
THE LAST NED ET MAI MULTE ORI MAI MATATA TAMAA US 20180068435A1 
( 19 ) United States 
( 12 ) Patent Application Publication ( 10 ) Pub . No . : US 2018 / 0068435 A1 

NOACK et al . ( 43 ) Pub . Date : Mar . 8 , 2018 

( 54 ) APPARATUS AND METHOD FOR GLOBAL 
OPTIMIZATION 

( 71 ) Applicant : SIMULA INNOVATION AS , Fornebu 
( NO ) ?? ??  ? 

( 72 ) Inventors : Marcus M . NOACK , Fornebu ( NO ) ; 
Simon W . FUNKE , Fornebu ( NO ) 

( 73 ) Assignee : SIMULA INNOVATION AS , Fornebu 
( NO ) 

( 52 ) U . S . CI . 
CPC . G06T 770012 ( 2013 . 01 ) ; G06T 2207 / 10004 

( 2013 . 01 ) 
( 57 ) ABSTRACT 
An apparatus and method for computing optima of a func 
tion of a digital image . The apparatus includes circuitry 
configured to initialize a plurality of candidate points that lie 
in a solution space of the function , and computes one or 
more stationary points of the function . The circuitry deflates 
a gradient of the function at each of the one or more 
computed stationary points , and repeats the computing and 
the deflating until a first criteria is satisfied . The circuitry 
selects a predetermined number of fit points , recombines the 
selected fit points to generate a set of new candidate points , 
and repeats , for the set of new candidate points , the com 
puting , the deflating , the first repeating , the selecting , and 
the recombining , until a second criteria is satisfied . The 
circuitry obtains the optima of the function upon the second 
criteria being satisfied , and processes the digital image based 
on the obtained optima . 

( 21 ) Appl . No . : 15 / 258 , 775 
??  ?  ? ( 22 ) Filed : Sep . 7 , 2016 

( 51 ) 
Publication Classification 

Int . Ci . 
G06T 7700 ( 2006 . 01 ) ? 

1150 

* * 

SER 



Patent Application Publication Mar . 8 , 2018 Sheet 1 of 20 US 2018 / 0068435 A1 

100 

Select Fittest Individuals 101 

Compute Crossover 

Compute Mutation 

Return Population 107 

Fig . 1 



Patent Application Publication Mar . 8 , 2018 Sheet 2 of 20 US 2018 / 0068435 A1 

200 

Compute gradient and Hessian at 
position x 

Compute improvement factor 203 

Update position x based on 
improvement factor 

205 
II - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I - - I - - I - - I - - I - - I - - - 

www . 
. 

- - - . * 

. . . 

vor - 

Change in position > 
. . . 

207 207 . . . 
. . 

. 

- - - - - - - - - - - 
. . 

. . 
. . . . 

End 

Fig . 2 



Patent Application Publication Mar . 8 , 2018 Sheet 3 of 20 US 2018 / 0068435 A1 

307 

Fig . 3A Fig . 3B 

* 

305 - . 301 
10€ 



Fig . 3D 

US 2018 / 0068435 A1 

323 . . . . . . tu i tamo . . IT€ 

340 . . . . . . . . . 350 

Mar . 8 , 2018 Sheet 4 of 20 

Fig . 3C 

- 

- - 

Patent Application Publication 

- 

- 

309 . . . 

- 

- - 

- 

- - - 

- - - - - - - - - - - - - - - - TIE 

- 

313 



Patent Application Publication Mar . 8 , 2018 Sheet 5 of 20 US 2018 / 0068435 A1 

400 

sy 

Initialize Population of length n 401 401 

Initialize List 403 - - 

Compute DNewton ( Population , List ) 405 

- 
- - 407 - - - - 

- - 
- 

pi - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - - I - I 

End - - - 
Change in population 

fitness > . N . . . . . . . . . . 

. . . . 

. . . 
. . . 

. 

Recombine Population _ . _ . 409 

Compute DNewton ( Population , List ) 411 - - - 

Fig . 4 



Patent Application Publication Mar . 8 , 2018 Sheet 6 of 20 US 2018 / 0068435 A1 

500 

DNewton ( Population , List ) 

Break condition Y 
. - . - . - . - . - . - . - . - . - . - . - . - . - . 

satisfied ? Return fittest N components 
501 - - - - 

- - - - 525 
N End 

Initialize counter c = 1 5 03 

505 05 
Process the oth individual 

- - 

Y 517 - - - - - - - 

Converged ? Add position to List 
- 507 

N 

509 - 
- - Compute gradient Processed all . N 

individuals ? C = + 1 
- : - - : - - mon . . . 519 

511 
Deflate gradient based on List and 

compute Hessian 
Set population back to 

initial position 
513 Compute improvement factor 

523 

Update position based on improvement factors . . 515 

Fig . 5 



Patent Application Publication Mar . 8 , 2018 Sheet 7 of 20 US 2018 / 0068435 A1 

2 

Fig . 6 

605 601 mp3 

43 444 * * * * * 



US 2018 / 0068435 A1 

Kenntnissimit intimistininingnanimit intimitetiminin çirmininitiation initiatingantin ministriminimitting 

tinitirimizin ministrimin 

703 

IOL 

. 

. " " " " 

" * XXXXXXXXXXX 

Mar . 8 , 2018 Sheet 8 of 20 

WY 

Fig . 7A 

Fig . 7B 

. . . . . . . . . . . . 8 

Patent Application Publication 



Fig . 7C 

US 2018 / 0068435 A1 

3 . 0 

az 

1 

go 

* * * * * * * * 

* * * * 

* * * * * * 

410 * 

* * 

* * * * * * * * * * 

* * * * * * * * * 

* * * * * * * * * 

* 

* 

* * * * * * * * * * * * * * * * * * * * * * * * * 

* * * * * * * * 

* * * * * * 

01 . 0 

" 

* * * * 

* * 

* 

Mar . 8 , 2018 Sheet 9 of 20 

* * 
* 

* * * * * * * * * * * * * 

* * * * * * * 

* 

* * * * * * * 

inimitirani 

01 K 

SOL . 

. . . . . . . . . . 

. indirir 

1997 

707 707 

. 

Patent Application Publication 

Yirtinta 

2 . 0 



Patent Application Publication Mar . 8 , 2018 Sheet 10 of 20 US 2018 / 0068435 A1 

Fig . 8 

801 
908 

COD sa * sinir ) Mrilliphs 1 died De Actions 

EES 

* 



Patent Application Publication Mar . 8 , 2018 Sheet 11 of 20 US 2018 / 0068435 A1 

900 

. 

Fig . 9 



Patent Application Publication Mar , 8 , 2018 Sheet 12 of 20 US 2018 / 0068435 A1 

1000 

= - - - - - - - - 

? ?? ?? ??? 

' ' 
? 

???? ? ?? ???? ?? ?? ???? ? ?? 

?? ???? ???? ??? ?? ????? ??? ???? ?? 

Fig . 10 



Patent Application Publication Mar . 8 , 2018 Sheet 13 of 20 US 2018 / 0068435 A1 

1100 
. 

UN 

20 

00 

* * * 

an 

Fig . 11A 



Patent Application Publication Mar . 8 , 2018 Sheet 14 of 20 US 2018 / 0068435 A1 

1150 
. 

. . 

. . 

WWW 

* 

Fig . 11B 



Patent Application Publication Mar . 8 , 2018 Sheet 15 of 20 US 2018 / 0068435 A1 

- - 1210 1230 
. 
. . . . 

. 
. 100 

Senetic Newton Genetic algorithara 
SANRV Newton 
KGDR 

1233 

1201 

Number of function Evaluations 

ste de a ne 

1235 

e 

0 10 20 30 
Run D 

40 500 10 20 30 
Run D 

40 50 

Fig . 12 



Patent Application Publication Mar . 8 , 2018 Sheet 16 of 20 US 2018 / 0068435 A1 

1310 1330 * * * * * * * 
* - - - - - . . . ` ` ••• - 

- 

* ru - ~ * * * - { { - - 
- - 

? 

??? ? 
?? . 

? … 

1333 . 
$ SEX ??????? 

: 
? … 

1301 
{ { { { A { 
? 

1 : 
313 

? … 
448 , 43? ! ! 

305 
? ? . 

? 14 * * ? 28 ?? . # & # . 2 3 
f ! 

4 . ??? 
? ! ? 

Fig . 13 



Patent Application Publication Mar . 8 , 2018 Sheet 17 of 20 US 2018 / 0068435 A1 

1410 1430 . 
* * * * * 
. . . 

. . . 

200 
Genette Newton Genetk Sigoritha 

Genega Newton 
MOON 

1433 

1403 

suopenjeaz vopound Jo Jequunn 
1435 

1403 

1405 
200 0 10 20 30 

NUND 
40 50 * * * * 0 10 20 30 

Run D 
40 50 

Fig . 14 



Patent Application Publication Mar . 8 , 2018 Sheet 18 of 20 US 2018 / 0068435 A1 

1510 1530 
IO 

8088 . 
? 

S 88 
EARA ASIANAGE 

1503 ) 

AION 2 0 
0535 ) 

0 0 0 500 0 0 
IE IS 

Fig . 15 



Patent Application Publication Mar . 8 , 2018 Sheet 19 of 20 US 2018 / 0068435 A1 

- - - - - - - - - - - - - - - - - - - Reference Image Optimization Process Similarity Measure 
1607 

1603 . 1610 

Fig . 16 

1601 1 . 1 . 1 Floating Image Elastic Transformation Transformed Image 
1605 1609 

1 

1600 



1701 

YAYVNY A VYA VYA ' Y2YY . 2 . 49 . A VYSVYYYYYYUV YA VYN . VNY WA . veeV " 4 . VuyYXvY2vYXVAVVU YA VV 4vVV . V . ANYA VYA ' Y 

9 . - : - 

Patent Application Publication 

i 

1710 

- - - - - 

hii 

- - - - 

1707 

HARD DISK 
REMOVABLE MEDIA DRIVE 

- - 

iti i 

1716 

- - - - - 

1709 

1704 

1705 

h 

DISPLAY 

motiv 
Algemene og 

- - - - 

1708 

- - - - 

DISPLAY CONTROLLER 
MAIN MEMORY 

ROM 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

DISK CONTROLLER 

w Wat w 

COMMUNICATIONS NETWORK 

- - - - - - 

1706 

i th 

KEYBOARD 
- - - - - - 

. . . . . . . . . . 

+ 999999999999999999999999 

the 

- - - 

hell 

BUS 

- - - - 

# A 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHTUITIIVIHIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 

# 

www 
- - - - 

1702 

1715 

POINTING DEVICE 

Mar . 8 , 2018 Sheet 20 of 20 

# 

- - - - - - 

# 

- - - 

PROCESSOR 

COMMUNICATION INTERFACE 

LAN 

# # 

- - - - - 

# 

+ 4 + 4 4 

- - - - 

# 

1712 

- - - 

1714 

# 

- 

1703 

1713 

- - 

# # 

- - 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- - 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

MOBLE DEVICE 
1717 

US 2018 / 0068435 A1 

Fig . 17 



US 2018 / 0068435 A1 Mar . 8 , 2018 

APPARATUS AND METHOD FOR GLOBAL 
OPTIMIZATION 

given function in a manner such that the number of pro 
cessing operations is reduced . 

