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NETWORK OPTIMIZATION BASED ON DISTRIBUTED MULTI-AGENT
MACHINE LEARNING WITH MINIMAL INTER-AGENT DEPENDENCY

TECHNICAL FIELD

The disclosure relates generally to communica-
tions and, more particularly but not exclusively, to
network optimization based on distributed multi-agent

machine learning with minimal inter-agent dependency.

BACKGROUND

While fifth generation (5G) mobile networks
have been emphasizing network virtualization, it is ex-
pected that sixth generation (6G) networks will focus
on autonomous intelligence of highly complex network
systems consisting of both physical and logical network
entities. For example, the introduction of network slic-
ing into self-organizing network (SON) functionalities
may lead to more complex optimization problems in the
following three aspects: 1) it may increase the dimen-
sions of network states by introducing slice-specific
key performance indicators (KPIs), 2) 1t may increase
the dimensions of optimization wvariables due to the
slice-specific network configuration parameters, and 3)
it may make the modeling of utility functions more dif-
ficult due to highly nonlinear inter-dependencies be-
tween high-dimensional parameters.

Currently, when using machine learning to solve
network optimization problems, there is tradeoff between
a centralized (single agent) scheme and a distributed
(multi-agent) scheme: although training a single agent
in the centralized scheme can capture inter-cell de-
pendencies, it may require an extremely long period of
exploration and cause slow convergence, if it converges
at all, due to an intractably high-dimensional action
space. On the other hand, the distributed scheme decom-

poses a system consisting of many network entities into
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subsystems, e.g., optimizing on the cell or cell pair
basis, which reduces the complexity and accelerates the
learning process, but the neglecting of inter-agent de-
pendency may lead to poor performance due to inaccurate
modeling based on limited information. Neglecting the
inter-agent dependency may also lead to longer conver-
gence times.

Thus, at least in some situations, there may
be a need for network optimization based on distributed
multi-agent machine learning with minimal inter-agent
dependency. Moreover, training many distributed agents
faces challenges, such as cost of data collection and
storage, learning time, algorithm scalability, and ar-
tificial intelligence (AI) / machine learning (ML) model
reproducibility. Thus, at least in some situations,
there may be a need for an automatic workflow that can
detect a similarity between the agents and reuse the
knowledge and models in order to avoid having to learn
from scratch for a large amount of the distributed

agents.

SUMMARY

The scope of protection sought for various ex-
ample embodiments of the invention is set out by the
independent claims. The example embodiments and fea-
tures, 1f any, described in this specification that do
not fall under the scope of the independent claims are
to be interpreted as examples useful for understanding
various example embodiments of the invention.

An example embodiment of a communications
network device comprises at least one processor, and at
least one memory including computer program code. The
at least one memory and the computer program code are
configured to, with the at least one processor, cause
the communications network device at least to decompose
a communications network into service level agreement,

SLA, coverage overlap regions, SCORs, according to



WO 2023/222229 PCT/EP2022/063572

10

15

20

25

30

35

mobility relations between logical network entity, LNE,
palrs within the communication network. The SCOR
comprises at least one LNE pair. The at least one memory
and the computer program code are further configured to,
with the at least one processor, cause the
communications network device at least to assign a
machine learning agent to at least one of the decomposed
SCORs. The machine learning agent is configured to apply
a deep reinforcement learning model to solve an
optimization problem related to a self-organizing
network, SON, function within its assigned SCOR.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, LNE
pairs in a SCOR comprising at least two ILNE pairs are
strongly coupled, and dependency between the SCORs 1is
low.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
at least one memory and the computer program code are
further configured to, with the at least one processor,
cause the communications network device to decompose the
communications network into the SCORs by generating a
logical network graph corresponding to the
communications network and representing the mobility
relations between the LNE pairs, and by decomposing the
logical network graph 1into subgraphs. The subgraphs
represent SCORs comprising strongly coupled LNE pairs.

In an example embodiment, alternatively or in
addition to the above-described example embodiments,
vertices of the logical network graph comprise the LNE
pairs, and weights of edges of the logical network graph
reflect a mobility relationship between two LNE pairs.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
at least one memory and the computer program code are
further configured to, with the at least one processor,

cause the communications network device at least to
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generate a profile for the subgraph. The profile
comprises an adjacency matrix or an adjacency 1list
representing the respective subgraph.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
profile further comprises at least one of: a number of
vertices, a number of edges, a number of involved LNEs,
a degree distribution, a distribution of edge weights,
a distribution of summed weights of edges incident to a
vertex, or at least one LNE specific feature for the
respective subgraph including at least one of a
deployment type, an LNE type, an associated user
mobility distribution, position information, or an LNE
load state.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
at least one memory and the computer program code are
further configured to, with the at least one processor,
cause the communications network device at least to
obtain the deep reinforcement learning model as pre-
trained from a SON node device.

In an example embodiment, alternatively or in
addition to the above-described example embodiments,
states of the assigned machine learning agent comprise
at least one of: LNE -specific metrics, LNE pair -
specific metrics, or contextual information for
capturing at least one of temporal or spatial
correlations.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, an
action space of the assigned machine learning agent
comprises a discrete action space or a continuous action
space.

In an example embodiment, alternatively or in
addition to the above-described example embodiments,
rewards for the assigned machine learning agent are

based on at least one of: LNE pair -specific handover
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performance metrics, LNE -specific quality of service,
QoS, performance metrics, or LNE pair -specific QoS
performance metrics.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
SON function comprises a mobility robustness
optimization, MRO, function, a coverage and capacity
optimization function, or a mobility load balancing
function.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
MRO function comprises optimization of one or more
handover parameters.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
SCOR further comprises a group of physical cell
boundaries, a group of logical cell boundaries, or a
group of physical cell boundaries and logical cell
boundaries.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
LNEs comprise at least one of cells, slices, or QoS
flows.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
generating of the logical network graph comprises
generating the logical network graph based on historical
LNE data, statistical mobility data, or an SLA coverage
map.

An example embodiment of a communications
network device comprises means for decomposing a
communications network into service level agreement,
SLA, coverage overlap regions, SCORs, according to
mobility relations between logical network entity, LNE,
palrs within the communication network. The SCOR
comprises at least one LNE pair. The means are further

configured to assign a machine learning agent to at
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least one of the decomposed SCORs. The machine learning
agent is configured to apply a deep reinforcement learn-
ing model to solve an optimization problem related to a
self-organizing network, SON, function within its
assigned SCOR.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, LNE
pairs in a SCOR comprising at least two ILNE pairs are
strongly coupled, and dependency between the SCORs 1is
low.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
means are further configured to decompose the
communications network into the SCORs by generating a
logical network graph corresponding to the
communications network and representing the mobility
relations between the LNE pairs, and by decomposing the
logical network graph 1into subgraphs. The subgraphs
represent SCORs comprising strongly coupled LNE pairs.

In an example embodiment, alternatively or in
addition to the above-described example embodiments,
vertices of the logical network graph comprise the LNE
pairs, and weights of edges of the logical network graph
reflect a mobility relationship between two LNE pairs.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
means are further configured to generate a profile for
the subgraph. The profile comprises an adjacency matrix
or an adjacency 1list representing the respective
subgraph.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
profile further comprises at least one of: a number of
vertices, a number of edges, a number of involved LNEs,
a degree distribution, a distribution of edge weights,
a distribution of summed weights of edges incident to a

vertex, or at least one LNE specific feature for the
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respective subgraph including at least one of a
deployment type, an LNE type, an associated user
mobility distribution, position information, or an LNE
load state.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
means are further configured to obtain the deep rein-
forcement learning model as pretrained from a SON node
device.

In an example embodiment, alternatively or in
addition to the above-described example embodiments,
states of the assigned machine learning agent comprise
at least one of: LNE -specific metrics, LNE pair -
specific metrics, or contextual information for
capturing at least one of temporal or spatial
correlations.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, an
action space of the assigned machine learning agent
comprises a discrete action space or a continuous action
space.

In an example embodiment, alternatively or in
addition to the above-described example embodiments,
rewards for the assigned machine learning agent are
based on at least one of: LNE pailr -specific handover
performance metrics, LNE -specific quality of service,
QoS, performance metrics, or LNE pair -specific QoS
performance metrics.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
SON function comprises a mobility robustness
optimization, MRO, function, a coverage and capacity
optimization function, or a mobility load balancing
function.

In an example embodiment, alternatively or in

addition to the above-described example embodiments, the
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MRO function comprises optimization of one or more
handover parameters.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
SCOR further comprises a group of physical cell
boundaries, a group of logical cell boundaries, or a
group of physical cell boundaries and logical cell
boundaries.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
LNEs comprise at least one of cells, slices, or QoS
flows.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
generating of the logical network graph comprises
generating the logical network graph based on historical
LNE data, statistical mobility data, or an SLA coverage
map.

An example embodiment of a method comprises
decomposing, by a communications network device, a
communications network into service level agreement,
SLA, coverage overlap regions, SCORs, according to
mobility relations between logical network entity, LNE,
palrs within the communication network. The SCOR
comprises at least one LNE pair. The method further
comprises assigning, by the communications network
device, a machine learning agent to at least one of the
decomposed SCORs. The machine learning agent 1is
configured to apply a deep reinforcement learning model
to solve an optimization problem related to a self-
organizing network, SON, function within its assigned
SCOR.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, LNE
pairs in a SCOR comprising at least two ILNE pairs are
strongly coupled, and dependency between the SCORs 1is

low.
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In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
method further comprises decomposing the communications
network into the SCORs by generating a logical network
graph corresponding to the communications network and
representing the mobility relations between the LNE
pairs, and by decomposing the logical network graph into
subgraphs. The subgraphs represent SCORs comprising
strongly coupled LNE pairs.

In an example embodiment, alternatively or in
addition to the above-described example embodiments,
vertices of the logical network graph comprise the LNE
pairs, and weights of edges of the logical network graph
reflect a mobility relationship between two LNE pairs.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
method further comprises generating a profile for the
subgraph. The profile comprises an adjacency matrix or
an adjacency list representing the respective subgraph.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
profile further comprises at least one of: a number of
vertices, a number of edges, a number of involved LNEs,
a degree distribution, a distribution of edge weights,
a distribution of summed weights of edges incident to a
vertex, or at least one LNE specific feature for the
respective subgraph including at least one of a
deployment type, an LNE type, an associated user
mobility distribution, position information, or an LNE
load state.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
method further comprises obtaining the deep reinforce-
ment learning model as pretrained from a SON node
device.

In an example embodiment, alternatively or in

addition to the above-described example embodiments,
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states of the assigned machine learning agent comprise
at least one of: LNE -specific metrics, LNE pair -
specific metrics, or contextual information for
capturing at least one of temporal or spatial
correlations.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, an
action space of the assigned machine learning agent
comprises a discrete action space or a continuous action
space.

In an example embodiment, alternatively or in
addition to the above-described example embodiments,
rewards for the assigned machine learning agent are
based on at least one of: LNE pailr -specific handover
performance metrics, LNE -specific quality of service,
QoS, performance metrics, or LNE pair -specific QoS
performance metrics.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
SON function comprises a mobility robustness
optimization, MRO, function, a coverage and capacity
optimization function, or a mobility load balancing
function.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
MRO function comprises optimization of one or more
handover parameters.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
SCOR further comprises a group of physical cell
boundaries, a group of logical cell boundaries, or a
group of physical cell boundaries and logical cell
boundaries.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
LNEs comprise at least one of cells, slices, or QoS

flows.
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In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
generating of the logical network graph comprises
generating the logical network graph based on historical
LNE data, statistical mobility data, or an SLA coverage
map.

An example embodiment of a computer program
comprises instructions for causing a communications
network device to perform at least the following:
decomposing a communications network into service level
agreement, SLA, coverage overlap regions, SCORs,
according to mobility relations between logical network
entity, LNE, pairs within the communication network, the
SCOR comprising at least one ILNE pair; and assigning a
machine learning agent to at least one of the decomposed
SCORs. The machine learning agent is configured to apply
a deep reinforcement learning model to solve an
optimization problem related to a self-organizing
network, SON, function within its assigned SCOR.

An example embodiment of a self-organizing
network, SON, node device comprises at least one
processor, and at least one memory including computer
program code. The at least one memory and the computer
program code are configured to, with the at least one
processor, cause the SON node device at least to receive
from a communications network device a request for a
pretrained deep reinforcement learning model for use in
solving an optimization problem related to a self-
organizing network, SON, function within a service level
agreement, SLA, coverage overlap region, SCOR. The
request comprises at least one profile of at least one
subgraph of a logical network graph representing
mobility relations between logical network entity, LNE,
pairs. The SCOR comprises at least one LNE pair and the
at least one subgraph corresponds to the SCOR. The at
least one memory and the computer program code are

further configured to, with the at least one processor,
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cause the SON node device at least to determine a
pretrained reference deep reinforcement learning model
from a model database by a similarity analysis based on
the profile of the subgraph. The at least one memory and
the computer program code are further configured to,
with the at least one processor, cause the SON node
device at least to transmit the determined pretrained
reference deep reinforcement learning model to the
communications network device.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
similarity analysis comprises a relational similarity
analysis between the at least one subgraph in the re-
ceived at least one profile and subgraphs associated
with the pretrained reference deep reinforcement learn-
ing models stored in the model database.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
at least one memory and the computer program code are
configured to, with the at least one processor, further
cause the SON node device to customize the determined
reference deep reinforcement learning model and transmit
the customized deep reinforcement learning model to the
communications network device.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
at least one memory and the computer program code are
configured to, with the at least one processor, further
cause the SON node device to prescreen the profile of
the subgraph based on one or more prescreening
parameters to determine one or more candidate pretrained
reference deep reinforcement learning models. The
determining of the pretrained reference deep reinforce-
ment learning model is performed on the determined one
or more candidate pretrained reference deep reinforce-

ment learning models.
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An example embodiment of a self-organizing
network, SON, node device comprises means for receiving
from a communications network device a request for a
pretrained deep reinforcement learning model for use in
solving an optimization problem related to a self-
organizing network, SON, function within a service level
agreement, SLA, coverage overlap region, SCOR. The
request comprises at least one profile of at least one
subgraph of a logical network graph representing
mobility relations between logical network entity, LNE,
pairs. The SCOR comprises at least one LNE pair, and the
at least one subgraph corresponds to the SCOR. The means
are further configured to determine a pretrained
reference deep reinforcement learning model from a model
database by a similarity analysis based on the profile
of the subgraph. The means are further configured to
transmit the determined pretrained reference deep rein-
forcement learning model to the communications network
device.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
similarity analysis comprises a relational similarity
analysis between the at least one subgraph in the re-
ceived at least one profile and subgraphs associated
with the pretrained reference deep reinforcement learn-
ing models stored in the model database.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
means are further configured to customize the determined
reference deep reinforcement learning model and transmit
the customized deep reinforcement learning model to the
communications network device.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
means are Tfurther configured to prescreen the profile
of the subgraph based on one or more prescreening

parameters to determine one or more candidate pretrained
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reference deep reinforcement learning models. The
determining of the pretrained reference deep reinforce-
ment learning model is performed on the determined one
or more candidate pretrained reference deep reinforce-
ment learning models.

