the data processing system on
which the runtime implementation of the neural network is to be executed. For example, if the memory and/or processing
resources available on the data processing system on which the runtime implementation of the neural network is to be
executed are relatively small, the weighting value may be used to bias the method towards increasing the level of sparsity
applied to the set to coefficients as indicated by the sparsity parameter.
[0205] Step 1008 may be performed in dependence on a defined maximum level of sparsity to be indicated by the
updated sparsity parameter. The defined maximum level of sparsity may be a factor in the cross-entropy loss equation.
The maximum level of sparsity may be set by a user of the data processing system. For example, if the memory and/or
processing resources available on the data processing system on which the runtime implementation of the neural network
is to be executed are relatively small, the defined maximum level of sparsity to be indicated by the updated sparsity
parameter may be set to a relatively high maximum level - so as to permit the method to increase the level of sparsity
applied to the set to coefficients as indicated by the sparsity parameter to a relatively high level.
[0206] As described herein, the test implementation of the neural network may comprise a plurality of layers, each
layer configured to combine a respective set of coefficients with respective input data values to that layer so as to form
an output for that layer. The number of coefficients in the set of coefficients for each layer of the plurality of layers may
be variable between layers. In step 1008, a respective sparsity parameter may be updated for each layer of the plurality
of layers. In these examples, step 1008 may further comprise updating the sparsity parameter for each layer of the
plurality of layers in dependence on the number of coefficients in the set of coefficients for each layer, such that the test
implementation of the neural network is biased towards updating the respective sparsity parameters so as to indicate a
greater level of sparsity to be applied to sets of coefficients comprising a larger number of coefficients relative to sets
of coefficients comprising fewer coefficients. This is because sets of coefficients comprising great numbers of coefficients
typically comprises a greater proportion of redundant coefficients. This means that larger set of coefficients may be able
to be subjected to larger levels of applied sparsity before the accuracy of the network is significantly affected, relative
to sets of coefficients comprising fewer coefficients.
[0207] In one specific example, steps 1006 and 1008 may be performed using a cross-entropy loss equation as defined
by Equation (11). 

[0208] In Equation (11),  represents a training input data set  with I pairs of input images xi and verified
output labels yi. The test implementation of the neural network, executing a neural network model ƒ, addresses the

problem of mapping inputs to target labels.  represents the sets of coefficients wj for J layers, and

 represents the sparsity parameters  for J layers.  is the cross-entropy loss
defined by Equation (12) where k defines the index of each class probability output, λiWi1 is an L1 regularisation term,

and  is cross-entropy coupled sparsity loss defined by Equation (13). 

[0209] The processes of back propagation and gradient performed in step 1008 may involve working towards or finding
a local minimum in a loss function, such as shown in Equation (12). The sparsity learning logic 406 can assess the
gradient of the loss function for the set of coefficients and sparsity parameter used in the forward pass so as to determine
how the sets of coefficients and/or sparsity parameter should be updated so as to move towards a local minimum of the
loss function. For example, in Equation (13), minimising the term -log(1 - c(W,s)) may find new values for the sparsity
parameters of each layer of the plurality of layers that indicate an overall decreased level of sparsity to be applied to the
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sets to coefficients of the neural network. Minimising the term -log(c(W, s)) may find new values for the sparsity parameters
of each layer of the plurality of layers that indicate an overall increased level of sparsity to be applied to the sets to
coefficients of the neural network.
[0210] In Equation (13), α- is a weighting value configured to bias towards maintaining the accuracy of the network
or increasing the level of sparsity applied to the set to coefficients as indicated by the sparsity parameter. The weighing
value, α, may take a value between 0 and 1. Lower values of α (e.g. relatively closer to 0) may bias towards increasing
the level of sparsity applied to the set to coefficients as indicated by the sparsity parameter (e.g. potentially to the
detriment of network accuracy). Higher values of α (e.g. relatively closer to 1) may bias towards maintaining the accuracy
of the network.
[0211] In Equation (13), c(W,s), defined by Equation (14) below, is a function for updating the sparsity parameter in
dependence on the number of coefficients in the set of coefficients for each layer of the plurality of layers such that step
1008 is biased towards updating the respective sparsity parameters so as to indicate a greater level of sparsity to be
applied to sets of coefficients comprising a larger number of coefficients relative to sets of coefficients comprising fewer
coefficients. 