BACKGROUND SUMMARY 

Field of Disclosure 
[ 0001 ] The present disclosure relates generally to a tech 
nique of optimization that reduces a number of evaluation 
and derivative operations that are to be performed on a 
function that is to be optimized . Specifically , the present 
disclosure relates to an optimization technique for medical 
image registrations . 

Description of Related Art 
[ 0002 ] The background description provided herein is for 
the purpose of generally presenting the context of the 
disclosure . Work of the presently named inventors , to the 
extent the work is described in this background section , as 
well as aspects of the description that may not otherwise 
qualify as prior art at the time of filing , are neither expressly 
nor impliedly admitted as prior art against the present 
disclosure . 
[ 0003 ] Optimization is a basic principle that has a vast 
variety of applications in research and industry . There are 
various optimization procedures that exhibit different 
strengths and weaknesses in terms of computational effi 
ciency , and the probability of finding a global optimum . 
Most optimization techniques offer a trade - off between these 
two aspects . 
[ 0004 ] Solving an optimization process may be a chal 
lenging task , as the objective function that one desires to 
optimize may have multiple local and global optima . Thus , 
having only local knowledge about the function that is 
obtained by evaluating derivatives of the function is not 
sufficient to identify whether an optimum is a local or a 
global optimum . 
[ 0005 ] Optimization techniques can be broadly classified 
into two types : global optimization techniques , and local 
optimization techniques . The global optimization schemes 
incur a significant amount of function evaluations , and thus 
are computationally inefficient . Further , due to time - con 
straints , one may typically have to deal with sub - optimal 
solutions , while utilizing such global schemes to solve a 
large - sized optimization problem . On the other hand , local 
optimization techniques are computationally inexpensive 
but have a high probability of converging in a local opti 
mum . 
[ 0006 ] In order to improve the optimization efficiency , 
hybrid techniques have been proposed that combine the 
efficiency of local optimization methods with the generality 
of global methods . However , traditional hybrid optimization 
techniques do not sufficiently reduce the number of function 
evaluations . Specifically , based on the problem size ( i . e . , the 
solution space of the problem ) , these hybrid techniques still 
incur a significant number of function and derivative com 
putations of the objective function due to repeated conver 
gence in already found optima . Therefore , even though these 
hybrid techniques provide an improvement over the global 
optimization schemes , they are inefficient in terms of pro 
cessing times due to the large number of function and 
derivative evaluations . 
[ 0007 ] Accordingly , there is a requirement for an optimi 
zation technique that efficiently computes the optima of a 

[ 0008 ] An aspect of the present disclosure provides for an 
apparatus for performing digital image processing , wherein 
the processing includes computing optima of a function of 
the digital image . The apparatus comprises circuitry config 
ured to : initialize a plurality of candidate points that lie in a 
parameter space of the function , each candidate point being 
represented by a vector having a length equal to the dimen 
sion of the parameter space , compute , based on the candi 
date points , one or more stationary points of the function , 
deflate a gradient of the function at each of the one or more 
computed stationary points , repeat the computing and the 
deflating until a first criteria is satisfied , select , from the one 
or more computed stationary points , a predetermined num 
ber of fit points , recombine the selected fit points to generate 
a set of new candidate points , repeat , for the set of new 
candidate points , the computing , the deflating , the first 
repeating , the selecting , and the recombining , until a second 
criteria is satisfied , obtain , the optima of the function upon 
the second criteria being satisfied , and process the digital 
image based on the obtained optima . 
[ 0009 ] An aspect of the present disclosure provides a 
method for performing digital image processing , wherein 
the processing includes computing optima of a function of 
the digital image . The method comprises the steps of : 
initializing a plurality of candidate points that lie in a 
solution space of the function , each candidate point being 
represented by a vector having a length equal to the dimen 
sion of the function ; computing by circuitry , based on the 
candidate points , one or more stationary points of the 
function ; deflating a gradient of the function at each of the 
one or more computed stationary points ; repeating the 
computing and the deflating until a first criteria is satisfied ; 
selecting , from the one or more computed stationary points , 
a predetermined number of fit points ; recombining by cir 
cuitry , the selected fit points to generate a set of new 
candidate points ; repeating , for the set of new candidate 
points , the computing , the deflating , the first repeating , the 
selecting , and the recombining , until a second criteria is 
satisfied ; obtaining , the optima of the function upon the 
second criteria being satisfied ; and processing by circuitry , 
the digital image based on the obtained optima . 
[ 0010 ] . By one embodiment of the present disclosure is 
provided a non - transitory computer readable medium hav 
ing stored thereon a program that when executed by a 
computer , causes the computer to execute a method for 
performing digital image processing , the processing includ 
ing computing optima of a function of the digital image . The 
method comprises the steps of : initializing a plurality of 
candidate points that lie in a solution space of the function , 
each candidate point being represented by a vector having a 
length equal to the dimension of the function ; computing 
based on the candidate points , one or more stationary points 
of the function ; deflating a gradient of the function at each 
of the one or more computed stationary points ; repeating the 
computing and the deflating until a first criteria is satisfied ; 
selecting , from the one or more computed stationary points , 
a predetermined number of fit points ; recombining the 
selected fit points to generate a set of new candidate points ; 
repeating , for the set of new candidate points , the comput 
ing , the deflating , the first repeating , the selecting , and the 



US 2018 / 0068435 A1 Mar . 8 , 2018 

[ 0031 ] FIG . 17 illustrates a block diagram of a computing 
device according to one embodiment . 

DETAILED DESCRIPTION OF EMBODIMENTS 

recombining , until a second criteria is satisfied ; obtaining 
the optima of the function upon the second criteria being 
satisfied ; and processing the digital image based on the 
obtained optima . 
[ 0011 ] The foregoing paragraphs have been provided by 
way of general introduction , and are not intended to limit the 
scope of the following claims . The described embodiments , 
together with further advantages , will be best understood by 
reference to the following detailed description taken in 
conjunction with the accompanying drawings . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0012 ] The application file contains at least one drawing 
executed in color . Copies of this patent or patent application 
publication with color drawing ( s ) will be provided by the 
office upon request and payment of the necessary fee . 
[ 0013 ] Various embodiments of this disclosure that are 
proposed as examples will be described in detail with 
reference to the following figures , wherein like numerals 
reference like elements , and wherein : 
[ 0014 ] . FIG . 1 depicts an exemplary flowchart illustrating 
the steps performed by a recombination process of a genetic 
algorithm ; 
[ 0015 ] FIG . 2 depicts a flowchart illustrating the steps 
performed by a Newton method ; 
[ 0016 ] FIGS . 3A , 3B , 3C , and 3D depict an example 
illustrating the advantages incurred by performing a defla 
tion operation ; 
[ 0017 ] FIG . 4 depicts an exemplary flowchart illustrating 
the steps performed by Hybrid Genetic Deflated Newton 
( HGDN ) algorithm ; 
[ 0018 ] FIG . 5 depicts an exemplary flowchart illustrating 
the steps performed by a deflated Newton algorithm using a 
plurality of individuals ; 
[ 0019 ] FIG . 6 depicts an exemplary graph illustrating the 
effect of multiple deflation operations being applied to a sine 
function ; 
[ 0020 ] FIGS . 7A , 7B , and 7C depict exemplary bump 
functions and their effects on a deflated function ; 
[ 0021 ] FIG . 8 depicts a graph illustrating a comparison of 
utilizing shifted and localized deflation operators ; 
[ 0022 ] FIG . 9 depicts an exemplary illustration of Ack 
ley ' s function ; 
[ 0023 ] FIG . 10 depicts an exemplary illustration of Ras 
trigin ' s function ; 
[ 0024 ] FIG . 11A depicts an exemplary illustration of 
Schwefel ' s function ; 
[ 0025 ] FIG . 11B depicts an exemplary illustration of 
Schaffer ' s F6 function ; 
[ 0026 ] FIG . 12 depicts graphs illustrating a number of 
function evaluations performed for a two dimensional and 
ten dimensional Ackley ' s function ; 
[ 0027 ] FIG . 13 depicts graphs illustrating a number of 
function evaluations performed for a two dimensional and 
ten dimensional Rastrigin ' s function ; 
[ 0028 ] FIG . 14 depicts graphs illustrating a number of 
function evaluations performed for a two dimensional and 
ten dimensional Schwefel ' s function ; 
[ 0029 ] FIG . 15 depicts graphs illustrating a number of 
function evaluations performed for a two dimensional and 
ten dimensional Schaffer ' s F6 function ; 
[ 0030 ] FIG . 16 illustrates an exemplary schematic flow 
chart depicting the steps performed in image registration ; 
and 

[ 0032 ] Exemplary embodiments are illustrated in the ref 
erenced figures of the drawings . It is intended that the 
embodiments and figures disclosed herein are to be consid 
ered illustrative rather than restrictive . No limitation on the 
scope of the technology and of the claims that follow is to 
be imputed to the examples shown in the drawings and 
discussed herein . 
[ 0033 ] The embodiments are mainly described in terms of 
particular processes and systems provided in particular 
implementations . However , the processes and systems will 
operate effectively in other implementations . Phrases such 
as an embodiment , ' one embodiment ' and another 
embodiment may refer to the same or different embodi 
ments . The embodiments will be described with respect to 
methods and compositions having certain components . 
However , the methods and compositions may include more 
or less components than those shown , and variations in the 
arrangement and type of the components may be made 
without departing from the scope of the present disclosure . 
[ 0034 ] The exemplary embodiments are described in the 
context of methods having certain steps . However , the 
methods and compositions operate effectively with addi 
tional steps and steps in different orders that are not incon 
sistent with the exemplary embodiments . Thus , the present 
disclosure is not intended to be limited to the embodiments 
shown , but is to be accorded the widest scope consistent 
with the principles and features described herein and as 
limited only by the appended claims . 
[ 0035 ] Furthermore , where a range of values is provided , 
it is to be understood that each intervening value between an 
upper and lower limit of the range and any other stated or 
intervening value in that stated range is encompassed within 
the disclosure . Where the stated range includes upper and 
lower limits , ranges excluding either of those limits are also 
included . Unless expressly stated , the terms used herein are 
intended to have the plain and ordinary meaning as under 
stood by those of ordinary skill in the art . The following 
definitions are intended to aid the reader in understanding 
the present disclosure , but are not intended to vary or 
otherwise limit the meaning of such terms unless specifically 
indicated . 
[ 0036 ] Optimization is one of the most fundamental prin 
ciples of nature . Most physical principles can be formulated 
in the structure of an optimization problem . For instance , 
optimization can be applied to fields like medical image 
registration , seismic tomography , and weather prediction 
problems . Accordingly , it is important to develop efficient 
methods for optimization . 
[ 0037 ] The problem of optimization can be defined as the 
problem of finding local and global minimizers { x * } of a 
real - valued function f : R " > R . Specifically , one seeks the 
points x * { R ” for which the following optimality condition 
holds : 

f ( * * ) sf ( x ) x { R * . | = x * | | < r , ( 1 ) 

