
US 20210191646A1
MU INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0191646 A1

Bianco (43) Pub . Date : Jun . 24 , 2021

(54) ELASTIC BUFFER FOR MEDIA
MANAGEMENT OF A MEMORY
SUB - SYSTEM

(71) Applicant : Micron Technology , Inc. , Boise , ID
(US)

(72) Inventor : Antonio David Bianco , Boise , ID (US)

(52) U.S. Cl .
CPC G06F 370656 (2013.01) ; G06F 3/0673

(2013.01) ; G06F 370659 (2013.01) ; G06F
3/0604 (2013.01)

(57) ABSTRACT
Methods , systems , and devices for an elastic buffer for a
media management operation are described . A plurality of
entries associated with a media management operation for a
memory sub - system are stored . A first set of one or more
write commands associated with the media management
operation are buffered using the plurality of entries based on
a second set of one or more write commands associated with
a host write procedure . The first set of one or more write
commands associated with the media management operation
are issued based on the plurality of entries and a completion
of the second set of one or more write commands associated
with the host write procedure .

(21) Appl . No .: 16 / 721,712

(22) Filed : Dec. 19 , 2019

Publication Classification
(51) Int . Ci .

G06F 3/06 (2006.01)

Memory Sub - System 110

Memory Sub - System Controller 115

Processor 120

Buffer Manager 150

Local Memory 125 Host System
105

Memory Device 130

Local Media
Controller 135

Memory Device 140

Patent Application Publication Jun . 24 , 2021 Sheet 1 of 5 US 2021/0191646 A1

Memory Sub - System 110

Memory Sub - System Controller 115

Processor 120

Bufter Manager 150

Host System Local Memory 125

Memory Device 130

Local Media
Controller 135

Memory Device 140

FIG . 1

Patent Application Publication Jun . 24 , 2021 Sheet 2 of 5 US 2021/0191646 A1

Store a set of entries associated with a set
of media management operations

Buffer a first set of one or more write
commands associated with the set of media
management operations using the set of
entries based at least in part on a second

set of one or more write commands
associated with a host - initiated write

operaiton

Issue the first set of one or more write
commands associated with the set of media
management operations based at least in
part on the set of entries and a completion
of the second set of one or more write
commands associated with the host

initiated write operation

215

200

FIG . 2

Patent Application Publication Jun . 24 , 2021 Sheet 3 of 5 US 2021/0191646 A1

373

Scoreboard
302

Range
Flow
320

330 Replay
Flow
325

Read
Buffer

367

305 369 Read
Complete

345 340 375

Lookup
350

381 Receive
Response

355

310 383

385 Issue
Read

Write
Buffer
389 315

387 Receive
Response / Issue

Write 365

300

FIG . 3

Write Buffer 420

1

2

3

3 5

Dirty / Stale Data

Patent Application Publication

X

Valid Data

Scoreboard 425
awaran

receber

Erased Data

UR

clientes

Read Sequence 405

Read Responses 410

Write Commands 415

1 1

2 2

3

4

1

1

2

2 2

3

M

4

12 [

Jun . 24 , 2021 Sheet 4 of 5

5

7

?

5

6

7

8

8

7

9

12

12

5

9

3

-

Î
IN

US 2021/0191646 A1

FIG . 4

Patent Application Publication Jun . 24 , 2021 Sheet 5 of 5 US 2021/0191646 A1

545 Processing Device
505

Instructions
535

Buffer
Manager

Static Memory
515

Main Memory

Data Storage System
525 Instructions

535 Machine - Readable

Buffer
Manager

Instructions
535

Buffer
Manager
550 Network Interface

Device
520

Network

FIG . 5

US 2021/0191646 A1 Jun . 24 , 2021
1

ELASTIC BUFFER FOR MEDIA
MANAGEMENT OF A MEMORY

SUB - SYSTEM

TECHNICAL FIELD

[0001] The following relates generally to a memory sub
system and more specifically to an for media management
for a memory sub - system .

BACKGROUND

[0002] A memory sub - system can include one or more
memory components that store data . The memory compo
nents can be , for example , non - volatile memory components
and volatile memory components . In general , a host system
can utilize a memory sub - system to store data at the memory
components and to retrieve data from the memory compo
nents .

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The disclosure will be understood more fully from
the detailed description given below and from the accom
panying drawings of various examples of the disclosure . The
drawings , however , should not be taken to limit the disclo
sure to the specific examples , but are for explanation and
understanding only .
[0004] FIG . 1 illustrates an example computing system
that includes a memory sub - system in accordance with some
examples of the present disclosure .
[0005] FIG . 2 is a flow diagram of an example method of
media management using an elastic buffer in accordance
with some examples of the present disclosure .
[0006] FIG . 3 is a block diagram of an example method for
media management using an elastic buffer in accordance
with some examples of the present disclosure .
[0007] FIG . 4 is a diagram of an example elastic buffer for
media management for a memory sub - system in accordance
with some examples of the present disclosure .
[0008] FIG . 5 is a block diagram of an example computer
system in which examples of the present disclosure can
operate .

[0011] The data operations can be media management
related operations that are initiated by the memory sub
system . A memory sub - system controller can perform opera
tions for media management algorithms , such as wear lev
eling , refresh , garbage collection , scrub , etc. The memory
sub - system can initiate media management operations , that
can include executing , for example a write operation , on
data that is stored on a memory device .
[0012] A memory device can be a non - volatile memory
device . A non - volatile memory device is a package of one or
more dice . Each die can consist of one or more planes . For
some types of non - volatile memory devices (e.g. , negative
and (NAND) devices) , each plane consists of a set of
physical blocks . Each block consists of a set of pages . Each
page consists of a set of memory cells , which store bits of
data . For some memory devices , such as NAND devices ,
blocks are the smallest area than can be erased and pages
within the blocks cannot be erased individually . For such
devices , erase operations are performed one block at a time .
A page of a block can contain valid data , invalid data , or no
data . Invalid data is data that is marked as outdated as a new
version of the data is stored on the memory device . Invalid
data includes data that was previously written but is no
longer associated with a valid logical address , such as a
logical address referenced by a host system in a physical to
logical (P2L) mapping table . Valid data is the most recent
version of such data being stored on the memory device . A
memory sub - system can mark data as invalid based on
information received , for example , from an operating sys
tem . A page that does not contain data includes a page that
has been previously erased , and not yet written to .
[0013] A memory sub - system controller can perform
operations for media management algorithms , such as wear
leveling , refresh , garbage collection , scrub , etc. A block may
have some pages containing valid data and some pages
containing invalid data . To avoid waiting for all of the pages
in the block to have invalid data in order to erase and reuse
the block , an algorithm hereinafter referred to as “ garbage
collection ” can be invoked to allow the block to be erased
and released as a free block for subsequent write operations .
Garbage collection is a set of media management operations
that include , for example , selecting a block that contains
valid and invalid data , selecting pages in the block that
contain valid data , copying the valid data to new locations
(e.g. , free pages in another block) , marking the data in the
previously selected pages as invalid , and erasing the selected
block .
[0014] “ Garbage collection ” hereinafter refers to selecting
a block , rewriting the valid data from the selected block to

ther block , and erasing all invalid data and valid data
stored at the selected block . The valid data from multiple
selected blocks can be copied to a smaller number of other
blocks and the selected blocks can then be erased . As a
result , the number of blocks that have been erased can be
increased such that more blocks are available to store
subsequent data from a host system .
[0015] During garbage collection , valid data of the block
to be erased is initially read into and stored by a buffer based
on one or more read commands issued by a memory
sub - system controller and the corresponding page (e.g. , the
page on which the valid data is contained) is erased . The
valid data can then be written (e.g. , re - written) to the
memory sub - system (e.g. , to a different page of the memory
device) . In order to write the valid data to a location (e.g. , a