[0212] In a variation, Equation (13) can be modified so as to introduce a defined maximum level of sparsity, θ, to be
indicated by the updated sparsity parameter. This variation is shown in Equation (15). 

[0213] The maximum level of sparsity, θ, to be indicated by the updated sparsity parameter may represent a maximum
percentage, fraction, or portion of the set of coefficients to which sparsity is to be applied by the pruner logic. As with
the sparsity parameter, the maximum level of sparsity, θ, may take a value between 0 and 1. For example, a maximum
level of sparsity, θ, of 0.7 may define that no more than 70% sparsity is to be indicated by the updated sparsity parameter.
[0214] Returning to Figure 9, in examples where the test implementation of the neural network comprises pruner logic
using non-differentiable quantile methodology (e.g. the pruner logic 702a or 702b described with reference to Figures
7a and 7b respectively), the sparsity parameter sj, may be updated in step 1008 directly by the sparsity learning logic
406 (shown by a dot-and-dashed line in Figure 9 between sparsity learning logic 406 and the sparsity parameter sj). In
examples where the test implementation of the neural network comprises pruner logic using a differentiable quantile
function (e.g. the pruner logic 702c or 702d described with reference to Figures 7c and 7d respectively), the sparsity
parameter sj may be updated in step 1008 by back propagating the one or more gradients output by sparsity learning
logic 406 through the network accuracy logic 408, the neural network layer 900-j and the pruner logic 402-j (shown in
Figure 9 by dashed lines). That is, when applying sparsity in step 1002 comprises modelling the set of coefficients using
a differentiable function so as to identify a threshold value in dependence on the sparsity parameter, and applying sparsity
in dependence on that threshold value, the sparsity parameter can be updated in step 1008 by modifying the threshold
value by backpropagating one or more gradient vectors using the differentiable function.
[0215] In combined learnable sparsity parameter and channel pruning approaches, a sparsity parameter may first be
trained using the learnable sparsity parameter approach described herein. The sparsity parameter may be trained for
channel pruning by configuring the pruner logic to apply sparsity to coefficient channels (e.g. using pruner logic as
described with reference to Figure 7b or 7d, where each coefficient channel is treated as a group of coefficients).
Thereafter, one or more target data channels can be identified in dependence on the trained sparsity parameter, and
the following steps of the channel pruning method performed (as can be understood with reference to the description
of Figures 11a, 11b and 12).
[0216] Steps 1002, 1004, 1006 and 1008 may be performed once. This may be termed "one-shot pruning". Alternatively,
steps 1002, 1004, 1006 and 1008 can be performed iteratively. That is, in a first iteration, sparsity can be applied in step
1002 in accordance with the original sparsity parameter. In each subsequent iteration, sparsity can be applied in step
1002 in accordance with the sparsity parameter as updated in step 1008 of the previous iteration. The sets of coefficients
may also be updated by back propagation and gradient descent in step 1008 of each iteration. In step 1010, it is
determined whether the final iteration of steps 1002, 1004, 1006 and 1008 has been performed. If not, a further iteration
of steps 1002, 1004, 1006 and 1008 is performed. A fixed number of iterations may be performed. Alternatively, the test
implementation of the neural network may be configured to iteratively perform steps 1002, 1004, 1006 and 1008 until a
condition has been met. For example, until a target level of sparsity in the sets of coefficients for the neural network has
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been met. When it is determined in step 1010 that the final iteration has been performed, the method progresses to step
1014.
[0217] In step 1014, a runtime implementation of the neural network is configured in dependence on the updated
sparsity parameter. When using the "unstructured sparsity" and "structured sparsity" approaches described herein, step
1014 may comprise using pruner logic (e.g. pruner logic 402 shown in Figure 4) to apply sparsity to the sets of coefficients
(e.g. the most recently updated set of coefficients) using the updated sparsity parameter so as to provide a sparse set
of coefficients. Sparsity should be applied at this stage using the same approach, e.g. "unstructured sparsity" or "structured
sparsity", as was used to update the sparsity parameter during the training process. The sparse set of coefficients may
be written to memory (e.g. memory 104 in Figure 4) for subsequent use by a runtime implementation of the neural
network. That is, the sparsity parameter and sets of coefficients may be trained as described with reference to steps
1002, 1004, 1006, 1008 and 1010 of Figure 10 in an ’offline phase’ (e.g. at ’design time’). Sparsity can then be applied
to the trained sets of coefficients in accordance with the trained sparsity parameter so as to provide a trained, sparse,
set of coefficients that are stored for subsequent use in a run-time implementation of a neural network. For example,
trained, sparse, set of coefficients may form an input for neural network (e.g. an input 101 to the implementation of a
neural network as shown in Figure 1). The runtime implementation of the neural network may be implemented by the
data processing system 410 in Figure 4 configuring the software and/or hardware implementations of the neural network
102-1 or 102-2 respectively.
[0218] When using the "channel pruning" approaches described herein, step 1014 may comprise using coefficient
identification logic 412 to identify one or more target coefficient channels in accordance with the updated sparsity pa-
rameter, before configuring the runtime implementation of the neural network as described herein with reference to
Figure 12.
[0219] Learning, or training, the sparsity parameter as part of the training process for a neural network is advantageous
as the sparsity to be applied to the set of coefficients of each of a plurality of layers of a neural network can be optimised
so as to maximise sparsity where network accuracy is not affected, whilst preserving the density of the sets of coefficients
where the network is sensitive to sparsity.
[0220] The implementation of a neural network shown in Figure 1, the data processing systems of Figures 4, 5 and 9
