w0 2021/141656 A1 U HUD YN0 O 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
15 July 2021 (15.07.2021)

(51) International Patent Classification:

GOGF 3/00 (2006.01)

(21) International Application Number:

(10) International Publication Number

WO 2021/141656 A1l

WIPO I PCT

CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,

GOOF 9/44 (2018.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

HR, HU, ID, IL, IN, IR, IS, IT, JO, JP, KE, KG, KH, KN,
KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD,

PCLARZ0Z0/05 7240 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,

(22) International Filing Date: NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW,
24 October 2020 (24.10.2020) SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN,

(25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
o , (84) Designated States (unless otherwise indicated, for ever

(26) Publication Language: English kind gof regional protection available). ARIPO (}J;W, GHJj
(30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
16/736,034 07 January 2020 (07.01.2020) US UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(71) Appllgant: VOLTERRA, INC. [US/US]; 2550 Great EE. ES. FI. FR. GB. GR. HR. HU. IE. IS. IT. LT, LU. LV.
America Way, #3035, Santa Clara, Califormia 95054 (US). MC MK. MT. NL. NO. PL. PT. RO. RS. SE. SI. SK. SM.

(72) Inventors: MITTAL, Devesh; 2550 Great America Way, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,

#3035, Santa Clara, California 95054 (US). BHARADWAJ, KM, ML, MR, NE, SN, TD, TG).

Suhas P.; 2550 Great America Way, #305, Santa Clara,
California 95054 (US). ROUDIERE, Gilles; 2550 Great Published:
America Way, #305, Santa Clara, California 95054 (US). — with international search report (4rt. 21(3))

(74) Agent: LEINBERG, Gunnar G. et al.; Troutman Pep-
per Hamilton Sanders LLP, 70 Linden Oaks, Suite 210,
Rochester, NY 14625 (US).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available). AE, AG, AL, AM,
AQO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,

(54) Title: SYSTEM AND M!

-

416

Run
URL

Clustering

/'400
Receive
network <
data request
l / 402
Extract URL string
and Method from
http header
l / 404
Normalize URL
string
No
l - 406

Split apart
compaonents of URL
string

URL
string already in
component
tree ?

Yes

Add to
component tree

[

h 4

Node

412

Save http /
Method in Leaf

Time to
cluster URLs

FIG. 4

414

F

Yes

“THOD TO DYNAMICALLY GENERATE A SET OF API ENDPOINTS

(57) Abstract: A method and system for generating a set of API Endpoints
includes receiving network data requests to extract raw URL strings and http
Methods therefrom, splitting the URL strings into component groups, and
building a component tree. Dynamic components are detected and replaced
with a generic designator. The component tree 1S then collapsed by merging
identical branches into a single branch, thereby providing a set of API End-
points. Detection of dynamic components can include determining that the
number of child nodes paired with a parent node 1s relatively large; detecting
that the number of occurrences of a parent node component 1s relatively high
within a predetermined time in comparison to the number of occurrences of
corresponding child node components; detecting a relatively high similarity of
grandchild node components that share a parent node; and detecting child com-
ponents having randomly generated character sequences.

WO 2021/141656 PCT/US2020/057240

SYSTEM AND METHOD TO DYNAMICALLY GENERATE
A SET OF API ENDPOINTS

BACKGROUND OF THE INVENTION

Technical Field

1001] The present application generally relates to Application Program Interfaces, or
“APIs”, for allowing two software programs to communicate with each other, and more
particularly, to a system and method for generating a set of API Endpoints associated with a

web application based upon network traffic targeting such web application.

State of the Art

[002] Application Program Interfaces, or “APIs”, are simply computer software code that
allows two software programs to communicate with each other. APIs work by sending
requests for information from a web application or web server and receilving a response. An
API Endpoint 1s a point at which an API connects with the software program. In other words,
API endpoints are specitic digital locations where requests for information are sent by one

program and where the corresponding resource may be accessed.

[003] An API's performance depends on its capacity to successtully communicate with API
endpoints. API Endpoints, usually defined as the unique tuple {URL, Method }, form the
most basic unit of commands for most modern web applications. The URL represents the
Unitorm Resource Locator used to specity the location of a web resource on a computer
network and a mechanism for retrieving it. A typical URL could have the form
http://www.example.com/index.html, which indicates a protocol (http), a hostname
(www.example.com), and a file name (index.html). The “Method™ component refers to

common http method requests like POST, GET, PUT, PATCH, and DELETE.

|004] Learning the set of API Endpoints exposed by a web application merely from

inspecting tratfic has a huge range of applications like data profiling and user behavior

_1-

WO 2021/141656 PCT/US2020/057240

profiling 1in web application firewalls. Additionally, this learned set of API Endpoints are ot
immense benefit as an app observability tool for system administrators. Once the set of API
Endpoints 1s learned, it can be used to profile and create other useful information about the
application like typical user behavior, etc., which can act like security and business
intelligence 1nsights to be consumed by business, security and site reliability engineering

teams.

[005] For example, such information has value for security purposes, such as: 1)
“whitelisting” of known API Endpoints; 2) Profiling of known API Endpoints; 3) User
behavior analysis using API Endpoint access sequences; and 4) Denial of Service (DoS)
attack detection based on per API Endpoint access rates. Apart from security considerations,
such information 1s also valuable relative to: 1) identifying the slowest API Endpoints; 2)

identifying those API Endpoints that are most prone to errors; and 3) capacity planning.

|006] Layer 7, or L7, refers to the top layer in the seven-layer OSI model of the Internet; it
1s also known as the “application layer”. An application layer 1s an abstraction layer that
specifies the shared communications protocols and interface methods used by hosts 1n a
communications network. In the OSI model, the application layer serves as the user interface
responsible for displaying received information to the user. By way of explanation, HT'TP

requests and responses used to load webpages are Layer 7 events.

|007] So far, etforts to learn API Endpoints have been limited to direct set membership
checks for {URL, Method} tuples. One problem with that 1s there can be dynamic
components 1n the URL that would need to be mapped to the “any”™ or “*” operator of a
regular expression (“‘regex’), 1.e., a sequence of characters that define a search pattern, while
matching the URL against a set of learned API Endpoints. Without having the ability to
automatically 1dentity these dynamic components, any { URL, Method } system would end up
learning an exhaustive set of all umque URLs. This approach would result 1n learning

duplicate URLSs pointing to the same API Endpoint, resulting in an unmanageably large set of

URLs.

[008] For example, the web application hosted at www.reddit.com uses a unique ID, in the

form of a seemingly random string, to 1dentify a unique object. In the URL set forth below:

-

WO 2021/141656 PCT/US2020/057240

https://reddit.com/r/news/comments/8zoY0or
the characters “8zo9or” represent such a unique ID, or random string. Static properties
related to such random string can appear later in the URL, as exemplitied below:

https://reddit.com/r/news/comments/8zo9Yor/top/.