DETAILED DESCRIPTION

[0009] Aspects of the present disclosure are directed to an
elastic buffer media management for a memory sub - system .
A memory sub - system can be a storage device , a memory
module , or a hybrid of a storage device and memory module .
Examples of storage devices and memory modules are
described below in conjunction with FIG . 1. In general , a
host system can utilize a memory sub - system that includes
one or more memory devices that store data . The host system
can provide data to be stored at the memory sub - system and
can request data to be retrieved from the memory sub
system .
[0010] Data operations can be performed by the memory
sub - system . The data operations can be host - initiated opera
tions . For example , the host system can initiate a data
operation (e.g. , write , read , erase , etc.) on a memory sub
system . The host system can send access requests (e.g. , write
command , read command) to the memory sub - system , such
as to store data on a memory device at the memory sub
system and to read data from the memory device on the
memory sub - system .

US 2021/0191646 A1 Jun . 24 , 2021
2

different page of the memory device) , write commands are
issued by the memory controller , each write command
indicating a memory address (e.g. , a destination memory
address) to which the valid data is to be written .
[0016] In some garbage collection procedures , the write
commands are issued once the corresponding read command
has been completed . The read commands are issued in a
given order (e.g. , a first , sequential order) , but in some cases ,
the read commands are not completed in the same order . As
write commands are issued once a corresponding read
command is complete , the write commands are not issued in
the same order in which the read commands were issued
(i.e. , the write commands are issued in a non - sequential
manner with respect to the order of the issued read com
mands) . Such writing techniques (e.g. , writing valid data
back to a block in a non - sequential manner during a garbage
collection procedure) can result in the memory sub - system
experiencing a performance loss as blocks of data are
written to pages out of order , which may increase the latency
for future read operations to be performed on the blocks of
data .
[0017] Aspects of the present disclosure address these and
other issues through the use of a scoreboard data structure
that provides an elastic buffer during a garbage collection
procedure . An elastic buffer may allow for a delay in the
issuance of a write command (or multiple write commands)
for a garbage collection procedure that are associated with
out - of - order read commands . For example , when pages of
valid data are read from a block during a garbage collection
procedure , the scoreboard can store entries related to a
sequence of read operations for the garbage collection
procedure , and use these entries to maintain (e.g. , track) the
order in which pages are read . Accordingly , after the block
has been erased , the pages of valid data can be written (e.g. ,
re - written) to a new location in the same order in which the
pages are read (e.g. , in sequential order) . That is , write
commands for the pages of valid data can be issued to in a
same order as the read commands were issued , which can
result in the storage of the data to the new location in a same
order as they were originally stored . Additionally or alter
natively , the scoreboard may act as a buffer to delay the
issuance of the write commands associated with the garbage
collection procedure . While the commands are delayed , the
system may perform write operations (e.g. , host write opera
tions) that are not associated with the garbage collection
procedure . That is , delaying the garbage collection write
commands may allow for the system to utilize available
bandwidth to process other commands or operations . This
can result in the memory sub - system having improved read ,
write , and erase speeds , reduced power consumption ,
improved processing times , and the like .
[0018] FIG . 1 illustrates an example computing system
100 that includes a memory sub - system 110 in accordance
with some embodiments of the present disclosure . The
computing environment can include a host system 105 and
a memory sub - system 110. The memory sub - system 110 can
include media , such as one or more non - volatile memory
devices (e.g. , memory device 130) , one or more volatile
memory devices (e.g. , memory device 140) , or a combina
tion thereof .
[0019] A memory sub - system 110 can be a storage device ,
a memory module , or a hybrid of a storage device and
memory module . Examples of a storage device include a
solid - state drive (SSD) , a flash drive , a universal serial bus

(USB) flash drive , an embedded Multi - Media Controller
(eMMC) drive , a Universal Flash Storage (UFS) drive , a
secure digital (SD) card , and a hard disk drive (HDD) .
Examples of memory modules include a dual in - line
memory module (DIMM) , a small outline DIMM (SO
DIMM) , and a non - volatile DIMM (NVDIMM) .
[0020] The computing system 100 can be a computing
device such as a desktop computer , laptop computer , net
work server , mobile device , a vehicle (e.g. , airplane , drone ,
train , automobile , or other conveyance) , Internet of Things
(10T) enabled device , embedded computer (e.g. , one
included in a vehicle , industrial equipment , or a networked
commercial device) , or such computing device that includes
memory and a processing device .
[0021] The computing system 100 can include a host
system 105 that is coupled with one or more memory
sub - systems 110. In some examples , the host system 105 is
coupled with different types of memory sub - systems 110 .
FIG . 1 illustrates one example of a host system 105 coupled
with one memory sub - system 110. As used herein , “ coupled
to ” or “ coupled with ” generally refers to a connection
between components , which can be an indirect communi
cative connection or direct communicative connection (e.g. ,
without intervening components) , whether wired or wire
less , including connections such as electrical , optical , mag
netic , etc.
[0022] The host system 105 can include a processor chip
set and a software stack executed by the processor chipset .
The processor chipset can include one or more cores , one or
more caches , a memory controller (e.g. , NVDIMM control
ler) , and a storage protocol controller (e.g. , PCIe controller ,
SATA controller) . The host system 105 uses the memory
sub - system 110 , for example , to write data to the memory
sub - system 110 and read data from the memory sub - system
110 .
[0023] The host system 105 can be coupled to the memory
sub - system 110 using a physical host interface . Examples of
a physical host interface include , but are not limited to , a
serial advanced technology attachment (SATA) interface , a
peripheral component interconnect express (PCIe) interface ,
universal serial bus (USB) interface , Fiber Channel , Small
Computer System Interface (SCSI) , Serial Attached SCSI
(SAS) , dual in - line memory module (DIMM) interface (e.g. ,
DIMM socket interface that supports Double Data Rate
(DDR)) , etc. The physical host interface can be used to
transmit data between the host system 105 and the memory
sub - system 110. The host system 105 can further utilize a
non - volatile memory Express (NVMe) interface to access
the memory components (e.g. , memory devices 130) when
the memory sub - system 110 is coupled with the host system
105 by the PCIe interface . The physical host interface can
provide an interface for passing control , address , data , and
other signals between the memory sub - system 110 and the
host system 105 .
[0024] The memory devices can include any combination
of the different types of non - volatile memory devices and / or
volatile memory devices . The volatile memory devices (e.g. ,
memory device 140) can be , but are not limited to , random
access memory (RAM) , such as dynamic RAM (DRAM)
and synchronous DRAM (SDRAM) .
[0025] Some examples of non - volatile memory devices
(e.g. , memory device 130) includes a NAND type flash
memory . Another example of non - volatile memory device is
write - in - place memory , such as three - dimensional cross

