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DISK DRIVE FAILURE PREDICTION WITH NEURAL NETWORKS

FIELD OF THE INVENTION

[0001] The present invention relates to a framework for training a specific machine
leaming system trained with disk drive sensor data to learn important attributes and identify
disk drive failures ahead of time.

BACKGROUND

[0002] Disk drives are among the most failed components in a datacenter. Each failure
could result in severe damages to businesses, ranging from short downtimes to severe data
losses. While some disk drives failures are not foreseeable because they happen due to
environmental or human factors, most of the failures are due to wear-and-tear and could be
predicted by analyzing the data collected from disk drive sensors.

[0003] The disk drive sensors quantify operational conditions of a disk drive and log
events that could indicate of failures. Similarly, some vendors even embed simple predictive
threshold-based sensor reading analysis into the disk drives for signaling failures. These
approaches are limited in their effectiveness as manufacturers conservatively tune error
thresholds due to warranty conditions

[0004] Disk drive sensor datasets were very small in comparison to the scale of disk drive
deployment in a datacenter, which may number in the several thousands and more. Some
recent disk drive sensor data findings have indicated that a small set of disk drive attributes as
playing a significant role in disk drive failures. These findings tend to be specific to certain
disk drive brands and models. Furthermore, some of the findings regarding attributes
indicative of disk drive failure tend to exhibit high false positive rates.

[0005] Furthermore, disk drive sensor datasets indicate that disk drive failure behavior is
complex. Approaches that attempt to capture this behavior using simple thresholding
techniques or with straightforward statistical modeling approaches find themselves limited in
predicting failures in a datacenter scale deployment using multiple disk drive vendors and
models that are employed within large-scale application scenarios.

[00006] Approaches described herein involve a framework for applying machine learning

on time-series disk drive sensor data in order to automatically identify disk drive attributes
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that are indicative of disk drive failure without being limited by disk drive vendor, disk drive
model, or disk drive attribute sensor monitoring.

The approaches described in this section are approaches that could be pursued, but not
necessarily approaches that have been previously conceived or pursued. Therefore, unless
otherwise indicated, it should not be assumed that any of the approaches described in this
section qualify as prior art merely by virtue of their inclusion in this section.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] In the drawings:

[0008] FIG. 1a depicts a machine learning system for disk drive failure prediction during
training of a machine learning model according to an embodiment.

[0010] FIG. 1b depicts a machine learning system for disk drive failure prediction after
training the machine learning model according to an embodiment.

[0011] FIG. 2 depicts three-dimensional data received from the sensors according to an
embodiment.

[0012] FIG. 3 depicts the relationship between some parameters according to an
embodiment.

[0013] FIG. 4 is a flowchart depicting a method for training and using a machine learning
model according to an embodiment.

[0014] FIG. 5 is a functional overview of the system according to an embodiment.
[0015] FIG. 6 depicts an example of a graphical user system in the system according to
an embodiment.

[0016] FIG. 7 is an example of a tabular output generated by the system flowchart
according to an embodiment.

[0017] FIG. 8 is a diagram depicting a software system that may be used in an
embodiment.

[0018] FIG. 9 is a diagram depicting a computer system that may be used in an
embodiment.

DETAILED DESCRIPTION

[0019] In the following description, for the purposes of explanation, numerous specific
details are set forth in order to provide a thorough understanding of the present invention. It
will be apparent, however, that the present invention may be practiced without these specific
details. In other instances, well-known structures and devices are shown in block diagram

form in order to avoid unnecessarily obscuring the present invention.
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GENERAL OVERVIEW

[0020] Described herein is a framework for training a specific neural network topology
with large population of disk drive sensor data. While disk drives contain sensor data that is
collected over long periods of time, attributes from some disk drive sensor data is more
indicative of impending disk drive failure than others. It is demonstrated here that, by
employing specific data preprocessing and feature enhancement techniques, a specific neural
network topology may be trained with a large population of disk drive sensor data to learn the
important attributes and achieve high accuracy in identifying failures ahead of time for a wide
variety of disk drive brands and models.

