
US 20210216435A1
INI

(19) United States
(12) Patent Application Publication Publication (10) Pub . No .: US 2021/0216435 A1

Godefroid et al . (43) Pub . Date : Jul . 15 , 2021

(54) INTELLIGENTLY FUZZING DATA TO
EXERCISE A SERVICE

(52) U.S. CI .
CPC GO6F 11/3636 (2013.01) ; G06F 11/362

(2013.01)
(71) Applicant : MICROSOFT TECHNOLOGY

LICENSING , LLC , Redmond , WA
(US)

(72) Inventors : Patrice Godefroid , Mercer Island , WA
(US) ; Bo - Yuan Huang , West Windsor ,
NJ (US) ; Marina Polishchuk , Seattle ,
WA (US)

(57) ABSTRACT
Improved techniques for testing an application to identify
bugs . An API request body , which includes input data , is
transmitted to a service to exercise the service . An error type
response is received from the service , where the response
indicates how the service handled the input data . The
response is then used to determine an error type response
coverage of the service . The coverage is then expanded by
repeatedly performing a number of operations until a thresh
old metric is satisfied . For instance , in response to learning
how previously - used input data impacted the coverage , new
input data is generated . This new input data is designed to
trigger new types of responses from the service . The new
input is sent to the service , and a new error type response is
received . These processes are repeated in an effort to expand
the error type response coverage of the remote service .

(21) Appl . No .: 16 / 741,445

(22) Filed : Jan. 13 , 2020

Publication Classification

(51) Int . Ci .
G06F 11/36 (2006.01)

100

Access An API Specification Of An API Of A Remote Service , The API Specification At
Least Defining A Schema Of The API For Enabling Interaction With The Remote Service

105
L WWW 44 44

I Extract The Schema From The API Specification 2110 } matata tuhum totum hutan hutan status tortor saman what the the tutte ut what what

- ? ? ???? ?? ? ? ? ? ? ? ? ? ? ?

1
1
I

Generate Input Data By Modifying Data Types Defined By The Schema Or By
Generating Data Values Used As Input In An API Request Body 115

Generate The API Request Body For The API , The API Request Body Comprising The
Input Data 2120

Transmit The API Request Body To The Remote Service To Exercise The Remote Service
In An Attempt to identify A Programming Deficiency Of The Remote Service Using The 2125

Input Data

Receive An Error Type Response From The Remote Service , The Error Type Response
Indicating How The Remote Service Handled The Input Data 2130

100

T }

Access An API Specification Of An API Of A Remote Service , The API Specification At Least Defining A Schema Of The API For Enabling Interaction With The Remote Service

105

Patent Application Publication

hh Extract The Schema From The API Specification

110

} }

Generate Input Data By Modifying Data Types Defined By The Schema Or By Generating Data Values Used As Input In An API Request Body

115

Generate The API Request Body For The API , The API Request Body Comprising The Input Data

k

120

Jul . 15 , 2021 Sheet 1 of 20

Transmit The API Request Body To The Remote Service To Exercise The Remote Service In An Attempt To Identify A Programming Deficiency Of The Remote Service Using The Input Data

125

Receive An Error Type Response From The Remote Service , The Error Type Response Indicating How The Remote Service Handled The Input Data

130

US 2021/0216435 A1

Figure 1A

100 Use The Error Type Response To Determine An Error Type Response Coverage Of The Remote Service

135

Patent Application Publication

Expand The Error Type Response Coverage By Repeatedly Performing At Least The Following Until A Threshold Metric Associated With The Error Type Response Coverage Is Satisfied

Zem 140

in Response To Learning How Previously - used Input Data , Including Said Input Data , Impacted The Error Type Response Coverage , Selectively Generate New Input Data , The New Input Data Being Selectively Generated In An Attempt to Elicit , From The
Remote Service , A New Error Type Response That is Nonoverlapping With Previous Error Type Responses , including Said Error Type Response

Zw . 145

1 1 1 1

Jul . 15 , 2021 Sheet 2 of 20

1

Transmit A New API Request Body Comprising The New Input Data To The Remote Service To Exercise The Remote Service

2

150

1 1 | 1 1

Receive The New Error Type Response From The Remote Service , The New Error Type Response Indicating How The Remote Service Handled The New Input Data

155

1 L 1

I

1

1

US 2021/0216435 A1

RE

>>

Oh were

ME

: HTHH THE THE HEHEN

MOH
FREE
OH

RE

More

et

RE

RE
Men

NEREN WOO

MEN
Het

MERE

REN HOHEN

RE

Figure 1B

100

Patent Application Publication

Identifying A Particular Programming Deficiency Of The Remote Service in Response To
At Least One Received Error Type Response

2160

165

170 1

Triggering An Alert Identifying The Particular Programming Deficiency

}

Triggering One Or More Remedial Actions To Resolve The Particular Programming Deficiency

Jul . 15 , 2021 Sheet 3 of 20 US 2021/0216435 A1

Figure 10

Architecture 200

Source Code 235

Restricted Access 240

Patent Application Publication

< / >

205

Programming Deficiency 260

Intelligent Fuzzing Tool 210

Network 215

API 225

Service 220

hehehe

Jul . 15 , 2021 Sheet 4 of 20

: 2 230 Specification Repository 250

Code Coverage 245

API Specification 255

US 2021/0216435 A1

Figure 2

SOAP API 325

Cloud - Based Service 305

Patent Application Publication

RPC API 330

Service 300

Local Service 310

API 320

REST API 335

: : 2

315

: 2 340

Jul . 15 , 2021 Sheet 5 of 20 US 2021/0216435 A1

Figure 3A

Figure 3B

Schema 405

{

1 2 3 4 4

Patent Application Publication

5 6 7

" etag " : " string " , " properties " : {

" registration VirtualNetworks " :(
{ " id " ; " string " }

1 ,

" maxNumberOfRecordSets " : 0 , " numberOfRecordSets " : 0 , " nameServers " : [" string ") ,

“ zoneType " : { " enum " : [" Public " , " Private "] } ,

" registration VirtualNetworks " : [
{ " id " : " string " }

Data Values 410

API Specification 400

" resolution VirtualNetworks " : [
{ " id " : " string ")

Data Types 415

}

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 }

Jul . 15 , 2021 Sheet 6 of 20

} ;

" id " : " string "
" name " : " string " , " type " : " string " ,

" ocation " : " string " ,
" tags " : { " string " : " string " }

US 2021/0216435 A1

Figure 4

Patent Application Publication Jul . 15 , 2021 Sheet 7 of 20 US 2021/0216435 A1

520
2

2

XML 505 NOST 510 YAML 515

Figure 5

Schema 500

Schema 600

Node Tree 605
root 610

Patent Application Publication

properties 620

-

tag 615

id 625

time 630

Jul . 15 , 2021 Sheet 8 of 20

Object String Integer

US 2021/0216435 A1

Figure 6

Schema 700

Fuzzing Rule (s)
720

Patent Application Publication

Input Data 705

API Request Body 725

Jul . 15 , 2021 Sheet 9 of 20

Data Values 710

Data Types 715

US 2021/0216435 A1

Figure 7

Fuzzing Rules 800
Dropping 805

Patent Application Publication

Selecting 810

Node Fuzzing Rules 825

Duplicating 815 Changing Node Type 820 Tree Fuzzing Rules 830

Jul . 15 , 2021 Sheet 10 of 20

Data Value Selection 835
: 840

US 2021/0216435 A1

Figure 8

Patent Application Publication Jul . 15 , 2021 Sheet 11 of 20 US 2021/0216435 A1

28
?

Selecting 910 ? A

B

Original Node 900 Figure 9A
A 0

B

Dropping 905 ?

Step

Original Node 900 A

Patent Application Publication

B

Duplicating 915

Changing Node Type 920

A

A

Jul . 15 , 2021 Sheet 12 of 20

B

B

0

12

D '

E

in

????

US 2021/0216435 A1

Figure 9B

Architecture 1000

1005

API Request Body 1015

Patent Application Publication

API 1030

Intelligent Fuzzing Tool 1010

Network 1020

Service 1025 20

Jul . 15 , 2021 Sheet 13 of 20

Default Value (s)
1050

Sanitizer 1040

Exercise 1035

Log 1055

Error Type Response 1045

Alert (s) 1060
Remedial Action (s)

1065

US 2021/0216435 A1

Figure 10

Error Type Response 1100

Error Type 1115

Error Code 1105

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

Patent Application Publication

Error Message 1110 Timestamp Data 1120

Jul . 15 , 2021 Sheet 14 of 20

Session Identification 1125 GUID 1130

2 1135

US 2021/0216435 A1

Figure 11

Error Type Response Coverage 1210

Patent Application Publication

1

{ }

{ I I I 1 I

Automata Learning 1205

I

} 1

Jul . 15 , 2021 Sheet 15 of 20

Error Type Response 1200

US 2021/0216435 A1

Figure 12

Error Type Response Coverage 1300

Error Type Response Coverage 1330

Deficient Error Type Response Coverage Area 1315

N

N

Patent Application Publication

1

1 1

1
was

1

185

?
1

1

Expand 1320

}

Jul . 15 , 2021 Sheet 16 of 20

New Input Data 1325 Effectiveness Metric 1335

Distinct Error Type Coverage Area 1305

Distinct Error Type Coverage Area 1310

US 2021/0216435 A1

Figure 13

Modification Degree 1400

Patent Application Publication

Modification 1410

Modification 1420

Modification 1430

A

B

E

F

H

Jul . 15 , 2021 Sheet 17 of 20

Modification 1405

Modification 1415

Modification 1425

Modification 1435

US 2021/0216435 A1

Figure 14

Previous Error Type Response 1500

Previous Error Type Response 1515

Patent Application Publication

Overlapping 1510

Nonoverlapping 1525

New Error Type Response 1505

New Error Type Response 1520

Jul . 15 , 2021 Sheet 18 of 20

Overlap Threshold 1530

US 2021/0216435 A1

Figure 15

Architecture 1600

Patent Application Publication

1605

New API Request Body 1620

AP 1635

Intelligent Fuzzing Tool 1610

Network 1625

Service 1630

1 } }

}

Jul . 15 , 2021 Sheet 19 of 20

1

New Input Data 1615

20

1

Sanitizer 1645

Exercise 1640

Threshold Metric 1660

New Error Type Response 1650

1655

US 2021/0216435 A1

Figure 16

1700A
O

Computer System 1700

Patent Application Publication

1700B

Processor (s)
1705

1/0 1710

Intelligent Fuzzing Tool 1715

Network 1735

1700C

0

ML Engine 1720

Jul . 15 , 2021 Sheet 20 of 20

Storage 1725

1700D

:

Code 1730

US 2021/0216435 A1

Figure 17

US 2021/0216435 A1 Jul . 15 , 2021
1

INTELLIGENTLY FUZZING DATA TO
EXERCISE A SERVICE

only in environments such as those described above . Rather ,
this background is only provided to illustrate one exemplary
technology area where some embodiments described herein
may be practiced . BACKGROUND

BRIEF SUMMARY
[0001] The phrase " code coverage " generally refers to a
measuring value or metric used to help developers under
stand what percentage of a body of source code has been
tested to identify programming deficiencies or “ bugs . ” By
providing this metric , developers are able to obtain a better
understanding regarding the durability and robustness of
their applications (e.g. , how those applications respond to
different circumstances and data) .
[0002] There are many tools currently available in the
industry to determine an application's code coverage . These
tools typically require access to the application's source
code . Once the tools analyze the source code , the tool is able
to generate different kinds and amounts of testing data . The
testing data is fed into the application , and the application is
monitored to determine how it reacts to the test data . By
monitoring the application's reactions to the testing data , the
tool is able to gauge the application’s durability with regard
to handling different types of data .
[0003] The phrase " data fuzzing " or simply “ fuzzing "
refers to a debugging technique in which invalid data is
purposely generated and fed as input into an application in
order exercise the application . In this regard , “ fuzzing ”
means automatic test generation and execution with the goal
of finding security vulnerabilities . Code coverage tools often
rely on data fuzzing techniques to better determine code
coverage . For instance , code coverage tools are able to
monitor applications while those applications are attempting
to handle the fuzzed data . Crashes , memory leaks or dumps ,
exceptions , race conditions , and other programming defi
ciencies can be exposed within the applications through the
use of the code coverage tools and fuzzed data .
[0004] The above - described code coverage tools and fuzz
ing techniques work well when the tools have access to an
application's underlying source code . That is , by having
access to the source code , the tools are able to readily gain
a comprehensive understanding of the operability of an
application . The testing data (e.g. , including fuzzed data) is
then specifically designed to exercise the application in
numerous ways . Significant problems arise , however , when
the application's underlying source code is no longer avail
able because the tools are no longer able to analyze the
source code to determine how to exercise the application .
[0005] Indeed , such problems are becoming more and
more pronounced with the increased usage of cloud services
because it is often the case that a cloud service operates
essentially as a so - called “ black box ” to many users and
client - side developers . For instance , it is becoming more
common for a cloud service's source code to be inaccessible
to client - side entities . Because of this reduced or even
complete inaccessibility to source code , traditional code
coverage tools and fuzzing techniques are becoming either
obsolete or substantially impaired in their abilities to test and
exercise an application . Accordingly , there is a substantial
need in the field to provide improved techniques for exer
cising applications / services , especially remote services .
There is also a substantial need to improve how those
exercising processes are performed in view of the potentially
remote nature of a service .
[0006] The subject matter claimed herein is not limited to
embodiments that solve any disadvantages or that operate