US 2021/0191646 A1 Jun . 24 , 2021
3

point (“ 3D cross - point ") memory . A cross - point array of
non - volatile memory can perform bit storage based on a
change of bulk resistance , in conjunction with a stackable
cross - gridded data access array . Additionally , in contrast to
many flash - based memories , cross - point non - volatile
memory can perform a write in - place operation , where a
non - volatile memory cell can be programmed without the
non - volatile memory cell being previously erased .
[0026] Each of the memory devices 130 can include one or
more arrays of memory cells . One type of memory cell , for
example , single level cells (SLC) can store one bit per cell .
Other types of memory cells , such as multi - level cells
(MLCs) , triple level cells (TLCs) , and quad - level cells
(QLCs) , can store multiple bits per cell . In some embodi
ments , each of the memory devices 130 can include one or
more arrays of memory cells such as SLCs , MLCs , TLCs ,
QLCs , or any combination of such . In some embodiments ,
a particular memory device can include an SLC portion , and
an MLC portion , a TLC portion , or a QLC portion of
memory cells . The memory cells of the memory devices 130
can be grouped as pages that can refer to a logical unit of the
memory device used to store data . With some types of
memory (e.g. , NAND) , pages can be grouped to form
blocks .
[0027] Although non - volatile memory devices such as
NAND type flash memory are described , the memory device
130 can be based on any other type of non - volatile memory ,
such as read - only memory (ROM) , phase change memory
(PCM) , self - selecting memory , other chalcogenide based
memories , ferroelectric RAM (FeRAM) , magneto RAM
(MRAM) , negative- or (NOR) flash memory , electrically
erasable programmable ROM (EEPROM) .
[0028] The memory sub - system controller 115 (or con
troller 115 for simplicity) can communicate with the
memory devices 130 to perform operations such as reading
data , writing data , or erasing data at the memory devices 130
and other such operations . The memory sub - system control
ler 115 can include hardware such as one or more integrated
circuits and / or discrete components , a buffer memory , or a
combination thereof . The hardware can include digital cir
cuitry with dedicated (i.e. , hard - coded) logic to perform the
operations described herein . The memory sub - system con
troller 115 can be a microcontroller , special purpose logic
circuitry (e.g. , a field programmable gate array (FPGA) , an
application specific integrated circuit (ASIC) , a digital sig
nal processor (DSP)) , or other suitable processor .
[0029] The memory sub - system controller 115 can include
a processor 120 (e.g. , a processing device) configured to
execute instructions stored in a local memory 125. In the
illustrated example , the local memory 125 of the memory
sub - system controller 115 includes an embedded memory
configured to store instructions for performing various pro
cesses , operations , logic flows , and routines that control
operation of the memory sub - system 110 , including han
dling communications between the memory sub - system 110
and the host system 105 .
[0030] In some examples , the local memory 125 can
include memory registers storing memory pointers , fetched
data , etc. The local memory 125 can also include read - only
memory (ROM) for storing micro - code . While the example
memory sub - system 110 in FIG . 1 has been illustrated as
including the memory sub - system controller 115 , in another
example of the present disclosure , a memory sub - system 110
does not include a memory sub - system controller 115 , and

can instead rely upon external control (e.g. , provided by an
external host , or by a processor or controller separate from
the memory sub - system) .
[0031] In general , the memory sub - system controller 115
can receive commands or operations from the host system
105 and can convert the commands or operations into
instructions or appropriate commands to achieve the desired
access to the memory devices 130. The memory sub - system
controller 115 can be responsible for other operations such
as wear leveling operations , garbage collection operations ,
error detection and error - correcting code (ECC) operations ,
encryption operations , caching operations , and address
translations between a logical address (e.g. , a logical block
address (LBA) , namespace) and a physical address (e.g. ,
physical block address) that are associated with the memory
devices 130. The memory sub - system controller 115 can
further include host interface circuitry to communicate with
the host system 105 via the physical host interface . The host
interface circuitry can convert the commands received from
the host system into command instructions to access the
memory devices 130 as well as convert responses associated
with the memory devices 130 into information for the host
system 105 .
[0032] The memory sub - system 110 can also include
additional circuitry or components that are not illustrated . In
some examples , the memory sub - system 110 can include a
cache or buffer (e.g. , DRAM) and address circuitry (e.g. , a
row decoder and a column decoder) that can receive an
address from the memory sub - system controller 115 and
decode the address to access the memory devices 130 .
[0033] In some examples , the memory devices 130
include local media controllers 135 that operate in conjunc
tion with memory sub - system controller 115 to execute
operations on one or more memory cells of the memory
devices 130. An external controller (e.g. , memory sub
system controller 115) can externally manage the memory
device 130 (e.g. , perform media management operations on
the memory device 130) . In some embodiments , a memory
device 130 is a managed memory device , which is a raw
memory device combined with a local controller (e.g. , local
controller 135) for media management within the same
memory device package . An example of a managed memory
device is a managed NAND (MNAND) device .
[0034] The memory sub - system 110 includes a buffer
manager 150 that can buffer one or more write commands
for a media management operation . In some examples , the
buffer manager 150 may utilize one or more scoreboard
entries of a scoreboard for buffering the write commands . As
discussed herein , one or more components may be config
ured to perform a media management operation using the
buffer manager 150 to delay (e.g. , buffer) one or more write
commands associated with a media management operation .
While the write commands are delayed , one or more other
write operations (e.g. , host write operations) may be per
formed because there is additional bandwidth provided to
the memory device due to the delay in issuing the media
management write commands .
[0035] In some examples , the memory sub - system con
troller 115 includes at least a portion of the buffer manager
150. For example , the memory sub - system controller 115
can include a processor 120 (e.g. , a processing device)
configured to execute instructions stored in local memory
125 for performing the operations described herein . In some