An example embodiment of a method comprises
receiving at a self-organizing network, SON, node device
from a communications network device a request for a
pretrained deep reinforcement learning model for use in
solving an optimization problem related to a self-
organizing network, SON, function within a service level
agreement, SLA, coverage overlap region, SCOR. The
request comprises at least one profile of at least one
subgraph of a logical network graph representing
mobility relations between logical network entity, LNE,
palirs. The SCOR comprises at least one LNE pair and the
at least one subgraph corresponds to the SCOR. The
method further comprises determining, by the SON node
device, a pretrained reference deep reinforcement learn-
ing model from a model database by a similarity analysis
based on the profile of the subgraph. The method further
comprises transmitting, by the SON node device, the
determined pretrained reference deep reinforcement
learning model to the communications network device.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
similarity analysis comprises a relational similarity
analysis between the at least one subgraph in the re-
ceived at least one profile and subgraphs associated
with the pretrained reference deep reinforcement learn-
ing models stored in the model database.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
method further comprises customizing the determined
reference deep reinforcement learning model and
transmitting the customized deep reinforcement learning

model to the communications network device.
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In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
method further comprises prescreening the profile of the
subgraph based on one or more prescreening parameters
to determine one or more candidate pretrained reference
deep reinforcement learning models. The determining of
the pretrained reference deep reinforcement learning
model 1s performed on the determined one or more
candidate ©pretrained reference deep reinforcement
learning models.

An example embodiment of a computer program
comprises instructions for causing a self-organizing
network, SON, node device to perform at least the
following: receiving from a communications network
device a request for a pretrained deep reinforcement
learning model for use 1in solving an optimization
problem related to a self-organizing network, SON,
function within a service level agreement, SLA, coverage
overlap region, SCOR, the request comprising at least
one profile of at least one subgraph of a logical network
graph representing mobility relations between logical
network entity, LNE, pairs, with the SCOR comprising at
least one ILNE pair and the at least one subgraph
corresponding to the SCOR; determining a pretrained
reference deep reinforcement learning model from a model
database by a similarity analysis based on the profile
of the subgraph; and transmitting the determined
pretrained reference deep reinforcement learning model
to the communications network device.

An example embodiment of a network service pro-
vider device comprises at least one processor, and at
least one memory including computer program code. The
at least one memory and the computer program code are
configured to, with the at least one processor, cause
the network service provider device at least to obtain
from at least one communications network device at least

one subgraph of a logical network graph representing
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mobility relations between logical network entity, LNE,
palrs and their associated profiles. The at least one
memory and the computer program code are further
configured to, with the at least one processor, cause
the network service provider device at least to derive
at least one pretrained reference deep reinforcement
learning model for use 1in solving an optimization
problem related to a self-organizing network, SON,
function within a service level agreement, SLA, coverage
overlap region, SCOR. The SCOR comprises at least one
LNE pair and the SCOR corresponds to the subgraph. The
at least one memory and the computer program code are
further configured to, with the at least one processor,
cause the network service provider device at least to
store the obtained profiles and the derived pretrained
reference deep reinforcement learning models in a model
database.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
model database comprises an indexed model database such
that a same index represents an obtained profile of one
subgraph and a corresponding derived pretrained
reference deep reinforcement learning model in a SCOR
that corresponds to the subgraph.

An example embodiment of a network service pro-
vider device comprises means for obtaining from at least
one communications network device at least one subgraph
of a 1logical network graph representing mobility
relations between logical network entity, LNE, pairs and
their associated profiles. The means are further con-
figured to derive at least one pretrained reference deep
reinforcement learning model for use 1in solving an
optimization problem related to a self-organizing
network, SON, function within a service level agreement,
SLA, coverage overlap region, SCOR. The SCOR comprises
at least one LNE pair and the SCOR corresponds to the

subgraph. The means are further configured to store the
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obtained profiles and the derived pretrained reference
deep reinforcement learning models in a model database.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
model database comprises an indexed model database such
that a same index represents an obtained profile of one
subgraph and a corresponding derived pretrained
reference deep reinforcement learning model in a SCOR
that corresponds to the subgraph.

An example embodiment of a method comprises
obtaining, by a network service provider device, from
at least one communications network device at least one
subgraph of a logical network graph representing
mobility relations between logical network entity, LNE,
pairs and their associated profiles. The method further
comprises deriving, by the network service provider de-
vice, at least one pretrained reference deep reinforce-
ment learning model for use in solving an optimization
problem related to a self-organizing network, SON,
function within a service level agreement, SLA, coverage
overlap region, SCOR. The SCOR comprises at least one
LNE pair and the SCOR corresponds to the subgraph. The
method further comprises storing, by the network service
provider device, the obtained profiles and the derived
pretrained reference deep reinforcement learning models
in a model database.

In an example embodiment, alternatively or in
addition to the above-described example embodiments, the
model database comprises an indexed model database such
that a same index represents an obtained profile of one
subgraph and a corresponding derived pretrained
reference deep reinforcement learning model in a SCOR
that corresponds to the subgraph.

An example embodiment of a computer program
comprises 1nstructions for causing a network service
provider device to perform at least the following:

obtaining from at least one communications network
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device at least one subgraph of a logical network graph
representing mobility relations between logical network
entity, LNE, pairs and their associated profiles;
deriving at least one pretrained reference deep rein-
forcement learning model for use 1in solving an
optimization problem related to a self-organizing
network, SON, function within a service level agreement,
SLA, coverage overlap region, SCOR, with the SCOR
comprising at least one LNE pair and the SCOR
corresponding to the subgraph; and storing the obtained
profiles and the derived pretrained reference deep re-

inforcement learning models in a model database.

DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are included
to provide a further understanding of the embodiments
and constitute a part of this specification, illustrate
embodiments and together with the description help to
explain the principles of the embodiments. In the draw-
ings:

FIG. 1 shows an example embodiment of the sub-
Ject matter described herein illustrating an example
system, where various embodiments of the present dis-
closure may be implemented;

FIG. 2A shows an example embodiment of the sub-
Ject matter described herein illustrating a
communications network device;

FIG. 2B shows an example embodiment of the sub-
Ject matter described herein illustrating a SON node
device;

FIG. 2C shows an example embodiment of the sub-
Ject matter described herein illustrating a network ser-
vice provider device;

FIG. 3A shows an example embodiment of the sub-
Ject matter described herein illustrating a SCOR and
SCOR-based agents;
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FIG. 3B shows an example embodiment of the sub-
Jject matter described herein illustrating deriving of a
logical network graph and SCORs from an LNE log history;

FIG. 4 shows an example embodiment of the sub-
Ject matter described herein illustrating a communica-
tions network partitioned to SCORs and their correspond-
ing subgraphs;

FIG. 5 shows an example embodiment of the sub-
Ject matter described herein illustrating an example
representation of a subgraph with an adjacency matrix
or an adjacency list;

FIG. 6 shows another example embodiment of the
subject matter described herein illustrating an example
of subgraph profiling;

FIG. 7 shows an example embodiment of the sub-
Jject matter described herein illustrating an example of
an indexed profile database and an indexed model data-
base;

FIG. 8 shows an example embodiment of the sub-
Jject matter described herein illustrating an example of
an actor network in a deep reinforcement learning ar-
chitecture;

FIG. 9 shows an example embodiment of the sub-
Ject matter described herein illustrating an example of
direct application of a source model M;(Gg) for a target
model Mx (Gx) ;

FIG. 10 shows an example embodiment of the sub-
Jject matter described herein illustrating an example of
knowledge distillation from a source model M;(Gs) To a
target model M« (G«) ;

FIG. 11 shows an example embodiment of the sub-
Ject matter described herein illustrating a transfer
learning framework with logical network graph -based
model retrieval;

FIG. 12 shows an example embodiment of the sub-

ject matter described herein illustrating a method;
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FIG. 13 shows an example embodiment of the sub-
Ject matter described herein illustrating another
method;

FIG. 14 shows an example embodiment of the sub-
Ject matter described herein illustrating yet another
method;

FIG. 15 shows an example embodiment of the sub-
Ject matter described herein illustrating deriving an
MRG and SCORs from an SLA coverage map;

FIG. 16 shows an example embodiment of the sub-
ject matter described herein illustrating MRG decompo-
sition when an LNE is defined as a network slice in a
physical cell;

FIG. 17 shows an example embodiment of the sub-
Jject matter described herein illustrating an example of
a deep deterministic policy gradient (DDPG) architec-
ture; and

FIG. 18 shows an example embodiment of the sub-
Jject matter described herein illustrating an example of
a deep Q-network (DQON) architecture.

Like reference numerals are used to designate

like parts in the accompanying drawings.

DETAILED DESCRIPTION

Reference will now be made in detail to embod-
iments, examples of which are illustrated in the accom-
panying drawings. The detailed description provided be-
low in connection with the appended drawings is intended
as a description of the present examples and 1is not
intended to represent the only forms in which the pre-
sent example may be constructed or utilized. The de-
scription sets forth the functions of the example and
the sequence of steps for constructing and operating the
example. However, the same or equivalent functions and
sequences may be accomplished by different examples.

Fig. 1 illustrates an example system 100, where

various embodiments of the present disclosure may be
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implemented. The system 100 may comprise a fifth gener-
ation (5G) or a sixth generation (6G) communications
network 110. An example representation of the system 100
is shown depicting a communications network device 200,
a self-organizing network (SON) node device 210, and a
network service provider device 220. At least in some
embodiments, the 5G or 6G network may comprise one or
more massive machine-to-machine (M2M) network(s), mas-
sive machine type communications (mMTC) network(s), in-
ternet of things (IoT) network(s), industrial internet-
of-things (IIoT) network(s), enhanced mobile broadband
(eMBB) network(s), ultra-reliable low-latency communi-
cation (URLLC) network(s), and/or the 1like. In other
words, the 5G or 6G network may be configured to serve
diverse service types and/or use cases, and it may log-
ically be seen as comprising one or more networks.

The communications network device 200 may
comprise an operations, administration, and maintenance
(OAM) unit, a network node device, or a client device.
The client device may include, e.g., a mobile phone, a
smartphone, a tablet computer, a smart watch, or any
hand-held, portable and/or wearable device. The client
device may also be referred to as a user equipment (UE).
The network node device may comprise a base station. The
base station may include, e.g., a 5G or 6G base station
(gNB) or any such device suitable for providing an air
interface for client devices to connect to a wireless
network via wireless transmissions.

At least some of the disclosed embodiments may
be implemented in an O-RAN architecture. The O-RAN aims
for interoperability and standardization of RAN elements
including a unified interconnection standard for network
functions from different vendors. The O-RAN architecture
provides a foundation for building a virtualized RAN on
open hardware with an embedded artificial intelligence

(ATI) -powered radio control.
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In the following, handover (HO) process and
parameters are briefly discussed.

A condition for sending a measurement report
from a client device to a serving cell, which triggers
the handover process, is generally based on a reference
signal received power (RSRP) and per cell or per cell
pair HO parameters. For example, the HO parameters may
be defined per network entity or per network entity
palr. For example, they may be defined per physical cell
or cell pair, or per logical cell or cell pair (e.g.,
two logical slices from different physical cells), or
per a single client device or client device groups.
Herein, “cell” and “cell pair” are used as examples, but
the disclosure 1is not limited to physical or 1logical
cells or cell pairs. HO parameters include:

- per cell pair cell individual offset (CIO):
Onm denotes the cell individual offset (CIO) of a neigh-
boring cell m specified in a source cell n, while Opy
denotes the CIO of the cell n specified in the cell m.
The cell pair CIOs are not reciprocal, i.e., Opp and
Omn may be set to different values;

- per cell A3 event offset (OFS) and hysteresis
(HYS) : the OFS and HYS in the cell n are denoted by OFS,
and H,,, respectively; and

- per cell time-to-trigger (TTT): T, denotes
the TTT defined in the cell n.

A UE Kk sends a measurement report triggering a
handover from the cell n to the cell m if the following

condition is fulfilled for a duration of time T,:

Mpx +Onm = Mpx + Oy + OFS, + Hy (Eg. 1)

where Mpy and Mpyx are signal measurements
(e.g., RSRP) received in the UE Kk from the source cell
n and the neighboring cell m respectively.