for a sufficiently small r > 0 . It must be appreciated that a 
search for maxima of the function can be expressed in a 
manner similar to that as shown in equation ( 1 ) . 
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[ 0038 ] According to an embodiment , the objective func - 
tion f is highly non - linear . Furthermore , it is assumed that 
the objective function is at least twice differentiable ( i . e . , a 
second derivative of the function exists . ) It must be appre 
ciated that in many practical applications , evaluating for its 
derivatives involves computationally expensive operations , 
such as the solution of a discretized partial differential 
equation . As stated previously , the task of solving the 
problem stated in equation ( 1 ) may be numerically chal 
lenging , as the objective f can have multiple local and global 
optima . Thus , having only local knowledge about the func 
tion , such as evaluations and derivatives , is not sufficient to 
identify whether an optimum is a local or a global optimum . 
It is for this reason that most existing optimization tech 
niques are not applicable in optimizing such functions . 
[ 0039 ] Accordingly , by one embodiment , the optimization 
technique of the present disclosure formulates a solution 
strategy that explores a global parameter space . Genetic 
Algorithms ( GA ) and Simulated Annealing ( SA ) techniques 
that are based on the fundamentals of evolution of natural 
processes are implemented to explore the global space as 
they are robust , and find the proximity of the optimal 
solutions eventually . Moreover , the GA and SA techniques 
make few assumptions of the objective function f , and are 
fully parallelizable , and can be implemented on a computer 
system including circuitry ( described later with reference to 
FIG . 17 ) . 
[ 0040 ] Regarding the GA and SA techniques , it must be 
noted that if they are used by themselves to solve an 
optimization problem , the problem may incur a large num 
ber of function evaluations . For instance , in the case of the 
solution space of the problem being large , the GA and SA 
techniques may incur an unacceptable amount of processing 
operations . Accordingly , by one embodiment , the optimiza 
tion technique of the present disclosure combines a genetic 
algorithm with a fast local optimization method . The algo 
rithm is based on three components : a global search method 
based on the genetic algorithm , and a local search Newton 
method , and a deflation operation . The Newton method with 
deflation is referred to herein as a deflated Newton method . 
[ 0041 ] The deflated Newton method efficiently identifies 
multiple local minima or maxima in proximity of the starting 
point . As a consequence , a smaller population size is suffi 
cient to efficiently map the local and global optima of the 
function f . In doing so , the optimization method of the 
present disclosure incurs the advantageous ability of reduc 
ing the number of processing operations , and thereby 
improving the optimization performance . 
[ 0042 ] By one embodiment , in the deflated Newton 
method , the found optima are " removed ” , meaning that a 
deflation is placed where the optimum is located . Thus , a 
subsequent Newton search does not converge to the same 
optimum , but rather finds another optimum or diverges 
( indicating that there are no optima located in the vicinity of 
the individual point ) . Specifically , deflation corresponds to a 
numerical operation that ensures that a subsequent search 
does not result in already found optima . 
[ 0043 ] Thus , combining the global search method ( e . g . , 
the genetic algorithm ) with a deflated Newton search local 
optimization method leads to a performance gain of the 
algorithm as compared to other hybrid methods . Accord 
ingly , the combined GA - deflated Newton optimization 
method minimizes the required function and derivative 
computations in order to find the local and global optima of 

a function . It must be appreciated that the measure of 
reducing the number of computing operations is more mean 
ingful than achieving solely , a reduction in computing time , 
as the computational complexity of the algorithm is highly 
dependent on the architecture of the computer that executed 
the algorithm and the forward problem . 
[ 0044 ] In what follows , there is provided a detailed 
description of the optimization technique of the present 
disclosure , which includes a global search technique and the 
deflated Newton ' s local optimization process . For sake of 
convenience , the hybrid GA - deflated Newton optimization 
technique of the present disclosure is referred to hereinafter 
as a ‘ HGDN method ' , whereas the standard hybrid methods 
of combining GA with Newton based local optimization 
techniques are referred to herein after as Genetic - Newton 
methods . 
[ 0045 ] Two classes of methods for optimizing functions 
are local methods and global methods . In most fields , the use 
of either local or global methods implies a trade - off between 
computing time and probability of finding the global opti 
mum . Accordingly , the optimization technique of the present 
disclosure combines a global based optimization technique 
with the deflated - Newton technique for performing optimi 
zation . 

[ 0046 ] Global methods , like the Monte - Carlo method or 
the genetic algorithm are randomized algorithms that guar 
antee obtaining the global optimum . The Genetic algorithm 
( GA ) is inspired by the natural selection in biological 
evolution . GA is an adaptive heuristic search algorithm 
based on the evolutionary ideas of natural selection and 
genetics . As such , GA represents an intelligent exploitation 
of a random search used to solve optimization problems . 
Although randomized , the GA is by no means random . 
Rather , the GA exploits historical information in order to 
direct the search into the region of better performance within 
the search space . Additionally , unlike traditional artificial 
intelligence ( AI ) algorithms , the GA is more robust and does 
not break easily even if the inputs change slightly or there is 
presence of a reasonable amount of noise . Further , in search 
ing a large state - space , multi - modal state - space , or n - dimen 
sional surface , GA offers significant benefits over more 
typical search based optimization techniques such as linear 
programming , heuristic , depth - first , breadth - first , and praxis 
algorithms . 
[ 0047 ] By one embodiment , GA simulates the survival of 
the fittest among individuals over consecutive generations 
for solving a problem . Each generation includes a popula 
tion of character strings that are analogous to the chromo 
some that are observed in human DNA . Each individual 
represents a point in the search space and a possible solution 
for the optimization problem . The individuals in the popu 
lation undergo a process of evolution . Specifically , GA is 
based on an analogy with the genetic structure and behavior 
of chromosomes within a population of individuals using the 
following foundations : ( a ) individuals in a population com 
pete for resources and other individuals with whom they can 
combine , ( b ) the individuals that are most successful in each 
competition will produce more offspring than those indi 
viduals that perform poorly , ( c ) genes from good individuals 
propagate throughout the population so that two good par 
ents will sometimes produce offspring that are better than 
either parent , and ( d ) each successive generation becomes 
more suited to the environment . 
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low probability , a portion of the new individuals can have 
some of their bits flipped . The purpose of performing the 
mutation operation is to maintain diversity within the popu 
lation and inhibit premature convergence . Additionally , it 
must be appreciated that the mutation process as well as the 
chance for individuals that are not among the fittest to 
procreate , give the GA an unbiased behavior . 
0053 ] The process in step 107 returns the mutated indi 
vidual to the search space . 
[ 0054 ] Furthermore , note that implementing only a global 
optimization technique as described above may not be 
sufficient to solve the optimization problem in an efficient 
manner . Specifically , for real life applications , utilizing only 
the GA technique as described above may not be feasible , as 
the number of necessary function evaluations ( i . e . , process 
ing operations ) may substantially increase for a high number 
of dimensions of the search space . Accordingly , by one 
embodiment , the above GA technique is combined with a 
local optimization method to improve the optimization per 
formance . 
100551 Local optimization methods are mostly derivative 
based methods such as a steepest descent method and a 
Newton local search method . Local methods are computa 
tionally inexpensive as compared to global methods , but 
incur a high risk of converging to a local optimum . 
[ 0056 ] The Newton method computes a gradient and a 
Hessian at a certain point of the function and uses the 
computed information to predict a new location for the 
individual by solving the following equation : 

H ( x ) 7 - - Vf ( x ) . 
wherein , H is a Hessian matrix , 

2 

[ 0048 ] By one embodiment , in GA , a population of indi 
viduals is maintained within a search space , wherein each 
individual represents a possible solution to the optimization 
problem under consideration . For instance , each individual 
is coded as a finite length vector of components , or variables , 
in terms of some alphabet , e . g . , the binary alphabet { 0 , 1 } . 
The individuals correspond to chromosomes , and the vari 
ables are analogous to genes . Thus a chromosome ( i . e . , a 
potential solution ) is composed of several genes ( variables ) . 
A fitness score is assigned to each solution representing the 
abilities of an individual to compete ' . The individual with 
the optimal ( or generally near optimal ) fitness score is 
sought . The GA aims to use selective breeding of the 
solutions to produce ' offspring ' better than the parents by 
combining information from the chromosomes . 
[ 0049 ] Furthermore , GA maintains a population of n chro 
mosomes ( i . e . , solutions ) with associated fitness values . 
Parent solutions are selected to combine , on the basis of their 
fitness , producing offspring . Consequently , highly fit solu 
tions are given more opportunities to combine , so that 
offspring inherit characteristics from each parent . Individu 
als in the population die ( i . e . , phase out ) and are replaced by 
new solutions , eventually creating a new generation once all 
combination opportunities in the old population have been 
exhausted . In this manner , it is anticipated that over succes 
sive generations , better solutions will thrive while the least 
fit solutions phase out . In other words , new generations of 
solutions are produced containing , on average , better genes 
than a solution in a previous generation . Each successive 
generation will contain better ' partial solutions ' than previ 
ous generations . Eventually , once the population has con 
verged , and is not producing offspring noticeably different 
from those in previous generations , the algorithm itself 
converges to a set of solutions to the problem at hand . 
[ 0050 ] According to one embodiment , the core of the GA 
includes a recombination process including a selection , a 
crossover , and a mutation operation as illustrated in the 
flowchart of FIG . 1 . After an initial population is randomly 
generated , the recombination process evolves through a 
selection operation ( step 101 ) , wherein preference is given 
to better individuals , thereby allowing them to pass on their 
genes to the next generation . The goodness factor of each 
individual depends on its fitness value . The fitness value 
may be determined based on the objective function under 
consideration . 
[ 0051 ] Further , in step 103 , the recombination process 
performs a crossover operation . In the crossover operation , 
two individuals are chosen from the population using the 
selection operator of step 101 . For instance , according to an 
embodiment , a crossover site along the bit strings may be 
chosen in a random manner . The values of the two strings 
can then be exchanged up to this point . For instance , if the 
selection operator chooses S1 = 000000 and s2 = 111111 as the 
two individuals on which a crossover operation is to be 
performed , and the crossover point is 2 then S1 ' = 110000 and 
s2 = 001111 are the two new offsprings that are created from 
this combination , and are considered for the next generation 
of the population . Thus , in step S103 , by recombining 
portions of good individuals , the crossover operation is 
likely to create even better individuals . 
[ 0052 ] The process of recombination further proceeds to 
step 105 , wherein a mutation operation is performed . Muta 
tion corresponds to a random change of the genome ( the 
location ) of an affected individual . Specifically , with some 

a f ( x ) 
H ( x ) ij = Ox ; ð x ; 

x is the current position and y is the improvement from the 
current to the next position . Note that the gradient of a 
function ( Vf ) is defined as the vector of the first partial 
derivatives of the function with respect to its variables . The 
Hessian matrix ( or Hessian ) is defined herein as a square 
matrix of second partial derivatives of a scalar - valued func 
tion , or scalar field . 
[ 0057 ] FIG . 2 depicts a flowchart illustrating the steps 
performed by the Newton method on a current position 
denoted as x . 
[ 0058 ] In step 201 , the process computes a gradient and 
Hessian at the position x . 
[ 0059 ] Further , the process in step 203 solves the equation 
H ( x ) = - Vf ( x ) . By one embodiment , the process in step 203 , 
may be solved by utilizing a linear solver method such as the 
conjugate gradient method or the minimal residual method 
( MINRES ) . 
[ 0060 ] The process further proceeds to step 205 and 
updates the value of x ( initial position ) to a new position . 
Specifically , the new position of x is computed as X + y . 
Further , in step 207 , the process makes a query to determine 
whether a change in position is greater than a predetermined 
amount ( e ) . If the response to the query is affirmative , the 
process loops back to step 201 , and repeats the process of 
steps 201 - 205 . However , if the response to the query in step 
207 is negative , the process terminates . 