DISK DRIVE ATTRIBUTES AND DISK FAILURE STUDIES

[0021] A disk drive is considered to have failed when the disk drive is replaced because it
has either stopped working or is showing signs of impending failure. A disk drive is said to
have stopped working when the disk appears physically dead —i.¢., does not respond to
commands from the operating systems (¢.g., generated via console commands), or the RAID
system instructs that the drive cannot be read or written.

[0022] Disk drive sensor data sets collect sensor reading for disk drives. Certain disk
sensor attributes of disk sensor data sets that may be indicative of impending failure include:
relocated sectors count, reported uncorrectable errors, command timeout, current pending
sector count, uncorrectable sector count. The certain disk drive sensor attributes are obtainable
for disk drives from various manufacturers.

[0023] Under simple thresholding approaches, when certain disk drive sensor data
attribute values reach a threshold, disk drive failure is predicted. It has been found that when
these attributes reach a certain threshold, a disk drive may fail with approximately 70%
probability.

[0024] However, significant false positives are encountered under simple thresholding.
About 9% of all the healthy disk drives in a datacenter that are identified as failing may not
fail.

[0025] Another approach for predicating disk drive failures uses statistical modeling
techniques that are based changes to disk drive sensor attributes. Disk drive sensor attributes
change behavior before the failure, and the change point is different for each disk drive sensor
attribute. Moreover, the change points vary not only among disk drive vendors (¢.g., Seagate
vs Hitachi), but also vary among different models of the same brand (¢.g., Seagate 1.5TB vs.
Scagate 4TB).
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[0026] Once pertinent disk drive sensor attributes and respective change points are
identified, a compact vector may be created to represent the attributes. The compact vector of
failed disk drive data, along with healthy disk drive data in the same format, is fed into a
statistical classifier for accurate predictions. The healthy disk drive data is also down-sampled
(i.e., selecting some representative disks among the healthy disk pool) so that the classifier
may learn failed behavior.

[0027] The classifier works well for some brands and models of disk drives. However,
the results for other disk drive brands and models are not as good. Similarly, the classifier
could learn the healthy behavior presented to the model but does not generalize well (e.g., only
classify a limited subset of healthy disks but not all the healthy disks).

[0028] The embodiments described herein show that even with a limited dataset of disk
drive sensor information, the state of the art in disk drive failure prediction may be improved
over the approaches described above.

MACHINE LEARNING/DEEP LEARNING MODELS

[0029] The terms machine learning and deep learning are both used interchangeably in
this description. The objective of machine learning is to build a model of behavior from
experience and use this constructed model to predict future behavior. Machine leaming may
be used to build complex models to describe data sets that do not lend themselves to statistical
modeling. The phase of building a model of behavior from experience using known data sets
is the training phase of machine learning. The trained model may then be used in a prediction
phase to predict future data values.

[0030] Using machine leaning for impending disk drive failure involves a training phase
of fitting a complex mathematical model to learn the behavior of the time-series disk drive
sensor data. The fitting is initially performed on a training set of the time-series data. The
trained machine learning model may then be used to predict disk drive failures.

[0031] Unlike statistical models, machine learning models may learn more complex
patterns and properties from the time-series data, potentially making the models a more
powerful and general approach for predicting disk drive failures. Some examples of machine
leaming and deep learning models that are used for time-series prediction are:

[0032] Random Forest: Random forests or random decision forests are an ensemble
leaming approach that construct a collection of randomly generated nodes and decision trees
during the training phase. The different decision trees are constructed to be each randomly

restricted to only particular subsets of feature dimensions of the data set. Therefore, the
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decision trees gain accuracy as the decision trees grow without being forced to over fit the
training data as would happen if the decision trees were forced to be restricted to all the
feature dimensions of the data set. Predictions for the time-series are calculated based on the
mean of the predictions from the different decision trees.

