
US 20180173695A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0173695 A1

Pino et al . (43) Pub . Date : Jun . 21 , 2018

(54) TRANSLITERATION OF TEXT ENTRY
ACROSS SCRIPTS

(52) U . S . CI .
CPC GO6F 17 / 2715 (2013 . 01) ; G06F 17 / 2818

(2013 . 01) ; G06F 3 / 02 (2013 . 01) ; G06F 17 / 277
(2013 . 01) ; G06F 17 / 2863 (2013 . 01) (71) Applicant : Facebook , Inc . , Menlo Park , CA (US)

(72) Inventors : Juan Miguel Pino , Cambridge (GB) ;
Stanislav Funiak , Lawrence , KS (US) ;
Mridul Malpani , Mountain View , CA
(US) ; Guarav Lochan , Palo Alto , CA
(US)

(21) Appl . No . : 15 / 387 , 551

(57) ABSTRACT

Embodiments are disclosed for transliterating text entries
across different script systems . A method according to some
embodiments includes steps of : receiving an input string in
a first script system input using a keyboard ; segmenting ,
using a probabilistic model , the input string into phonemes
that correspond to characters or sets of characters in a second
script system ; converting the phonemes in the first script
system into the characters or sets of characters in the second
script system , the characters or sets of characters forming a
word or a word prefix in the second script system ; and
outputting the word or the word prefix in the second script
system .

(22) Filed : Dec . 21 , 2016

(51)
Publication Classification

Int . Ci .
G06F 17 / 27 (2006 . 01)
G06F 17 / 28 (2006 . 01)

110 Input Module
100

115 Input Token
120 Probabilistio Model

130 Segmentation Likelihood
Module 170 Training Pipeline

135 Vocabulary
uuuuuuuuu

175 Parallel Corpus

140 Decoding Observation
??

150 Prior Distribution Module

160 Joint Distribution Module

195 Quiput Token
190 Output Module

Patent Application Publication Jun . 21 , 2018 Sheet 1 of 8 US 2018 / 0173695 A1

110 Input Module
100

115 Input Token

120 Probabilistic Model

130 Segmentation Likelihood
Module

170 Training Pipeline

135 Vocabulary
175 Parallel Corpus wwwwwwwwwwwwwwwwwwwww 140 Decoding Observation

Module

MAMMA
150 Prior Distribution Module

R

.

MAMMAMMA
160 Joint Distribution Module

195 Output Token
190 Output Module

FIG . 1

Patent Application Publication Jun . 21 , 2018 Sheet 2 of 8 US 2018 / 0173695 A1

130 Segmentation
Likelihood Module

140 Decoding
Observation
Module

150 Prior
Distribution Module

p (w x) p (xly) p (xly) PY) PO)

p (x , y , w) = p (y) x p (x | y) x p (w \ x) = po * y) x p (w \ x)
0 : 1

pcylw) = { p () xp (19) PCwl)

FIG . 2

Patent Application Publication Patent Application Publication Jun . 21 , 2018 Sheet 3 of 8 US 2018 / 0173695 A1

300 300
nemersanta 301 Root Level (Level 1) : " naan ")

312 310 down 314
naa

316 Level 1 :
naan

m321

Oro uostas y
- - - 096 000 o
lovers o o o

1 322
aa) aa

323
(aan) aan (a

324
)

326
Level 2 .

325
(an) a an

330 332 334 336
Level 3 : a an

340 340
Level 4

FIG . 3

Patent Application Publication Jun . 21 , 2018 Sheet 4 of 8 US 2018 / 0173695 A1

401 START) 401 START 400 400
410 Receive an input string in a first script system input using a
keyboard
ww

420 Select a segmentation candidate for segmenting the input string
into one or more phonemes

430 Segmentation likelihood module determines a probability that a
segmentation candidate is a valid segmentation of the input string

440 Decoding observation module determines a probability of a
phoneme in the first transcript system being transliterated into a
character or a set of characters in the second transcript system WWWWWWWWWWWWWW

+

XXXXXXXXXXXXXXXXX 450 Prior probability distribution module determines a probability of a word or a word prefix in the second script system showing up in priori
texts written in the second script system

460 Calculate a joint probability distribution by multiplying the
probabilities determined by the segmentation likelihood module , the
decoding observation module , and the prior distribution module

+

465 Calculate a conditional probability distribution based on a
summation of joint probability distributions over different segmentation
candidates
moon

X X

470 Select a segmentation based on the conditional probability
distribution XXXX

+ . + . + . + . + . + . + . + . + . + . + . . . + . + . + . + . . . + .

wwwwwwwwwwwwwwwwwwwwwww ww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

475 Segment the input string into phonemes that correspond to
characters or sets of characters in the second script system
www

480 Convert the phonemes in the first script system into the characters
or sets of characters forming a word or a word prefix in the second
script system
+

wwwwwwwwwwwwww 485 Output the word or the word prefix in the second script system

499 END

FIG . 4

Patent Application Publication Jun . 21 , 2018 Sheet 5 of 8 US 2018 / 0173695 A1

500
505 Receive an input string in a first script system input using a
keyboard

WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

510 Segment the input string into phonemes that correspond to
characters or sets of characters in a second script system

JA .

515 Converts the phonemes in the first script system into the
characters or sets of characters in the second script system

560 Present one or more transliteration
candidates in the second script system ???????????????????? WYXAXXXXXXXXXXX 520 Output the word or the word prefix in the

second script system .

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

665 Receive a signal indicating that a user
selects one of the transliteration candidates ????????

525 Receive a signal indicating that a cursor
is moving back to correct the word or the
word prefix wo

570 Output the selected transliteration
candidate in the second script system ????????????????????? ???????????

530 Replace an output of the word or the
word prefix in the second script system with
an output of the input string in the first script
system

zzzar 20

575 Record the selection and increases a
probability associated with the selected
transliteration candidate in a probabilistic
model

535 Receive an input to correct or append an
additional string to the input string that has
been previously entered to form a new input
string

ALLA
M

WWWWW

FIG . 5

Patent Application Publication Jun . 21 , 2018 Sheet 6 of 8 US 2018 / 0173695 A1

(601 START 600

605 Generate a tree structure for an input string in a first script system ,
the tree structure including nodes representing segments of the input
string

ww

.

. . . .