[0007] Embodiments disclosed herein relate to systems ,
methods , and devices that expand an error type response
coverage of a remote service by intelligently generating
input data , which is to be fed into the service to exercise the
service , and by dynamically modifying subsequent input
data based on how the remote service handled the previous
input data . By determining and progressively expanding the
error type response coverage , the embodiments are able to
beneficially determine the robustness and durability of the
service / application .
[0008] In some embodiments , an application program
ming interface (API) request body is generated for a remote
service's API . This API request body includes input data .
The API request body is transmitted to the remote service to
“ exercise ” (i.e. test) the remote service . This testing is
performed in an effort to identify a programming deficiency
of the remote service using the input data . An error type
response is then received from the remote service . This error
type response indicates how the remote service handled the
input data . The error type response is then used to determine
an error type response coverage of the remote service .
Subsequently , there is an attempt to expand the error type
response coverage by repeatedly performing a number of
operations .
[0009] These operations may be repeated until such time
as a particular threshold metric associated with the error type
response coverage is satisfied . For instance , in response to
learning how previously - used input data impacted the error
type response coverage , new input data is selectively gen
erated . This new input data is generated or designed to elicit ,
from the remote service , a new error type response that is
nonoverlapping with previous error type responses . A new
API request body , which now includes the newly generated
input data , is then transmitted to the remote service to
exercise the remote service using this new data . Subse
quently , a new error type response is received from the
remote service . This new error type response indicates how
the remote service handled this new data . As described
above , these processes may be repeated in an effort to
expand the error type response coverage of the remote
service .
[0010] This Summary is provided to introduce a selection
of concepts in a mplified form that are further described
below in the Detailed Description . This Summary is not
intended to identify key features or essential features of the
claimed subject matter , nor is it intended to be used as an aid
in determining the scope of the claimed subject matter .
[0011] Additional features and advantages will be set forth
in the description which follows , and in part will be obvious
from the description , or may be learned by the practice of the
teachings herein . Features and advantages of the invention
may be realized and obtained by means of the instruments
and combinations particularly pointed out in the appended
claims . Features of the present invention will become more
fully apparent from the following description and appended
claims , or may be learned by the practice of the invention as
set forth hereinafter .

US 2021/0216435 A1 Jul . 15 , 2021
2

BRIEF DESCRIPTION OF THE DRAWINGS [0027] FIG . 15 illustrates how it is beneficial to reduce the
amount of error type response " overlap ” (i.e. different inputs
produce different error type responses and thus are nonover
lapping as opposed to producing the same or overlapping
error type responses) between different testing runs in order
to maximize the efficiency of the testing processes and in
order to reduce costs associated with performing the testing
processes .
[0028] FIG . 16 illustrates another architecture in which the
testing operations may be repeated any number of times
until a particular threshold metric is satisfied .
[0029] FIG . 17 illustrates an example of a computer sys
tem capable of performing any of the disclosed operations
and capable of being configured in any of the disclosed
manners .

DETAILED DESCRIPTION

[0012] In order to describe the manner in which the
above - recited and other advantages and features can be
obtained , a more particular description of the subject matter
briefly described above will be rendered by reference to
specific embodiments which are illustrated in the appended
drawings . Understanding that these drawings depict only
typical embodiments and are not therefore to be considered
to be limiting in scope , embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which :
[0013] FIGS . 1A , 1B , and 1C illustrate a flowchart of an
example method for intelligently generating test data , which
is to be fed into a service in order to exercise the service and
in order to determine how the service handles the test data .
[0014] FIG . 2 illustrates an example architecture in which
an intelligent fuzzing tool initially identifies a schema for an
application programming interface (API) of a remote ser
vice .
[0015] FIGS . 3A and 3B illustrate different attributes
related to services and APIs .
[0016] FIG . 4 illustrates an example of a particular schema
and how the schema defines data types and potentially even
data values that are supported by a corresponding API .
[0017] FIG . 5 illustrates how schemas may be defined
using different types of languages .
[0018] FIG . 6 illustrates how the definitions provided
within a schema may be organized or represented within a
node tree .
[0019] FIG . 7 illustrates how a set of fuzzing rules may be
used to selectively generate and / or modify input data , which
is to fed as input into a service in an attempt to exercise the
service .
[0020] FIG . 8 illustrates different operations that may be
defined and / or performed by the fuzzing rules in order to
modify or “ fuzz " a body of input data .
[0021] FIGS . 9A and 9B provide additional details regard
ing the different operations defined by the fuzzing rules .
[0022] FIG . 10 illustrates an example architecture in
which an API request body , which includes fuzzed or
modified input data , is transmitted to a remote service and in
which the remote service provides an error type response
detailing how the remote service handled the input data .
[0023] FIG . 11 illustrates some information that may be
included or prevented from being included in the error type
response .
[0024] FIG . 12 illustrates an example of how the error type
response may be used to map or otherwise generate an error
type response coverage of the service , which coverage is
determined based on the modified input provided to the
service and is further based on the error type response
provided by the service .
[0025] FIG . 13 illustrates how it is desirable to progres
sively expand the error type response coverage to identify
coverage areas that have not been tested or that are indica
tive of a programming deficiency (e.g. , a " bug ") in the
service .
[0026] FIG . 14 illustrates how a tiered , managed , or pro
gressively incremental approach may be followed when
determining an amount or a level of modification that is to
be performed during successive modification runs . This
progressively incremental approach may also be in the form
of a pipeline comprising sequentially - applied modifications .

[0030] Embodiments disclosed herein relate to systems ,
methods , and devices that expand an error type response
coverage of a remote service by intelligently generating
input data , which is to be fed into the service to exercise the
service , and by dynamically modifying subsequent input
data based on how the remote service handled the previous
input data . As used herein , “ error type response coverage ”
generally refers to an extent or degree by which a service is
able to handle different types of invalid data by throwing
specific errors in response to that invalid data and by
determining the coverage without providing access to the
service's underlying source code . By determining and pro
gressively expanding the error type response coverage , the
embodiments are able to beneficially determine the robust
ness and durability of the service / application .
[0031] In some embodiments , an API request body is
generated for a remote service . This API request body , which
includes input data , is transmitted to the remote service to
exercise the remote service . This testing is performed to
identify deficiencies of the remote service . An error type
response is received from the remote service , where the
response indicates how the remote service handled the input
data . The response is used to determine an error type
response coverage of the remote service . An attempt to
expand the coverage is then performed by repeatedly per
forming a number of operations until a particular threshold
metric is satisfied . For instance , in response to learning how
previously - used input data impacted the coverage , new input
data is selectively generated . This new input data is designed
to trigger a new error type response from the service . The
new input is sent to the service via a new API request body .
Subsequently , a new error type response is received , where
the new error type response indicates how the remote service
handled this new data . As described above , these processes
may be repeated in an effort to expand the error type
response coverage of the remote service .

Examples of Technical Benefits , Improvements , and
Practical Applications

[0032] The following section outlines some example
improvements and practical applications provided by the
disclosed embodiments . It will be appreciated , however , that
these are just examples only and that the embodiments are
not limited to only these improvements .
[0033] The disclosed embodiments bring about substantial
benefits to the current technical field . For instance , the

US 2021/0216435 A1 Jul . 15 , 2021
3

embodiments provide lightweight and low - cost techniques
for determining the capabilities of a remote service to handle
invalid data . That is , it is often the case that clients provide
obscure or invalid data to a service . It is highly beneficial
and desirous to program or configure the service to be able
to handle such invalid data . If the service were not able to
handle this invalid data , then the user's interaction with the
service will be impaired , and the user may refrain from
continuing to use the service . Significant loss in business
may occur as a result . As such , it is beneficial to provide a
highly robust and durable service to clients . To provide a
robust service , it is beneficial to ensure that the service has
been exercised a sufficient amount . Accordingly , the dis
closed embodiments intelligently generate data payloads
embedded in API requests in order to find data - processing
bugs in remote services (e.g. , cloud services) .
[0034] By “ intelligently , " it is generally meant that the
disclosed fuzzing techniques are able to find programming
deficiencies even with a limited testing budget . For instance ,
simple black box random fuzzing techniques may work well
for binary formats , but such techniques are generally inad
equate or ineffective for testing structured data (e.g. , JSON
data) because the probability of generating new inputs is
quite low . Relatedly , so - called " symbolic - execution - based
whitebox fuzzing " or simpler " code - coverage - guided grey
box fuzzing ” are not applicable because the service under
test may now be a remote distributed black box type of
service .
[0035] With the migration to remote cloud - based services ,
many developers no longer have access to a service's
underlying source code . As such , traditional techniques for
exercising a service to determine code coverage are inad
equate . The disclosed embodiments satisfy this new need by
providing systems for remotely exercising an application to
determine its robustness and to determine its operational
coverage . By providing this need , the embodiments help
safeguard against and / or identify programming deficiencies
in the service . These deficiencies may then be resolved . As
a consequence , a user's interactions with the service will be
improved
[0036] Additionally , the embodiments improve the opera
tional efficiency of a computer and a service . That is , the
embodiments intelligently and efficiently identify program
ming deficiencies . Because programming deficiencies often
adversely impact functionality , the embodiments improve a
computer and system's functionality and efficiency by iden
tifying and potentially resolving these deficiencies . Addi
tionally , the disclosed embodiments intelligently leverage
API specifications , which include data schemas for API
request bodies , in order to automatically (e.g. , without
requiring developer intervention) generate fuzzed data .
Accordingly , the embodiments bring about numerous and
substantial improvements to the technical field . Additional
improvements are described throughout the remaining por
tions of this disclosure .
[0037] FIGS . 1A , 1B , and 1C refer to a number of methods
and method acts that may be performed . Although the
method acts may be discussed in a certain order or illustrated
in a flow chart as occurring in a particular order , no
particular ordering is required unless specifically stated , or
required because an act is dependent on another act being
completed prior to the act being performed .
[0038] Attention will now be directed to FIGS . 1A , 1B ,
and 1C . These figures illustrate a flowchart of an example

method 100 for dynamically expanding an error type
response coverage of a remote service by intelligently
fuzzing or modifying input data designed to exercise the
remote service in various ways . It should be noted that these
figures illustrate a few acts or steps illustrated using a
“ dashed ” outline . This dashing is provided to reinforce the
concept that such processes are optional processes and may
not necessarily be performed .
[0039] Method 100 includes an initial optional act (act
105) of accessing an API specification of an API of a remote
service . Notably , this API specification at least defines a
schema of the API to enable interaction with the remote
service . FIG . 2 provides a useful illustration of such a
process .
[0040] For instance , FIG . 2 shows an example architecture
200 comprising a client - side computer system 205 , which is
configured to execute an intelligent fuzzing tool 210. The
intelligent fuzzing tool 210 is executable on the computer
system 205 and may be configured to perform the method
acts described in connection with method 100 of FIGS . 1A ,
1B , and 1C .
[0041] In accordance with the disclosed embodiments , the
intelligent fuzzing tool 210 is able to communicate over a
network 215 with any number of remote services , such as
service 220. Service 220 may be any type of service made
available to users (e.g. , via a network connection , such as the
Internet) on an on - demand basis . Such services are capable
of providing scalable access to resources , processes , com
pute power , applications , and so forth . Examples of services
include , but are not limited to , data backup and storage ,
computation resources , email services , data processing , and
so forth , without limit .
[0042] Service 220 is shown as including or being asso
ciated with API 225. As used herein , an API is a collection
or set of functions , features , and / or procedures that are
provided to allow requestors access to the functionality of an
application or service . For instance , API 225 is provided to
enable an external entity (e.g. , an external application ,
developer , or even the intelligent fuzzing tool 210) access to
the features provided by service 220. Further details on APIs
will be provided later . It should be noted , however , that
although FIG . 2 shows only a single service 220 and API
225 , the ellipsis 230 is provided to demonstrate how any
number of services and APIs may be available over the
network 215 to the intelligent fuzzing tool 210. For instance ,
the number of services and APIs may be in the hundreds ,
thousands , or even millions .
[0043] FIG . 2 also shows how the service 220 is located
remotely relative to the computer system 205. By way of
example , service 220 may be a cloud - based service provided
in a cloud computing environment . Although service 220 is
shown as being remote , the principles described herein may
also be practiced in scenarios where the service 220 is local
to the computer system 205 , as will be described in more
detail later . As will be described in more detail later ,
regardless of where the service is located relative to the
intelligent fuzzing tool 210 , it is often the case that the
service's source code is inaccessible to the intelligent fuzz
ing tool 210. As such , traditional code coverage techniques
of analyzing the source code are generally not available .
[0044] A service is defined by source code , which in - turn
defines the functions the service is able to perform . For
instance , source code 235 defines the set of features and
functions that service 220 provides . Notice , in the scenario