and the logic shown in Figures 7a, 7b, 7c and 7d are shown as comprising a number of functional blocks. This is schematic
only and is not intended to define a strict division between different logic elements of such entities. Each functional block
may be provided in any suitable manner. It is to be understood that intermediate values described herein as being formed
by a data processing system need not be physically generated by the data processing system at any point and may
merely represent logical values which conveniently describe the processing performed by the data processing system
between its input and output.
[0221] The data processing systems described herein may be embodied in hardware on an integrated circuit. The
data processing systems described herein may be configured to perform any of the methods described herein. Generally,
any of the functions, methods, techniques or components described above can be implemented in software, firmware,
hardware (e.g., fixed logic circuitry), or any combination thereof. The terms "module," "functionality," "component",
"element", "unit", "block" and "logic" may be used herein to generally represent software, firmware, hardware, or any
combination thereof. In the case of a software implementation, the module, functionality, component, element, unit, block
or logic represents program code that performs the specified tasks when executed on a processor. The algorithms and
methods described herein could be performed by one or more processors executing code that causes the processor(s)
to perform the algorithms/methods. Examples of a computer-readable storage medium include a random-access memory
(RAM), read-only memory (ROM), an optical disc, flash memory, hard disk memory, and other memory devices that
may use magnetic, optical, and other techniques to store instructions or other data and that can be accessed by a machine.
[0222] The terms computer program code and computer readable instructions as used herein refer to any kind of
executable code for processors, including code expressed in a machine language, an interpreted language or a scripting
language. Executable code includes binary code, machine code, bytecode, code defining an integrated circuit (such as
a hardware description language or netlist), and code expressed in a programming language code such as C, Java or
OpenCL. Executable code may be, for example, any kind of software, firmware, script, module or library which, when
suitably executed, processed, interpreted, compiled, executed at a virtual machine or other software environment, cause
a processor of the computer system at which the executable code is supported to perform the tasks specified by the code.
[0223] A processor, computer, or computer system may be any kind of device, machine or dedicated circuit, or collection
or portion thereof, with processing capability such that it can execute instructions. A processor may be or comprise any
kind of general purpose or dedicated processor, such as a CPU, GPU, NNA, System-on-chip, state machine, media
processor, an application-specific integrated circuit (ASIC), a programmable logic array, a field-programmable gate array
(FPGA), or the like. A computer or computer system may comprise one or more processors.
[0224] It is also intended to encompass software which defines a configuration of hardware as described herein, such
as HDL (hardware description language) software, as is used for designing integrated circuits, or for configuring pro-
grammable chips, to carry out desired functions. That is, there may be provided a computer readable storage medium
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having encoded thereon computer readable program code in the form of an integrated circuit definition dataset that when
processed (i.e. run) in an integrated circuit manufacturing system configures the system to manufacture a data processing
system configured to perform any of the methods described herein, or to manufacture a data processing system com-
prising any apparatus described herein. An integrated circuit definition dataset may be, for example, an integrated circuit
description.
[0225] Therefore, there may be provided a method of manufacturing, at an integrated circuit manufacturing system,
a data processing system as described herein. Furthermore, there may be provided an integrated circuit definition dataset
that, when processed in an integrated circuit manufacturing system, causes the method of manufacturing a data process-
ing system to be performed.
[0226] An integrated circuit definition dataset may be in the form of computer code, for example as a netlist, code for
configuring a programmable chip, as a hardware description language defining hardware suitable for manufacture in an
integrated circuit at any level, including as register transfer level (RTL) code, as high-level circuit representations such
as Verilog or VHDL, and as low-level circuit representations such as OASIS (RTM) and GDSII. Higher level represen-
tations which logically define hardware suitable for manufacture in an integrated circuit (such as RTL) may be processed
at a computer system configured for generating a manufacturing definition of an integrated circuit in the context of a
software environment comprising definitions of circuit elements and rules for combining those elements in order to
generate the manufacturing definition of an integrated circuit so defined by the representation. As is typically the case
with software executing at a computer system so as to define a machine, one or more intermediate user steps (e.g.
providing commands, variables etc.) may be required in order for a computer system configured for generating a man-
ufacturing definition of an integrated circuit to execute code defining an integrated circuit so as to generate the manu-
facturing definition of that integrated circuit.
[0227] An example of processing an integrated circuit definition dataset at an integrated circuit manufacturing system
so as to configure the system to manufacture a data processing system will now be described with respect to Figure 13.
[0228] Figure 13 shows an example of an integrated circuit (IC) manufacturing system 1302 which is configured to
manufacture a data processing system as described in any of the examples herein. In particular, the IC manufacturing
system 1302 comprises a layout processing system 1304 and an integrated circuit generation system 1306. The IC
manufacturing system 1302 is configured to receive an IC definition dataset (e.g. defining a data processing system as