US 2021/0191646 A1 Jun . 24 , 2021
4

examples , the buffer manager 150 is part of the host system
105 , an application , or an operating system .
[0036] Additionally or alternatively , the buffer manager
150 can delay the issuance of one or more write commands
during a media management operation . When a write com
mand is generated , it may or may not be able to be issued
immediately . For example , the issuance of the write com
mand may be delayed due to system resources being allo
cated (e.g. , temporarily allocated) to other processes .
Accordingly , when a write command is generated , the buffer
manager 150 may provide the write command to a buffer
until it is issued . Further details with regards to the opera
tions of the buffer manager 150 are described below .
[0037] FIG . 2 is a flow diagram 200 of an example method
of media management using an elastic buffer in accordance
with some examples of the present disclosure . The method
200 can be performed by processing logic that can include
hardware (e.g. , processing device , circuitry , dedicated logic ,
programmable logic , microcode , hardware of a device , inte
grated circuit , etc.) , software (e.g. , instructions run or
executed on a processing device) , or a combination thereof .
In some examples , the method 200 is performed by the
buffer manager 150 of FIG . 1. Although shown in a par
ticular sequence or order , unless otherwise specified , the
order of the operations can be modified . Thus , the illustrated
examples should be understood only as examples , and the
illustrated operations can be performed in a different order ,
and some operations can be performed in parallel . Addition
ally , one or more operations can be omitted in various
examples . Thus , not all operations are required in every
example . Other method flows are possible .
[0038] At operation 205 , the processing device can store a
set of entries associated with a set of media management
operations for a memory sub - system . In some examples ,
each entry may include a current state of the set of media
management operations with respect to a transfer unit (TU)
of a set of TUs of the memory sub - system . In some
examples , the method 200 can include issuing a first set of
one or more read commands associated with the set of media
management operations and receiving the first set of one or
more read responses based at least in part on issuing the first
set of one or more read commands .
[0039] At operation 210 , the processing device can buffer
a first set of one or more write commands associated with the
set of media management operations using the set of entries
based at least in part on a second set of one or more write
commands associated with a host - initiated write operation .
In some examples , the method 200 can include receiving a
first set of one or more read responses associated with the set
of media management operations and buffering the first set
of one or more write commands based at least in part on the
first set of one or more read responses . In some examples ,
the first set of one or more read responses may correspond
to a subset of the set of entries . In some examples , the first
set of read responses are received in consecutive order with
respect to a read order implicit to the set of entries . In some
examples , the method 200 can include storing the set of
entries associated with the set of media management opera
tions in a linked list or ring buffer at the memory sub - system
and buffering the first set of one or more write commands
using a subset of the set of entries in the linked list or ring
buffer .
[0040] In some examples , the method 200 can include
updating the current state of the set of media management

operations for a subset of the set of entries based at least in
part on the first set of one or more write commands asso
ciated with the set of media management operations . In
some examples , the first set of one or more write commands
may correspond to the subset of the set of entries .
[0041] At operation 215 , the processing device can issue
the first set of one or more write commands associated with
the set of media management operations based at least in
part on the set of entries and a completion of the second set
of one or more write commands associated with the host
initiated write operation . In some examples , each of the first
set of one or more read responses may correspond to a write
command of the first set of one or more write commands . In
some examples , the first set of one or more write commands
correspond to consecutive entries of the set of entries .
[0042] FIG . 3 illustrates an example of a method diagram
300 for media management that uses an elastic buffer in
accordance with examples as disclosed herein . The method
diagram 300 illustrates stages for identifying valid data (e.g. ,
at stage 305) , reading valid data (e.g. , at stage 310) , and
issuing a write command (e.g. , at stage 315) . Additionally or
alternatively , the method diagram 300 illustrates the use of
a write buffer 389 to buffer the write commands before
issuance . In some examples , the operations performed as
described with reference to FIG . 3 can be implemented at a
memory sub - system and can utilize a scoreboard 302. In
some examples , the scoreboard 302 may be used as a buffer
or may include a buffer such as write buffer 389. Further , the
operations can be performed according to the operations of
a host system and / or local memory controller , and can be
implemented based on a setting of a state machine . In some
examples , the method diagram 300 can illustrate a range
flow procedure 320 and a replay flow procedure 325 .
[0043] The method diagram 300 can illustrate one or more
operations for media management (e.g. , media management
operations for garbage collection) . During a media manage
ment operation , data can be migrated (e.g. , internally within
a memory sub - system) from one location (e.g. , from a
source memory address) to another location (e.g. , to a
destination memory address) independent of any direct host
interaction . Media management operations can be per
formed to pack valid data together , to free space for new
writes , for error avoidance , for wear leveling , and / or to
restore RAIN parity protection in the event of an error .
Additionally or alternatively , media management operations
can consist of moving or copying data from one or more
source blocks (e.g. , one or more blocks of NAND cells) into
one or more destination blocks . In some examples , media
management operations can result in data consolidation to
free resources (e.g. , NAND cells) for subsequent erase and
new write processing .
[0044] In some examples , the block of data transferred
during a media management operation can be or can be
referred to as a transfer unit (TU) and can be the smallest
size of data internally managed by a memory sub - system
controller (e.g. , by the processor 120 as described with
reference to FIG . 1) , local media controller , or by a host
system (e.g. , host system 105 of FIG . 1) and corresponds to
a logical address (e.g. , a TU address (TUA)) and a physical
address (e.g. , an abstracted physical address such as a flash
logical address (FLA) , which may relate to a physical
address of the NAND cell referred to as a platform physical
address (PPA)) . In order to consolidate data and / or free
resources for subsequent access operations , the TU can be

US 2021/0191646 A1 Jun . 24 , 2021
5

written to a new location (e.g. , a destination address) , and
the original block (e.g. , the block from which the TU is
moved) can be erased . Candidates (e.g. , a blocks) for media
management operations can be selected using a tree (a pool ,
a list , a queue , etc.) . In some examples , the candidates can
be maintained by the scoreboard 302. Based on the identi
fication of valid TUs and the scoreboard 302 maintaining a
tree , a sequential media management operation can be
performed . As discussed herein , it can be beneficial to write
TU units to a new location sequentially (e.g. , in the same
order that each TU is read) to improve performance of the
memory sub - system .
[0045] In order to move (e.g. , write) valid TUs to a
destination block sequentially , the scoreboard 302 can be or
can include a linked list . A linked list can be utilized by the
scoreboard 302 due to its ability to maintain a sequence of
entries . In other examples , the scoreboard 302 can be or can
include any type of data structure that is able to maintain a
sequence of entries (e.g. , such as a circular buffer or a tree) .
Each linked list entry can include at least a TUA and an FLA
associated with a TU . Additionally or alternatively , among
other parameters that can be included in the linked list , the
linked list can include a next node identifier . The next node
identifier can indicate a subsequent TU for the media man
agement operation . Accordingly , utilizing a list where each
entry indicates a next (e.g. , a subsequent) TU can allow for
valid TUs to be written to a destination block sequentially .
[0046] In some examples , a tree can be maintained by the
scoreboard 302. A tree can consist of a list (a queue , a pool ,
etc.) of TUs for a media management operation . For
example , a read operation can occur and the TUA and / or
FLA for each TU can be stored (e.g. , sequentially) to the
scoreboard 302 according to the order that the read com
mands were issued . The status of each TUA and / or FLA may
be maintained in a list (e.g. , a linked list) at the scoreboard
302. The order of the list (e.g. , the order that read commands
were issued) can allow for the TUs to be written to a
destination block sequentially regardless of the order that
responses to read commands (e.g. , read responses) are
received . In other examples , the order of the linked list can
be calculated on the fly using a predictive algorithm (e.g. , an
algorithm to predict the order that the host can issue read
commands) .
[0047] At stage 305 , one or more operations can be
performed to identify valid data (e.g. , TUS) . Although a
count of valid TUs in a block can be readily available (e.g. ,
available to a controller) , a location of each valid TU can be
identified . In some examples a location of valid TUs can be
identified using a range flow procedure 320 or a replay flow
procedure 325. A range flow procedure 320 can include
processing commands for performing a media management
operation on an entire memory sub - system . Additionally or
alternatively , a replay flow procedure 325 can use a buffer
(e.g. , read buffer 335) and can cycle through physical
locations in a block .
[0048] At stage 310 , one or more operations can be
performed to read valid data (e.g. , TUs) that was identified
at stage 305. For example , after valid TUs are identified , an
FLA corresponding to each valid TU can be compared with
the tree maintained by the scoreboard 302. If the FLA
corresponding to a valid TU matches a FLA maintained by
the scoreboard 302 , then a read command associated with
the valid TU can occur . Conversely , if the FLAs do not
match , the entry maintained by the scoreboard 302 can be