610 Determine that a branch of the tree structure represent a specific
prefix candidate of the input string having no transliteration possibility .

. . +

615 Abandon paths associated with the branch for identifying
segmentation candidates

+

+ + +

620 Identify segmentation candidates for the input string by exploring
paths of the tree structure

+ +

625 Assigns probabilities to the nodes of the tree structure in an
incremental way XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXX 630 Select a segmentation candidate based on probabilities of the segmentation candidates predicted by a probabilistic model
+

XXXXXXXXXXXXXXXXXX 635 Segment the input string into character groups that correspond to
characters in the second script system

wwwwwwwwwwwwwwwww

640 Decode the character groups in the first script system into the
characters in the second script system , the characters forming a word
or a word prefix in the second script system

maanan

1645 Output the word or the word prefix in the second script system

699 END

FIG . 6

Patent Application Publication Jun . 21 , 2018 Sheet 7 of 8 US 2018 / 0173695 A1

701 START 700 AKH

VERAVA ????? .

705 Retrieve a training data set

710 Train a probabilistic model for transliteration from a first script
system to a second script system using a machine translation model
training pipeline through an expectation maximization algorithm that
alterates between an expectation step and a maximization step

715 Identify segmentation candidates of
the input string by exploring paths of a
prefix tree structure or a directed acyclic
Igraph that includes nodes representing

expectation character groups of the input string
step

720 Compute posterior probabilities of
segmentation candidates of the input
string

WWWWWWWWWWWWWWWwwwww w wwwwwwwWWWWWWWWWWWWWWWWWWW
uooooooooooooooooo

725 Compute a maximum likelihood
Maximization jestimation of a likelihood function using
step posterior probabilities as weights for the

segmentation candidates of the input
string

ww

??????
730 Determine , using a machine translation model , an alignment
between phonemes of the input string in the first script system and
corresponding characters of the word or the word prefix in the second
Iscript system wwwwwwwwwwwww

. YOXYWOX XXXXXXXXXX WXXX

1735 Segment , using the probabilistic model , an input string in the first
script system into phonemes that correspond to characters in the
second script system

MALAY ALAM

1740 Convert the phonemes in the first script system into the characters
in the second script system , where the characters form a word or a
word prefix in the second script system

R uww wwwwwwwwwww www

745 Output the word or the word prefix in the second script system

799 END

FIG . 7 1

movementene monomo . . . com Patent Application Publication Jun . 21 , 2018 Sheet 8 of 8 US 2018 / 0173695 A1

814

Storage Adapter .

To / From Storage

8804 Memory Operating System
y 812

806 Cluster Adapter To / From Cluster Switching Fabric FIG . 8

808

7802 Processor (s)
810 onli

shown to the Network Adapter To / From Clients
www

800

US 2018 / 0173695 A1 Jun . 21 , 2018

TRANSLITERATION OF TEXT ENTRY
ACROSS SCRIPTS

BACKGROUND
[0001] Transliteration is a process of converting a text
written in a first script , e . g . , a human - readable script , into a
corresponding text written in a second script . The second
script uses characters that are different from characters of the
first script . In other words , transliteration is a mapping from
one system of writing script into another system of writing
script , typically grapheme to grapheme (or phoneme to
phoneme) . As a result of the transliteration , the converted
text written in the second script is legible for users who
know how to read the second script . A goal of transliteration
is that the text in the second script should accurately and
unambiguously represents the characters of the original text
in the first script . However , an inherent difficulty of the
conventional transliteration techniques is that the tran
scribed graphemes or phonemes can be ambiguous . For
Example , a single phoneme in an input script may corre
spond to one or many characters in a target script , and any
given character in the target script may be transliterated with
various phonemes .

BRIEF DESCRIPTION OF THE DRAWINGS
[0002] FIG . 1 is a block diagram illustrating a machine
transliteration system for converting texts from one tran
script to another transcript .
[0003] FIG . 2 is a block diagram illustrating operations of
the segmentation likelihood module , decoding observation
module , prior distribution module of a probabilistic model .
[0004] FIG . 3 is a block diagram illustrating an example of
a prefix tree for representing valid segmentations .
[0005] FIG . 4 is a block diagram illustrating a process for
transliterating text entries from a first script system to a
second script system .
10006] . FIG . 5 is a block diagram illustrating a process for
inputting a string in a second script system using an input
mechanism for a first script system .
[0007] FIG . 6 is a block diagram illustrating a process for
transliteration decoding using a tree structure .
[0008] FIG . 7 is a block diagram illustrating transliteration
based on a machine translation model training pipeline .
0009] . FIG . 8 is a high - level block diagram illustrating an
example of a hardware architecture of a computing device
that performs disclosed processes , in various embodiments .

the graph model are discussed in further detail below in the
“ Representation of Segmentation ” section .
[0011] Based on an insight that phonemes form a linear
segmentation of a source text , the probabilistic model deter
mines alignment of characters in the transliterated text by
leveraging the principles of monotonicity and completeness
of the alignment . Monotonicity refers to an observation that
relative positions " alignment ” of the characters do not
change during a transliteration process . Completeness refers
to an observation that there is a one - to - one mapping between
phoneme positions in the input token in the source script and
target character positions in the output token in the target
script . The parameters of this probabilistic model can be
learned (e . g . , the machine transliteration system can be
trained) based on a training set . The Training set can be
received from human input , publicly available pre - translit
erated data , etc .
10012] The machine transliteration system can be used ,
e . g . , to enter text in different scripts using a keyboard (either
a hardware keyboard or a software keyboard) that is
designed for a particular script , e . g . , a Latin script . For
example , one common Latin script keyboard layout across
various devices is a QWERTY layout . The QWERTY layout
is well - suited for entering texts in Latin script (also referred
to herein as “ Roman script ") , e . g . , texts written in English ,
French , Dutch , Spanish , Portuguese and Swedish languages .
However , there are many other non - Latin scripts , e . g . ,
Chinese , Greek , Brahmic , Cyrillic and Arabic scripts that are
used in texts written in other languages , e . g . , Chinese ,
Japanese , Greek , Hindi , Russian , Bulgarian , Arabic and
Iranian . Input of the texts written in non - Latin scripts using
a Latin script keyboard requires different input methods .
Using the machine transliteration system , the texts written in
non - Latin scripts can be entered using a QWERTY layout
keyboard (or other types of Latin script keyboards) in
transliterated forms . The non - Latin characters in non - Latin
script can be encoded , e . g . , using a Unicode standard . As
used herein , the term “ written ” can mean entered into a
computing device , e . g . , using a keyboard or other input
device , or more generally commonly employed by human
writers or readers .
[0013] Conventional transliteration techniques transcribe
the target script phonetically . For example , a Hiragana
character in Japanese or a Devanagari character in Hindi
may be transcribed as specific corresponding phonemes .
However , an inherent difficulty of the conventional translit
eration techniques is that the transcribed graphemes or
phonemes can be ambiguous . For Example , a single pho
neme in an input script may correspond to one of many
characters in a target script , and any given character in the
target script may be transliterated with various phonemes .
The disclosed machine transliteration system solves this
problem by delivering accurate transliteration predictions
based on probabilities of certain combinations of target
characters , e . g . , that together form a valid word in the target
language .