described in any of the examples herein), process the IC definition dataset, and generate an IC according to the IC
definition dataset (e.g. which embodies a data processing system as described in any of the examples herein). The
processing of the IC definition dataset configures the IC manufacturing system 1302 to manufacture an integrated circuit
embodying a data processing system as described in any of the examples herein.
[0229] The layout processing system 1304 is configured to receive and process the IC definition dataset to determine
a circuit layout. Methods of determining a circuit layout from an IC definition dataset are known in the art, and for example
may involve synthesising RTL code to determine a gate level representation of a circuit to be generated, e.g. in terms
of logical components (e.g. NAND, NOR, AND, OR, MUX and FLIP-FLOP components). A circuit layout can be determined
from the gate level representation of the circuit by determining positional information for the logical components. This
may be done automatically or with user involvement in order to optimise the circuit layout. When the layout processing
system 1304 has determined the circuit layout it may output a circuit layout definition to the IC generation system 1306.
A circuit layout definition may be, for example, a circuit layout description.
[0230] The IC generation system 1306 generates an IC according to the circuit layout definition, as is known in the
art. For example, the IC generation system 1306 may implement a semiconductor device fabrication process to generate
the IC, which may involve a multiple-step sequence of photo lithographic and chemical processing steps during which
electronic circuits are gradually created on a wafer made of semiconducting material. The circuit layout definition may
be in the form of a mask which can be used in a lithographic process for generating an IC according to the circuit definition.
Alternatively, the circuit layout definition provided to the IC generation system 1306 may be in the form of computer-
readable code which the IC generation system 1306 can use to form a suitable mask for use in generating an IC.
[0231] The different processes performed by the IC manufacturing system 1302 may be implemented all in one location,
e.g. by one party. Alternatively, the IC manufacturing system 1302 may be a distributed system such that some of the
processes may be performed at different locations, and may be performed by different parties. For example, some of
the stages of: (i) synthesising RTL code representing the IC definition dataset to form a gate level representation of a
circuit to be generated, (ii) generating a circuit layout based on the gate level representation, (iii) forming a mask in
accordance with the circuit layout, and (iv) fabricating an integrated circuit using the mask, may be performed in different
locations and/or by different parties.
[0232] In other examples, processing of the integrated circuit definition dataset at an integrated circuit manufacturing
system may configure the system to manufacture a data processing system without the IC definition dataset being
processed so as to determine a circuit layout. For instance, an integrated circuit definition dataset may define the
configuration of a reconfigurable processor, such as an FPGA, and the processing of that dataset may configure an IC
manufacturing system to generate a reconfigurable processor having that defined configuration (e.g. by loading config-
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uration data to the FPGA).
[0233] In some embodiments, an integrated circuit manufacturing definition dataset, when processed in an integrated
circuit manufacturing system, may cause an integrated circuit manufacturing system to generate a device as described
herein. For example, the configuration of an integrated circuit manufacturing system in the manner described above
with respect to Figure 13 by an integrated circuit manufacturing definition dataset may cause a device as described
herein to be manufactured.
[0234] In some examples, an integrated circuit definition dataset could include software which runs on hardware
defined at the dataset or in combination with hardware defined at the dataset. In the example shown in Figure 13, the
IC generation system may further be configured by an integrated circuit definition dataset to, on manufacturing an
integrated circuit, load firmware onto that integrated circuit in accordance with program code defined at the integrated
circuit definition dataset or otherwise provide program code with the integrated circuit for use with the integrated circuit.
[0235] The implementation of concepts set forth in this application in devices, apparatus, modules, and/or systems
(as well as in methods implemented herein) may give rise to performance improvements when compared with known
implementations. The performance improvements may include one or more of increased computational performance,
reduced latency, increased throughput, and/or reduced power consumption. During manufacture of such devices, ap-
paratus, modules, and systems (e.g. in integrated circuits) performance improvements can be traded-off against the
physical implementation, thereby improving the method of manufacture. For example, a performance improvement may
be traded against layout area, thereby matching the performance of a known implementation but using less silicon. This
may be done, for example, by reusing functional blocks in a serialised fashion or sharing functional blocks between
elements of the devices, apparatus, modules and/or systems. Conversely, concepts set forth in this application that give
rise to improvements in the physical implementation of the devices, apparatus, modules, and systems (such as reduced
silicon area) may be traded for improved performance. This may be done, for example, by manufacturing multiple
instances of a module within a predefined area budget.
[0236] The applicant hereby discloses in isolation each individual feature described herein and any combination of
two or more such features, to the extent that such features or combinations are capable of being carried out based on
the present specification as a whole in the light of the common general knowledge of a person skilled in the art, irrespective
of whether such features or combinations of features solve any problems disclosed herein. In view of the foregoing
description it will be evident to a person skilled in the art that various modifications may be made within the scope of the
invention.

