US 20190272613A1

a2y Patent Application Publication o) Pub. No.: US 2019/0272613 A1

a9y United States

Sharma et al.

43) Pub. Date: Sep. 5, 2019

(54) FREQUENT DATA VALUE COMPRESSION (22) Filed: Feb. 19, 2019

FOR GRAPHICS PROCESSING UNITS

(71) Applicant: Intel Corporation, Santa Clara,

Related U.S. Application Data

CA (63) Continuation of application No. 15/483,236, filed on

(US) Apr. 10, 2017, now Pat. No. 10,262,388.

(72) Inventors: Saurabh Sharma, El Dorado Hills, CA L. . .
(US); Abhishek Venkatesh, Hillsboro, Publication Classification
OR (US); Travis T. Schluessler, (51) Imt. ClL
Hillsboro, OR (US); Prasoonkumar Go6T 120 (2006.01)
Surti, Folsom, CA (US); Altug Koker, Go6T 1/60 (2006.01)
El Dorado Hills, CA (US); Aravindh V. GO6T 15/00 (2006.01)
Anantaraman, Folsom, CA (US); (52) US.CL
Pattabhiraman P. K., Bangalore (IN); CPC o GO6T 1/20 (2013.01); GO6T 15/005
Abhishek R. Appu, El Dorado Hills, (2013.01); GO6T 1/60 (2013.01)
CA (US); Joydeep Ray, Folsom, CA
(US); Kamal Sinha, Rancho Cordova, (57) ABSTRACT
CA (US); Vasanth Ranganathan, El
Dorado Hills, CA (US); Bhushan M. A control surface tracks an individual cacheline in the
Borole, Rancho Cordova, CA (US); original surface for frequent data values. If so, control
Wenyin Fu, Folsom, CA (US); Eric J. surface bits are set. When reading a cacheline from memory,
Hoekstra, Latrobe, CA (US); Linda L. first the control surface bits are read. If they happen to be set,

Hurd, Cool, CA (US)
(21) Appl. No.: 16/279,270

then the original memory read is skipped altogether and
instead the bits from the control surface provide the value for
the entire cacheline.

- e — e — e ————————— 1
1
1
Parallel Processor Memory 222
Memory Memory Memory
L Unit Unit ese Unit Parallel
L 224A 224B 224N Processor
200
- o ——— " /
. 1
1 Partition Partition Partition
Unit Unit) Unit
220A 220B 220N
Memery Interface 218
[
Memory Crossbar 216 I—
Cluster Cluster | ®®®| Cluster
214A 214B 214N
Processing Array 212
1
1
1
: | Scheduler 210
| |
i
H Front End Host Interface LIJ/r?t
H ;
4 208 206 204
] Parallel Processing Unit 202
Memory Hub
105

Patent Application Publication Sep. 55,2019 Sheet 1 of 43 US 2019/0272613 Al
100 ‘
Wireless Network
Network Adapter
Adapter 118
119
I/O Switch Add-In
i —— Device(s)
Display 116 e
Device(s) 120
110A
—
System
/O Hub Storage
107 114
O
IHPUt / —T I/O Subsystem
Device(s) o
108 411
Communication
106
i —_—
1
i
i
Hl| Parallel Processor(s) Memory System
! 112 Hub Memory
i — S 105 104
1

Display
Device(s) | |
110B

Link
Communication
113 ==

| Processor(s)
| 102
|

Processing Subsystem
101

Patent Application Publication

Sep. 5,2019 Sheet 2 of 43

______________________________________ "
1
Parallel Processor Memory 222
Memory Memory Memory
Unit Unit eee Unit
224A 224B 224N
PR 1 5 1 S SRRV ¥ | N8 S —
]
Partition Partition Partition
Unit Unit X Unit
220A 220B 220N
Memory Interface 218
|
Memory Crossbar 216 —
Cluster Cluster | ®***®| Cluster
214A 2148 214N
Processing Array 212
Scheduler 210
Front End Host Interface (Ij/r?lt
208
- — 206 204

Parallel Processing Unit 202

Memory Hub
105

US 2019/0272613 Al

Parallel
Processor
200

Y/

FIG. 2A

Patent Application Publication

To/From
Memory Unit
224

I

Sep. 55,2019 Sheet 3 of 43

US 2019/0272613 Al

FIG. 2B

Frame buffer ROP
Interface 2 26
225 ==
L2 Cache
221
yy
Partition Unit
220
4
To/From
Memory
Crossbar
216

Patent Application Publication Sep. 5, 2019 Sheet 4 of 43 US 2019/0272613 A1

To/From

Memory

Crossbar
216

To
Memory Crossbar
216 and/or
other Processing
Clusters
A
PreROP
MMU 242 Data Crossbar
245 _ 240
Texture
. Unit
Graphics 236
Multiprocessor —
234
L1 Cache
248
Procesging Pipeline Manager
Cluster 232
214 /
v
To/From
Scheduler
210

FIG. 2C

Patent Application Publication Sep. 5, 2019 Sheet 5 of 43 US 2019/0272613 A1

A 4
Shared Memory Cache Memory
270 272
(Memory and Cache Interconnect 268 }
S .-.-..-..-.-ﬂ ey .—...-...'7.-.-.'1'
Load/Store :: GPGPU ::
Unit E: Cores ::
266 i 262 it
o L+
Register File 58
Address Mapplng Instruction Unit
Unit 254
256 =
Graphics , :
Multiprocessor Instruction Cache 252
234
From
Pipeline Manager
232

FIG. 2D

Patent Application Publication Sep. 5, 2019 Sheet 6 of 43 US 2019/0272613 A1

Graphics Multiprocessor 325

Interconnect Fabric 327

Shared Memory 346

Texture Unit(s) 344A Texture Unit(s) 344B

Cache Memory 342

Load/Store | GPGPU | GPGPU | GPGPU | Load/Store | GPGPU | GPGPU | GPGPU
Unit Core Core Core Unit Core Core Core
340A 338A 337A 336A 340B 338B 337B 336B

Register File 334A Register File 334B

Instruction Unit 332A Instruction Unit 332B

Instruction Cache 33

FIG. 3A

Patent Application Publication Sep. 5, 2019 Sheet 7 of 43 US 2019/0272613 A1

Graphics Multiprocessor 35

Interconnect Fabric 352

Shared Memory 362

Texture Unit(s) 360A Texture Unit(s) 360B

Cache Memory 358A

Execution Resources 356A Execution Resources 356B

Texture Unit(s) 360C Texture Unit(s) 360D

Cache Memory 358B

Execution Resources 356C Execution Resources 356D

Instruction Cache 334

FIG. 3B

US 2019/0272613 Al

Sep. 5,2019 Sheet 8 of 43

Patent Application Publication

[%42
Aouop

ado

1394

0¥
A1owap

JOSS9001J

Yv Ol

2%
(497

v
ndo
1347
90%
10889001
2100)-N[NN
[ey

[44% h¥4z
KowsN NdH KowdN NdDH
1444 oSy
Ic viw
— — — 0¥
o e B oo I
ndo
{124
(424 Obt
SOy To¥
% V 10SS9001] Arowop
N 210D)-NON JOSS3001g
ey 11957

US 2019/0272613 Al

Sep. 55,2019 Sheet 9 of 43

Patent Application Publication

dv "9l

8%
AdOWNTN WALSAS
£ A
R <~
BF o9CY 0%
AN (s)oyoe)) pareys J0SS8201d
55 N\
ayoe) OO
(s)yeyoe)
RZ%%
yorey . S10%
—~ m — : | e
WAN |¢_s| DNISSEDONA | 5 —
X490 SOIHAV YD BN SIBSIBOY e 309% 290D
3y door
: LNDI %e1u0) aor | KD (s)oyoen)
. a1l
F F L¥y AHV d19v
TNDIN LIYLNI —
WHN | sf DNISSHOOMd ¢ | o9t 210D 1L
XD SOIHAVYD 5 €00F 210)
NOLLY¥DHLNI
__ — MOLVNATIIDV ~2or
337 134 N
WAN || DNISSHOOUd ¢ | _ - -
XD SOIHavED [133 S - sty - V0%
ana K ALNI AXO¥d 4L
Eiad m V0OF 0100

TOTRIS[R00Y somdein

ovv

#op sng 20ULISYO))

US 2019/0272613 Al

Sep. 55,2019 Sheet 10 of 43

Patent Application Publication

¥ Ol

1177
KIOWSIA WdISAS
It 42
IR § — V4
oF © oy i
s)ayor) pareys
NN J0SS3001g
8y o
oUoED) : AN JCo%
o : (s)ouoe))
wvw azor
Uoed (s)yeqor) D1oF
- o
. - s1e)siSey M%H = RIGELES)
WAN | of DNISSHOONd |¢ 5 Toor
Xd4D SOIHAV YD LINDW 1200 a09F 210D (s)eyor)
v
: INOW Ld¥LNI A aor
a1l
297 v 9&y (Y473
WAN | 5| DNISSHOON |¢_| NOILVYDEINI [AxOud) €097 210D
X4D SOIHAVYD MOLVYATIIOV
Vor
_ AH,_V (s)ayoe)
£y 137 - e
WAN | 5l DNISSHOON | AN e VIov
X4D SOIHAVYD ||+ m g1
5% V0% 210D

UoTRIS[00Y Somdeln)

i

f

$9p Sng 20URIYO)

Patent Application Publication Sep. 5, 2019 Sheet 11 of 43 US 2019/0272613 A1l

Processor407
Application 480 Application
GPU Invocation 481 GPU Invocation
System Memory 441
Application Effective Address
Space 482 .
pace 282 OS Virtual Address Space485
Process Element483
Segment/Page Tables
Work Descriptor (WD) 486
484)

Accelerator Integration Slice

490 A J
MMU 439
\
WD . .
Fetch Registers Interrupt MGMT (g~ Effective
T 492 423
Context MGMT
448
Save/Restore

Graphics Acceleration446

FIG. 4D

US 2019/0272613 Al

Sep. 55,2019 Sheet 12 of 43

Patent Application Publication

357
SS2IPPY
Aoy

EVARE

OpFUOLIBIQIO00Y SoIydeln)

0101593/0ABS
Eigd
S LINDIN X0y
% o —
LNI T5r mvw 154
s1q)5189
—> [JADW Mdnueng o HOLAd dM
657 NININ 06v
901]§ UOTIRIS U] JOJRIS[OO0Y
i “
R 1 [
6oV — | 737 i
817 98% il (am) 1oduosaq syiom ;
JUSWIOTH $S900Id Selqe], i ;
o8egusmiSog < ' p— i
] CRF JUSWI[E $S0001J '
8op 20uds ss21ppy TSP oordg T8Foordg ssappy
[eay] JosaredAH
‘ SSQIPPY [BNHIA SO aan09)yy uoneorddy
TVF ATOwoN WolsAs
96¥ Sor 3%
JosmradAy SO uoneorddy
T0% 108890014

US 2019/0272613 Al

Sep. 55,2019 Sheet 13 of 43

Patent Application Publication

4% Ol

AIOWI
peyiun)
— _— —_— — _— P —_—
(4% (444 [¥44 0Ty oy ' [10}%
AIOUIdN KIOWOIN AIOWIN ATOWAN AIOWOIN ' AIOWIN
ndon Nndon ndon Nndo J0Sse001d) 10SS9001J
]
N :
! v ! ; v
" ™ a.
drey drev I drov Vvor !
URIIYOD) 20U21Y0)) 20U213Y0)) 20URIAYO)) oouareyo) |1}
/serd /serd /serd /serdl s
]
!
doty (AN doty NN D6t [NAN doty [ININ Voer NAIN m
nnnnnnnnnnnnnn H -
Sov
€Iy 453 112 [U%% 108830014
Nndo ndo ndo Nndo Q100N

Patent Application Publication Sep. 5, 2019 Sheet 14 0f 43 US 2019/0272613 A1l

Graphics
Processing Raster Operations Unit 526 k—-—-
Pipeline A
500 Memory
L Fragment/Pixel Processing Unit 524 <@ Interface
A 528

Rasterizer 522
A

Viewport Scale, Cull, and Clip Unit 520
A

Primitive Assembler 518
A

Geometry Processing Unit 516 9
A

Primitive Assembler 514
A

Tessellation Evaluation Processing Unit 512 r.
A

Tessellation Unit 510
A

Tessellation Control Processing Unit 508 r.
A

Primitive Assembler 506
A

Vertex Processing Unit 504 Y—-
A

Data Assembler 502
A

Instruction Stream
and Parameters

FIG. 5

US 2019/0272613 Al

Sep. 55,2019 Sheet 15 of 43

Patent Application Publication

9 "0l

AJOWIN T¥NYH3LX3

o]

om.J jwm
g v
32V4UNS VNS
TOH1INQD 1041NOD
d Y
VNS VNS

Nwrk

AON3LYT
SHYIMOT ONV AON3I0I44d
dIMOd SIACHdNI
Ad4 HLIIM HL1JIMONYE
AJOW3IW d30Nd3y

AQ4 H1IM

AONALYT
SHIMOT ANV AON3IOI443
4IMOd SIAOUdNI
Ad4 HLIM HLQIMONYE

AJOW3IW a30Nd3y

> 1NN av3d %
02
81/
na |,M
na‘n3
VT
LINN YOvE 3LI¥M E
o1/ A

o/

Patent Application Publication Sep. 5,2019 Sheet 16 of 43 US 2019/0272613 A1l

WRITE BACK UNIT
(E.G. PIXEL BACKEND)

ALL

PIXEL VALUES

ARE FDV

(OOR 1)
?

Y

U WRITE ENTIRE WRITE TWO BITS IN | J
CACHELINE CONTROL SURFACE

G
FIG. 7

Patent Application Publication Sep. 5,2019 Sheet 17

40

READ UNIT
(E.G. SAMPLER)

READ CONTROL | J
SURFACE BITS

CONTROL
SURFACE BITS

of 43 US 2019/0272613 Al

SET
?
48 46 DECODE BITS TO
_| READ CACHELINE _| EXTRACT FDV FOR THE
FROM MEMORY ENTIRE CACHELINE
DONE

US 2019/0272613 Al

Sep. 55,2019 Sheet 18 of 43

Patent Application Publication

?\/Aro J© 3O
Q PR &70 40 QY 40 S
&A//f)nu\// 0)&&&\/ /OA/ n%&no A&A/ Av+0 V\v@O Awro
6 "Dl4 e N
8 o TG % B He S T
R g T N T8 X e T L T o S e
&/%v \Vw%u 00& LS b Ot +nv\c A 4 4 Arnvxc,fmu/\c S\
A A FET @ @G @ a@. o o
! %I T T o0 onl”
"\\&SESSSSQ&NQ&N_xﬂﬁ%%
AN Z L ot oL Yb 9Ye oe ° ° %G
b nxvm nxum 76V 761 6V o106 o
Y (%) SONIAVS
7 %1 P
| % HLQIMANYE
I
VT %ST
_ O
u><“ %02
SINYD ANV SHYYWHON3IE XA

NOISSIUdINOD Add HLIM SONIAVS H1dIMANYE

US 2019/0272613 Al

Sep. 55,2019 Sheet 19 of 43

Patent Application Publication

47A/1f0 &,0 4O
) o O N Q
o N I R NI
ISP [P W P TR0
SO O W S T e o &
AN SN NNCANE G o QU S >
¢ W T Na %o X Latta et g S ke S
WD P (KT +@e@+mv ORI N NGOty
A SO A A S A S O A M M OSSR 0
4 T 73 7 w4 o
ZBZ0% % 7217 : %0 %0
mm\\ﬁ\\mmo \.xﬁxﬁm\am ol
\oﬁm “ o\Wm %1 % 761
%2
I \ (+}
' V]
" %€ (%) dNQIIdS
| %E)
m %Y
“ %S
AV SIWYD ANV SYHYWHONIE XC

(AON3NDIFYA-0SI@) NOISSIANOD A4 HLIM NIVD FONVINHOAYI

US 2019/0272613 Al

Sep. 55,2019 Sheet 20 of 43

Patent Application Publication

SOILSIHALIVYYHD LM AVN SHAAVHS 31NHWOD

11 914 O I I NS
o & VY LS L S & F A
o S F M e IT & T &Py
AR A %Lw &% NGO\ PN AN SN
& S
IS AT TSN oo
\ :Mvv /Nﬁlu%vv ,.AMW/AC ,.GNU/«..C ..A.mw ,.AMU/ (\mmU/ ..AMW «nMW 10@5 fn.NW/é AU/«D N VIVWVV ™ VIVMVVNV
S AP M MR R\ R R S S A
AR O R R I S N T A N
77,77/ a7, /7) W 7N/ M e A s
Zm7m7 a7 \\\\ - —ser—% P O e lwoe
f |IR | o
%5y — A —ee 1 %0€
t \\ \\ %9¢—5 L \\ \\ %01 (%) STINVA
177 lotE 177, %0G | N3NDIA
N7 N7z %09
17 N7 %01
" & 70l “c\ %0/ %08
L54¢8 e %06
“ “ %001
" | SOW3d aNY
NY3W03D | SINYD ag | SHMVWHONIS aE

US 2019/0272613 Al

Sep. 55,2019 Sheet 21 of 43

Patent Application Publication

W

JOUINOD

< _vivd

J04INOD

Y1y

TOUINOD

noivnisaaK viva mﬂﬁo

nolwnisiaK viva xmﬁwwwo

noivnisaaK viva m&ﬁg
257 29

 VIva
01907
- HOLVHYdIN0) N\ Avd] 304N0S
J04LNOD
' VIva
91907
- HOLVavd0o N id] 304N0S
J04INGD
®
oav4 .
09
\
 VIva \y
1/ 01
- HOLVHYdIN0) N\ ~vd] 04N0S
J0¥LNOD
VIVG
91907
<« |oLvavdwoa N\ AV 30dN0S
Joumnoo|) =
| Log
(S 8G

Patent Application Publication

Sep. 5,2019 Sheet 22 of 43 US 2019/0272613 Al

TAG CDP /RDP INFO
TAG CDP /RDP INFO
[]
®
[]
TAG CDP /RDP INFO
TAG CDP /RDP INFO

FIG. 13

US 2019/0272613 Al

Sep. 55,2019 Sheet 23 of 43

Patent Application Publication

v1 Ol

(INNHD € ANOJ3S 3HL ¥04) SINWIL
8 1vid3d ANV 8¢€ 1V ONILHVIS V1vd
40 d¥ IMVL 'JILLINSNYYHL SY YLVd
d¢t 1SyId SN "day 1vildvd

1€

"S3NLL ¢€ Y1Vad 40 S31Ad ¢ 1Syl
3HL 1V3ad3d ANV O 135440 vivd
1V ONILYVIS NY3llvd 3SN "ddy

319v1 4A3 NI ¥ X3ANI 3ISN "ddd

318VL dd3 NI T X4dNI 3SN 'ddd

X

X

d@d/ 400 LON

X

X

NOI1dI¥3S3d

(S31A9)
L1HONT
ddy

1358440
ddy

d@y

X3aNI
318yl
ddd

dad

Patent Application Publication

Sep. 55,2019 Sheet 24 of 43

US 2019/0272613 Al

CDP TABLE
INDEX COP
0 0 x 0000000000000000
1 O x FFFFFFFFFFFFFFFF
2 0 x FOFOFOFOFOFOFOFO
3 0 x 1010101010101010
4 0 x 8080808080808080

FIG. 15

Patent Application Publication

Sep. 55,2019 Sheet 25 of 43

[INCOMING REQUEST)

LOOKUP
TAG

78

IS

CDP /RDP

VALID
?

YES

US 2019/0272613 Al

GET DATA FROM
NEXT LEVEL IN
THE HIERARCHY

IS
FILL DATA

CDP /RDP
?

NO | WRITE ENTIRE
DATA ARRAY

UPDATE CDP /RDP
INFO AND DATA
ARRAY (IF NEEDED)

LINE INTO
FO

PROCESS CDP /
CDP INFO

IS
DATA
ARRAY ACCESS

NEEDED
?

GATHER /GENERATE /
RECONSTUCT FULL
CACHE LINE DATA

94

(

SEND DATA
TO REQUESTER

JJ

FIG. 16

Patent Application Publication Sep. 5, 2019 Sheet 26 of 43 US 2019/0272613 A1l

"3
- E D
s—1l____F—
[+——
[+——
\ / \ / \ /
Vv Vv Vv
T LONG HOP TRANSMISSIONS R

FIG. 17

US 2019/0272613 Al

Sep. 55,2019 Sheet 27 of 43

Patent Application Publication

81 9l

206
LIN{Y TOMINGD
HSVHALLTON

A

016
DO TOALNOD
NYHULSAY

216
DO TOUING
NYIHLSNAOC

906

A

Y06

{Syasved
WYTELSdN

(S)yaSVHJI WYTALSNMOQ

4

806
2dN08S YIM0d

rlo
AdLINTE) SIDOT

P06 Ad

G116 HOVAIVd JOLINANONES

Patent Application Publication Sep. 5, 2019 Sheet 28 0f 43 US 2019/0272613 A1l

1600

N

STREAMING MULTIPROCESS {SM) 1002

REGISTER FILE 1014

Low ENERGY HicH CApaAQITY
PORTION PORTION
1020 1022

SCHEDULER LOGIC 1010

SEMT LANES 1004

ALU
{L.ow/
HIGH)

SFU MEM IE}{‘,\;I%{(;W/
1008 1010 I
1008 o1

SBARED MEMORY 1018

FIG. 19

Patent Application Publication Sep. 5, 2019 Sheet 29 of 43 US 2019/0272613 A1l

1160
PP SuBsYSTEM 1102 /
PPU-01104
1107 FRONT /1 112 i 107X
i EnD < R+ > MEMORY
i 1120 T MEMORY
LN — e BRIDGE
* 1108
N S
WORK SCHEDULING UNtT 1122
PROCESSING CLUSTER ARRAY 1124
GPC-0 GPC-1 GPC-M
1126 1128 moeane 1130
Ly CROSSBAR UnaT 113 ')w
N l”
i) 171 .
! | MEMORY INTERFACE 1114 ! 1112
PARTITION PARTITION PARTITION
Unir-0 Unir-1 commen UNiT-N
1134 1136 1138
A A 3
] v PP MeMm-0 1106 v
MEM-(MEM-1 MEM-N
1140 1342 cosees 1144
1107) 1 107}
N7 : _ N7
PP MEM-1 | g i \(_\r_, PPU-1 |- Y
' 1
' '
' 1 107) ' 11
; N 7 . '\y—,l
PP MEM-P 4—— ¥ 1= PPU-P |« i\

Patent Application Publication Sep. 5,2019 Sheet 30 of 43 US 2019/0272613 A1l

PROCESSOR CORE(S) - 1407

1!
1!
GRAPHICS CACHE REGISTER i i
PROCESSOR(S) 1404 FILE INSTRUCTION SET 1
1408 g 1406 1409 |
i

\/ PROCESSOR(S)

1402

! PROCESSOR BUS |

1410-J @

ittt MEMORY - 1420
| EXTERNAL | MEMORY
i GRAPHICS ! CONTROLLER INSTRUCTIONS - 1421
| PROCESSOR 1 HUB
N 1416 DATA - 1422
DATA STORAGE @ LEGACY 1/0
CONTROLLER
DEVICE K= — 1010
1424 Ees)
WIRELESS o USB colNEZOLLER(S)
TRANSCEIVER K= CONTROLLER e N - - S |
1426 HUB | KEYBOARD /MOUSE 1
1430 ! 1444 }
FIRMWARE
AUDIO CONTROLLER
INT{:EZFéACE — — TING
NETWORK
CONTROLLER
1434
1400

FIG. 21

US 2019/0272613 Al

Sep. 55,2019 Sheet 31 of 43

Patent Application Publication

¢¢ Ol

80GT
_ HOSSII0Ud SIIHAYHD
TIGT
¥ITI04INOD
AV1dSIa
YIGT ZIGT - DNIM 19ANNODYHILNI
9761 mﬁﬁ%ﬂ%ﬂmo 90GT - (S)LINN JHOYD QIUVHS
(SILINN ' NVOGI | ! VY0GT
1
ZMAHMﬂ%zoo 0Te1 LSLNNY 1, (S)LINN
M09 _MEwmw_ | JHIVO
IN39Y W3LSAS | NZOST 340D “ V20GT 340D

€161

0/1

81GT
(IWv¥ae

“93) AMOWAN

d4dad34gn4

4f/l|oomH d0SS3004d

€¢ Ol

0¢91
30IA3d
AV1dSId

AN
L N

US 2019/0272613 Al

Y191 — V4N AHOWIAW

P e e e e s M e M e e M e e M e M e e e e e M e e e e

Sep. 55,2019 Sheet 32 of 43

7091 2091
INIDNI HITIOHINOD
1ng AV1dSIQ

J3d03 ANIM3dId W31SAS-8NS ANIT3dId
03dIA VITIN VIQIn/ ag ae

1
1
1
1
1
1
1
1
1
1
1
1
9091 | llﬂv _ A_._Inl,.
INION3 | 1| 9191 G191 2191
1
1
1
1
1
1
1
1

|||||||||||||||||||||||||||||||| A 3dY

N—0091
40SSID08d SOIHdYYD

Patent Application Publication

US 2019/0272613 Al

Sep. 55,2019 Sheet 33 of 43

Patent Application Publication

<t ¥vL1 - 140d V1vd

AMOWIN |
oL !
1
1
1
“ —
! 9¢/1
| | 430714/ 308 JovM
m VELT
>m_OS_m=>_“ NOILYWIISI NOILOW
WOY4 | ZEl1
1 |30vT43LNIAA/ 3SIONT
1 P——
! 0€/1
! INIONT ONITdWYS
1
1

[A7Ai
INM3dId Q€

... _
1
i
"

\ AHOWAW

! WOY4
1
91/1 “
INM3dId VIGIW !