DETAILED DESCRIPTION
[0010] The disclosed embodiments implement an auto
mated machine transliteration system for transliterating texts
between different scripts . The machine transliteration sys
tem includes a probabilistic model that resolves ambiguities
that can be inherent in conventional transliteration tech
niques . In some embodiments , the probabilistic model oper
ates on a word (also referred to herein as " token ") level . The
model segments each input token into one or more pho
nemes and decodes the phonemes based on a prefix tree
model or a graph model of the input token . A prefix tree
model includes a tree data structure having branches with
multiple nodes corresponding to different candidates of
phonemes . A graph model includes a graph data structure
having nodes interconnected with edges that correspond to
phonemes at different locations . The prefix tree model and

Probabilistic Model for Machine Transliteration
[0014] FIG . 1 is a block diagram illustrating a machine
transliteration system 100 for converting texts from a first
script to a second , different script , consistent with various
embodiments . The machine transliteration system 100
includes an input module 110 , a probabilistic model 120 , a
training pipeline 170 , and an output module 190 .

US 2018 / 0173695 A1 Jun . 21 , 2018

[0020] The segmentation likelihood module 130 deter
mines a probability p (w x) that the input token w can be
segmented based on a possible segmentation x . The decod
ing observation module 140 determines a probability p (x , ly .)
of decoding (e . g . , transliterating) a particular segmented
phoneme x , in the source script into a particular phoneme y ,
in the target script (also referred to herein as “ emission
probability ") . Thus , a probability of decoding (transliterat
ing) an input segmentation x in the source script into an
output token y is p (xly) = II = Xp (x _ ly :) . The prior distribution
module 150 determines a prior probability distribution over
the output token p (y) .
[0021] The joint probability distribution of an output
token y based on a segmentation x of an input token w is
determined by the following equation :

p (x , y , w) = P (y) xp (xly) xp (wlx) = P (y) xII - XP (x , y) xp
(w \ x) Eq . (1) .

0022] The joint probability distribution of Eq . (1) can
assume the following conditions : the output token y follows
a probability distribution of words in the target script . The
phonemes are mutually independent and generated by the
emission probabilities p (x , ly .) .
[0023] The probability p (w \ x) can be set to equal to one
whenever w is a concatenation of the segmented phonemes
X1 , . . . , Xm ; and set to be zero otherwise . This ensures that
only the valid segmentations x of w have non - zero prob
abilities in the probabilistic model 120 .

Models for Prior Probability Distribution

[0015] The input module 110 receives an input token 115
written in a source script (e . g . , Latin script) from a source
component . The source component can be , e . g . , an input
device such as a hardware or software keyboard , or a
networking component for receiving the input token . The
probabilistic model 120 converts the input token 115 written
in the source script into an output token 195 written in a
target script (e . g . , Hindi or Japanese script) . The output
module 190 outputs the output token 195 to , e . g . , an output
device such as a display or a networking component for
transmitting the output token .
[0016] The probabilistic model 120 includes a segmenta
tion likelihood module 130 , a decoding observation module
140 , a prior distribution module 150 , and a joint distribution
module 160 . The segmentation likelihood module 130 deter
mines a probability of a possible segmentation of the input
token into phonemes including a specific set of phonemes .
The decoding observation module 140 determines a prob
ability of decoding a particular set of segmented phonemes
in the source script into a particular set of one or more
characters in the target script . The prior distribution module
150 determines a prior probability distribution over an
output token candidate . The joint distribution module 160
determines a probability of a particular possible translitera
tion conversion by multiplying together the probabilities
generated from the segmentation likelihood module 130 , the
decoding observation module 140 , and the prior distribution
module 150 . The joint distribution module 160 then gener
ates the output token 195 by selecting a candidate of
transliteration conversion , e . g . , a candidate that has the
highest probability .
[0017] The training pipeline 170 (also referred to herein as
“ training module ” or “ learning module ”) determines the
parameters of the probabilistic model 120 based on a train
ing set of known transliteration conversions . For example ,
the training set can include , e . g . , a parallel corpus of words
175 in the source and target scripts .
[0018] FIG . 2 is a block diagram illustrating operations of
the segmentation likelihood module 130 , the decoding
observation module 140 , and the prior distribution module
150 , which are all part of the probabilistic model 120
illustrated in FIG . 1 . Variable w represents the input token
115 in the source script . Variable y represents the output
token 195 in the target script . The output token includes one
or more output characters in the target script and the output
characters are denoted as y? , where t can be { 1 , . . . , N } and
N is the number of the output characters in the output y .
[0019] Variable x denotes a possible segmentation of the
input token 115 into phonemes or graphemes in various
embodiments . Although phonemes are described herein , the
disclosed operation can also apply to graphemes . The pos
sible segmentation x includes phonemes that are denoted as
X , and t can be { 1 , . . . , M } . In some embodiments , the
number of segmented phonemes M matches the number of
output characters N (or the number of sets of output char
acters) . In other words , M = N . In other embodiments , the
number of segmented phonemes M can be larger or smaller
than the number of output characters N , e . g . , M?N . Each
phoneme x , comes from a vocabulary 135 of allowed pho
neme candidates . In some embodiments , the vocabulary of
phoneme candidates can be determined heuristically and can
be over - inclusive . The probabilistic model 120 treats x , y , M
and N as unknown variables . The variable w can be a known
variable (also referred to herein as “ observed variable ”) .