US 2021/0216435 A1 Jul . 15 , 2021
4

presented in FIG . 2 , there is restricted access 240 to the
source code 235. That is , in this particular scenario , the
intelligent fuzzing tool 210 to prevented from accessing the
underlying source code 235 of the service 220. Because of
this restricted access 240 , traditional techniques of testing
and monitoring code coverage (as discussed earlier) are
quite limited and often entirely deficient . Code coverage 245
symbolically shows the limitation of traditional techniques
via the use of the large “ x ” over the code coverage 245 box
in FIG . 2. Accordingly , access to the source code 235 of the
remote service 220 is restricted such that the computer
system 205 (and the intelligent fuzzing tool 210) is pre
vented from being able to instrument or analyze the source
code 235 to measure code coverage .
[0045] FIG . 2 also shows a specification repository 250 ,
which is a type of computing data storage unit (e.g. ,
memory) and which is shown as storing any number of API
specifications , including API specification 255. In this
example , API specification 255 is associated with the API
225 and specifically documents , comments , describes , or
otherwise defines the functionalities and features API 225
uses . That is , API specification 255 provides a description
regarding how API 225 behaves and how API 225 commu
nicates or links with other APIs .
[0046] Additionally , API specification 255 describes the
types of data values and inputs API 225 is able to receive as
input and the types of data values and outputs the API 225
is able to provide as output . By way of example , a particular
API specification may describe how a client request can
create (e.g. , PUT / POST) , monitor (e.g. , GET) , update (e.g. ,
PUT / POST / PATCH) , and delete (e.g. , DELETE) cloud
resources . Additionally , an API specification may clarify
how the body of a particular request (aka an API request
body) or query is to include certain cloud resource identi
fiers . In some cases , the API specification may dictate that
the identifiers are to be specified in the path of the request
or perhaps the body of the request . The API specification
may also identify additional input parameters values (e.g. , in
the path or body) . Such parameter values and their formats
are described in a so - called " schema ” that is also a part of
the API specification . A combination of concrete input
parameter values included in a request body (or API request
body) is called a body " payload ” or “ input data . ” Additional
details on a schema will be provided later .
[0047] Turning briefly to FIGS . 3A and 3B , FIG . 3A
shows an example service 300 , which is representative of the
service 220 from FIG . 2. As described above , service 300
may be configured in an unlimited number of ways , some of
which include a cloud - based service 305 or even a local
service 310. The ellipsis 315 is provided to illustrate how
any type of service may be included as service 300 .
[0048] Similarly , FIG . 3B shows an API 320 , which is
representative of API 225 from FIG . 2. API 320 can be any
type of API , including but not limited to , a simple object
access protocol (SOAP) API 325 , a remote procedure call
(RPC) API 330 , and a representational state transfer (REST)
API 335. The ellipsis 340 illustrates how any other API type
may be used as well .
(0049) Generally , SOAP API 325 is a standard type of
communication protocol that allows different operating sys
tems to communicate using HTTP and XML . Often , SOAP
APIs are provided to perform specific operations with regard
to accounts , such as update , create , delete , or recover those

[0050] RPC API 330 is a relatively simple type of API .
Generally , RPC APIs deal with executing code on another
computing device , such as a server . In some cases (e.g. ,
when HTTP is used) , an RPC API can be used as a web API .
[0051] A REST API or an API that is RESTful relates to
an architectural software style defining different conditions ,
limitations , and constraints to create web - based services .
REST APIs are implemented on top of the HTTP / S protocol
and offer a uniform way to manage cloud resources . Using
APIs that conform to REST conditions / requirements enables
computer systems to interoperate over the Internet . Cloud
service developers can document REST APIs using different
interface - description languages , such as Swagger or
OpenAPI , in the API specification 255 of FIG . 2. In this
regard , the API specification describes how to access a cloud
service through its REST API , including what requests the
service can handle , what responses may be received , and the
request and response formats .
[0052] Generally , REST requires the following six differ
ent architectural constraints : (1) uniform interface , (2) cli
ent - server , (3) stateless , (4) cacheable , (5) layered system ,
and (6) code on demand . These different constraints , along
with the REST architecture , are generally known in the art
and will not be discussed in detail herein . In any event , the
service 220 and the API 225 in FIG . 2 may be any type of
service and any type of API , without limit . In some embodi
ments , API 225 is specifically a REST API and the service
220 is a remote service based in the cloud (i.e. a cloud - based
service) . Accordingly , the disclosed embodiments are able to
access an API specification of a service's API .
[0053] Returning to FIG . 1A , method 100 includes
another optional act (act 110) of extracting a schema from
the API specification described in act 105. This schema
defines which specific data types and perhaps data values or
data ranges are supported by the API . In this regard , the
schema provides at least some of the API documentation that
was discussed earlier . FIG . 4 is illustrative of an example
schema representative of the schema described in act 110 .
[0054] In particular , FIG . 4 shows an API specification
400 , which is representative of the API specification 255 in
FIG . 2 and the API specification mentioned in act 105. API
specification 400 includes a schema 405 outlining or defin
ing the properties , features , and functions of a corresponding
API . For instance , schema 405 defines data values 410 (or
ranges) and data types 415 provided or supported by the
corresponding API . Schema 405 is currently shown as being
drafted using a specific type of syntax , but it will be
appreciated that any syntax may be used to define schema
405. In the example provided in FIG . 4 , schema 405 can be
viewed as a tree (to be discussed later) having 22 different
nodes . One will appreciate , however , the schemas may be
any size (e.g. , thousands of lines of code) , without limit .
[0055] Because schema 405 includes different objects ,
arrays , integers , strings , and so forth (e.g. , potentially any
number of other types of data elements) of unbounded sizes
and numerical values , there are an unlimited number of ways
to generate concrete input parameter values (i.e. payloads)
satisfying the schema . Similarly , there are an unlimited
number of ways to generate input parameter values that
violate the schema . Because of the unlimited number of
different ways , it is beneficial to perform intelligent tech
niques for exercising a service , as will be described in more
detail later . accounts .

US 2021/0216435 A1 Jul . 15 , 2021
5

[0056] Turning now to FIG . 5 , there is shown an example
schema 500 , which is representative of schema 405 from
FIG . 4. FIG . 5 shows how schema 500 may be written in any
type of syntax , including , but not limited to , extensible
markup language (XML) 505 , JavaScript object notation
(JSON) 510 , or yet another markup language (YAML) 515
(also referred to as YAML Ain't Markup Language) . The
ellipsis 520 is provided to demonstrate how any other syntax
may alternatively be used to define the schema 500 .
[0057] The process of extracting the schema from the API
specification may be performed in numerous different ways .
For instance , some embodiments parse the API specification
into keywords and then determine the schema based on the
identified keywords . Some embodiments feed the API speci
fication into a machine learning algorithm that has been
trained to parse and segment API specifications into their
constituent parts .
[0058] As used herein , reference to any type of machine
learning may include any type of machine learning algo
rithm or device , convolutional neural network (s) , multilayer
neural network (s) , recursive neural network (s) , deep neural
network (s) , decision tree model (s) (e.g. , decision trees ,
random forests , and gradient boosted trees) linear regression
model (s) , logistic regression model (s) , support vector
machine (s) (“ SVM ”) , artificial intelligence device (s) , or any
other type of intelligent computing system . Any amount of
training data may be used (and perhaps later refined) to train
the machine learning algorithm to dynamically perform the
disclosed operations .
[0059] The extraction process may also involve segment
ing or organizing . For instance , FIG . 6 shows an example
schema 600 , which is representative of the schemas dis
cussed thus far . A request body schema (e.g. , schema 600)
can be encoded in different formats and may be viewed as
a tree in which each node corresponds to a property field and
is labeled with a type .
[0060] In FIG . 6 , schema 600 has been organized to form
a node tree 605 comprising any number of parent and child
nodes . To illustrate , the node tree 605 includes a top - level
node labeled as root 610 , and then lower - level nodes labeled
as tag 615 , properties 620 , id 625 , and time 630. The
different formats (e.g. , empty circled , rightward slanted
lines , and leftward slanted lines) are provided to illustrate
the different types of data . For instance , an empty circle is
representative of an object - type element , a circle with right
ward slanting lines represents a string - type element , and a
circle with leftward slanting lines represents an integer - type
element . Of course , node tree 605 is simply provided as an
illustrative example , and other types of elements and nodes
may be used as well . In any event , the embodiments are able
to format or segment schemas in different manners in order
to extract the data therefrom .
[0061] Returning to FIG . 1A , method 100 then includes an
optional act (act 115) of generating input data (e.g. , a body
payload that is to be provided in a request sent to the service)
by modifying or fuzzing one or more data types defined by
the schema or , additionally or alternatively , by generating
one or more data values used as input in the API request
body . FIG . 7 provides some additional illustrations related to
this method act .
[0062] In particular , FIG . 7 shows a schema 700 , which is
representative of the schemas discussed thus far . In accor
dance with the disclosed principles , the embodiments are
able to selectively generate input data 705 comprising data

values 710 and / or modifications to data types 715 of the
schema 700. The input data 705 is then provided in an API
request body 725 , as described in method act 115 .
[0063] The data values 710 and the data types 715 may be
determined based on a set of fuzzing rule (s) 720. In par
ticular , the fuzzing rule (s) 720 are defined to determine how
to generate the input data 705. By way of example , the set
of fuzzing rule (s) 720 may be used to define how to modify
a node or a combination of nodes in the schema of the API ,
such as the nodes described in FIG . 6 (e.g. , root 610 , tag 615 ,
etc.) . Additionally , the set of fuzzing rule (s) 720 may further
define how to select specific data values (e.g. , data values
710) to be used as input in the API request body 725. In
accordance with the disclosed principles , the modified
nodes , data types , or input are selected to be purposefully
invalid in order to trigger different types of error type
responses from the service . That is , by providing invalid
" fuzzed ” data to the service , the service will be required to
attempt to handle the invalid data . By analyzing how the
service handled the data , the embodiments are then able to
determine how robust the service is . A combination of the
different analytics used to monitor how the service handled
invalid data is generally referred to as the “ error type
response coverage .
[0064] The process of modifying nodes should be inter
preted broadly to include any alteration , change , or adjust
ment to a particular node or perhaps to proximately disposed
nodes (e.g. , parent nodes or children nodes) . Building on
that understanding , FIG . 8 shows a set of fuzzing rules 800 ,
which are representative of the fuzzing rule (s) 720 from
FIG . 7 .
[0065] Fuzzing rules 800 illustrate how the process of
modifying a node includes , but is not limited to , dropping a
node (e.g. , dropping 805) , selecting a node (e.g. , selecting
810) , duplicating a node (e.g. , duplicating 815) , or changing
a type of the node (e.g. , changing node type 820) . The
combination of these different rules is labeled as node
fuzzing rules 825. The fuzzing rules 800 may define other
operations or procedures that may be performed to modify
or fuzz data or node type / structure , as will be described in
further detail later .
[0066] Attention will now be directed to FIGS . 9A and 9B ,
which are representative of the different modification pro
cesses discussed in connection with FIG . 8 with regard to the
node fuzzing rules 825. For instance , the processes outlined
in FIGS . 9A and 9B define various schema fuzzing rules that
take as input a body schema (e.g. , schema 405 from FIG . 4)
and return a set of fuzzed schemas .
[0067] Initially , FIG . 9A shows an original node 900
comprising nodes labeled A , B , C , D , E , and F. These
different nodes are representative of the nodes discussed in
connection with FIG . 6 , and they may further be represen
tative of any elements defined within any of the schemas
discussed thus far .
[0068] FIG . 9A shows a dropping 905 process where ,
given a node defined in a schema , the node fuzzing rule
dropping 905 removes one child node of a parent node while
the other child nodes remain unchanged . For instance , given
the parent node A in FIG . 9A , node B is dropped (as
symbolized by the “ x ” illustration over the B node) while the
other child node C remains unchanged . In this regard , the
process of modifying or fuzzing the schema (e.g. , to intro
duce invalid data to a service in an attempt to exercise the