released (e.g. , moved to the end of the linked list) . In other
examples , if the FLAs do not match , the system can be
configured to continue cycling through valid TUs until an
FLA matches the entry maintained by the scoreboard 302 .
[0049] At stage 315 , one or more operations can be
performed to write valid data (e.g. , TUs) that were read at
stage 310. As discussed herein , when an FLA corresponding
to a valid TU matches a FLA maintained by the scoreboard
102 , a read command associated with the valid TU is issued .
Additionally or alternatively , based on the read command
being issued , data associated with the valid TU can be
written (e.g. , moved) into a destination block (e.g. , to a
destination address) . Due to the use of a linked list , data
associated with valid TUs can be written to a destination
block sequentially .
[0050] At stage 305 , various methods can be employed to
determine valid data (e.g. , valid TUs) . For example , a replay
flow procedure 325 can support the determination of valid
data by iterating through various TUs stored within a buffer
(e.g. , within a read buffer 335) . The buffer can include one
or more addresses (e.g. , TUAs and / or FLAs) that correspond
to locations in a block from which a respective TU was read .
In some examples , a replay flow procedure 325 can be
selected based on one or more settings associated with a
mode register and / or a controller (e.g. , a memory sub
system controller , a local media controller) . When the replay
flow procedure 325 is employed , a signal 371 can be
received by the read buffer 335 during the first stage 330 .
The signal 371 can initiate the read buffer 335 to cycle
through one or more TUs (e.g. , as illustrated by 373)) . That
is , the read buffer 335 can map (e.g. , determine , identify ,
etc.) a TUA and an FLA of a potentially valid TU according
to an order in which read commands are issued . During the
second stage 340 , the TUA and FLA of each TU can be
identified and provided to the scoreboard 302 (e.g. , via
signal 375 and / or signal 369) .
[0051] After identifying and providing the TUA and the
FLA to the scoreboard the list (e.g. , the linked list) can be
compiled at the scoreboard 302. In some examples , a lookup
of the TUA and FLA can then be issued .g . , at 350) to
determine whether the associated data remains valid , and to
write (e.g. , sequentially) the valid data to a destination
block . In some examples , the lookup 350 can occur in an
order that read responses are received , and can be performed
to determine whether the TUA and FLA match an entry of
the tree stored at the scoreboard 302 .
[0052] A range flow procedure 320 can include processing
commands that fold data (e.g. , move and organize data) of
an entire memory sub - system . For example , a range flow
procedure 320 can be selected based on one or more settings
associated with a mode register and / or a controller (e.g. ,
memory sub - system controller , a local media controller) .
When a range flow procedure 320 is employed , a read
command for each FLA in a particular block can be issued .
A corresponding TUA and FLA can be stored to the score
board 302 as part of a list (e.g. , a linked list) . In some
examples , a lookup of the TUA and FLA can then be issued
(e.g. , at 350) to determine whether the associated data
remains valid , and to write (e.g. , sequentially) the valid data
to a destination block . Because the tree can utilize a linked
list , the TUA and FLA identified can be compared with a first
entry of the list (e.g. , the head of the list) . Depending on the
results of the comparison , a read command can be issued and
the TU can be written to a destination block .

US 2021/0191646 A1 Jun . 24 , 2021
6

[0053] In some examples , both a range flow procedure 320
and a replay flow procedure 325 can result in a lookup 350
being performed to determine whether a read response (e.g. ,
a TUA and FLA corresponding to a read response) matches
an entry of the tree stored at the scoreboard 302. Accord
ingly , the TUA and FLA associated with the read response
can be provided to the scoreboard 302 via signal 381. The
signal 381 can be transmitted to the scoreboard 302 by a
controller or other component .
[0054] As read responses are received , a corresponding
TUA and FLA can be compared with a first entry (e.g. , the
head of the list) of the tree stored at the scoreboard 302. In
some instances , the TUA and FLA may not match the first
entry . For example , the comparison of the first entry with the
first received TUA and FLA can indicate that the entries do
not match . In such an example , the first entry of the list can
be released (e.g. , moved to the bottom of the list) . Accord
ingly , the TUA and FLA can be compared with a subsequent
entry (or entries) in the list until a match is determined . Once
a match is determined , a read of the associated TU can be
issued (e.g. , at 360) , and the TU can be subsequently written
to a destination block (e.g. , at 365 , which can occur at the
stage 315) . In some examples , the stage 310 and the stage
315 can be asynchronous (e.g. , a duration can occur between
the two stages) .
[0055] In some examples , the write buffer 389 can be
implemented to buffer (e.g. , delay) the issuance of one or
more write commands . When a write command is generated ,
it can or cannot be able to be issued immediately . For
example , the issuance of the write command can be delayed
due to system resources being allocated (e.g. , temporarily
allocated) to other processes . Accordingly , when a write
command is generated , it can first be buffered until it is
issued (e.g. , at 365) .
[0056] Multiple write commands can be stored to the write
buffer 389 at any one time . For example , after a first write
command (e.g. , a first set of read commands) is provided to
the write buffer 389 , the process depicted in FIG . 3 can
restart . That is , valid data can then be identified (e.g. , at stage
305) , the valid data can be read (e.g. , at stage 310) , and a
write command can be generated and provided to the write
buffer 389. Each write command that is generated can be
placed in the write buffer 389 in the order that it is generated .
For example , a first write command can be generated and
provided to the write buffer 389 , followed by a second write
command . The write commands can be stored to the write
buffer 389 such that the first write command can be issued
first , followed by the second write command . As system
resources become free such that write commands can be
issued , the write commands can be issued from the write
buffer 389 such that the corresponding TU is written to the
destination block . When a TU is written to the destination
block (e.g. , when a write command is issued at 365) the
associated entry in the scoreboard 302 can be released .
Accordingly , such a process can result in TUs being written
to a destination block in a same order as a read commands
were issued and write commands saved to the write buffer
389 , which can allow bandwidth for other operations (e.g. ,
host write commands) by delaying the issuance of a write
command for the media management operation .
[0057] FIG . 4 illustrates an example of a block diagram
400 of media management operations using an elastic buffer
in accordance with examples as disclosed herein . The opera
tions can illustrate a read sequence 405 , a read response