0024] The prior probability distribution p?y) can be char
acterized using different models . In some embodiments , for
example , in a fully factored model , the characters Y1 , . . . ,
Yn of the output script are independent of each other . The
prior probability distribution is defined : p (y) + 11 , p (y) . This
fully factored model is simple and can be applied in situa
tions , e . g . , where very little data is available for existing
samples in the target script .
[0025] In some other embodiments , e . g . in a Markov chain
model , the characters Y1 , . . . , Yy form a first - order stochastic
chain (e . g . , Markov chain) . In other words , the prior prob
ability distribution is defined as : p (y) # p?y ,) 11 , p (yflyt - 1) ,
where p (y?) is the initial probability distribution and p (yflyt
1) is the transition model between two intermediate points in
the stochastic chain . The Markov chain model provides a
balance between model complexity and accuracy .
[0026] In some other embodiments , e . g . in a dictionary
model , the probability for each word can be stored in a
lookup table or incrementally in a tree data structure . The
dictionary model can be applied in situations , e . g . , where
data is abundant in existing samples in the target script or
where most words can be captured in existing samples in the
target script .

[0027] In at least some embodiments , the probabilistic
model 120 can prefer , e . g . , longer segmentations of simpler
phonemes over shorter segmentations of more complicated
phonemes . For example , in order to give higher weight to the
longer segmentations , the probabilistic model 120 can intro
duce additional multiplicative factor for the prior probability
distributions .

US 2018 / 0173695 A1 Jun . 21 , 2018

Considering All Possible Segmentations
[0028] Given an observed input token w in the source
script , a conditional probability distribution of an output
token y converted from an input token w is a summation of
probability distributions from Eq . (1) :

p (ylw) = Exp (y) xp (xly) xp (wlx) Eq . (2) .
[0029] In other words , by considering all possible seg
mentations x , the probabilistic model 120 can provide an
accurate prediction on the probability of an input token w
being transliterated into output token y . Among the possible
segmentations , many of them have a probability of zero ,
because those segmentations do not correspond to a valid
segmentation . In order words , the concatenation of x1 , . . .
, Xy is not the input token w .
[0030] Although there may be many candidates for pos
sible decoded output token y , the probabilistic model 120
only concerns a few top candidates with large p (ylw) . In
other words , the goal of the probabilistic model is to
maximize a posteriori estimation .

number K of top candidates for prefixes Y1 : 19 ordered by
P (X1 : c » Y1 : -) at each node X1 : . The top K candidates can be
sufficient for an accurate prediction , because the top K
candidates at level t are extensions of the top K candidates
at level t - 1 .
[0036] In some scenarios , the prefix tree model may be
complicated for some tokens . For example , the token
“ naaaaaaaaaan ” has 10 Latin characters " a . ” Assuming that
both phonemes “ a ” and “ aa ” exist , the prefix tree for the
token “ naaaaaaaaaan ” would have a very large number of
branches and leaves . A path with the least number of levels
would include 5 levels of phonemes “ aa . ” A path with the
most number of levels would include 10 levels of phonemes
" a . ” There are a very large number of branches between
those two paths .
[0037] An alternative to the prefix tree model is a graph
model (e . g . , a directed acyclic graph (“ DAG ”)) . A DAG is
a graph having vertices (also referred to herein as " nodes ")
and directional edges . Each directional edge starts from one
vertex and ends at another vertex . The DAG has no directed
cycles . In other words , there is no way in the DAG to start
at a specific vertex and follow a consistently - directed
sequence of directional edges that eventually loops back to
the specific vertex again .
[0038] In the graph model , each individual vertex (node)
represents a phoneme candidate at a specific location i in the
string of the token . Paths from a root node to the individual
nodes correspond to segmentations of the prefix of w 1 : 4 that
end with this phoneme . The probabilities p (x1 : 1 91 : 1 , w) are
computed incrementally using Eq . (3) . The total number of
nodes of the DAG depends on the length of w and the
maximum length of phonemes . The graph can be stored
compactly in an array . The storage of the graph can grow
incrementally as the probabilistic model extends w . Thus ,
the graph model reduces the number of allocations pre
formed during execution of the algorithm .

Parameter Learning for Probabilistic Model

Representation of Segmentation
[0031] There are different ways of identifying and repre
senting valid segmentations x of input token w , other than
enumerating all possible combinations of phonemes . One
way is using a prefix tree model (also referred to herein as
" tree structure ”) . FIG . 3 is a block diagram illustrating an
example of a prefix tree for representing valid segmenta
tions . Each node of the prefix tree 300 corresponds to a
phoneme . Nodes of the first level (310 , 312 , 314 , 316) of the
prefix tree 300 below a root node 301 correspond to candi
dates of the first phoneme Xy ; nodes of the second level
(321 - 326) of the prefix tree 300 correspond to candidates of
the second phoneme X2 , etc .
[0032] There are constraints on the prefix tree 300 asso
ciated with the input token W . A branch from the root node
301 to each node corresponds to a prefix of the input token
W ; the prefix includes one or more candidates of phonemes .
A path from the root node 301 to a leaf node (also referred
to herein as “ end nodes , ” e . g . , 340 , 332 , 334 , 323 , 336 , 325 ,
326 or 316) that corresponds to a possible segmentation x of
input token w .
[0033] In some embodiments , the probabilistic model 120
does not necessarily explore all branches of the prefix tree
300 and can abandon some branches for computational
efficiency . For example , in some embodiments , a particular
branch represents a prefix (including one or more phonemes)
in the source script and the prefix can be transliterated into
a specific prefix (including one or more characters) in the
target script . However , there is no existing word in a
vocabulary of the target script that starts with the specific
transliterated prefix . In that case , that particular branch can
be abandoned .
[0034] A node at level t stores a joint probability over the
phonemes X1 : 1 and possible prefixes 91 : 7 . Thus , the condi
tional probability distribution of Eq . (2) can be computed
incrementally , by multiplying together the components of
the prior module and the observation module . For example ,
with the fully factored model for the prior distribution p?y) ,
the joint probability at level t can be :

p (* 1 : 00 Y1 : 0 W) = P (* 1 : t - 1 , 91 : t - 1 , w) xp (y) xp (x , ly :) Eq . (3) .
10035] In some embodiments , to improve computational
efficiency , the probabilistic model 120 can store only a