US 2021/0216435 A1 Jul . 15 , 2021
6

service to determine how the service handles invalid data)
may include dropping a particular node .
[0069] FIG.9A also shows a selecting 910 process where ,
given a node defined in the schema , the node fuzzing rule
selecting 910 keeps one child node while other lateral nodes
(i.e. nodes positioned at the same level in the node hierar
chy) are removed . By way of example , nodes B and C are
at the same level in the node hierarchy . Nodes D , E , and F
are also at a common level within the node hierarchy , but
this level is lower than the level of nodes B and C. In FIG .
9A , node D has been " selected . ” As a consequence , nodes E
and F are removed .
[0070] FIG . 9B shows a duplicating 915 process where ,
given a node defined in the schema , the node fuzzing rule
duplicating 915 adds a new child node to the node tree by
copying an existing child as well as the descendant nodes of
that existing node . By way of example , in FIG . 9B under the
duplicating 915 example , node C is selected for duplication ,
thereby adding node C ' as well as nodes D ' , E ' , and F ' to the
node tree .

[0071] FIG . 9B also shows a changing node type 920
process where , given a node defined in the schema , the node
fuzzing rule changing node type 920 changes the labeled
type of a node . For instance , in the changing node type 920
example , node D has been selected for a type change . As an
example , suppose the original type of node D was a string
type . By changing the type , node D may now be labeled as
an integer , a floating - point value , an array , or any other type
besides the string type .
[0072] In some implementations , changing the type of a
node may have side effects on the tree structure . For
instance , changing an array to a string may result in the
removal of all the child nodes for the modified node . In
contrast , changing the type of a leaf node to (as opposed to
“ away from ”) an object or an array may preserve the tree
structure , because those objects or arrays may be left empty
(i.e. no child nodes would be added) .
[0073] It will be appreciated that any one of the above
described schema fuzzing rules (e.g. , dropping , selecting ,
etc.) may be applied one or more times . Additionally , any of
the schema fuzzing rules may be applied in combination
with any one or more other ones of the schema fuzzing rules ,
without limit .
[0074] Returning to FIG . 8 , the fuzzing rules 800 may be
used to define various structural schema fuzzing rules (e.g. ,
as described in connection with FIGS . 9A and 9B) , which
modify the tree - structure or data types of structured data
(e.g. , JSON data) and which are generally referred to as the
node fuzzing rules 825 in FIG . 8 .
[0075] In addition to node fuzzing rules 825 , the fuzzing
rules 800 may also include certain tree fuzzing rules 830 .
Tree fuzzing rules 830 define how to apply a node fuzzing
rule over a schema tree to produce a new fuzzed schema tree .
In some embodiments , there may be at least three different
tree fuzzing rules , namely : Single , Path , and All .
[0076] The tree fuzzing rule Single applies the node
fuzzing rule on one single node while keeping all other
nodes unchanged . The rule Single applied exhaustively on
the entire schema tree will yield the smallest set of fuzzed
schema variants (e.g. , linear with the original schema size) .
[0077] The tree fuzzing rule Path selects a path in the
schema tree , selects a set of nodes on that path , and then

applies the node fuzzing rule to every node in that set . This
tree fuzzing rule explores more structural and type variants
than Single does .
[0078] The tree fuzzing rule All selects a set of nodes in
the schema tree and then applies the node fuzzing rule to
every node in that set . This rule generalizes both Single and
Path , but can generate exponentially many fuzzed schema
variants . The dropping , selecting , etc. operations may be
performed for the nodes operated on by any one of the
different tree fuzzing rules 830 .
[0079] The fuzzing rules 800 may also define various rule
combinations , search heuristics (e.g. , because rule combi
nations generate large amounts of fuzzed data , performing
different search heuristics is advantageous) , extracting data
values from examples included in API specifications , and
learning data values on - the - fly from pervious service
responses . These aspects are discussed in more detail
throughout this disclosure .
[0080] The above description focused on various tech
niques for modifying or fuzzing structural features of a
schema . Returning to FIG . 7 , these modified structural
features may then be included in the input data 705 which is
then included in the API request body 725 .
[0081] While the above disclosure focused on various
techniques for modifying schema structure , the embodi
ments are also able to selectively modify or generate data
values 710 and include those data values 710 in the API
request body 725. For instance , suppose a parameter defined
in the schema 700 accepts or requires data values falling
within a defined range of values . In accordance with the
disclosed principles , the embodiments are able to generate
modified or fuzzed data , where the data extends beyond or
violates the defined range of acceptable values . The embodi
ments are also able to intelligently determine which data
values are to be fed as input to the remote service . Additional
details regarding the “ intelligent ” process for fuzzing data
are described below .
[0082] For instance , in FIG . 8 , the fuzzing rules 800 also
include rules for determining data value selection 835 (i.e.
determining which concrete values are to be included in the
payload as input for the service) . As described earlier , a body
(fuzzed-) schema defines an overall tree structure and labeled
types . A leaf node represents a property field that is to be
rendered with a concrete value to form a complete payload /
input for the service .
[0083] For example , a string - typed node location can have
the value “ global ” or “ local . ” This rendering process is
non - trivial and may require some domain knowledge of the
service under test . For instance , a specific service request
with a string - typed node location might accept the value
“ global ” but not “ U.S. ” or “ Europe ” , even though all of
these data values are syntactically - valid string - typed values
and , moreover , may be accepted in other contexts for
location .
[0084] Regardless of what the tree structures and labeled
types of the fuzzed - schemas are , it has been found that the
service under test often rejects payloads due to a specific
invalid value rendering of one single node (e.g. , node “ id ”) .
This value rendering barrier can be broken down into the
following root causes . (1) lack of client - specific information ,
such as subscription ID and resource group name ; (2) lack
of domain - specific information , for example , only “ local ”
and " global ” are valid location values , and a timeout value
can only be a positive integer smaller than 3,600 ; and (3)

US 2021/0216435 A1 Jul . 15 , 2021
7

lack of run - time dependent information , such as the name of
a resource that is dynamically created by a previous request .
Accordingly , the following discussion will now present a
few techniques for intelligently fuzzing or modifying data
values .
[0085] The simplest way of assigning a concrete value to
a leaf node in a fuzzed - schema (i.e. to generate the input
data) is to have a type - value mapping , which maps each type
to a single value . For instance , some embodiments use the
following mapping , namely : " fuzzstring " , 0 , false , { } , and
[] for leaf nodes labeled with type string , integer , Boolean ,
object , and array , respectively . This strategy can be used by
default , as a baseline , but it may not address the lack of
either client - specific , domain - specific , or run - time depen
dent information .
[0086] Another technique for fuzzing values to generate
input data is to learn from data included within past
responses , and then apply that learning to new requests . For
instance , the response to a valid request may contain infor
mation on the service's current state , as opposed to an error
message when the request is invalid . For example , the
response to a successful PUT request may contain the
identification of the newly created resource (e.g. , run - time
dependent information) . Similarly , the responses to success
ful GET and PATCH requests may return details of the target
resources .

[0087] Unlike request examples provided in an API speci
fication (which is based on the body schema) , the responses
from the service may have properties not declared in the
body of the request . Often , the response schema is actually
similar to the request body schema , which makes it possible
to re - use response values for some parameters in the body of
future requests . In other words , learning from responses may
reveal the context of the current client - service interaction
and potentially provides client - specific , domain - specific ,
and run - time dependent information .
[0088] Another technique for fuzzing values to generate
input data is to use pattern matching to compare tags (i.e. a
path and hierarchy status) of candidate values to the node
path in the fuzzed - schema tree structure . Two levels of
precision are often considered : (1) conservative and (2)
aggressive .
[0089] When in conservative mode , a candidate value is
chosen for a node “ n ” only if its tag exactly matches the node
path of “ n ” in the fuzzed - schema . For example , given a node
n - type in the fuzzed - schema , the candidate value “ Public "
may be selected only if its parent is n , nproperties and there are
no other parents . On the other hand , under aggressive mode ,
only the last level (leaf) in the hierarchy is compared . For
example , as long as a candidate value has a tag suffixed with
type , it will be chosen for the node ntype , regardless of the
parent nodes .
[0090] Any number or combination of the above tech
niques may be used to selectively generate values to serve as
input . Provided below is a list of a few additional example
techniques for fuzzing data values to generate input data .
[0091] 1. Baseline (BAS) : Select a value for a node using
only the type - value mapping , as described above .
[0092] 2. Examples only (EXM) : Select a value for a node
by using examples outlined in an API specification , or ,
alternatively , by using the type - value mapping if no example
is available .
[0093] 3. Responses only (a conservative approach)
(CON) : Select a value for a node using the responses in

conservative mode , or , alternatively , use the type - value
mapping if no candidate value is available .
[0094] 4. Responses only (an aggressive approach)
(AGG) : Select a value for a node using the responses in
aggressive mode , or , alternatively , use the type - value map
ping if no candidate value is available .
[0095] 5. Responses (conservative) and examples (CON +
EXM) : Select a value for a node using the responses in
conservative mode , or , alternatively , use examples if no
candidate value is available ; otherwise , use the type - value
mapping .
[0096] 6. Responses (aggressive) and examples (AGG +
EXM) : Select a value for a node using the responses in
aggressive mode , or , alternatively , use examples if no can
didate value is available ; otherwise , use the type - value
mapping
[0097] Accordingly , any number or combination of the
above techniques may be used to intelligently fuzz data . Of
course , other techniques may be used as well . For instance ,
any type of machine learning algorithm may be used to
generate fuzzed data . Returning to FIG . 8 , the ellipsis 840 is
provided to symbolically illustrate how other types or fuzz
ing rules may be included among the fuzzing rules 800. By
way of example , some embodiments use grammar - based
fuzzing techniques , which allows different complex gram
mars to be generated using different text and binary data
formats . Accordingly , the disclosed principles should be
interpreted in a broad manner . In this regard , the embodi
ments are able to generate input data by modifying data
types and / or by generating data values .
[0098] Returning to FIG . 1A , method 100 then includes an
act 120 of generating an API request body (e.g. , the API
request body 725 of FIG . 7) for the API of the remote
service . This API request body includes the input data that
was previously generated (e.g. , in act 115) .
[0099] Thereafter , method 100 includes an act (act 125) of
transmitting the API request body to the remote service in
order to exercise the remote service . This exercise process is
performed in an attempt to identify a programming defi
ciency of the remote service using the input data . For
instance , turning briefly to FIG . 2 , source code 235 is shown
as including a programming deficiency 260. It will be
appreciated that this programming deficiency 260 may be
any type of bug , exception , error , or deficiency , without
limit .
[0100] For instance , the source code 235 may be have a
race condition , or a memory leak , an exception at a particu
lar line of code , or it may crash when a particular type of
invalid data is received (as opposed to executing error
handling code so as to prevent the service from crashing) .
Often , applications and services have many bugs , some of
which may not be discovered for a long time or until the
service is in operation . One beneficial feature of the dis
closed embodiments is the ability to root out programming
bugs in source code and to trigger the performance of a
remedial action to resolve or correct the bug . Accordingly ,
the API request body , which now includes fuzzed or modi
fied data (i.e. data specifically selected or generated in an
attempt to break the service) , is transmitted to the service in
order to test and exercise the service in an attempt to identify
bugs .
[0101] Because the service is remote and because access
to the underlying source code is often now unavailable ,
client - side developers may no longer be able to use tradi

US 2021/0216435 A1 Jul . 15 , 2021
8

tional techniques to conduct code coverage testing . Notwith
standing the unavailability of direct access to source code ,
the disclosed embodiments are nevertheless still able to test
a service to measure or gauge its error type response
coverage , as will be described in more detail to follow .
[0102] FIG . 10 provides a beneficial visualization of the
operations performed in connection with method acts 120
and 125 discussed above . In particular , FIG . 10 illustrates an
example architecture 1000 , which is similar to the architec
ture 200 of FIG . 2 and which is representative of some of the
method acts discussed in method 100 of FIGS . 1A , 1B , and
1C .