US 2018 / 0068435 A1 Mar . 8 , 2018 

[ 0061 ] The process as described with reference to FIG . 2 
is successful in finding the global optimum for strictly 
convex functions . However , in practice , most functions that 
one seeks to optimize are more complicated in nature . 
Specifically , if a function is not convex , the Newton method 
may converge in a local optimum or a saddle point . 
[ 0062 ] Accordingly , in an embodiment of the present 
disclosure , there is described a modified Newton technique 
( referred to herein as a deflated Newton technique ) , that 
provisions for identifying multiple local minima . The defla 
tion process removes an identified root from a function to 
ensure that in a subsequent Newton step , individuals cannot 
find the same optimum again . 
[ 0063 ] The deflated Newton technique operates as fol 
lows : the Newton optimization method searches for station 
ary points off , i . e . points x * , where f ' ( x * ) = 0 ( first derivatives 
of the function at x * ) . Let xi . . . Xy be stationary points that 
have already been identified . Then , subsequent stationary 
points off can be found by considering the deflated gradient 
of the function f by using the following equation : 

V f ( x ) V f ( x ) = N 
| | | | X – X ; 112 
is 

where N is the number of deflated points . The deflated 
function has no roots at the known optima x ; , and hence the 
local search method will not converge to these roots again 
( described later with reference to FIG . 3 ) . Thus , as described 
next , the optimization technique of the present disclosure 
implements a combination of a deflated Newton method and 
the GA technique . 
[ 0064 ) Generally , hybrid optimization schemes combine 
the strengths of global and local optimization . Hybrid meth 
ods employ a global search algorithm such as GA to explore 
the search space on a global level , and the Newton method 
as a local optimization scheme . After each iteration of the 
GA , all individuals perform a Newton search ( by the process 
described with reference to FIG . 2 ) to find a stationary point 
of the function . When all individuals have converged , the 
GA chooses the fittest individuals and creates offspring by 
the process described previously with reference to FIG . 1 . 
The next generation is in general fitter than the last one 
which leads to the convergence of the algorithm . After a new 
generation is created , all individuals commence the search 
using the Newton scheme . 
100651 A drawback of the above described hybrid optimi 
zation methods is that the local search method might com 
pute the same optima for different individuals . Therefore , a 
significant amount of computational effort is potentially 
utilized identifying already known optima . Also , these 
optima might be re - identified again ( potentially multiple 
times ) in each of the subsequent genetic iteration . Only if an 
individual is positioned sufficiently close to a new optimum , 
then the local search will converge to this new optimum . 
[ 0066 ] Accordingly , in one embodiment of the present 
disclosure , there is provided a HGDN method that incorpo 
rates deflations , in order to perform the optimization in an 
efficient manner . 
[ 0067 ] The HGDN scheme places a plurality of individu 
als randomly in the search space . Each individual imple 
ments a deflated Newton method to find a stationary point of 
the function . Further , the gradient of the function is deflated 

( described with reference to FIG . 3 ) at this location ( i . e . , 
stationary point ) , and the point is transferred to a list . When 
a certain number of individuals have converged , all the 
individuals are set back to their original locations in order to 
start a new search . It must be appreciated that the individuals 
cannot converge to the same points due to the deflation 
operation . The process continues until most of the individu 
als can no longer find a stationary point . In such a scenario , 
the GA relocates the population by creating offspring using 
the fittest individuals and the search starts again . In this 
manner , the HGDN method progressively identifies more 
stationary points . By one embodiment , the search process of 
the HGDN method can be terminated when no new station 
ary points are found , or when a certain number of new found 
optima show a similar function value ( i . e . , the function value 
of the new found optima are substantially the same ) . 
[ 0068 ] FIGS . 3A - 3D depict an exemplary example depict 
ing the advantages incurred by performing the deflation 
operation . FIG . 3A depicts two individual points 301 and 
303 that obtain the same optima point 305 after an iteration 
of the Newton method of finding stationary points . The 
process of finding the same optima point is depicted in FIG . 
3A by traces that start from the points 301 and 303 respec 
tively , and terminate at the same peak location point 305 . 
Since the function to be optimized is not deflated , several 
individual points may result in finding the same optima ( in 
an iteration of the Newton method ) , and thereby waste 
computational resources in identifying already known 
optima locations . Moreover , while implementing the tradi 
tional Genetic - Newton optimization method , the same 
optima may potentially be found in several iterations of the 
GA . 
100691 . FIG . 3B depicts the Euclidean norm of the gradient 
307 of the function of FIG . 3A . The gradient of the function 
can be obtained by applying the partial derivatives as stated 
previously . Note that the optima in the original function 
( FIG . 3A ) are roots of the gradient function . 
[ 0070 ] FIG . 3C depicts the deflation process , wherein the 
gradient of the function at the determined optima positions 
( 309 , 311 , and 313 ) is deflated . The deflation is achieved by 
performing a numerical factorization based on a deflation 
operator . Details regarding deflation operators is described 
next . 
10071 ] FIG . 3D illustrates the advantages incurred by 
performing the deflation operation . Specifically , in FIG . 3D , 
the points 321 and 323 do not converge to the same optima , 
but rather converge to separate optima positions represented 
as 340 and 350 , respectively . Thus , by performing deflation , 
already identified optima cannot be found again . 
[ 0072 ] In what follows , there is described an implemen 
tation of the HGDN algorithm by an embodiment of the 
present disclosure . Turning now to FIG . 4 , there is depicted 
an exemplary flowchart 400 illustrating the steps performed 
by the HGDN algorithm . 
[ 0073 ] In step 401 , an initial population of individuals is 
selected . Specifically , based on the dimensions of the search 
space , an initial set of individuals may be selected in a 
random manner . 
[ 0074 ] In step 403 , a list that is configured to store a set of 
deflated points of the function to be optimized is initialized 
to a null list . 
[ 0075 ] Further , the process in step 405 executes a deflated 
Newton process , which is described later with reference to 
FIG . 5 . Note that the deflated Newton process receives as 
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input parameters , a population of individuals that are com 
puted ( at a given iteration ) by the HGDN algorithm , and the 
list . Further , the deflated Newton process computes a set of 
fittest individuals by executing a deflation mechanism , and 
calculating a fitness score for each individual . 
[ 0076 ] . In step 407 , a query is made to determine whether 
a change in the fitness value of the population is greater than 
a predetermined threshold ( c ) . If the response to the query is 
negative , the process terminates , whereas if the response to 
the query is affirmative , the process moves to step 409 . 
[ 0077 ] In step 409 , the HGDN process executes a recom 
bination operation . As stated previously , with reference to 
FIG . 1 , the recombination operation may be performed by 
executing a crossover and mutation operation . 
[ 0078 ] Further , in step 411 , the deflated Newton process is 
executed on the new population that is obtained via the 
recombination process of step 409 . Thereafter , the process 
loops back to step 407 , and repeats the process until a change 
in the fitness of the population is less than the predetermined 
threshold of e . 
[ 0079 ] FIG . 5 depicts an exemplary flowchart illustrating 
the steps performed by the deflated Newton process . The 
deflated Newton process receives , as input parameters , a 
population of individuals and the list that maintains the set 
of deflated optima . 
[ 0080 ] In step 501 , a query is made to determine whether 
a break condition for the deflated Newton process is satis 
fied . For instance , by one embodiment , the break condition 
may correspond to determining whether a certain number of 
individuals ( e . g . , a predetermined percentage of individuals ) 
have converged . If the response to the query is affirmative , 
the process moves to step 525 , else the process moves to step 
503 . 
[ 0081 ] In step 503 , a counter ( c ) for the individuals of the 
population to be processed is initialized to a value of one . 
[ 0082 ] Thereafter , the process proceeds to step 505 , 
wherein the processing of the ch individual commences . 
Specifically , the processing of the individual includes the 
steps 507 - 517 as described below . 
[ 0083 ] In step 507 , a query is made to determine whether 
the individual has converged to a stationary point . For 
instance , by one embodiment , a query is made to determine 
whether a change in the fitness value of the individual is 
greater than a predetermined threshold . In other words , a 
change in the fitness value being less than the predetermined 
threshold value corresponds to a scenario , wherein the 
individual has converged to the stationary point , and the 
process moves to step 517 . 
[ 0084 ] However , if the individual has not converged ( i . e . , 
No at step 507 ) , the process moves to step 509 . In step 509 , 
the process computes the gradient of the function at the 
location of the individual , and proceeds to step 511 . 
[ 0085 ] In step 511 , the gradient of the function is deflated 
based on the individuals maintained in the list . The process 
also computes the Hessian ( described previously ) of the 
function at location x . By deflating the gradient , the process 
guarantees that the local search will not converge to an 
already found optima location . 
[ 0086 ] The process in step 513 solves the equation ( 2 ) , i . e . , 
H ( x ) y = - Vf ( x ) to compute the improvement factor y . By one 
embodiment , the process in step 513 may be solved by 
utilizing one of a conjugate gradient method and a minimal 
residual method ( MINRES ) . 

10087 ] . Upon computing the improvement factor , the pro 
cess in step 515 updates the value of x ( initial position ) to a 
new position . Specifically , the new position of x is computed 
as x + y . Thereafter , the process loops back to step 507 , 
wherein the process performs the query to check if the 
individual has converged . 
[ 0088 ] Upon the individual converging to the stationary 
point ( Yes at step 507 ) , the process moves to step 517 , 
wherein the converged position of the individual is added to 
the list . The process thereafter moves to step 519 , wherein 
a query is made to determine whether all individuals are 
processed . If the response to the query at step 519 is 
negative , the process moves to step 521 , wherein the value 
of the counter ( c ) is incremented by one . Thereafter , the 
process loops back to step 505 to process the next individual . 
10089 ) If the response to the query of step 519 is affirma 
tive , the process proceeds to step 523 , wherein the process 
sets the population of individuals to their original starting 
positions . Thereafter , the process loops back to step 501 to 
determine whether the breaking condition for the deflated 
Newton process is satisfied . 
[ 0090 ] If the response to the query in step 501 is affirma 
tive , the process moves to step 525 , wherein the process 
outputs the values of the N ( predetermined integer ) fittest 
individuals maintained in the list , whereafter the process of 
FIG . 5 terminates . 
[ 0091 ] Accordingly , as described above , by one embodi 
ment , the new position of the individual is only transferred 
to the list if the Newton method has converged . However , if 
enough individuals cannot converge , the genetic algorithm 
replaces the entire population and the Newton starts over at 
the new locations . 
[ 0092 ] In what follows , there is provided a description of 
the deflation operators that may be employed by the HGDN 
method of the present disclosure . 
[ 0093 ] When coping with challenging optimization prob 
lems , the simple deflation strategy of equation ( 3 ) may not 
be numerically robust . A general version of the basic defla 
tion operator of equation ( 3 ) for deflating a single root x , can 
be expressed as : 

V f ( x ) ( 4 ) 
Vfx . ( x ) = | | x – xoll ? 

where peN . However , the application of the deflation opera 
tor of equation ( 4 ) may pose numerical problems as the 
deflated function converges to 0 for x > , if the optimiza 
tion function f is bounded . Subsequently , applying Newton 
to fx , may diverge . By one embodiment of the present 
disclosure , such a problem is avoided by introducing a 
shifting of the deflation operator as shown below : 

1 Pfxy ( x ) = { 1x - tolp + 1 ] f ( x ) . 
10094 ] In equation ( 5 ) , for the case of x > 00 , the deflated 
function behaves as the original function . A limitation of the 
deflation operators of equations ( 4 ) and ( 5 ) is that they alter 
the function globally , which results in degeneration if the 
deflation is applied many times . For instance , when applying 
the deflation to two different roots X , and xj : 
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( 6 ) V Slo ( 0 ) = ( 1 - 5op + 1 ] $ 18 , con 
= ( x - top + 1 / 13 - 5 . jp + 1 } oscu ) . 