[009] A web-based application might have thousands of such unique IDs embedded 1n its
URLs. However, these thousands of unique IDs would not really contribute any useful
information 1f they were treated as thousands of different API Endpoints; this 1s because the

function performed at each such endpoint 1s the same.

SUMMARY OF THE INVENTION

|0010]It 1s therefore an object of the present invention to provide a system and method to
generate a set of API Endpoints associated with a web application by inspecting network data

traffic directed to such web application.

|O011] Another object of the present invention 1s to provide such a system and method to
generate a set of API Endpoints which can be generated by examining network data tratfic in

real time.

|0012] Stll another object of the present invention 1s to provide such a system and method
to generate a set of API Endpoints which can alternatively be generated by examining offline

access logs of network data traffic generated by a network server.

|0013] Yet another object of the present invention 1s to provide such a system and method
to generate a set of API Endpoints which distinguishes between static components and

dynamic components with high accuracy.

|0014] A turther object of the present invention 1s to provide such a system and method to

generate a set of API Endpoints which condenses similar URLSs that differ from each other

only with respect to dynamic components.

WO 2021/141656 PCT/US2020/057240

|0015] These and other objects of the present invention will become more apparent to those

skilled 1n the art as the description of the present invention proceeds.

|0016] Briefly described, and 1n accordance with various embodiments thereof, a first
aspect of the present invention relates to a method for generating a set of API Endpoints by
inspecting network data traffic. Such method includes receiving a number of network data
requests set torth in { URL, Method } format to 1dentity command actions supported by a web
application. The HTTP request headers of such received network data requests are inspected
to extract raw URL strings therefrom. Each such raw URL string 1s split into a number of
components. A raw component tree 1s assembled consisting of a number of branches formed
of nodes, wherein each node 1s a component of at least one raw URL string. Such method
analyzes each component 1n the raw component tree to determine whether such component 1s
static or dynamic. The raw component tree 1s moditied to replace components determined to
be dynamic with a generic designator. The raw component tree 1s then collapsed to form a
collapsed component tree by merging i1dentical branches 1nto a single branch. The API

Endpoints are then derived from the collapsed component tree.

|0017] The received network data requests may be received 1n real time from data packets
transmitted over a data network. Alternatively, the received network data requests may be

received as an offline access log generated by a network server.

|0018] In various embodiments of such method, the manner of splitting each of the raw
URL strings 1into a group of components includes detecting torward-slash characters */”
within the raw URL strings and deriving the components from groupings of characters

separated by such forward-slash characters.

|0019] In some embodiments of such method, the dertved set of API Endpoints consists of
so-called “tuples™ expressed 1n the form ot {Collapsed URL, Method} wherein “Collapsed
URL” signifies a URL string wherein dynamic components are replaced by a generic

designator, and wherein “Method” signifies an http method request, such as POST, GET,
PUT, PATCH, or DELETE.

WO 2021/141656 PCT/US2020/057240

|0020] In various embodiments of such method, the raw component tree includes at least
one (but often more than one) “parent” node that includes a component located closer to the
beginning of a raw URL string. In addition, the raw component tree includes at least one (but
often more than one) “child” node that includes a component located further from the
beginning of the raw URL string than the parent node. By way of example, in the raw URL
string http://watdemo.com/api/user/, the component “ap1” may be regarded as a “parent”

node, while the component “user” may be regarded as a “child” node.

|0021] In some embodiments of such method, the process of determining whether a
component 1s dynamic evaluates the number of “child” nodes that are paired with a particular
“parent” node. Where the number of child nodes paired with a single parent node 1s

relatively large, the child nodes are highly likely to be dynamuc.

10022] In some embodiments ot such method, the process of determining whether a
component 1s dynamic involves tracking the number of times that particular components
appear within received network data requests over a predetermined period of time. The
number of occurrences of a component ot a parent node within such predetermined time 1s
compared to the number of occurrences of corresponding child nodes associated with such
parent node within such predetermined time. If the number of occurrences ot a parent node
component 1s relatively high, but the number of occurrences of each child node component 1s

relatively low, then 1t 1s highly likely that the child components are dynamiuc.

|0023] In some embodiments of such method, the process of determining whether particular
components are dynamic involves determining the similarity of grandchild node components
(to each other) for child nodes that share the same parent node. In other words, focusing
upon a particular parent node, 1ts child nodes are located, and then for each such child node,
sets of corresponding grandchild components are formed. For example, if parent node A has
3 child components X, Y, and Z, and 1f each of child components X, Y and Z has 1ts own
child node components (1.e., grandchildren of parent node A), then the logic element
computes the similarity among the sets of X’s children, Y’s children, and Z’s children. If a
relatively high similarity 1s found to exist among these sets of grandchild components, then 1t

1s likely that the child node components X, Y and Z are dynamic. The computation of

WO 2021/141656 PCT/US2020/057240

stmilarity among the sets of grandchild components may be accomplished using statistical

techniques including, but not limited to, Jaccard-like similarity.

10024] In some embodiments of such method, the process of determining whether particular
components are dynamic involves detecting if child components that share the same parent
node include character sequences that were randomly generated. As the likelihood that such
child components were randomly generated increases, so does the likelihood that such child

components are dynamic.

|0025] Various embodiments of the present invention provide a system for generating a set
of API Endpoints associated with a web application by inspecting network data traffic. The
system 1ncludes a server, such as a web server or proxy server, adapted to receive a number
of network data requests that use { URL, Method} format to 1identify command actions
supported by a web application. A logic element, which may be integral with, or separate
from, the server 1inspects http request headers of recerved network data requests to extract raw
URL strings therefrom. The logic element splits each of the raw URL strings into a number
of components, and building a raw component tree consisting of a plurality of branches
formed of nodes, wherein each node 1s a component of at least one raw URL string, said logic
analyzing each component 1n the raw component tree to determine whether such component
1s static or dynamic, said logic modifying the raw component tree to replace components
determined to be dynamic with a generic designator, and said logic creating a collapsed
component tree by merging 1dentical branches of the raw component tree 1into a single

branch. The collapsed component tree provides the desired set of API Endpoints.

|0026] In some embodiments of such system, each raw URL string 1s split into a group of

components by detecting forward-slash characters */” within the raw URL strings and

deriving the plurality of components from groupings ot characters separated by such forward-

slash characters.

|0027] In some embodiments of such system, the set of APl Endpoints that are included 1n

the collapsed component tree includes a number of tuples 1n the form of {Collapsed URL,

WO 2021/141656 PCT/US2020/057240

Method} wherein the Collapsed URL signifies a URL 1n which dynamic components are

replaced by a generic designator, and Method signifies an http method request.

|0028] In various embodiments of such system, the raw component tree includes at least
one parent node having a component located closer to the beginning of the raw URL string,
and at least one child node having a component located further from the beginning ot the raw

URL string than the parent node.

|0029] In some embodiments of such system, the logic element analyzes whether the
number of child nodes paired with a particular parent node 1s relatively large. It the number
of child nodes paired with a particular parent node 1s relatively large, then 1t 1s highly likely

that such child node components are dynamic.