At least some HO optimization schemes may aim

to reduce at least some of the following four HO events:
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- a too-late-handover (HOL): this may occur
when a user is leaving the coverage area of i1its serving
cell n towards the target cell m but the handover is not
triggered which causes a radio link failure (RLF) of the
UE;

- a too-early-handover (HOE): this may occur
when the HO decision is made too early. The neighboring
cell cannot provide a sustainable signal quality to the
user and an RLF happens right after the handover. The
UE reconnects to the previous source cell of the hand-
over. Random access failures to the target cell (due to
too early triggering of handover) may also be considered
as a part of the HOE;

- a wrong-cell-handover (HOW): this may occur
when a user is handed over from a source cell to a wrong
target cell. An RLF is detected shortly after a suc-
cessful handover to the target cell and then the user
is connected to another neighboring cell that is dif-
ferent from the source cell; and

- a ping-pong-handover (HOPP): this may occur
when a user 1s handed over from the cell n to the cell
m, but after a short time period the UE is handed over
back from the cell m back to the cell n.

In the following, various example embodiments
will be discussed. At least some of these example em-
bodiments may allow network optimization based on dis-
tributed multi-agent machine learning with minimal in-
ter—-agent dependency.

At least some of these example embodiments may
allow a distributed multi-agent deep reinforcement
learning (DRL) scheme for a service level agreement
(SLA) -guaranteed mobility robustness optimization
(MRO) 1in which an agent may be defined based on an SLA
coverage overlap region (SCOR for short) to minimize
inter-agent dependency. The SLA coverage overlap region
may be represented by a group of physical or logical

cell boundaries and each agent may jointly optimize the
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CIOs and TTTs of the grouped cell boundaries. Herein,
“logical” cell boundary refers to the SLA coverage over-
lap area between two logical network entities, and “cell
boundary” refers either to a physical cell boundary or
to a logical cell boundary (e.g., between two logical
slices from different physical cells).

At least some of these example embodiments may
allow grouping the cell boundaries and identifying the
SCORs Dbased on a partitioned or decomposed 1logical
network graph or mobility relation graph (MRG). When a
customer (e.g., a communication service provider, CSP)
makes a query for pretrained models of a similar SCOR
area, the profile of an MRG (e.g., an adjacent matrix
or index of an MRG class, or other extracted features)
may then be used as key to retrieve the SCOR-based ar-
tificial intelligence (AI) or machine learning (ML)
model in a reference model database (DB).

Herein, the terms “partition” and “decompose”
are used interchangeably. Herein, the terms “logical
network graph” and “mobility relation graph” and “MRG”
are used 1interchangeably. Herein, the terms “sub-MRG”
and “SCOR-based subgraph” are used interchangeably.

Herein, when the term “user” is used to refer
to a user mobility pattern or a user mobility distribu-
tion, it comprises a user equipment or a client device.
When the term “user” is used to refer to a user who
sends a query, 1t comprises a customer, such as a com-
munications service provider (CSP) or an operator, who
owns the data and network infrastructure and requests
network optimization and transfer learning services in
accordance with the disclosure.

At least some of these example embodiments may
allow MRG generation in which users (e.g., CSPs) may
request an MRG generation service to decompose a large-
scale network to a set of subnetworks with minimum in-
ter-subnetwork dependency. The service may provide the

users the generated MRG and its sub-MRGs corresponding
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to the decomposed subnetworks. Such decomposition may
provide a proper granularity of deploying distributed
machine learning agents, which may achieve a good
tradeoff between low model complexity and good model
accuracy.

At least some of these example embodiments may
allow building a SCOR-based reference model DB 230C in
which by using the collected historical data, 1t 1is
possible to obtain the SCORs and the SCOR-based sub-
graphs, namely, the corresponding sub-MRGs of the SCORs,
and pre-train an MRO model for each SCOR. These sub-
MRGs and the trained models may be used to construct the
reference model DB 230C with a key-content structure.
The profiles of the sub-MRGs (e.g., adjacent matrices)
may be the keys, and the pre-trained models may be the
contents. An alternative may be to build an index-pro-
file DB 230A and an index-model DB 230B (as shown in
diagram 700 of Fig. 7).

At least some of these example embodiments may
allow ML model retrieval and transfer learning in which,
when a user requests the transfer learning -based MRO
service, it may first send the profile of the generated
Sub-MRGs as a query. Then, an MRG similarity analysis
may compare the query with the keys in the reference
model DB and return highly ranked keys. The transfer
learning -empowered SON functions, e.g., an MRO func-
tion, may retrieve the highly ranked models, and either
directly use the models for the user’s network, or fur-
ther fine-tune them with transfer learning. In this way,
it is possible to build reusable and reproducible MRO
models for a multi-vendor open environment.

In other words, at least some of these example
embodiments may allow distributed multi-agent DRL for
an MRO problem in which each agent may comprise a varying
number of physical or logical network boundaries. The

inter-agent dependencies may be minimized to improve
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robustness of the ML model by creating the agents with
the decomposed network mobility graph.

Accordingly, at least some of these example
embodiments may allow a transfer learning framework for
SON functions such as the MRO, such that the ML models
may be transferred between similar distributed agents,
even when the agents comprise different numbers of
grouped network entities (or boundaries between network
entities).

Accordingly, at least some of these example
embodiments may allow SON model profiling, storage, and
management such that one can efficiently retrieve a SON
model that was pre-trained in a similar (sub)network
environment. The similarity between the relational net-
work graph data may be analyzed. This approach may be
beneficial, e.g., for SON use cases because it captures
the strong interaction between the network entities
within a local agent.

It is to be noted that the disclosure is not
restricted to the MRO function only. Rather, it can also
be applied to other SCOR-based SON functions, such as
coverage and capacity optimization and mobility load
balancing. Furthermore, it is to be noted that the ref-
erence model DB may be generalized to a reference con-
tainer DB in which each pretrained SCOR-based SON func-
tion may be packaged in a container and saved in the DB.
By sending a query including the profile of the sub-
MRG, the user may retrieve a packaged pre-trained model,
e.g., a Docker image, of a similar mobility and SLA
coverage region.

Fig. 2A is a block diagram of the
communications network device 200, in accordance with
an example embodiment.

The communications network device 200 com-
prises at least one processor 202 and at least one memory
204 including computer program code. The communications

network device 200 may also include other elements, such
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as a transceiver configured to enable the communications
network device 200 to transmit and/or receive infor-
mation to/from other devices, as well as other elements
not shown in Fig. 2A. In one example, the communications
network device 200 may use the transceiver to transmit
or recelve signaling information and data in accordance
with at least one cellular communication protocol. The
transceiver may be configured to provide at least one
wireless radio connection, such as for example a 3GPP
mobile broadband connection (e.g., 5G and/or 6G). The
transceiver may be configured to be coupled to at least
one antenna to transmit and/or receive radio frequency
signals.

Although the communications network device 200
is depicted to include only one processor 202, the com-
munications network device 200 may include more proces-
sors. In an embodiment, the memory 204 is capable of
storing instructions, such as an operating system and/or
various applications. Furthermore, the memory 204 may
include a storage that may be used to store, e.g., at
least some of the information and data used in the
disclosed embodiments.

Furthermore, the processor 202 is capable of
executing the stored instructions. In an embodiment, the
processor 202 may be embodied as a multi-core processor,
a single core processor, or a combination of one or more
multi-core processors and one or more single core pro-
cessors. For example, the processor 202 may be embodied
as one or more of various processing devices, such as a
coprocessor, a microprocessor, a controller, a digital
signal processor (DSP), a processing circuitry with or
without an accompanying DSP, or various other processing
devices including integrated circuits such as, for ex-
ample, an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a mi-

crocontroller unit (MCU), a hardware accelerator, a spe-
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cial-purpose computer chip, or the like. In an embodi-
ment, the processor 202 may be configured to execute
hard-coded functionality. In an embodiment, the proces-
sor 202 is embodied as an executor of software instruc-
tions, wherein the instructions may specifically con-
figure the processor 202 to perform the algorithms
and/or operations described herein when the instructions
are executed.

The memory 204 may be embodied as one or more
volatile memory devices, one or more non-volatile memory
devices, and/or a combination of one or more volatile
memory devices and non-volatile memory devices. For ex-
ample, the memory 204 may be embodied as semiconductor
memories (such as mask ROM, PROM (programmable ROM),
EPROM (erasable PROM), flash ROM, RAM (random access
memory), etc.).

The communications network device 200 may com-
prise an operations, administration, and maintenance
(OAM) unit, a network node device (such as a Dbase
station), or a client device (such as a user equipment).
The base station may include, e.g., a fifth-generation
or sixth-generation base station (gNB) or any such de-
vice providing an air interface for client devices to
connect to the wireless network via wireless transmis-
sions.

The at least one memory 204 and the computer
program code are configured to, with the at least one
processor 202, cause the communications network device
200 at least to decompose or partition the
communications network 110 into service level agreement
(SLA) coverage overlap regions (SCORs) according to
mobility relations between logical network entity (LNE)
palrs within the communication network 110. The SCOR
comprises at least one LNE pair.

Herein, the logical network entities are called
“LNEs” for brevity. A network with a set of N LNEs may
be denoted by N ={1,..,N}. E.g., for a network with C
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physical cells and S logical slices, each slice in each
cell may be considered as an LNE, thus N=CS if each
cell has S slices. It is to be noted that an even finer
granularity of the LNEs may be considered, e.g., per QoS
flow instead of per slice.

Herein, the term SLA (service level agreement)
coverage overlap region (or SCOR for brevity) refers to
a group of LNE pairs that is optimized such that the
dependency between the SCORs is low. Since the logical
network graph is decomposed into a group of SCORs ac-
cording to the mobility relations between LNE pairs,
while the mobility relations between LNE pairs changes
from time to time, the numbers of the LNE pairs can be
different from one SCOR to another, and the composition
of the LNE pairs in a SCOR may be dynamic and adaptable
to a changing environment. E.g., a SCOR may include cell
boundaries A->B, B->A, B->C, C->B, while conventional
optimizations are performed either per cell base (all
one-directional cell boundaries related to a single
cell, i.e., 1if a cell A has neighboring cells B, C, D,
then they have a fixed number of boundaries A->B and A-
>C and A->D) or per cell pair -base (bidirectional cell
boundaries of a single pair of cells, i.e., A->B and B-
>A) .

For each LNE, a neighboring ILNE 1list may be
defined. E.g., if a cell b is in the neighboring cell
list of a cell a and service for a slice s may be pro-
vided in both cells a and b, then the LNE (b,s) (repre-
senting slice s in cell b) may be included in the neigh-
boring LNE list of LNE (a,s). For brevity of notation, a
set of all LNE pairs may be defined as P :={(n,m):n,méeE
N}. It is to be noted that each tuple in P represents
a directional LNE pair, e.g., from LNEn:=(as) to
LNEm:= (b,s). It is to be further noted that the previ-
ously mentioned logical cell boundary may be considered

as service overlap regions of an LNE pair.
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LNE pair-specific HO parameters may be defined.
E.g., for each LNE pair (n,m) €P, the CIO and TTT (de-
noted by Opy and T,n, respectively) may be optimized.
The HO criterion may remain in the same form as in Eq.
(1), except that in replacing the cell pair, (n,m) are
the LNE pair.

The following measurements for both LNE-
specific and LNE pair-specific performance may be col-
lected:

- LNE-specific network states denoted by s, Vn €
N, including but not limited to a per LNE number of
users and load;

- LNE-specific SLA-related QoS metrics denoted
by q,,Vn €N, including but not limited to a per LNE
throughput and delay, and/or LNE pair-specific SLA-
related QoS metrics denoted by qum V(n,m) € P; and/or

- LNE pair-specific HO-related metrics denoted
by I'ymV(m,m)€P, including but not limited to per LNE
palir ratios of HOE, HOL, HOW, and HOPP events.

For example, the communications network 110 may
comprise a large-scale communications network. For ex-
ample, at least some of the SCORs may further comprise
a group of physical cell boundaries, a group of logical
cell boundaries, or a group of physical cell boundaries
and logical cell boundaries. For example, the LNEs may
comprise cells, slices, and/or quality of service (QoS)
flows.

In other words, each LNE may meet a predefined
SLA for any mobility status. Thus, an objective may
include guaranteeing the SLA services of all the LNEs
while minimizing HO failures and unnecessary HOs by op-
timizing the LNE pair-specific CIOs o:=[omm:V(an)EiP]E
Q and TTTs t:=[tym:V(n,m) €eP] € Z:

min,eq ez C(r(o, 1)) (Problem 1)
s.t.U(q(0,0)) =1
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in which C() is a defined cost function based
on HO-related metrics r(o,t) := hnn(o,o:v(nﬁn)EiP], U(-) is a
defined utility function based on QoS-related metrics
q&xo:z[qmmﬂxo:vﬁLnﬂez?], and N is a threshold for QoS
utility.

It is to be noted that the disclosure includes
but is not restricted to the optimization of per LNE-
pair HO parameters CIO and TTT. The same technique may
be applied to optimize a broader class of HO parameters,
e.g., HO parameters in idle mode gOffset and TReselEu-
tra. Moreover, HO parameters with different granulari-
ties may be optimized. For example, the disclosure is
also applicable to an MRO scenario where TTT is defined
per cell and CIO is defined per cell pair.

In other words, in a distributed multi-agent
DRL scheme for MRO an agent may be defined based on the
SLA coverage overlap region (SCOR) to minimize the in-
ter—-agent dependency.

For a large-scale communications network, a
centralized learning approach for MRO may not be prac-
tical because of its intractable high-dimensional net-
work state and action spaces. In contrast to the cen-
tralized scheme, the distributed scheme decomposes the
large-scale network to groups of LNEs and applies a
machine learning agent to each of the group. The dis-
tributed multi-agent approach may reduce the complexity
of the ML model and may speed up the learning speed.