[ 0099 ] According to an embodiment , an adapted shape of 
the bump function leads to a more efficient prevention of 
individuals converging into the deflated optimum . The 
deflated function is expressed as : 

Vf ( x ) 
V fxo ( x ) = 1 - bxo ( x ) [ 0095 ] The function is multiplied by a scalar coefficient 

that is greater than 1 . Accordingly , the coefficient may 
quickly grow if many deflations are applied . Traditional 
deflation techniques , as well as shifted deflation methods , 
lead to an altering of the function outside a vicinity of the 
deflation , and are therefore numerically problematic when 
many deflations occur . In the case of having many defla 
tions , the function values may fall below machine precision 
or grow beyond feasibility which leads to numerical prob 
lems as illustrated in FIG . 6 . 
[ 0096 ] FIG . 6 depicts an exemplary graph illustrating the 
effect of multiple deflation operations being applied to a sine 
function . In FIG . 6 , curve 601 corresponds to a sine wave , 
whereas curves 603 and 605 correspond to deflated sine 
functions that are obtained by using the deflation operation 
of equation ( 3 ) . Specifically , curve 603 is obtained by using 
a single iteration of the deflation operator , whereas curve 
605 is obtained by multiple iterations of the deflation 
operator . Note that the function is altered everywhere when 
deflation is applied . The single deflated sine function ( curve 
603 ) exhibits much smaller amplitudes and presents a phase 
shift , as compared to curve 605 , wherein the multiple 
deflated sine function exhibits almost no visible amplitude . 
[ 0097 ] Accordingly , in one embodiment of the present 
disclosure , there is provided a localized deflation operator 
that addresses the above stated issue of having multiple 
deflation operations being applied to the optimization func 
tion . The localized deflation operation is a bump function 
( i . e . , a smooth function with compact support ) that affects an 
area close to the deflation only . The normalized bump 
function in n dimensions is expressed as : 

The employment of the localized deflation with coefficient a 
provisions for obtaining highly shapeable deflations at the 
correct locations , without altering the optimization function 
elsewhere . Highly shapeable bump functions correspond to 
a better avoidance of the convergence of an individual in a 
deflated optimum in the Newton step . 
[ 0100 ] FIG . 8 depicts a graph illustrating a comparison of 
using shifted and localized deflation operators . In FIG . 8 , 
curve 801 depicts a sine wave function , whereas curves 803 
and 805 represent the deflated sine functions obtained by 
utilizing shifted and localized deflation techniques . Specifi 
cally , curve 803 corresponds to a deflated sine function 
obtained by utilizing a shifted deflation operator , and curve 
805 corresponds to deflated sine function obtained by uti 
lizing a localized deflation operator . It must be appreciated 
that by applying the shifted deflation operator of equation 
( 5 ) multiple times yields in changed amplitudes and a phase 
shift in the adjacent areas of the deflation points . In contrast , 
the localized deflation technique leaves the function unaf 
fected outside a certain radius . 
10101 ] According to one embodiment , in order to evaluate 
the performance of the HGDN optimization scheme of the 
present disclosure , its performance is compared to the gen 
eral genetic algorithm and the general hybrid genetic algo 
rithm - Newton algorithm , referred to herein as Genetic 
Newton method . The performance is compared over four 
standard benchmark experiments for genetic algorithm . The 
HGDN optimization scheme is challenged to find the global 
maximum of the example functions ( described below ) using 
a lower number of function and derivative evaluations as 
compared to a general genetic algorithm and the Genetic 
Newton method . 
[ 0102 ] The genetic algorithm implements a crossover 
which creates a child individual by using alternate genes 
from the parent individuals . Furthermore , in all experiments , 
the process of mutation is considered for one percent of the 
genome value and occurs with a probability of eighty 
percent . In order to improve the unbiased behavior of the 
algorithm , a second stage of mutation may occur with a 
probability of ten percent . Accordingly , such a mutation 
scheme changes the value of the genome randomly in the 
limits of the search space . Additionally , in the performance 
comparison of the algorithms , the Newton algorithm is said 
to converge when the change in location from one iteration 
to the next falls below a certain threshold . 
[ 0103 ] In what follows , there is provided according to one 
embodiment , a detailed description of the optimization 
functions . 
[ 0104 ] FIG . 9 depicts an exemplary Ackley ' s function 900 
that exhibits a steep guiding slope towards the global 
optimum which is located in the center . The function con 
tains many local optima , which can mislead local gradient 
based methods in the process of finding the global optima . 
Ackley ' s function can be expressed as : 

??? - Q 

- ( X ; – x ; 0 ) 2 ) toá ) - ( - - ) if xj0 - r < x ; < x ; 0 + r bx0 ( x ) = { 1 exp ( - ) 
else 

where x , is the location of the center of the deflation , r is the 
radius of the deflation and a is a coefficient to adjust the 
shape of the bump function . 
[ 0098 ] FIG . 7A - FIG . 7C depict exemplary bump functions 
and their effects on the deflated function . FIG . 7A depicts a 
bump function represented as curve 701 having a coefficient 
value of a = 1 . FIG . 7B depicts another bump function 
represented by curve 703 having a coefficient value of 
a = 0 . 1 . FIG . 7C depicts the effect of deflating an optimiza 
tion function ( i . e . , a change in the deflated function ) using 
the bump functions of FIGS . 7A and 7B , respectively . In 
FIG . 7C , curve 705 depicts the deflated optimization func 
tion using the bump function of FIG . 7A , whereas curve 707 
( dotted curve ) depicts the deflated optimization function 
using the bump function of FIG . 7B . It must be appreciated 
that the boundaries of the deflation are much more distinct 
( curve 707 ) when using lower values for a . 
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[ 0109 ] Schaffer ' s F6 function is expressed as : 
( 9 ) : 

= 20expl - 0 . 21 - exp = cos ( 27x ; ) – 20 - exp ( 1 ) M 

v nizi M 

( 12 ) 

f ( x ) = - ( 0 . 5 ) - sin ( x - 0 . 5 
( 1 + 0 . 00 ( V2 * ) and is considered relatively easy to optimize due to the steep 

guiding slope giving a preferred search direction . Further 
more , Ackley ' s function is potentially relevant in many real 
world applications . 
[ 0105 ] By one embodiment , in a first experiment , the goal 
is to optimize Ackley ' s function in the limits - 10 < x ; s10 . 
The search space gives the limits of the random placement 
of the first generation of individuals . Ackley ' s function 
comprises many local optima which can mislead local 
gradient methods but shows a steep guiding slope towards 
the global optimum . 
[ 0106 ] In FIG . 10 , there is depicted an exemplary Rastri 
gins ' s function 1000 that exhibits a less steep guiding slope 
towards the global optimum than Ackley ' s function of FIG . 
9 . The Rastrigins ' s function contains a plurality of optima in 
the search space , which can mislead local gradient based 
methods in finding the global optima . Rastrigins ' s function 
can be mathematically expressed as : 

( 10 ) f ( x ) = – 10n - Ž « ? – 1000s ( 278 ; ) . 

The function represents a special challenge for the HGDN 
optimization scheme of the present disclosure , as the n 
dimensional Schaffer ' s F6 function shows local optima that 
are n - 1 dimensional . The search space for this function is 
chosen to be in the range - 20sx , s20 . An infinite number of 
deflations are necessary to deflate a n - 1 dimensional opti 
mum entirely , which poses a challenge for the HGDN 
scheme . Another challenge lies is the increasing amplitude 
of the function , which has to be overcome to reach the global 
optimum . 
[ 0110 ] By one embodiment , in most inversion problems , 
the forward modeling step is the most costly step ( i . e . , the 
processing time is large ) . Therefore , it is desirable to mini 
mize the number of function evaluations necessary to opti 
mize a function . Furthermore , the necessary gradient / Hes 
sian computations have a large impact on the computational 
performance and therefore , need to be minimized . The 
performance of the HGDN optimization scheme is com 
pared to a genetic algorithm and the hybrid Genetic - Newton 
method . The three methods were evaluated in finding the 
global optimum of the above described functions . 
[ 0111 ] All experiments were executed 50 times , with a 
random starting population and optimized conditions . Fur 
thermore , the performances of the three algorithms were 
sorted with respect to the number of function evaluations . 
The breaking condition for each algorithm corresponded to 
reaching the global optimum . The number of starting indi 
viduals are depicted below in Table 1 . The number of 
starting individuals is chosen in order to guarantee the 
convergence in most cases to allow for a fair comparison . 
The performance of the three techniques were compared in 
finding the global optimum of the above described functions 
in two dimensions ( represented as 2d ) , as well as finding the 
global optima of the functions in ten dimensions ( repre 
sented as 10d ) . Note however , that the genetic algorithm was 
not applied to the ten dimensional case because of the 
superiority of the Genetic - Newton and the modified hybrid 
optimization scheme of the present disclosure ( referred to 
hereinafter as HGDN ) in the two dimensional case . Further 
more , the high number of individuals required to execute the 
genetic algorithm , renders the genetic algorithm uncompeti 
tive in ten dimensions . 

This function has a less steep guiding slope than Ackley ' s 
function ( FIG . 9 ) which complicates the optimization pro 
cess . On the other hand , there are less local optima in the 
search space - 5 . 12 < x ; 55 . 12 of the Rastrigins ' s function as 
shown in FIG . 10 . 
[ 0107 ] FIG . 11A depicts an exemplary Schwefel ' s func 
tion 1100 that exhibits no guiding slope towards the global 
optimum , which is located close to the border at x = 420 . 
9687 . Schwefel ' s function can be expressed as : 

– 500 < x ; $ 500 ( 11 ) 
f ( x ) = - 418 . 9829n - - x ; . sin ( V [ x ; ] ) if 

0 . 02 - x } else 

TABLE 1 

and does not exhibit a guiding slope which could point in the 
direction of the global optimum . In addition , the global 
optimum is located close to the border of the search space 
- 500sx ; s500 and the function is less symmetric than the 
previously described Ackley ' s function and Rastrigin ' s 
function . Accordingly , for the Schwefel ' s function , the opti 
mization process is complicated because the average dis 
tance of the randomly placed individuals of the first gen 
eration to the optimum is greater than for a centered global 
optimum . 
[ 0108 ] FIG . 11B depicts an exemplary Schaffer ' s F6 func 
tion 1150 . The difficulty in optimizing Schaffer ' s F6 func 
tion lies in the fact that the function value of the local optima 
increases toward the global optimum . Furthermore , the local 
optima of an n dimensional Schaffer ' s F6 function are n - 1 
dimensional , which complicates a successful deflation . 

comparison of number of starting individuals for the 
optimization schemes for 2d and 10d functions , respectively . 