[0039] The parameters of the probabilistic model 120 can
be learned based on a training set of known transliteration
conversions . In some embodiments , the training pipeline
170 can treat the transliteration as a special type of trans
lation that operates on character level instead of a typical
word level for translation .
[0040] In some embodiments , the probabilistic model 120
can assign each character within the output text in the target
script an index a , that represents the position of this character
in the source text (e . g . , in a Latin script) . Thus , the index a ,
is an alignment parameter identifying the transliteration
relationship between the transliterated character in the out
put text and the corresponding character in the input text .
[0041] The probabilistic model can further leverage two
assumptions of the character alignment of transliteration :
monotonicity and completeness . The character alignment
during a transliteration is always monotonic . In other words ,
the indices a , of the characters are strictly increasing with t .
If a first character precedes a second character in the input
token in the source script , a corresponding transliterated
character of the first character precedes a corresponding
transliterated character of the second character in the output
token in the target script . The relative positions (alignment)
of the characters do not change during the transliteration
(also referred to herein as “ monotonicity ”) .

US 2018 / 0173695 A1 Jun . 21 , 2018

[0042] Moreover , there is one - to - one mapping between
phoneme positions in the input token in the source script and
target character positions in the output token in the target
script (also referred to herein as “ completeness ”) . The
phonemes fully describe the target characters . In other
words , no phonemes will be newly introduced or omitted
during the transliteration .
[0043] The parameters are learned by observing known
pairs of tokens in the source script and their corresponding
well - aligned transliterated tokens in the target script . Such a
data set including corresponding pairs of tokens in the
source and target scripts is called a parallel corpus . An
automatic character alignment of the transliteration is con
ducted by choosing the alignment that best fits the proba
bilistic model . In some embodiments , those two processes
can be applied in a circular manner , which is also referred to
herein as " expectation maximization algorithm . ”

[0050] The expectation step can use a prefix tree model
similar to the one described in the “ Representation of
Segmentation ” section . Each node of the prefix tree repre
sents a phoneme in a valid segmentation of a prefix of w .
During the learning process , both input token w and output
token y are observed from the parallel corpus and so the
number of characters in the input and output tokens are fixed
and known . Thus , each node stores a single probability
p (X1 : 12 91 : 12 W) that is computed incrementally .
[0051] The training pipeline 170 then identifies all leaves
that do not correspond to abandoned branches and computes
the sum z for those leaves . Then the training pipeline 170
computes the weighted counts [y? , x ,] by adding probabilities
a (X1 : 2) / Z for nodes X1 : t . The counts [yz , x ,] can be further
normalized so that the counts sum to 1 for each ye .
[0052] In some embodiments , instead of a prefix tree
model , the training pipeline 170 can also use a graph model
(e . g . , DAG) similar to the one described in the “ Represen
tation of Segmentation " section . The graph model assumes
that a ; denotes the total probabilities of all segmentations
that end at character i of w , grouped by segmentation length .
Similarly , the graph model assumes that B ; denotes the total
probabilities of all segmentations that start at character i of
W . When the training pipeline 170 identifies a phoneme
h = W1 : - 1 , the training pipeline 170 can calculate the total
probability of all segmentation x that h participates in , by
multiplying together the probabilities of a ; and ß ; with h
forming a segmentation of a length N . This probability then
can be added to count [y? , x] , similar to the prefix tree
model .

Sample Transliteration Processes

Expectation Maximization Algorithm
[0044] The training pipeline 170 can use an expectation
maximization algorithm to learn and optimize the param
eters of the probabilistic model 120 . The learning process
can be based on , e . g . , a training set of known transliteration
conversions . For example , the training set can include , e . g . ,
a parallel corpus of words 175 in the source and target
scripts .
100451 . Given a parallel corpus of words in the source and
target script (w (!) , y)) , i = 1 , . . . , L , the goal of training
pipeline 170 is to generate model parameter sets 0 , n that
maximize a function associated with a likelihood that the
model will transliterate the token in the source script w (i)
into the token in the target script y) . The parameter set n
includes , e . g . , parameters for prior probability distribution of
output tokens in the target script . The parameter set 0
includes , e . g . , model parameters that relates to segmentation
of phonemes .
[0046] The likelihood can be represented , e . g . , by a log
likelihood function log p?y (i) , woje , n) . Thus , the maximi
zation process can be expressed as :

max Ir log p (uri) , wli) , n) = maxo [log pali)
in) + log p (Wily (i) , e)) . Eq . (4) .

[0047] The Eq . (4) for maximization decomposes linearly
over two parameter sets of n and n . Since y is observed in
the corpus for the target script , the training pipeline 170 can
calculate the probability plyn) by counting the instances
of output tokens in the corpus for the target script . For
example , the corpus in the target script can be an online
resource such as Wikipedia in the target script . Thus , p (y ()
in) can be learned from the corpus directly .
[0048] The parameter set for o can be expressed as :

; log p (w @] y (*) , 0) = 2 ; log Exp (w (* \ x) xp (xly (®) , e) . Eq . (5) .
[0049] Thus , the log - likelihood function part for the
parameter set for 0 depends on the parameters indirectly via
a summation of observation model p (x / y ()) . The training
pipeline 170 can solve Eq . (5) by applying the expectation
maximization algorithm , which alternative between two
steps . In the first expectation step , the training pipeline 170
computes the posterior probability of each segmentation a (x)

p (x / w () , y) . In the second maximization step , the training
pipeline 170 computes the maximum likelihood estimation
(MLE) of the likelihood function using the weighted
samples (y) , x , a (x)) for each valid segmentation X .