V11 ! —
€0Z1
mﬁﬁ%@ m — yINYIULS
1NN NOILND3XT 1 [|ANVAWOD

“
1
"
1
1
]
1
]
1
]
1
1

ANIONT DNISSIO0Hd S3IHAVYO

US 2019/0272613 Al

Sep. 5,2019 Sheet 34 of 43

Patent Application Publication

................... _
NOBST ~ 3400 SOIHAYY | V0881 — 340D SOIHdYYY
“l_HHHHHHHH_I".II...Illlllll.“IIum
|1 NYOST !iNZ9gl: vvosT || veost
| 1SUTTANVS !} SnT | SHTTdWYS|| sn3
| I P wd | e o e - 1
| NO98T M00-8nS ."m V09G 3¥00-6NS
.................. | 9€8T
" T INIM3dId
i NOZ8I n Vo78T AYLINO3D
| SI0UN0SIU-QIUVHS 1! $304N0SIY aFUvHS || Bm_z%mmﬂz_
1 it
1 i
Lo e e e e e e - ——— - i
"I_HHHHHHHH_IH.II.UIIIIII.N_II““
|| NVGST || NZg8li vresl || vesst
L iSuTIdNYS!! SN | m SUTTdNYS|| sn3 e
ittt o — aN3 INOY4
| NOS8I I¥oo-8ns ! V0S8T 3400-9NS 03dIA
L e e e o o o o oo~ e |
I N oo
oogL £e8l 0€8I HINYIULS
¥0SS300Ud X4 JOA aNYININOD
SOIHdVHD ZE8T - INIONT YIQIW J \
081 2081

US 2019/0272613 Al

Sep. 5,2019 Sheet 35 of 43

I —— L. L _ _
1
- 1
¥161 “ m —
1d40d v1vd 1 | ot | , .. | 806l | @806l 9061
N3 N3 N3 JHOYD
— | i NOILONYLSNI
2161 ! _
JHOVD YIvd _,-J--.“
11— |_| -l
1 1
— _ !
mummﬂ<m mﬁ-zwoﬂ m ... | 08061 | V806l PoeT =061
LN n3 n3
i i HOLVdSIa| ¥3avHS
“ i avIgHL | T1Ixd

Patent Application Publication

US 2019/0272613 Al

Sep. 55,2019 Sheet 36 of 43

Patent Application Publication

0502 — YIe 40j00p —> nﬁm&vu%oao

8V0Z — Ule oileied—>= qooolyTi0=2apoado £¢ Ol
9%0¢ - SnoeuR|jRISIN— gk [100 =8poodo
I 1
7V0Z - 104U MOl3—> o000 =8poodo
7702 — 21807/ Mo —= quookoQQ =2apoado
4.:. OlT|C1EIP]|G]|9]L
0v0¢
400034a 340340
¢20¢ | 020¢| 81021 ¥10¢ | €10¢ | 210¢
TOHS | 00YS | 1530 | TOHLINOD| XAANI|3d03d0
0€0¢
NOILONYLSNI
1OVdNOD LIg-19
m 920¢ ¥20¢ | ¢20Z| 0¢0¢ | 8102 | 910¢ ¥10¢ ¢10¢
] JAOW SSFHAAv/ SS30V ¢JYS | TOYS | 00HS | 1530 |3Z1S-03X3| T0H1INOD | 340340
0102
NOILONYLSNI 11g-8¢21
000¢
S1VINYOS

NOILONYLSNI 40O SOIHJYYHO

US 2019/0272613 Al

8¢ 94 _oue L eere) | zom
ANIONA M dN3S/ dimo) |)
43ANTY _ i
|
\ [tete !
] !
= | [1n0 Wvauis[™
@ JHOVO I _
- Hid3d || ZZTe || itz || €iTe ! “
s ——— | Sdo || 3Howo | [HLd3a/ i !
- 8/1¢ || 73IXId €1 | |43LSvY | |
< JHOVO ¥ i “ !
g 4IANY L _ _
=]] 1
wn] “
I
2 | " suzuoomm_z_
2 ¥IHOLVdsIa| ! NIY
] QR | | MOLYTI3SSL m
g 9G1¢ geale " TiTe “
v — — |
Z 8oz | [L¥0d SLINN 72 T y3avHs TInH !
= NDAL [otz Mw_ﬁm T u _,m_ﬂ_m) | |
o I
= CERLLE NOILNJ3X3 VIGIN ﬂ:) “
=2 e = IET2 A “
z [oz oz |l ,foﬂm M ,,,,,,,,,, ”7 R EER el
- ' 43 TI04INOD|| INIDN |! e N A]
S ' AvIdSIa az | _ﬁ [ET¢ w h ™ Cozz __
= A W | ' (aNioNa vigaw) (gNI-INoMd oFain) ! S 001¢
[>]
2 INION3 SRS SRR - luanvads q05sa)0
£ AY1dSId aNYWINOD
g
=
[~™

Patent Application Publication Sep. 5, 2019 Sheet 38 0f 43 US 2019/0272613 A1l

GRAPHICS PROCESSOR COMMAND FORMAT

2200
CLIENT | OPCODE [SUB-OPCODE] DATA | COMMAND SIZE !
2202 | 2204 2205 2206 2208 ;
N - I el
GRAPHICS PROCESSOR COMMAND SEQUENCE
2210
i PIPELINE FLUSH ~~ 7
22
i' " TPIPELINE SELECT ~ 1
.23
PIPELINE CONTROL
2214
RETURN BUFFER STATE
2216
222
222~ 2220 a MEDIA—" 2224
3D PIPELINE STATE MEDIA PIPELINE STATE
2230 2240
3D PRIMITIVE MEDIA OBJECT
2232 2042
EXECUTE EXECUTE
2234 2044

FIG. 29B

US 2019/0272613 Al

Sep. 55,2019 Sheet 39 of 43

Patent Application Publication

Y }
vEEC 05e7 XY
(S)3400 3S0d¥nd HOSSII0Md ¥0SS300¥d
TYHINID SOIHdVYD
— 62E2
YN YIAA SOIHAYYD
SNOILONNA 30N Pl g IQOW TINYIN
TINYIN SO 1
1 12€¢
7oe7 = YIUMNOD HIAYHS -
(TON3O/ AELOMIA 9'T) f—={HTTIdN0D 9zge ¢
Id¥ SOIHAVYD YIAVHS YIAINA SOIHAYYD AHOW3N
— 00N ¥3sn
02€2
(SO) WILSAS HNILYYHIdO
A
ol€e

$103rg0 _

SOIHdVYD ALY
o SNOILONYLSNI ¥IAVHS

SNOILINYLSNI 318Y1N33X3

01€C

NOILYOINddY SOIHdVYD d€

00€¢ WILSAS ONISSI004d V1va

0€ Ol

US 2019/0272613 Al

Sep. 55,2019 Sheet 40 of 43

Patent Application Publication

[€ Ol

ogmw
AUAUE BN
0GHZ ~,

Ovve —

G9v¢
ALITIOVA
NOILvOIdav

0ce
(VLvQ NDIS3
TVOISAHd
40 1QH) 13A0W
FHYMAYYH

0Eve
ALITIOV4 N9DIS3d

GIvZ
NOIS3d 11 01z

= NOILYTNIIS

¢Ive

SER JHYML40S

NOILYINWIS

001¢

/l.rzw_\,_n_o._mao FH00 d

US 2019/0272613 Al

Sep. 55,2019 Sheet 41 of 43

Patent Application Publication

¢t Ol

! I
06Gc |} G567 1| 09G¢ || G96T Jﬁ_ﬁ%um
INGH |+ 1IN 1| HSYTd | [RIOW3W| 1 7 hsned

GYSe ovSe 9€5¢ 0£5¢ GeGe
AV1dsial |oel/ sei| | 01aS 14vN asn

/1dS
e e
1 1 1 1
! 0262 “ ! G1GC “
| HOSSIO0Ud ! | HOSSIO0Ud !
| 03 A -7 TR
. i . i

\v 0162 G0GZ
0052 40SSII0Ud (S)H0SSIN0Ud
SOIHJYND NOILYOITddVY

Patent Application Publication Sep. 5,2019 Sheet 42 0f 43 US 2019/0272613 A1l

GRAPHICS PROCESSOR

ijlo
7 N
VERTEX PROCESSOR
2605
FRAGMENT | [FRAGMENT FRAGMENT
PROCESSOR | | PROCESSOR PROCESSOR
2615A 2615C 2615N-1
FRAGMENT | [FRAGMENT FRAGMENT
PROCESSOR | | PROCESSOR PROCESSOR
26158 2615D 2615N
MMU : MMU :
2620 i 26208 i
]
CACHE o CACHE E
2625 ; 26358 :
INTERCONNECT || INTERCONNECT |
26304 ; 26308 :
\\ ___________________)j

Patent Application Publication Sep. 5,2019 Sheet 43 0f 43 US 2019/0272613 A1l

GRAPHICS PROCESSOR

ijlo
(7 N
INTER-CORE TASK-MANAGER
(E.G., THREAD DISPATCHER)
2705
' SHADER! I SHADER! | SHADER! ' SHADER!
1 CORE 11 CORE 11 CORE + =---- 1 CORE 1
| 2715A 1 2715C 1 2715E 1 27151,
I SHADER ! | SHADER'! | SHADER! SHADER]
"CORE {1 CORE i1 CORE | ___. I GoRe.
| 27158 11 27150 1. 2715F | 2715N |
TILING UNIT
27158
MMU : MMU :
2620A | 26208 |
|
CACHE o CACHE E
2625A i 26258 |
INTERCONNECT || INTERCONNECT |
2630A i 26308 |
e /)

US 2019/0272613 Al

FREQUENT DATA VALUE COMPRESSION
FOR GRAPHICS PROCESSING UNITS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. Parent
application Ser. No. 15/483,236 filed on Apr. 10, 2017,
hereby expressly incorporated by reference herein.

FIELD

[0002] Embodiments relate generally to data processing
and more particularly to data processing via a general-
purpose graphics processing unit.

BACKGROUND OF THE DESCRIPTION

[0003] Accessing external memory from a graphics pro-
cessing unit is costly in terms of both power and perfor-
mance. Thus, most modern graphics processing units
employ a compression scheme to reduce memory bandwidth
for improved power and performance.

[0004] Typical compression algorithms achieve from 2:1
to 8:1 compression ratios on a given cacheline. Alternatively
graphics processing unit architectures can be tile-based to
further reduce memory bandwidth of graphics workloads.
[0005] Typically three-dimensional graphics applications
render one frame at a time using multiple render passes.
Each pass updates a render target that could be either used
as a texture sampling surface or a blend destination in
subsequent passes. Moreover, these render targets may be
color buffers or the Unordered Access View (UAV) buffers.
Compressing the surfaces not only suppresses the write back
bandwidth to memory but also read bandwidth when these
surfaces are used as textures or blend destinations.

[0006] Current parallel graphics data processing includes
systems and methods developed to perform specific opera-
tions on graphics data such as, for example, linear interpo-
lation, tessellation, rasterization, texture mapping, depth
testing, etc. Traditionally, graphics processors used fixed
function computational units to process graphics data; how-
ever, more recently, portions of graphics processors have
been made programmable, enabling such processors to sup-
port a wider variety of operations for processing vertex and
fragment data.

[0007] To further increase performance, graphics proces-
sors typically implement processing techniques such as
pipelining that attempt to process, in parallel, as much
graphics data as possible throughout the different parts of the
graphics pipeline. Parallel graphics processors with single
instruction, multiple thread (SIMT) architectures are
designed to maximize the amount of parallel processing in
the graphics pipeline. In an SIMT architecture, groups of
parallel threads attempt to execute program instructions
synchronously together as often as possible to increase
processing efficiency.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] So that the manner in which the above recited
features of the present embodiments can be understood in
detail, a more particular description of the embodiments,
briefly summarized above, may be had by reference to
embodiments, some of which are illustrated in the appended
drawings. It is to be noted, however, that the appended

Sep. 5, 2019

drawings illustrate only typical embodiments and are there-
fore not to be considered limiting of its scope.

[0009] FIG. 1 is a block diagram illustrating a computer
system configured to implement one or more aspects of the
embodiments described herein;

[0010] FIG. 2A-2D illustrate a parallel processor compo-
nents, according to an embodiment;

[0011] FIGS. 3A-3B are block diagrams of graphics mul-
tiprocessors, according to embodiments;

[0012] FIG. 4A-4F illustrate an exemplary architecture in
which a plurality of GPUs are communicatively coupled to
a plurality of multi-core processors;

[0013] FIG. 5 is a conceptual diagram of a graphics
processing pipeline, according to an embodiment;

[0014] FIG. 6 is a schematic architecture in accordance
with one embodiment;

[0015] FIG. 7 is a flow chart for one embodiment;
[0016] FIG. 8 is a flow chart for a read sequence according
to another embodiment;

[0017] FIG. 9 shows, for one embodiment, bandwidth
savings from frequent data value compression according to
simulator results;

[0018] FIG. 10, for one embodiment, shows a perfor-
mance gain with frequent data value compression based on
simulator results

[0019] FIG. 11 shows, for one embodiment, compute
shader UAV write characteristics based on simulator results;
[0020] FIG. 12 is a schematic depiction of source and
destination agents connected by a high bandwidth fabric in
accordance with one embodiment;

[0021] FIG. 13 shows how a table coordinating tags and
common data patterns and repeating data patterns in accor-
dance with one embodiment;

[0022] FIG. 14 is a chart showing sample encoding for one
embodiment;
[0023] FIG. 15 is a common data pattern table according

to one embodiment;

[0024] FIG. 16 is a flow chart for one embodiment;
[0025] FIG. 17 is a schematic depiction of another
embodiment;

[0026] FIG. 18 is a schematic depiction for one embodi-
ment;

[0027] FIG.
embodiment;
[0028] FIG. 20 is a schematic depiction of yet another
embodiment;

[0029] FIG. 21 is a block diagram of a processing system
according to one embodiment;

[0030] FIG. 22 is a block diagram of a processor according
to one embodiment;

[0031] FIG. 23 is a block diagram of a graphics processor
according to one embodiment;

[0032] FIG. 24 is a block diagram of a graphics processing
engine according to one embodiment;

[0033] FIG. 25 is a block diagram of another embodiment
of a graphics processor;

[0034] FIG. 26 is a depiction of thread execution logic
according to one embodiment;

[0035] FIG. 27 is a block diagram of a graphics processor
instruction format according to some embodiments;

[0036] FIG. 28 is a block diagram of another embodiment
of a graphics processor;

19 is a schematic depiction for another

US 2019/0272613 Al

[0037] FIGS. 29A-29B is a block diagram of a graphics
processor command format according to some embodi-
ments;

[0038] FIG. 30 illustrates exemplary graphics software
architecture for a data processing system for one embodi-
ment;

[0039] FIG. 31 is a block diagram illustrating an IP core
development system for one embodiment;

[0040] FIG. 32 is a block diagram illustrating an exem-
plary system on a chip for one embodiment;

[0041] FIG. 33 is a block diagram illustrating an exem-
plary graphics processor; and

[0042] FIG. 34 is a block diagram illustrating an addi-
tional exemplary graphics processor.

DETAILED DESCRIPTION

[0043] In some embodiments, a graphics processing unit
(GPU) is communicatively coupled to host/processor cores
to accelerate graphics operations, machine-learning opera-
tions, pattern analysis operations, and various general pur-
pose GPU (GPGPU) functions. The GPU may be commu-
nicatively coupled to the host processor/cores over a bus or
another interconnect (e.g., a high-speed interconnect such as
PCle or NVLink). In other embodiments, the GPU may be
integrated on the same package or chip as the cores and
communicatively coupled to the cores over an internal
processor bus/interconnect (i.e., internal to the package or
chip). Regardless of the manner in which the GPU is
connected, the processor cores may allocate work to the
GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated
circuitry/logic for efficiently processing these commands/
instructions.

[0044] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing. However, it will be apparent to one of skill in the art that
the embodiments described herein may be practiced without
one or more of these specific details. In other instances,
well-known features have not been described to avoid
obscuring the details of the present embodiments.

System Overview

[0045] FIG. 1 is a block diagram illustrating a computing
system 100 configured to implement one or more aspects of
the embodiments described herein. The computing system
100 includes a processing subsystem 101 having one or
more processor(s) 102 and a system memory 104 commu-
nicating via an interconnection path that may include a
memory hub 105. The memory hub 105 may be a separate
component within a chipset component or may be integrated
within the one or more processor(s) 102. The memory hub
105 couples with an I/O subsystem 111 via a communication
link 106. The I/O subsystem 111 includes an I/O hub 107
that can enable the computing system 100 to receive input
from one or more input device(s) 108. Additionally, the I/O
hub 107 can enable a display controller, which may be
included in the one or more processor(s) 102, to provide
outputs to one or more display device(s) 110A. In one
embodiment the one or more display device(s) 110A coupled
with the I/O hub 107 can include a local, internal, or
embedded display device.

[0046] In one embodiment the processing subsystem 101
includes one or more parallel processor(s) 112 coupled to

Sep. 5, 2019

memory hub 105 via a bus or other communication link 113.
The communication link 113 may be one of any number of
standards based communication link technologies or proto-
cols, such as, but not limited to PCI Express, or may be a
vendor specific communications interface or communica-
tions fabric. In one embodiment the one or more parallel
processor(s) 112 form a computationally focused parallel or
vector processing system that an include a large number of
processing cores and/or processing clusters, such as a many
integrated core (MIC) processor. In one embodiment the one
or more parallel processor(s) 112 form a graphics processing
subsystem that can output pixels to one of the one or more
display device(s) 110A coupled via the /O Hub 107. The
one or more parallel processor(s) 112 can also include a
display controller and display interface (not shown) to
enable a direct connection to one or more display device(s)
1108.

[0047] Within the I/O subsystem 111, a system storage
unit 114 can connect to the I/O hub 107 to provide a storage
mechanism for the computing system 100. An I/O switch
116 can be used to provide an interface mechanism to enable
connections between the /O hub 107 and other components,
such as a network adapter 118 and/or wireless network
adapter 119 that may be integrated into the platform, and
various other devices that can be added via one or more
add-in device(s) 120. The network adapter 118 can be an
Ethernet adapter or another wired network adapter. The
wireless network adapter 119 can include one or more of a
Wi-Fi, Bluetooth, near field communication (NFC), or other
network device that includes one or more wireless radios.
[0048] The computing system 100 can include other com-
ponents not explicitly shown, including USB or other port
connections, optical storage drives, video capture devices,
and the like, may also be connected to the I/O hub 107.
Communication paths interconnecting the various compo-
nents in FIG. 1 may be implemented using any suitable
protocols, such as PCI (Peripheral Component Interconnect)
based protocols (e.g., PCI-Express), or any other bus or
point-to-point communication interfaces and/or protocol(s),
such as the NV-Link high-speed interconnect, or intercon-
nect protocols known in the art.

[0049] In one embodiment, the one or more parallel pro-
cessor(s) 112 incorporate circuitry optimized for graphics
and video processing, including, for example, video output
circuitry, and constitutes a graphics processing unit (GPU).
In another embodiment, the one or more parallel processor
(s) 112 incorporate circuitry optimized for general purpose
processing, while preserving the underlying computational
architecture, described in greater detail herein. In yet another
embodiment, components of the computing system 100 may
be integrated with one or more other system elements on a
single integrated circuit. For example, the one or more
parallel processor(s), 112 memory hub 105, processor(s)
102, and I/O hub 107 can be integrated into a system on chip
(SoC) integrated circuit. Alternatively, the components of
the computing system 100 can be integrated into a single
package to form a system in package (SIP) configuration. In
one embodiment at least a portion of the components of the
computing system 100 can be integrated into a multi-chip
module (MCM), which can be interconnected with other
multi-chip modules into a modular computing system.
[0050] It will be appreciated that the computing system
100 shown herein is illustrative and that variations and
modifications are possible. The connection topology, includ-

US 2019/0272613 Al

ing the number and arrangement of bridges, the number of
processor(s) 102, and the number of parallel processor(s)
112, may be modified as desired. For instance, in some
embodiments, system memory 104 is connected to the
processor(s) 102 directly rather than through a bridge, while
other devices communicate with system memory 104 via the
memory hub 105 and the processor(s) 102. In other alter-
native topologies, the parallel processor(s) 112 are con-
nected to the /O hub 107 or directly to one of the one or
more processor(s) 102, rather than to the memory hub 105.
In other embodiments, the I/O hub 107 and memory hub 105
may be integrated into a single chip. Large embodiments
may include two or more sets of processor(s) 102 attached
via multiple sockets, which can couple with two or more
instances of the parallel processor(s) 112. Some of the
particular components shown herein are optional and may
not be included in all implementations of the computing
system 100. For example, any number of add-in cards or
peripherals may be supported, or some components may be
eliminated.

[0051] FIG. 2Aillustrates a parallel processor 200, accord-
ing to an embodiment. The various components of the
parallel processor 200 may be implemented using one or
more integrated circuit devices, such as programmable pro-
cessors, application specific integrated circuits (ASICs), or
field programmable gate arrays (FPGA). The illustrated
parallel processor 200 is a variant of the one or more parallel
processor(s) 112 shown in FIG. 1, according to an embodi-
ment.

[0052] In one embodiment the parallel processor 200
includes a parallel processing unit 202. The parallel pro-
cessing unit includes an 1/O unit 204 that enables commu-
nication with other devices, including other instances of the
parallel processing unit 202. The I/O unit 204 may be
directly connected to other devices. In one embodiment the
1/O unit 204 connects with other devices via the use of a hub
or switch interface, such as memory hub 105. The connec-
tions between the memory hub 105 and the /O unit 204
form a communication link 113. Within the parallel process-
ing unit 202, the I/O unit 204 connects with a host interface
206 and a memory crossbar 216, where the host interface
206 receives commands directed to performing processing
operations and the memory crossbar 216 receives commands
directed to performing memory operations.