Ackley Rastrigin Schwefel Schaffer F6 
20 200 

20 
200 

10 20 
Genetic 2d 
Genetic - Newton 2d 
HGDN 2d 
Genetic - Newton 10d 
HGDN 100 

20 
200 
2040 20 199 20 
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[ 0112 ] The number of function evaluations required to 
optimize the Ackley ' s function ( FIG . 9 ) are depicted in FIG . 
12 and Tables 2 and 3 . FIG . 12 depicts the performance 
comparison in finding the global optima for the Ackley ' s 
function by the genetic algorithm , the Genetic - Newton algo 
rithm , and the HGDN algorithm . Specifically , in FIG . 12 , 
graph 1210 depicts the comparison of the optimization 
algorithms for the two - dimensional functions , and graph 
1230 depicts the performance comparison for the ten - di 
mensional function . 
[ 0113 ] By one embodiment , the number of function evalu 
ations for the two and ten dimensional representation of the 
Ackley ' s function are performed for 50 optimization runs . 
Referring to graph 1210 , the genetic algorithm ( depicted by 
curve 1201 ) is outperformed by the Genetic - Newton ( curve 
1203 ) , and the HGDN algorithm ( curve 1205 ) for the 
two - dimensional function case . For the case of having the 
function being represented in ten dimensions , referring to 
graph 1230 , the HGDN algorithm ( curve 1235 ) optimizes 
Ackley ' s function in fewer function evaluations than the 
Genetic - Newton algorithm ( curve 1233 ) . 

represented in ten dimensions , referring to graph 1330 , the 
HGDN algorithm ( curve 1335 ) optimizes Rastrigin ' s func 
tion in fewer function evaluations than the Genetic - Newton 
algorithm ( curve 1333 ) . The number of function evaluations 
of Rastrigin ' s function in two and ten dimensions as 
depicted in FIG . 13 are performed for 50 optimization runs . 
Both hybrid methods ( Genetic - Newton and the HGDN ) 
perform well optimizing Rastrigin ' s function in two and ten 
dimensions . Referring to graph 1330 of FIG . 13 , the HGDN 
( curve 1335 ) performs better ( as compared to genetic 
Newton , represented by curve 1333 ) because it avoids 
frequent convergence in one of the many local optima . 

TABLE 4 

means and variances of 50 iterations using Rastrigin ’ s function 
in two dimensions . 

o Grad . / 
Func . Eval Grad / H . Comp H . Comp . Method Func . Eval . 

O Genetic Alg . 
Genetic - Newton 
HGDN 

2908 . 0 
1578 . 7 

94 . 9 

8772 . 1 
7353 . 0 

78 . 1 
4384 . 8 
769 . 8 

19954 . 1 
691 . 3 

TABLE 2 
means and variances of 50 iterations using Ackley ' s function 

in two dimensions . TABLE 5 
o Grad . / 

Func . Eval . Func . Eval Grad / H . Comp H . Comp . Method means and variances of 50 iterations using Rastrigin ’ s function 
in ten dimensions . 

0 Genetic Alg . 
Genetic - Newton 
HGDN 

1670 . 0 
4354 . 5 
845 . 8 

4451 . 5 
11932 . 7 
2865 . 3 

12695 . 3 
6308 . 0 

34830 . 1 
21669 . 2 Method 

o Grad . / 
Func . Eval . Func . Eval Grad / H . Comp H . Comp . 

Genetic - Newton 
HGDN 

20856 . 5 
4677 . 5 

12712 . 8 
2609 . 0 

70892 . 2 
27766 . 5 

43082 . 6 
14085 . 6 

TABLE 3 
means and variances of 50 iterations using Ackley ' s function 

in ten dimensions . 

o Grad . / 
Func . Eval . Func . Eval Grad / H . Comp H . Comp . Method 

Genetic - Newton 
HGDN 

9820 . 0 
1221 . 2 

2115 . 2 
268 . 4 

36163 . 1 
7962 . 3 

7452 . 5 
1736 . 2 

[ 0116 ] By one embodiment , the Schwefel ' s function ( FIG . 
11 ) is more difficult to optimize due to the missing guiding 
slope , the missing symmetry , and the non - centered opti 
mum . The number of function evaluations for Schwefel ' s 
function represented in two and ten dimensions , is per 
formed for 50 optimization runs . Referring to graph 1410 of 
FIG . 14 , the Genetic algorithm ( depicted by curve 1401 ) is 
outperformed by the Genetic - Newton ( curve 1403 ) , and the 
HGDN algorithm ( curve 1405 ) for the two - dimensional 
function case . For the case of having the function being 
represented in ten dimensions , referring to graph 1430 , the 
HGDN algorithm ( curve 1435 ) optimizes Schwefel ' s func 
tion in substantially fewer function evaluations than the 
Genetic - Newton algorithm ( curve 1433 ) . Tables 6 and 7 
depicted below illustrate the means and variances of the 50 
optimization iterations performed on the Schwefel ' s func 
tion . 

[ 0114 ] Referring to the Ackley ' s function as depicted in 
FIG . 9 , the guiding slope leads to a fast convergence of the 
genetic algorithm into the global optimum . Since the local 
gradient is not used in the genetic algorithm , the local 
optima cannot degrade the convergence rate . The guiding 
slope , on the other hand , is used implicitly . The hybrid 
methods use the local gradient which degenerates conver 
gence . The small wavelength structure of the function mis 
leads the methods that use local gradient information . How 
ever , it must be appreciated that the HGDN method depicts 
a fast convergence towards the global optimum as shown in 
FIG . 12 . 
[ 0115 ] By one embodiment , Rastrigin ' s function does not 
show a steep guiding slope , which leads to more function 
evaluations for the genetic algorithm . The HGDN method 
outperforms its opponents when optimizing Rastrigin ' s 
function as shown in FIG . 13 . Referring to graph 1310 of 
FIG . 13 , the genetic algorithm ( depicted by curve 1301 ) is 
outperformed by the Genetic - Newton ( curve 1303 ) , and the 
HGDN algorithm ( curve 1305 ) for the two - dimensional 
function case . For the case of having the function being 

TABLE 6 
means and variances of 50 iterations using Schwefel ' s function 

in two dimensions . 

o Grad . / 
H . Comp . Method Func . Eval . Func . Eval Grad / H . Comp 

Genetic Alg . 
Genetic - Newton 
HGDN 

53400 . 0 
1636 . 0 
232 . 0 

63925 . 8 
5427 . 1 
860 . 2 

0 
7049 . 1 
6557 . 7 

22575 . 3 
26279 . 9 
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TABLE 7 
means and variances of 50 iterations using Schwefel ' s function 

in ten dimensions . 
o Grad . / 
H . Comp . Method Func . Eval . Func . Eval Grad / H . Comp 

Genetic - Newton 
HGDN 

12254 . 7 
1408 . 7 

5908 . 6 
566 . 4 566 . 4 

162648 . 1 
34540 . 1 

76878 . 9 
14329 . 3 

[ 0117 ] The HGDN method of the present disclosure out 
performs the genetic and Genetic - Newton methods of opti 
mizing the Schwefel ' s function . In the two dimensional 
case , Genetic - Newton also converges fast towards the global 
optimum . In ten dimensions the Genetic - Newton is clearly 
outperformed by the HGDN method . 
[ 0118 ] By one embodiment , the Schaffer ' s F6 function 
poses the problem of n - 1 dimensional local optima . Nev 
ertheless , the HGDN approach outperforms its opponents , as 
seen in FIG . 15 . FIG . 15 depicts the performance compari 
SO son in finding the global optima for the Schaffer ' s F6 
function by the genetic algorithm , the Genetic - Newton algo 
rithm , and the HGDN algorithm . Specifically , in FIG . 15 , 
graph 1510 depicts the comparison of the optimization 
algorithms for the two - dimensional functions , and graph 
1530 depicts the performance comparison for the ten - di 
mensional function . 
[ 01191 . Referring to graph 1510 , the genetic algorithm 
( depicted by curve 1501 ) is outperformed by the Genetic 
Newton ( curve 1503 ) , and the HGDN algorithm ( curve 
1505 ) for the two - dimensional function case . For the case of 
having the function being represented in ten dimensions , 
referring to graph 1530 , the HGDN algorithm ( curve 1535 ) 
optimizes Schaffer ' s F6 function in fewer function evalua 
tions than the Genetic - Newton algorithm ( curve 1533 ) . The 
number of function evaluations of Schaffer ' s F6 function in 
two and ten dimensions are presented for 50 optimization 
runs . It must be appreciated that despite difficulties linked to 
the shape of the optima , the improvement in the number of 
function evaluations used for optimizing Schaffer ' s F6 func 
tion is significant compared with the two competing meth 
ods . Tables 8 and 9 depicted below illustrate the means and 
variances of the 50 optimization runs performed on the 
Schaffer ' s F6 function . 

[ 0120 ] By one embodiment , in times where processing 
units are becoming rather cheaper than faster , it is important 
for an optimization technique to take advantage of parallel 
computer architectures . The HGDN approach offers an 
inherent possibility to be parallelized , since every individual 
can search for a local optimum independently . By one 
embodiment , in the current implementation , this may be 
achieved by using OpenMP to parallelize the loop over all 
individuals as described with reference to FIG . 5 . 
10121 ] The numerical experiments described above sug 
gest that the HGDN method outperforms the two competing 
methods in most situations by a significant amount of 
function and derivative evaluations . The numerical experi 
ments described above suggest that the HGDN method 
outperforms the two competing methods in most situations 
by a significant amount of function and derivative evalua 
tions . FIG . 12 depicts the number of function evaluations to 
optimize Ackley ' s function . The superiority of the HGDN 
algorithm is more apparent in the ten dimensional case . It 
has to be stated here , that in the optimization of Ackley ' s and 
Rastrigin ' s function , the Genetic - Newton algorithm needed 
more individuals to guarantee the convergence . Using the 
same number of individuals for all competing algorithms 
leads to many runs of the Genetic and the Genetic - Newton 
algorithm not converging to the global optimum within a 
given allowed maximum number of genetic steps . The 
HGDN method , on the other hand , needs fewer individuals 
to converge . The highly non - linear short wavelength struc 
ture of Ackley ' s function poses a problem for the general 
hybrid methods , which leads to a high number of function 
and gradient evaluations . 
[ 0122 ] Rastrigin ' s function ( FIG . 10 ) was optimized reli 
ably and efficiently by both hybrid algorithms . However , the 
HGDN method outperforms its opponents which is more 
apparent in ten dimensions than in two dimensions . 
[ 0123 ] The performance of the HGDN method when opti 
mizing Schwefel ' s function ( FIG . 11A ) is of particular 
importance because of the relevance for real life optimiza 
tion problems . The HGDN method maintains its superiority 
over its two components . Again , the performance gain 
compared to the Genetic - Newton method is especially 
apparent in ten dimensions . 
[ 0124 ] The Schaffer ' s F6 function ( FIG . 11B ) represents a 
special challenge for the HGDN method since the null space 
of the Hessian is not zero dimensional at the local optima . 
Therefore , the optima may not be entirely deflated by the 
deflation operations . However , even in this special case , the 
HGDN method performs better than the other tested meth 
ods . 
[ 0125 ] Accordingly , the HGDN method leads to signifi 
cant performance gain as compared to other tested methods . 
It is important to note that the superiority of the HGDN 
method benefits from higher dimensions of the search space . 
The improvements incurred in reducing the number of 
function and derivative evaluations to optimize a function 
potentially have a large impact on many fields in research 
and industry . 
[ 0126 ] For instance , by one embodiment , the technique of 
HGDN optimization as described above can be applied in 
medical image registration problems . 
[ 0127 ] Image registration is a technique that is used in 
applications such as medical image processing , face recog 
nition , object flow and tracking , and the like . The objective 
herein is to minimize a difference between two images and 

TABLE 8 

means and variances of 50 iterations using Schaffer ' s F6 function 
in two dimensions . 