[0053] FIG . 4 is a block diagram illustrating a process for
transliterating text entries from a first script system (first
script) to a second script system (second script) . For
example , the first script system can be a Latin script system
and the second script system can be a non - Latin script
system . At block 410 , the transliteration system receives an
input string in a first script system input using a keyboard .
The keyboard can be , e . g . , a hardware or software keyboard
for inputting characters in the first script system . At block
420 , a probabilistic model of the system selects a segmen
tation candidate for segmenting the input string into one or
more phonemes . The probabilistic model includes , e . g . , a
segmentation likelihood module , a decoding observation
module , and a prior distribution module .
[0054] At block 430 , the segmentation likelihood module
of the probabilistic model determines a probability that a
segmentation candidate is a valid segmentation of the input
string . The segmentation candidates can be modeled using a
prefix tree model or a graph model as described in the
“ Representation of Segmentation ” section .
[0055] At block 440 , the decoding observation module of
the probabilistic model determines a probability of a pho
neme in the first transcript system being transliterated into a
character or a set of characters in the second transcript
system .
[0056] At block 450 , the prior probability distribution
module of the probabilistic model determines a probability
of a word or a word prefix in the second script system
showing up in priori texts written in the second script
system . The prior probability distribution module can use a

US 2018 / 0173695 A1 Jun . 21 , 2018

fully factored model , a Markov chain model , or a dictionary
model as disclosed in the " Models for Prior Probability
Distribution ” section .
[0057] At block 460 , the probabilistic model calculates a
joint probability distribution by multiplying the probabilities
determined by the segmentation likelihood module , the
decoding observation module , and the prior distribution
module . At block 465 , the probabilistic model calculates a
conditional probability distribution based on a summation of
joint probability distributions over different segmentation
candidates . At block 470 , the probabilistic model selects a
segmentation based on the conditional probability distribu -
tion .
[0058] At block 475 , the system segments the input string
into phonemes that correspond to characters or sets of
characters in the second script system . At block 480 , the
system converts the phonemes in the first script system into
the characters or sets of characters in the second script
system , the characters or sets of characters forming a word
or a word prefix in the second script system . At block 485 ,
the system outputs the word or the word prefix in the second
script system .
[0059] The transliteration technology can be applied , e . g . ,
to a system for inputting a string in a script system using an
input mechanism for another script system . FIG . 5 is a block
diagram illustrating a process for inputting a string in a
second script system using an input mechanism for a first
script system . At block 505 , the input system receives an
input string in a first script system input using a keyboard .
At block 510 , the system segments the input string into
phonemes that correspond to characters or sets of characters
in a second script system . At block 515 , the system converts
the phonemes in the first script system into the characters or
sets of characters in the second script system , the characters
or sets of characters forming a word or a word prefix in the
second script system . At block 520 , the system outputs the
word or the word prefix in the second script system .
[0060] The system can provide a mechanism for correct
ing the input . At block 525 , the system receives a signal
indicating that a cursor is moving back to correct the word
or the word prefix . At block 530 , in response to the signal ,
the system replaces an output of the word or the word prefix
in the second script system with an output of the input string
in the first script system (reverse transliteration) . At block
535 , the system receives an input to correct or append an
additional string to the input string that has been previously
entered to form a new input string . The process can proceed
to blocks 510 - 520 to output another transliterated word or
word prefix in the second script system .
[0061] In some embodiments , the system can present an
associated word or an associated suffix following the word
or the word prefix being outputted , wherein the associated
word or the associated suffix is predicted based on the word
or the word prefix .
[0062] In some embodiments , the system can provide
multiple transliteration candidates . At block 560 , the system
presents one or more transliteration candidates in the second
script system to a user . At block 565 , the system receives a
signal indicating that a user selects one of the transliteration
candidates . At block 570 , the system outputs the selected
transliteration candidate in the second script system . At
block 575 , the system records the selection and increases a
probability associated with the selected transliteration can
didate in a probabilistic model .

[0063] FIG . 6 is a block diagram illustrating a process for
transliteration decoding using a tree structure . At block 605 ,
the transliteration system generates a tree structure for an
input string in a first script system , the tree structure includ
ing nodes representing segments of the input string . The
segments of the input string can be , e . g . , phonemes of the
input string . The tree structure can include multiple levels of
nodes . For example , the first - level nodes of the tree structure
represent candidates of a first character group of the input
string . The second - level nodes of the tree structure represent
candidates of a second character group that follows the first
character group in the input string , and so on .
100641 . The tree structure includes paths that start at a root
node of the tree structure and end at leaf nodes of the tree
structure . The paths represent the segmentation candidates
that segment the input string into character groups .
[0065] At block 610 , the system determines that a branch
of the tree structure represent a specific prefix candidate of
the input string having no transliteration possibility .
Branches of the tree structure start at a root node of the tree
structure and end at nodes of the tree structure . The branches
represent candidates of a prefix of the input string . For
example , a specific prefix candidate has no transliteration
possibility if no existing word in the second transcript
system starts with a prefix that is a transliteration of the
specific prefix candidate . At block 615 , the system abandons
paths associated with the branch for identifying segmenta
tion candidates .
[0066] At block 620 , the system identifies segmentation
candidates for the input string by exploring paths of the tree
structure . The paths represent the segmentation candidates
segmenting the input string into character groups .
[0067] At block 625 , the system assigning probabilities to
the nodes of the tree structure in an incremental way . For a
specific branch of the tree structure that starts at a root node
of the tree structure and ends at a specific node , the specific
branch representing a specific prefix of the input string . A
probability assigned to the specific node is a probability that
the specific prefix is segmented into character groups rep
resented by nodes of the specific branch and the character
groups are transliterated into another prefix in the second
script system .
[0068] The probabilities can be determined in an incre
mental way . For example , for a second specific node that
follows the specific node and locates at one level below the
specific node , a probability assigned to the second specific
node can be determined incrementally based on the prob
ability assigned to the specific node .
[0069] At block 630 , the system selects a segmentation
candidate based on probabilities of the segmentation candi
dates predicted by a probabilistic model . At block 635 , the
system segments the input string into character groups that
correspond to characters in the second script system .
10070] At block 640 , the system decodes the character
groups in the first script system into the characters in the
second script system , the characters forming a word or a
word prefix in the second script system . At block 645 , the
system outputs the word or the word prefix in the second
script system .
[0071] In some embodiments , the transliteration can be
treated as a special type of machine translation that operates
on a character level instead of a word level . FIG . 7 is a block
diagram illustrating transliteration based on a machine trans
lation model training pipeline . At block 705 , the translitera