[0030] Some embodiments of such system include a storage for storing the number of times
that particular components appear within received network data requests over a
predetermined period of time. The logic element analyzes the number of occurrences of a
parent node component within such predetermined time, and compares it to the number of
occurrences of paired child node components associated with such parent node within such
predetermined time. If the number of occurrences of a parent node component within such
predetermined time 1s relatively high and the number of occurrences of each paired child
node associated with such parent node within such predetermined time 1s relatively low, then

it 1s highly lhikely that such paired child node components are dynamic.

|0031] In some embodiments of such system, the logic element detects whether particular
child node components (which share the same parent node) are dynamic by determining the
stmilarity of sets of corresponding grandchild node components to each other. In other
words, focusing upon a particular parent node, 1ts child nodes are located, and then for each
such child node, sets of corresponding grandchild components are formed. For example, if
parent node A has 3 child components X, Y, and Z, and 1f each of child components X, Y and
Z. has 1ts own child node components (1.e., grandchildren of parent node A), then the logic
element computes the similarity among the sets of X’s children, Y's children, and Z’s
children. If a relatively high sitmilarity 1s found to exist among these sets of grandchild

components, then 1t 1s likely that the child node components X, Y and Z are dynamic. The

_7-

WO 2021/141656 PCT/US2020/057240

computation of stmilarity among the sets of grandchild components may be accomplished

using statistical techniques including, but not limited to, Jaccard-like similarity.

|0032] In some embodiment of such system, the logic element detects that child node
components that share the same parent node have character sequences that were randomly

generated. In such 1nstances, such child node components are deemed to be dynamic.

[0033] ..It will be appreciated that the various techniques for detecting whether a particular
child node component 1s static or dynamic may be combined. For example, a weighted
average of such techniques can be computed and compared to a threshold value. If the
welghted average equals or exceeds such threshold, then such component 1s deemed to be

dynamic, and like URL strings are collapsed.

10034] The foregoing and other features and advantages of the present invention will
become more apparent from the following more detailed description of particular

embodiments of the invention, as illustrated in the accompanying drawings.

WO 2021/141656 PCT/US2020/057240

BRIEF DESCRIPTION OF THE DRAWINGS

|00335] A more complete understanding of the present invention may be derived by
referring to the detailed description and claims when considered 1in connection with the

Figures, wherein:

[0036]FIG. 1 1s a high level flow diagram illustrating a series of network data requests
that use {URL, Method} format to 1dentifty command actions supported by a web application,

and the manner 1n which such URLs may be collapsed after detecting dynamic components.

|0037] FIG. 2 1s a chart 1llustrating how a set of URLSs can be represented as a tree

structure.

[0038] FIG. 3 1s a high level diagram 1illustrating a client computer communicating over
the Internet with a reverse proxy server which, 1n turn, communicates with three web

application hosting servers.

[0039] FIG. 4 1s a flowchart that 1llustrates 1nitial steps for processing http header request

information obtained from each network data request.

10040] FIG. 5 1s a flowchart that 1llustrates the steps performed to determine whether
particular URL string components are dynamic or not dynamic i1n accordance with one

embodiment of the present invention.

WO 2021/141656 PCT/US2020/057240

DETAILED DESCRIPTION

|0041] The embodiments described herein involve the inspection of so-called “Layer 77
(L'7) network data tratfic to dynamically generate a set of API Endpoints that are exposed by
a web application that uses { URL, Method} format to uniquely 1dentity a command action
supported by the web application. The API Endpoints are derived merely by inspecting
HTTP request headers tor requests that are known to have been successfully served by the
application without any manual intervention or configuration. The method and system of the
present invention successtully identifies dynamic components with high accuracy and results
in a much more useful learned set of API Endpoints to be used for the purposes described

above.

|0042] In an example discussed above, the web application hosted at www.reddit.com uses
a unique ID, 1n the form of a seemingly random string, to identify a unique object. In the

URL character string set forth below:

https://reddit.com/r/news/comments/8zoY0or

the characters “8zoYor” correspond to the unique ID, or random string. The properties related

to such random string can appear later in the URL, as exemplitied below:

https://reddit.com/r/news/comments/8zoYor/top/

|0043] A web-based application might have thousands ot such unique IDs embedded 1n 1ts
URLs. However, these thousands of unique IDs do not really contribute any usetul
information, since the function performed at each such endpoint 1s the same. With regard to
the above example, the abbreviated URL “reddit.com/r/news/comments/*” 1s a much more
useful URL string when compared to the original URAL
“reddit.com/r/news/comments/8zo%or/top/”, tor purposes of checking for an API Endpoint.
The random string “8zoY%or” 1s a dynamic part of the URL string. In accordance with the
present invention, an API Endpoint mapper may take this into account by replacing this
dynamic part of the URL with a predefined generic string, e.g., “DYN" or “*”. Children

directories of these dynamic parts of the URL (for example, the component “top™ 1n the

-10-

WO 2021/141656 PCT/US2020/057240

above example) might themselves be static, and should therefore be mapped to different API

Endpoints.

10044] Bulding upon the atorementioned example set torth above, let us suppose that the

following URLs are associated with the reddit.com website:

1) https://reddit.com/r/news/comments/8zo9or/top/

2) https://reddit.com/r/news/comments/8zo9or/controversial

3) https://reddit.com/r/news/comments/8zo9or/new

|0045] An API Endpoint mapper following the principles of the present invention would

convert each such URL 1nto a corresponding collapsed URL shown 1n the table below:

Original URL Collapsed URL

https://reddit.com/r/news/comments/8zoY%or/ | https://reddit.com/r/news/comments/{ DYN }/

top/ top/

https://reddit.com/r/news/comments/8zo%or/ | https://reddit.com/r/news/comments/{DYN }/

controversial controversial

https://reddit.com/r/news/comments/8zoY%or/ | https://reddit.com/r/news/comments/{ DYN }/

New Nnew

|0046] URLSs can be broken down 1nto components by splitting the raw URL string using
the forward-slash character ““/”. The resultant array of character strings are referred to herein
as “components”. For example, the URL “https://reddit.com/r/news/comments/8zo9or/top/”

can be split into the following components: “r”’; “news”, “‘comments’; “8zo9or”; and “top”.

In this example, the component “8zoYor” 1s dynamic, while the other components are static.