[0033] Multilayer Perceptron (MLP): A feedforward neural network with multiple
fully connected layers used for supervised learning. The network is trained by back-
propagating errors to update the weights (connections) between neurons based on the
prediction of normal or anomalous behavior relative to the actual classification.

[0034] Autoencoder: Similar to MLP, autoencoders are feedforward neural networks
consisting of multiple fully connected encoding and decoding layers. However, autoencoders
are used for unsupervised learning by trying to reconstruct the input features in the output.
[0035] Recurrent Neural Networks (RNN) / Long Short-Term Memory (LSTM):
RNNs and LSTMs are variants of neural networks, which contain cycles in the neuron
connections, such that the network maintains memory based on previous data points that were
passed to the network. These models explicitly operate on ordered sequences of data points,
which makes them well suited for time-series analysis. RNNs and LSTMs are used for
unsupervised training and are trained based on the error between the predicted value and the
actual next value in the sequence. Simple RNNs suffer from the vanishing gradient problem —
LSTMs resolve this problem by preserving the error that is back-propagated through time and
through layers - i.e., they maintain a more or less constant error.

[0036] For practical purposes, an LSTM may be considered as a black box — one whose
training will converge faster, is capable of memorizing significant correlations in the historical
data and learming long-term dependencies in the time-series data. The two-common usage of
LSTMs are anomaly prediction and classification. For the anomaly detection tasks, the
LSTMs are trained for predicting the next sequences in time series data, and therefore
identifying the anomalies in the new data based on deviations from the predicted data. For the
classification tasks, LSTMs classify labeled (anomalous and normal) sequences.

[0037] FIG. 1a depicts a machine learning system 100. The system 100 may have stored
within it, several machine learning models 120 that may be used for training. These machine
learning models may include, without limitation, Random Forest 122, Autoencoder 124,
Multilayer Perceptron 126, and Recurrent Neural Networks (RNN)/Long Short-Term Memory
(LSTM) 128. In addition, a selected model 130 could be an ensemble (i.c., a combination) of

machine learning models shown in 120, trained with different partitions of the training data.
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A selected machine learning model 130 is trained using Disk Drive Sensor Training Data 110,
and evaluated using test and validation data until a satisfactory trained machine learning
model 140 is obtained.

[0038] FIG. 1b depicts the trained machine learning model 160 that may be used
subsequently with Disk Drive Sensor Input Data 150 in order to output Predicted Impending
Disk Failure Information 170.

USING MOVING AVERAGES FOR TIME SERIES ANALYSIS

[0039] Simply applying one of the above machine learning models directly to a given
time-series data set does not necessarily result in high prediction accuracy for anomalies. In
addition to selecting the correct model and correct set of hyper-parameters for that model, the
selection or generation of input features, and preprocessing techniques applied to these input
features, may have a significant impact on the anomaly detection performance.

[0040] Multiple existing time-series analysis techniques, both statistical and machine
leaming based, have identified the benefits of using averages, or similar operations, for time-
series forecasting and anomaly detection. For example, moving averages, weighted moving
averages, exponential smoothing, or other filter-based techniques may be used to smooth time-
series to evaluate statistical deviations of data points from the smoothed time-series or as
filtered inputs to other models. Sequential probability ratio testing (SPRT) evaluates level
shifts (changes in the average) of the residuals generated based on the time-series predictions.
Seasonal trend decomposition techniques, such as Sequential Trend Decomposition using
Loess (STL), use a form of moving averages to separate out the long-term trend in the time-
series from the seasonal and residual components in the time-series. The trend information can
then be used to determine if the time-series is stationary or generally increasing/decreasing.
[0041] It is known that time-series forecasting using machine learning models is
improved with the use of additional statistical features. Furthermore, generating multiple
moving average features with different window sizes preserves different levels of detail from
the original time-series. In embodiments described herein, moving average information is
presented as additional features to machine learning models, and is shown to be very useful in
forecasting with time-series data.