US 2018 / 0173695 A1 Jun . 21 , 2018

tion system retrieves a training data set . The training data set
can include , e . g . , profile names provided users in the first
script system and the second script system . Alternatively , the
data set can include , e . g . , a user - input word in the first script
system and a user - selected alternate word in the second
script system . A user inputs the user - input word in the first
script system and selects the user - selected alternate word in
the second script system by using a cross - script software or
hardware keyboard .
[0072] At block 710 , the system trains a probabilistic
model for transliteration from a first script system to a
second script system using a machine translation model
training pipeline through an expectation maximization algo
rithm that alternates between an expectation step and a
maximization step .
[0073] During the expectation step , the system identifies
segmentation candidates of the input string by exploring
paths of a prefix tree structure or a directed acyclic graph
that includes nodes representing character groups of the
input string (block 715) . Then the system computes posterior
probabilities of segmentation candidates of the input string
(block 720) .
[0074] During the maximization step , the system com
putes a maximum likelihood estimation of a likelihood
function using posterior probabilities as weights for the
segmentation candidates of the input string (block 725) .
[0075] At block 730 , the system determines , using a
machine translation model , an alignment between phonemes
of the input string in the first script system and correspond
ing characters of the word or the word prefix in the second
script system . In some embodiments , the alignment follows
two assumptions : monotonicity and completeness . The
alignment is monotonic if relative positions of the characters
within the word or the word prefix in the second script
system follow relative positions of the phonemes within the
input string in the first script system . The alignment is
complete if there is a one - to - one mapping between positions
of the phonemes within the input string in the first script
system and positions of the characters within the word or the
word prefix in the second script system
[0076] At block 735 , the system segments , using the
probabilistic model , an input string in the first script system
into phonemes that correspond to characters in the second
script system . At block 740 , the system converts the pho
nemes in the first script system into the characters in the
second script system , where the characters form a word or
a word prefix in the second script system . At block 745 , the
system outputs the word or the word prefix in the second
script system .

[0078] The computing device 800 can further include a
memory 804 , a network adapter 810 , a cluster access adapter
812 and a storage adapter 814 , all interconnected by an
interconnect 808 . Interconnect 808 may include , for
example , a system bus , a Peripheral Component Intercon
nect (PCI) bus , a HyperTransport or industry standard
architecture (ISA) bus , a small computer system interface
(SCSI) bus , a universal serial bus (USB) , or an Institute of
Electrical and Electronics Engineers (IEEE) standard 1394
bus (also referred to herein as “ Firewire ”) or any other data
communication system .
[0079] The cluster access adapter 812 includes one or
more ports adapted to couple the computing device 800 to
other devices . In the illustrated embodiment , Ethernet can be
used as the clustering protocol and interconnect media ,
although other types of protocols and interconnects may be
utilized within the cluster architecture described herein .
[0080] The computing device 800 can be embodied as a
single - or multi - processor storage system executing a stor
age operating system 806 that can implement a high - level
module , e . g . , a storage manager , to logically organize the
information as a hierarchical structure of named directories ,
files and special types of files called virtual disks at the
storage devices . The computing device 800 can further
include graphical processing unit (s) for graphical processing
tasks or processing non - graphical tasks in parallel .
[0081] The memory 804 can comprise storage locations
that are addressable by the processor (s) 802 and adapters
810 , 812 , and 814 for storing processor executable code and
data structures . The processor 802 and adapters 810 , 812 ,
and 814 may , in turn , comprise processing elements and / or
logic circuitry configured to execute the software code and
manipulate the data structures . The operating system 806 ,
portions of which is typically resident in memory and
executed by the processors (s) 802 , functionally organizes
the computing device 800 by (among other things) config
uring the processor (s) 802 to invoke . It will be apparent to
those skilled in the art that other processing and memory
implementations , including various computer readable stor
age media , may be used for storing and executing program
instructions pertaining to the technology .
[0082] . The network adapter 810 can include multiple ports
to couple the computing device 800 to one or more clients
over point - to - point links , wide area networks , virtual private
networks implemented over a public network (e . g . , the
Internet) or a shared local area network . The network
adapter 810 thus can include the mechanical , electrical and
signaling circuitry needed to connect the computing device
800 to the network . Illustratively , the network can be embod
ied as an Ethernet network or a Fibre Channel (FC) network .
A client can communicate with the computing device over
the network by exchanging discrete frames or packets of
data according to pre - defined protocols , e . g . , TCP / IP .
10083] . The storage adapter 814 can cooperate with the
storage operating system 806 to access information
requested by a client . The information may be stored on any
type of attached array of writable storage media , e . g . ,
magnetic disk or tape , optical disk (e . g . , CD - ROM or DVD) ,
flash memory , solid - state disk (SSD) , electronic random
access memory (RAM) , micro - electro mechanical and / or
any other similar media adapted to store information , includ
ing data and parity information . The storage adapter 814 can
include multiple ports having input / output (I / O) interface
circuitry that couples to the disks over an I / O interconnect

Sample Hardware Architecture
[0077] FIG . 8 is a high - level block diagram illustrating an
example of a hardware architecture of a computing device
800 that performs the above process , in various embodi
ments . The computing device 800 executes some or all of the
processor executable process steps that are described below
in detail . In various embodiments , the computing device 800
includes a processor subsystem that includes one or more
processors 802 . Processor 802 may be or may include , one
or more programmable general - purpose or special - purpose
microprocessors , digital signal processors (DSPs) , program
mable controllers , application specific integrated circuits
(ASICs) , programmable logic devices (PLDs) , or the like , or
a combination of such hardware based devices .

US 2018 / 0173695 A1 Jun . 21 , 2018

arrangement , e . g . , a conventional high - performance , Fibre
Channel (FC) link topology . In various embodiments , the
cluster adapter 812 and the storage adapter 814 can be
implemented as one adaptor configured to connect to a
switching fabric , e . g . , a storage network switch , in order to
communicate with other devices and the mass storage
devices .
[0084] Although the subject matter has been described in
language specific to structural features and / or methodologi
cal acts , it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above . Specific embodi
ments and implementations have been described herein for
purposes of illustration , but various modifications can be
made without deviating from the scope of the embodiments
and implementations . The specific features and acts
described above are disclosed as example forms of imple
menting the claims that follow . Accordingly , the embodi
ments and implementations are not limited except as by the
appended claims .
[0085] Any patents , patent applications , and other refer
ences noted above , are incorporated herein by reference .
Aspects can be modified , if necessary , to employ the sys
tems , functions , and concepts of the various references
described above to provide yet further implementations . If
statements or subject matter in a document incorporated by
reference conflicts with statements or subject matter of this
application , then this application shall control .
Iwe claim :
1 . A method for transliterating text entries across different

script systems , comprising :
receiving an input string in a first script system input using

a keyboard ;
segmenting , using a probabilistic model , the input string

into phonemes that correspond to characters or sets of
characters in a second script system ;

converting the phonemes in the first script system into the
characters or sets of characters in the second script
system , the characters or sets of characters forming a
word or a word prefix in the second script system ; and

outputting the word or the word prefix in the second script
system .