-11-

WO 2021/141656 PCT/US2020/057240

The present invention provides a highly accurate method of detecting the set of API

Endpoints for websites that use URLs having dynamic URL components.

|004°7] The system and method of the present invention receive, as inputs, raw URL strings
that include L7 HTTP request headers using the { URL, Method} protocol, and provide, as an
output, a listing of API Endpoints, each defined as the tuple {CollapsedURL, Method}. In
this regard, the term “CollapsedURL” signifies a URL wherein dynamic component markers
like the string “8zo9or” 1n the examples above are replaced by a generic placeholder, like

(-GDYN?? .

|0048] Fig. 1 1s a flow diagram that summarily illustrates input information, in the form ot
raw {URL, Method} “tuples™, for a number of requests processed by a server, as well as the
corresponding output information 1n the form of a list of unique {CollapsedURL, Method }

tuples. The input requests shown 1n box 100 include the following:

POST http://watdemo.com/api/login/?user=abcd&pwd=secret
GET http://watdemo.com/api/user/abcd/

GET http://watdemo.com/api/user/abcd/logout

POST http://watdemo.com/api/login/?user=abcd&pwd=secret
GET http://watdemo.com/api/user/abcd/vehicle/1234

GET http://watdemo.com/api/user/abcd/vehicle/5678

GET http://watdemo.com/ap1/user/abcd/vehicle/images/profile.jpg

[0049] In Fig. 1, box 102 (“URL Collapser™) conceptually represents the work performed 1n
accordance with the method and system of the present invention. Box 104 shows the results
of the collapsed URL requests after consolidating the dynamic components of the original
raw URL strings into a set of five collapsed endpoints. In box 104 of Fig. 1, row 106 covers
both of the original POST requests. Row 108 covers the GET request
http://watdemo.com/api/user/abcd/. Row 110 covers the GET request and
http://watdemo.com/api/user/abcd/logout. Row 112 covers the two GET requests that end 1n

12 -

WO 2021/141656 PCT/US2020/057240

the dynamic strings “1234” and “5678”. Finally, row 114 covers the final GET request,
http://watdemo.com/api/user/abcd/vehicle/images/profile.jpg.

|0050] To help explain the manner 1n which dynamic components are 1dentified 1n each
URL string, 1t 1s first helptul to understand the concepts of component tree structure and

dynamic component properties. These concepts will now be described.

[0051] Component Tree Structure

|0052] A set of URLSs can be represented as a tree structure made up of nodes where each
node 1s a component 1n at least one of the URLSs 1n the set. Fig. 2 illustrates an example ot
such a tree structure. In Fig. 2, lettmost column 200 represents the parent node “ap1”, which
1S the node closest to the “root” of the tree, and which, 1n this 1instance, 1s common to all URL
strings represented by the tree. Column 208, on the right side of Fig. 2, represents the
“leaves” of the tree that are furthest from the root of the tree. Column 202 includes three
“child” nodes relative to parent node 200. The first child node “user” spans three rows 210,
212 and 214. The second child node *““vehicle” 1s set forth in row 216. The third child node,
also named ““vehicle”, 1s set forth 1n row 218. Column 204 can be regarded as “grandchild”
nodes relative to parent node column 200. However, 1t will be appreciated that the term
“parent node” can be applied, for example, to the entries 1in column 202, 1in which case the
entries of column 204 may be regarded as “child” nodes relative to the components shown 1n

column 204, and the entries of column 206 may be regarded as “grandchild” nodes thereof.

[0053] The leaves 1n the tree (1.e., the components in column 208) shown in Fig. 2 map to

the following set of URLs:

/ap1/user/tSom89Ys/vehicle/sdvkjl
/api/user/fSom89s/comment/ncul23
/api/user/fSom&9s/profile
/ap1/vehicle/asdal23/picture/abed 1234
/ap1/vehicle/t50m&89s/registration/S97us;j

A o A

[0054] Dynamic Component Properties

13-

WO 2021/141656 PCT/US2020/057240

[0055] When a set of URLSs are represented as a tree structure, as discussed with regard to

Fig. 2, the 1dentification of dynamic components 1s facilitated by the following set of rules:

[0056] 1. The term “NumChildren” will be used herein to refer to the number of child
nodes paired with a corresponding parent node. If NumChildren of a parent node 1s relatively

large, then 1t 1s highly likely that the child-level of this parent node 1s dynamic.

|0057] 2. The term “NumO-ccurrences” will be used herein to refer to the number of times,
within a given period (say, within 24 hours), that a particular component appears within a
request. It the NumOccurrences of a child component and 1its siblings 1s low, but the
NumOccurrences for their respective parent component 1s high, then it 1s more likely that this

child component and its siblings are dynamic.

[0058] 3. In the world of statistical analysis, there 1s a tool known as the Jaccard similarity
index (sometimes called the “Jaccard similarity coetficient”) which compares the members of
two sets of data to see which members are shared between the two sets, and which members
are distinct. Thus, 1t 1s essentially a measure of the similarity of two sets of data, with a range
from 0% to 100%; the higher the percentage, the more similar are the two sets being
evaluated. If two grandchild node components (both sharing the same parent node) have a
high Jaccard Similarity index, then 1t 1s more likely that the intermediate child node
components are dynamic. Further specifics regarding use of the Jaccard similarity index are
provided below. While Jaccard similarity 1s conventionally applied to two sets of data, the
same concept may be applied to measure the similarity among three or more sets of data. As
used herein, the term “Jaccard-like similarity™ should be understood to refer to the application

of conventional Jaccard similarity analysis applied to three or more sets of data.

|0059] 4. Finally, if the various character sequences of a component and all its siblings,
appear to be randomly generated, then 1t 1s likely that the component and 1ts siblings are
dynamic. The manner by which such random generation 1s detected 1s described 1n greater

detail below.

[0060] Turning now to Fig. 3, a high-level diagram of a typical proxy server deployment 1s

shown. Client computer 300 1s interconnected, via Internet 302, to proxy server 304. Proxy

_14-

WO 2021/141656 PCT/US2020/057240

server 304 1s, 1n turn, interconnected with three web application servers 306, 308 and 310.
Proxy server 304 acts as a tront-end for web applications and may optionally provide
additional functionalities like load balancing, firewall protection, Bot detection, etc. Proxy
server 304 recerves all network data requests targeted toward web application servers 306,
308 and 310, and 1s able to inspect and extract the http headers for all requests that tlow
through proxy server 304. The method of the present invention may be performed within
proxy server 304 or within a computer processor coupled thereto. Determination of API
Endpoints within proxy server 304 can provide many benefits mentioned above, including
data profiling and user behavior profiling, as well as serving as a useful tool for system
administrators, and by security and site rehiability engineering teams. As already noted, API
Endpoint information has value for security purposes, such as: 1) “whitelisting”™ of known
API Endpoints; 2) profiling of known API Endpoints; 3) user behavior analysis using API
Endpoint access sequences; and 4) detecting attempted denial of service (DoS) attacks. Apart
from security considerations, such API Endpoint information 1s also valuable for purposes of:
1) 1identifying the slowest API Endpoints; 2) identifying those API Endpoints that are most

prone to errors; and 3) capacity planning.

|0061] The 1nitial steps for processing http header request information 1s shown 1n the
flowchart of Fig. 4. At step 400, the next network data request 1s received by proxy server
304. At step 402, the URL string and Method are extracted from the http header information.