At least in some embodiments, LNE pairs in a
SCOR comprising at least two directional LNE pairs may
be strongly coupled, and dependency between the SCORs
may be low.

Herein, LNE pairs A and B are “strongly cou-
pled” 1if the HO and QoS performance of A are strongly
affected by the HO parameters in B, or the HO and QoS
performance of B are strongly affected by the HO param-
eters in A. Further, herein SCORs X and Y have “low

dependency/interaction” if the HO parameters of the LNE
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pairs in X have a low effect on the overall HO and QoS
performance of the LNE pairs in Y, and the HO parameters
in Y have a low effect on the overall HO and QoS per-
formance of the LNE pairs in X.

In other words, a distributed multi-agent MRO
scheme with minimal inter-agent dependency may be ena-
bled by decomposing the large-scale network into multi-
ple SCORs, such that the LNEs within the same SCOR are
strongly coupled, while the interaction between LNEs in
the neighboring SCORs is low.

At least in some embodiments, the at least one
memory 204 and the computer program code may be further
configured to, with the at least one processor 202,
cause the communications network device 200 to decompose
the communications network 110 into the SCORs by
generating a logical network graph corresponding to the
communications network 110 and representing the mobility
relations between the LNE pairs, and by decomposing the
logical network graph into subgraphs, such that the
subgraphs represent SCORs comprising strongly coupled
LNE pairs. For example, the generating of the logical
network graph may comprise generating the logical
network graph based on historical LNE data, statistical
mobility data, or an SLA coverage map.

At least in some embodiments, vertices of the
logical network graph may comprise the ILNE pairs, and
weights of edges of the logical network graph may
reflect a mobility relationship between two LNE pairs.

Diagram 300B of Fig. 3B illustrates deriving a
mobility relation graph (MRG) 308 and SCORs from an LNE
log history 306. In other words, to generate an MRG 308
and to decompose it to the SCORs from the ILNE log history
306, a logical network graph G=(V,E) may be derived
based on mobility relations between LNE pairs. Herein,
it is also called the MRG. The vertices of the graph may
be the LNE pairs (logical cell boundaries), and the
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welghts of the edges may reflect the mobility relation-
ship between two LNE pairs, as shown in diagram 300B.
From Eg. (1), it 1is known that CIO,, and CI0y, are
strongly coupled. Thus, the unidirectional LNE pairs may
be used as the vertices of the MRG, i.e., boundary (m,n)
and (n,m) are always jointly optimized.

It may be assumed that an LNE log history 306
of all users during a time period can be collected.
Then, as shown in Fig. 3B, the steps of generating the
MRG 308 and its decompositions may be as follows:

1. from the log history 306, e. g., a sedquence
of LNE identities (IDs), obtain a sequence 307 of LNE
pairs. E.g., the sequential logs of LNEs a—b —=c corre-
sponds to sequential LNE pairs (ab) — (b,c),

2. use the unique set 307 of LNE pairs as the
vertices of the MRG 308,

3. count the number of transitions between each
LNE pairs and use the number as weights of the edges of
the MRG 308, and

4. use a dJgraph decomposition/partition scheme
(e.g., spectral partitioning) to decompose the MRG 308
to subgraphs 309A, 309B (herein also called sub-MRGs),
each representing a SCOR comprising strongly coupled LNE
pair(s), as shown in diagram 400 of Fig. 4 (which il-
lustrates the communications network 110 partitioned to
SCORs 401, 402 and their corresponding subgraphs 309A,
309B). For each SCOR, a machine learning agent may be
defined to solve the MRO problem within the SCOR.

Examples of the graph decomposition/partition
schemes include but are not limited to spectral parti-
tioning in which a partition is derived from approximate
eigenvectors of an adjacency matrix, and spectral clus-
tering which groups graph vertices using an eigen-de-
composition of a graph Laplacian matrix.

It is to be further noted that in case LNE logs
data is not available, it is possible to exploit the HO

statistics, adjacent relationship, and a coverage map
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to generate an alternative type of MRG, with the LNEs
as vertices and LNE pair specifying the edges.

At least in some embodiments, the at least one
memory 204 and the computer program code may be further
configured to, with the at least one processor 202,
cause the communications network device 200 at least to
perform generating a profile for at least some of the
subgraphs. The profile may comprise an adjacency matrix
or an adjacency 1list representing the respective
subgraph.

In other words, a representation of a graph may
include an adjacency matrix and/or an adjacency list.
The adjacency matrix and list may be built based on the
relation between the vertices. That is, the adjacency
matrix may indicate the weight of an edge between each
pair of vertices, and the adjacency list may collect for
each vertex the connected vertices and the edge weights.
Since in the disclosure there may be strongly coupled
INE pairs within the agent, the number of edges may be
more than the number of vertices. Thus, an adjacent
matrix or list may be chosen to represent the sub-MRG.
An example is given in diagram 500 of Fig. 5 (which
illustrates an example representation of a subgraph 309A
with an adjacency matrix 501 or an adjacency list 502).

At least in some embodiments, each profile may
further comprise a number of vertices, a number of
edges, a number of involved LNEs, a degree distribution,
a distribution of edge weights, a distribution of summed
weights of edges incident to a vertex, or at least one
LNE specific feature for the respective subgraph
including at least one of a deployment type, an LNE
type, an associated user mobility distribution, position
information, and/or an LNE load state.

In other words, for more efficient profile sim-
ilarity analysis and model retrieval, prescreening may
be performed based on some simple features to reduce the

size of the searching set of adjacency matrices/lists
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for similarity analysis. Such optional features may in-

clude, e.g.:

number of vertices,

number of edges,

ORI

number of involved LNES,

- a degree distribution: a degree of a vertex
is the number of edges that are incident to it. Assuming
the maximum number of incident edges of any vertex to
be E, the degree distribution is an E-dim vector where
the i-th dim is the probability of that vertex having i
vertices. As shown in diagram 600 of Fig. 6 (which 1i1l-
lustrates an example of sub-MRG profiling), for the up-
per sub-MRG 309A1, the degrees are 2 for all the three
vertices, 1.e., with a probability 1 the vertex has
2 incident edges, and with E=5, the degree distribution
is [0,1,0,0,0]. For the lower sub-MRG 309A2, the degrees of
the wvertices (ab), (bc), (ca) are 1,2,1, respectively.
I.e., there is a 2/3 probability that a vertex has a
degree of 1 and a 1/3 probability that a vertex has a
degree of 2. The degree distribution is then E,%JLQOL

- other features can be also considered such
as:

- a number of involved LNEs: e.g., for
both sub-MRGs in Fig. 6, the number of the involved LNEs
is 3, i.e., LNEs{ab,c},

- a distribution of the edge weights,

- a distribution of summed weights of
the edges incident to a vertex.

An example of an indexed sub-MRG profile 1is
shown in the table 601 in Fig. ©.

In case the MRG’s vertices are defined by LNEs,
while their edges are defined by LNE pairs (LNE bound-
aries), more LNE-specific features may be included into
the profile, e.g.:

- a deployment type: dense urban, urban, sub-

urban and rural,
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- an LNE type: e.g., for physical network en-
tities such as macro, micro, pico and femto cells,

- an assocliated user mobility distribution,

- position information: outdoor, indoor,

- LNE load conditions: highly utilized, moder-
ately utilized, underutilized.

The at least one memory 204 and the computer
program code are further configured to, with the at
least one processor 202, cause the communications
network device 200 at least to assign a machine learning
agent to each of the decomposed SCORs.

Fach machine learning agent 1is configured to
apply a deep reinforcement learning model (DRL model)
to solve an optimization problem related to a self-
organizing network (SON) function within its assigned
SCOR. The DRL model may be customizable to each machine
learning agent, e.g., based on a similarity analysis
between subgraphs of the generated 1logical network
graph. Accordingly, at least in some embodiments, based
on the similarity analysis between SCOR-based subgraphs,
a pretrained model in one machine learning agent may be
retrieved, reused, and/or customized for another agent.
For example, a customized DRL model may comprise a
transfer learning enhanced DRL model (TL-DRL model) .

Diagram 300A of Fig. 3A illustrates an example
of a SCOR and SCOR-based agents. More specifically, di-
agram 300A of Fig. 3A illustrates an example of decom-
posed SCORs and their corresponding agents, with each
SCOR comprising a group of strongly coupled LNE pairs.
In the example of Fig. 3A, each of Agent #1, Agent #2,
Agent #3, Agent #4, and Agent #5 optimizes HO parameters
within an SLA coverage overlap region 301, 302, 303,
304, 305, respectively, e.g., for a group of highly
dependent cell boundaries of cells 1[A], 1[B], 1I[C],
2{A], 2[B], 2[C], 3[A]l, 3[B], 3I[C]. In the example of
Fig. 3A, there are three sites: Site 1, 2, 3. Each site
has three cells, e.g., Site 1 has cells 1[A], 1[B],
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1[C], etc. The circles represent coverage areas of the
cells. The arrows represent coverage boundaries between
two cells. For example, the arrows for Agent #1 repre-
sent cell boundaries of cell pairs (1[A], 1[B]), (1[A],
2[Al), (1[B], 2[A]), and the arrows for Agent #2 repre-
sent cell boundaries of cell pairs (1[A], 1[C]), (1[A],
3[A]), (1[C], 3[A]).

In other words, with the decomposed SCORs, it
is possible to use distributed DRL approaches to opti-
mize, e.g., HO parameters within each SCOR in a dis-
tributed manner, i.e., to solve Problem 1 for each SCOR
independently. Due to the weak dependencies between the
agents, the distributed multi-agent DRL may converge
faster, and the learning may be more robust. Given a
local agent ioptimizing a set of K; LNE pairs (bounda-
ries), denoted by P ={(n,my):k=1,..K;(n,m)€P}, the
involved LNEs may be denoted by N with |M|=N;.

At least 1in some embodiments, states of the
assigned machine learning agent(s) may comprise LNE -
specific metrics, LNE pair -specific metrics, and/or
contextual information for capturing at least one of
temporal or spatial correlations.

In other words, the states may be defined in
each local agent, e.g., as follows:

- state s;: e.g., the following features may be
included in the state:

- LNE-specific metrics: including but
not limited to the following per LNE metrics (or the
extracted statistics over all involved LNEs): number of
UEs, 1load, distribution of received signal strength-
related measurements (e.g., channel quality indicator
(CQI), RSRP distribution or reference signal received
quality (RSRQ)), QoS-related metrics (e.g., through-
puts, delay), and/or other LNE-specific configurations
(e.g., if an LNE 1is defined as a slice in a cell, the
slice resource budget may be one of the slice management

configurations) ;
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- LNE pair-specific metrics: includ-
ing but not limited to the following per LNE pair met-
rics: HO-related metrics computed from counts of HO
events, such as HOL, HOE, HOW, HOPP, and HO attempt
(HOA), e.g., the ratio of the number of HOL, HOE, HOW,
HOPP events to the number of HOAs, and/or ILNE pair-
specific QoS-related metrics (e.g., per cell boundary
averaged throughputs and delay);

- other context information: to cap-
ture temporal or spatial correlations, categorical con-
text information may be included, e.g., time index (hour
of the day, weekday, or weekend), type of region (e.g.,
rural or urban). Such categorical data may be included
in the state with one-hot encoding or categorical em-
bedding.

At least in some embodiments, an action space
of the assigned machine learning agent(s) may comprise
a discrete action space or a continuous action space.

In other words, the actions may be defined in
each local agent, e.g., as follows:

- action aj: e.g., two different models of DRL
with different definitions of actions may be considered:

- model I with continuous CIO and TTT
values: the policy of DRL directly provides the proto
action, 1i.e., the CIO and TTT values of all LNE pairs
in agent 1 denoted by ai:[(Wmnm'ommmaﬁwmwtmmm)ﬂ(:
1“",KJ , in a continuous space. However, the CIOs and
TTTs may be selected from a defined discrete set, e.qg.,
the pool of CIO values O :={-24,-23,..,23,24} and the pool

of TTT wvalues

T {0.004, 0.064,0.080,0.1,0.128,0.16,0.256,0.320,0.48,0.512, 0.640,}
o 1.024,2.56,5.12 '

This means that when working in discrete space, Oy m, €
0 and tym €T for k=1.,K;, the action space 1is
(OxT)i, E.g., with only Ki=2 pairs of ILNEs in the

agent, it is possible to have (49-14)* combinations of
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possible discrete actions, which may be intractable with
value-based algorithms (such as deep-Q networks (DQN))
in a discrete space. Working in a continuous space may
reduce the dimension of the output action and thus re-
duce the model complexity, e.g., by using the policy-
based or actor-critic-based DRL algorithms. When inter-
acting with the environment, the proto action may be
projected in continuous space to the defined discrete
action by finding its nearest neighbor in the discrete
space;

- model II with a discrete step size
of CIO and TTT adjustment: to work with the discrete
action space the action space may be reduced first. One
option is to optimize the step size of the adjustment
of CIO and TTT instead of the actual CIO and TTT values.
For example, an action a;= [(Aonk,mk,Aomk,nk, Atnk,mk,Atmk,nk):k:
L"”KJ may be defined where the step size for CIO 1is
Aon,mEA(CIO) and the step size for TTT is AtnlmEA(TTT), for
any (nm)€®P . A small step size set, e.qg., ALC10) =
{—2,-1,0,1,2} and AT :={-1,0,1} may be defined, and the
discrete action space is (Am“n><AaTﬂ)mq. With K;=2
pairs of LNEs in the agent, there are only (5-3)* possi-
ble actions. In this way, both the value-based DRL al-
gorithms (e.g., DQN) and the policy- or actor-critic-
based DRL algorithms may be considered.