[0053] When the host interface 206 receives a command
buffer via the 1/O unit 204, the host interface 206 can direct
work operations to perform those commands to a front end
208. In one embodiment the front end 208 couples with a
scheduler 210, which is configured to distribute commands
or other work items to a processing cluster array 212. In one
embodiment the scheduler 210 ensures that the processing
cluster array 212 is properly configured and in a valid state
before tasks are distributed to the processing clusters of the
processing cluster array 212.

[0054] The processing cluster array 212 can include up to
“N” processing clusters (e.g., cluster 214A, cluster 214B,
through cluster 214N). Each cluster 214A-214N of the
processing cluster array 212 is capable of executing a large
number (e.g., thousands) of concurrent threads, where each
thread is an instance of a program.

[0055] In one embodiment, different clusters 214A-214N
can be allocated for processing different types of programs
or for performing different types of computations. The
scheduler 210 can allocate work to the clusters 214A-214N

Sep. 5, 2019

of the processing cluster array 212 using various scheduling
and/or work distribution algorithms, which may vary
depending on the workload arising for each type of program
or computation. The scheduling can be handled dynamically
by the scheduler 210, or can be assisted in part by compiler
logic during compilation of program logic configured for
execution by the processing cluster array 212.

[0056] The processing cluster array 212 can be configured
to perform various types of parallel processing operations.
In one embodiment the processing cluster array 212 is
configured to perform general-purpose parallel compute
operations. For example, the processing cluster array 212
can include logic to execute processing tasks including but
not limited to, linear and nonlinear data transforms, filtering
of'video and/or audio data, and/or modeling operations (e.g.,
applying laws of physics to determine position, velocity and
other attributes of objects).

[0057] In one embodiment the processing cluster array
212 is configured to perform parallel graphics processing
operations. In embodiments in which the parallel processor
200 is configured to perform graphics processing operations,
the processing cluster array 212 can include additional logic
to support the execution of such graphics processing opera-
tions, including, but not limited to texture sampling logic to
perform texture operations, as well as tessellation logic and
other vertex processing logic. Additionally, the processing
cluster array 212 can be configured to execute graphics
processing related shader programs such as, but not limited
to vertex shaders, tessellation shaders, geometry shaders,
and pixel shaders. The parallel processing unit 202 can
transfer data from system memory via the 1/O unit 204 for
processing. During processing the transferred data can be
stored to on-chip memory (e.g., parallel processor memory
222) during processing, then written back to system
memory.

[0058] In one embodiment, when the parallel processing
unit 202 is used to perform graphics processing, the sched-
uler 210 can be configured to divide the processing work-
load into approximately equal sized tasks, to better enable
distribution of the graphics processing operations to multiple
clusters 214A-214N of the processing cluster array 212. In
some embodiments, portions of the processing cluster array
212 can be configured to perform different types of process-
ing. For example a first portion may be configured to
perform vertex shading and topology generation, a second
portion may be configured to perform tessellation and geom-
etry shading, and a third portion may be configured to
perform pixel shading or other screen space operations, to
produce a rendered image for display. Intermediate data
produced by one or more of the clusters 214A-214N may be
stored in buffers to allow the intermediate data to be trans-
mitted between clusters 214A-214N for further processing.
[0059] During operation, the processing cluster array 212
can receive processing tasks to be executed via the scheduler
210, which receives commands defining processing tasks
from front end 208. For graphics processing operations,
processing tasks can include indices of data to be processed,
e.g., surface (patch) data, primitive data, vertex data, and/or
pixel data, as well as state parameters and commands
defining how the data is to be processed (e.g., what program
is to be executed). The scheduler 210 may be configured to
fetch the indices corresponding to the tasks or may receive
the indices from the front end 208. The front end 208 can be
configured to ensure the processing cluster array 212 is

US 2019/0272613 Al

configured to a valid state before the workload specified by
incoming command buffers (e.g., batch-buffers, push buf-
fers, etc.) is initiated.

[0060] Each of the one or more instances of the parallel
processing unit 202 can couple with parallel processor
memory 222. The parallel processor memory 222 can be
accessed via the memory crossbar 216, which can receive
memory requests from the processing cluster array 212 as
well as the /O unit 204. The memory crossbar 216 can
access the parallel processor memory 222 via a memory
interface 218. The memory interface 218 can include mul-
tiple partition units (e.g., partition unit 220A, partition unit
220B, through partition unit 220N) that are each directly
coupled to a portion (e.g., memory unit) of parallel processor
memory 222. The number of partition units 220A-220N
generally equals the number of memory units, such that a
first partition unit 220A has a corresponding first memory
unit 224A, a second partition unit 220B has a corresponding
memory unit 224B, and an Nth partition unit 220N has a
corresponding Nth memory unit 224N. In other embodi-
ments, the number of partition units 220A-220N may not
equal the number of memory devices.

[0061] In various embodiments, the memory units 224A-
224N can include various types of memory devices, includ-
ing dynamic random access memory (DRAM) or graphics
random access memory, such as synchronous graphics ran-
dom access memory (SGRAM), including graphics double
data rate (GDDR) memory. In one embodiment, the memory
units 224A-224N may also include 3D stacked memory,
including but not limited to high bandwidth memory
(HBM). Persons skilled in the art will appreciate that the
specific implementation of the memory units 224A-224N
can vary, and can be selected from one of various conven-
tional designs. Render targets, such as frame buffers or
texture maps may be stored across the memory units 224 A-
224N, allowing partition units 220A-220N to write portions
of each render target in parallel to efficiently use the avail-
able bandwidth of parallel processor memory 222. In some
embodiments, a local instance of the parallel processor
memory 222 may be excluded in favor of a unified memory
design that utilizes system memory in conjunction with local
cache memory.

[0062] In one embodiment, any one of the clusters 214A-
214N of the processing cluster array 212 can process data to
be written to any of the memory units 224 A-224N within
parallel processor memory 222. The memory crossbar 216
can be configured to route the output of each cluster 214A-
214N to the input of any partition unit 220A-220N or to
another cluster 214A-214N for further processing. Each
cluster 214A-214N can communicate with the memory
interface 218 through the memory crossbar 216 to read from
or write to various external memory devices. In one embodi-
ment the memory crossbar 216 has a connection to the
memory interface 218 to communicate with the 1/O unit 204,
as well as a connection to a local instance of the parallel
processor memory 222, enabling the processing units within
the different processing clusters 214A-214N to communi-
cate with system memory or other memory that is not local
to the parallel processing unit 202. In one embodiment the
memory crossbar 216 can use virtual channels to separate
traffic streams between the clusters 214A-214N and the
partition units 220A-220N.

[0063] While a single instance of the parallel processing
unit 202 is illustrated within the parallel processor 200, any

Sep. 5, 2019

number of instances of the parallel processing unit 202 can
be included. For example, multiple instances of the parallel
processing unit 202 can be provided on a single add-in card,
or multiple add-in cards can be interconnected. The different
instances of the parallel processing unit 202 can be config-
ured to inter-operate even if the different instances have
different numbers of processing cores, different amounts of
local parallel processor memory, and/or other configuration
differences. For example and in one embodiment, some
instances of the parallel processing unit 202 can include
higher precision floating point units relative to other
instances. Systems incorporating one or more instances of
the parallel processing unit 202 or the parallel processor 200
can be implemented in a variety of configurations and form
factors, including but not limited to desktop, laptop, or
handheld personal computers, servers, workstations, game
consoles, and/or embedded systems.

[0064] FIG. 2B is a block diagram of a partition unit 220,
according to an embodiment. In one embodiment the parti-
tion unit 220 is an instance of one of the partition units
220A-220N of FIG. 2A. As illustrated, the partition unit 220
includes an L2 cache 221, a frame buffer interface 225, and
a ROP 226 (raster operations unit). The [.2 cache 221 is a
read/write cache that is configured to perform load and store
operations received from the memory crossbar 216 and ROP
226. Read misses and urgent write-back requests are output
by L2 cache 221 to frame buffer interface 225 for process-
ing. Dirty updates can also be sent to the frame buffer via the
frame buffer interface 225 for opportunistic processing. In
one embodiment the frame buffer interface 225 interfaces
with one of the memory units in parallel processor memory,
such as the memory units 224A-224N of FIG. 2 (e.g., within
parallel processor memory 222).

[0065] In graphics applications, the ROP 226 is a process-
ing unit that performs raster operations, such as stencil, z
test, blending, and the like, and outputs pixel data as
processed graphics data for storage in graphics memory. In
some embodiments, ROP 226 may be configured to com-
press z or color data that is written to memory and decom-
press z or color data that is read from memory. In some
embodiments, the ROP 226 is included within each process-
ing cluster (e.g., cluster 214A-214N of FIG. 2) instead of
within the partition unit 220. In such embodiment, read and
write requests for pixel data are transmitted over the
memory crossbar 216 instead of pixel fragment data.
[0066] The processed graphics data may be displayed on
display device, such as one of the one or more display
device(s) 110 of FIG. 1, routed for further processing by the
processor(s) 102, or routed for further processing by one of
the processing entities within the parallel processor 200 of
FIG. 2A.

[0067] FIG. 2C is a block diagram of a processing cluster
214 within a parallel processing unit, according to an
embodiment. In one embodiment the processing cluster is an
instance of one of the processing clusters 214A-214N of
FIG. 2. The processing cluster 214 can be configured to
execute many threads in parallel, where the term “thread”
refers to an instance of a particular program executing on a
particular set of input data. In some embodiments, single-
instruction, multiple-data (SIMD) instruction issue tech-
niques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units. In other embodiments, single-instruction,
multiple-thread (SIMT) techniques are used to support par-

US 2019/0272613 Al

allel execution of a large number of generally synchronized
threads, using a common instruction unit configured to issue
instructions to a set of processing engines within each one of
the processing clusters. Unlike a SIMD execution regime,
where all processing engines typically execute identical
instructions, SIMT execution allows different threads to
more readily follow divergent execution paths through a
given thread program. Persons skilled in the art will under-
stand that a SIMD processing regime represents a functional
subset of a SIMT processing regime.

[0068] Operation of the processing cluster 214 can be
controlled via a pipeline manager 232 that distributes pro-
cessing tasks to SIMT parallel processors. The pipeline
manager 232 receives instructions from the scheduler 210 of
FIG. 2 and manages execution of those instructions via a
graphics multiprocessor 234 and/or a texture unit 236. The
illustrated graphics multiprocessor 234 is an exemplary
instance of an SIMT parallel processor. However, various
types of SIMT parallel processors of differing architectures
may be included within the processing cluster 214. One or
more instances of the graphics multiprocessor 234 can be
included within a processing cluster 214. The graphics
multiprocessor 234 can process data and a data crossbar 240
can be used to distribute the processed data to one of
multiple possible destinations, including other shader units.
The pipeline manager 232 can facilitate the distribution of
processed data by specifying destinations for processed data
to be distributed vis the data crossbar 240.

[0069] Each graphics multiprocessor 234 within the pro-
cessing cluster 214 can include an identical set of functional
execution logic (e.g., arithmetic logic units, load-store units,
etc.), which may be pipelined, allowing a new instruction to
be issued before a previous instruction has finished. Any
combination of functional execution logic may be provided.
In one embodiment, the functional logic supports a variety
of operations including integer and floating point arithmetic
(e.g., addition and multiplication), comparison operations,
Boolean operations (AND, OR, XOR), bit-shifting, and
computation of various algebraic functions (e.g., planar
interpolation, trigonometric, exponential, and logarithmic
functions, etc.); and the same functional-unit hardware can
be leveraged to perform different operations.

[0070] The series of instructions transmitted to the pro-
cessing cluster 214 constitutes a thread, as previously
defined herein, and the collection of a certain number of
concurrently executing threads across the parallel process-
ing engines (not shown) within an graphics multiprocessor
234 is referred to herein as a thread group. As used herein,
a thread group refers to a group of threads concurrently
executing the same program on different input data, with one
thread of the group being assigned to a different processing
engine within a graphics multiprocessor 234. A thread group
may include fewer threads than the number of processing
engines within the graphics multiprocessor 234, in which
case some processing engines will be idle during cycles
when that thread group is being processed. A thread group
may also include more threads than the number of process-
ing engines within the graphics multiprocessor 234, in
which case processing will take place over consecutive
clock cycles. Each graphics multiprocessor 234 can support
up to G thread groups concurrently. Additionally, a plurality
of related thread groups may be active (in different phases of
execution) at the same time within a graphics multiprocessor
234.

Sep. 5, 2019

[0071] In one embodiment the graphics multiprocessor
234 includes an internal cache memory to perform load and
store operations. In one embodiment, the graphics multipro-
cessor 234 can forego an internal cache and use a cache
memory (e.g., .1 cache 308) within the processing cluster
214. Each graphics multiprocessor 234 also has access to [.2
caches within the partition units (e.g., partition units 220A-
220N of FIG. 2) that are shared among all processing
clusters 214 and may be used to transfer data between
threads. The graphics multiprocessor 234 may also access
off-chip global memory, which can include one or more of
local parallel processor memory and/or system memory.
Any memory external to the parallel processing unit 202
may be used as global memory. Embodiments in which the
processing cluster 214 includes multiple instances of the
graphics multiprocessor 234 can share common instructions
and data, which may be stored in the L1 cache 308.

[0072] Each processing cluster 214 may include an MMU
245 (memory management unit) that is configured to map
virtual addresses into physical addresses. In other embodi-
ments, one or more instances of the MMU 245 may reside
within the memory interface 218 of FIG. 2. The MMU 245
includes a set of page table entries (PTEs) used to map a
virtual address to a physical address of a tile (talk more
about tiling) and optionally a cache line index. The MMU
245 may include address translation lookaside buffers (TLB)
or caches that may reside within the graphics multiprocessor
234 or the L1 cache or processing cluster 214. The physical
address is processed to distribute surface data access locality
to allow efficient request interleaving among partition units.
The cache line index may be used to determine whether or
not a request for a cache line is a hit or miss.

[0073] In graphics and computing applications, a process-
ing cluster 214 may be configured such that each graphics
multiprocessor 234 is coupled to a texture unit 236 for
performing texture mapping operations, e.g., determining
texture sample positions, reading texture data, and filtering
the texture data. Texture data is read from an internal texture
L1 cache (not shown) or in some embodiments from the .1
cache within graphics multiprocessor 234 and is fetched
from an [.2 cache, local parallel processor memory, or
system memory, as needed. Each graphics multiprocessor
234 outputs processed tasks to the data crossbar 240 to
provide the processed task to another processing cluster 214
for further processing or to store the processed task in an [.2
cache, local parallel processor memory, or system memory
via the memory crossbar 216. A preROP 242 (pre-raster
operations unit) is configured to receive data from graphics
multiprocessor 234, direct data to ROP units, which may be
located with partition units as described herein (e.g., parti-
tion units 220A-220N of FIG. 2). The preROP 242 unit can
perform optimizations for color blending, organize pixel
color data, and perform address translations.

[0074] It will be appreciated that the core architecture
described herein is illustrative and that variations and modi-
fications are possible. Any number of processing units, e.g.,
graphics multiprocessor 234, texture units 236, preROPs
242, etc., may be included within a processing cluster 214.
Further, while only one processing cluster 214 is shown, a
parallel processing unit as described herein may include any
number of instances of the processing cluster 214. In one
embodiment, each processing cluster 214 can be configured
to operate independently of other processing clusters 214
using separate and distinct processing units, [.1 caches, etc.

US 2019/0272613 Al

[0075] FIG. 2D shows a graphics multiprocessor 234,
according to one embodiment. In such embodiment the
graphics multiprocessor 234 couples with the pipeline man-
ager 232 of the processing cluster 214. The graphics mul-
tiprocessor 234 has an execution pipeline including but not
limited to an instruction cache 252, an instruction unit 254,
an address mapping unit 256, a register file 258, one or more
general purpose graphics processing unit (GPGPU) cores
262, and one or more load/store units 266. The GPGPU
cores 262 and load/store units 266 are coupled with cache
memory 272 and shared memory 270 via a memory and
cache interconnect 268.

[0076] In one embodiment, the instruction cache 252
receives a stream of instructions to execute from the pipeline
manager 232. The instructions are cached in the instruction
cache 252 and dispatched for execution by the instruction
unit 254. The instruction unit 254 can dispatch instructions
as thread groups (e.g., warps), with each thread of the thread
group assigned to a different execution unit within GPGPU
core 262. An instruction can access any of a local, shared, or
global address space by specitying an address within a
unified address space. The address mapping unit 256 can be
used to translate addresses in the unified address space into
a distinct memory address that can be accessed by the
load/store units 266.

[0077] The register file 258 provides a set of registers for
the functional units of the graphics multiprocessor 324. The
register file 258 provides temporary storage for operands
connected to the data paths of the functional units (e.g.,
GPGPU cores 262, load/store units 266) of the graphics
multiprocessor 324. In one embodiment, the register file 258
is divided between each of the functional units such that
each functional unit is allocated a dedicated portion of the
register file 258. In one embodiment, the register file 258 is
divided between the different warps being executed by the
graphics multiprocessor 324.

[0078] The GPGPU cores 262 can each include floating
point units (FPUs) and/or integer arithmetic logic units
(ALUs) that are used to execute instructions of the graphics
multiprocessor 324. The GPGPU cores 262 can be similar in
architecture or can differ in architecture, according to
embodiments. For example and in one embodiment, a first
portion of the GPGPU cores 262 include a single precision
FPU and an integer ALU while a second portion of the
GPGPU cores include a double precision FPU. In one
embodiment the FPUs can implement the IEEE 754-2008
standard for floating point arithmetic or enable variable
precision floating point arithmetic. The graphics multipro-
cessor 324 can additionally include one or more fixed
function or special function units to perform specific func-
tions such as copy rectangle or pixel blending operations. In
one embodiment one or more of the GPGPU cores can also
include fixed or special function logic,

[0079] The memory and cache interconnect 268 is an
interconnect network that connects each of the functional
units of the graphics multiprocessor 324 to the register file
258 and to the shared memory 270. In one embodiment, the
memory and cache interconnect 268 is a crossbar intercon-
nect that allows the load/store unit 266 to implement load
and store operations between the shared memory 270 and
the register file 258. In one embodiment the shared memory
270 can be used to enable communication between threads
that execute on the functional units. The cache memory 272

Sep. 5, 2019

can be used as a data cache for example, to cache texture
data communicated between the functional units and the
texture unit 236.

[0080] FIGS. 3A-3B illustrate additional graphics multi-
processors, according to embodiments. The illustrated
graphics multiprocessors 325, 350 are variants of the graph-
ics multiprocessor 234 of FIG. 2C. The illustrated graphics
multiprocessors 325, 350 can be configured as a streaming
multiprocessor (SM) capable of simultaneous execution of a
large number of execution threads.

[0081] FIG. 3A shows a graphics multiprocessor 325
according to an additional embodiment. The graphics mul-
tiprocessor 325 includes multiple additional instances of
execution resource units relative to the graphics multipro-
cessor 234 of FIG. 2D. For example, the graphics multipro-
cessor 325 can include multiple instances of the instruction
unit 332A-332B, register file 334A-334B, and texture unit(s)
344 A-344B. The graphics multiprocessor 325 also includes
multiple sets of graphics or compute execution units (e.g.,
GPGPU core 336A-336B, GPGPU core 337A-337B,
GPGPU core 338A-338B) and multiple sets of load/store
units 340A-340B. In one embodiment the execution
resource units have a common instruction cache 330, texture
and/or data cache memory 342, and shared memory 346.
The various components can communicate via an intercon-
nect fabric 327. In one embodiment the interconnect fabric
327 includes one or more crossbar switches to enable
communication between the various components of the
graphics multiprocessor 325.

[0082] FIG. 3B shows a graphics multiprocessor 350
according to an additional embodiment. The graphics pro-
cessor includes multiple sets of execution resources 356 A-
356D, where each set of execution resource includes mul-
tiple instruction units, register files, GPGPU cores, and load
store units, as illustrated in FIG. 2D and FIG. 3A. The
execution resources 356A-356D can work in concert with
texture unit(s) 360A-360D for texture operations, while
sharing an instruction cache 354, and shared memory 362. In
one embodiment the execution resources 356A-356D can
share an instruction cache 354 and shared memory 362, as
well as multiple instances of a texture and/or data cache
memory 358A-358B. The various components can commu-
nicate via an interconnect fabric 352 similar to the intercon-
nect fabric 327 of FIG. 3A.

[0083] Persons skilled in the art will understand that the
architecture described in FIGS. 1, 2A-2D, and 3A-3B are
descriptive and not limiting as to the scope of the present
embodiments. Thus, the techniques described herein may be
implemented on any properly configured processing unit,
including, without limitation, one or more mobile applica-
tion processors, one or more desktop or server central
processing units (CPUs) including multi-core CPUs, one or
more parallel processing units, such as the parallel process-
ing unit 202 of FIG. 2, as well as one or more graphics
processors or special purpose processing units, without
departure from the scope of the embodiments described
herein.

[0084] In some embodiments a parallel processor or
GPGPU as described herein is communicatively coupled to
host/processor cores to accelerate graphics operations,
machine-learning operations, pattern analysis operations,
and various general purpose GPU (GPGPU) functions. The
GPU may be communicatively coupled to the host proces-
sor/cores over a bus or other interconnect (e.g., a high speed

US 2019/0272613 Al

interconnect such as PCle or NVLink). In other embodi-
ments, the GPU may be integrated on the same package or
chip as the cores and communicatively coupled to the cores
over an internal processor bus/interconnect (i.e., internal to
the package or chip). Regardless of the manner in which the
GPU is connected, the processor cores may allocate work to
the GPU in the form of sequences of commands/instructions
contained in a work descriptor. The GPU then uses dedicated
circuitry/logic for efficiently processing these commands/
instructions.

Techniques for GPU to Host Processor Interconnection

[0085] FIG. 4A illustrates an exemplary architecture in
which a plurality of GPUs 410-413 are communicatively
coupled to a plurality of multi-core processors 405-406 over
high-speed links 440-443 (e.g., buses, point-to-point inter-
connects, etc.). In one embodiment, the high-speed links
440-443 support a communication throughput of 4 GB/s, 30
GB/s, 80 GB/s or higher, depending on the implementation.
Various interconnect protocols may be used including, but
not limited to, PCle 4.0 or 5.0 and NVLink 2.0. However,
the underlying principles of the invention are not limited to
any particular communication protocol or throughput.

[0086] In addition, in one embodiment, two or more of the
GPUs 410-413 are interconnected over high-speed links
444-445, which may be implemented using the same or
different protocols/links than those used for high-speed links
440-443. Similarly, two or more of the multi-core processors
405-406 may be connected over high speed link 433 which
may be symmetric multi-processor (SMP) buses operating at
20 GBf/s, 30 GB/s, 120 GB/s or higher. Alternatively, all
communication between the various system components
shown in FIG. 4A may be accomplished using the same
protocols/links (e.g., over a common interconnection fab-
ric). As mentioned, however, the underlying principles of the
invention are not limited to any particular type of intercon-
nect technology.

[0087] In one embodiment, each multi-core processor
405-406 is communicatively coupled to a processor memory
401-402, via memory interconnects 430-431, respectively,
and each GPU 410-413 is communicatively coupled to GPU
memory 420-423 over GPU memory interconnects 450-453,
respectively. The memory interconnects 430-431 and 450-
453 may utilize the same or different memory access tech-
nologies. By way of example, and not limitation, the pro-
cessor memories 401-402 and GPU memories 420-423 may
be volatile memories such as dynamic random access
memories (DRAMs) (including stacked DRAMs), Graphics
DDR SDRAM (GDDR) (e.g., GDDRS5, GDDR6), or High
Bandwidth Memory (HBM) and/or may be non-volatile
memories such as 3D XPoint or Nano-Ram. In one embodi-
ment, some portion of the memories may be volatile
memory and another portion may be non-volatile memory
(e.g., using a two-level memory (2LLM) hierarchy).