[0042] Embodiments described herein improves the accuracy of time-series forecasting
using an automated framework for generating statistical features, which describe trends in the
original time-series. Co-pending U.S. patent application titled “AUTOMATED MOVING
AVERAGE FEATURE GENERATION FOR TIME-SERIES FORECASTING AND
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ANOMALY DETECTION" is hereby incorporated by reference. In some embodiments, the
original time-series data is augmented with automatically generated statistical features, and the
augmented time-series data is provided as inputs to machine learning or deep learning models.
As depicted in the co-pending patent application titled “AUTOMATED MOVING
AVERAGE FEATURE GENERATION FOR TIME-SERIES FORECASTING AND
ANOMALY DETECTION,” the size and number of generated moving average features may
greatly affect the time-series anomaly detection accuracy. As such, the structure of the
generated features must take into account the properties or patterns in the original time-series.
However, manually evaluating multiple different numbers and sizes of moving averages is a
time-consuming and challenging task. Embodiments presented herein may employ the
techniques described in “AUTOMATED MOVING AVERAGE FEATURE GENERATION
FOR TIME-SERIES FORECASTING AND ANOMALY DETECTION” to automate the
processing of generating, evaluating, and selecting the best set of moving average features to
maximize the accuracy of time-series data forecasting.

COMPUTATIONAL FRAMEWORK

[0043] Embodiments described herein operate with sequences of disk sensor data. The
disk sensor data contain sensor readings that are collected from a disk for a certain period of
time. A sample contains disk sensor attributes, i.¢., readings of different sensors, on a given
day. In order to characterize the training process, consider that P attributes are obtained from
sensor data for a single disk. Additionally, samples collected on N consecutive days is termed
a sequence of size N. Then, the sensor data from a disk corresponds to a <V x P > matrix.
The machine learning model may be trained with data from () disks. The sensor data may
then be represented by a three-dimensional matrix, <Q x N x P >,

[0044] FIG. 2 depicts the three dimensional input data that defines the raw data 200
received from the disk drive sensors. It shows that £ sensor attributes 210 are received for
each disk, the sensor attributes are received over N days 220, and the sensor attributes are
received for Q disks in total 230. In some embodiments described herein, the raw data
represented in the <Q x N x P > matrix is preprocessed before being used to train the machine
learning model. The deep learning model used in embodiments described herein is an RNN
LSTM machine learning model.

[0045] Some embodiments described herein includes a computational framework

involving the following three phases: (i) a preprocessing sensor disk data phase, (i1) a building
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and training the LSTM RNN machine learning model phase, and (iii) a prediction and
evaluation phase. These phases are described in detail below:
PRE-PROCESSING SENSOR DISK DATA
[0046] Embodiments described herein establish that the preprocessing stage is crucial for
the precision and recall of the machine learning model. The pseudo-code describing the
Preprocessing with Sequence Creation Algorithm presented in the following section details
the steps of the preprocessing stage. In some embodiments, the preprocessing phase goes
through the disk drive sensor readings corresponding to failed disks, creates enhanced
sequences of data, and outputs the enhanced sequences. The output enhanced sequences, in
turn, are the input sequences received by the machine learning model. Additionally, for each
failed disk, some embodiments add, to the output (i.e., input sequences received by the
machine learning model), a fraction of disk drive sensor readings that correspond to disk drive
sensor readings from healthy disks — this enables the model to learn the normal behavior. The
preprocessing phase is described in detail below. The main components and parameters of the
preprocessing stage are the following:
HEADS-UP PERIOD
[0047] The parameter “Heads-Up Period” describes an advance period, and may be
defined as a period of time in advance for predicting disk failure. This time may be defined in
terms of number of days before which disk failure must be predicted. This parameter defines
the samples in terms of day that should be hidden from the machine leaming model so that it
can learn to make predictions ahead of time. For example, if the “Heads-Up Period”
parameter has a value of 6 days, then the training data should not provide any disk drive
samples for the last six days while training the machine learning model.
SEQUENCE LENGTH
[0048] Starting from the last valid sample, the number of days (samples) that will be
input to machine leaming model. For failed samples, the time stamp associated with the last
valid sample is the calculated as:

Last valid sample time = failure time - heads up period.
[0049] For example, if the heads up period unit of time is “days”, then if the
heads up period has a value of ‘I, then all the samples may be used until the day before the
failure time. If the value for the heads up period is *7°, then samples within a week of the

failure may not be used.
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[0050] FIG. 3 depicts the relationship between the failure time parameter, the
heads up time parameter, and the last valid sample time parameter defining the
preprocessing that establishes the training sequence of data. Thus, for a timeline of days 310,
when the heads up time parameter 330 is specified, then, for successfully predicting an
impending failure on disk failure time 320, the last valid sample to be used for training must
be last valid sample time 330. Any of (including all) the disk drive sensor readings obtained
on or before the last valid sample time may be provided in the training phase to the machine
learning model. None of the disk drive sensor readings obtained after the

last valid sample time may be provided in the training phase.

HEALTHY/FAILED DISK RATIO

[0051] Healthy/failed disk ratio defines the number of healthy disks added to the output
matrix for every failed disk. Given that the number of healthy disks are significantly larger
than the failed disks, there is a class imbalance in any dataset. In some embodiments, by
adjusting the ratio, the class imbalance may be broken or reduced. The pseudo-code describing
the Preprocessing with Sequence Creation Algorithm presented in the following section
implements the desired functionality in the routine termed:
get_random_healthy_samples. There are multiple ways of selecting the healthy disks.
The healthy disk choices include but are not limited to (i) selecting random from the entire
healthy disk pool, (ii) selecting random disks from the last valid sample days of failed disks,
(ii1) applying certain classification functions (e.g., k-means), and subsequently applying (i) or
(i1). The primary insight behind these techniques is that the healthy (normal) disk behavior is
relatively easier to learn given the abundance of healthy samples.

ENHANCED FEATURE ADDITION

[0052] Simply applying a machine learning model directly to a given sequence of time
series data does not necessarily result in high prediction accuracy. Machine learning based
approaches benefit greatly from enhancing the feature set that is provided to the model.
Enhanced features are values generated by applying a statistical function to the disk sensor
readings. For example, enhanced features may be computed, using the time series disk drive
sensor data, as moving averages, weighted moving averages, smoothed time series data using
exponential smoothing, filter-based smoothed data, etc., among others. These enhanced
features are added to the disk drive sensor data to generate enhanced feature sequences.
[0053] Some embodiments described herein include generating the enhanced sequence by

performing the enhanced feature addition to the time series sensor data. In the pseudo-code
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depicting the Preprocessing with Enhanced Feature Sequence Creation Algorithm, the
add_enhanced features routine implements this functionality. The input to this routine
is a sample, which consists of a sequence that belongs to single disk. On a given sample, the
enhance function, which is a window function, is applied. A window function involves a
function that is zero-valued outside of an interval. As just noted, the applied enhancements
may be any of (i) simple moving averages, (i) exponential moving averages, (i) statistical
variance , maximum, minimum, standard deviation, etc. Applying a window function to an
enhancement may be, for example, deriving simple moving average values for just a specified
time-interval of the sensor data. Furthermore, the enhance function is applied multiple times
with different window sizes, i.e., different time-intervals, defined by a specified parameter that
is labeled: enhancement factor (efactor).

[0054] For example, for a sequence length of N = 20 and a specified efactor =4, the
enhancement functions are applied to the sequence with window sizes of 5, 10, 15, 20. In
doing so, four times more features get added to the sequence after the feature enhancement is
completed during the preprocessing phase. In some embodiments, given that enhancements
apply to a window of data, before creating the input sample for this routine, the sequence
length is doubled so that the therefore the output of the enhance function still contains a
sequence length of N. This sequence increase is defined by the parameter: 1argewindow in
the pseudo-code.