For example, if the header of the request includes the “tuple” {URL, Method } 1n the form of

GET http://watdemo.com/api/user/abcd/,

then the URL string watdemo.com/api/user/abcd/ 1s extracted, along with the Method “GET™.

10062] At step 404 of Fig. 4, the extracted URL string 1s “normalized” to remove any extra
symbols and to resolve any path traversals. At step 406, the normalized URL string 1s split
apart 1nto 1ts components by searching for the forward-slash character that separates such
components; 1n the example above, the components are “ap1”, “user” and “abcd”. At step
408, 1t 1s determined whether the component tree table in which such URL strings are stored

(see, tor example, Fig. 2) already contains components arranged to form the current URL

string; 1f not, the current combination of components 1s added to the component tree table,

15-

WO 2021/141656 PCT/US2020/057240

and control passes to step 412. If the current combination of components 1s already included
in the component tree table, then control passes directly to step 412. At step 412, the
“Method” extracted from the current request header (e.g., “GET”) 1s saved 1n the form of
metadata assoclated with the last, or “leat” component node of the particular branch of the
component tree to remember all Methods observed for a given URL string; in this regard, 1t

will be recalled that API Endpoint identification includes a unique combination of URL and

Method.

[0063] Stll referring to Fig. 4, control passes from step 412 to decision step 414 to
determine whether 1t 1s time to re-cluster the URL strings represented 1n the tree structure
table. For example, one might decide to the re-cluster the entries 1in the tree component table
for every ten (or alternatively, every hundred) insertions of new entries 1n such table. If the
decision 1s “No”, then control returns to step 400, and a new network data request 1s recerved.
It the decision 1s “Yes”, then a URL re-clustering process 1s performed 1n the manner
described below. The logic for performing the steps described 1in Fig. 4 may be regarded as a

“clustering module”.

|0064] After the specitied number of new component table insertions has been reached, the
URL re-clustering process 1s performed. This process will now be described 1n conjunction

with the flowchart of Fig. 5. Generally, the re-clustering process “walks™ through the nodes

of the URL component tree table and, at each node which has children, a determination 1s

made whether that node’s children are dynamic or not using the algorithm summarized 1n

Fig. 5.

[0065] Referring now to Fig. 5, the process begins at step SO0 by examining the first parent

node 1n the tree structure table. At step 502, the number of child component nodes
(NumChildren) 1s computed for the selected parent node. If NumChildren 1s greater than a
specified number of children (MaxLimit), then control passes to block 518, and the child
nodes are determined to be dynamic. This 1s because a parent node that has an exceptionally

high number of children indicates that the child level of this parent node 1s dynamic.

[0066] If step 502 determines that NumChildren does not exceed MaxLimit, then control

passes to step S04 for computation of a NumChildrenDynScore. Dynamic components tend

-16-

WO 2021/141656 PCT/US2020/057240

to be much larger in number than non-dynamic components. To find parent nodes that have
much larger number of child components than other nodes, a so-called Z-Score based method
may be used. A “Z-score” (aka a “standard score”) indicates how many standard deviations
an element 1s from the mean. A z-score can be calculated as z = (X - u) / ¢ where z 1s the z-
score, X 1s the value of the element, u 1s the population mean, and ¢ 1s the standard deviation.

For additional information, see “Statistics How To” at:

https://www .statisticshowto.datasciencecentral.com/probability-and-statistics/z-score/

[0067] When computing the Z-score, a NumChildMean and NumChildSTD (standard
deviation) 1s calculated for each parent node in the tree. On visiting a node, the node’s
children are compared with other nodes 1n the tree using its Z-Score. The higher the Z-Score,
the higher are the chances that the node 1s dynamic. After computing the mean value
NumChildMean and standard deviation value NumChildSTD, the Z-score can be computed

according to the formula:

Z-Score = (NumChild — NumChildMean)/NumChildSTD.

This Z-score 1s then used as the NumChildDynScore 1n step S04.

[0068] Control then passes to step S06 for computing an EntropyDynScore. The
EntropyDynScore considers the number of occurrences over a predetermined period of time
(e.g., 1n a set of access logs) of parent node components versus assoclated child node
components. For example, 1n an earlier case shown 1n Fig. 1, two similar GET requests were

set forth, namely,

GET http://watdemo.com/api/user/abcd/vehicle/1234
GET http://watdemo.com/api/user/abcd/vehicle/5678

It the parent node being analyzed 1s the static component “vehicle”, and the dynamic child
node components are “1234” and “5678”, then the component “vehicle” will typically have a
far greater number of occurrences per unit time than either “1234” or “5678”. In addition, in

a case where the child components are dynamic, 1t 1s more likely that the occurrences of such

17 -

WO 2021/141656 PCT/US2020/057240

dynamic components per unit of time will be more evenly distributed (compared to each
other) than for non-dynamic components. The degree to which the number of occurrences 1s

evenly distributed among such child components can be gauged by measuring the entropy ot

the distribution of occurrences across such child components. The more equal the
distribution of occurrences among the child nodes, the more likely 1t 1s that such child
components are dynamic. Computation of the EntropyDynScore first requires computation
of Entropy, along with mean values and standard deviation values for Entropy. Entropy can

be calculated 1n accordance with the following formula:

H(X)=-) pilog,p
1=1

Where H(X) 1s a measure of the entropy for an event X with n possible outcomes and
probabilities p_1, ..., p_n. Further details are provided at “Entropy 1s a measure of

uncertainty”’, by Sebastian Kwiatkowski, Toward Data Science, Oct. 6, 2018, found at:
https://towardsdatascience.com/entropy-is-a-measure-of-uncertainty-e2c000301c2c.

[0069] After computing the Entropy for each child node, and computing the mean value
EntropyMean and standard deviation value EntropyStd, the EntropyDyn score can be

computed according to the formula:
EntropyDynScore = [(NumAccess/NumChild) — EntropyMean |/EntropyStd

wherein NumAccess 1s the number of times a URL with a particular parent node component

was accessed (1.e., the number of occurrences of this parent node component 1n network

tratfic within a predetermined time); and NumChild 1s the number of different child node

components assoclated with such particular parent node.