[0088] As described below, although the various proces-
sors 405-406 and GPUs 410-413 may be physically coupled
to a particular memory 401-402, 420-423, respectively, a
unified memory architecture may be implemented in which
the same virtual system address space (also referred to as the
“effective address” space) is distributed among all of the
various physical memories. For example, processor memo-
ries 401-402 may each comprise 64 GB of the system
memory address space and GPU memories 420-423 may

Sep. 5, 2019

each comprise 32 GB of the system memory address space
(resulting in a total of 256 GB addressable memory in this
example).

[0089] FIG. 4B illustrates additional details for an inter-
connection between a multi-core processor 407 and a graph-
ics acceleration module 446 in accordance with one embodi-
ment. The graphics acceleration module 446 may include
one or more GPU chips integrated on a line card which is
coupled to the processor 407 via the high-speed link 440.
Alternatively, the graphics acceleration module 446 may be
integrated on the same package or chip as the processor 407.

[0090] The illustrated processor 407 includes a plurality of
cores 460A-460D, each with a translation lookaside buffer
461A-461D and one or more caches 462A-462D. The cores
may include various other components for executing instruc-
tions and processing data which are not illustrated to avoid
obscuring the underlying principles of the invention (e.g.,
instruction fetch units, branch prediction units, decoders,
execution units, reorder buffers, etc.). The caches 462A-
462D may comprise level 1 (L.1) and level 2 (L.2) caches. In
addition, one or more shared caches 426 may be included in
the caching hierarchy and shared by sets of the cores
460A-460D. For example, one embodiment of the processor
407 includes 24 cores, each with its own L1 cache, twelve
shared L2 caches, and twelve shared L3 caches. In this
embodiment, one of the [.2 and L3 caches are shared by two
adjacent cores. The processor 407 and the graphics accel-
erator integration module 446 connect with system memory
441, which may include processor memories 401-402

[0091] Coherency is maintained for data and instructions
stored in the various caches 462A-462D, 456 and system
memory 441 via inter-core communication over a coherence
bus 464. For example, each cache may have cache coher-
ency logic/circuitry associated therewith to communicate to
over the coherence bus 464 in response to detected reads or
writes to particular cache lines. In one implementation, a
cache snooping protocol is implemented over the coherence
bus 464 to snoop cache accesses. Cache snooping/coherency
techniques are well understood by those of skill in the art
and will not be described in detail here to avoid obscuring
the underlying principles of the invention.

[0092] In one embodiment, a proxy circuit 425 commu-
nicatively couples the graphics acceleration module 446 to
the coherence bus 464, allowing the graphics acceleration
module 446 to participate in the cache coherence protocol as
a peer of the cores. In particular, an interface 435 provides
connectivity to the proxy circuit 425 over high-speed link
440 (e.g., a PCle bus, NVLink, etc.) and an interface 437
connects the graphics acceleration module 446 to the link
440.

[0093] In one implementation, an accelerator integration
circuit 436 provides cache management, memory access,
context management, and interrupt management services on
behalf of a plurality of graphics processing engines 431,
432, N of the graphics acceleration module 446. The graph-
ics processing engines 431, 432, N may each comprise a
separate graphics processing unit (GPU). Alternatively, the
graphics processing engines 431, 432, N may comprise
different types of graphics processing engines within a GPU
such as graphics execution units, media processing engines
(e.g., video encoders/decoders), samplers, and blit engines.
In other words, the graphics acceleration module may be a
GPU with a plurality of graphics processing engines 431-

US 2019/0272613 Al

432, N or the graphics processing engines 431-432, N may
be individual GPUs integrated on a common package, line
card, or chip.

[0094] In one embodiment, the accelerator integration
circuit 436 includes a memory management unit (MMU)
439 for performing various memory management functions
such as virtual-to-physical memory translations (also
referred to as effective-to-real memory translations) and
memory access protocols for accessing system memory 441.
The MMU 439 may also include a translation lookaside
buffer (TLB) (not shown) for caching the virtual/effective to
physical/real address translations. In one implementation, a
cache 438 stores commands and data for efficient access by
the graphics processing engines 431-432, N. In one embodi-
ment, the data stored in cache 438 and graphics memories
433-434, N is kept coherent with the core caches 462A-
462D, 456 and system memory 411. As mentioned, this may
be accomplished via proxy circuit 425 which takes part in
the cache coherency mechanism on behalf of cache 438 and
memories 433-434, N (e.g., sending updates to the cache
438 related to modifications/accesses of cache lines on
processor caches 462A-462D, 456 and receiving updates
from the cache 438).

[0095] A set of registers 445 store context data for threads
executed by the graphics processing engines 431-432, N and
a context management circuit 448 manages the thread con-
texts. For example, the context management circuit 448 may
perform save and restore operations to save and restore
contexts of the various threads during contexts switches
(e.g., where a first thread is saved and a second thread is
stored so that the second thread can be execute by a graphics
processing engine). For example, on a context switch, the
context management circuit 448 may store current register
values to a designated region in memory (e.g., identified by
a context pointer). It may then restore the register values
when returning to the context. In one embodiment, an
interrupt management circuit 447 receives and processes
interrupts received from system devices.

[0096] In one implementation, virtual/effective addresses
from a graphics processing engine 431 are translated to
real/physical addresses in system memory 411 by the MMU
439. One embodiment of the accelerator integration circuit
436 supports multiple (e.g., 4, 8, 16) graphics accelerator
modules 446 and/or other accelerator devices. The graphics
accelerator module 446 may be dedicated to a single appli-
cation executed on the processor 407 or may be shared
between multiple applications. In one embodiment, a virtu-
alized graphics execution environment is presented in which
the resources of the graphics processing engines 431-432, N
are shared with multiple applications or virtual machines
(VMs). The resources may be subdivided into “slices” which
are allocated to different VMs and/or applications based on
the processing requirements and priorities associated with
the VMs and/or applications.

[0097] Thus, the accelerator integration circuit acts as a
bridge to the system for the graphics acceleration module
446 and provides address translation and system memory
cache services. In addition, the accelerator integration circuit
436 may provide virtualization facilities for the host pro-
cessor to manage virtualization of the graphics processing
engines, interrupts, and memory management.

[0098] Because hardware resources of the graphics pro-
cessing engines 431-432, N are mapped explicitly to the real
address space seen by the host processor 407, any host

Sep. 5, 2019

processor can address these resources directly using an
effective address value. One function of the accelerator
integration circuit 436, in one embodiment, is the physical
separation of the graphics processing engines 431-432, N so
that they appear to the system as independent units.
[0099] As mentioned, in the illustrated embodiment, one
or more graphics memories 433-434, M are coupled to each
of'the graphics processing engines 431-432, N, respectively.
The graphics memories 433-434, M store instructions and
data being processed by each of the graphics processing
engines 431-432, N. The graphics memories 433-434, M
may be volatile memories such as DRAMs (including
stacked DRAMs), GDDR memory (e.g., GDDRS, GDDR6),
or HBM, and/or may be non-volatile memories such as 3D
XPoint or Nano-Ram.

[0100] In one embodiment, to reduce data traffic over link
440, biasing techniques are used to ensure that the data
stored in graphics memories 433-434, M is data which will
be used most frequently by the graphics processing engines
431-432, N and preferably not used by the cores 460A-460D
(at least not frequently). Similarly, the biasing mechanism
attempts to keep data needed by the cores (and preferably
not the graphics processing engines 431-432, N) within the
caches 462A-462D, 456 of the cores and system memory
411.

[0101] FIG. 4C illustrates another embodiment in which
the accelerator integration circuit 436 is integrated within
the processor 407. In this embodiment, the graphics pro-
cessing engines 431-432, N communicate directly over the
high-speed link 440 to the accelerator integration circuit 436
via interface 437 and interface 435 (which, again, may be
utilize any form of bus or interface protocol). The accelera-
tor integration circuit 436 may perform the same operations
as those described with respect to FIG. 4B, but potentially at
a higher throughput given its close proximity to the coher-
ency bus 462 and caches 462A-462D, 426.

[0102] One embodiment supports different programming
models including a dedicated-process programming model
(no graphics acceleration module virtualization) and shared
programming models (with virtualization). The latter may
include programming models which are controlled by the
accelerator integration circuit 436 and programming models
which are controlled by the graphics acceleration module
446.

[0103] Inone embodiment of the dedicated process model,
graphics processing engines 431-432, N are dedicated to a
single application or process under a single operating sys-
tem. The single application can funnel other application
requests to the graphics engines 431-432, N, providing
virtualization within a VM/partition.

[0104] In the dedicated-process programming models, the
graphics processing engines 431-432, N, may be shared by
multiple VM/application partitions. The shared models
require a system hypervisor to virtualize the graphics pro-
cessing engines 431-432, N to allow access by each oper-
ating system. For single-partition systems without a hyper-
visor, the graphics processing engines 431-432, N are owned
by the operating system. In both cases, the operating system
can virtualize the graphics processing engines 431-432, N to
provide access to each process or application.

[0105] For the shared programming model, the graphics
acceleration module 446 or an individual graphics process-
ing engine 431-432, N selects a process element using a
process handle. In one embodiment, process elements are

US 2019/0272613 Al

stored in system memory 411 and are addressable using the
effective address to real address translation techniques
described herein. The process handle may be an implemen-
tation-specific value provided to the host process when
registering its context with the graphics processing engine
431-432, N (that is, calling system software to add the
process element to the process element linked list). The
lower 16-bits of the process handle may be the offset of the
process element within the process element linked list.

[0106] FIG. 4D illustrates an exemplary accelerator inte-
gration slice 490. As used herein, a “slice” comprises a
specified portion of the processing resources of the accel-
erator integration circuit 436. Application effective address
space 482 within system memory 411 stores process ele-
ments 483. In one embodiment, the process elements 483 are
stored in response to GPU invocations 481 from applications
480 executed on the processor 407. A process element 483
contains the process state for the corresponding application
480. A work descriptor (WD) 484 contained in the process
element 483 can be a single job requested by an application
or may contain a pointer to a queue of jobs. In the latter case,
the WD 484 is a pointer to the job request queue in the
application’s address space 482.

[0107] The graphics acceleration module 446 and/or the
individual graphics processing engines 431-432, N can be
shared by all or a subset of the processes in the system.
Embodiments of the invention include an infrastructure for
setting up the process state and sending a WD 484 to a
graphics acceleration module 446 to start a job in a virtu-
alized environment.

[0108] In one implementation, the dedicated-process pro-
gramming model is implementation-specific. In this model,
a single process owns the graphics acceleration module 446
or an individual graphics processing engine 431. Because
the graphics acceleration module 446 is owned by a single
process, the hypervisor initializes the accelerator integration
circuit 436 for the owning partition and the operating system
initializes the accelerator integration circuit 436 for the
owning process at the time when the graphics acceleration
module 446 is assigned.

[0109] Inoperation, a WD fetch unit 491 in the accelerator
integration slice 490 fetches the next WD 484 which
includes an indication of the work to be done by one of the
graphics processing engines of the graphics acceleration
module 446. Data from the WD 484 may be stored in
registers 445 and used by the MMU 439, interrupt manage-
ment circuit 447 and/or context management circuit 446 as
illustrated. For example, one embodiment of the MMU 439
includes segment/page walk circuitry for accessing segment/
page tables 486 within the OS virtual address space 485. The
interrupt management circuit 447 may process interrupt
events 492 received from the graphics acceleration module
446. When performing graphics operations, an effective
address 493 generated by a graphics processing engine
431-432, N is translated to a real address by the MMU 439.

[0110] In one embodiment, the same set of registers 445
are duplicated for each graphics processing engine 431-432,
N and/or graphics acceleration module 446 and may be
initialized by the hypervisor or operating system. Each of
these duplicated registers may be included in an accelerator
integration slice 490. Exemplary registers that may be
initialized by the hypervisor are shown in Table 1.

Sep. 5, 2019

TABLE 1

Hypervisor Initialized Registers

Slice Control Register

Real Address (RA) Scheduled Processes Area Pointer

Authority Mask Override Register

Interrupt Vector Table Entry Offset

Interrupt Vector Table Entry Limit

State Register

Logical Partition ID

Real address (RA) Hypervisor Accelerator Utilization Record Pointer
Storage Description Register

O 0~ O AW

[0111] Exemplary registers that may be initialized by the
operating system are shown in Table 2.

TABLE 2

Operating System Initialized Registers

1 Process and Thread Identification
2 Effective Address (EA) Context Save/Restore Pointer
3 Virtual Address (VA) Accelerator Utilization Record Pointer
4 Virtual Address (VA) Storage Segment Table Pointer
5 Authority Mask
6 Work descriptor
[0112] In one embodiment, each WD 484 is specific to a

particular graphics acceleration module 446 and/or graphics
processing engine 431-432, N. It contains all the information
a graphics processing engine 431-432, N requires to do its
work or it can be a pointer to a memory location where the
application has set up a command queue of work to be
completed.

[0113] FIG. 4E illustrates additional details for one
embodiment of a shared model. This embodiment includes
a hypervisor real address space 498 in which a process
element list 499 is stored. The hypervisor real address space
498 is accessible via a hypervisor 496 which virtualizes the
graphics acceleration module engines for the operating
system 495.

[0114] The shared programming models allow for all or a
subset of processes from all or a subset of partitions in the
system to use a graphics acceleration module 446. There are
two programming models where the graphics acceleration
module 446 is shared by multiple processes and partitions:
time-sliced shared and graphics directed shared.

[0115] In this model, the system hypervisor 496 owns the
graphics acceleration module 446 and makes its function
available to all operating systems 495. For a graphics
acceleration module 446 to support virtualization by the
system hypervisor 496, the graphics acceleration module
446 may adhere to the following requirements: 1) An
application’s job request must be autonomous (that is, the
state does not need to be maintained between jobs), or the
graphics acceleration module 446 must provide a context
save and restore mechanism. 2) An application’s job request
is guaranteed by the graphics acceleration module 446 to
complete in a specified amount of time, including any
translation faults, or the graphics acceleration module 446
provides the ability to preempt the processing of the job. 3)
The graphics acceleration module 446 must be guaranteed
fairness between processes when operating in the directed
shared programming model.

[0116] In one embodiment, for the shared model, the
application 480 is required to make an operating system 495

US 2019/0272613 Al

system call with a graphics acceleration module 446 type, a
work descriptor (WD), an authority mask register (AMR)
value, and a context save/restore area pointer (CSRP). The
graphics acceleration module 446 type describes the targeted
acceleration function for the system call. The graphics
acceleration module 446 type may be a system-specific
value. The WD is formatted specifically for the graphics
acceleration module 446 and can be in the form of a graphics
acceleration module 446 command, an effective address
pointer to a user-defined structure, an effective address
pointer to a queue of commands, or any other data structure
to describe the work to be done by the graphics acceleration
module 446. In one embodiment, the AMR value is the AMR
state to use for the current process. The value passed to the
operating system is similar to an application setting the
AMR. If the accelerator integration circuit 436 and graphics
acceleration module 446 implementations do not support a
User Authority Mask Override Register (UAMOR), the
operating system may apply the current UAMOR value to
the AMR value before passing the AMR in the hypervisor
call. The hypervisor 496 may optionally apply the current
Authority Mask Override Register (AMOR) value before
placing the AMR into the process element 483. In one
embodiment, the CSRP is one of the registers 445 containing
the effective address of an area in the application’s address
space 482 for the graphics acceleration module 446 to save
and restore the context state. This pointer is optional if no
state is required to be saved between jobs or when a job is
preempted. The context save/restore area may be pinned
system memory.

[0117] Upon receiving the system call, the operating sys-
tem 495 may verify that the application 480 has registered
and been given the authority to use the graphics acceleration
module 446. The operating system 495 then calls the hyper-
visor 496 with the information shown in Table 3.

TABLE 3

OS to Hypervisor Call Parameters

A work descriptor (WD)

An Authority Mask Register (AMR) value (potentially masked).

An effective address (EA) Context Save/Restore Area Pointer (CSRP)
A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer (AURP)
The virtual address of the storage segment table pointer (SSTP)

A logical interrupt service number (LISN)

R R R N

[0118] Upon receiving the hypervisor call, the hypervisor
496 verifies that the operating system 495 has registered and
been given the authority to use the graphics acceleration
module 446. The hypervisor 496 then puts the process
element 483 into the process element linked list for the
corresponding graphics acceleration module 446 type. The
process element may include the information shown in Table
4.

TABLE 4

Process Element Information

A work descriptor (WD)

An Authority Mask Register (AMR) value (potentially masked).

An effective address (EA) Context Save/Restore Area Pointer (CSRP)
A process ID (PID) and optional thread ID (TID)

A virtual address (VA) accelerator utilization record pointer (AURP)
The virtual address of the storage segment table pointer (SSTP)

[N T R S

Sep. 5, 2019

TABLE 4-continued

Process Element Information

7 A logical interrupt service number (LISN)
8 Interrupt vector table, derived from the hypervisor call parameters.
9 A state register (SR) value
10 A logical partition ID (LPID)
11 A real address (RA) hypervisor accelerator utilization record pointer
12 The Storage Descriptor Register (SDR)

[0119] In one embodiment, the hypervisor initializes a
plurality of accelerator integration slice 490 registers 445.

[0120] As illustrated in FIG. 4F, one embodiment of the
invention employs a unified memory addressable via a
common virtual memory address space used to access the
physical processor memories 401-402 and GPU memories
420-423. In this implementation, operations executed on the
GPUs 410-413 utilize the same virtual/effective memory
address space to access the processors memories 401-402
and vice versa, thereby simplifying programmability. In one
embodiment, a first portion of the virtual/effective address
space is allocated to the processor memory 401, a second
portion to the second processor memory 402, a third portion
to the GPU memory 420, and so on. The entire virtual/
effective memory space (sometimes referred to as the effec-
tive address space) is thereby distributed across each of the
processor memories 401-402 and GPU memories 420-423,
allowing any processor or GPU to access any physical
memory with a virtual address mapped to that memory.

[0121] In one embodiment, bias/coherence management
circuitry 494A-494F within one or more of the MMUs
439A-439E ensures cache coherence between the caches of
the host processors (e.g., 405) and the GPUs 410-413 and
also implements biasing techniques indicating the physical
memories in which certain types of data should be stored.
While multiple instances of bias/coherence management
circuitry 494A-494E are illustrated in FIG. 4F, the bias/
coherence circuitry may be implemented within the MMU
of one or more host processors 405 and/or within the
accelerator integration circuit 436.

[0122] One embodiment allows GPU-attached memory
420-423 to be mapped as part of system memory, and
accessed using shared virtual memory (SVM) technology,
but without suffering the typical performance drawbacks
associated with full system cache coherence. The ability to
GPU-attached memory 420-423 to be accessed as system
memory without onerous cache coherence overhead pro-
vides a beneficial operating environment for GPU offload.
This arrangement allows the host processor 405 software to
setup operands and access computation results, without the
overhead of tradition I/O DMA data copies. Such traditional
copies involve driver calls, interrupts and memory mapped
/O (MMIO) accesses that are all inefficient relative to
simple memory accesses. At the same time, the ability to
access GPU attached memory 420-423 without cache coher-
ence overheads can be critical to the execution time of an
offloaded computation. In cases with substantial streaming
write memory traffic, for example, cache coherence over-
head can significantly reduce the effective write bandwidth
seen by a GPU 410-413. The efficiency of operand setup, the
efficiency of results access, and the efficiency of GPU
computation all play a role in determining the effectiveness
of GPU offload.

US 2019/0272613 Al

[0123] In one implementation, the selection of between
GPU bias and host processor bias is driven by a bias tracker
data structure. A bias table may be used, for example, which
may be a page-granular structure (i.e., controlled at the
granularity of a memory page) that includes 1 or 2 bits per
GPU-attached memory page. The bias table may be imple-
mented in a stolen memory range of one or more GPU-
attached memories 420-423, with or without a bias cache in
the GPU 410-413 (e.g., to cache frequently/recently used
entries of the bias table). Alternatively, the entire bias table
may be maintained within the GPU.

[0124] In one implementation, the bias table entry asso-
ciated with each access to the GPU-attached memory 420-
423 is accessed prior the actual access to the GPU memory,
causing the following operations. First, local requests from
the GPU 410-413 that find their page in GPU bias are
forwarded directly to a corresponding GPU memory 420-
423. Local requests from the GPU that find their page in host
bias are forwarded to the processor 405 (e.g., over a high
speed link as discussed above). In one embodiment, requests
from the processor 405 that find the requested page in host
processor bias complete the request like a normal memory
read. Alternatively, requests directed to a GPU-biased page
may be forwarded to the GPU 410-413. The GPU may then
transition the page to a host processor bias if it is not
currently using the page.

[0125] The bias state of a page can be changed either by
a software-based mechanism, a hardware-assisted software-
based mechanism, or, for a limited set of cases, a purely
hardware-based mechanism.

[0126] One mechanism for changing the bias state
employs an API call (e.g. OpenCL), which, in turn, calls the
GPU’s device driver which, in turn, sends a message (or
enqueues a command descriptor) to the GPU directing it to
change the bias state and, for some transitions, perform a
cache flushing operation in the host. The cache flushing
operation is required for a transition from host processor 405
bias to GPU bias, but is not required for the opposite
transition.

[0127] Inone embodiment, cache coherency is maintained
by temporarily rendering GPU-biased pages uncacheable by
the host processor 405. In order to access these pages, the
processor 405 may request access from the GPU 410 which
may or may not grant access right away, depending on the
implementation. Thus, to reduce communication between
the processor 405 and GPU 410 it is beneficial to ensure that
GPU-biased pages are those which are required by the GPU
but not the host processor 405 and vice versa.

Graphics Processing Pipeline

[0128] Accessing external memory from a graphics pro-
cessing unit is costly in terms of both power and perfor-
mance. Thus, most modern graphics processing units
employ a compression scheme to reduce memory bandwidth
for improved power and performance.

[0129] Typical compression algorithms achieve from 2:1
to 8:1 compression ratios on a given cacheline. Alternatively
graphics processing unit architectures can be tile-based to
further reduce memory bandwidth of graphics workloads.
[0130] Typically three-dimensional graphics applications
render one frame at a time using multiple render passes.
Each pass updates a render target that could be either used
as a texture sampling surface or a blend destination in
subsequent passes. Moreover, these render targets may be

Sep. 5, 2019

color buffers or the Unordered Access View (UAV) buffers.
Compressing the surfaces not only suppresses the write back
bandwidth to memory but also read bandwidth when these
surfaces are used as textures or blend destinations.