[0103] Architecture 1000 is shown as including a client
side computer system 1005 and an intelligent fuzzing tool
1010 , both of which are representative of the computer
systems and intelligent fuzzing tools discussed thus far . In
accordance with the disclosed embodiments , the intelligent
fuzzing tool 1010 is able to generate input data (i.e. body
payload data) and an API quest body 1015 , which is
representative of those API request bodies discussed thus
far . API request body 1015 is then transmitted over a
network 1020 to a remote service 1025 , which is associated
with a corresponding API 1030 .
[0104] Upon receiving the API request body 1015 , the
service is able to extract the data values and identify the data
types embedded or included within the API request body
1015. Because the data values and data types have been
modified or fuzzed in a purposeful manner so as to be invalid
(i.e. beyond the scope defined in the schema of the API
1030's API specification) , the service 1025 will likely not be
able to perform normal operations on the incoming input
data . Instead , the service 1025 will be exercised (as shown
by exercise 1035) in which the service 1025 will attempt to
handle the invalid data . If the service 1025 includes error
exception handling code pertinent to the input data , then the
service 1025 may be able to adequately respond to the
invalid input data with a predefined error code or message .
On the other hand , if the service 1025 does not include error
exception handling code pertinent to the input data , then the
service 1025 may not be able to adequately respond to the
invalid input data and thus may throw or issue an irrelevant
error code or message or worse the service may crash . In
cases where the service 1025 includes a programming
deficiency (e.g. , an inability to handle the data) , the service
1025 may simply throw a generalized error message or
perhaps a relevant error message . In any event , the error
code or message may be returned to the client - side computer
system 1005 .
[0105] In some cases , the service 1025 may include a
sanitizer 1040 tasked with sanitizing or removing certain
personally identifiable information (PII) from the error
codes or messages prior to permitting the error codes or
messages from leaving the service 1025's control . For
instance , the resulting error type response may be sanitized
prior to being received by the computer system 1005 .
Sanitizing the error type response may include extracting ,
stripping , or otherwise preventing at least the following
types of information from being included in the error type
response when it is transmitted to the computer system
1005 : timestamp data , session identification , or a globally
unique identifier (GUID) . Accordingly , the embodiments are
able to transmit the API request body to the remote service

to exercise the remote service in an attempt to determine
how the remote service handled the specifically customized
input data .
[0106] Returning to FIG . 1A , method 100 additionally
includes an act (act 130) of receiving an error type response
from the remote service . This error type response indicates
how the remote service handled the input data . For instance ,
the error type response may include specific error codes ,
error messages , and / or error types . Such an operation is
shown in FIG . 10 by the service 1025 transmitting error type
response 1045 to the computer system 1005 .
[0107] It should be noted that in some cases , the original
input data transmitted in the API request body 1015 of FIG .
10 may be based on a determined set of default value (s)
1050 outlined either in an API specification or perhaps
received in response to one or more queries or requests sent
to the service 1025 (as was described earlier) . For instance ,
in some cases , a response from the service 1025 may detail
default value (s) 1050 the service is programmed to use .
Accordingly , the embodiments are able to initially use the
default value (s) 1050 as a baseline value and then fuzz or
modify these default value (s) 1050 .
[0108] Additionally , it should be noted that the embodi
ments are able to maintain a log 1055 recording the com
puting processes performed in connection with the disclosed
operations . This log 1055 may be configured to be an
auditable record detailing the operations that the computer
system 1005 and the service 1025 performed . In this regard ,
the log 1055 may be maintained to track interactions
between the computer system 1005 and the remote service
1025. If the log 1055 is queried , specific sections of the log
1055 may be returned as a response to the query or ,
alternatively , the entire log 1055 may be provided as a
response . In any event , the data included in the log 1055 may
be used to facilitate identifying programming deficiencies
and further facilitate debugging those deficiencies .
[0109] If the embodiments do identify a bug or program
ming deficiency in response to analyzing the error type
response 1045 , then the embodiments are able to trigger
alert (s) 1060 and perhaps trigger any number of remedial
action (s) 1065. Further detail on these aspects will be
provided later .
[0110] Method 100 continues in FIG . 1B where , after
receiving the error type response from the service , method
100 includes an act (act 135) of using the error type response
to determine an error type response coverage of the remote
service . FIG . 11 provides some additional detail regarding
how the embodiments determine this so - called error type
response coverage .
[0111] Initially , FIG . 11 shows an example error type
response 1100 , which is representative of the error type
response 1045 from FIG . 10. As shown , the error type
response 1100 may be configured to include one or more of
an error code 1105 , an error message 1110 , or even an error
type 1115 , which is a combination of the error code 1105 and
the error message 1110 (i.e. an error code and error message
pair) .
[0112] As used herein , error code 1105 is a particular
number identifying which error the remote service (e.g. ,
service 1025 from FIG . 10) encountered while operating
using the received input data . Because the received input
data was purposely designed to be invalid , the service was
tasked with attempting to handle the invalid data . If the
service was programmed to handle the invalid data in a

US 2021/0216435 A1 Jul . 15 , 2021
9

particular manner , then the service will issue a particular
error code identifying the error that occurred while process
ing the invalid data . On the other hand , if the service was not
programmed to handle the invalid data , then a generalized
error code may be issued .
[0113] Accordingly , when a service fails to process a
request , it returns an error code to notify the client of this
failure . With regard to REST APIs , a REST API request may
return an HTTP status code , which is in the 40x range when
the failure is triggered by an invalid yet handled request , or
in the 50x range for unhandled conditions or generic failures
to process the request . In addition , a service may define its
own finer - grained error code that includes domain - specific
information .
[0114] One benefit of the disclosed embodiments relates to
the ability to test or exercise a service in an attempt to
identify whether the service has been adequately pro
grammed to handle numerous different types of invalid data .
This concept (i.e. determining whether the service is able to
handle different types of invalid data) is the so - called " error
type response coverage . ” To clarify , " error type response
coverage ” generally refers to an extent or degree by which
a service is able to handle different types of invalid data by
throwing specific errors in response to that invalid data .
[0115] Relatedly , error message 1110 is a descriptive mes
sage describing an unexpected condition the service encoun
tered (e.g. , in response to invalid data or an incorrect
instruction) as well as potentially a detailed description of
the specific error that occurred . Often , error message 1110
includes ASCII text describing the unexpected condition .
Therefore , in addition to an error code , a response for a
failed request will often include an error message . This
message is valuable in that it further describes how the
payload was attempted to be processed , especially when the
same error code was used for many invalid requests . The
error message provides additional context for different
errors , some of which may not be distinguished by using
only their error codes .
[0116] Prior to being sent to the client - side computer
system , in some cases , the error type response 1100 may
include timestamp data 1120 , session identification 1125 , or
a GUID 1130. In some cases , additional PII may be included
in the error type response 1100 , as symbolically shown by
the ellipsis 1135. As described earlier , however , the embodi
ments are able to strip or sanitize such information from the
error type response 1100 such that PII is prevented from
being delivered to the client - side computer system .
[0117] The embodiments are configured to collect , aggre
gate , or otherwise compile any number of different error
type responses and link , document , or correlate each error
type with the specific invalid data that was used to trigger the
error type response . For instance , the embodiments may
maintain a database or other type of data storage repository
listing each error type response along with its corresponding
set of invalid data . For instance , suppose a set of invalid data
“ A ” triggered error type response “ Al ” and invalid data “ B ”
triggered error type response “ B1 . ” The embodiments are
able to track and monitor these correlations .
[0118] Because the service is remote relative to the intel
ligent fuzzing tool , the tool is not able to directly determine
code coverage . Instead , the tool is configured to determine
coverage by sending queries or requests to the remote
service and analyzing the responses received from the
service to determine how robust the service is when it

receives invalid data . By analyzing the different error type
responses , the embodiments are able to systematically build
a profile of the service , where the profile is reflective of how
the service operates when faced with invalid data . This
profile is referred to as the error type response coverage .
[0119] FIG . 12 provides some additional description
regarding the error type response coverage . Initially , FIG . 12
shows an error type response 1200 , which is representative
of the error type response 1100 from FIG . 11 as well as the
other error type responses mentioned herein . The disclosed
embodiments are able to use any type of machine learning
or automata learning 1205 in facilitating the determination
of the error type response coverage 1210 of a remote service .
For instance , automata learning 1205 may be used to intel
ligently select or generate the different types of input data to
be fed into the remote service . The process of expanding the
error type response coverage 1210 is directly dependent on
the types of responses received from the service , and the
types of responses are dependent on the types of input data .
As a consequence , the automata learning 1205 influences
how the error type response coverage 1210 is expanded .
[0120] Generally , automata learning 1205 is a type of
machine learning technique in which a current process or
action is performed based on a set of previous actions or
experiences that were performed . In some cases , automata
learning 1205 is a type of reinforcement learning and is
based on various different states or statuses of data . As will
be described in more detail later , the embodiments use
automata learning 1205 techniques to select new invalid data
to feed to the remote service in an effort to continue to
expand the growing profile or error type response coverage
1210 the embodiments are learning about the remote ser
vice .

[0121] FIG . 12 shows the error type response coverage
1210 in the form of a sunburst chart . One will appreciate ,
however , that such a visualization is for example purposes
only , and the embodiments are not limited to visualizing the
error type response coverage 1210 in this manner . Indeed ,
the coverage may be visually displayed using any known
technique , or , alternatively , the coverage may not be visually
displayed .
[0122] In any event , the sunburst chart is provided to
symbolically represent the error type response coverage
1210 of a remote service (e.g. , service 1025 from FIG . 10) .
To build the error type response coverage 1210 , the embodi
ments repeatedly transmit invalid input data to the remote
service and then analyze the error type responses . The
sunburst chart of FIG . 12 comprises the following data
values : A , B , C , D , a , b , c , d , 1 , 2 , and 3. These letters and
numbers are provided for example purposes only . Generally ,
these letters and numbers reflect coverage areas where the
remote service has been provided invalid data and exercised
using that invalid data . Additionally , these letters and num
bers reflect the error type responses received from the
remote service .
[0123] As shown , the upper right - hand area of the sun
burst chart is filled in with numerous letters and numbers . In
contrast , the left - hand area of the sunburst chart is relatively
less filled in . The symbolic “ filling in ” of the sunburst chart
represents that there are still large areas of the service that
have not been exercised using invalid data . As a conse
quence , the profile or error type response coverage 1210 of
the remote service is still rather limited .