[0070] Sull referring to Fig. 5, control then passes from step 506 to step 508 4 for
computation of a StringClassifierDynScore. Typically, dynamic components of URL path
strings are randomly-generated strings ot characters and/or integers. A so-called RNN LSTM

based string classifier may be used to classity the text of child node components to predict if

18-

WO 2021/141656 PCT/US2020/057240

they are dynamic components or not. RNN LSTM 1s a deep neural networks-based technique
to train classifiers, and which can thereatter classify a string of characters after being trained

with large corpus of labeled training samples. In the present case, a two-class set of training

data, labeled as either “dynamic™ or “not dynamic™, 1s used to train the classifier. The trained
classifier then processes the string of characters that makes up a child component (and all of
its siblings) to determine 1f they are dynamic or not dynamic. Further details regarding RNN
LSTM classifiers are provided at “Understanding LSTM Networks”, Colah’s Blog, posted
August 27, 20135, at:

https://colah.github.1io/posts/2015-08-Understanding-LSTMs/

and “The Unreasonable Effectiveness of Recurrent Neural Networks”, Andrej Karpathy Blog,
posted May 21, 20135, at:

http://karpathy.github.10/2015/05/21/mn-effectiveness/

Such string classifiers render predictions by providing a score between the values 0 and 1,
with “0” being non-dynamic and “1” being dynamic. The string classifier 1s run on all child
node character strings. Then the value NumDynChildNodes 1s computed wherein
NumDynChildNodes equals the total number of child nodes wherein the string classifier
prediction score 1s greater than 0.95. Next, an average 1s calculated to get the average score

for all child nodes of a particular parent node, as set forth below:

StringClassifiedDynScore = NumDynChildNodes / NumChild

Where NumChild 1s the number of child nodes associated with the parent node under study.

The average computed above 1s used as the StringClassifiedDynScore.

|0071] Control then passes from step 508 to decision diamond 510 to determine whether,

for a given parent node under study, its child nodes have child nodes of their own, 1.e., the

parent node under study has grandchild nodes. If there are no grandchild components, then
step 512 1s bypassed. If there are grandchild components, then control passes to step S12 for

computing a JaccardSimilarityDynScore. The theoretical basis for step 512 1s that, where a

19-

WO 2021/141656 PCT/US2020/057240

set of child nodes are dynamic, the grandchildren components of that set of child nodes will
typically be very similar to each other. Accordingly, for each child node associated with a
parent node under study, a set of grandchild component character strings 1s compiled. A
Jaccard-like similarity index 1s then computed comparing the similarity (or non-similarity) of
the sets of grandchild component strings associated with such child nodes; a relatively high
Jaccard-like similarity index indicates that the intermediate child nodes, located intermediate

the parent node and the grandchild nodes, are dynamuic.

|0072] The Jaccard similarity index can be expressed, when comparing two sets of data, as a

formula as set forth below:

Jaccard Similarity index = [NB/TM] x 100,

wherein NB 1s the number of data members that appear 1n both data sets being compared;
wherein TM 1s the total number of distinct data members that appear 1n either, or both, of
such data sets being compared; and wherein the result 1s expressed as a percentage. This
resulting percentage indicates how similar (or how different) the two data sets are to each
other. For example, if two data sets, each containing 100 members, were 1dentical to each
other, then NB=100, TM=100, and the result = 100%. As another example, if two data sets,
each containing 100 members, had no members in common, then NB=0, TM=200, and the
result = 0%. As a final example, if two data sets each contain 100 members, and 50 members
appeared within both data sets, then NB=50, TM=130 (1.e., 50 unique members 1n the first
data set, 50 unique members 1n the second data set, and 50 common members shared by both
data sets), and the result 1s 33.3. Once again, the higher the resulting percentage, the more
stmilar are the two data sets to each other. Although this example uses two sets of data, the
same concept may be applied to can be extended to three or more sets of data, and such
application 1s termed Jaccard-like similarity herein. While Jaccard similarity 1s one type of
statistical tool that may be used to compare the similarities and differences as between sets of

data, other comparison tools known to those skilled 1n the art may also be used.

20 -

WO 2021/141656 PCT/US2020/057240

[0073] Sull referring to step 512 of Fig. 5, a JaccardSimilarityDynScore 1s computed
covering all grandchildren components of each parent node according to the following

formula:

(Intersection of all grandchildren components) / (Union of all grandchildren

components).

The result of the expression above 1s used as the JaccardSimilarityDynScore for the children
of the parent node under study. The higher the JaccardSimilarityDynScore for a particular

parent node under study, the more likely 1t 1s that the child node components are dynamic.

|0074] Control then passes to step 514 where a weighted average, called “DynScore”, 1s
calculated and compared to a threshold to determine that the node’s children are dynamic
components, and hence, that such child nodes should be collapsed with a sub-tree merge

operation. The DynScore can be expressed as tollows:

DynScore = WI1 x NumChildDynScore + W2 x EntropyDynScore
+ W3 x StringClassifierDynScore + W4 x

JaccardSimilarityDynScore,
where W1, W2, W3 and W4 are weighting factors used to scale the individual scores to be
comparable to each other. At step 516, the overall DynScore 1s compared to a threshold
value, and 1f the DynScore exceeds the threshold value, then the group of child components
under evaluation 1s deemed to be dynamic; 1f not, then the group of child components under
evaluation 1s deemed not to be dynamic. Control passes back to step 500, and the next node

1n the tree structure table 1s evaluated 1n the same manner.

|0075] In the embodiment described 1n Fig. 5, the DynScore 1s atfected by each of the four
component scores described above, and 1n combination, such component scores collectively
provide a highly reliable indication of nodes being either dynamic or not dynamic. However,
those skilled 1n the art will appreciate that one or more of such component scores may be
omitted while continuing to accurately predict whether component nodes are dynamic or not

dynamic.

D1 -

WO 2021/141656 PCT/US2020/057240

|0076] If a parent node’s children are determined to be dynamic, then a node collapse
operation 1s pertormed within the node tree structure table such that all sub-trees of this
node’s child nodes are merged 1nto a single sub-tree, and the dynamic node of this single sub-
tree 1s assigned a generic designator, e.g., “DYN”. This has the effect of replacing a number
of child node sub-trees with a single dynamic component child node sub-tree. After the tree
collapse operations are completed, the path to each leaf node represents a collapsed URL. At
this leat node, more metadata about this collapsed URL 1s stored, including the HTTP
Method combinations associated with the collapsed URL string. The resulting component

tree table provides the set of learned API Endpoints as 1dentified by the resulting
{CollapsedURL, Method} combinations.

|0077] The resulting set of API Endpoints provides a wealth of information that may be
used to profile data usage, user behavior, provide security information, aid 1n preventing
malevolent threats, detect errors associated with web applications and facilitate capacity

planning.