[0131] FIG. 5 is a conceptual diagram of a graphics
processing pipeline 500, according to an embodiment. In
one embodiment a graphics processor can implement the
illustrated graphics processing pipeline 500. The graphics
processor can be included within the parallel processing
subsystems as described herein, such as the parallel proces-
sor 200 of FIG. 2, which, in one embodiment, is a variant of
the parallel processor(s) 112 of FIG. 1. The various parallel
processing systems can implement the graphics processing
pipeline 500 via one or more instances of the parallel
processing unit (e.g., parallel processing unit 202 of FIG. 2)
as described herein. For example, a shader unit (e.g., graph-
ics multiprocessor 234 of FIG. 3) may be configured to
perform the functions of one or more of a vertex processing
unit 504, a tessellation control processing unit 508, a tes-
sellation evaluation processing unit 512, a geometry pro-
cessing unit 516, and a fragment/pixel processing unit 524.
The functions of data assembler 502, primitive assemblers
506, 514, 518, tessellation unit 510, rasterizer 522, and raster
operations unit 526 may also be performed by other pro-
cessing engines within a processing cluster (e.g., processing
cluster 214 of FIG. 3) and a corresponding partition unit
(e.g., partition unit 220A-220N of FIG. 2). Alternately, the
graphics processing pipeline 500 may be implemented using
dedicated processing units for one or more functions. In one
embodiment, one or more portions of the graphics process-
ing pipeline 500 can be performed in by a parallel processing
logic within a general purpose processor (e.g., CPU). In one
embodiment, one or more portions of the graphics process-
ing pipeline 500 can access on-chip memory (e.g., parallel
processor memory 222 as in FIG. 2) via a memory interface
528, which may be an instance of the memory interface 218
of FIG. 2.

[0132] In one embodiment the data assembler 502 is a
processing unit that collects vertex data for high-order
surfaces, primitives, etc., and outputs the vertex data, includ-
ing the vertex attributes, to the vertex processing unit 504.
The vertex processing unit 504 is a programmable execution
unit that is configured to execute vertex shader programs,
lighting and transforming vertex data as specified by the
vertex shader programs. For example, vertex processing unit
504 may be programmed to transform the vertex data from
an object-based coordinate representation (object space) to
an alternatively based coordinate system such as world
space or normalized device coordinates (NDC) space. Ver-
tex processing unit 504 may read data that is stored in cache,
local or system memory for use in processing the vertex
data.

[0133] A first instance of a primitive assembler 506
receives vertex attributes from the vertex processing unit
504, reading stored vertex attributes as needed, and con-
structs graphics primitives for processing by tessellation
control processing unit 508, where the graphics primitives
include triangles, line segments, points, patches, and so
forth, as supported by various graphics processing applica-
tion programming interfaces (APIs).

[0134] The tessellation control processing unit 508 treats
the input vertices as control points for a geometric patch and
transforms these control points from the patch’s input rep-
resentation, often called the patch’s basis, into a represen-

US 2019/0272613 Al

tation suitable for efficient surface evaluation by the tessel-
lation evaluation processing unit 512. The tessellation
control processing unit 508 also computes tessellation fac-
tors for edges of geometric patches. A tessellation factor
applies to a single edge and quantifies a view-dependent
level of detail associated with the edge. A tessellation unit
510 is configured to receive the tessellation factors for edges
of'a patch and to tessellate the patch into multiple geometric
primitives such as line, triangle, or quadrilateral primitives,
which are transmitted to a tessellation evaluation processing
unit 512. The tessellation evaluation processing unit 512
operates on parameterized coordinates of the subdivided
patch to generate a surface representation and vertex attri-
butes for each vertex associated with the geometric primi-
tives.

[0135] A second instance of a primitive assembler 514
receives vertex attributes from the tessellation evaluation
processing unit 512, reading stored vertex attributes as
needed, and constructs graphics primitives for processing by
the geometry processing unit 516. The geometry processing
unit 516 is a programmable execution unit that is configured
to execute geometry shader programs, transforming graphics
primitives received from primitive assembler 514 as speci-
fied by the geometry shader programs. For example, the
geometry processing unit 516 may be programmed to sub-
divide the graphics primitives into one or more new graphics
primitives and calculate parameters, such as plane equation
coeflicients, that are used to rasterize the new graphics
primitives.

[0136] In some embodiments the geometry processing
unit 516 may also add or delete elements in the geometry
stream. Geometry processing unit 516 outputs the param-
eters and vertices specifying new graphics primitives to
primitive assembler 518, which receives the parameters and
vertices from the geometry processing unit 516, reading
stored vertex attributes, as needed, and constructs graphics
primitives for processing by a viewport scale, cull, and clip
unit 520. The geometry processing unit 516 may read data
that is stored in parallel processor memory or system
memory for use in processing the geometry data. The
viewport scale, cull, and clip unit 520 performs clipping,
culling, and viewport scaling and outputs processed graphics
primitives to a rasterizer 522.

[0137] The rasterizer 522 scan converts the new graphics
primitives and outputs fragment and coverage data to the
fragment/pixel processing unit 524. Additionally, the raster-
izer 522 may be configured to perform z culling and other
z-based optimizations.

[0138] The fragment/pixel processing unit 524 is a pro-
grammable execution unit that is configured to execute
fragment shader programs or pixel shader programs. The
fragment/pixel processing unit 524 transforming fragments
or pixels received from rasterizer 522, as specified by the
fragment or pixel shader programs. For example, the frag-
ment/pixel processing unit 524 may be programmed to
perform operations such as perspective correction, texture
mapping, shading, blending, and the like, to produce shaded
fragments or pixels that are output to raster operations unit
526. The fragment/pixel processing unit 524 may read data
that is stored in parallel processor memory or system
memory for use in processing the fragment data. Fragment
or pixel shader programs may be configured to shade at the
sample, pixel, tile, or other granularity, depending on the
programmed sampling rate.

Sep. 5, 2019

[0139] The raster operations unit 526 is a processing unit
that performs raster operations, such as stencil, z test,
blending, and the like, and outputs pixel data as processed
graphics data for storage in graphics memory. The processed
graphics data may be stored in graphics memory, e.g.,
parallel processor memory 222 as in FIG. 2, and/or system
memory 104 as in FIG. 1, for display on one of the one or
more display device(s) 110 or for further processing by one
of the one or more processor(s) 102 or parallel processor(s)
112. In some embodiments the raster operations unit 526 is
configured to compress z or color data that is written to
memory and decompress z or color data that is read from
memory.

[0140] Existing compression schemes and tile-based ren-
dering architectures may exploit the fact that some values,
such as zero and one, are very common in graphics work-
loads. Frequently occurring data values (FDVs) refers to any
values whose frequency of occurrence exceeds a threshold.
[0141] A small number of data patterns occur repeatedly.
For example, all the data bits being zero or all ones are
extremely common. This type of frequent data value is
called common data patterns. Within the data channels, there
is repetition at the byte/word/double-word/quad-word levels
for example, OXAAAAA . . . AA (byte-level repetition) or
0x08080808 . . . 08 (word-level repetition),
0xO0000FFFFOOOOFFFF . . . O000FFFF (double-word level
repetition). Such patterns are referred to as repeating data
patterns (RDP).

[0142] If all the pixels in a cacheline have the frequent
data values (such as zero or one), the entire cacheline worth
of data may be replaced with two bits. The use of only two
bits saves bandwidth and achieves higher data compression
compared to storing the whole cacheline.

[0143] In current implementations, all data bits are trans-
ferred from source to destination and across multiple high-
bandwidth fabrics and interconnects, resulting in a large
number of data toggles that consume power. By detecting
frequent data values, for example using low power compare
logic and encoding the data such that the encoding and a
minimal data pattern (needed to reconstruct the data at the
receiving side) alone may be transmitted on fabrics/busses,
thereby dramatically reducing the number of toggles on the
fabrics and busses, saving power. In addition, the unused
lanes/portions of the busses and crossbars can be gated off
to save power.

[0144] Frequent data value compression can achieve
higher compression ratios for render targets. For example,
compression ratios in the range of 512:1 may be achieved in
one embodiment with a 128-byte cacheline. This compres-
sion ratio is 128 times better than ratios published in
connection with contemporary three-dimensional graphics
architectures.

[0145] Thus, frequent data value compression may be
relatively simple to implement and may provide power and
performance improvements. Moreover, compared to
increasing the memory capacity and bandwidth, this solution
is much less expensive in terms of performance and power
consumption.

[0146] A control surface tracks an individual cacheline in
the original surface for frequent data values. If the cacheline
has only one value, in one embodiment, control surface bits
are set, during writing, to indicate the use of frequent data
value compression and/or the particular value that is the
frequent data value.

US 2019/0272613 Al

[0147] When reading a cacheline from memory, first the
control surface bits are read. If they happen to be set, then
the original memory read is skipped altogether and instead
the bits from the control surface provide the values for the
entire cacheline.

[0148] A set of possible frequent data value patterns can
be detected and then the system monitors for those patterns.
Alternatively, frequent data value patterns can predefined
and system may monitor for these patterns.

[0149] Likewise, when writing a cacheline, if all the pixels
are either zeros or all are ones, then the bits in the control
surface are simply written and the write to the original
surface is skipped.

[0150] Accessing the control surface is relatively inexpen-
sive at least compared to accessing typical 64 or 128-byte
cachelines, because the control surface may be only two bits
when the frequent data value set consists of zeros and ones.
Therefore using this scheme can achieve very high com-
pression ratios when the majority of the values in the data
stream are zeros or ones, which is quite common. Frequent
data value patterns can be detected at compile time by a
compiler and/or at run time by data port units in graphics
hardware. This frequent data value compression can be
applied, for example, to graphics fixed function units such as
depth units, color units and/or samplers.

[0151] Referring to FIG. 6, a graphics processing unit 10
may include execution units 12. The execution units perform
awrite 14 to a write back unit 16 such as a pixel backend that
writes data to a surface in external memory 22. A read unit
18 such as a sampler or data cluster (HDC) 24 performs a
read 20 to read data from a surface 24 or 26 in the external
memory 22.

[0152] The write back unit accesses the external memory
22 with reduced memory bandwidth via frequent data value
compression which improves power efficiency and lowers
latency in some embodiments. The external memory may be
a Double Data Rate (DDR) memory for example. Each
surface (such as the surface 24 and the surface 26) may
include a control surface as 28 or 30.

[0153] The read unit 18 reduces memory bandwidth
improving power efficiency and lowers latency.

[0154] In the frequent data value compression scheme,
where the frequent data value set consists of zeros and ones,
each cacheline in the original surface is represented by two
bits in the control surface. The first bit decodes whether the
cacheline is compressed using the frequent data value
scheme. The second bit decodes whether the frequent data
value is zero or one. So a value of 00 in the control surface
infers the cacheline is not compressed using frequent data
value compression. A value of 01 means all the pixels of the
cacheline are zero and a value of 11 means all the pixels in
the cacheline are one. Of course other coding techniques
may also be used.

[0155] The scheme may be generalized to represent more
frequent data values by increasing the number of bits per
cacheline in the control surface.

[0156] A write back sequence 32, shown in FIG. 7 and a
read sequence 40 shown in FIG. 3 may be implemented by
software, firmware and/or hardware. In software and firm-
ware embodiments, computer executed instructions may be
stored on one or more non-transitory, computer readable
media such as magnetic, optical or semiconductor storages.
[0157] The basic flow for reading and writing a cacheline
when using frequent data value compression using control

Sep. 5, 2019

surface is shown in FIG. 2. When a cacheline is being
victimized, the execution unit checks whether the data
values are either zero or one (diamond 34). If so, it skips the
write from memory (achieving bandwidth savings) for the
cacheline and simply writes “10” to the control surface when
the frequent data value detected is zero or “11” when the
frequent data value detected is one according to one embodi-
ment (block 36). If not, then the execution unit writes to the
memory like a normal flow without frequent data value
compression (block 38).

[0158] Referring in FIG. 8, when requests are made to the
memory for reads, the execution unit first reads control
surface bits (block 42). If the bits are zero (diamond 44, NO)
the memory is read like a normal flow (block 48). However,
if the control surface bits are 10 or 11 (diamond 44, YES)
then the memory read is skipped resulting in memory
bandwidth savings. Then the entire cacheline is filled with
zeros when the bits are 10 or with ones when the bits are 11
(block 46).

[0159] A frequent data value compression scheme can
reduce memory bandwidth for graphics workloads for
improved power efficiency and performance using a simple
hardware scheme to improve a user experience, in some
embodiments.

[0160] In another embodiment, frequent data values other
than zero and one may be encoded in the control surface. In
this scenario, an application may encode the value of fre-
quent data values in the control surface, cache or machine
register. When an operation is performed on a data value that
is a frequent data value, the actual value is read from the
control surface, cache or machine register.

[0161] In some embodiments, the use of these techniques
may improve the actual operation of a graphics processor. To
demonstrate, frequent data value compression was proto-
typed in a gate-level simulator (GSim) for compressing the
color render target. FIG. 9 exhibits a resulting bandwidth
savings for different 3D games and benchmarks in one
embodiment. The frequent data value compression on aver-
age saved three percent (3%) bandwidth with the maximum
savings of fourteen percent (14%). Moreover, it also pro-
vided performance scaling due to memory bandwidth reduc-
tion. DX stands for Microsoft DirectX application program
interface (APIs).

[0162] FIG. 10 shows the performance gain with one
embodiment of frequent data value compression. On aver-
age one percent (1%) performance gains were achieved with
a maximum performance gain of three percent (3%).

[0163] FIGS. 9 and 10 show improvements applicable to
color render targets. However this compression algorithm
can also be applied to any intermediate data generated by a
graphics processing unit. For example frequent data value
compression can also be applied to a UAV buffer that is often
generated by the compute shaders which in turn are even-
tually used as texture maps in subsequent passes. Profiling
data suggests that there is ample opportunity for frequent
data value compression on UAV buffers.

[0164] FIG. 11 exhibits the write characteristics of the
UAV buffer for different 3D games and benchmarks accord-
ing to one embodiment. Cachelines in the range of 7 to 83%
are completely made up of zeros or ones. The average
number is also very impressive. Across different games and
benchmarks about twenty-six percent (26%) of UAV buffer
cachelines can be compressed using only two bits.

US 2019/0272613 Al

[0165] FIG. 12 shows a set of source 50 and destination 52
agents, connected via a high-bandwidth fabric 54. In this
embodiment, low power comparators 56 are placed at the
output of each source agent. The comparators are used to
detect common and repeating data patterns. If the data from
the source matches a common data pattern or is repeating,
this information is encoded in control information S8 that is
sent via the fabric to the destination agent. In case of a
common data pattern, such as all zeros or all ones, this
information is directly encoded in the control information
and no data transfer is required and the busses can be gated
off for the duration of the data transfer. In case of repeating
data patterns, the control information may specify the width
of the repeating patterns, how many patterns, and which
lanes carry the repeating patterns. The control information
along with the partial data transferred on the data busses 60
is sufficient for the decoder logic 62 on the destination side
to reconstruct the entire cache line. Sample encoding is
shown in FIG. 14.

[0166] Similarly, in the case of partial data transfer, the
unused lanes of the fabric can be gated off for the duration
of the data transfer.

[0167] In case of caches, in one embodiment, additional
frequent data value information about the data patterns can
be stored with each cache tag as shown in FIG. 13.

[0168] In case of a cache hit, the frequent data value field,
if applicable, for this tag provides information about how to
reconstruct the data making up the cache line. In one
embodiment, frequent data values, such as all zeros and all
ones, can be stored in the tag as a pair of control bits. If the
all_zeros bit or the all ones_bit is set, then the tag controller
can generate the data associated with this tag without
needing an array access. In a different embodiment, a select
number of frequent data values can be stored in a small
frequent control value array/structure and control/encoded
data, co-located with each tag, can provide a pointer into the
frequent data value array. The contents of the frequent data
value table shown in FIG. 10, are programmable by software
and can be dynamically changed at run time depending on
the application. The hardware matches the data to be trans-
ferred with the contents of the frequent data value table to
detect frequent data value matches.

[0169] The sequence 70 shown in FIG. 16 may be imple-
mented in software, firmware and/or hardware. In software
and firmware embodiments it may be implemented by
computer executed instructions stored in one or more non-
transitory computer readable media such as magnetic, opti-
cal or semiconductor storage.

[0170] Sequence 70, shown in FIG. 16 for detecting,
storing, and accessing frequent data values for a cache
request begins by checking, at diamond 72, incoming
requests for a tag hit. In case of read hit (diamond 76), shown
in FIG. 15, the frequent data value encoding is checked
(diamond 78) to see if the data associated with this tag
belongs to the frequent data value category. If the frequent
data value encoding is not valid (block 78), then the tag
controller proceeds with a regular data access and the data
is read out of the data array (block 80).

[0171] In case frequent data value information is valid, the
tag controller decodes the frequent data value information to
generate the data (block 84). In case of frequent data value
(diamond 82, no path), this may involve auto-generating the
data (in the implementation where control bits are available
for specific frequent data values such as all zeros or all ones)

Sep. 5, 2019

or reading the data from the frequent data value table. In the
case of a frequent data value, the tag controller may have to
read part of the data from the data array and use the frequent
data value information to reconstruct the entire cache line
(diamond 83). In any case the requested data is sent to the
requestor (block 94).

[0172] In case of write hit (diamond 76) or fill from
memory (block 87), the tag controller checks (diamond 88)
the incoming write/fill data to see if the data is frequent data
value. If yes, then the frequent data value information is
properly updated and any partial data if written to the data
array (if applicable) (block 90). If not, the entire line is
written into the data array at block 92.

[0173] Parallel format graphics data may be encoded into
multiple serial channels, for example using a run length
encoder. Statistically, not all of the channels will need to be
powered most of the time which results in power savings.
[0174] Parallel format graphics data to be transmitted may
be encoded into serial format prior to transmission at the
transmission end and then decoded back into parallel format
at the receiving end. For example, the data may be encoded
into serial format using run length encoding as shown in
FIG. 17. Parallel data lines P may be run length encoded in
a transmitter T into different serial lines S in encoder E. At
the receiver R, the serial lines are converted back into
parallel lines using run length decoder D.

[0175] Statistically, fewer serial channels will be needed
to be powered on, resulting in power savings during trans-
mission. This arrangement exploits long runs of Os and 1 s
in graphics data to achieve the power savings. The scheme
may be suitable for longer length transmission lines having
higher capacitances that would otherwise require more
power for transmission, or for high fan-out transmission
points.

[0176] Each serial line may be compressed using the
frequent data compression techniques described herein.
[0177] FIG. 18 illustrates a block diagram of a switching
regulator according to an embodiment. One or more switch-
ing regulators shown in FIG. 18 may be incorporated in
various systems discussed herein to provide power to one or
more Integrated Circuit (IC) chips. While a single phase of
the current-parking switching regulator with a single induc-
tor may be discussed with reference to FIG. 18, one or more
of the multiple phases of the current-parking switching
regulator may be implemented with a split inductor. Fur-
thermore, a combination of one or more current-parking
switching regulators (with or without a split inductor) may
be used with one or more conventional electric power
conversion devices to provide power to the load (e.g., logic
circuitry 814).

[0178] More particularly, FIG. 18 illustrates a system 800
that includes a switching regulator (sometimes referred to as
a current-parking switching regulator). The current-parking
switching regulator may be a multi-phase switching regu-
lator in various embodiments. The multi-phase control unit
802 is coupled to multiple phases, where each phase may
include one or more upstream phases 804 and one or more
downstream phases 806. As shown, an electrical power
source 808 is coupled to upstream control logic 810 (which
provides a current control mechanisms in each upstream
phase). More than one upstream control logic may be used
in various implementations. Each upstream phase may
include an inductor (not shown) that is coupled to a respec-
tive downstream phase. In an embodiment, the upstream

US 2019/0272613 Al

phases may each include one or more inductors. The multi-
phase control unit 802 may configure any active upstream
control logic 810, e.g., to generate a current through an
inductor coupled between the upstream phases and the
downstream phases. The downstream control logic 812 may
be configured by the multi-phase control unit 802 to be ON,
OFF, or switching to regulate the voltage level at the load
(e.g., logic circuitry 814). In turn, the downstream control
logic 812 may be configured by the multi-phase control unit
802 to maintain the voltage level at the load within a range
based at least in part on Vmin (minimum voltage) and Vmax
(maximum voltage) values.

[0179] In one embodiment, an inductor (coupled between
a downstream phase and a respective upstream phase) may
be positioned outside of a semiconductor package 816 that
includes the load 814. Another inductor (not shown) may be
positioned inside of the package 816, e.g., to reduce parasitic
capacitance. In one embodiment, the inductor inside the
package 816 may be a planar air-core inductor that is
coupled to the logic circuitry 814 via one or more switching
logic which include planar Metal-Oxide Semiconductor
Field-Effect Transistors (MOSFETs). Furthermore, one or
more of the components discussed herein (e.g., with refer-
ence to FIGS. 18, 19, and/or 20, including, for example, [.3
cache, upstream control logic, and/or downstream control
logic) may be provided in substrate layer(s) (e.g., between
semiconductor packages), on an integrated circuit die, or
outside of a semiconductor package (e.g., on a Printed
Circuit Board (PCB)) in various embodiments.

[0180] FIG. 19 is a block diagram of a system 900
including a streaming multiprocessor 902, in accordance
with one or more embodiments. The streaming multiproces-
sor may include 32 Single-Instruction, Multiple Thread
(SIMT) lanes 904 that are capable of collectively issuing up
to 32 instructions per clock cycle, e.g., one from each of 32
threads. More or less lanes may be present depending on the
implementation such as 64, 128, 256, etc. The SIMT lanes
904 may in turn include one or more: Arithmetic Logic Units
(ALUs) 906, Special Function Units (SFUs) 908, memory
units (MEM) 910, and/or texture units (TEX) 912.

[0181] In some embodiments, one or more of ALU(s) 906
and/or TEX unit(s) 912 may be low energy or high capacity,
e.g., such as discussed with reference to items 920 and 922.
For example, the system may map 100% of the register
addresses for threads 0-30 to the low energy portion and
100% of the register addresses for threads 31-127 to the high
capacity portion. As another example, the system may map
20% of each thread’s registers to the low energy portion and
to map 80% of each thread’s registers to the high capacity
portion. Moreover, the system may determine the number of
entries allocated per thread based on runtime information.

[0182] As illustrated in FIG. 19, the streaming multipro-
cessor 902 also include a register file 914, a scheduler logic
916 (e.g., for scheduling threads or thread groups, or both),
and shared memory 918, e.g., local scratch storage. As
discussed herein, a “thread group” refers to a plurality of
threads that are grouped with ordered (e.g., sequential or
consecutive) thread indexes. Generally, a register file refers
to an array of registers accessed by components of a pro-
cessor (including a graphics processor) such as those dis-
cussed herein. The register file 914 includes a low energy
portion or structure 920 and a high capacity portion or
structure 922. The streaming multiprocessor 902 may be

Sep. 5, 2019

configured to address the register file 914 using a single
logical namespace for both the low energy portion and the
high capacity portion.

[0183] In some embodiments, the system may include a
number of physical registers which can be shared by the
simultaneously running threads on the system. This allows
the system to use a single namespace to implement a flexible
register mapping scheme. A compiler may then allocate
register live ranges to register addresses, and the compiler
may use a register allocation mechanism to minimize or
reduce the number of registers used per thread. Multiple live
ranges can be allocated to the same register address as long
as the live ranges do not overlap in an embodiment. This
allows for determination, e.g., at runtime and after instruc-
tions have been compiled, of how many entries per thread
will be allocated in the low energy portion versus the high
capacity portion. For example, the system may map 100% of
the register addresses for threads 0-30 to the low energy
portion and 100% of the register addresses for threads
31-127 to the high capacity portion. As another example, the
system may map 20% of each thread’s registers to the low
energy portion and to map 80% of each thread’s registers to
the high capacity portion. The system may determine the
number of entries allocated per thread based on runtime
information, e.g., regarding the number of thread groups
executing and the marginal benefit from launching more
thread groups or allocating a smaller number of thread
groups more space in the low energy portion.

[0184] FIG. 20 illustrates a block diagram of a parallel
processing system 1000, according to one embodiment.
System 1000 includes a Parallel Processing (Previously
Presented) subsystem 1002 which in turn includes one or
more Parallel Processing Units (PPUs) PPU-0 through PPU-
P. Each PPU is coupled to a local Parallel Processing (PP)
memory (e.g., Mem-0 through MEM-P, respectively). In
some embodiments, the PP subsystem system 1002 may
include P number of PPUs. PPU-0 1004 and parallel pro-
cessing memories 1006 may be implemented using one or
more integrated circuit devices, such as programmable pro-
cessors, Application Specific Integrated Circuits (ASICs), or
memory devices.