sequence 410 , and a write command sequence 415. In some
examples , the write command sequence 415 can be imple
mented by a write buffer 420 , which can be an example of
the write buffer 389 as described with reference to FIG . 3 .
Additionally or alternatively , the media management opera
tion 400 can be implemented using a scoreboard 425 , which
can be an example of a scoreboard 302 as described with
reference to FIG . 3. In some examples , the write buffer 420
can include one or more scoreboard entries that facilitate the
media management operation and can be an example of the
write buffer 389 of FIG . 3 .
[0058] In some examples , FIG . 4 illustrates operations of
a media management operation . As discussed herein , a
media management operation can occur to migrate data from
one location to another location independent of any direct
host interaction . For example , valid data can be packed
together to free space for new writes , for error avoidance , for
wear leveling , and / or to restore RAIN parity protection in
the event of an error . In the context of FIG . 4 , each of the
read sequence 405 , the read responses 410 , and the write
commands 415 can be associated with a block (e.g. , a block
of data) . Each block can include one or more pages capable
of storing a finite amount of data . For example , each block
can include 32 pages that are each capable of storing 4
kilobytes (KB) or 8 KB of data (or other amount of data) .
For illustrative purposes , each of the read sequence 405 , the
read responses 410 , and the write commands 415 illustrate
twelve (12) blocks of valid data (numbered 1 through 12)
and various blocks of dirty / stale data and / or erased data .
Dirty data is the latest version of data in cache memory that
had not been saved to media (e.g. , NAND) . Stale data
includes data that was previously written but is no longer
associated with a valid logical address , such as a logical
address referenced by a host system in a physical to logical
(P2L) mapping table . Each block of valid data (e.g. , 1
through 12) can include one or more TUs . For example , a
block of valid data can include multiple pages (e.g. , multiple
16 KB pages) and each page can include multiple TUS (e.g. ,
multiple 4 KB TUs) .
[0059] A range flow procedure (e.g. , range flow procedure
320 as described with reference to FIG . 3) and / or a replay
flow procedure (e.g. , replay flow procedure 325 as described
with reference to FIG . 3) can be associated with a read
sequence 405. For example , a range flow procedure and / or
a replay flow procedure can issue a one or more read
commands for reading TUs . As shown in FIG . 4 , and for
illustrative purposes only , a read sequence 405 can issue one
or more read commands for one or more TUs associated
with blocks 1 through 12. The read sequence 405 can issue
the read commands simultaneously , such that a read com
mand for each subsequent TU is issued in order (i.e. , a read
command for each TU is issued consecutively) . The read
commands can be stored to the scoreboard 425 as a list (e.g. ,
a linked list , a tree , a ring buffer) . In some examples , a TUA
and FLA associated with each TU can be stored as a
scoreboard entry .
[0060] In some examples , the scoreboard entries can store
a respective value associated with each TU . Accordingly ,
when an associated read response is received (i.e. , a
response associated with a TUA and FLA stored to the
scoreboard 425) , the respective value can be updated . Based
on the value stored in the scoreboard entries , the TU can be
written to a destination block in sequential order . A listing of
some potential scoreboard states reflected by a scoreboard

US 2021/0191646 A1 Jun . 24 , 2021
7

entries entry is illustrated below in Table 1. The states
reflected in Table 1 can reflect a scoreboard entry at any one
point in time .

TABLE 1

Value Meaning

0
1
2
3
4
5
6
7

Empty
Found TUA / FLA pair
Lookup request sent
Lookup response received
Buffer allocated
Read request sent
Read response received
Write request sent

[0061] As shown in Table 1 , the scoreboard 425 can
include a variety of entries . Each of the pages (and blocks 1
through 12) can be associated with a respective entry . For
example , some blocks (and TUs) can be associated with a
same entry , and other blocks (and TUs) can be associated
with a different entry . Each entry represents a current state
of a respective block and / or TU .
[0062] In some examples , entry “ 0 ” represents an empty
state . An empty state can indicate that the page is empty
(e.g. , it has been previously erased) and no valid data is to
be read from the page and / or that the page is free to be
written to . In some examples , entry “ 1 ” represents that a
TUA and FLA have been identified . In some examples , entry
“ 2 ” represents that a lookup has been performed on the TUA
and FLA to determine if the associated data is still valid .
[0063] In some examples , entry “ 3 ” represents that a
response regarding whether the data associated with the
TUA and FLA is valid . If the data is valid , the entry remains
on the scoreboard . If the data is invalid , the entry can be
moved to the end of the linked list and assigned a “ O ” . In
some examples , entry “ 4 ” represents the valid data being
allocated to the buffer (e.g. , the read buffer 335 with refer
ence to FIG . 3) . In some examples , entry “ ” represents that
the valid data associated with the TUA and FLA has been
read .

[0064] In some examples , entry " 6 " represents that the
valid data associated with the TUA and FLA has been
received . In some examples , entry “ 7 ” represents that the
valid read data is to be written . After the data has been
written , the entry can be assigned a “ O ” and can be moved
to the end of the linked list . This can indicate that the data
was successfully (and sequentially) written back .
[0065] After issuing a read sequence 405 , read responses
410 can be received (e.g. , by the scoreboard 425) . For
example , as shown in FIG . 4 , each response can be separated
by dirty / stale data . In other examples , each response can be
received in a non - sequential order . In yet another example ,
each response can be received in a different order than the
read sequence 405 was issued . Receiving the read response
sequence 410 in a non - sequential order can be due to a
variety of reasons , including but not limited to particular
channels being temporarily utilized for different operations
(e.g. , for erase operations) . If the read response sequence
410 are written to a destination block in the received order
(i.e. , the non - sequential order) , an overall performance of
the memory sub - system can be reduced . Accordingly , it can
be beneficial to issue write command sequence 415 in a
sequential order as shown in FIG . 4 .

[0066] In order to issue the write command sequence 415 ,
the scoreboard 425 can utilize a write buffer 420. In some
examples , the write buffer 420 can be or can be referred to
as a ring buffer 420 and can be implemented by the score
board 425. In some cases , the scoreboard 425 is or acts as the
write buffer 420. After a read response is received , a write
command can be generated to a corresponding TU can be
written to the destination block . As discussed herein , when
a write command is generated , it can or cannot be able to be
issued immediately . For example , the issuance of the write
command can be delayed due to system resources being
allocated (e.g. , temporarily allocated) to other processes .
Accordingly , when a write command is generated , it can first
be buffered using the write buffer 420. That is , when read
responses 410 are received , the values of the read responses
410 for the corresponding blocks can be stored in the write
buffer 420 prior to issuance of a write command . For
example , the read responses 410 can be received and the
scoreboard 425 can act as write buffer 420 and store the
value of the read responses rather than issuing write com
mands for the received read responses 410 so as to free up
system resources for other operations (e.g. , host write opera
tions) . Once the other operations are complete , the score
board 425 can issue write commands for 415 for the media
management operation as operations associated with the
media management operation , in some cases , can be asso
ciated with a lower priority than host operations .
[0067] Multiple write commands can be delayed by (i.e. ,
read responses can be stored at) the write buffer 420. For
example , write commands 415 can be stored to the write
buffer 420 and , at any one time , the write buffer can store up
to twelve (12) write commands corresponding to the twelve
(12) blocks of valid data (numbered 1 through 12) shown in
FIG . 4 , though the scoreboard 425 can be configured to store
multiple read response values prior to issuing read com
mands 415. Each block of valid data (e.g. , 1 through 12) can
be or can include one or more TUS .
[0068] When a write command is generated , it can be
stored at the write buffer 420 until it is issued . For example ,
a first write command (e.g. , a first set of read commands)
corresponding to a TU associated with block “ 1 ” is provided
to the write buffer 420. At any time after the write command
is provided to the write buffer 420 , the command can be
issued . Additionally or alternatively , subsequent write com
mands (e.g. , corresponding to a TU associated with block
“ 2 ” though block “ 12 ”) can be generated and stored to the
write buffer 420. That is , valid data can then be identified ,
read , and a corresponding write command can be generated
and provided to the buffer . Each write command that is
generated can be placed in the buffer in the order that it is
generated . For example , a first write command can be
generated and provided to the write buffer 420 , followed by
a second write command . The write commands can be stored
to the write buffer 420 such that the first write command can
be issued first , followed by the second write command and
any subsequent write commands . As system resources
become free such that write commands can be issued , the
write commands can be issued from the write buffer 420
such that the corresponding TU is written to the destination
block .