[0055] The pseudo-code below depicts the Preprocessing with Enhanced Feature

Sequence Creation Algorithm:

-10-
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N = get sequence_ length()
headsupdays = get headsup days()
hratio = get healthy ratio()
efactor = get enhancement factor()
def add enhanced features (sample):

s stacked = sample

for step in linspace (0, N, num=N/efactor, firststep=False):
s _stacked = vertical stack(s_stacked, enhance (sample, step)))

return stacked s

def create enhanced sequence (sample) :

largewindow = get window (N*2, sample, headsup days)
enhanced largewindow = add enhanced features(largewindow, N)
return get window (N, enhanced largewindow, headup days)

for fsample in failed samples:

failed sequence = create enhanced sequence (fsample)
output (failed sequence)

healthy samples = get random healthy samples (fsample.failday,hratio)

Preprocessing with Enhanced Feature Sequence Creation Algorithm:

Pseudo-Code

[0056] Performing the feature enhancement as described has two benefits:

+ Easier change-point detection by smoothened attributes: Applying an enhancement
function such as a simple moving average has a significant impact on the accuracy of the
LSTM RNN. This is because the functions reduce the effects of minor fluctuations on the
sequence, smoothen the attribute values, and hence, make the attribute change point detection
casier. Given that the change point differs across attributes, applying the same enhancement
function with various window sizes helps significantly in determining the accurate change
point for the various attributes.

* Easier sequence length selection: Applying the enhancement functions involves applying
window functions. Thus, performing feature enhancements enable the generated sequence to
carry additional information, which is normally outside of the input time series sensor
sequence. As a result, creating a representative sequence is less sensitive to the sequence

length because it is less likely to miss out an important but-not-recent change in an attribute.

-11-
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RNN LSTM MODEL

[0057] Embodiments described herein present approaches using the LSTM RNN model
for predicting disk failures. Table 1 shows a three-layer bi-directional LSTM design followed
with an additional activation layer. When created sequences are input to the LSTM RNN, the
input layer first applies masks sequences of un-aligned sizes, then applies activation
operations. The bidirectional LSTM layers, train incoming sequences first in the input order,
then also in reverse order to fully understand the context within the sequence. At each layer,
there are a predefined number of neurons, which is a hyper-parameter that is presently tuned in
embodiments described herein. Similarly, the number of layers are subject to hyper-parameter
tuning.

[0058] Table 1 LSTM topology

Layer Function Details

Output Activation Sigmoid

4 Activation Rectified

3 LSTM_3 Bidirectional

2 LSTM_2 Bidirectional

1 LSTM_1 Bidirectional

Input Activation Sequence input with
masking

[0059] In each created sequence (by the preprocessing stage), there is an additional field
that indicates whether the sequence belongs to a healthy or failed sample. Therefore, our
LSTM topology is designed in a way that the output layer outputs a classification prediction
between zero (healthy) and one (failed).

PREDICTING DISK DRIVE FAILURE USING A NEURAL NETWORK

[0060] FIG. 4 is flowchart 400 illustrating a method for training a RNN LSTM deep
leaming model to make predictions of disk drive failure, according to an embodiment of the
invention. The steps of FIG. 4 constitute merely one of many procedures that may be
performed to make predictions of disk failure. Other procedures may include more or fewer

steps in other orders than depicted in FIG. 4.
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[0061] At step 402, raw sensor readings are received from disk drive sensors. These
readings may represent disk drive attribute values generated by disk drive sensors that are
monitoring the disk drives. Sets raw data readings are used to form one or more training data
set, test sets as well as validation sets for training a RNN LSTM deep learning model.

[0062] In an embodiment, at step 404, hyper-parameter specifications are received for
tuning the RNN LSTM deep learning model to be trained. Without limitation, these hyper-
parameters may include number of layers in the deep learning model, number of neurons at
each layer, etc.

[0063] In some embodiments, at step 406, specifications may be received for parameters
involved with preprocessing the raw disk drive sensor data. The parameters may include a
specification of heads-up-days, data sequence length, a specification of healthy-to-failed disk
ratio, and enhancement factors, also termed e-factor values, defining window sizes for
generating moving window averages as additional features for input to the machine learning
model.