[0185] Referring to FIG. 20 several optional switch or
connections 1007 are shown that may be used in system
1000 to manage power. While several switches 1007 are
shown, embodiments are not limited to the specifically
shown switches and more or less switches may be utilized
depending on the implementation. These connections/
switches 1007 may be utilized for clock gating or general
power gating. Hence, items 1007 may include one or more
of a power transistor, on-die switch, power plane connec-
tions, or the like. In an embodiment, prior to shutting power
to a portion of system 1000 via switches/connections 1007,
logic (e.g., a microcontroller, digital signal processor, firm-
ware, etc.) may ensure the results of operation are commit-
ted (e.g., to memory) or finalized to maintain correctness.
[0186] Further, in some embodiments, one or more of
PPUs in parallel processing subsystem 1002 are graphics
processors with rendering pipelines that may be configured
to perform various tasks such as those discussed herein with
respect to other figures. The graphics information/data may
be communicated via memory bridge 1008 with other com-
ponents of a computing system (including components of
system 1000). The data may be communicated via a shared
bus and/or one or more interconnect(s) 1010 (including, for

US 2019/0272613 Al

example, one or more direct or point-to-point links). PPU-0
1004 may access its local parallel processing memory 1014
(which may be used as graphics memory including, e.g., a
frame buffer) to store and update pixel data, delivering pixel
data to a display device (such as those discussed herein), etc.
In some embodiments, the parallel processing subsystem
1002 may include one or more PPUs that operate as graphics
processors and one or more other PPUs that operate to
perform general-purpose computations. The PPUs may be
identical or different, and each PPU may have access to its
own dedicated parallel processing memory device(s), no
dedicated parallel processing memory device(s), or a shared
memory device or cache.

[0187] In an embodiment, operations performed by PPUs
may be controlled by another processor (or one of the PPUs)
generally referred to as a master processor or processor core.
In one embodiment, the master processor/core may write a
stream of commands for each PPU to a push buffer in
various locations such as a main system memory, a cache, or
other memory such as those discussed herein with reference
to other figures. The written commands may then be read by
each PPU and executed asynchronously relative to the
operation of master processor/core.

[0188] Furthermore, as shown in FIG. 20, PPU-0 includes
a front end logic 1020 which may include an Input/Output
(I/O or 10) unit (e.g., to communicate with other compo-
nents of system 1000 through the memory bridge 1008)
and/or a host interface (e.g., which receives commands
related to processing tasks). The front end 1020 may receive
commands read by the host interface (for example from the
push buffer)). The front end 1020 in turn provides the
commands to a work scheduling unit 1022 that schedules
and allocates operation(s)/task(s) associated with the com-
mands to a processing cluster array or arithmetic subsystem
1024 for execution.

[0189] As shown in FIG. 20, the processing cluster array
1024 may include one or more General Processing Cluster
(GPC) units (e.g., GPC-0 1026, GPC-1 1028, through
GPC-M 1030). Each GPC may be capable of executing a
large number (e.g., hundreds or thousands) of threads con-
currently, where each thread is an instance of a program. In
various applications, different GPCs may be allocated for
processing different types of programs or for performing
different types of computations. For example, in a graphics
application, a first set of GPCs (e.g., including one or more
GPC units) may be allocated to perform tessellation opera-
tions and to produce primitive topologies for patches, and a
second set of GPCs (e.g., including one or more GPC units)
may be allocated to perform tessellation shading to evaluate
patch parameters for the primitive topologies and to deter-
mine vertex positions and other per-vertex attributes. The
allocation of GPCs may vary depending on the workload
arising for each type of program or computation.

[0190] Additionally, processing tasks that are assigned by
the work scheduling unit 1022 may include indices of data
to be processed, such surface/patch data, primitive data,
vertex data, pixel data, and/or state parameters and com-
mands defining how the data is to be processed (e.g., what
program is to be executed). The work scheduling unit 1022
may be configured to fetch the indices corresponding to the
tasks, or may receive the indices from front end 1020. Front
end 1020 may also ensure that GPCs are configured to a
valid state before the processing specified by the push
buffers is initiated.

Sep. 5, 2019

[0191] In one embodiment, the communication path 1012
is a Peripheral Component Interface (PCI) express (or
PCI-e) link, in which dedicated lanes may be allocated to
each PPU. Other communication paths may also be used.
For example, commands related to processing tasks may be
directed to the host interface 1018, while commands related
to memory operations (e.g., reading from or writing to
parallel processing memory 1014) may be directed to a
memory crossbar unit 1032.

[0192] In some embodiments, parallel processing subsys-
tem 1002 may be implemented as an add-in card that is
inserted into an expansion slot of computer system or server
(such as a blade server). In other embodiments, a PPU may
be integrated on a single chip with a bus bridge, such as
memory bridge 1008, an /O bridge, etc. In still other
embodiments, some or all components of PPU may be
integrated on a single integrated circuit chip with one or
more other processor cores, memory devices, caches, etc.

[0193] Referring to FIG. 20, memory interface 1014
includes N partition units (e.g., Unit-0 1034, Unit-1 1036,
through Unit-N 10-38) that are each directly coupled to a
corresponding portion of parallel processing memory 1006
(such as Mem-0 1040, Mem-1 1042, through Mem-N 1044).
The number of partition units may generally be equal to the
number of Previously Presented memory (or N as shown).
The Previously Presented memory may be implemented
with volatile memory such as Dynamic Random Access
Memory (DRAM) or other types of volatile memory such as
those discussed herein. In other embodiments, the number of
partition units may not equal the number of memory devices.
Graphics data (such as render targets, frame buffers, or
texture maps) may be stored across Previously Presented
memory devices, allowing partition units to write portions of
graphics data in parallel to efficiently use the available
bandwidth of the parallel processing memory 1006.

[0194] Furthermore, any one of GPCs may process data to
be written to any of the partition units within the parallel
processing memory. Crossbar unit 1032 may be imple-
mented as an interconnect that is configured to route the
output of each GPC to the input of any partition unit or to
another GPC for further processing. Hence, GPCs 1026 to
1030 may communicate with memory interface 1014
through crossbar unit 1032 to read from or write to various
other (or external) memory devices. As shown, crossbar unit
1032 may directly communicate with the front end 1020, as
well as having a coupling (direct or indirect) to local
memory 1006, to allow the processing cores within the
different GPCs to communicate with system memory and/or
other memory that is not local to PPU. Furthermore, the
crossbar unit 1032 may utilize virtual channels to organize
traffic streams between the GPCs and partition units.

Graphics System

[0195] FIG. 21 is a block diagram of a processing system
1400, according to an embodiment. In various embodiments
the system 1400 includes one or more processors 1602 and
one or more graphics processors 1408, and may be a single
processor desktop system, a multiprocessor workstation
system, or a server system having a large number of pro-
cessors 1402 or processor cores 1407. In one embodiment,
the system 1400 is a processing platform incorporated
within a system-on-a-chip (SoC) integrated circuit for use in
mobile, handheld, or embedded devices.

US 2019/0272613 Al

[0196] The processing system including a graphics pro-
cessing unit may be an integrated circuit. An integrated
circuit means a single integrated silicon die. The die contains
the graphics processing unit and parallel interconnected
geometry processing fixed-function units.

[0197] An embodiment of system 1400 can include, or be
incorporated within a server-based gaming platform, a game
console, including a game and media console, a mobile
gaming console, a handheld game console, or an online
game console. In some embodiments system 1400 is a
mobile phone, smart phone, tablet computing device or
mobile Internet device. Data processing system 1400 can
also include, couple with, or be integrated within a wearable
device, such as a smart watch wearable device, smart
eyewear device, augmented reality device, or virtual reality
device. In some embodiments, data processing system 1400
is a television or set top box device having one or more
processors 1402 and a graphical interface generated by one
or more graphics processors 1408.

[0198] In some embodiments, the one or more processors
1402 each include one or more processor cores 1407 to
process instructions which, when executed, perform opera-
tions for system and user software. In some embodiments,
each of the one or more processor cores 1407 is configured
to process a specific instruction set 1409. In some embodi-
ments, instruction set 1409 may facilitate Complex Instruc-
tion Set Computing (CISC), Reduced Instruction Set Com-
puting (RISC), or computing via a Very Long Instruction
Word (VLIW). Multiple processor cores 1407 may each
process a different instruction set 1409, which may include
instructions to facilitate the emulation of other instruction
sets. Processor core 1407 may also include other processing
devices, such a Digital Signal Processor (DSP).

[0199] Insome embodiments, the processor 1402 includes
cache memory 1404. Depending on the architecture, the
processor 1402 can have a single internal cache or multiple
levels of internal cache. In some embodiments, the cache
memory is shared among various components of the pro-
cessor 1402. In some embodiments, the processor 1402 also
uses an external cache (e.g., a Level-3 (L3) cache or Last
Level Cache (LLC)) (not shown), which may be shared
among processor cores 1407 using known cache coherency
techniques. A register file 1406 is additionally included in
processor 1402 which may include different types of regis-
ters for storing different types of data (e.g., integer registers,
floating point registers, status registers, and an instruction
pointer register). Some registers may be general-purpose
registers, while other registers may be specific to the design
of the processor 1402.

[0200] In some embodiments, processor 1402 is coupled
with a processor bus 1410 to transmit communication sig-
nals such as address, data, or control signals between
processor 1402 and other components in system 1400. In
one embodiment the system 1400 uses an exemplary ‘hub’
system architecture, including a memory controller hub
1416 and an Input Output (I/O) controller hub 1430. A
memory controller hub 1416 facilitates communication
between a memory device and other components of system
1400, while an 1/0 Controller Hub (ICH) 1430 provides
connections to 1/O devices via a local I/O bus. In one
embodiment, the logic of the memory controller hub 1416 is
integrated within the processor.

[0201] Memory device 1420 can be a dynamic random
access memory (DRAM) device, a static random access

Sep. 5, 2019

memory (SRAM) device, flash memory device, phase-
change memory device, or some other memory device
having suitable performance to serve as process memory. In
one embodiment the memory device 1420 can operate as
system memory for the system 1400, to store data 1422 and
instructions 1421 for use when the one or more processors
1402 executes an application or process. Memory controller
hub 1416 also couples with an optional external graphics
processor 1412, which may communicate with the one or
more graphics processors 1408 in processors 1402 to per-
form graphics and media operations.

[0202] In some embodiments, ICH 1430 enables periph-
erals to connect to memory device 1420 and processor 1402
via a high-speed 1/O bus. The 1/O peripherals include, but
are not limited to, an audio controller 1446, a firmware
interface 1428, a wireless transceiver 1426 (e.g., Wi-Fi,
Bluetooth), a data storage device 1624 (e.g., hard disk drive,
flash memory, etc.), and a legacy /O controller 1440 for
coupling legacy (e.g., Personal System 2 (PS/2)) devices to
the system. One or more Universal Serial Bus (USB) con-
trollers 1442 connect input devices, such as keyboard and
mouse 1444 combinations. A network controller 1434 may
also couple with ICH 1430. In some embodiments, a high-
performance network controller (not shown) couples with
processor bus 1410. It will be appreciated that the system
1400 shown is exemplary and not limiting, as other types of
data processing systems that are differently configured may
also be used. For example, the I/O controller hub 1430 may
be integrated within the one or more processor 1402, or the
memory controller hub 1416 and I/O controller hub 1430
may be integrated into a discreet external graphics proces-
sor, such as the external graphics processor 1412.

[0203] FIG. 22 is a block diagram of an embodiment of a
processor 1500 having one or more processor cores 1502 A-
1502N, an integrated memory controller 1514, and an inte-
grated graphics processor 1508. Those elements of FIG. 9
having the same reference numbers (or names) as the
elements of any other figure herein can operate or function
in any manner similar to that described elsewhere herein, but
are not limited to such. Processor 1500 can include addi-
tional cores up to and including additional core 1502N
represented by the dashed lined boxes. Each of processor
cores 1502A-1502N includes one or more internal cache
units 1504A-1504N. In some embodiments each processor
core also has access to one or more shared cached units
1506.

[0204] The internal cache units 1504A-1504N and shared
cache units 1506 represent a cache memory hierarchy within
the processor 1500. The cache memory hierarchy may
include at least one level of instruction and data cache within
each processor core and one or more levels of shared
mid-level cache, such as a Level 2 (L.2), Level 3 (L3), Level
4 (L4), or other levels of cache, where the highest level of
cache before external memory is classified as the LLC. In
some embodiments, cache coherency logic maintains coher-
ency between the various cache units 1506 and 1504A-
1504N.

[0205] In some embodiments, processor 1500 may also
include a set of one or more bus controller units 1516 and a
system agent core 1510. The one or more bus controller units
1516 manage a set of peripheral buses, such as one or more
Peripheral Component Interconnect buses (e.g., PCI, PCI
Express). System agent core 1510 provides management
functionality for the various processor components. In some

US 2019/0272613 Al

embodiments, system agent core 1510 includes one or more
integrated memory controllers 1514 to manage access to
various external memory devices (not shown).

[0206] In some embodiments, one or more of the proces-
sor cores 1502A-1502N include support for simultaneous
multi-threading. In such embodiment, the system agent core
1510 includes components for coordinating and operating
cores 1502A-1502N during multi-threaded processing. Sys-
tem agent core 1510 may additionally include a power
control unit (PCU), which includes logic and components to
regulate the power state of processor cores 1502A-1502N
and graphics processor 1508.

[0207] Insome embodiments, processor 1500 additionally
includes graphics processor 1508 to execute graphics pro-
cessing operations. In some embodiments, the graphics
processor 1508 couples with the set of shared cache units
1506, and the system agent core 1510, including the one or
more integrated memory controllers 1514. In some embodi-
ments, a display controller 1511 is coupled with the graphics
processor 1508 to drive graphics processor output to one or
more coupled displays. In some embodiments, display con-
troller 1511 may be a separate module coupled with the
graphics processor via at least one interconnect, or may be
integrated within the graphics processor 1508 or system
agent core 1510.

[0208] In some embodiments, a ring based interconnect
unit 1512 is used to couple the internal components of the
processor 1500. However, an alternative interconnect unit
may be used, such as a point-to-point interconnect, a
switched interconnect, or other techniques, including tech-
niques well known in the art. In some embodiments, graph-
ics processor 1508 couples with the ring interconnect 1512
via an I/O link 1513.

[0209] The exemplary I/O link 1513 represents at least one
of multiple varieties of /O interconnects, including an on
package 1/O interconnect which facilitates communication
between various processor components and a high-perfor-
mance embedded memory module 1518, such as an eDRAM
module. In some embodiments, each of the processor cores
1502A-1502N and graphics processor 1508 use embedded
memory modules 1518 as a shared Last Level Cache.
[0210] In some embodiments, processor cores 1502A-
1502N are homogenous cores executing the same instruction
set architecture. In another embodiment, processor cores
1502A-5102N are heterogeneous in terms of instruction set
architecture (ISA), where one or more of processor cores
1502A-1502N execute a first instruction set, while at least
one of the other cores executes a subset of the first instruc-
tion set or a different instruction set. In one embodiment
processor cores 1502A-1502N are heterogeneous in terms of
microarchitecture, where one or more cores having a rela-
tively higher power consumption couple with one or more
power cores having a lower power consumption. Addition-
ally, processor 1500 can be implemented on one or more
chips or as an SoC integrated circuit having the illustrated
components, in addition to other components.

[0211] FIG. 23 is a block diagram of a graphics processor
1600, which may be a discrete graphics processing unit, or
may be a graphics processor integrated with a plurality of
processing cores. In some embodiments, the graphics pro-
cessor communicates via a memory mapped /O interface to
registers on the graphics processor and with commands
placed into the processor memory. In some embodiments,
graphics processor 1600 includes a memory interface 1614

Sep. 5, 2019

to access memory. Memory interface 1614 can be an inter-
face to local memory, one or more internal caches, one or
more shared external caches, and/or to system memory.

[0212] In some embodiments, graphics processor 1600
also includes a display controller 1602 to drive display
output data to a display device 1620. Display controller 1602
includes hardware for one or more overlay planes for the
display and composition of multiple layers of video or user
interface elements. In some embodiments, graphics proces-
sor 1600 includes a video codec engine 1606 to encode,
decode, or transcode media to, from, or between one or more
media encoding formats, including, but not limited to Mov-
ing Picture Experts Group (MPEG) formats such as MPEG-
2, Advanced Video Coding (AVC) formats such as H.264/
MPEG-4 AVC, as well as the Society of Motion Picture &
Television Engineers (SMPTE) 421 M/VC-1, and Joint
Photographic Experts Group (JPEG) formats such as JPEG,
and Motion JPEG (MJPEG) formats.

[0213] In some embodiments, graphics processor 1800
includes a block image transfer (BLIT) engine 1604 to
perform two-dimensional (2D) rasterizer operations includ-
ing, for example, bit-boundary block transfers. However, in
one embodiment, 2D graphics operations are performed
using one or more components of graphics processing
engine (GPE) 1610. In some embodiments, GPE 1610 is a
compute engine for performing graphics operations, includ-
ing three-dimensional (3D) graphics operations and media
operations.

[0214] In some embodiments, GPE 1610 includes a 3D
pipeline 1612 for performing 3D operations, such as ren-
dering three-dimensional images and scenes using process-
ing functions that act upon 3D primitive shapes (e.g.,
rectangle, triangle, etc.). The 3D pipeline 1612 includes
programmable and fixed function elements that perform
various tasks within the element and/or spawn execution
threads to a 3D/Media sub-system 1615. While 3D pipeline
1612 can be used to perform media operations, an embodi-
ment of GPE 1610 also includes a media pipeline 1616 that
is specifically used to perform media operations, such as
video post-processing and image enhancement.

[0215] In some embodiments, media pipeline 1616
includes fixed function or programmable logic units to
perform one or more specialized media operations, such as
video decode acceleration, video de-interlacing, and video
encode acceleration in place of, or on behalf of video codec
engine 1606. In some embodiments, media pipeline 1616
additionally includes a thread spawning unit to spawn
threads for execution on 3D/Media sub-system 1615. The
spawned threads perform computations for the media opera-
tions on one or more graphics execution units included in
3D/Media sub-system 1615.

[0216] In some embodiments, 3D/Media subsystem 1615
includes logic for executing threads spawned by 3D pipeline
1612 and media pipeline 1616. In one embodiment, the
pipelines send thread execution requests to 3D/Media sub-
system 1615, which includes thread dispatch logic for arbi-
trating and dispatching the various requests to available
thread execution resources. The execution resources include
an array of graphics execution units to process the 3D and
media threads. In some embodiments, 3D/Media subsystem
1615 includes one or more internal caches for thread instruc-
tions and data. In some embodiments, the subsystem also

US 2019/0272613 Al

includes shared memory, including registers and addressable
memory, to share data between threads and to store output
data.

[0217] FIG. 24 is a block diagram of a graphics processing
engine 1710 of a graphics processor in accordance with
some embodiments. In one embodiment, the graphics pro-
cessing engine (GPE) 1710 is a version of the GPE 1710
shown in FIG. 11. Elements of FIG. 11 having the same
reference numbers (or names) as the elements of any other
figure herein can operate or function in any manner similar
to that described elsewhere herein, but are not limited to
such. For example, the 3D pipeline 1612 and media pipeline
1616 of FIG. 9 are illustrated. The media pipeline 1616 is
optional in some embodiments of the GPE 1710 and may not
be explicitly included within the GPE 1710. For example
and in at least one embodiment, a separate media and/or
image processor is coupled to the GPE 1710.

[0218] In some embodiments, GPE 1710 couples with or
includes a command streamer 1703, which provides a com-
mand stream to the 3D pipeline 1612 and/or media pipelines
1616. In some embodiments, command streamer 1703 is
coupled with memory, which can be system memory, or one
or more of internal cache memory and shared cache
memory. In some embodiments, command streamer 1703
receives commands from the memory and sends the com-
mands to 3D pipeline 1612 and/or media pipeline 1616. The
commands are directives fetched from a ring buffer, which
stores commands for the 3D pipeline 1612 and media
pipeline 1616. In one embodiment, the ring buffer can
additionally include batch command buffers storing batches
of multiple commands. The commands for the 3D pipeline
1612 can also include references to data stored in memory,
such as but not limited to vertex and geometry data for the
3D pipeline 1612 and/or image data and memory objects for
the media pipeline 1616. The 3D pipeline 1612 and media
pipeline 1616 process the commands and data by performing
operations via logic within the respective pipelines or by
dispatching one or more execution threads to a graphics core
array 1714.

[0219] In various embodiments the 3D pipeline 1612 can
execute one or more shader programs, such as vertex shad-
ers, geometry shaders, pixel shaders, fragment shaders,
compute shaders, or other shader programs, by processing
the instructions and dispatching execution threads to the
graphics core array 1714. The graphics core array 1714
provides a unified block of execution resources. Multi-
purpose execution logic (e.g., execution units) within the
graphic core array 1714 includes support for various 3D API
shader languages and can execute multiple simultaneous
execution threads associated with multiple shaders.

[0220] Insome embodiments the graphics core array 1714
also includes execution logic to perform media functions,
such as video and/or image processing. In one embodiment,
the execution units additionally include general-purpose
logic that is programmable to perform parallel general
purpose computational operations, in addition to graphics
processing operations. The general purpose logic can per-
form processing operations in parallel or in conjunction with
general purpose logic within the processor core(s) 1407 of
FIG. 9 or core 1502A-1502N as in FIG. 10.

[0221] Output data generated by threads executing on the
graphics core array 1714 can output data to memory in a
unified return buffer (URB) 1718. The URB 1718 can store
data for multiple threads. In some embodiments the URB

Sep. 5, 2019

1718 may be used to send data between different threads
executing on the graphics core array 1714. In some embodi-
ments the URB 1718 may additionally be used for synchro-
nization between threads on the graphics core array and
fixed function logic within the shared function logic 1720.
[0222] In some embodiments, graphics core array 1714 is
scalable, such that the array includes a variable number of
graphics cores, each having a variable number of execution
units based on the target power and performance level of
GPE 1710. In one embodiment the execution resources are
dynamically scalable, such that execution resources may be
enabled or disabled as needed.

[0223] The graphics core array 1714 couples with shared
function logic 1720 that includes multiple resources that are
shared between the graphics cores in the graphics core array.
The shared functions within the shared function logic 1720
are hardware logic units that provide specialized supple-
mental functionality to the graphics core array 1714. In
various embodiments, shared function logic 1720 includes
but is not limited to sampler 1721, math 1722, and inter-
thread communication (ITC) 1723 logic. Additionally, some
embodiments implement one or more cache(s) 1725 within
the shared function logic 1720. A shared function is imple-
mented where the demand for a given specialized function
is insufficient for inclusion within the graphics core array
1714. Instead a single instantiation of that specialized func-
tion is implemented as a stand-alone entity in the shared
function logic 1720 and shared among the execution
resources within the graphics core array 1714. The precise
set of functions that are shared between the graphics core
array 1714 and included within the graphics core array 1714
varies between embodiments.

[0224] FIG. 25 is a block diagram of another embodiment
of a graphics processor 1800. Elements of FIG. 25 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function in any
manner similar to that described elsewhere herein, but are
not limited to such.

[0225] In some embodiments, graphics processor 1800
includes a ring interconnect 1802, a pipeline front-end 1804,
a media engine 1837, and graphics cores 1880A-1880N. In
some embodiments, ring interconnect 1802 couples the
graphics processor to other processing units, including other
graphics processors or one or more general-purpose proces-
sor cores. In some embodiments, the graphics processor is
one of many processors integrated within a multi-core
processing system.