Claims

1. A computer implemented method of training a neural network configured to combine a set of coefficients with
respective input data values, the method comprising:

so as to train a test implementation of the neural network:

applying sparsity to a plurality of groups of the coefficients according to a sparsity parameter, wherein:

each group comprises a predefined plurality of coefficients;
the sparsity parameter indicates a level of sparsity to be applied to the set of coefficients;
applying sparsity to a group of coefficients comprises setting each of the coefficients in that group to
zero; and
applying sparsity comprises:

dividing the set of coefficients into multiple groups of coefficients;
representing each group of coefficients by a respective single value;
modelling those values using a differentiable function representative of an extreme value distribution
so as to identify a threshold value in dependence on the sparsity parameter; and
applying sparsity to a plurality of groups of the coefficients in dependence on that threshold value;

operating the test implementation of the neural network on training input data using the coefficients so as
to form training output data;
in dependence on the training output data, assessing the accuracy of the neural network; and
updating the sparsity parameter in dependence on the accuracy of the neural network by modifying the
threshold value by backpropagating one or more gradient vectors using the differentiable function; and
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configuring a runtime implementation of the neural network in dependence on the updated sparsity parameter
that, when implemented at a data processing system, executes the runtime implementation of neural network
in dependence on the updated sparsity parameter.

2. The computer implemented method of claim 1 ,wherein the extreme value distribution is a Gumbel distribution, a
Weibull distribution or a Frechet distribution.

3. The computer implemented method of claim 1 or 2, wherein representing each group of coefficients by a respective
single value comprises representing each group of coefficients by the respective maximum coefficient value within
each group, and wherein the extreme value distribution is a Gumbel distribution.

4. The computer implemented method of any of claims 1 to 3, the method further comprising iteratively performing the
applying, operating, forming and updating steps so as to train a test implementation of the neural network, and
optionally the method further comprising iteratively updating the set of coefficients in dependence on the accuracy
of the neural network.