2 . The method of claim 1 , wherein the receiving com
prises :

receiving an input string in a first script system input using
a hardware or software keyboard for inputting charac
ters in the first script system .

3 . The method of claim 1 , wherein the converting com
prises :

converting the phonemes in the first script system that is
a Latin script system into the characters or sets of
characters in the second script system , the characters or
sets of characters forming a word or a word prefix in the
second script system that is a non - Latin script system .

4 . The method of claim 1 , the segmenting comprises :
modeling , using a segmentation likelihood module of a

probabilistic model , a probability that a segmentation
candidate is a valid segmentation of the input string ;
and

segmenting , using the probabilistic model , the input string
into phonemes that correspond to characters or sets of
characters in a second script system based on the
segmentation candidate .

5 . The method of claim 1 , further comprising :
identifying segmentation candidates of the input string ,

the segmentation candidates dividing the input string
into phonemes ; and

selecting a segmentation from the segmentation candi
dates using the probabilistic model .

6 . The method of claim 5 , wherein the identifying com
prises :
modeling the segmentation candidates using a prefix tree ,

nodes of the prefix tree corresponding to possible
phonemes extracted from the input string ;

wherein nodes of a first level of the prefix tree correspond
to possible first phonemes of the input string , and nodes
of lower levels of the prefix tree correspond to possible
phonemes that follow the possible first phonemes in the
input string .

7 . The method of claim 6 , wherein a branch from a root
to a leaf of the prefix tree corresponds to a segmentation
candidate of the input string .

8 . The method of claim 6 , further comprising :
abandoning a branch of the prefix tree for computational

efficiency , or merging nodes of the prefix tree that
correspond to the same phoneme for computational or
memory efficiency .

9 . The method of claim 1 , wherein the segmenting com
prises :
modeling , using a prior probability distribution module of

a probabilistic model , a probability of a word or a word
prefix in the second script system showing up in priori
texts written in the second script system ; and

segmenting , using the probabilistic model , the input string
into phonemes that correspond to characters or sets of
characters in a second script system based on the
modeled probability of the word of the word prefix in
the second script system ;

10 . The method of claim 9 , wherein the modeling a
probability of a word or a word prefix in the second script
system comprises :

generating a multiplication product of probabilities of
characters of the word or the word prefix showing up in
the priori texts written in the second script system .

11 . The method of claim 9 , wherein the modeling a
probability of a word or a word prefix in the second script
system comprises :

determining the probability of the word or the word prefix
by a stochastic chain formed by characters of the word
or the word prefix .

12 . The method of claim 9 , wherein the modeling a
probability of a word or a word prefix in the second script
system comprises :

determining the probability of the word or the word prefix
by a lookup table or incrementally in a tree data
structure .

13 . The method of claim 9 , further comprising :
including an additional multiplicative factor in the proba

bilistic model such that the probabilistic model prefer
longer segmentations of simpler phonemes over shorter
segmentations of more complicated phonemes .

14 . The method of claim 1 , the segmenting comprises :
modeling , using a decoding observation module of a

probabilistic model , a probability of a phoneme in the
first transcript system being transliterated into a char
acter or a set of characters in the second transcript
system ; and

US 2018 / 0173695 A1 Jun . 21 , 2018

segmenting , using the probabilistic model , the input string
into phonemes that correspond to characters or sets of
characters in a second script system based on the
modeled probability of the phoneme being transliter
ated into the character or the set of characters .

15 . A non - transitory machine - readable storage medium
comprising a program containing a set of instructions for
causing a machine to execute procedures for transliterating
text entries across different script systems , the procedures
comprising :

receiving an input string in a first script system input using
a keyboard ;

segmenting , using a probabilistic model , the input string
into phonemes that correspond to characters or sets of
characters in a second script system ;

converting the phonemes in the first script system into the
characters or sets of characters in the second script
system , the characters or sets of characters forming a
word or a word prefix in the second script system ; and

outputting the word or the word prefix in the second script
system .

16 . The storage medium of claim 15 , wherein the proce
dures further comprise :

receiving a signal indicating that a cursor is moving back
to correct the word or the word prefix ; and

in response to the signal , replacing an output of the word
or the word prefix in the second script system with an
output of the input string in the first script system .

17 . The storage medium of claim 16 , wherein the proce
dures further comprise :

receiving an input to correct or append an additional
string to the input string that has been previously
entered to form a new input string ;

segmenting , using the probabilistic model , the new input
string into phonemes that correspond to characters or
sets of characters in the second script system ;

converting the phonemes in the first script system into the
characters or sets of characters in the second script

system , the characters or sets of characters forming a
new word or a new word prefix in the second script
system ; and

outputting the new word or the new word prefix in the
second script system .

18 . The storage medium of claim 15 , wherein the proce
dures further comprise :

presenting one or more transliteration candidates in the
second script system ;

receiving a signal indicating that one of the transliteration
candidates is selected ;

outputting the selected transliteration candidate in the
second script system ; and

recording the selection and increasing a probability asso
ciated with the selected transliteration candidate in the
probabilistic model .

19 . The storage medium of claim 15 , wherein the proce
dures further comprise :

presenting an associated word or an associated suffix
following the word or the word prefix being outputted ,
wherein the associated word or the associated suffix is
predicted based on the word or the word prefix .

20 . A computing device , comprising :
a keyboard component configured to enter an input string

in a source script system ;
a probabilistic model configured to :

receive the input string ;
segment the input string into phonemes that correspond

to characters or sets of characters in a second script
system ;

convert the phonemes in the first script system into the
characters or sets of characters in the second script
system , the characters or sets of characters forming
a word or a word prefix in the second script system ;
and

an output component configured to output the word or the
word prefix in the second script system .

* * * * *