[0226] In some embodiments, graphics processor 1800
receives batches of commands via ring interconnect 1802.
The incoming commands are interpreted by a command
streamer 1803 in the pipeline front-end 1804. In some
embodiments, graphics processor 1800 includes scalable
execution logic to perform 3D geometry processing and
media processing via the graphics core(s) 1880A-1880N.
For 3D geometry processing commands, command streamer
1803 supplies commands to geometry pipeline 1836. For at
least some media processing commands, command streamer
1803 supplies the commands to a video front end 1834,
which couples with a media engine 1837. In some embodi-
ments, media engine 1837 includes a Video Quality Engine
(VQE) 2030 for video and image post-processing and a
multi-format encode/decode (MFX) 1833 engine to provide
hardware-accelerated media data encode and decode. In
some embodiments, geometry pipeline 1836 and media

US 2019/0272613 Al

engine 1837 each generate execution threads for the thread
execution resources provided by at least one graphics core
1880A.

[0227] In some embodiments, graphics processor 1800
includes scalable thread execution resources featuring
modular cores 1880A-1880N (sometimes referred to as core
slices), each having multiple sub-cores 1850A-1850N,
1860A-1860N (sometimes referred to as core sub-slices). In
some embodiments, graphics processor 1800 can have any
number of graphics cores 1880A through 1880N. In some
embodiments, graphics processor 1800 includes a graphics
core 1880A having at least a first sub-core 1850A and a
second sub-core 1860A. In other embodiments, the graphics
processor is a low power processor with a single sub-core
(e.g., 1850A). In some embodiments, graphics processor
1800 includes multiple graphics cores 1880A-1880N, each
including a set of first sub-cores 1850A-1850N and a set of
second sub-cores 1860A-1860N. Each sub-core in the set of
first sub-cores 1850A-1850N includes at least a first set of
execution units 1852A-1852N and media/texture samplers
1854 A-1854N. Each sub-core in the set of second sub-cores
1860A-1860N includes at least a second set of execution
units 1862A-1862N and samplers 1864A-1864N. In some
embodiments, each sub-core 1850A-1850N, 1860A-1860N
shares a set of shared resources 1870A-1870N. In some
embodiments, the shared resources include shared cache
memory and pixel operation logic. Other shared resources
may also be included in the various embodiments of the
graphics processor.

[0228] FIG. 26 illustrates thread execution logic 1900
including an array of processing elements employed in some
embodiments of a GPE. Elements of FIG. 26 having the
same reference numbers (or names) as the elements of any
other figure herein can operate or function in any manner
similar to that described elsewhere herein, but are not
limited to such.

[0229] In some embodiments, thread execution logic 1900
includes a shader processor 1902, a thread dispatcher 1904,
instruction cache 1906, a scalable execution unit array
including a plurality of execution units 1908A-1908N, a
sampler 1910, a data cache 1912, and a data port 1914. In
one embodiment the scalable execution unit array can
dynamically scale by enabling or disabling one or more
execution units (e.g., any of execution unit 1908A, 1908B,
1908C, 1908D, through 1908N-1 and 1908N) based on the
computational requirements of a workload. In one embodi-
ment the included components are interconnected via an
interconnect fabric that links to each of the components. In
some embodiments, thread execution logic 1900 includes
one or more connections to memory, such as system memory
or cache memory, through one or more of instruction cache
1906, data port 1914, sampler 1910, and execution units
1908A-1908N. In some embodiments, each execution unit
(e.g. 1908A) is a stand-alone programmable general purpose
computational unit that is capable of executing multiple
simultaneous hardware threads while processing multiple
data elements in parallel for each thread. In various embodi-
ments, the array of execution units 1908 A-1908N is scalable
to include any number individual execution units.

[0230] In some embodiments, the execution units 1908 A-
1908N are primarily used to execute shader programs. A
shader processor 1902 can process the various shader pro-
grams and dispatch execution threads associated with the
shader programs via a thread dispatcher 1904. In one

Sep. 5, 2019

embodiment the thread dispatcher includes logic to arbitrate
thread initiation requests from the graphics and media
pipelines and instantiate the requested threads on one or
more execution unit in the execution units 1908A-1908N.
For example, the geometry pipeline (e.g., 1836 of FIG. 12)
can dispatch vertex, tessellation, or geometry shaders to the
thread execution logic 1900 (FIG. 13) for processing. In
some embodiments, thread dispatcher 1904 can also process
runtime thread spawning requests from the executing shader
programs.

[0231] In some embodiments, the execution units 1908 A-
1908N support an instruction set that includes native support
for many standard 3D graphics shader instructions, such that
shader programs from graphics libraries (e.g., Direct 3D and
OpenGL) are executed with a minimal translation. The
execution units support vertex and geometry processing
(e.g., vertex programs, geometry programs, vertex shaders),
pixel processing (e.g., pixel shaders, fragment shaders) and
general-purpose processing (e.g., compute and media shad-
ers). Each of the execution units 1908 A-1908N is capable of
multi-issue single instruction multiple data (SIMD) execu-
tion and multi-threaded operation enables an efficient execu-
tion environment in the face of higher latency memory
accesses. Each hardware thread within each execution unit
has a dedicated high-bandwidth register file and associated
independent thread-state. Execution is multi-issue per clock
to pipelines capable of integer, single and double precision
floating point operations, SIMD branch capability, logical
operations, transcendental operations, and other miscella-
neous operations. While waiting for data from memory or
one of the shared functions, dependency logic within the
execution units 1908A-1908N causes a waiting thread to
sleep until the requested data has been returned. While the
waiting thread is sleeping, hardware resources may be
devoted to processing other threads. For example, during a
delay associated with a vertex shader operation, an execu-
tion unit can perform operations for a pixel shader, fragment
shader, or another type of shader program, including a
different vertex shader.

[0232] Each execution unit in execution units 1908A-
1908N operates on arrays of data elements. The number of
data elements is the “execution size,” or the number of
channels for the instruction. An execution channel is a
logical unit of execution for data element access, masking,
and flow control within instructions. The number of chan-
nels may be independent of the number of physical Arith-
metic Logic Units (ALUs) or Floating Point Units (FPUs)
for a particular graphics processor. In some embodiments,
execution units 608A-608N support integer and floating-
point data types.

[0233] The execution unit instruction set includes SIMD
instructions. The various data elements can be stored as a
packed data type in a register and the execution unit will
process the various elements based on the data size of the
elements. For example, when operating on a 256-bit wide
vector, the 256 bits of the vector are stored in a register and
the execution unit operates on the vector as four separate
64-bit packed data elements (Quad-Word (QW) size data
elements), eight separate 32-bit packed data elements
(Double Word (DW) size data elements), sixteen separate
16-bit packed data elements (Word (W) size data elements),
or thirty-two separate 8-bit data elements (byte (B) size data
elements). However, different vector widths and register
sizes are possible.

US 2019/0272613 Al

[0234] One or more internal instruction caches (e.g., 1906)
are included in the thread execution logic 1900 to cache
thread instructions for the execution units. In some embodi-
ments, one or more data caches (e.g., 1912) are included to
cache thread data during thread execution. In some embodi-
ments, a sampler 1910 is included to provide texture sam-
pling for 3D operations and media sampling for media
operations. In some embodiments, sampler 1910 includes
specialized texture or media sampling functionality to pro-
cess texture or media data during the sampling process
before providing the sampled data to an execution unit.
[0235] During execution, the graphics and media pipelines
send thread initiation requests to thread execution logic 1900
via thread spawning and dispatch logic. Once a group of
geometric objects has been processed and rasterized into
pixel data, pixel processor logic (e.g., pixel shader logic,
fragment shader logic, etc.) within the shader processor
1902 is invoked to further compute output information and
cause results to be written to output surfaces (e.g., color
buffers, depth buffers, stencil buffers, etc.). In some embodi-
ments, a pixel shader or fragment shader calculates the
values of the various vertex attributes that are to be inter-
polated across the rasterized object. In some embodiments,
pixel processor logic within the shader processor 1902 then
executes an application programming interface (API)-sup-
plied pixel or fragment shader program. To execute the
shader program, the shader processor 1902 dispatches
threads to an execution unit (e.g., 1908A) via thread dis-
patcher 1904. In some embodiments, pixel shader 1902 uses
texture sampling logic in the sampler 1910 to access texture
data in texture maps stored in memory. Arithmetic opera-
tions on the texture data and the input geometry data
compute pixel color data for each geometric fragment, or
discards one or more pixels from further processing.
[0236] In some embodiments, the data port 1914 provides
a memory access mechanism for the thread execution logic
1900 output processed data to memory for processing on a
graphics processor output pipeline. In some embodiments,
the data port 1914 includes or couples to one or more cache
memories (e.g., data cache 1912) to cache data for memory
access via the data port.

[0237] FIG. 27 is a block diagram illustrating a graphics
processor instruction formats 2000 according to some
embodiments. In one or more embodiment, the graphics
processor execution units support an instruction set having
instructions in multiple formats. The solid lined boxes
illustrate the components that are generally included in an
execution unit instruction, while the dashed lines include
components that are optional or that are only included in a
sub-set of the instructions. In some embodiments, instruc-
tion format 2000 described and illustrated are macro-instruc-
tions, in that they are instructions supplied to the execution
unit, as opposed to micro-operations resulting from instruc-
tion decode once the instruction is processed.

[0238] In some embodiments, the graphics processor
execution units natively support instructions in a 128-bit
instruction format 2010. A 64-bit compacted instruction
format 2030 is available for some instructions based on the
selected instruction, instruction options, and number of
operands. The native 128-bit instruction format 2010 pro-
vides access to all instruction options, while some options
and operations are restricted in the 64-bit instruction format
2030. The native instructions available in the 64-bit instruc-
tion format 2030 vary by embodiment. In some embodi-

Sep. 5, 2019

ments, the instruction is compacted in part using a set of
index values in an index field 2013. The execution unit
hardware references a set of compaction tables based on the
index values and uses the compaction table outputs to
reconstruct a native instruction in the 128-bit instruction
format 2010.

[0239] For each format, instruction opcode 2012 defines
the operation that the execution unit is to perform. The
execution units execute each instruction in parallel across
the multiple data elements of each operand. For example, in
response to an add instruction the execution unit performs a
simultaneous add operation across each color channel rep-
resenting a texture element or picture element. By default,
the execution unit performs each instruction across all data
channels of the operands. In some embodiments, instruction
control field 2014 enables control over certain execution
options, such as channels selection (e.g., predication) and
data channel order (e.g., swizzle). For instructions in the
128-bit instruction format 2010 an exec-size field 2016
limits the number of data channels that will be executed in
parallel. In some embodiments, exec-size field 2016 is not
available for use in the 64-bit compact instruction format
2030.

[0240] Some execution unit instructions have up to three
operands including two source operands, srcO 2020, srcl
2022, and one destination 2018. In some embodiments, the
execution units support dual destination instructions, where
one of the destinations is implied. Data manipulation
instructions can have a third source operand (e.g., SRC2
2024), where the instruction opcode 2012 determines the
number of source operands. An instruction’s last source
operand can be an immediate (e.g., hard-coded) value passed
with the instruction.

[0241] In some embodiments, the 128-bit instruction for-
mat 2010 includes an access/address mode field 2026 speci-
fying, for example, whether direct register addressing mode
or indirect register addressing mode is used. When direct
register addressing mode is used, the register address of one
or more operands is directly provided by bits in the instruc-
tion.

[0242] In some embodiments, the 128-bit instruction for-
mat 2010 includes an access/address mode field 2026, which
specifies an address mode and/or an access mode for the
instruction. In one embodiment the access mode is used to
define a data access alignment for the instruction. Some
embodiments support access modes including a 16-byte
aligned access mode and a 1-byte aligned access mode,
where the byte alignment of the access mode determines the
access alignment of the instruction operands. For example,
when in a first mode, the instruction may use byte-aligned
addressing for source and destination operands and when in
a second mode, the instruction may use 16-byte-aligned
addressing for all source and destination operands.

[0243] In one embodiment, the address mode portion of
the access/address mode field 2026 determines whether the
instruction is to use direct or indirect addressing. When
direct register addressing mode is used bits in the instruction
directly provide the register address of one or more oper-
ands. When indirect register addressing mode is used, the
register address of one or more operands may be computed
based on an address register value and an address immediate
field in the instruction.

[0244] In some embodiments instructions are grouped
based on opcode 2012 bit-fields to simplify Opcode decode

US 2019/0272613 Al

2040. For an 8-bit opcode, bits 4, 5, and 6 allow the
execution unit to determine the type of opcode. The precise
opcode grouping shown is merely an example. In some
embodiments, a move and logic opcode group 2042 includes
data movement and logic instructions (e.g., move (mov),
compare (cmp)). In some embodiments, move and logic
group 2042 shares the five most significant bits (MSB),
where move (mov) instructions are in the form of
0000xxxxb and logic instructions are in the form of
0001xxxxb. A flow control instruction group 2044 (e.g., call,
jump (jmp)) includes instructions in the form of 0010xxxxb
(e.g., 0x20). A miscellaneous instruction group 2046
includes a mix of instructions, including synchronization
instructions (e.g., wait, send) in the form of 0011xxxxb (e.g.,
0x30). A parallel math instruction group 2048 includes
component-wise arithmetic instructions (e.g., add, multiply
(mul)) in the form of 0100xxxxb (e.g., 0x40). The parallel
math group 2048 performs the arithmetic operations in
parallel across data channels. The vector math group 2050
includes arithmetic instructions (e.g., dp4) in the form of
0101xxxxb (e.g., 0x50). The vector math group performs
arithmetic such as dot product calculations on vector oper-
ands.

[0245] FIG. 28 is a block diagram of another embodiment
of a graphics processor 2100. Elements of FIG. 28 having
the same reference numbers (or names) as the elements of
any other figure herein can operate or function in any
manner similar to that described elsewhere herein, but are
not limited to such.

[0246] In some embodiments, graphics processor 2100
includes a graphics pipeline 2120, a media pipeline 2130, a
display engine 2140, thread execution logic 2150, and a
render output pipeline 2170. In some embodiments, graphics
processor 2100 is a graphics processor within a multi-core
processing system that includes one or more general purpose
processing cores. The graphics processor is controlled by
register writes to one or more control registers (not shown)
or via commands issued to graphics processor 2100 via a
ring interconnect 2102. In some embodiments, ring inter-
connect 2102 couples graphics processor 2100 to other
processing components, such as other graphics processors or
general-purpose processors. Commands from ring intercon-
nect 2102 are interpreted by a command streamer 2103,
which supplies instructions to individual components of
graphics pipeline 2120 or media pipeline 2130.

[0247] In some embodiments, command streamer 2103
directs the operation of a vertex fetcher 2105 that reads
vertex data from memory and executes vertex-processing
commands provided by command streamer 2103. In some
embodiments, vertex fetcher 2105 provides vertex data to a
vertex shader 2107, which performs coordinate space trans-
formation and lighting operations to each vertex. In some
embodiments, vertex fetcher 2105 and vertex shader 2107
execute vertex-processing instructions by dispatching
execution threads to execution units 2152A-2152B via a
thread dispatcher 2131.

[0248] In some embodiments, execution units 2152A-
2152B are an array of vector processors having an instruc-
tion set for performing graphics and media operations. In
some embodiments, execution units 2152A-2152B have an
attached L1 cache 2151 that is specific for each array or
shared between the arrays. The cache can be configured as

Sep. 5, 2019

a data cache, an instruction cache, or a single cache that is
partitioned to contain data and instructions in different
partitions.

[0249] In some embodiments, graphics pipeline 2120
includes tessellation components to perform hardware-ac-
celerated tessellation of 3D objects. In some embodiments,
a programmable hull shader 2111 configures the tessellation
operations. A programmable domain shader 2117 provides
back-end evaluation of tessellation output. A tessellator 2113
operates at the direction of hull shader 2111 and contains
special purpose logic to generate a set of detailed geometric
objects based on a coarse geometric model that is provided
as input to graphics pipeline 2120. In some embodiments, if
tessellation is not used, tessellation components (e.g., hull
shader 2311, tessellator 2113, and domain shader 2117) can
be bypassed.

[0250] In some embodiments, complete geometric objects
can be processed by a geometry shader 2119 via one or more
threads dispatched to execution units 2152A-2152B, or can
proceed directly to the clipper 2129. In some embodiments,
the geometry shader operates on entire geometric objects,
rather than vertices or patches of vertices as in previous
stages of the graphics pipeline. If the tessellation is disabled
the geometry shader 2119 receives input from the vertex
shader 2107. In some embodiments, geometry shader 2119
is programmable by a geometry shader program to perform
geometry tessellation if the tessellation units are disabled.

[0251] Before rasterization, a clipper 2129 processes ver-
tex data. The clipper 2129 may be a fixed function clipper or
a programmable clipper having clipping and geometry
shader functions. In some embodiments, a rasterizer and
depth test component 2173 in the render output pipeline
2170 dispatches pixel shaders to convert the geometric
objects into their per pixel representations. In some embodi-
ments, pixel shader logic is included in thread execution
logic 2150. In some embodiments, an application can bypass
the rasterizer and depth test component 2173 and access
un-rasterized vertex data via a stream out unit 2123.

[0252] The graphics processor 2100 has an interconnect
bus, interconnect fabric, or some other interconnect mecha-
nism that allows data and message passing amongst the
major components of the processor. In some embodiments,
execution units 2152A-2152B and associated cache(s) 2151,
texture and media sampler 2154, and texture/sampler cache
2158 interconnect via a data port 2156 to perform memory
access and communicate with render output pipeline com-
ponents of the processor. In some embodiments, sampler
2154, caches 2151, 2158 and execution units 2152A-2152B
each have separate memory access paths.

[0253] In some embodiments, render output pipeline 2170
contains a rasterizer and depth test component 2173 that
converts vertex-based objects into an associated pixel-based
representation. In some embodiments, the rasterizer logic
includes a windower/masker unit to perform fixed function
triangle and line rasterization. An associated render cache
2178 and depth cache 2179 are also available in some
embodiments. A pixel operations component 2177 performs
pixel-based operations on the data, though in some
instances, pixel operations associated with 2D operations
(e.g. bit block image transfers with blending) are performed
by the 2D engine 2141, or substituted at display time by the
display controller 2143 using overlay display planes. In
some embodiments, a shared .3 cache 2175 is available to

US 2019/0272613 Al

all graphics components, allowing the sharing of data with-
out the use of main system memory.

[0254] In some embodiments, graphics processor media
pipeline 2130 includes a media engine 2137 and a video
front end 2134. In some embodiments, video front end 2134
receives pipeline commands from the command streamer
2103. In some embodiments, media pipeline 2130 includes
a separate command streamer. In some embodiments, video
front-end 2134 processes media commands before sending
the command to the media engine 2137. In some embodi-
ments, media engine 2137 includes thread spawning func-
tionality to spawn threads for dispatch to thread execution
logic 2150 via thread dispatcher 2131.

[0255] In some embodiments, graphics processor 2100
includes a display engine 2140. In some embodiments,
display engine 2140 is external to processor 2100 and
couples with the graphics processor via the ring interconnect
2102, or some other interconnect bus or fabric. In some
embodiments, display engine 2140 includes a 2D engine
2141 and a display controller 2143. In some embodiments,
display engine 2140 contains special purpose logic capable
of operating independently of the 3D pipeline. In some
embodiments, display controller 2143 couples with a display
device (not shown), which may be a system integrated
display device, as in a laptop computer, or an external
display device attached via a display device connector.
[0256] In some embodiments, graphics pipeline 2120 and
media pipeline 2130 are configurable to perform operations
based on multiple graphics and media programming inter-
faces and are not specific to any one application program-
ming interface (API). In some embodiments, driver software
for the graphics processor translates API calls that are
specific to a particular graphics or media library into com-
mands that can be processed by the graphics processor. In
some embodiments, support is provided for the Open Graph-
ics Library (OpenGL), Open Computing Language
(OpenCL), and/or Vulkan graphics and compute API, all
from the Khronos Group. In some embodiments, support
may also be provided for the Direct3D library from the
Microsoft Corporation. In some embodiments, a combina-
tion of these libraries may be supported. Support may also
be provided for the Open Source Computer Vision Library
(OpenCV). A future API with a compatible 3D pipeline
would also be supported if a mapping can be made from the
pipeline of the future API to the pipeline of the graphics
processor.

[0257] FIG. 29A is a block diagram illustrating a graphics
processor command format 2200 according to some embodi-
ments. FIG. 29B is a block diagram illustrating a graphics
processor command sequence 2210 according to an embodi-
ment. The solid lined boxes in FIG. 29A illustrate the
components that are generally included in a graphics com-
mand while the dashed lines include components that are
optional or that are only included in a sub-set of the graphics
commands. The exemplary graphics processor command
format 2200 of FIG. 16A includes data fields to identify a
target client 2202 of the command, a command operation
code (opcode) 2204, and the relevant data 2206 for the
command. A sub-opcode 2205 and a command size 2208 are
also included in some commands.

[0258] In some embodiments, client 2202 specifies the
client unit of the graphics device that processes the com-
mand data. In some embodiments, a graphics processor
command parser examines the client field of each command

Sep. 5, 2019

to condition the further processing of the command and
route the command data to the appropriate client unit. In
some embodiments, the graphics processor client units
include a memory interface unit, a render unit, a 2D unit, a
3D unit, and a media unit. Each client unit has a correspond-
ing processing pipeline that processes the commands. Once
the command is received by the client unit, the client unit
reads the opcode 2204 and, if present, sub-opcode 2205 to
determine the operation to perform. The client unit performs
the command using information in data field 2206. For some
commands an explicit command size 2208 is expected to
specify the size of the command. In some embodiments, the
command parser automatically determines the size of at least
some of the commands based on the command opcode. In
some embodiments commands are aligned via multiples of
a double word.

[0259] The flow diagram in FIG. 29B shows an exemplary
graphics processor command sequence 2210. In some
embodiments, software or firmware of a data processing
system that features an embodiment of a graphics processor
uses a version of the command sequence shown to set up,
execute, and terminate a set of graphics operations. A sample
command sequence is shown and described for purposes of
example only as embodiments are not limited to these
specific commands or to this command sequence. Moreover,
the commands may be issued as batch of commands in a
command sequence, such that the graphics processor will
process the sequence of commands in at least partially
concurrence.

[0260] Insome embodiments, the graphics processor com-
mand sequence 2210 may begin with a pipeline flush
command 2212 to cause any active graphics pipeline to
complete the currently pending commands for the pipeline.
In some embodiments, the 3D pipeline 2222 and the media
pipeline 2224 do not operate concurrently. The pipeline flush
is performed to cause the active graphics pipeline to com-
plete any pending commands. In response to a pipeline flush,
the command parser for the graphics processor will pause
command processing until the active drawing engines com-
plete pending operations and the relevant read caches are
invalidated. Optionally, any data in the render cache that is
marked ‘dirty’ can be flushed to memory. In some embodi-
ments, pipeline flush command 2212 can be used for pipe-
line synchronization or before placing the graphics proces-
sor into a low power state.

[0261] In some embodiments, a pipeline select command
2213 is used when a command sequence requires the graph-
ics processor to explicitly switch between pipelines. In some
embodiments, a pipeline select command 2213 is required
only once within an execution context before issuing pipe-
line commands unless the context is to issue commands for
both pipelines. In some embodiments, a pipeline flush
command 2212 is required immediately before a pipeline
switch via the pipeline select command 2213.

[0262] Insome embodiments, a pipeline control command
2214 configures a graphics pipeline for operation and is used
to program the 3D pipeline 2222 and the media pipeline
2224. In some embodiments, pipeline control command
2214 configures the pipeline state for the active pipeline. In
one embodiment, the pipeline control command 2214 is
used for pipeline synchronization and to clear data from one
or more cache memories within the active pipeline before
processing a batch of commands.