[0069] As shown in FIG . 4 herein , as read responses 410
are received , a corresponding TUA and FLA can be com
pared with a first entry (e.g. , the head of the list) of the list
stored at the scoreboard 425. For example , when read

US 2021/0191646 A1 Jun . 24 , 2021
8

response “ 1 ” (i.e. , the first valid TU) is received , it can be
compared with the first entry of the read sequence 405 that
is stored at the scoreboard 425. Because the entries (e.g. , an
associated TUA and FLA of the entries) match , the read
response “ 1 ” can be first - written to the destination block .
That is , a write command sequence 415 associated with the
read response “ 1 ” can be first - issued . Alternatively , the
scoreboard 425 can indicate that the write command is to be
passed to the write buffer 420. In such an example , the entry
associated with the TU associated with block “ 1 ” can be
moved to the write buffer 420. Subsequently , the read
response “ 2 ” can then be compared with the next stored
entry — the TU associated with block “ 2 ” stored at the
scoreboard 425. If these entries match , the read response “ 2 ”
can moved to the write buffer 420. In some examples ,
multiple write commands can be stored to the write buffer
420 at any one time . This process can continue such that
respective TUs are written to the destination block when the
system has resources to issue the corresponding write com
mand . By writing each TU to a destination block from the
write buffer 420 can allow for a delay between receipt of a
read response and issuance of a corresponding write com
mand . The delay can free up system resources or bandwidth
for other operations to be performed by the memory sub
system (e.g. , host read operations) , which can improve
performance of the associated memory sub - system .
[0070] FIG . 5 illustrates an example machine of a com
puter system 500 that supports an elastic buffer for media
management for a memory sub - system in accordance with
examples as disclosed herein . The computer system 500 can
include a set of instructions , for causing the machine to
perform any one or more of the techniques described herein .
In some examples , the computer system 500 can correspond
to a host system (e.g. , the host system 105 described with
reference to FIG . 1) that includes , is coupled with , or utilizes
a memory sub - system (e.g. , the memory sub - system 110
described with reference to FIG . 1) or can be used to perform
the operations of a controller (e.g. , to execute an operating
system to perform operations corresponding to the buffer
manager 150 described with reference to FIG . 1) . In some
examples , the machine can be connected (e.g. , networked)
with other machines in a local area network (LAN) , an
intranet , an extranet , and / or the Internet . The machine can
operate in the capacity of a server or a client machine in
client - server network environment , as a peer machine in a
peer - to - peer (or distributed) network environment , or as a
server or a client machine in a cloud computing infrastruc
ture or environment .
[0071] The machine can be a personal computer (PC) , a
tablet PC , a set - top box (STB) , a Personal Digital Assistant
(PDA) , a cellular telephone , a web appliance , a server , a
network router , a switch or bridge , or any machine capable
of executing a set of instructions (sequential or otherwise)
that specify actions to be taken by that machine . Further ,
while a single machine is illustrated , the term “ machine ” can
also include any collection of machines that individually or
jointly execute a set (or multiple sets) of instructions to
perform any one or more of the methodologies discussed
herein .

static RAM (SRAM) , etc.) , and a data storage system 525 ,
which communicate with each other via a bus 545 .
[0073] Processing device 505 represents one or more
general - purpose processing devices such as a microproces
sor , a central processing unit , or the like . More particularly ,
the processing device can be a complex instruction set
computing (CISC) microprocessor , reduced instruction set
computing (RISC) microprocessor , very long instruction
word (VLIW) microprocessor , or a processor implementing
other instruction sets , or processors implementing a combi
nation of instruction sets . Processing device 505 can also be
one or more special - purpose processing devices such as an
ASIC , an FPGA , a DSP , network processor , or the like . The
processing device 505 is configured to execute instructions
535 for performing the operations and steps discussed
herein . The computer system 500 can further include a
network interface device 520 to communicate over the
network 540 .
[0074] The data storage system 525 can include a
machine - readable storage medium 530 (also known as a
computer - readable medium) on which is stored one or more
sets of instructions 535 or software embodying any one or
more of the methodologies or functions described herein .
The instructions 535 can also reside , completely or at least
partially , within the main memory 510 and / or within the
processing device 505 during execution thereof by the
computer system 500 , the main memory 510 and the pro
cessing device 505 also constituting machine - readable stor
age media . The machine - readable storage medium 530 , data
storage system 525 , and / or main memory 510 can corre
spond to a memory sub - system .
[0075] In one example , the instructions 535 include
instructions to implement functionality corresponding to a
buffer manager 550 (e.g. , the buffer manager 150 described
with reference to FIG . 1) . While the machine - readable
storage medium 530 is shown as a single medium , the term
“ machine - readable storage medium ” can include a single
medium or multiple media that store the one or more sets of
instructions . The term “ machine - readable storage medium ”
can also include any medium that is capable of storing or
encoding a set of instructions for execution by the machine
and that cause the machine to perform any one or more of
the methodologies of the present disclosure . The term
“ machine - readable storage medium " can include , but not be
limited to , solid - state memories , optical media , and mag
netic media .
[0076] Some portions of the preceding detailed descrip
tions have been presented in terms of algorithms and sym
bolic representations of operations on data bits within a
computer memory . These algorithmic descriptions and rep
resentations are the ways used by those skilled in the data
processing arts to most effectively convey the substance of
their work to others skilled in the art . An algorithm is here ,
and generally , conceived to be a self - consistent sequence of
operations leading to a desired result . The operations are
those requiring physical manipulations of physical quanti
ties . Usually , though not necessarily , these quantities take
the form of electrical or magnetic signals capable of being
stored , combined , compared , and otherwise manipulated . It
has proven convenient at times , principally for reasons of
common usage , to refer to these signals as bits , values ,
elements , symbols , characters , terms , numbers , or the like .
[0077] It should be borne in mind , however , that all of
these and similar terms are to be associated with the appro

[0072] The example computer system 500 can include a
processing device 505 , a main memory 510 (e.g. , ROM ,
flash memory , DRAM such as SDRAM or Rambus DRAM
(RDRAM) , etc.) , a static memory 515 (e.g. , flash memory ,