Method Func . Eval . 
o Grad . / 

H . Comp . Func . Eval Grad / H . Comp 

Genetic Alg . 
Genetic - Newton 
HGDN 

1336 . 0 
1082 . 8 

30 . 88 

1113 . 9 
2803 . 6 

19 . 6 
3923 . 4 
252 . 2 

0 

9956 . 5 
195 . 2 

TABLE 9 TABLE 9 
means and variances of 50 iterations using Schaffer ’ s F6 function 

in ten dimensions . 
o Grad . / 
H . Comp . Method Func . Eval . Func . Eval Grad / H . Comp 

Genetic - Newton 
HGDN 

1231 . 4 
181 . 5 

1028 . 1 
275 . 9 

4824 . 7 
1109 . 2 

3954 . 7 
1577 . 6 
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produce the best transformation to match a deformed image 
to a reference image . In order to compute the transformation , 
optimization is required . In the case of a 2D - 2D image 
registration , given an original image , and a deformed image , 
the task is to determine , whether the deformed image 
represents the subject depicted in the original image . In such 
a case , one seeks to find an optimal transformation that can 
spatially align the two images , such that the deformed image 
could be warped back to the referenced image . 
[ 0128 ] The process of finding an optimal transformation 
could be very expensive , which is a disadvantage for many 
applications . Additionally , some clinical processes such as 
brain shift estimation based on intra - operatively acquired 
ultrasound require almost real - time registration . Accord 
ingly , since the HGDN optimization technique reduces the 
number of function evaluations and derivative operations , 
the technique can be applied for real time image registration 
purposes . 
[ 0129 ] Turning to FIG . 16 , there is illustrated an exem 
plary schematic flowchart depicting the steps performed in 
an image registration process . Specifically , FIG . 16 depicts 
an exemplary elastic image registration process 1600 . 
According to an embodiment , the process of elastic image 
registration can be divided into three separate sub - processes : 
image transformation , image similarity computation , and 
optimization of image similarity . Elastic image registration 
is applicable in CT or MRI applications , wherein the elastic 
image registration process improves matching accuracy , by 
provisioning for any changes in the anatomy during surgery , 
since the CT or MRI images were taken . Specifically , the 
elastic registration process warps the CT or MRI image to 
match the shape of the anatomy represented by a current 
ultrasound frame , and thus provides a higher - quality image 
to be used as a guide for surgery . 
[ 0130 ] Referring to FIG . 16 , the images to be aligned are 
a floating image 1601 , and a reference image 1603 . A goal 
of the registration process 1600 is to find a transformation 
1605 that best aligns the voxels in the floating image to the 
voxels in the reference image . The image transformation 
1605 maps the voxels in the floating image to the voxels in 
the reference image . It must be appreciated that the image 
transformation sub - process may be performed by techniques 
including , but not limited to , image transformation using a 
physical model , image transformation based on basis func 
tions , and the like . The floating image 1601 is converted into 
a transformed image 1609 via the elastic image transforma 
tion sub - process . 
[ 0131 ] An image similarity measure 1610 is a numerical 
value that indicates the degree of misalignment between the 
images ( transformed image 1609 , and the reference image 
1603 ) . Specifically , for sake of illustration , considering that 
the images to be aligned are referred to as the reference 
image ( RI ) and the floating image ( FI ) , a transformation 
represented as T is applied to the voxels of the floating 
image . Further , an image similarity measure is applied to the 
region of overlap of the reference image and the floating 
image , and is defined herein as : X = { xo : X , ERINT ( FI ) } . 
[ 0132 ] The voxel intensities in a position within the ref 
erence and the floating image are denoted as RI ( x ) and FI 
( x ) , and their respective sets are referred to as RI ( X ) and 
FI ( X . ) . Accordingly , a difference image can be generated as 
follows : D = { { d ( x ) = RI ( X . ) - FI ( x . ) : x €X . } } . 
10133 ] An optimization algorithm 1607 is employed in an 
iterative manner , to find the optimal image similarity mea 

sure over the whole set of possible transformations . By one 
embodiment , the optimization algorithms described previ 
ously with reference to FIG . 4 and FIG . 5 can be utilized to 
find the transformation parameters that maximize image 
similarity . By one embodiment , the algorithms of FIG . 4 and 
FIG . 5 described previously can be employed to minimize a 
mean square difference between the transformed image and 
the reference image to obtain the optimal similarity measure . 
[ 0134 ] Furthermore , medical image registration processes 
require an optimization sub - process that incurs a low num 
ber of function evaluation operations . In the case of image 
registration , the function to be maximized is the voxel 
similarity function . Since calculation of image similarity 
incurs a high computational cost , it is highly desirable that 
the optimization algorithm requires the least possible num 
ber of function evaluations to converge . Moreover , the 
optimization sub - process requires the ability to recover from 
convergence in local optima . In other words , it is advanta 
geous to have an optimization algorithm that avoids con 
vergence in local extrema of the image similarity function . 
As stated previously , the HGDN method of FIG . 4 and FIG . 
5 is well suited for such applications , as it reduces the 
number of evaluations and derivative operations that are to 
be performed in the optimization sub - process and also 
avoids convergence to local optima by implementing a 
deflation operation . 
[ 0135 ] Additionally , the HGDN optimization technique 
can be applied to a 2D - 3D and 3D - 3D ultrasound ( US ) 
registration and fusion process . Such a process generally 
incurs challenges in the optimization phase due to a low 
signal - to - noise ratio . In such US registration , the three key 
steps that need to be performed are : definition of a search 
space , ( 2 ) selection of a similarity measure , and ( 3 ) choice 
of an optimization approach . In the US registration tech 
nique , the global optima ( e . g . , global maxima ) of similarity 
function correspond to a correct registration . Accordingly , 
the HGDN technique as described by the embodiments 
above may be utilized in such a scenario to compute the 
local and global optima of the similarity function . 
0136 ] . Moreover , the HGDN method is well suited to be 
utilized for solving optimization problems in applications 
such as medical image registration , as it provides the advan 
tageous ability of computing many local and the global 
optimum . 
[ 0137 ] In contrast , a pure newton method only finds one 
optimum , i . e . , local or global optima . A typical genetic 
algorithm computes one optimum , which is hopefully the 
global optimum . As described previously , the HGDN tech 
nique finds and removes the optima to be stored in a list of 
a predetermined length . In this manner , the HGDN tech 
nique computes , not only one global optimum , but several 
local ones as well . Knowledge of local optima may be 
beneficial as they may be located substantially close to the 
global optima . 
[ 0138 ] It must be appreciated that the optimization tech 
nique described herein is in no way limited to be applied 
only in the above described medical image - registration 
scenario . Rather , the optimization technique described by 
the embodiments is equally applicable in digital image 
processing areas such as formulating an optimal design of 
engineering parts in the aerospace industry , earthquake 
source detection and characterization in seismic CT appli 
cations ( wherein the seismic image is obtained via seismic 
exploration or monitoring ) , optimizing weather prediction 
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models , impedance matching optimization in electrical cir 
cuits , and the like . Thus , the HGDN optimization technique 
of the present disclosure finds applications in a broad range 
of technical fields , and moreover improves the function of a 
computer ( which includes circuitry that is configured to 
execute the method ) by reducing the number of evaluations 
and derivative operations that need to be performed . 
[ 0139 ] Each of the functions of the described embodi 
ments may be implemented by one or more processing 
circuits . A processing circuit includes a programmed pro 
cessor ( for example , processor 1703 in FIG . 17 ) , as a 
processor includes circuitry . A processing circuit also 
includes devices such as an application - specific integrated 
circuit ( ASIC ) and circuit components that are arranged to 
perform the recited functions . 
[ 0140 ] The various features discussed above may be 
implemented by a computer system ( or programmable 
logic ) . FIG . 17 illustrates such a computer system 1701 . In 
one embodiment , the computer system 1701 is a particular , 
special - purpose machine when the processor 1703 is pro 
grammed to perform the estimate computations and other 
functions described above . 
[ 0141 ] The computer system 1701 includes a disk con 
troller 1706 coupled to the bus 902 to control one or more 
storage devices for storing information and instructions , 
such as a magnetic hard disk 1707 , and a removable media 
drive 1708 ( e . g . , floppy disk drive , read - only compact disc 
drive , read / write compact disc drive , compact disc jukebox , 
tape drive , and removable magneto - optical drive ) . The stor 
age devices may be added to the computer system 1701 
using an appropriate device interface ( e . g . , small computer 
system interface ( SCSI ) , integrated device electronics 
( IDE ) , enhanced - IDE ( E - IDE ) , direct memory access 
( DMA ) , or ultra - DMA ) . 
[ 0142 ] The computer system 1701 may also include spe 
cial purpose logic devices ( e . g . , application specific inte 
grated circuits ( ASICs ) ) or configurable logic devices ( e . g . , 
simple programmable logic devices ( SPLDs ) , complex pro 
grammable logic devices ( CPLDs ) , and field programmable 
gate arrays ( FPGAs ) ) . 
[ 0143 ] The computer system 1701 may also include a 
display controller 1709 coupled to the bus 1702 to control a 
display 1710 , for displaying information to a computer user . 
The computer system includes input devices , such as a 
keyboard 1711 and a pointing device 1712 , for interacting 
with a computer user and providing information to the 
processor 1703 . The pointing device 1712 , for example , may 
be a mouse , a trackball , a finger for a touch screen sensor , 
or a pointing stick for communicating direction information 
and command selections to the processor 1703 and for 
controlling cursor movement on the display 1710 . 
[ 0144 ] The processor 1703 executes one or more 
sequences of one or more instructions contained in a 
memory , such as the main memory 1704 . Such instructions 
may be read into the main memory 1704 from another 
computer readable medium , such as a hard disk 1707 or a 
removable media drive 1708 . One or more processors in a 
multi - processing arrangement may also be employed to 
execute the sequences of instructions contained in main 
memory 1704 . In alternative embodiments , hard - wired cir 
cuitry may be used in place of or in combination with 
software instructions . Thus , embodiments are not limited to 
any specific combination of hardware circuitry and software . 