US 2021/0216435 A1 Jul . 15 , 2021
10

[0124] It is desirable to expand an understanding of how
the remote service handles invalid data (i.e. the error type
response coverage 1210) because doing so will facilitate the
operation of identifying bugs and programming deficiencies .
For instance , if the service is never tested in a particular area (e.g. , by receiving a specific type of invalid input data) , then
developers may not know whether or not the service is
adequately programmed in that area . In the event that a
client eventually does submit invalid data focused on that
unknown area or functionality of the service , there is a
chance the service may encounter an error and the client's
interaction with the service may be impaired . Accordingly ,
it is beneficial and desirable to test service to measure or
gauge its robustness with regard to handling invalid input
data .
[0125] Returning to FIG . 1B , method 100 includes an act
(act 140) of expanding the error type response coverage by
repeatedly performing a number of operations until a thresh
old metric associated with the error type response is satis
fied . In some embodiment , the threshold metric may be a
determined number of testing runs in which invalid data is
sent to the remote service . For instance , a selected number
of testing runs may be performed for a specific type of
request (e.g. , perhaps 1,000 tests per request type) .
[0126] In some cases , the threshold metric may be a
duration of time in which testing is permitted to be per
formed . For instance , the duration may be a selected number
of minutes , hours , days , or perhaps even weeks . Once the
duration is reached , then the testing may be ended .
[0127] In some embodiments , the threshold metric may be
an amount of compute resources that are expended . For
instance , the threshold metric may be based on a determined
number of processor cycles or perhaps number of threads
used . In some cases , the testing may be performed as a
background process and may continue so long as a percent
age of the total amount of available compute power used by
the testing falls below a threshold percentage level . If the
testing requires additional computation power , then the
testing may be postponed until a later time . Accordingly , any
defined metric may be used as the threshold metric described
above .
[0128] In response to learning how previously - used input
data (e.g. , perhaps the input data 705 from FIG . 7) impacted ,
altered , or otherwise changed the error type response cov
erage (e.g. , error type response coverage 1210 in FIG . 12) ,
method 100 in FIG . 1B is shown as including an act (act
145) of selectively generating new input data . This new
input data is selectively generated in an attempt to elicit
(e.g. , from the remote service) a new error type response that
is nonoverlapping with previous error type responses . The
process of “ learning ” how the previously - used fuzzed or
modified data impacted the error type response may be
performed using any of the disclosed automata learning
techniques mentioned herein . By “ impact , ” it is meant that
the error type response coverage either changed in some
manner (e.g. , was enlarged or perhaps reduced in size) or ,
alternatively was not changed in any manner (i.e. it stayed
the same size) .
[0129] In order to expand the error type response cover
age , new and different types of error type responses are
needed from the remote service . To clarify , if only the same
error type responses were always received from the remote
service , then the amount of information that can be obtained
from that error type response will be limited . If the error type

response coverage is to be expanded , then new error type
responses will need to be elicited from the remote service .
To elicit these new responses , the embodiments perform
intelligent processes in selecting which types of invalid
input data (i.e. fuzzed data) are to be fed to the remote
service . The previous sections of this disclosure focused on
various techniques for intelligently fuzzing data to serve as
input data for a service .
[0130] Method 100 then includes an act (act 150) of
transmitting a new API request body , which comprises the
new input data , to the remote service to exercise the remote
service using this new input data . Then , there is an act (act
155) of receiving a new error type response from the remote
service . This new error type response indicates how the
remote service handled the new input data . As shown by
FIG . 1B , the method may then repeat certain acts in an
attempt to expand the error type response coverage of the
remote service . FIGS . 13 , 14 , 15 , and 16 are representative
of these different method acts , which are performed in an
effort to expand the error type response coverage .
[0131] FIG . 13 shows an example error type response
coverage 1300 , which is representative of the error type
response coverage 1210 of FIG . 12. This error type response
coverage 1300 is shown as including a number of distinct
error type coverage areas 1305 and 1310 corresponding to a
functionality area of the service that has already been tested
to determine how it handles invalid input data . Error type
response coverage 1300 also shows a deficient error type
response coverage area 1315 , which is representative of a
functional area of the service that has not yet been tested or
has not yet been tested a sufficient or threshold amount to
determine how those functional areas of the service handle
invalid input data . It is desirable to test the service to
determine how the service handles invalid input data in
those functional areas identified as being deficiently tested .
[0132] To clarify , the process of selectively generating
new input data to elicit (e.g. , from the remote service) a new
error type response that is nonoverlapping with previous
error type responses may include identifying a specific error
type response coverage area of the remote service to exer
cise . For instance , the deficient error type response coverage
area 1315 may be the area to be tested . The embodiments
may then generate new input data based on this specific error
type response coverage area . For instance , the area may be
associated with a particular function of the service . By
consulting the API specification , the embodiments are able
to identify which inputs are applicable to trigger the perfor
mance of that particular function . After identifying these
inputs , the embodiments may then generate fuzzed or modi
fied input data to serve as input parameters to trigger the
performance of the particular function . In this regard , the
embodiments can specifically target particular coding func
tions associated with the service in order to expand the error
type response coverage , which describes the input handling
capabilities of the service .
[0133] That is , it is desirable to expand 1320 the error type
response coverage 1300 by testing the remote service . To do
so , the embodiments selectively generate or design new
input data 1325 that is designed in an attempt to elicit or
trigger new error type responses from the remote service . In
some cases , the new input data 1325 is designed in an
attempt to reach “ deeper " or hierarchically " lower " child
nodes (e.g. , in FIG.9A , nodes D , E , and F are hierarchically
lower than node A) , child resources , or deeper service states

US 2021/0216435 A1 Jul . 15 , 2021
11

of the service . For instance , given a fuzzed schema , a
payload or " new input data ” (e.g. , new input data 1325) is
rendered or generated by filling in concrete values . In some
cases , these values are based on the labeled type of each
node in the tree .

[0134] As the remote service is fed the new input data
1325 , the coverage area of the error type response coverage
1300 will expand as additional insight and understanding
regarding the operational abilities of the remote service is
learned and identified . For instance , in response to repeat
edly testing , probing , and exercising the remote service
across its different functional areas , the error type response
coverage 1300 will be expanded , as shown by the expanded
version illustrated by error type response coverage 1330. As
shown , the error type response coverage 1330 is more “ filled
in ” than the error type response coverage 1300. This “ filling
in ” symbolically represents how the remote service is
repeatedly tested over time to enable the embodiments to
learn how the remote service handles invalid data across the
remote service's different functions .
[0135] Some embodiments rely on an effectiveness metric
1335 in determining how effective the new input data is in
expanding the error type response coverage . For instance , if
the new input data successfully elicits a new error type
response (e.g. , perhaps one that was not previously received
from the remote service) , then it can be determined that the
new input data was effective in expanding the error type
response coverage . On the other hand , if the new input data
triggered an error type response that has already been
received , then it may be the case that the new input data was
not effective . If a threshold number of successively trans
mitted input data causes only non - new error type responses
(i.e. ones that have already been received) to be received ,
then the effectiveness metric 1335 may indicate that the
current train of input data or train of modification techniques
are not effective , and the fuzzing or modification techniques
should be altered . Accordingly , by tracking the effectiveness
metric 1335 , the embodiments can identify trends with
regard to whether or not the generated input data is effective
or successful in expanding the error type response coverage .
[0136] The effectiveness metric 1335 may be provided in
any form . For instance , the effectiveness metric 1335 may be
in the form of a percentage where higher percentages
indicate relatively improved effectiveness while lower per
centages indicate relatively worse effectiveness . The effec
tiveness metric 1335 may be in the form of a letter grade
(e.g. , A , B , C , D , and F , where A reflects improved effec
tiveness while F indicates worse effectiveness) . The effec
tiveness metric 1335 may be determined periodically in
accordance with a defined schedule (e.g. , every selected
number of seconds , minutes , hours , or days) or the effec
tiveness metric 1335 may be computed or reevaluated after
each response from the service is provided . Some embodi
ments reevaluate the effectiveness metric 1335 after a batch
or group of a selected number of responses are received from
the service .

[0137] In some embodiments , an error type response
includes an error type (i.e. a pair of error code (s) and error
message (s)) . A number of distinct error types that are
received in response to fuzzed data may be used to deter
mine the effectiveness metric 1335 for expanding the error
type response coverage . In this regard , both the error code
and the error message may be required to be distinct in order

for the effectiveness metric 1335 to reflect an improved or a
positive impact on the error type response coverage .
[0138] FIG . 14 illustrates one example technique for
modifying or fuzzing data in an attempt to elicit new error
type responses from the remote service . In particular , FIG .
14 shows a so - called modification degree 1400 representing
a progressively incremental approach or a sequential pipe
line approach to modifying data .
[0139] By way of example , FIG . 14 shows a first set of
invalid data (which was purposefully generated) labeled
“ A. ” This data is fed as input into the remote service . In this
example , input A failed to cause the remote service to trigger
a new error type response (i.e. the service returned an error
type response that has already been received by the intelli
gent fuzzing tool) . In response , the embodiments are able to
take input A and perform an additional modification 1405 to
the input . For instance , the embodiments may provide a new
data value or may perform any of the operations discussed
in connection with the fuzzing rules 800 outlined in FIG . 8 .
As symbolized in FIG . 14 , modification 1405 may be a
relatively small or minor modification and may produce
input B.
[0140] Input B may then be fed as input to the remote
service . If input B also fails to produce a new error type
response , then another relatively small or minor modifica
tion 1410 may be made to generate input C. In this example ,
input C also failed to produce a new error type response . As
a consequence , another modification 1415 may be applied to
generate input D. Here , input D also failed to trigger a new
error type response .
[0141] At this point , the intelligent fuzzing tool may
recognize that the relatively small or minor modifications
(e.g. , modifications 1405 , 1410 , and 1415) are not eliciting
new error type responses from the remote service . In view
of this recognition , the intelligent fuzzing tool may elect to
make a more drastic or impactful change / modification to the
data . For instance , the intelligent fuzzing tool may make
modification 1420 , which is shown as being “ longer ” (i.e.
more impactful) than the previously performed modifica
tions . An example of a more impactful modification may
include simultaneously performing multiple different modi
fications at once . Or rather , the embodiments may apply a
combination of multiple different changes to a set of input
data to render that input data invalid . As an example , the
embodiments may not only modify a data value , but they
may additionally modify one or more of the nodes in the
node tree (e.g. , in the manner described earlier in connection
with FIG . 8) . Combinations of multiple modifications may
constitute more impactful changes .
[0142] In this case , the modification 1420 resulted in the
generation of input E. Input E is then fed as input to the
service . Here , input E also failed to elicit a new error type
response from the remote service . As a consequence , the
intelligent fuzzing tool made another modification 1425 of
similar scope of impact as modification 1420 to produce
input F , which is then fed as input . Here again , input F failed
to elicit a new error type response .
[0143] Having recognized that the previous modifications
failed to elicit a new error type response , the intelligent
fuzzing tool may make an even more impactful modifica
tion , as shown by the “ long ” modification 1430 to generate
input G. Input G is feed as input to the remote service , but
it too fails to produce a new error type response . Subse
quently , the intelligent fuzzing tool imposes another modi

US 2021/0216435 A1 Jul . 15 , 2021
12

fication 1435 to produce input H. Finally , input H , which has
been modified substantially as compared to input A , results
in the generation of a new error type response . In view of
this new error type response , the error type response cov
erage is expanded . Accordingly , it will be appreciated that
the disclosed embodiments are able to dynamically analyze
past performance (with regard to changes on the error type
response coverage) to determine how to subsequently
modify new input data in order to attempt to elicit new error
type responses from the service .
[0144] In some cases , after inferring or determining par
ent - child dependencies from the API specification (e.g. , the
node trees discussed earlier) , the embodiments generate
different sequences of requests that are designed to reach
deeper service states of the service . In addition to these
sequences of requests , the embodiments are also able to
intelligently fuzz or modify body payload data to find even
more bugs or programming deficiencies in the service's
code . In some embodiments , combinations of different types
of modifications (e.g. , node fuzzing , tree fuzzing , and data
fuzzing) may be applied in a pipeline - like manner , such as
is described in the incremental process described in FIG . 14 .
[0145] Accordingly , as viewed by the processes outlined
in FIG . 14 , the embodiments are able to intelligently and
dynamically fuzz or modify data in an attempt to expand the
error type response coverage (e.g. , by triggering the gen
eration of new error type responses) . If a particular type of
modification fails to achieve a new error type response , then
the embodiments are able to identify this failure and
dynamically respond by modifying their subsequent modi
fications . In this regard , the embodiments use automata
learning in determining how to generate current input data
based on the success or failure of previous input data in
triggering new error type responses .
[0146] Some embodiment may allow a particular fuzzing
technique to be used a threshold number of times before
changing to a new fuzzing technique . For instance , in FIG .
14 , the embodiments permitted a similar fuzzing or modi
fication technique to be performed in modifications 1405 ,
1410 , and 1415. Although only three modifications are
illustrated , the number of similarly - scope modifications may
be in the tens , hundreds , or perhaps thousands . In any event ,
the embodiments may allow a threshold number of simi
larly - scoped modifications to be performed prior to switch
ing or changing fuzzing techniques , as shown by the new
modification technique of modification 1420 .
[0147] The fuzzing rules (e.g. , fuzzing rules 800 from
FIG . 8) may be defined to determine how to generate the
different sets of input data or how to dynamically modify
data . As described generally in FIG . 14 , a first fuzzing rule
may be applied to an initial set of data to generate initially
fuzzed or modified data . Depending on the success or failure
of this initial set of fuzzed data in triggering a new error type
response , the embodiments may then selectively apply a
second or subsequent fuzzing rule to the initially fuzzed data
to generate additional input data .
[0148] FIG . 15 provides additional detail by what is meant
with the phrase “ nonoverlapping , ” which was used in
method act 145. FIG . 15 shows a previous error type
response 1500 , which is representative of any of the error
type responses mentioned herein . In response to new input
data , the remote service may issue a new error type response
1505. Previous error type response 1500 and new error type
response 1505 at least partially overlap (e.g. , as shown by