At least in some embodiments, rewards for the
assigned machine learning agent(s) may be based on LNE
pair -specific handover performance metrics, LNE -
specific quality of service, QoS, performance metrics,
and/or LNE pair -specific QoS performance metrics. Ad-
ditionally/alternatively, the rewards for the assigned
machine learning agents may be based on layer 2 cell
based scheduling performance metrics and/or service
level agreement success rates.

In other words, the rewards may be defined in

each local agent, e.g., as follows:
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- reward Rj: the SLA-guaranteed MRO may take
both HO performance and SLA-related QoS performance into
account. Thus, the reward R; may be computed based on,
e.g., the following metrics:

- ILNE pair-specific HO performance metrics:
negative HO cost computed from the HOL, HOE, HOW, and
HOPP ratios. One example of the HO cost is the weight

sum of the ratios of different HO events:

(HO) _

(HOL)_(HOL) (HOE)_(HOE)
Ci _Z(nm)e?lw nm T Wom Tnm T
HOW) _(HOW HOPP
Wl(ln’l )rl(lm )+ ( ) n, (HOPP)/ (Eq. 2)
in which p(HOL) .(HOE) [.(HOW) 1.(HOPP) and

wHOL) y(HOE) 'y (HOW) (y(HOPP) 516 the ratios and weights for
HOL, HOE, HOW, and HOPP events, respectively;

- LNE-specific QoS performance metrics: a QoS
reward computed from throughput and delay. For example,
given the throughput requirement ¢; and delay require-
ment d, for each LNE n €0, the QoS reward in agent i may

be computed as:

(QOS) Zne W (QOS) min {4)11 ) dn 1} (Eq. 3)
¢n dn

in which ¢, and d, are the achieved throughput

(Qos)

and delay, respectively. q; is a weighted sum of the

QoS satisfaction level of all LNEs involved in agent Ii.
It is to be noted that the QoS satisfaction level 1is

. . dp .
upper-bounded by 1, 1i.e., nnn{if%f,l}::l if the
n n
throughout is higher than required ¢, = ¢, and the delay
(QoS)

is lower than required d, <d;. The weight wy reflects

the importance/priority of ILNE n. It is possible to make

ng$ proportional to the number of UEs/services asso-
(UE)
ciated to LNE n, e.g., SNQ E_ﬁ_Tﬁﬁ such that q«m$ i s
lew; N

the averaged QoS satisfaction level over all UEs/ser-

vices involved in agent i. Other QoS rewards may also be
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utilized, such as applying a utility function to address
the fairness or priority of different network entities
and/or QoS metrics.

The overall reward R; may be the weight sum of

the negative HO cost and the QoS reward:

R, = W(QoS)qi(QOS)_W(HO)Ci(HO) (Eq. 4)

It is to be noted that the disclosed ML model
may also be applied to conventional MRO without SLA-
awareness, by excluding the SLA-related metrics in the
network states and QoS performance metrics in the reward
computation.

Various DRL algorithms may be utilized, in-
cluding deep Q-learning (when discrete action space is
relatively small, e.g., with the above disclosed model
ITI where action is defined as a discrete step size of
CIO and TTT adjustment), policy-based algorithms such
as PPO, and actor-critic-based algorithms such as deep
deterministic policy gradient (DDPG) (which may be used
for both models I and II).

It is to be noted that NP =0 for i#]j be-
cause all the ILNE pairs are partitioned to separate
SCORs. However, an LNE may be involved in several neigh-
boring agents, e.g., an LNE n may have one boundary
(n,m) grouped 1into agent 1 and another boundary
(n,]) grouped into agent 2. Thus, in the SLA-guaranteed
MRO scheme, when LNE-specific KPIs and QoS metrics are
included in the state s; and the reward R;, there are
still QoS dependencies between the agents, although by
MRG decomposition the mobility dependencies may be re-
duced. Thus, a possible coordination scheme may be de-
signed for multi-agent DRL to ensure the consensus, by
adding new features extracted from the neighboring
agents’ states.

At least in some embodiments, the SON function

may comprise a mobility robustness optimization (MRO)
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function, a coverage and capacity optimization function,
or a mobility load balancing function. For example, the
MRO function may comprise optimization of one or more
handover parameters.

At least in some embodiments, the at least one
memory 204 and the computer program code may be further
configured to, with the at least one processor 202,
cause the communications network device 200 at least to
obtain the DRL model as pretrained from a SON node device
210.

Fig. 2B 1s a block diagram of the SON node
device 210, in accordance with an example embodiment.

The SON node device 210 comprises at least one
processor 212 and at least one memory 214 including
computer program code. The SON node device 210 may also
include other elements, such as a transceiver configured
to enable the SON node device 210 to transmit and/or
receive information to/from other devices, as well as
other elements not shown in Fig. 2B. In one example, the
SON node device 210 may use the transceiver to transmit
or recelve signaling information and data in accordance
with at least one cellular communication protocol. The
transceiver may be configured to provide at least one
wireless radio connection, such as for example a 3GPP
mobile broadband connection (e.g., 5G or 6G). The trans-
ceiver may be configured to be coupled to at least one
antenna to transmit and/or receive radio frequency sig-
nals.

Although the SON node device 210 is depicted
to include only one processor 212, the SON node device
210 may include more processors. In an embodiment, the
memory 214 1is capable of storing instructions, such as
an operating system and/or various applications. Fur-
thermore, the memory 214 may include a storage that may
be used to store, e.g., at least some of the information

and data used in the disclosed embodiments.
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Furthermore, the processor 212 is capable of
executing the stored instructions. In an embodiment, the
processor 212 may be embodied as a multi-core processor,
a single core processor, or a combination of one or more
multi-core processors and one or more single core pro-
cessors. For example, the processor 212 may be embodied
as one or more of various processing devices, such as a
coprocessor, a microprocessor, a controller, a digital
signal processor (DSP), a processing circuitry with or
without an accompanying DSP, or various other processing
devices including integrated circuits such as, for ex-
ample, an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a mi-
crocontroller unit (MCU), a hardware accelerator, a spe-
cial-purpose computer chip, or the like. In an embodi-
ment, the processor 212 may be configured to execute
hard-coded functionality. In an embodiment, the proces-
sor 212 is embodied as an executor of software instruc-
tions, wherein the instructions may specifically con-
figure the processor 212 to perform the algorithms
and/or operations described herein when the instructions
are executed.

The memory 214 may be embodied as one or more
volatile memory devices, one or more non-volatile memory
devices, and/or a combination of one or more volatile
memory devices and non-volatile memory devices. For ex-
ample, the memory 214 may be embodied as semiconductor
memories (such as mask ROM, PROM (programmable ROM),
EPROM (erasable PROM), flash ROM, RAM (random access
memory), etc.).

The at least one memory 214 and the computer
program code are configured to, with the at least one
processor 212, cause the SON node device 210 at least
to receive from the communications network device 200 a
request for a pretrained DRL model for use in solving
an optimization problem related to a SON function within

a SCOR. The request comprises at least one profile of
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at least one subgraph of a logical network graph
representing mobility relations between LNE pairs. As
discussed above in more detail, the SCOR comprises at
least one LNE pair, and the at least one subgraph
corresponds to the SCOR.

The at least one memory 214 and the computer
program code are further configured to, with the at
least one processor 212, cause the SON node device 210
at least to determine a pretrained reference DRL model
from a model database 230A, 230B, 230C by a similarity
analysis based on the profile of the subgraph.

The at least one memory 214 and the computer
program code are further configured to, with the at
least one processor 212, cause the SON node device 210
at least to transmit the determined pretrained reference
DRL model to the communications network device 200.

At least in some embodiments, the similarity
analysis may comprise a relational similarity analysis
between the at least one subgraph in the received at
least one profile and subgraphs associated with the
pretrained reference DRL models stored in the model da-
tabase 230A, 230B, 230C. Accordingly, at least in some
embodiments, the disclosed transfer learning approaches
may preserve relational similarity between SCORs and
allow model transfer between SCOR-based agents with a
same or different number of nodes and edges.

At least in some embodiments, the at least one
memory 214 and the computer program code may be
configured to, with the at least one processor 212,
further cause the SON node device 210 to customize the
determined reference DRL model, and to transmit the
customized DRL model to the communications network
device 200. For example, the customized DRL model may
comprise a TL-DRL model.

In other words, it may be assumed that a user
sends a query of a sub-MRG G, = (V,,E.) with NV vertices

(i.e., LNE-pairs) and NSJ involved LNEs, and requests a
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“target” DRL model M,(G,) customized to the SCOR charac-
terized by G,. The network service provider device 220
may identify the sub-MRG G = (Vi E) similar to G, in the
index-profile DB, with NSD vertices and NSJ involved
LNEs, and retrieve Gg ’'s corresponding pretrained
“source” model M((Gg) in the index-model DB.

At least in some embodiments, the at least one
memory 214 and the computer program code may be
configured to, with the at least one processor 212,
further cause the SON node device 210 to prescreen the
profile(s) of the subgraph(s) based on one or more
prescreening parameters to determine one or more
candidate pretrained reference DRL models. In this case,
the determining of the pretrained reference DRL model
may be performed on the determined one or more candidate
pretrained reference DRL models.

In other words, for searching and sub-MRG sim-
ilarity analysis, e.g., at least some of the following
steps may be utilized:

- profile pre-screening: because the graph sim-
ilarity analysis costs more computational effort, simple
features (e.g., the number of vertices and edges, number
of involved LNEs, and the distribution of degree, as
shown in Fig. 6) may first be used to pre-screen the
profiles and find a reduced candidate set of “roughly”
similar “source” profiles, denoted by Gs={Gs:i=12..}.
Various distance measures may be applied, including,
e.g., a Euclidean distance between the numbers of nodes
and edges, and/or Kullback-Leibler divergence of the
degree distribution. At least in some embodiments, only
the candidate sub-MRGs with numbers of the vertices and
the involved LNEs no less than (if not the same as)
those of the sub-MRG in query, i.e., Ng)EzNSO and Ng)z
NSJ may be pre-screened. In this way, even if the sub-
MRG sharing the same numbers of LNE-pairs and involved

LNEs cannot be found, the retrieved source model Mg(G)
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is given some degree of information redundancy to learn
M.(G.).

- graph similarity measure: after the pre-
screening, a small set of sub-MRGs may be derived to be
compared with the sub-MRG sent in the query. Then, e.g.,
classical graph similarity analysis techniques may be
applied to find the most similar one(s). Such techniques
may be classified into three categories: edit dis-
tance/graph isomorphism, feature exaction, and itera-
tive methods.

If a user sends a query of a set of sub-MRGs
generated from its own network environment, it can ei-
ther apply directly the retrieved pretrained SON models
or further request a transfer learning service to cus-
tomize the retrieved model to its own network environ-
ment.

It is to be noted that it may be likely that
Ngo#:NSO and NSJ#:Ng% i.e., even the most similar sub-
MRGs do not necessarily have the same number of vertices
and edges as the ones in the dquery, while a direct
application of the ML model prefers the same size of
vertices, namely, the same dimension of the LNE pair-
specific action. Moreover, the same number of involved
INEs may also be preferred, such that the input network
state can have the same dimension. Thus, after retriev-
ing the model, even though Gg is very similar to the G,
in the query, a transfer learning scheme may be needed
for better customization.

Diagram 800 of Fig. 8 1llustrates an example
of actor networks 801A-801D in a DRL architecture in
which the source model has higher dimensions of action
and state than the target model. s, denotes the LNE
pair-specific features of the boundary (nm), e.g., HO
failure ratio Dbetween LNE Dboundary (nm) , while
[Spw Sm] denotes the LNE-specific state of LNE n and LNE
m, e.g., S; and S, may include the load of LNE n and m,

respectively. The concatenated [sp, S;] corresponds to the
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LNE boundary (n,m), providing additional information for
HO decision making between n and m.

In the following, state and action dimension
matching is discussed. To enable the transfer learning
from one model to another, the features in the state and
action in M,(G,) may first be ordered such that the de-
pendencies between the features are consistent with the
defined state and action in Mg(Gy):

- ordering the ILNE within each LNE pair: be-
cause the HO parameters are directional, e.g., ClOyy #
CI0pyn, the LNEs in each LNE pair may be ordered such
that the order of the action outputs are consistent in
both the source and target model. The ordering may be
based on summed edge weights related to the LNE (an edge
reflects an intermediate LNE between two neighboring LNE
pairs). E.g., in Fig. 8, 1in the source graph Gg 309C
within the LNE pair (2,1), LNE 2 may be put first because
the edge (2,1) —(2,3) shares the INE 2 and has a higher
weight 3, while the edge (2,1) —(1,3) shares the LNE 1 and
has a lower weight 2. Alternative schemes to order the
INEs in an ILNE pair may include ranking them based on
selected LNE features, e.g., per-LNE average load or
average received signal strength.

- finding matching LNE pairs between G, and Gq:
for each vertex (LNE pair) in the target sub-MRG G,,
denoted by v€EV(G,), where V(-) denotes the set of all
vertices in a graph, its matching vertex in the source
sub-MRG G,, denoted by u € V(Gg) needs to be found. Thus,
the problem is to find:

vv € V(G,),u"(v) = argmingeyp(y)d(F(v), F(u))

in which d(FOO,FQﬂ) is the distance measure be-
tween the extracted features, denoted by F(v) and F(u),
of the vertices u and v.

The rationale behind this is that the two ver-

tices in two graphs are similar if their neighbors and
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the edges to the neighbors are similar. Thus, the dis-
tance measure of the extracted features of the neigh-
boring vertices and edges may be computed to find the
most similar vertex in Gy to a given vertex in G,.

Table I below gives an example of the matched
order of LNE pairs, as well as the LNEs within each LNE
palr, between the source 309C and target 309A sub-MGRs
in Fig. 8.