|0078] Computing systems referred to herein, including without limitation proxy servers,
can comprise an integrated circuit, a microprocessor, a personal computer, a server, a
distributed computing system, a communication device, a network device, a firewall, a proxy
server, a web server, an application gateway, a statetul connection manager, and/or various
combinations of the same. Processors referred to herein can comprise microprocessors, tor
example. Chipsets referred to herein can comprise one or more integrated circuits, and
memories and storage referred to herein can comprise volatile and/or non-volatile memory
such as random access memory (RAM), dynamic random access memory (DRAM), static
random access memory (SRAM), magnetic media, optical media, nano-media, a hard drive, a
compact disk, a digital versatile disc (DVD), and/or other devices configured for storing
analog or digital information, such as 1in a database. As such, it will be appreciated that the
various examples of logic noted above can comprise hardware, firmware, or software stored

on a computer-readable medium, or combinations thereof.

|0079] As used herein, the term “logic™ or “logic element” may refer to a server or to a

separate computing system coupled with a server. Such logic may include a computer

DD -

WO 2021/141656 PCT/US2020/057240

processor, assoclated storage, and associated input and output ports. The various examples ot
logic noted herein can comprise hardware, firmware, or software stored on a computer-
readable medium, or combinations thereof. This logic may be implemented 1n an electronic
device to produce a special purpose computing system. Computer-implemented steps of the
methods noted herein can comprise a set of instructions stored on a computer-readable
medium that when executed cause the computing system to perform the steps. A computer-
readable medium, as used herein, refers only to non-transitory media, does not encompass

transitory forms of signal transmission, and expressly excludes paper.

[0080] A computing system programmed to perform particular functions pursuant to
instructions from program software 1s a special purpose computing system for performing
those particular functions. Data that 1s manipulated by a special purpose computing system
while performing those particular functions 1s at least electronically saved 1n buffers of the
computing system, physically changing the special purpose computing system from one state
to the next with each change to the stored data. Claims directed to methods herein are
expressly limited to computer implemented embodiments thereof and expressly do not cover

embodiments that can be performed purely mentally.

|0081] The absence of the term “means” from any claim should be understood as
excluding that claim from being interpreted under Section 112(f) of the Patent Laws. As used
in the claims of this application, “configured to” and “configured for” are not intended to

invoke Section 112(1) of the Patent Laws.

|0082] Several embodiments are specifically 1llustrated and/or described herein to
exemplity particular applications of the invention. These descriptions and drawings should
not be considered 1n a limiting sense, as 1t 1s understood that the present invention 1s 1n no
way limited to only the disclosed embodiments. It will be appreciated that various
modifications or adaptations of the methods and or specific structures described herein may
become apparent to those skilled 1n the art. All such moditications, adaptations, or variations
are considered to be within the spirit and scope of the present invention, and within the scope

of the appended claims.

13-

WO 2021/141656 PCT/US2020/057240

We claim:

1. A method for generating a set of API Endpoints by inspecting network data tratfic,
comprising the steps of:
receiving a plurality of network data requests that use { URL, Method } format to
1dentity command actions supported by a web application;
inspecting HTTP request headers of the plurality of received network data requests to
extract raw URL strings therefrom;
splitting each of the raw URL strings into a plurality of components;
building a raw component tree consisting of a plurality of branches formed of nodes,
wherein each node 1s a component of at least one raw URL string;
analyzing each component in the raw component tree to determine whether such
component 1s static or dynamic;
moditying the raw component tree to replace components determined to be dynamic
with a generic designator;
collapsing the raw component tree 1into a collapsed component tree by merging
1dentical branches 1nto a single branch; and

deriving a set of API Endpoints from the collapsed component tree.

2. The method recited by claim 1 wherein the plurality of network data requests are received

in real time from data packets transmitted over a network.

3. The method recited by claim 1 or 2 wherein the plurality of network data requests are

received as an oftline access log generated by a network server.

4. The method recited by claim 1, 2, or 3 wherein the step of splitting each of the raw URL
strings 1nto a plurality of components includes the step of detecting forward-slash
characters /7 within the raw URL strings and deriving the plurality of components

from groupings of characters separated by such forward-slash characters.

5. The method recited by claim 1-3 or 4 wherein the derived set of API Endpoints includes a
plurality of tuples in the form of {Collapsed URL, Method} wherein the Collapsed

URL si1gnifies a URL wherein dynamic components are replaced by a generic

D4 -

WO 2021/141656 PCT/US2020/057240

designator, and Method signifies an http method request.

6. The method recited by claam 1-4 or 5 wherein the raw component tree includes at least
one parent node that includes a component located closer to a beginning of a raw
URL string, and wherein the raw component tree includes at least one child node that
includes a component located further from the beginning of the raw URL string than

the parent node.

7. The method recited by claim 6 wherein the step of analyzing each component 1n the raw
component tree to determine whether such component 1s dynamic includes the step of
determining whether the number of child nodes paired with a parent node 1s relatively

large.

3. The method recited by claim 6 including the further step of tracking the number of times
that particular components appear within received network data requests over a
predetermined period of time, and wherein the step of analyzing each component 1n
the raw component tree to determine whether such component 1s dynamic includes the
step of detecting that the number of occurrences of a component of a parent node 1s
relatively high within such predetermined time, while the number of occurrences of

corresponding child nodes associated with such parent node 1s relatively low.

9. The method recited by claim 6 wherein the step of analyzing each component 1n the raw
component tree to determine whether such component 1s dynamic includes the step of
detecting whether a relatively high similarity exists for components ot grandchild
nodes that share the same parent node, and determining that intermediate child node

components are dynamic when such relatively high similarity 1s found.

10. The method recited by claim 1-8 or 9 wherein the step ot analyzing each component 1n

the raw component tree to determine whether such component 1s dynamic includes the
step of detecting 1f child components that share the same parent node include

character sequences that were randomly generated.

11. A system for generating a set of API Endpoints by inspecting network data traffic, the

N5-

WO 2021/141656 PCT/US2020/057240

system comprising 1n combination:

a server recerving a plurality of network data requests that use { URL, Method} format
to 1dentity command actions supported by a web application;

logic inspecting HTTP request headers of the plurality of received network data
requests to extract raw URL strings theretfrom, said logic splitting each of the raw
URL strings 1nto a plurality of components, and building a raw component tree
consisting ot a plurality of branches formed of nodes, wherein each node 1s a
component of at least one raw URL string, said logic analyzing each component in the
raw component tree to determine whether such component 1s static or dynamic, said
logic modifying the raw component tree to replace components determined to be
dynamic with a generic designator, and said logic creating a collapsed component tree
by merging 1dentical branches of the raw component tree 1nto a single branch;

wherein the collapsed component tree provides a set of API Endpoints.

12. The system recited by claim 11 wherein said logic 1s included within the server.

13. The system recited by claim 11 or 12 wherein said logic splits each of the raw URL
strings 1nto a plurality of components by detecting forward-slash characters /7 within
the raw URL strings and deriving the plurality of components from groupings ot

characters separated by such forward-slash characters.