the overlapping 1510 section) . For instance , the error codes
included in the two responses may be the same (while
perhaps the error messages are different) . Additionally , or
alternatively , a portion of the error messages may be the
same as between the two responses . In any event , it will be
appreciated that at least some of the error data between the
two responses is the same .
[0149] In contrast , FIG . 15 shows a second scenario
involving a previous error type response 1515 and a new
error type response 1520. Here , the two responses do not
overlap , as shown by the nonoverlapping 1525 section . By
nonoverlapping , it is generally meant that the error codes
and perhaps even the error messages are different from one
another . In order to expand the error type response coverage ,
it is beneficial to try to elicit as many nonoverlapping error
type responses from the remote service as possible .
[0150] FIG . 15 also shows an overlap threshold 1530. It
may be the case that certain input data is still considered as
effective in expanding the coverage even if the resulting
error type response partially overlaps an old error type
response . That is , if the degree or amount of overlap does not
exceed the overlap threshold 1530 , then the input data may
still be considered " effective " and the effective metric 1335
in FIG . 13 may reflect this effectiveness or success . By way
of example , suppose certain input data resulted in an error
type response having the same error code as a previous error
type response , but the error type response includes a new
error message . Here , the new error message is beneficial
because it will help expand the error type response coverage ,
even though the error codes were the same .
[0151] FIG . 16 illustrates an example architecture 1600 ,
which is representative of the architecture 1000 in FIG . 10
and the other architectures discussed thus far . Architecture
1600 includes a client - side computer system 1605 hosting an
intelligent fuzzing tool 1610 , which is representative of the
other tools discussed thus far . Here , the intelligent fuzzing
tool 1610 analyzed past input data and how that past input
data impacted the error type response coverage .
[0152] In response to this analysis , the intelligent fuzzing
tool 1610 designed a set of new input data 1615 (i.e. the new
input data described in connection with act 145 from FIG .
1B) and included that new input data 1615 in a new API
request body 1620. The new API request body 1620 is then
transmitted over a network 1625 to the service 1630 and its
corresponding API 1635 , which are representative of the
services and APIs discussed thus far .
[0153] The service 1630 receives the new input data 1615
and undergoes an exercise 1640 process in an attempt to
handle the new input data 1615 , which was purposefully
designed to be invalid . Service 1630 may include a sanitizer
1645 , which is configured to sanitize PII prior to sending a
new error type response 1650 to the intelligent fuzzing tool
1610 .
[0154] The intelligent fuzzing tool 1610 receives the new
error type response 1650 , analyzes the error type response
(e.g. , error codes , error messages , etc.) and then selectively
generates new input data based on the past performance of
the previous input data . Such a process may repeat 1655
until a threshold metric 1660 , which is representative of the
threshold metric discussed in method act 140 of FIG . 1B and
the threshold metrics discussed thus far , is satisfied .
[0155] Returning to method 100 , FIG . 1C shows a few
optional methods acts that may also be performed . For
instance , there may be an act (act 160) of identifying a

US 2021/0216435 A1 Jul . 15 , 2021
13

some

particular programming deficiency (e.g. , a bug) of the
remote service in response to at least one received error type
response .
[0156] In response to identifying the deficiency or bug ,
method 100 may then include an act (act 165) of triggering
an alert (e.g. , alert (s) 1060 from FIG . 10) identifying the
particular programming deficiency . This alert may be trans
mitted to any number of developers or administrators man
aging the remote service . The alert includes information
(e.g. , descriptive information as well as potentially log
information so as to track and identify when and how the
bug was identified) so as to notify the developers of the
programming deficiency .
[0157] Additionally , there is an act (act 170) of triggering
one or more remedial actions (e.g. , remedial action (s) 1065
from FIG . 10) to resolve the particular programming defi
ciency . By way of example , a trouble ticket may be issued
in response to the alert , and a developer or machine may be
tasked with attempting to resolve the identified program
ming deficiency . In this regard , the operational functionality
of the remote service may be modified in response to the
triggered alert so as to fix or remedy the identified defi
ciency . As such , the embodiments may practically apply the
disclosed operations by triggering any number of remedial
code - fixing actions to be performed .

Search Heuristics

[0158] The following section outlines some results of a
few tests that were performed using the disclosed embodi
ments . One will appreciate how the following data is pro
vided for example purposes only , and the embodiments
should not be limited only to the following testing instances
or testing data .
[0159] Since pipelining schema fuzzing rules results in
enormous numbers of new fuzzed - schemas but fuzzing
budgets are limited , it is proposed to evaluate the following
three heuristics to select fuzzed - schemas generated by pipe
lining fuzzing rules : (1) Depth - First (DF) ; (2) Breadth - First
(BF) ; and (3) Random (RD) .
[0160] Depth - First (DF) : Given a maximum bound M , the
search heuristic DF generates fuzzed - schemas in depth - first
order with respect to the pipeline stages and selects the first
M fuzzed - schemas . For example , with DF , a two - stage
pipeline DROP - TYPE takes an initial input schema G ,
generates a first fuzzed - schema G , EDROP (G) , and then
generates the set TYPE (G) of fuzzed - schemas . It then
continues generating fuzzed - schemas TYPE (G ;) for other G ;
in DROP (G) (one by one) until the bound M is reached . In
other words , the search heuristic DF prioritizes more fuzzing
in the later stages than in the earlier stages .
[0161] Breadth - First (BF) : In contrast to DF , the search
heuristic BF prioritizes fuzzing more in the earlier stages by
generating fuzzed - schemas in breadth - first order . For
example , with BF , a two - stage pipeline DROP - TYPE taking
as input an initial schema G first generates all fuzzed
schemas G ; in DROP (G) , then it will generate the fuzzed
schemas in TYPE (G ;) for some G , EDROP (G) , and so on up
to the given bound M.
[0162] Random (RD) : While DF and BF prioritize fuzzing
in either the later or earlier pipeline stages , respectively , the
search heuristic RD uses a random search order that does not
favor specific stages . For example , with RD and some
random seed , a two - stage pipeline DROP - TYPE taking as
input an initial schema G first generates some fuzzed

schema G , EDROP (G) , then generates some fuzzed - schema
GZETYPE (1) , then generates fuzzed - schema
GP , EDROP (G) , then generates some fuzzed - schema G ' , E
TYPE (G ' ,) , and so on until the given bound M is reached .
[0163] To determine the efficacy of the different fuzzing
rules , testing results showed how the four schema fuzzing
rules can be grouped into three groups : (1) DROP and
SELECT that discover structure related errors , (2) TYPE
that triggers deserialization errors due to type mismatches ,
and (3) DUPLICATE that discovers deserialization errors
triggered by malformed request payloads (e.g. , duplicated
keys) . The three schema fuzzing rule groups tend to have
disjoint error type coverage . In an experiment , 23 schema
fuzzing rule pipelines were implemented to cover different
combinations of the three groups . For example , two pipe
lines (TYPE - DUPLICATE and DUPLICATE - TYPE) were
used to combine the second and third groups .
[0164] Based on testing data , the following was observed :
combining schema fuzzing rules DROP , SELECT , and
TYPE as a pipeline is beneficial , in that it helps discover new
error types that are not triggered by DROP , SELECT , or
TYPE alone . Furthermore , based on a finer - grained analysis
of the results , having DROP or SELECT at stages earlier
than TYPE usually has a better error type coverage than the
opposite . On the other hand , combining DUPLICATE with
other schema fuzzing rules does not provide significant
improvements ; although the total number of covered error
types is higher , the coverage is mostly the union of the
individual ones .
[0165] From the testing results , it can be determined that
using RD , regardless of the random seed used , provides a
more stable growth rate for identifying new error types . This
is desirable when only a subset of the fuzzed - schemas (e.g. ,
the first few generated) can be tested given a limited fuzzing
budget . Interestingly , similar conclusions were observed for
other experimented schema fuzzing rule pipelines and for all
DNS request types with non - empty body schemas . This
shows that the effectiveness of the search heuristic RD
depends less on the request types under test (i.e. is less
sensitive to the schema structure and semantics) . From these
experimental results , the following conclusions may be
made : combining schema fuzzing rules DROP , SELECT ,
and TYPE as a pipeline is helpful , especially when having
DROP and SELECT before TYPE ; combining the schema
fuzzing rule DUPLICATE with other rules does not provide
significant benefit in covering new error types , and the RD
search heuristic provides a more stable growth rate in
covering unique error types , and is therefore more favorable
when the budget is limited .
[0166) Accordingly , the disclosed embodiments bring
about substantial benefits to the technical field . In particular ,
the embodiments are able to selectively and intelligently
generate input data that is to be fed into a service in order to
exercise the service in an attempt to cause errors in the
service . A report on these errors (i.e. an error type response)
is then provided to an intelligent fuzzing tool . The tool
analyzes the report and then generates new input data . This
new input data is designed in an effort to maximize or
expand an error type response coverage that is being learned
about the service . In particular , the new input data is
designed in an attempt to elicit new error codes and / or error
messages from the service . The embodiments are able to
repeatedly perform these steps until a threshold coverage
level is achieved or learned about the service . Accordingly ,

US 2021/0216435 A1 Jul . 15 , 2021
14

by performing the disclosed operations , the embodiments
are able to learn how the service operates in response to
different inputs and are able to perform these learning
processes even without access to the service's underlying
source code .

Example Computer Computer Systems
[0167] Attention will now be directed to FIG . 17 which
illustrates an example computer system 1700 that may
include and / or be used to perform any of the operations
described herein . Computer system 1700 may take various
different forms . For example , computer system 1700 may be
embodied as a tablet , a desktop , a laptop , a mobile device ,
or a standalone device , such as those described throughout
this disclosure . Computer system 1700 may also be a
distributed system that includes one or more connected
computing components / devices that are in communication
with computer system 1700. FIG . 17 shows how computer
system 1700 may be embodied as a tablet 1700A , a laptop
1700B , or even a head - mounted device (HMD) 1700C . The
ellipsis 1700D is provided to demonstrate how the computer
system 1700 may be embodied in any computing form ,
without limit .
[0168] In its most basic configuration , computer system
1700 includes various different components . FIG . 17 shows
that computer system 1700 includes one or more processor
(s) 1705 (aka a “ hardware processing unit ”) , input / output
(1/0) 1710 , an intelligent fuzzing tool 1715 , a machine
learning (ML) engine 1720 , and storage 1725 .
[0169] Regarding the processor (s) 1705 , it will be pre
ciated that the functionality described herein can be per
formed , at least in part , by one or more hardware logic
components (e.g. , the processor (s) 1705) . For example , and
without limitation , illustrative types of hardware logic com
ponents / processors that can be used include Field - Program
mable Gate Arrays (“ FPGA ”) , Program - Specific or Appli
cation - Specific Integrated Circuits (“ ASIC ”) , Program
Specific Standard Products (“ ASSP ”) , System - On - A - Chip
Systems (" SOC ”) , Complex Programmable Logic Devices
(“ CPLD ”) , Central Processing Units (“ CPU ”) , Graphical
Processing Units (“ GPU ”) , or any other type of program
mable hardware .
[0170] I / O 1710 may include any type of input or output
device communicatively coupled to the computer system
1700. Examples of input and output devices include , but are
not limited to , any type of keyboard , styles , mouse , touch
screen , speaker , or even holographic input . Indeed , any
device capable of providing input or receiving output from
the computer system 1700 may be included in 1/0 1710 .
[0171] The intelligent fuzzing tool 1715 is representative
of the intelligent fuzzing tool 210 described in connection
with FIG . 2. That is , intelligent fuzzing tool 1715 may be
configured to perform any of the disclosed operations ,
without limit . In some cases , the intelligent fuzzing tool
1715 is configured as dedicated processor or processing
unit while in other cases the intelligent fuzzing tool 1715
may be an executable module , which is described below .
[0172] Returning to FIG . 17 , the ML engine 1720 is an
example of any of the machine learning engines or automata
learning described earlier . ML engine 1720 may be imple
mented as a specific processing unit (e.g. , a dedicated
processing unit as described earlier) configured to perform
one or more specialized operations for the computer system
1700. As used herein , the terms " executable module , ”