US 2019/0272613 Al

[0263] In some embodiments, commands for the return
buffer state 2216 are used to configure a set of return buffers
for the respective pipelines to write data. Some pipeline
operations require the allocation, selection, or configuration
of one or more return buffers into which the operations write
intermediate data during processing. In some embodiments,
the graphics processor also uses one or more return buffers
to store output data and to perform cross thread communi-
cation. In some embodiments, configuring the return buffer
state 2216 includes selecting the size and number of return
buffers to use for a set of pipeline operations.

[0264] The remaining commands in the command
sequence differ based on the active pipeline for operations.
Based on a pipeline determination 2220, the command
sequence is tailored to the 3D pipeline 2222 beginning with
the 3D pipeline state 2230 or the media pipeline 2224
beginning at the media pipeline state 2240.

[0265] The commands to configure the 3D pipeline state
2230 include 3D state setting commands for vertex buffer
state, vertex element state, constant color state, depth buffer
state, and other state variables that are to be configured
before 3D primitive commands are processed. The values of
these commands are determined at least in part based on the
particular 3D API in use. In some embodiments, 3D pipeline
state 2230 commands are also able to selectively disable or
bypass certain pipeline elements if those elements will not
be used.

[0266] In some embodiments, 3D primitive 2232 com-
mand is used to submit 3D primitives to be processed by the
3D pipeline. Commands and associated parameters that are
passed to the graphics processor via the 3D primitive 2232
command are forwarded to the vertex fetch function in the
graphics pipeline. The vertex fetch function uses the 3D
primitive 2232 command data to generate vertex data struc-
tures. The vertex data structures are stored in one or more
return buffers. In some embodiments, 3D primitive 2232
command is used to perform vertex operations on 3D
primitives via vertex shaders. To process vertex shaders, 3D
pipeline 2222 dispatches shader execution threads to graph-
ics processor execution units.

[0267] In some embodiments, 3D pipeline 2222 is trig-
gered via an execute 2234 command or event. In some
embodiments, a register write triggers command execution.
In some embodiments execution is triggered via a ‘go’ or
‘kick’ command in the command sequence. In one embodi-
ment, command execution is triggered using a pipeline
synchronization command to flush the command sequence
through the graphics pipeline. The 3D pipeline will perform
geometry processing for the 3D primitives. Once operations
are complete, the resulting geometric objects are rasterized
and the pixel engine colors the resulting pixels. Additional
commands to control pixel shading and pixel back end
operations may also be included for those operations.
[0268] Insomeembodiments, the graphics processor com-
mand sequence 910 follows the media pipeline 2240 path
when performing media operations. In general, the specific
use and manner of programming for the media pipeline 2240
depends on the media or compute operations to be per-
formed. Specific media decode operations may be offloaded
to the media pipeline during media decode. In some embodi-
ments, the media pipeline can also be bypassed and media
decode can be performed in whole or in part using resources
provided by one or more general purpose processing cores.
In one embodiment, the media pipeline also includes ele-

Sep. 5, 2019

ments for general-purpose graphics processor unit (GPGPU)
operations, where the graphics processor is used to perform
SIMD vector operations using computational shader pro-
grams that are not explicitly related to the rendering of
graphics primitives.

[0269] In some embodiments, media pipeline 2240 is
configured in a similar manner as the 3D pipeline 2222. A
set of commands to configure the media pipeline state 2240
are dispatched or placed into a command queue before the
media object commands 2242. In some embodiments, com-
mands for the media pipeline state 2240 include data to
configure the media pipeline elements that will be used to
process the media objects. This includes data to configure
the video decode and video encode logic within the media
pipeline, such as encode or decode format. In some embodi-
ments, commands for the media pipeline state 940 also
support the use of one or more pointers to “indirect” state
elements that contain a batch of state settings.

[0270] In some embodiments, media object commands
2242 supply pointers to media objects for processing by the
media pipeline. The media objects include memory buffers
containing video data to be processed. In some embodi-
ments, all media pipeline states must be valid before issuing
a media object command 2242. Once the pipeline state is
configured and media object commands 2242 are queued,
the media pipeline 2224 is triggered via an execute com-
mand 2244 or an equivalent execute event (e.g., register
write). Output from media pipeline 2224 may then be post
processed by operations provided by the 3D pipeline 2222 or
the media pipeline 2224. In some embodiments, GPGPU
operations are configured and executed in a similar manner
as media operations.

Graphics Software Architecture

[0271] FIG. 30 illustrates exemplary graphics software
architecture for a data processing system 2300 according to
some embodiments. In some embodiments, software archi-
tecture includes a 3D graphics application 2310, an operat-
ing system 2320, and at least one processor 2330. In some
embodiments, processor 2330 includes a graphics processor
2332 and one or more general-purpose processor core(s)
2334. The graphics application 2310 and operating system
2320 each execute in the system memory 2350 of the data
processing system.

[0272] In some embodiments, 3D graphics application
2310 contains one or more shader programs including
shader instructions 2312. The shader language instructions
may be in a high-level shader language, such as the High
Level Shader Language (HLSL) or the OpenGL Shader
Language (GLSL). The application also includes executable
instructions 2314 in a machine language suitable for execu-
tion by the general-purpose processor core 2334. The appli-
cation also includes graphics objects 2316 defined by vertex
data.

[0273] In some embodiments, operating system 2320 is a
Microsoft® Windows® operating system from the Micro-
soft Corporation, a proprietary UNIX-like operating system,
or an open source UNIX-like operating system using a
variant of the Linux kernel. The operating system 2320 can
support a graphics API 2322 such as the Direct3D API, the
OpenGL API, or the Vulkan API. When the Direct3D API is
in use, the operating system 2320 uses a front-end shader
compiler 2324 to compile any shader instructions 2312 in
HLSL into a lower-level shader language. The compilation

US 2019/0272613 Al

may be a just-in-time (JIT) compilation or the application
can perform shader pre-compilation. In some embodiments,
high-level shaders are compiled into low-level shaders dur-
ing the compilation of the 3D graphics application 2310. In
some embodiments, the shader instructions 2312 are pro-
vided in an intermediate form, such as a version of the
Standard Portable Intermediate Representation (SPIR) used
by the Vulkan APIL

[0274] In some embodiments, user mode graphics driver
2326 contains a back-end shader compiler 2327 to convert
the shader instructions 2312 into a hardware specific repre-
sentation. When the OpenGL API is in use, shader instruc-
tions 2312 in the GLSL high-level language are passed to a
user mode graphics driver 2326 for compilation. In some
embodiments, user mode graphics driver 2326 uses operat-
ing system kernel mode functions 2328 to communicate
with a kernel mode graphics driver 2329. In some embodi-
ments, kernel mode graphics driver 2329 communicates
with graphics processor 2332 to dispatch commands and
instructions.

1P Core Implementations

[0275] One or more aspects of at least one embodiment
may be implemented by representative code stored on a
machine-readable medium which represents and/or defines
logic within an integrated circuit such as a processor. For
example, the machine-readable medium may include
instructions which represent various logic within the pro-
cessor. When read by a machine, the instructions may cause
the machine to fabricate the logic to perform the techniques
described herein. Such representations, known as “IP cores,”
are reusable units of logic for an integrated circuit that may
be stored on a tangible, machine-readable medium as a
hardware model that describes the structure of the integrated
circuit. The hardware model may be supplied to various
customers or manufacturing facilities, which load the hard-
ware model on fabrication machines that manufacture the
integrated circuit. The integrated circuit may be fabricated
such that the circuit performs operations described in asso-
ciation with any of the embodiments described herein.

[0276] FIG. 31 is a block diagram illustrating an IP core
development system 2400 that may be used to manufacture
an integrated circuit to perform operations according to an
embodiment. The IP core development system 2400 may be
used to generate modular, re-usable designs that can be
incorporated into a larger design or used to construct an
entire integrated circuit (e.g., an SOC integrated circuit). A
design facility 2430 can generate a software simulation 2410
of an IP core design in a high level programming language
(e.g., C/C++). The software simulation 2410 can be used to
design, test, and verify the behavior of the IP core using a
simulation model 2412. The simulation model 2412 may
include functional, behavioral, and/or timing simulations. A
register transfer level (RTL) design 2415 can then be created
or synthesized from the simulation model 2412. The RTL
design 2415 is an abstraction of the behavior of the inte-
grated circuit that models the flow of digital signals between
hardware registers, including the associated logic performed
using the modeled digital signals. In addition to an RTL
design 2415, lower-level designs at the logic level or tran-
sistor level may also be created, designed, or synthesized.
Thus, the particular details of the initial design and simula-
tion may vary.

Sep. 5, 2019

[0277] The RTL design 2415 or equivalent may be further
synthesized by the design facility into a hardware model
2420, which may be in a hardware description language
(HDL), or some other representation of physical design data.
The HDL may be further simulated or tested to verify the IP
core design. The IP core design can be stored for delivery to
a 3rd party fabrication facility 2465 using non-volatile
memory 2440 (e.g., hard disk, flash memory, or any non-
volatile storage medium). Alternatively, the IP core design
may be transmitted (e.g., via the Internet) over a wired
connection 2450 or wireless connection 2460. The fabrica-
tion facility 2465 may then fabricate an integrated circuit
that is based at least in part on the IP core design. The
fabricated integrated circuit can be configured to perform
operations in accordance with at least one embodiment
described herein.

Exemplary System on a Chip Integrated Circuit

[0278] FIGS. 32-34 illustrate exemplary integrated cir-
cuits and associated graphics processors that may be fabri-
cated using one or more IP cores, according to various
embodiments described herein. In addition to what is illus-
trated, other logic and circuits may be included, including
additional graphics processors/cores, peripheral interface
controllers, or general purpose processor cores.

[0279] FIG. 32 is a block diagram illustrating an exem-
plary system on a chip integrated circuit 2500 that may be
fabricated using one or more IP cores, according to an
embodiment. Exemplary integrated circuit 2500 includes
one or more application processor(s) 2505 (e.g., CPUs), at
least one graphics processor 2510, and may additionally
include an image processor 2515 and/or a video processor
2520, any of which may be a modular IP core from the same
or multiple different design facilities. Integrated circuit 2500
includes peripheral or bus logic including a USB controller
2525, UART controller 2530, an SPI/SDIO controller 2535,
and an 12S/12C controller 2540. Additionally, the integrated
circuit can include a display device 2545 coupled to one or
more of a high-definition multimedia interface (HDMI)
controller 2550 and a mobile industry processor interface
(MIP]) display interface 2555. Storage may be provided by
a flash memory subsystem 2560 including flash memory and
a flash memory controller. Memory interface may be pro-
vided via a memory controller 2565 for access to SDRAM
or SRAM memory devices. Some integrated circuits addi-
tionally include an embedded security engine 2570.

[0280] FIG. 33 is a block diagram illustrating an exem-
plary graphics processor 2610 of a system on a chip inte-
grated circuit that may be fabricated using one or more IP
cores, according to an embodiment. Graphics processor
2610 can be a variant of the graphics processor 2510 of FIG.
19. Graphics processor 2610 includes a vertex processor
2605 and one or more fragment processor(s) 2615A-2615N
(e.g., 2615A, 2615B, 2615C, 2615D, through 2615N-1, and
2615N). Graphics processor 2610 can execute different
shader programs via separate logic, such that the vertex
processor 2605 is optimized to execute operations for vertex
shader programs, while the one or more fragment processor
(s) 2615A-2615N execute fragment (e.g., pixel) shading
operations for fragment or pixel shader programs. The
vertex processor 2605 performs the vertex processing stage
of the 3D graphics pipeline and generates primitives and
vertex data. The fragment processor(s) 2615A-2615N use
the primitive and vertex data generated by the vertex pro-

US 2019/0272613 Al

cessor 2605 to produce a framebuffer that is displayed on a
display device. In one embodiment, the fragment processor
(s) 2615A-2615N are optimized to execute fragment shader
programs as provided for in the OpenGL API, which may be
used to perform similar operations as a pixel shader program
as provided for in the Direct 3D APL

[0281] Graphics processor 2610 additionally includes one
or more memory management units (MMU5s) 2620A-26208,
cache(s) 2625A-2625B, and circuit interconnect(s) 2630A-
2630B. The one or more MMU(s) 2620A-2620B provide for
virtual to physical address mapping for graphics processor
2610, including for the vertex processor 2605 and/or frag-
ment processor(s) 2615A-2615N, which may reference ver-
tex or image/texture data stored in memory, in addition to
vertex or image/texture data stored in the one or more
cache(s) 2625A-2625B. In one embodiment the one or more
MMU(s) 2620A-2620B may be synchronized with other
MMUs within the system, including one or more MMUSs
associated with the one or more application processor(s)
2505, image processor 2515, and/or video processor 2520 of
FIG. 19, such that each processor 2505-2520 can participate
in a shared or unified virtual memory system. The one or
more circuit interconnect(s) 2630A-2630B enable graphics
processor 2610 to interface with other IP cores within the
SoC, either via an internal bus of the SoC or via a direct
connection, according to embodiments.

[0282] FIG. 34 is a block diagram illustrating an addi-
tional exemplary graphics processor 2710 of a system on a
chip integrated circuit that may be fabricated using one or
more IP cores, according to an embodiment. Graphics pro-
cessor 2710 can be a variant of the graphics processor 1710
of FIG. 12. Graphics processor 2710 includes the one or
more MMU(s) 2620A-2620B, cache(s) 2625A-2625B, and
circuit interconnect(s) 2630A-2630B of the integrated cir-
cuit 1900 of FIG. 13.

[0283] Graphics processor 2710 includes one or more
shader core(s) 2715A-2715N (e.g., 2715A, 27158, 2715C,
2715D, 2715E, 2715F, through 2715N-1, and 2715N),
which provides for a unified shader core architecture in
which a single core or type or core can execute all types of
programmable shader code, including shader program code
to implement vertex shaders, fragment shaders, and/or com-
pute shaders. The exact number of shader cores present can
vary among embodiments and implementations. Addition-
ally, graphics processor 2710 includes an inter-core task
manager 2705, which acts as a thread dispatcher to dispatch
execution threads to one or more shader core(s) 2715A-
2715N and a tiling unit 2718 to accelerate tiling operations
for tile-based rendering, in which rendering operations for a
scene are subdivided in image space, for example to exploit
local spatial coherence within a scene or to optimize use of
internal caches.

[0284] The foregoing description and drawings are to be
regarded in an illustrative rather than a restrictive sense.
Persons skilled in the art will understand that various
modifications and changes may be made to the embodiments
described herein without departing from the broader spirit
and scope of the invention as set forth in the appended
claims.

[0285] The following clauses and/or examples pertain to
further embodiments:

[0286] One example embodiment may be a method com-
prising using a first code for a first type of recurring data
value in a cacheline of a graphics processor, using a second

Sep. 5, 2019

code different from first code for a second type of recurring
data value of the graphics processor, wherein the first and
second types have different lengths, in response to detecting
the first type of recurring data value, writing the first code
instead of writing said first type of recurring data value, and
in response to detecting the second type of recurring data
value, writing the second code instead of writing said second
type of recurring data value. The method may also include
wherein said first type has a length equal to a cacheline
length and the second type has a length of less than a
cacheline. The method may also include wherein encoding
includes encoding repeated zeros or repeated ones. The
method may also include wherein encoding is only per-
formed if a cacheline is entirely composed of a single
frequently recurring data value. The method may also
include encoding the frequently recurring data value using
only two bits. The method may also include using one of the
two bits to indicate that at least one frequently recurring data
value exists and using the other bit to differentiate two
frequently recurring data values. The method may also
include using preprogrammed frequently recurring data val-
ues. The method may also include identifying the frequently
recurring data value during compile time. The method may
also include identifying the frequently recurring data value
during run time. The method may also include monitoring
streams for a plurality of frequently recurring data values,
each associated with the first or second unique code. The
method may also include detecting the repeating data pat-
tern, and generating control information to specify a width
of the repeating pattern, a number of patterns and lanes that
will carry the repeating data patterns.

[0287] In another example embodiment may be one or
more non-transitory computer readable media storing
instructions to perform a sequence comprising using a first
code for a first type of recurring data value in a cacheline of
a graphics processor, using a second code different from first
code for a second type of recurring data value of the graphics
processor, wherein the first and second types have different
lengths, in response to detecting the first type of recurring
data value, writing the first code instead of writing said first
type of recurring data value, and in response to detecting the
second type of recurring data value, writing the second code
instead of writing said second type of recurring data value.
The media may further store instructions to perform a
sequence wherein said first type has a length equal to a
cacheline length and the second type has a length of less than
a cacheline. The media may further store instructions to
perform a sequence wherein encoding includes encoding
repeated zeros or repeated ones. The media may further store
instructions to perform a sequence wherein encoding is only
performed if a cacheline is entirely composed of a single
frequently recurring data value. The media may further store
instructions to perform a sequence including encoding the
frequently recurring data value using only two bits. The
media may further store instructions to perform a sequence
including using one of the two bits to indicate that at least
one frequently recurring data value exists and using the
other bit to differentiate two frequently recurring data val-
ues. The media may further store instructions to perform a
sequence including using preprogrammed frequently recur-
ring data values. The media may further store instructions to
perform a sequence including identifying the frequently
recurring data value during compile time. The media may
further store instructions to perform a sequence including

US 2019/0272613 Al

identifying the frequently recurring data value during run
time. The media may further store instructions to perform a
sequence including monitoring streams for a plurality of
frequently recurring data values, each associated with the
first or second unique code. The media may further store
instructions to perform a sequence including detecting the
repeating data pattern, and generating control information to
specify a width of the repeating data pattern, a number of
patterns and lanes that will carry the repeating patterns.
[0288] Another example embodiment may be an apparatus
comprising a processor to use a first code for a first type of
recurring data value in a cacheline of a graphics processor,
use a second code different from first code for a second type
of recurring data value of the graphics processor, wherein
the first and second types have different lengths, in response
to detecting the first type of recurring data value, writing the
first code instead of writing said first type of recurring data
value, and in response to detecting the second type of
recurring data value, writing the second code instead of
writing said second type of recurring data value. The appa-
ratus may include wherein said first type has a length equal
to a cacheline length and the second type has a length of less
than a cacheline. The apparatus may include wherein encod-
ing includes encoding repeated zeros or repeated ones. The
apparatus may include wherein encoding is only performed
if a cacheline is entirely composed of a single frequently
recurring data value. The apparatus may include said pro-
cessor to encode the frequently recurring data value using
only two bits. The apparatus may include said processor to
use one of the two bits to indicate that at least one frequently
recurring data value exists and using the other bit to differ-
entiate of two frequently recurring data values. The appa-
ratus may include said processor to use preprogrammed
frequently recurring data values. The apparatus may include
said processor to identify the frequently recurring data value
during compile time. The apparatus may include said pro-
cessor to identify the frequently recurring data value during
run time. The apparatus may include said processor to
monitor streams for a plurality of frequently recurring data
values, each associated with the first or second unique code.
What is claimed:
1. A method comprising:
using a first code for a first type of recurring data value in
a cacheline of a graphics processor;

using a second code different from first code for a second
type of recurring data value of the graphics processor,
wherein the first and second types have different
lengths;

in response to detecting the first type of recurring data

value, writing the first code instead of writing said first
type of recurring data value; and

in response to detecting the second type of recurring data

value, writing the second code instead of writing said
second type of recurring data value.

2. The method of claim 1 wherein said first type has a
length equal to a cacheline length and the second type has a
length of less than a cacheline.

3. The method of claim 1 wherein encoding includes
encoding repeated zeros or repeated ones.

4. The method of claim 1 wherein encoding is only
performed if a cacheline is entirely composed of a single
frequently recurring data value.

5. The method of claim 1 including encoding the fre-
quently recurring data value using only two bits.

Sep. 5, 2019

6. The method of claim 5 including using one of the two
bits to indicate that at least one frequently recurring data
value exists and using the other bit to differentiate two
frequently recurring data values.
7. The method of claim 1 including using preprogrammed
frequently recurring data values.
8. The method of claim 1 including identifying the
frequently recurring data value during compile time.
9. The method of claim 1 including identifying the
frequently recurring data value during run time.
10. The method of claim 1 including monitoring streams
for a plurality of frequently recurring data values, each
associated with the first or second unique code.
11. The method of claim 1 including detecting the repeat-
ing data pattern, and generating control information to
specify a width of the repeating pattern, a number of patterns
and lanes that will carry the repeating data patterns.
12. One or more non-transitory computer readable media
storing instructions to perform a sequence comprising:
using a first code for a first type of recurring data value in
a cacheline of a graphics processor;

using a second code different from first code for a second
type of recurring data value of the graphics processor,
wherein the first and second types have different
lengths;

in response to detecting the first type of recurring data

value, writing the first code instead of writing said first
type of recurring data value; and

in response to detecting the second type of recurring data

value, writing the second code instead of writing said
second type of recurring data value.

13. The media of claim 12, further storing instruction to
perform a sequence wherein said first type has a length equal
to a cacheline length and the second type has a length of less
than a cacheline.

14. The media of claim 12, further storing instructions to
perform a sequence wherein encoding includes encoding
repeated zeros or repeated ones.

15. The media of claim 12, further storing instructions to
perform a sequence wherein encoding is only performed if
a cacheline is entirely composed of a single frequently
recurring data value.

16. The media of claim 12, further storing instructions to
perform a sequence including encoding the frequently recur-
ring data value using only two bits.

17. The media of claim 16, further storing instructions to
perform a sequence including using one of the two bits to
indicate that at least one frequently recurring data value
exists and using the other bit to differentiate two frequently
recurring data values.

18. The media of claim 12, further storing instructions to
perform a sequence including using preprogrammed fre-
quently recurring data values.

19. The media of claim 12, further storing instructions to
perform a sequence including identifying the frequently
recurring data value during compile time.

20. The media of claim 12, further storing instructions to
perform a sequence including identifying the frequently
recurring data value during run time.

21. The media of claim 12, further storing instructions to
perform a sequence including monitoring streams for a
plurality of frequently recurring data values, each associated
with the first or second unique code.

US 2019/0272613 Al

22. The media of claim 12, further storing instructions to
perform a sequence including detecting the repeating data
pattern, and generating control information to specify a
width of the repeating data pattern, a number of patterns and
lanes that will carry the repeating patterns.

23. An apparatus comprising:

a processor to use a first code for a first type of recurring
data value in a cacheline of a graphics processor, use a
second code different from first code for a second type
of recurring data value of the graphics processor,
wherein the first and second types have different
lengths, in response to detecting the first type of recur-
ring data value, writing the first code instead of writing
said first type of recurring data value, and in response
to detecting the second type of recurring data value,
writing the second code instead of writing said second
type of recurring data value

24. The apparatus of claim 23, wherein said first type has

a length equal to a cacheline length and the second type has
a length of less than a cacheline.

Sep. 5, 2019

25. The apparatus of claim 23 wherein encoding includes
encoding repeated zeros or repeated ones.

26. The apparatus of claim 23 wherein encoding is only
performed if a cacheline is entirely composed of a single
frequently recurring data value.

27. The apparatus of claim 23, said processor to encode
the frequently recurring data value using only two bits

28. The apparatus of claim 27, said processor to use one
of the two bits to indicate that at least one frequently
recurring data value exists and using the other bit to differ-
entiate of two frequently recurring data values.

29. The apparatus of claim 23, said processor to use
preprogrammed frequently recurring data values.

30. The apparatus of claim 23, said processor to identify
the frequently recurring data value during compile time.

31. The apparatus of claim 23, said processor to identify
the frequently recurring data value during run time.

32. The apparatus of claim 23, said processor to monitor
streams for a plurality of frequently recurring data values,
each associated with the first or second unique code.

#* #* #* #* #*