14. The system recited by claim 11, 12, or 13 wherein the set of API Endpoints included 1n
the collapsed component tree includes a plurality of tuples 1n the form of { Collapsed
URL, Method} wherein the Collapsed URL signifies a URL wherein dynamic
components are replaced by a generic designator, and Method signifies an http

method request.

15. The system recited by claim 11-13 or 14 wherein the raw component tree includes at

least one parent node that includes a component located closer to a beginning of a raw

URL string, and wherein the raw component tree includes at least one child node that
includes a component located further from the beginning ot the raw URL string than

the parent node.

6-

WO 2021/141656 PCT/US2020/057240

16. The system recited by claim 15 wherein said logic analyzes whether the number of child
nodes paired with a parent node 1s relatively large when determining whether a

component in the raw component tree 1s dynamic.

1'’7. The system recited by claim 15 including a storage tor storing the number of times that
particular components appear within received network data requests over a
predetermined period of time, and wherein said logic analyzes the number of
occurrences of a component of a parent node within such predetermined time, and
analyzes the number ot occurrences of corresponding child nodes associated with
such parent node within such predetermined time, and said logic determines that a
child node component 1s dynamic 1t the number of occurrences of a component of a
parent node within such predetermined time 1s relatively high and the number of
occurrences of corresponding child nodes associated with such parent node within

such predetermined time 1s relatively low.

18. The system recited by claim 15 wherein said logic detects whether a relatively high

stmilarity exists for components of grandchild nodes that share the same parent node,
and determines that intermediate child node components are dynamic when such

relatively high similarity 1s found.
19. The system recited by claim 15 wherein said logic detects child components that share

the same parent node and that also include character sequences that were randomly

generated to determine that such child components are dynamic.

7] -

WO 2021/141656 PCT/US2020/057240

1/4

100

POST http://watdemo.com/api/login/?user=abcd&pwd=secret
GET http://watdemo.com/api/user/abcd/

GET http://watdemo.com/api/user/abcd/logout

POST http://watdemo.com/api/login/?user=abcd&pwd=secret
GET http://watdemo.com/api/user/abcd/vehicle/1234

GET http://watdemo.com/ap1/user/abcd/vehicle/5678

GET http://watdemo.com/ap1/user/abcd/vehicle/images/profile.jpg

102

URL
COLLAPSER

/ 104

DESIGNATOR
106
POST http://watdemo.com/api/login/
108
GET http://watdemo.com/api/user/DYN API_EP-2
GET http://watdemo.com/ap1/user/DYN/logout 110
112
GET http://watdemo.com/ap1/user/DYN/vehicle/DYN
114
GET http://watdemo.com/ap1/user/DYN/images/DYN

FIG. 1

WO 2021/141656 PCT/US2020/057240

2/4

200 202 204 206 208

_ 210
212
214
pefle |

216
sis123 abei1z34
213

FIG. 2
306
302 304 | 508

v ™

l"‘ \\

o I A

. Internet \,’
|

-n\-.\-,

310

FIG. 3

WO 2021/141656 PCT/US2020/057240

3/4

400

Recelve
network
data request 416

402

Run
URL

Extract URL string

and Method from
Clustering

http header

404

Normalize URL
string

No 414
406

Split apart

Time to

cluster URLs
?

components of URL
string

Yes

408

URL
string already in
component
tree ?

410

Add to
component tree

412
Save http

Method in Leaf
Node

FIG. 4

WO 2021/141656 PCT/US2020/057240

4/4

500

Advance to
next node

NumChildren
> MaxLimit

Set Dyn 518 Set Dyn
504 _ = Fal
No = True dlS€
520
Compute
NumChildDynScore
506
Compute >16
EntropyDynScore
508 Yes s
Compute
StringClassifierDynScore

510

DynScore > No

Threshold
?

Does

Current node have
Grandchildren

NO

Yes

514

512

Compute Compute Weighted

Average of

JaccardSimilarityDynScore DynScores

FIG. 5

INTERNATIONAL SEARCH REPORT International application No.

PCTIUS 20/57240

A. CLASSIFICATION OF SUBJECT MATTER
IPC - GO6F 3/00, GO6F 9/44 (2020.01)

CPC - GO6F 8/30, GO6F 9/451, GO6F 9/547, GO6F 8/36

According to Intemational Patent Classification (IPC) or to both national classification and [PC
B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
See Search History document

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
So0 Scarch Histery documeinit

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
See Search History document

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* I Ciitation of document, with indication, where appropriate, of the relevant passages I Relevant to claim No.

A US 2018/0196643 A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 12 July 1-3, 11-13
2018 (12.07.2018); entire document.

A US 2018/0167437 A1 (SAP SE) 14 June 2018 (14.06.2018); entire document. 1-3, 11-13
A US 2019/0196890 A1 (MULESOFT, INC.) 27 June 2019 (27.06.2019); entire document. I 1-3, 11-13
A US 9,151,479 B1 (Sethi), 06 October 2015 (06.10.2015), entire document. 1-3, 11-13
A US 2017/0195343 A1 (BANK OF AMERICA CORPORATION), 06 July 2017 (06.07.2017), 1-3, 11-13
entire document. I
E.X US 10,873,618 B1 (VOLTERRA, INC.) 22 December 2020 (22.12.2020); entire document. 1-3, 11-13
D Further documents are listed in the continuation of Box C. I:I See patent family annex.
* Special categories of cited documents: “T" later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand
to be of particular relevance the principle or theory underlying the invention
“D” document cited by the applicant in the international application “X" document of particular relevance; the claimed invention cannot be
“E” earlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive step
filing date when the document 1s taken alone
“L” document which may throw doubts on priority claim(s) or which “Y™ document of particular relevance; the claimed invention cannot
1S cited to establish the ﬁpubllcation date of another citation or other be considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents, such combination

“O" documentreferring to anoral disclosure, use, exhibition orother means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than “&” document member of the same patent family
the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

22 JAN 201

23 December 2020 (23.12.2020)

Authorized officer

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimilc No. 571-273-8300

Lee Young

Telephone No. PCT Helpdesk: 571-272-4300

Form PCT/ISA/210 (second sheet) (July 2019)

INTERNATIONAL SEARCH REPORT International application No.

PCT/US 20/57240

Box No. H Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:

because they relate to subject matter not required to be searched by this Authority, namely:

2. [:I Claims Nos.:

because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.: 4-10 and 14-19
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

. D As all required additional search fees were timely paid by the applicant, this intemational search report covers all searchable
claims.

2. D As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of
additional fees.

3. D A3 enly 3o uf thic tequired addittonal search tees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted
to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest EI The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

D The additional search fees were accompanied by the applicant’s protest but the applicable protest
tee was not paid within the fime limit specified in the invitation.

D No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (July 2019)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report