“ executable component , ” “ component , ” “ module , ” or
" engine ” can refer to hardware processing units or to soft
ware objects , routines , or methods that may be executed on
computer system 1700. The different components , modules ,
engines , and services described herein may be implemented
as objects or processors that execute on computer system
1700 (e.g. as separate threads) .
[0173] Storage 1725 may be physical system memory ,
which may be volatile , non - volatile , or some combination of
the two . The term " memory ” may also be used herein to
refer to non - volatile mass storage such as physical storage
media . If computer system 1700 is distributed , the process
ing , memory , and / or storage capability may be distributed as
well .
[0174] Storage 1725 is shown as including executable
instructions (i.e. code 1730) . The executable instructions
represent instructions that are executable by the processor (s)
1705 (or perhaps even the intelligent fuzzing tool 1715) of
computer system 1700 to perform the disclosed operations ,
such as those described in the various methods .
[0175] The disclosed embodiments may comprise or uti
lize a special - purpose or general - purpose computer includ
ing computer hardware , such as , for example , one or more
processors (such as processor (s) 1705) and system memory
(such as storage 1725) , as discussed in greater detail below .
Embodiments also include physical and other computer
readable media for carrying or storing computer - executable
instructions and / or data structures . Such computer - readable
media can be any available media that can be accessed by a
general - purpose or special - purpose computer system . Com
puter - readable media that store computer - executable
instructions in the form of data are “ physical computer
storage media ” or a “ hardware storage device . ” Computer
readable media that carry computer - executable instructions
are “ transmission media . ” Thus , by way of example and not
limitation , the current embodiments can comprise at least
two distinctly different kinds of computer - readable media :
computer storage media and transmission media .
[0176] Computer storage media (aka “ hardware storage
device ”) are computer - readable hardware storage devices ,
such as RAM , ROM , EEPROM , CD - ROM , solid state
drives (“ SSD ") that are based on RAM , Flash memory ,
phase - change memory (“ PCM ”) , or other types of memory ,
or other optical disk storage , magnetic disk storage or other
magnetic storage devices , or any other medium that can be
used to store desired program code means in the form of
computer - executable instructions , data , or data structures
and that can be accessed by a general - purpose or special
purpose computer .
[0177] Computer system 1700 may also be connected (via
a wired or wireless connection) to external sensors (e.g. , one
or more remote cameras) or devices via a network 1735. For
example , computer system 1700 can communicate with any
number devices or cloud services to obtain or process data .
In some cases , network 1735 may itself be a cloud network .
Furthermore , computer system 1700 may also be connected
through a wired or wireless network 1735 to remote / separate
computer systems (s) that are configured to perform any of
the processing described with regard to computer system
1700 .
[0178] A “ network , ” like network 1735 , is defined as one
or more data links and / or data switches that enable the
transport of electronic data between computer systems ,
modules , and / or other electronic devices . When information

US 2021/0216435 A1 Jul . 15 , 2021
15

is transferred , or provided , over a network (either hardwired ,
wireless , or a combination of hardwired and wireless) to a
computer , the computer properly views the connection as a
transmission medium . Computer system 1700 will include
one or more communication channels that are used to
communicate with the network 1735. Transmissions media
include a network that can be used to carry data or desired
program code means in the form of computer - executable
instructions or in the form of data structures . Further , these
computer - executable instructions can be accessed by a gen
eral - purpose or special - purpose computer . Combinations of
the above should also be included within the scope of
computer - readable media .
[0179] Upon reaching various computer system compo
nents , program code means in the form of computer - execut
able instructions or data structures can be transferred auto
matically from transmission media to computer storage
media (or vice versa) . For example , computer - executable
instructions or data structures received over a network or
data link can be buffered in RAM within a network interface
module (e.g. , a network interface card or “ NIC ”) and then
eventually transferred to computer system RAM and / or to
less volatile computer storage media at a computer system .
Thus , it should be understood that computer storage media
can be included in computer system components that also
(or even primarily) utilize transmission media .
[0180] Computer - executable (or computer - interpretable)
instructions comprise , for example , instructions that cause a
general - purpose computer , special - purpose computer , or
special - purpose processing device to perform a certain func
tion or group of functions . The computer - executable instruc
tions may be , for example , binaries , intermediate format
instructions such as assembly language , or even source code .
Although the subject matter has been described in language
specific structural features and / or methodological acts , it
is to be understood that the subject matter defined in the
appended claims is not necessarily limited to the described
features or acts described above . Rather , the described
features and acts are disclosed as example forms of imple
menting the claims .
[0181] Those skilled in the art will appreciate that the
embodiments may be practiced in network computing envi
ronments with many types of computer system configura
tions , including personal computers , desktop computers ,
laptop computers , message processors , hand - held devices ,
multi - processor systems , microprocessor - based or program
mable consumer electronics , network PCs , minicomputers ,
mainframe computers , mobile telephones , PDAs , pagers ,
routers , switches , and the like . The embodiments may also
be practiced in distributed system environments where local
and remote computer systems that are linked (either by
hardwired data links , wireless data links , or by a combina
tion of hardwired and wireless data links) through a network
each perform tasks (e.g. cloud computing , cloud services
and the like) . In a distributed system environment , program
modules may be located in both local and remote memory
storage devices .
[0182] The present invention may be embodied in other
specific forms without departing from its spirit or charac
teristics . The described embodiments are to be considered in
all respects only as illustrative and not restrictive . The scope
of the invention is , therefore , indicated by the appended
claims rather than by the foregoing description . All changes

which come within the meaning and range of equivalency of
the claims are to be embraced within their scope .
What is claimed is :
1. A computer system comprising :
one or more processors ; and
one or more computer - readable hardware storage devices

having stored thereon computer - executable instructions
that are executable by the one or more processors to
cause the computer system to at least :
generate an application programming interface (API)

request body for an API of a remote service , the API
request body comprising input data ;

transmit the API request body to the remote service to
exercise the remote service in an attempt to identify
a programming deficiency of the remote service
using the input data ;

receive an error type response from the remote service ,
the error type response indicating how the remote
service handled the input data ;

use the error type response to determine an error type
response coverage of the remote service ; and

expand the error type response coverage by repeatedly
performing at least the following until a threshold
metric associated with the error type response cov
erage is satisfied :
in response to learning how previously - used input

data , including said input data , impacted the error
type response coverage , selectively generate new
input data , the new input data being selectively
generated in an attempt to elicit , from the remote
service , a new error type response that is nonover
lapping with previous error type responses ,
including said error type response ;

transmit a new API request body comprising the new
input data to the remote service to exercise the
remote service ; and

receive the new error type response from the remote
service , the new error type response indicating
how the remote service handled the new input
data .

2. The computer system of claim 1 , wherein the API is a
representation state transfer (REST) API , and wherein the
remote service is a cloud - based service .

3. The computer system of claim 1 , wherein execution of
the computer - executable instructions further causes the
computer system to :

access an API specification of the API of the remote
service , the API specification at least defining a schema
of the API for enabling interaction with the remote
service ;

extract the schema from the API specification ; and
generate the input data by modifying one or more data

types defined by the schema or by generating one or
more data values used as input in the API request body .

4. The computer system of claim 3 , wherein the schema
defines data types or data values that are supported by the
API .

5. The computer system of claim 1 , wherein the schema
is defined using one of : extensible markup language (XML) ,
JavaScript objection notation (JSON) , or yet another markup
language (YAML) .

US 2021/0216435 A1 Jul . 15 , 2021
16

6. The computer system of claim 1 , wherein the API is one
of : a simple object access protocol (SOAP) API , a remote
procedure call (RPC) API , or a representational state transfer
(REST) API .

7. The computer system of claim 1 , wherein the error type
response includes one or more of an error code , an error
message , or an error type comprising an error code and error
message pair .

8. The computer system of claim 7 , wherein the error type
response includes the error type , and wherein a number of
distinct error types is used to determine an effectiveness
metric for expanding the error type response coverage .

9. The computer system of claim 1 , wherein access to
source code of the remote service is restricted such that the
computer system is prevented from being able to instrument
the source code to measure code coverage .

10. The computer system of claim 1 , wherein the error
type response is sanitized prior to being received by the
computer system such that at least the following information
is prevented from being included in the error type response :
timestamp data , session identification , or a globally unique
identifier (GUID) .

11. A method for dynamically expanding an error type
response coverage of a remote service , said method com
prising :

generating an application programming interface (API)
request body for an API of a remote service , the API
request body comprising input data ;

transmitting the API request body to the remote service to
exercise the remote service in an attempt to identify a
programming deficiency of the remote service using the
input data ;

receiving an error type response from the remote service ,
the error type response indicating how the remote
service handled the input data ;

using the error type response to determine an error type
response coverage of the remote service ; and

expanding the error type response coverage by repeatedly
performing at least the following until a threshold
metric associated with the error type response coverage
is satisfied :
in response to learning how previously - used input data ,

including said input data , impacted the error type
response coverage , selectively generate new input
data , the new input data being selectively generated
in an attempt to elicit , from the remote service , a new
error type response that is nonoverlapping with pre
vious error type responses , including said error type
response ;

transmit a new API request body comprising the new
input data to the remote service to exercise the
remote service ; and

receive the new error type response from the remote
service , the new error type response indicating how
the remote service handled the new input data .

12. The method of claim 11 , wherein a set of fuzzing rules
are defined to determine how to generate the input data .

13. The method of claim 12 , wherein the set of fuzzing
rules defines how to modify a node in a schema of the API ,
modifying the node includes any one or combination of :
dropping the node , selecting the node , duplicating the node ,
or changing a type of the node , and

wherein the set of fuzzing rules further defines how to
select data values to be used as input in the API request
body .

14. The method of claim 11 , wherein the method further
includes :

identifying a particular programming deficiency of the
remote service in response to at least one received error
type response ;

triggering an alert identifying the particular programming
deficiency ; and

triggering one or more remedial actions to resolve the
particular programming deficiency .

15. The method of claim 11 , wherein a set of fuzzing rules
are defined to determine how to generate the input data , and

wherein a pipeline fuzzing process is performed to gen
erate the input data , the pipeline fuzzing process com
prising applying a first fuzzing rule to an initial set of
data to generate initially fuzzed data and applying a
second fuzzing rule to the initially fuzzed data to
generate said input data , which is then included in the
API request body .

16. The method of claim 11 , wherein the input data is
based off of a set of default values that are obtained from the
remote service .

17. The method of claim 11 , wherein a log is maintained
to track interactions with the remote service .

18. The method of claim 11 , wherein selectively gener
ating the new input data to elicit , from the remote service ,
the new error type response that is nonoverlapping with the
previous error type responses includes identifying a specific
error type response coverage area of the remote service to
exercise and generating the new input data based on the
specific error type response coverage area .

19. One or more hardware storage devices having stored
thereon computer - executable instructions that are execut
able by one or more processors of a computer system to
cause the computer system to at least :

generate an application programming interface (API)
request body for an API of a remote service , the API
request body comprising fuzzed data ;

transmit the API request body to the remote service to
exercise the remote service in an attempt to identify a
programming deficiency of the remote service using the
fuzzed data ;

receive an error type response from the remote service ,
the error type response indicating how the remote
service handled the fuzzed data ;

use the error type response to determine an error type
response coverage of the remote service ; and

expand the error type response coverage by repeatedly
performing at least the following until a threshold
metric associated with the error type response coverage
is satisfied :
in response to learning how previously - used fuzzed

data , including said fuzzed data , impacted the error
type response coverage , selectively fuzz new data ,
the fuzzed new data being selectively fuzzed in an
attempt to elicit , from the remote service , a new error
type response that is nonoverlapping with previous
error type responses , including said error type
response ;

transmit a new API request body comprising the fuzzed
new data to the remote service to exercise the remote
service ; and

US 2021/0216435 A1 Jul . 15 , 2021
17

receive the new error type response from the remote
service , the new error type response indicating how
the remote service handled the fuzzed new data .

20. The one or more hardware storage devices of claim
19 , wherein learning how the previously - used fuzzed data
impacted the error type response is performed automata
learning .