[ 0145 ] As stated above , the computer system 1701 
includes at least one computer readable medium or memory 
for holding instructions programmed according to any of the 
teachings of the present disclosure and for containing data 
structures , tables , records , or other data described herein . 
Examples of computer readable media are compact discs , 
hard disks , floppy disks , tape , magneto - optical disks , 
PROMs ( EPROM , EEPROM , flash EPROM ) , DRAM , 
SRAM , SDRAM , or any other magnetic medium , compact 
discs ( e . g . , CD - ROM ) , or any other optical medium , punch 
cards , paper tape , or other physical medium with patterns of 
holes . 
10146 ] Stored on any one or on a combination of computer 
readable media , the present disclosure includes software for 
controlling the computer system 1701 , for driving a device 
or devices for implementing the features of the present 
disclosure , and for enabling the computer system 1701 to 
interact with a human user . Such software may include , but 
is not limited to , device drivers , operating systems , and 
applications software . Such computer readable media fur 
ther includes the computer program product of the present 
disclosure for performing all or a portion ( if processing is 
distributed ) of the processing performed in implementing 
any portion of the present disclosure . 
[ 0147 ] The computer code devices of the present embodi 
ments may be any interpretable or executable code mecha 
nism , including but not limited to scripts , interpretable 
programs , dynamic link libraries ( DLLs ) , Java classes , and 
complete executable programs . Moreover , parts of the pro 
cessing of the present embodiments may be distributed for 
better performance , reliability , and / or cost . 
( 0148 ) The term " computer readable medium " as used 
herein refers to any non - transitory medium that participates 
in providing instructions to the processor 1703 for execu 
tion . A computer readable medium may take many forms , 
including but not limited to , non - volatile media or volatile 
media . Non - volatile media includes , for example , optical , 
magnetic disks , and magneto - optical disks , such as the hard 
disk 1707 or the removable media drive 1708 . Volatile 
media includes dynamic memory , such as the main memory 
1704 . Transmission media , on the contrary , includes coaxial 
cables , copper wire and fiber optics , including the wires that 
make up the bus 1702 . Transmission media also may also 
take the form of acoustic or light waves , such as those 
generated during radio wave and infrared data communica 
tions . 
[ 0149 ] Various forms of computer readable media may be 
involved in carrying out one or more sequences of one or 
more instructions to processor 1703 for execution . For 
example , the instructions may initially be carried on a 
magnetic disk of a remote computer . The remote computer 
can load the instructions for implementing all or a portion of 
the present disclosure remotely into a dynamic memory and 
send the instructions over a telephone line using a modem . 
A modem local to the computer system 1701 may receive the 
data on the telephone line and place the data on the bus 1702 . 
The bus 1702 carries the data to the main memory 1704 , 
from which the processor 1703 retrieves and executes the 
instructions . The instructions received by the main memory 
1704 may optionally be stored on storage device 1707 or 
1708 either before or after execution by processor 1703 . 
[ 0150 ] The computer system 1701 also includes a com 
munication interface 1713 coupled to the bus 1702 . The 
communication interface 1713 provides a two - way data 
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communication coupling to a network link 1714 that is 
connected to , for example , a local area network ( LAN ) 1715 , 
or to another communications network 1716 such as the 
Internet . For example , the communication interface 1713 
may be a network interface card to attach to any packet 
switched LAN . As another example , the communication 
interface 1713 may be an integrated services digital network 
( ISDN ) card . Wireless links may also be implemented . In 
any such implementation , the communication interface 1713 
sends and receives electrical , electromagnetic or optical 
signals that carry digital data streams representing various 
types of information . 
[ 0151 ] The network link 1714 typically provides data 
communication through one or more networks to other data 
devices . For example , the network link 1714 may provide a 
connection to another computer through a local network 
1715 ( e . g . , a LAN ) or through equipment operated by a 
service provider , which provides communication services 
through a communications network 1716 . The local network 
1714 and the communications network 1716 use , for 
example , electrical , electromagnetic , or optical signals that 
carry digital data streams , and the associated physical layer 
( e . g . , CAT 5 cable , coaxial cable , optical fiber , etc . ) . The 
signals through the various networks and the signals on the 
network link 1714 and through the communication interface 
1713 , which carry the digital data to and from the computer 
system 1701 may be implemented in baseband signals , or 
carrier wave based signals . 
[ 0152 ] The baseband signals convey the digital data as 
unmodulated electrical pulses that are descriptive of a 
stream of digital data bits , where the term " bits ” is to be 
construed broadly to mean symbol , where each symbol 
conveys at least one or more information bits . The digital 
data may also be used to modulate a carrier wave , such as 
with amplitude , phase and / or frequency shift keyed signals 
that are propagated over a conductive media , or transmitted 
as electromagnetic waves through a propagation medium . 
Thus , the digital data may be sent as unmodulated baseband 
data through a “ wired ” communication channel and / or sent 
within a predetermined frequency band , different than base 
band , by modulating a carrier wave . The computer system 
1701 can transmit and receive data , including program code , 
through the network ( s ) 1715 and 1716 , the network link 
1714 and the communication interface 1713 . Moreover , the 
network link 1714 may provide a connection through a LAN 
1715 to a mobile device 1717 such as a personal digital 
assistant ( PDA ) laptop computer , or cellular telephone . 
[ 0153 ] While aspects of the present disclosure have been 
described in conjunction with the specific embodiments 
thereof that are proposed as examples , alternatives , modifi 
cations , and variations to the examples may be made . It 
should be noted that , as used in the specification and the 
appended claims , the singular forms “ a , " " an , ” and “ the ” 
include plural referents unless the context clearly dictates 
otherwise 

compute , based on the candidate points , one or more 
stationary points of the function , 

deflate a gradient of the function at each of the one or 
more computed stationary points , 

repeat the computing and the deflating until a first 
criteria is satisfied , 

select , from the one or more computed stationary 
points , a predetermined number of fit points , 

recombine the selected fit points to generate a set of 
new candidate points , 

repeat , for the set of new candidate points , the com 
puting , the deflating , the first repeating , the selecting , 
and the recombining , until a second criteria is satis 
fied , 

obtain , the optima of the function upon the second 
criteria being satisfied , and 

process the digital image based on the obtained optima . 
2 . The apparatus of claim 1 , wherein each of the one or 

more computed stationary points of the function is a point 
where a first derivative of the function is zero . 

3 . The apparatus of claim 1 , wherein the function is 
non - linear and twice continuously differentiable . 

4 . The apparatus of claim 1 , wherein the circuitry is 
further configured to deflate the gradient of the function by 
computing a numerical factorization of the gradient based on 
a bump function . 

5 . The apparatus of claim 4 , wherein the bump function 
includes a shaping parameter configured to adjust the shape 
of a deflation at each of the one or more computed stationary 
points . 

6 . The apparatus of claim 1 , wherein the circuitry is 
further configured to select the predetermined number of fit 
points based on a fitness score computed for each of the one 
or more stationary points , and wherein the predetermined 
number of fit points is less than the one or more computed 
stationary points . 

7 . The apparatus of claim 1 , wherein the first criteria 
corresponds to no new stationary points being computed by 
the circuitry , and the second criteria corresponds to a change 
in fitness score of the selected fit points not exceeding a 
predetermined threshold value . 

8 . The apparatus of claim 1 , wherein the digital image is 
a medical image and the circuitry is further configured to 
register the medical image based on the obtained optima . 

9 . The apparatus of claim 1 , wherein the digital image is 
a seismic image and the circuitry is further configured to 
detect an earthquake source based on the obtained optima . 

10 . A method for performing digital image processing , the 
processing including computing optima of a function of the 
digital image , the method comprising : 

initializing a plurality of candidate points that lie in a 
solution space of the function , each candidate point 
being represented by a vector having a length equal to 
the dimension of the function ; 

computing by circuitry , based on the candidate points , one 
or more stationary points of the function ; 

deflating a gradient of the function at each of the one or 
more computed stationary points ; 

repeating the computing and the deflating until a first 
criteria is satisfied ; 

selecting , from the one or more computed stationary 
points , a predetermined number of fit points ; 

recombining by circuitry , the selected fit points to gener 
ate a set of new candidate points ; 

1 . An apparatus for performing digital image processing , 
the processing including computing optima of a function of 
the digital image , the apparatus comprising : 

circuitry configured to 
initialize a plurality of candidate points that lie in a 

solution space of the function , each candidate point 
being represented by a vector having a length equal 
to the dimension of the function , 
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repeating , for the set of new candidate points , the com 
puting , the deflating , the first repeating , the selecting , 
and the recombining , until a second criteria is satisfied ; 

obtaining , the optima of the function upon the second 
criteria being satisfied ; and 

processing by circuitry , the digital image based on the 
obtained optima . 

11 . The method of claim 10 , wherein each of the one or 
more computed stationary points of the function is a point 
where a first derivative of the function is zero . 

12 . The method of claim 10 , wherein the function is 
non - linear and is twice continuously differentiable . 

13 . The method of claim 10 , further comprising : 
deflating the gradient of the function by computing a 
numerical factorization of the gradient based on a bump 
function . 

14 . The method of claim 13 , wherein the bump function 
includes a shaping parameter configured to adjust the shape 
of a deflation at each of the one or more computed stationary 
points 

15 . The method of claim 10 , further comprising : 
selecting the predetermined number of fit points based on 

a fitness score computed for each of the one or more 
stationary points , and wherein the predetermined num 
ber of fit points is less than the one or more computed 
stationary points . 

16 . The method of claim 10 , wherein the first criteria 
corresponds to no new stationary points being computed by 
the circuitry , and the second criteria corresponds to a change 
in fitness score of the selected fit points not exceeding a 
predetermined threshold value . 

17 . The method of claim 10 , wherein the digital image is 
a medical image and the method further comprises register 
ing the medical image based on the obtained optima . 

18 . The method of claim 10 , wherein the digital image is 
a seismic image and the method further comprises detecting 
an earthquake source based on the obtained optima . 

19 . A non - transitory computer readable medium having 
stored thereon a program that when executed by a computer , 
causes the computer to execute a method for performing 
digital image processing , the processing including comput 
ing optima of a function of the digital image , the method 
comprising : 

initializing a plurality of candidate points that lie in a 
solution space of the function , each candidate point 
being represented by a vector having a length equal to 
the dimension of the function ; 

computing based on the candidate points , one or more 
stationary points of the function ; 

deflating a gradient of the function at each of the one or 
more computed stationary points ; 

repeating the computing and the deflating until a first 
criteria is satisfied ; 

selecting , from the one or more computed stationary 
points , a predetermined number of fit points ; 

recombining the selected fit points to generate a set of new 
candidate points ; 

repeating , for the set of new candidate points , the com 
puting , the deflating , the first repeating , the selecting , 
and the recombining , until a second criteria is satisfied ; 

obtaining , the optima of the function upon the second 
criteria being satisfied ; and 

processing the digital image based on the obtained 
optima . 

20 . The non - transitory computer readable medium of 
claim 19 , wherein each of the one or more computed 
stationary points of the function is a point where a first 
derivative of the function is zero , and wherein the function 
is non - linear and is twice continuously differentiable . 
21 . The non - transitory computer readable medium of 

claim 19 , the method further comprising : 
deflating the gradient of the function by computing a 
numerical factorization of the gradient based on a bump 
function . 

22 . The non - transitory computer readable medium of 
claim 21 , wherein the bump function includes a shaping 
parameter configured to adjust the shape of a deflation at 
each of the one or more computed stationary points . 

23 . The non - transitory computer readable medium of 
claim 19 , the method further comprising : 

selecting the predetermined number of fit points based on 
a fitness score computed for each of the one or more 
stationary points , and wherein the predetermined num 
ber of fit points is less than the one or more computed 
stationary points . 

24 . The non - transitory computer readable medium of 
claim 19 , wherein the first criteria corresponds to no new 
stationary points being computed by the circuitry , and the 
second criteria corresponds to a change in fitness score of the 
selected fit points not exceeding a predetermined threshold 
value . 

25 . The non - transitory computer readable medium of 
claim 19 , wherein the digital image is a medical image and 
the method further comprises registering the medical image 
based on the obtained optima . 

26 . The non - transitory computer readable medium of 
claim 19 , wherein the digital image is a seismic image and 
the method further comprises detecting an earthquake source 
based on the obtained optima . 

* * * 