Table I: Matched order of LNE pairs and LNEs
Matched order of LNE pairs &

matched order of LNEs within each pair

(ab)— (2,1
(b,©) - (2,3)
(a,0)-(1,3)
None - (3, 4)

In the following, transfer learning from a
source model to a target model is discussed. With the
matched order of LNE pairs and LNEs within each pair,
the order of state and action features may be sorted
such that the inter-feature dependencies in the source
and target model are consistent, as shown in Fig. 8. It
is to be noted that in Fig. 8 the actor network 801A-
801D is used as an example for the actor-critic DRL
algorithms, but the same approach may be used in critic
network and other DRL architectures, such as DQON.

In the following, examples of transfer learning
schemes are provided:

- 1if N?O::Nsnand NgJ::NSJ, the architecture of
M(G,) is the same as My(Gs) because they have the same
dimension of state s and action a,

- direct application: The user may
simply retrieve and apply the source model, 1i.e.,
M (Gp) = My(Gy),

- finetuning: if the user requests

transfer learning service, standard transfer learning



WO 2023/222229 PCT/EP2022/063572

10

15

20

25

30

35

49

approaches may be used to customize the retrieved model
M (G;) to M{(Gy). One option is to use finetuning, which
initializes the neural network by loading the weights,
i.e., Nﬂm(GJ::Nﬁm(GQ, then finetuning the weights of
partial or all layers of Mi(Gy) by training with the data
in target domain (user’s data and network environment),

if Nt(v)>N§V) and/or Nt(L)>N§L), the source
model has higher dimensions of action and state than the
target model, as shown in Fig. 8,

- direct application: the source
model M(Gg) may be directly applied with the following
modifications (an example is shown in diagram 900 of
Fig. 9 which illustrates an example of direct applica-
tion of M;(Gs) 910A for a target model 910B, with actor
network 901A, 901B, respectively):

1. setting the states re-
lated to the LNE-pairs irrelevant to G, (e.g., LNE pair
(3,4) in Table I) to be vectors of zeros. The rationale
behind this is to treat the LNE pairs irrelevant to G,
as if they are “virtually” a part of G,, but with zero
users/services and zero mobility events.

2. use the actions of exist-
ing LNE pairs inG, to interact with the target (user’s)
environment and ignore the action outputs of the irrel-
evant ones. E.g., in Fig. 9, the output as;, and a,3 in
M (G;) 910A does not project to any vertex (LNE pair) in
G, 910B. Thus, they may be ignored,

- knowledge distillation from M(Gy)
1010A to M,(G,) 1010B: applying a transfer learning ap-
proach called knowledge distillation. The knowledge dis-
tillation effectively learns a small student model from
a large teacher model. In this case, the source data
related to G¢ and the pretrained model M(Gg) 1010A may
be used to augment new samples 1002 that fit the state
and action dimensions of M,(G,) 1010B, and train (e.g.,
via loss 1003) M,(G,) 1010B to learn the behavior of
M (G,) 1010A with these samples 1002. An example is shown
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in diagram 1000 of Fig. 10 (which illustrates an example
of knowledge distillation from M;(Gs) 1010A to M. (G+)
1010B, with actor network 1001A, 1001B, respectively).

Further features of the SON node device 210
directly result from the functionalities and parameters
of the communications network device 200 and thus are
not repeated here.

Fig. 2C is a block diagram of the network
service provider device 220, in accordance with an ex-
ample embodiment.

The network service provider device 220 com-
prises at least one processor 222 and at least one memory
224 including computer program code. The network service
provider device 220 may also include other elements,
such as a transceiver configured to enable the network
service provider device 220 to transmit and/or receive
information to/from other devices, as well as other el-
ements not shown in Fig. 2C.

Although the network service provider device
220 1is depicted to include only one processor 222, the
network service provider device 220 may include more
processors. In an embodiment, the memory 224 is capable
of storing instructions, such as an operating system
and/or various applications. Furthermore, the memory 224
may include a storage that may be used to store, e.g.,
at least some of the information and data used in the
disclosed embodiments.

Furthermore, the processor 222 is capable of
executing the stored instructions. In an embodiment, the
processor 222 may be embodied as a multi-core processor,
a single core processor, or a combination of one or more
multi-core processors and one or more single core pro-
cessors. For example, the processor 222 may be embodied
as one or more of various processing devices, such as a
coprocessor, a microprocessor, a controller, a digital
signal processor (DSP), a processing circuitry with or

without an accompanying DSP, or various other processing
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devices including integrated circuits such as, for ex-
ample, an application specific integrated circuit
(ASIC), a field programmable gate array (FPGA), a mi-
crocontroller unit (MCU), a hardware accelerator, a spe-
cial-purpose computer chip, or the like. In an embodi-
ment, the processor 222 may be configured to execute
hard-coded functionality. In an embodiment, the proces-
sor 222 is embodied as an executor of software instruc-
tions, wherein the instructions may specifically con-
figure the processor 222 to perform the algorithms
and/or operations described herein when the instructions
are executed.

The memory 224 may be embodied as one or more
volatile memory devices, one or more non-volatile memory
devices, and/or a combination of one or more volatile
memory devices and non-volatile memory devices. For ex-
ample, the memory 224 may be embodied as semiconductor
memories (such as mask ROM, PROM (programmable ROM),
EPROM (erasable PROM), flash ROM, RAM (random access
memory), etc.).

The at least one memory 224 and the computer
program code are configured to, with the at least one
processor 222, cause the network service provider device
220 at least to obtain from at least one communications
network device 200 at least one subgraph of a logical
network graph representing mobility relations between
INE pairs and their associated profiles.

The at least one memory 224 and the computer
program code are further configured to, with the at
least one processor 222, cause the network service pro-
vider device 220 at least to derive at least one
pretrained reference DRL model for use in solving an
optimization problem related to a SON function within a
SCOR. As discussed 1in more detail above, the SCOR
comprises at least one LNE pair and the SCOR corresponds

to the subgraph.
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The at least one memory 224 and the computer
program code are further configured to, with the at
least one processor 222, cause the network service pro-
vider device 220 at least to store the obtained profiles
and the derived pretrained reference DRL models in the
model database 230A, 230B, 230C.

In other words, the network service provider
device 220 may obtain the sub-MRGs and their profiles
with its MRG generation function. Then, the network ser-
vice provider device 220 may apply its SCOR-based SON
functions online in its network environment and/or of-
fline on 1its collected dataset and derive the pre-
trained reference DRL models. The profiles and the mod-
els may be stored in the SON model DB 230 as reference
models to be retrieved by users or other service pro-
viders.

At least in some embodiments, the model data-
base 230A, 230B, 230C may comprise an indexed model
database such that a same index represents an obtained
profile of one subgraph and a corresponding derived
pretrained reference DRL model in a SCOR that corre-
sponds to the subgraph.

In other words, e.g., for more efficient query
an index-profile DB 230A and/or an index-model DB 230B
may be built, such that the sub-MRG’'s corresponding pro-
file and 1ts pre-trained model may be accessed inde-
pendently with the same index. For the sub-MRG similar-
ity analysis, the index-profile DB 230A may be accessed
to find the sub-MRG profile with the highest similarity.
Then, the index of the found sub-MRG may be used to
retrieve the model in the index-model DB 230BR. In this
case, the SON model DB 230C in Fig. 11 may be replaced
by the index-profile DB 230A and an index-model DB 230B
shown in diagram 700 of Fig. 7 (which illustrates an
example of an indexed profile database 230A and an in-
dexed model database 230B where sub-MRG 1 309A is asso-
ciated to the profile 1 701 and the pre-trained model 1
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703, while sub-MRG 2 309B is associated to the profile
2 702 and the pre-trained model 2 704).

Further features of the network service pro-
vider device 220 directly result from the
functionalities and parameters of the communications
network device 200 and the SON node device 210, and thus
are not repeated here.

Diagram 1100 of Fig. 11 illustrates an overview
of the disclosed embodiments. More specifically, diagram
1100 of Fig. 11 illustrates a transfer learning frame-
work with logical network graph -based model retrieval,
MRG generation, decomposition of the MRG to subgraphs
and their corresponding SCORs, subgraph profiling, and
DRL model retrieval based on a subgraph similarity anal-
ysis. The transfer learning framework of diagram 1100
of Fig. 11 may be implemented with any combination of
the communications network device 200, the SON node
device 210 and the network service provider device 220.

The main functional blocks in Fig. 11 include:

- MRG generation, partitioning, and profiling
1100A: for partitioning a large-scale network graph to
Sub-MRGs with minimum dependencies. A sub-MRG may rep-
resent a SCOR, i.e., a strongly coupled SLA coverage
overlap and mobility dependent region;

- building a SCOR-based reference model DB with
key-content data structure 1100B:

- keys: profiles of the sub-MRGs, and
- contents: pre-trained SCOR-based
distributed DRL models.

- MRG similarity analysis, model retrieval, and
transfer learning 1100C: the profile of the sub-MRG may
be used for similarity analysis and model retrieval. The
retrieved model may be reproduced and fine-tuned to a
customized model with, e.g., transfer learning.

The workflow in Fig. 11 may include, e.g., at

least some of the following:
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- steps la, 1lb, 1lc: a user (e.g., an operator)
1130 saves network measurements in its network environ-
ment 1110 in a data storage 1120. The data storage 1120
may be, e.g., 1in operations and maintenance (0&M) or
other cloud data servers,

- steps 2a, 2b: the user 1130 requests MRG
generation service and grants the service function 1140
access to process its data,

- step 3: upon the request of the user 1130,
the MRG generation service 1140 generates a networkwide
MRG and partitions it to sub-MRGs. It also profiles the
sub-MRGs and sends back the profiles,

- step 4: the service provider (e.g., the net-
work service provider device 220) applies the MRG gen-
eration service function 1140 to 1its collected data
1160, obtains a set of reference sub-MRGs and an offline
dataset in the corresponding SCOR for training a local
DRL agent,

- step 5: the SON function module 1150 (e.g.,
the SON node device 210) obtains the reference SCORs and
the corresponding sub-MRGs,

- steps 6a, 6b: the service provider (e.g., the
network service provider device 220) applies SCOR-based
SON functions (e.g., a distributed multi-agent MRO al-
gorithm) online in its network environment 1170 and/or
offline on its collected dataset 1160, and derives the
pre-trained reference DRL models,

- step 7: the service provider (e.g., the ser-
vice provider 220) saves the pretrained SCOR-based DRL
models and their corresponding sub-MRG profiles in the
SON model DB 230C,

- step 8: the user 1130 makes a query and sends
its sub-MRG profiles to a MRG similarity analysis ser-
vice 1180,

- step 9: the MRG similarity analysis function

1180 finds matching keys,
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- step 10: the MRG similarity analysis function
1180 reports the matching key to a transfer learning -
empowered SON function 1190,

- step 11: based on the matching key, the
transfer learning -empowered SON function 1190 retrieves
the pretrained model upon the request of the user 1130,
and/or

- step 12: the transfer learning -empowered SON
function 1190 applies transfer learning technigques to
fine-tune the retrieved DRL models on the environment
1110 of the user 1130 and/or the dataset 1120 of the
user 1130 and customizes the models for the user 1130.

The disclosed transfer learning framework for
distributed multi-agent SON functions may be added into
an O-RAN AI/ML workflow.

In the following, alternatives for the MRG gen-
eration are briefly discussed.

Alternative 1 - generating the MRG and its de-
composition to SCORs from HO statistics: in case the LNE
logs data is not available, the HO statistics and adja-
cent relationship may be exploited to generate the MRG,
e.g., using neighboring cell list and HO metrics, such
as the number of HO success between neighboring nodes.
Also, a mobility graph may be created from the statis-
tical data of previous handovers. However, unlike in the
MRG generation described above, here, a vertex defines
an LNE and an edge defines an LNE pair. Thus, when
decomposing the graph, the boundaries between the sub-
graphs are not included in any of the subgraphs. Because
the aim is to optimize per LNE pair HO parameters, the
edges need to be grouped, but not the vertices. To this
end, a heuristic step may be applied to add the edge
(LNE pair) between two subgraphs to the subgraph with
less members.

Alternative 2 - generating the MRG and its de-
composition to SCORs from an SLA coverage map: 1n case

neither the LNE logs data nor the mobility statistics



WO 2023/222229 PCT/EP2022/063572

10

15

20

25

30

35

56

are available, e.g., for a network in planning or a
newly deployed network system, sufficient historical
user logs or mobility statistics are not available.
Then, either a simulated (e.g., from a simulator or a
digital twin) or measured SLA coverage map (e.g., from
a driving test) may be used to generate the MRG.

An MRG G =(V,E)may be derived from the SLA cov-
erage map, as shown in Fig. 15. Diagram 1500 of Fig. 15
illustrates deriving an MRG 1501 and SCORs 1503A, 1503B
from an SLA coverage map 1504.

Here, the vertices are the LNEs instead of LNE
pairs. Since the CIOs and TTTs are defined per LNE pairs,
the SCOR is further defined based on the edges of the
MRG (an edge indicates the mobility interaction between
two LNEs). The steps may include, e.g., at least some
of the following:

1. the mobility playground may be gridded spa-
tially. Each grid is marked by a set of LNE indices: if
the SLA coverage of an LNE (partially) covers a grid,
the index of the ILNE is included. It is to be noted that
for different geographical areas the size of the grid
may be different. E.g., a rural area may have a larger
size and urban area may have a smaller size. The sizes
of the grids may be dynamically configured depending on
the UE or service density,

2. each vertex of the MRG 1501 defines an LNE.
The weight of an edge between two LNEs may be computed
by counting the number of the coverage overlapped grids
of two LNEs if at least one LNE is in the neighboring
INE 1list of another,

3. classical graph decomposition/partition
schemes may be used to decompose the MRG 1501 to sub-
graphs 1502A, 1502B,

4. because the CIOs and TTTs are defined per
ILNE pair, groups of LNE pairs may need to be obtained
from the decomposed MRG. The vertices of the MRG in this
scheme are the ILNEs, while the edges are the LNE pairs.
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Same heuristics may be used to add the edges between the
subgraphs to the one with less members to balance the
agent scale. One SCOR 1503A (optimized by a first agent)
may comprise, e.g., LNE pairs {(ab),(b,c),(ac)}, while an-
other SCOR 1593B (optimized by a second agent) may com-
prise LNE pairs {(d, e),(c d), (ce)}.