US 2021/0191646 A1 Jun . 24 , 2021
9

priate physical quantities and are merely convenient labels
applied to these quantities . The present disclosure can refer
to the action and processes of a computer system , or similar
electronic computing device , that manipulates and trans
forms data represented as physical (electronic) quantities
within the computer system's registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage systems .
[0078] The present disclosure also relates to an apparatus
for performing the operations herein . This apparatus can be
specially constructed for the intended purposes , or it can
include a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer .
Such a computer program can be stored in a computer
readable storage medium , such as , but not limited to , any
type of disk including floppy disks , optical disks , CD
ROMs , and magnetic - optical disks , ROMs , RAMS ,
EPROMs , EEPROMs , magnetic or optical cards , or any type
of media suitable for storing electronic instructions , each
coupled to a computer system bus .
[0079] The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus . Various general purpose systems can be used with
programs in accordance with the teachings herein , or it can
prove convenient to construct a more specialized apparatus
to perform the method . The structure for a variety of these
systems will appear as set forth in the description below . In
addition , the present disclosure is not described with refer
ence to any particular programming language . It will be
appreciated that a variety of programming languages can be
used to implement the teachings of the disclosure as
described herein .
[0080] The present disclosure can be provided as a com
puter program product , or software , that can include a
machine - readable medium having stored thereon instruc
tions , which can be used to program a computer system (or
other electronic devices) to perform a process according to
the present disclosure . A machine - readable medium includes
any mechanism for storing information in a form readable
by a machine (e.g. , a computer) . In some examples , a
machine - readable (e.g. , computer - readable) medium
includes a machine (e.g. , a computer) readable storage
medium such as a ROM , RAM , magnetic disk storage
media , optical storage media , flash memory components ,
etc.
[0081] In the foregoing specification , examples of the
disclosure have been described with reference to specific
example examples thereof . It will be evident that various
modifications can be made thereto without departing from
the broader spirit and scope of examples of the disclosure as
set forth in the following claims . The specification and
drawings are , accordingly , to be regarded in an illustrative
sense rather than a restrictive sense .
What is claimed is :
1. A method , comprising :
storing a plurality of entries associated with a set of media
management operations for a memory sub - system , each
entry comprising a current state of the set of media
management operations with respect to a transfer unit
of a plurality of transfer units of the memory sub
system ;

buffering a first set of one or more write commands
associated with the set of media management opera

tions using the plurality of entries based at least in part
on a second set of one or more write commands
associated with a host - initiated write operation ; and

issuing the first set of one or more write commands
associated with the set of media management opera
tions based at least in part on the plurality of entries and
a completion of the second set of one or more write
commands associated with the host - initiated write
operation .

2. The method of claim 1 , further comprising :
receiving a first set of one or more read responses asso

ciated with the set of media management operations ,
the first set of one or more read responses correspond
ing to a subset of the plurality of entries ; and

buffering the first set of one or more write commands
based at least in part on the first set of one or more read
responses , wherein each of the first set of one or more
read responses corresponds to a write command of the
first set of one or more write commands .

3. The method of claim 2 , wherein the first set of read
responses are received in consecutive order with respect to
a read order implicit to the plurality of entries .

4. The method of claim 2 , further comprising :
issuing a first set of one or more read commands associ

ated with the set of media management operations ; and
receiving the first set of one or more read responses based

at least in part on issuing the first set of one or more
read commands .

5. The method of claim 1 , further comprising :
updating the current state of the set of media management

operations for a subset of the plurality of entries based
at least in part on the first set of one or more write
commands associated with the set of media manage
ment operations , wherein the first set of one or more
write commands corresponds to the subset of the plu
rality of entries .

6. The method of claim 1 , further comprising :
storing the plurality of entries associated with the set of
media management operations in a linked list or ring
buffer at the memory sub - system ; and

buffering the first set of one or more write commands
using a subset of the plurality of entries in the linked list
or ring buffer .

7. The method of claim 1 , wherein the first set of one or
more write commands correspond to consecutive entries of
the plurality of entries .

8. A system comprising :
a plurality of memory devices ; and
a processing device , operatively coupled with the plural

ity of memory devices , to :
store a state of a set of media management operations

for the plurality of memory devices based at least in
part on a first set of one or more write commands
associated with a host - initiated write operation ; and

issue a second set of one or more write commands
associated with the plurality of memory based at
least in part on a completion of the first set of one or
more write commands associated with the host
initiated write operation .

9. The system of claim 8 , further comprising :
the processor further to :

store the state of the set of media management opera
tions for the plurality of memory devices as entries
in a linked list or ring buffer , wherein each entry in

US 2021/0191646 A1 Jun . 24 , 2021
10

the linked list or ring buffer corresponds to one of the
plurality of memory devices .

10. The system of claim 8 , further comprising :
the processor further to :

receive the first set of one or more write commands
associated with the host - initiated write operation
from a host system .

11. The system of claim 8 , further comprising :
the processor further to :

receive a first set of one or more read responses
associated with a subset of the plurality of memory
devices ;

update the state of the set of media management
operations for the subset of the plurality of memory
devices based at least in part on the first set of one or
more read responses .

12. The system of claim 11 , further comprising :
the processor further to :

issue a first set of one or more read commands asso
ciated with the set of media management operations ;
and

receive the first set of one or more read responses based
at least in part on issuing the first set of one or more
read commands .

13. The system of claim 8 , wherein the second set of one
or more write commands correspond to consecutive memory
devices with respect to an order in which the states are
stored .

14. A non - transitory computer - readable storage medium
comprising instructions that , when executed by a processing
device , cause the processing device to :

store a plurality of entries associated with a set of media
management operations for a memory sub - system , each
entry comprising a current state of the set of media
management operations with respect to a transfer unit
of a plurality of transfer units of the memory sub
system ;

buffer a first set of one or more write commands associ
ated with the set of media management operations
using the plurality of entries based at least in part on a
second set of one or more write commands associated
with a host - initiated write operation ; and

issue the first set of one or more write commands asso
ciated with the set of media management operations
based at least in part on the plurality of entries and a
completion of the second set of one or more write
commands associated with the host - initiated write
operation .

15. The non - transitory computer - readable storage
medium of claim 14 , wherein the processing device is
further to :

receive a first set of one or more read responses associated
with the set of media management operations , the first
set of one or more read responses corresponding to a
subset of the plurality of entries ; and

buffer the first set of one or more write commands based
at least in part on the first set of one or more read
responses , wherein each of the first set of one or more
read responses corresponds a write command of the
first set of one or more write commands .

16. The non - transitory computer - readable storage
medium of claim 15 , wherein the first set of read responses
are received in consecutive order with respect to a read order
implicit to the plurality of entries .

17. The non - transitory computer - readable storage
medium of claim 15 , wherein the processing device is
further to :

issue a first set of one or more read commands associated
with the set of media management operations ; and

receive the first set of one or more read responses based
at least in part on issuing the first set of one or more
read commands .

18. The non - transitory computer - readable storage
medium of claim 14 , wherein the processing device is
further to :

update the state of the set of media management opera
tions for a subset of the plurality of entries based at
least in part on the first set of one or more write
commands associated with the set of media manage
ment operations , wherein the first set of one or more
write commands corresponds to the subset of the plu
rality of entries .

19. The non - transitory computer - readable storage
medium of claim 14 , wherein the processing device is
further to :

store the plurality of entries associated with the set of
media management operations in a linked list or ring
buffer at the memory sub - system ; and

buffer the first set of one or more write commands using
a subset of the plurality of entries in the linked list or
ring buffer .

20. The non - transitory computer - readable storage
medium of claim 14 , wherein the first set of one or more
write commands correspond to consecutive entries of the
plurality of entries .