5. The computer implemented method of claim 4, wherein the sparsity parameter is updated using a gradient decent
algorithm in dependence on a learning rate parameter that indicates the degree to which the sparsity parameter
can be changed at each iteration of the training process.

6. The computer implemented method of any preceding claim, the method further comprising implementing the neural
network in dependence on the updated sparsity parameter.

7. The computer implemented method of any preceding claim, the method further comprising updating the sparsity
parameter in dependence on a parameter optimisation technique configured to balance the level of sparsity to be
applied to the set to coefficients as indicated by the sparsity parameter against the accuracy of the network, wherein
the parameter optimisation technique uses a cross-entropy loss equation that depends on the sparsity parameter
and the accuracy of the neural network.

8. The computer implemented method of claim 7, wherein updating the sparsity parameter is performed further in
dependence on a defined maximum level of sparsity to be indicated by the sparsity parameter, wherein the defined
maximum level of sparsity is a factor in the cross-entropy loss equation.

9. The computer implemented method of any preceding claim, wherein updating the sparsity parameter is performed
further in dependence on a weighting value configured to bias the test implementation of the neural network towards
maintaining the accuracy of the network or increasing the level of sparsity applied to the set to coefficients as
indicated by the sparsity parameter, optionally wherein the weighting value is set in dependence on the memory
and/or processing resources available on the data processing system at which the runtime implementation of the
neural network is to be executed.

10. The computer implemented method of any preceding claim, the neural network comprising a plurality of layers, each
layer configured to combine a respective set of coefficients with respective input data values to that layer so as to
form an output for that layer, the method further comprising iteratively updating a respective sparsity parameter for
each layer.

11. The computer implemented method of claim 10, wherein the number of coefficients in the set of coefficients for each
layer of the neural network is variable between layers, and wherein updating the sparsity parameter is performed
further in dependence on the number of coefficients in each set of coefficients such that the test implementation of
the neural network is biased towards updating the respective sparsity parameters so as to indicate a greater level
of sparsity to be applied to sets of coefficients comprising a larger number of coefficients relative to sets of coefficients
comprising fewer coefficients.

12. The computer implemented method of any preceding claim, wherein configuring a runtime implementation of the
neural network comprises:

applying sparsity to a plurality of groups of the coefficients according to the updated sparsity parameter;
compressing the groups of coefficients according to a compression scheme aligned with the groups of coefficients
so as to represent each group of coefficients by an integer number of one or more compressed values; and
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storing the compressed groups of coefficients in memory for subsequent use by the implemented neural network.

13. The computer implemented method of claim 12, wherein each group comprises one or more subsets of coefficients
of the set of coefficients, each group comprising n coefficients and each subset comprising m coefficients, where
m is greater than 1 and n is an integer multiple of m, the method further comprising:

compressing the groups of coefficients according to the compression scheme by compressing the one or more
subsets of coefficients comprised by each group so as to represent each subset of coefficients by an integer
number of one or more compressed values.

14. A data processing system for training a neural network configured to combine a set of coefficients with respective
input data values, the data processing system comprising:

pruner logic configured to apply sparsity to a plurality of groups of the coefficients according to a sparsity
parameter, wherein:

each group comprises a predefined plurality of coefficients;
the sparsity parameter indicates a level of sparsity to be applied to the set of coefficients;
applying sparsity to a group of coefficients comprises setting each of the coefficients in that group to zero; and
applying sparsity comprises:

dividing the set of coefficients into multiple groups of coefficients;
representing each group of coefficients by a respective single value;
modelling those values using a differentiable function representative of an extreme value distribution
so as to identify a threshold value in dependence on the sparsity parameter; and
applying sparsity to a plurality of groups of the coefficients in dependence on that threshold value;

a test implementation of the neural network configured to operate on training input data using the coefficients
so as to form training output data;
network accuracy logic configured to assess, in dependence on the training output data, the accuracy of the
neural network; and
sparsity learning logic configured to update the sparsity parameter in dependence on the accuracy of the neural
network by modifying the threshold value by backpropagating one or more gradient vectors using the differen-
tiable function; and

wherein the data processing system is arranged to configure a runtime implementation of the neural network in
dependence on the updated sparsity parameter that, when implemented at a data processing system, executes the
runtime implementation of neural network in dependence on the updated sparsity parameter.

15. Computer readable code configured to cause the computer implemented method of any of claims 1 to 13 to be
performed when the code is run.
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