Diagram 1600 of Fig. 16 illustrates MRG decom-
position when an LNE is defined as a network slice in a
physical cell. The MRG 1602A, 1602B, 1602C, 1602D are
decomposed to four agents optimizing four SCORs,
SCOR_1={(a,b), (b,c), (a,c)} 1603A, SCOR 2={(d,e), (c,d),
(c,e)} 16038, SCOR_3={ (g, f), (f,h)} 1603C,
SCOR 4={(h,1), (I,J), (h,J)} 1603D, respectively. In the
case where an LNE is a logical slice in a physical cell,
there are SLA coverage maps 1604A, 1604B of each slice.
Fig. 16 is an example of how the decomposed SCORs 1603A,
1603B, 1603C, 1603D may be derived from the two SILA
coverage maps 1604A, 1604B corresponding to two slices.
Without inter-slice HO, the LNEs in Slice 2 are not
included in the neighboring INE lists of the LNEs in
Slice 1. Thus, there are no edges between the subgraphs
generated by different slice coverage maps, and four
decomposed SCORs 1603A, 1603B, 1603C, 1603D may be ob-
tained, each optimized by a distributed agent. Further-
more, the disclosure may be extended to a scenario with
inter-slice HO. In that case, edges with higher weights
may exist between LNEs connected to different slices,
and a SCOR may comprise LNE pairs associated with dif-
ferent slices.

Diagram 1700 of Fig. 17 shows an example em-
bodiment of the subject matter described herein illus-
trating an example of a deep deterministic policy gra-
dient (DDPG) architecture of a local agent i with ac-
tions of CIO and TTT values in a continuous space. The
example DDPG architecture comprises a network environ-

ment 1701, an experience replay memory 1702, a mini-
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batch 1703, an actor network 1704, a target actor net-
work 1705, a critic network 1706, a target critic net-
work 1707, a policy gradient 1708, and a loss computing
block 1709.

In other words, diagram 1700 of Fig. 17 is an
example of the above-discussed model I with continuous
CIO and TTT values (defined in a continuous action
space) of the DRL model for an agent with an actor-
critic architecture. The elements of state, action and
reward may include those discussed above. The actor net-
work 1704 may include a policy network that takes the
state as input and outputs the exact continuous action
instead of a probability distribution over actions. The
critic network 1706 may include a Q-value network that
takes in state and action as input and outputs the Q-
value. Experience replay memory 1702 may include a re-
play memory technique used in reinforcement learning
where the agent's experiences are stored at each time-
step. The target critic network 1707 may include a copy
of an action-value function (or Q-function) that is held
constant to serve as a stable target for learning for a
fixed number of timesteps. The policy gradient 1708 may
include a computation of a gradient descent to optimize
the parameters of the neural network based on an ex-
pected return of a long-term cumulative reward. The loss
computing block 1709 may compute a loss function of the
networks based on but not limited to the computed re-
ward.

Diagram 1800 of Fig. 18 shows an example em-
bodiment of the subject matter described herein illus-
trating an example of a deep Q-network (DQN) architec-
ture 1801 of a local agent 1 with actions of step sizes
of CIO and TTT adjustments in a discrete space. As dis-
cussed above in more detail, inputs s; may include, e.qg.,

LNE-specific metrics (e.g., a number of UEs, load, a
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distribution of CQIs, QoS-related metrics, other con-
figurations) and/or LNE-pair specific metrics (e.g., HO-
related metrics, other context information).

In other words, diagram 1800 of Fig. 18 is an
example of the above-discussed model II with a discrete
step size of CIO and TTT adjustment (having a discrete
action space) of the DRL model for an agent with a DQON
architecture. The elements of state, action and reward
may include those discussed above.

Fig. 12 illustrates an example flow chart of a
method 1200, in accordance with an example embodiment.

At operation 1201, the communications network
device 200 decomposes the communications network 110
into the SCORs according to mobility relations between
INE pairs within the communication network 110. As
discussed in more detail above, the SCOR comprises at
least one LNE pair.

At optional operation 1202, the communications
network device 200 may generate a profile for the
subgraph(s), the profile(s) comprising an adjacency
matrix or an adjacency 1list representing the respective
subgraph.

At optional operation 1203, the communications
network device 200 may obtain a DRL model as pretrained
from the SON node device 210.

At operation 1204, the communications network
device 200 assigns a machine learning agent (e.g., the
pretrained one obtained in operation 1203) to at least
one of the decomposed SCORs. The machine learning agent
is configured to apply a DRL model to solve an
optimization problem related to a SON function within
its assigned SCOR.

The method 1200 may be performed by the
communications network device 200 of Fig. 2A. The oper-
ations 1201-1204 can, for example, be performed by the
at least one processor 202 and the at least one memory
204. Further features of the method 1200 directly result
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from the functionalities and ©parameters of the
communications network device 200, and thus are not re-
peated here. The method 1200 can be performed by
computer program(s).

Fig. 13 illustrates an example flow chart of a
method 1300, in accordance with an example embodiment.

At operation 1301, the SON node device 210
receives from the communications network device 200 a
request for a pretrained DRL model for use in solving
an optimization problem related to a SON function within
a SCOR. The request comprises at least one profile of
at least one subgraph of a logical network graph
representing mobility relations between LNE pairs, with
the SCOR comprising at least one LNE pair, and the at
least one subgraph corresponding to the SCOR.

At optional operation 1302, the SON node device
210 may prescreen the profile of the subgraph based on
one or more prescreening parameters to determine one or
more candidate pretrained reference DRL models.

At operation 1303, the SON node device 210
determines a pretrained reference DRL model from the
model database 230A, 230B, 230C by a similarity analysis
based on the profile of the subgraph. When the
prescreening of operation 1302 in performed, the
determining of the pretrained reference DRL model may
be performed on the determined one or more candidate
pretrained reference DRL models.

At optional operation 1304, the SON node device
210 may customize the determined pretrained reference
DRL model, e.g., for at least one machine learning agent
of the communications network device 200. For example,
the customized DRL model may comprise a TL-DRL model.

At operation 1305, the SON node device 210
transmits the (determined/customized) pretrained
reference DRL model (e.g., a TL-DRL model) to the

communications network device 200.
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The method 1300 may be performed by the SON
node device 210 of Fig. 2B. The operations 1301-1305
can, for example, be performed by the at least one pro-
cessor 212 and the at least one memory 214. Further
features of the method 1300 directly result from the
functionalities and parameters of the SON node device
210, and thus are not repeated here. The method 1300 can
be performed by computer program(s).

Fig. 14 illustrates an example flow chart of a
method 1400, in accordance with an example embodiment.

At operation 1401, the network service provider
device 220 obtains from at least one communications
network device 200 at least one subgraph of a logical
network graph representing mobility relations between
INE pairs and their associated profiles.

At operation 1402, the network service provider
device 220 derives at least one pretrained reference DRL
model for use in solving an optimization problem related
to a SON function within a SCOR, with the SCOR comprising
at least one LNE pair, and the SCOR corresponding to the
subgraph.

At operation 1403, the network service provider
device 220 stores the obtained profiles and the derived
pretrained reference DRL models (e.g., TL-DRL models)
in the model database 230A, 230B, 230C.

The method 1400 may be performed by the network
service provider device 220 of Fig. 2C. The operations
1401-1403 can, for example, be performed by the at least
one processor 222 and the at least one memory 224.
Further features of the method 1400 directly result from
the functionalities and parameters of the network ser-
vice provider device 220, and thus are not repeated
here. The method 1400 can be performed by computer
program(s) .

At least some of the embodiments may allow a
distributed multi-agent DRL algorithm for an MRO prob-

lem, where each agent may comprise a varying number of
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physical or logical network boundaries. At least some
of the embodiments may allow minimizing the inter-agent
dependencies by decomposing the network mobility graph.
Such decomposition may provide proper dgranularity to
deploy distributed learning agents, which may achieve a
good tradeoff Dbetween low model complexity and good
model accuracy.

At least some of the embodiments may allow a
transfer learning framework for SON model profiling,
storage, retrieval, retraining, and management such that
one can efficiently retrieve the SON model that was
pretrained in a similar (sub)network environment. At
least some of the embodiments may allow analyzing the
similarity between the relational network graph data.
This approach may be especially beneficial for SON use
cases because it captures the strong interaction between
the network entities within a local agent.

At least some of the embodiments may allow SON
service providers and their customers to easily produce,
archive, share, and reproduce SON models in an open,
multi-vendor, and multi-stakeholder platform.

At least some of the embodiments may allow ei-
ther online training (e.g., using the live network and
its data to train) or offline training to generate the
transfer model or a combination of online and offline
training. The convergence times may be offset by more
real time data.

At least some of the embodiments may allow SON
and O-RAN / virtualized RAN (VRAN) network optimization.

The communications network device 200 may com-
prise means for performing at least one method described
herein. In an example, the means may comprise the at
least one processor 202, and the at least one memory 204
including program code configured to, when executed by
the at least one processor 202, cause the communications

network device 200 to perform the method.
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The SON node device 210 may comprise means for
performing at least one method described herein. In an
example, the means may comprise the at least one pro-
cessor 212, and the at least one memory 214 including
program code configured to, when executed by the at
least one processor 212, cause the SON node device 210
to perform the method. The SON node device 210 may com-
prise a group of virtualized network optimization func-
tions which may be implemented as cloud computing ser-
vice(s).

The network service provider device 220 may
comprise means for performing at least one method de-
scribed herein. In an example, the means may comprise
the at least one processor 222, and the at least one
memory 224 including program code configured to, when
executed by the at least one processor 222, cause the
network service provider device 220 to perform the
method.

The communications network device 200, the SON
node device 210, and/or the network service provider
device 220 may be implemented as separate physical de-
vices. Alternatively, any combination of the
communications network device 200, the SON node device
210, and the network service provider device 220 may be
implemented as a single physical device.

The functionality described herein can be per-
formed, at least in part, by one or more computer program
product components such as software components. Accord-
ing to an embodiment, the communications network device
200, the SON node device 210 and/or the network service
provider device 220 may comprise a processor or proces-—
sor circuitry, such as for example a microcontroller,
configured by the program code when executed to execute
the embodiments of the operations and functionality de-
scribed. Alternatively, or in addition, the functional-
ity described herein can be performed, at least in part,

by one or more hardware logic components. For example,
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and without limitation, illustrative types of hardware
logic components that can be used include Field-pro-
grammable Gate Arrays (FPGAs), Program-specific Inte-
grated Circuits (ASICs), Program-specific Standard
Products (ASSPs), System-on-a-chip systems (S0OCs), Com-
plex Programmable Logic Devices (CPLDs), and Graphics
Processing Units (GPUs).

Any range or device value given herein may be
extended or altered without losing the effect sought.
Also, any embodiment may be combined with another em-
bodiment unless explicitly disallowed.

Although the subject matter has been described
in language specific to structural features and/or acts,
it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the
specific features and acts described above are disclosed
as examples of implementing the claims and other equiv-
alent features and acts are intended to be within the
scope of the claims.

It will be understood that the benefits and
advantages described above may relate to one embodiment
or may relate to several embodiments. The embodiments
are not limited to those that solve any or all of the
stated problems or those that have any or all of the
stated benefits and advantages. It will further be un-
derstood that reference to 'an' item may refer to one
or more of those items.

The steps of the methods described herein may
be carried out in any suitable order, or simultaneously
where appropriate. Additionally, individual blocks may
be deleted from any of the methods without departing
from the spirit and scope of the subject matter de-
scribed herein. Aspects of any of the embodiments de-
scribed above may be combined with aspects of any of the
other embodiments described to form further embodiments

without losing the effect sought.
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The term 'comprising' is used herein to mean
including the method, blocks or elements identified, but
that such blocks or elements do not comprise an exclu-
sive list and a method or apparatus may contain addi-
tional blocks or elements.

It will be understood that the above descrip-
tion 1is given by way of example only and that wvarious
modifications may be made by those skilled in the art.
The above specification, examples and data provide a
complete description of the structure and use of exem-
plary embodiments. Although various embodiments have
been described above with a certain degree of particu-
larity, or with reference to one or more individual
embodiments, those skilled in the art could make numer-
ous alterations to the disclosed embodiments without
departing from the spirit or scope of this specifica-

tion.
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CLAIMS:

1. A communications network device (200),
comprising:

at least one processor (202); and

at least one memory (204) including computer
program code;

the at least one memory (204) and the computer
program code configured to, with the at least one
processor (202), cause the communications network device
(200) at least to:

decompose a communications network (110) into
service level agreement, SLA, coverage overlap regions,
SCORs, according to mobility relations between logical
network entity, ILNE, pairs within the communication
network (110), said SCOR comprising at least one LNE
pair; and

assign a machine learning agent to at least one
of the decomposed SCORs,

wherein said machine learning agent is
configured to apply a deep reinforcement learning model
to solve an optimization problem related to a self-
organizing network, SON, function within its assigned
SCOR.

2. The communications network device (200)
according to c¢laim 1, wherein LNE pairs in a SCOR
comprising at least two LNE pairs are strongly coupled,

and dependency between the SCORs is low.

3. The communications network device (200)
according to claim 2, wherein the at least one memory
(204) and the computer program code are further
configured to, with the at least one processor (202),
cause the communications network device (200) to
decompose the communications network (110) into the
SCORs by:
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generating a logical network graph
corresponding to the communications network (110) and
representing the mobility relations between the LNE
pairs; and

decomposing the 1logical network graph into
subgraphs, said subgraphs representing SCORs comprising

strongly coupled LNE pairs.

4., The communications network device (200)
according to claim 3, wherein vertices of the logical
network graph comprise the LNE pairs, and weights of
edges of the logical network graph reflect a mobility

relationship between two LNE pairs.

5. The communications network device (200)
according to any of claims 1 to 4, wherein the at least
one memory (204) and the computer program code are
further configured to, with the at least one processor
(202), cause the communications network device (200) at
least to generate a profile for said subgraph, said
profile comprising an adjacency matrix or an adjacency

list representing the respective subgraph.

6. The communications network device (200)
according to claim 5, wherein said profile further
comprises at least one of: a number of vertices, a number
of edges, a number of involved LNEs, a degree
distribution, a distribution of edge weights, a
distribution of summed weights of edges incident to a
vertex, or at least one LNE specific feature for the
respective subgraph including at least one of a
deployment type, an LNE type, an associated user
mobility distribution, position information, or an LNE
load state.

7. The communications network device (200)

according to any of claims 1 to 6, wherein the at least
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one memory (204) and the computer program code are
further configured to, with the at least one processor
(202), cause the communications network device (200) at
least to obtain the deep reinforcement learning model

as pretrained from a SON node device (210).

8. The communications network device (200)
according to any of claims 1 to 7, wherein states of
said assigned machine learning agent comprise at least
one of: LNE -specific metrics, ILNE pair -specific
metrics, or contextual information for capturing at

least one of temporal or spatial correlations.

9. The communications network device (200)
according to any of claims 1 to 8, wherein an action
space of said assigned machine learning agent comprises

a discrete action space or a continuous action space.

10. The communications network device (200)
according to any of claims 1 to 9, wherein rewards for
sald assigned machine learning agent are based on at
least one of: LNE pair -specific handover performance
metrics, LNE -specific quality of service, Qos,
performance metrics, or LNE pair -specific QoS

performance metrics.

11. The communications network device (200)
according to any of claims 1 to 10, wherein the SON
function comprises a mobility robustness optimization,
MRO, function, a coverage and capacity optimization

function, or a mobility load balancing function.

12. The communications network device (200)
according to c¢laim 11, wherein the MRO function
comprises optimization of one or more handover

parameters.
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13. The communications network device (200)
according to any of claims 1 to 12, wherein said SCOR
further comprises a group of physical cell boundaries,
a group of logical cell Dboundaries, or a dgroup of

physical cell boundaries and logical cell boundaries.

14. The communications network device (200)
according to any of claims 1 to 13, wherein the LNEs

comprise at least one of cells, slices, or QoS flows.

15. The communications network device (200)
according to any of claims 3 to 14, wherein the
generating of the logical network graph comprises
generating the logical network graph based on historical
LNE data, statistical mobility data, or an SLA coverage

map.

le. A communications network device (200),
comprising means (202, 204) for:

decomposing a communications network (110)
into service 1level agreement, SLA, coverage overlap
regions, SCORs, according to mobility relations between
logical network entity, LNE, pairs within the
communication network (110), said SCOR comprising at
least one LNE pair; and

assigning a machine learning agent to at least
one of the decomposed SCORs,

wherein said machine learning agent is
configured to apply a deep reinforcement learning model
to solve an optimization problem related to a self-
organizing network, SON, function within its assigned
SCOR.

17. A method (1200), comprising:
decomposing (1201), by a communications
network device, a communications network into service

level agreement, SLA, coverage overlap regions, SCORs,
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according to mobility relations between logical network
entity, LNE, pairs within the communication network,
said SCOR comprising at least one LNE pair; and

assigning (1204), by the communications
network device, a machine learning agent to at least one
of the decomposed SCORs,

wherein said machine learning agent is
configured to apply a deep reinforcement learning model
to solve an optimization problem related to a self-
organizing network, SON, function within its assigned
SCOR.

18. A computer program comprising instructions
for causing a communications network device to perform
at least the following:

decomposing a communications network into
service level agreement, SLA, coverage overlap regions,
SCORs, according to mobility relations between logical
network entity, ILNE, pairs within the communication
network, said SCOR comprising at least one LNE pair; and

assigning a machine learning agent to at least
one of the decomposed SCORs,

wherein said machine learning agent is
configured to apply a deep reinforcement learning model
to solve an optimization problem related to a self-
organizing network, SON, function within its assigned
SCOR.

19. A self-organizing network, SON, node
device (210), comprising:

at least one processor (212); and

at least one memory (214) including computer
program code;

the at least one memory (214) and the computer
program code configured to, with the at least one
processor (212), cause the SON node device (210) at

least to:
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receive from a communications network device
(200) a request for a pretrained deep reinforcement
learning model for use 1in solving an optimization
problem related to a self-organizing network, SON,
function within a service level agreement, SLA, coverage
overlap region, SCOR, the request comprising at least
one profile of at least one subgraph of a logical network
graph representing mobility relations between logical
network entity, LNE, pairs, with said SCOR comprising
at least one LNE pair and said at least one subgraph
corresponding to said SCOR;

determine a pretrained reference deep rein-
forcement learning model from a model database (230A,
230B, 230C) by a similarity analysis based on said
profile of said subgraph; and

transmit the determined pretrained reference
deep reinforcement learning model to the communications

network device (200).

20. The SON node device (210) according to
claim 19, wherein the similarity analysis comprises a
relational similarity analysis between the at least one
subgraph in the received at least one profile and sub-
graphs associated with the pretrained reference deep
reinforcement learning models stored in the model data-
base (230A, 230B, 230C).

21. The SON node device (210) according to
claim 19 or 20, wherein the at least one memory (214)
and the computer program code are configured to, with
the at least one processor (212), further cause the SON
node device (210) to:

customize the determined reference deep rein-
forcement learning model; and

transmit the customized deep reinforcement
learning model to the communications network device
(200) .
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22. The SON node device (210) according to any
of claims 19 to 21, wherein the at least one memory
(214) and the computer program code are configured to,
with the at least one processor (212), further cause the
SON node device (210) to:

prescreen said profile of said subgraph based
On one Or more prescreening parameters to determine one
or more candidate pretrained reference deep reinforce-
ment learning models,

wherein the determining of the pretrained
reference deep reinforcement learning model is performed
on the determined one or more candidate pretrained

reference deep reinforcement learning models.

23. A self-organizing network, SON, node
device (210), comprising means (212, 214) for:

receiving from a communications network device
(200) a request for a pretrained deep reinforcement
learning model for use 1in solving an optimization
problem related to a self-organizing network, SON,
function within a service level agreement, SLA, coverage
overlap region, SCOR, the request comprising at least
one profile of at least one subgraph of a logical network
graph representing mobility relations between logical
network entity, LNE, pairs, with said SCOR comprising
at least one LNE pair and said at least one subgraph
corresponding to said SCOR;

determining a pretrained reference deep rein-
forcement learning model from a model database (230A,
230B, 230C) by a similarity analysis based on said
profile of said subgraph; and

transmitting the determined pretrained
reference deep reinforcement learning model to the

communications network device (200).

24. A method (1300), comprising:



WO 2023/222229 PCT/EP2022/063572

10

15

20

25

30

35

73

receiving (1301) at a self-organizing network,
SON, node device from a communications network device a
request for a pretrained deep reinforcement learning
model for use in solving an optimization problem related
to a self-organizing network, SON, function within a
service level agreement, SLA, coverage overlap region,
SCOR, the request comprising at least one profile of at
least one subgraph of a logical network graph
representing mobility relations between logical network
entity, LNE, pairs, with said SCOR comprising at least
one LNE pair and said at least ©one subgraph
corresponding to said SCOR;

determining (1303), by the SON node device, a
pretrained reference deep reinforcement learning model
from a model database by a similarity analysis based on
said profile of said subgraph; and

transmitting (1305), by the SON node device,
the determined pretrained reference deep reinforcement

learning model to the communications network device.

25. A computer program comprising instructions
for causing a self-organizing network, SON, node device
to perform at least the following:

receiving from a communications network device
a request for a pretrained deep reinforcement learning
model for use in solving an optimization problem related
to a self-organizing network, SON, function within a
service level agreement, SLA, coverage overlap region,
SCOR, the request comprising at least one profile of at
least one subgraph of a logical network graph
representing mobility relations between logical network
entity, LNE, pairs, with said SCOR comprising at least
one LNE pair and said at least ©one subgraph
corresponding to said SCOR;

determining a pretrained reference deep rein-

forcement learning model from a model database by a



WO 2023/222229 PCT/EP2022/063572

10

15

20

25

30

35

74

similarity analysis based on said profile of said
subgraph; and

transmitting the determined pretrained
reference deep reinforcement learning model to the

communications network device.

26. A network service provider device (220),
comprising:

at least one processor (222); and

at least one memory (224) including computer
program code;

the at least one memory (224) and the computer
program code configured to, with the at least one
processor (222), cause the network service provider de-
vice (220) at least to:

obtain from at least one communications network
device (200) at least one subgraph of a logical network
graph representing mobility relations between logical
network entity, LNE, pairs and their associated
profiles;

derive at least one pretrained reference deep
reinforcement learning model for use 1in solving an
optimization problem related to a self-organizing
network, SON, function within a service level agreement,
SLA, coverage overlap region, SCOR, with said SCOR
comprising at least one LNE pair and said SCOR
corresponding to said subgraph; and

store the obtained profiles and the derived
pretrained reference deep reinforcement learning models
in a model database (230A, 230B, 230C).

27. The network service provider device (220)
according to claim 26, wherein the model database (230A,
230B, 230C) comprises an indexed model database such
that a same index represents an obtained profile of one

subgraph and a corresponding derived pretrained
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reference deep reinforcement learning model in a SCOR

that corresponds to said subgraph.

28. A network service provider device (220),
comprising means (222, 224) for:

obtaining from at least one communications
network device (200) at least one subgraph of a logical
network graph representing mobility relations between
logical network entity, LNE, pairs and their associated
profiles;

deriving at least one pretrained reference deep
reinforcement learning model for use 1in solving an
optimization problem related to a self-organizing
network, SON, function within a service level agreement,
SLA, coverage overlap region, SCOR, with said SCOR
comprising at least one LNE pair and said SCOR
corresponding to said subgraph; and

storing the obtained profiles and the derived
pretrained reference deep reinforcement learning models
in a model database (230A, 230B, 230C).

29. A method (1400), comprising:

obtaining (1401), by a network service provider
device, from at least one communications network device
at least one subgraph of a logical network graph
representing mobility relations between logical network
entity, LNE, pairs and their associated profiles;

deriving (1402), by the network service pro-
vider device, at least one pretrained reference deep
reinforcement learning model for use 1in solving an
optimization problem related to a self-organizing
network, SON, function within a service level agreement,
SLA, coverage overlap region, SCOR, with said SCOR
comprising at least one LNE pair and said SCOR
corresponding to said subgraph; and

storing (1403), by the network service provider

device, the obtained profiles and the derived pretrained
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database.

30. A computer program comprising instructions
for causing a network service provider device to perform
at least the following:

obtaining from at least one communications
network device at least one subgraph of a logical
network graph representing mobility relations between
logical network entity, LNE, pairs and their associated
profiles;

deriving at least one pretrained reference deep
reinforcement learning model for use 1in solving an
optimization problem related to a self-organizing
network, SON, function within a service level agreement,
SLA, coverage overlap region, SCOR, with said SCOR
comprising at least one LNE pair and said SCOR
corresponding to said subgraph; and

storing the obtained profiles and the derived
pretrained reference deep reinforcement learning models

in a model database.
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Decompose a communications network into SCORs according to
mobility relations between LNE pairs within the communication ,\1/201

network
Generate a profile for the subgraph, the profile comprising an 1202
adjacency matrix or an adjacency list representing the respective M\
subgraph

'

Obtain the transfer based deep reinforcement learning model as ,\1/203
pretrained from a self-organizing network, SON, node device

'

Assign a machine learning agent to at least one of the decomposed
SCORs. The machine learning agent is configured to apply a deep
reinforcement learning model to solve an optimization problem 1206
related to a SON function within its assigned SCOR. (N

12005

FIG. 12
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Receive from a communications network device a request for a
pretrained transfer based deep reinforcement learning model for | 1301
use in solving an optimization problem related to a SON function

within a SCOR

!

Prescreen the profile of the subgraph based on one or more 1302
prescreening parameters to determine one or more candidate N~
pretrained reference deep reinforcement learn-ing models

!

Determine a pretrained reference deep reinforcement learning 1303
model from the model database by a similarity analysis based on M\~
the profile of the subgraph

v

Customize the determined pretrained deep reinforcement learning | 1304
model for at least one machine learning agent of the N\~
communications network device

!

Transmitting the pretrained reference deep reinforcement learning | _ 1305
model to the communications network device e
13005

FIG. 13
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Obtain from at least one communications network device at least ,\1/401
one subgraph of a logical network graph representing mobility
relations between LNE pairs and their associated profiles

!

Derive at least one pretrained reference deep reinforcement 1402
learning model for use in solving an optimization problem related to ™\~
a SON function within a SCOR, with the SCOR comprising at least
one LNE pair and the SCOR corresponding to the subgraph

'

Store the obtained profiles and the derived pretrained reference
deep reinforcement learning models in the model database

14005

1403
™\

FIG. 14
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This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-18

Communications network device which is adapted to decompose
a network into regions and assigns a machine learning agent
to at least one region.

2. claims: 19-25

Self-organizing network node which is adapted to apply
similarity analysis to retrieve a learning model from a
database.

3. claims: 26-30

Network service provider device which is adapted to perform
subgraph profiling.
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