[0064] In step 408, the raw sensor readings received in step 402 are preprocessed based
on the preprocessing specifications received in step 406 to generate the preprocessed sequence
training data that will be used to train the deep learning model.

[0065] In step 410, the RNN LSTM deep learning model is trained. The model is first
tuned for training using the specified hyper-parameters, and then trained using the
preprocessed sequence training data. The trained model is evaluated using the preprocessed
test and validation data sets.

[0066] In step 412, it is determined whether the hyperparameter value may be varied to,
for example, train a RNN LSTM with greater predicative accuracy. If the hypermeters are
varied, then execution returns to step 410.

[0067] Otherwise, at step 414, the established trained RNN LSTM may be used for
performing disk failure predictions from disk drive sensor readings that are preprocessed and
fed to the RNN LSTM deep learning model.

FUNCTIONAL OVERVIEW

[0068] In an embodiment, a computer-implemented process, computer system and
computer program are provided for predicting disk drive failures using a recurrent neural
network (RNN) long short-term memory (LSTM) model. However, any kind of machine

learning model may be used. The system described herein may be implemented in any type of
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a data center facility or a cloud service provider facility wherein data stored in disks need to be
monitored for health.

[0069] FIG 5 is a functional overview of the system in some embodiments of the
invention. In an embodiment, Computer System 500 comprises a Preprocessing Module 503.
[0070] The Preprocessing Module 503 receives preprocessing specifications 502 for
preprocessing the raw input data into sequences before sending the data as input to the RNN
LSTM model. The preprocessing specifications include specifications for one or more of the
following parameters: heads-up-days, data sequence length, a specification of healthy-to-failed
disk ratio, and enhancement factors, also termed e-factor values, defining window sizes for
generating moving window averages. During the RNN LSTM training phase, the
Preprocessing Module 503 also receives raw disk drive sensor readings from sensors
monitoring various attributes of disk drives in a facility as training data sets, as well as test
data sets and validation data sets. After the training of the RNN LSTM is completed, the
Preprocessing Module 503b will receive the raw disk drive sensor data 508 to be analyzed by
the trained RNN LSTM model 507 for making predictions about disk failures.

[0071] During the training phase, the output of the Preprocessing Module 503 is fed to
the RNN LSTM Training Module 505 for training the RNN LSTM deep leaming model.
Prior to training, the Training Module 505 tunes the RNN LSTM model using hyper-
parameter specifications 504 that may be provided by a user to the System 500. The Model
Evaluation Module 506 is responsible for testing and validating the RNN LSTM model and
establishing the trained RNN LSTM model that will then be used for analyzing the disk drive
sensor data. Once the RNN LSTM model has been trained, the Analysis and Prediction
Module 507 will receive the preprocessed input data from disk drive sensor reading, and
analyze the data using the trained RNN LSTM model and provide as output, predictions
regarding impending disk failures.

GRAPHICAL USER INTERFACE AND TABULAR DISPLAY

[0072] FIG. 6 illustrates an example graphical user interface (GUI) in accordance with
ong or more embodiments. An input device connected to the system may cause a GUI 600 to
be displayed on device. In some embodiments, the GUI 600 includes an interface that may be
used for providing input data to the system 500. In some embodiments, different input
devices may implement different combinations of these interfaces.

[0073] The GUI may include a data source component 610 for specifying one or more

input data sources. The data source component may be used to select a Training data set 611,
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Test data set 612, validation data set 613, as well as input data set 614. In some embodiments,
the data source component 610 includes components that allows a user to provide
authentication information that allows the user to access the datasets. In some embodiments,
the data source/s may be one or more containers of data stored in a database that may be
additionally specified within the GUI.

[0074] The GUI 600 may include a Preprocessing Parameter Specification component
620 for specifying preprocessing parameter specifications 502 as input to the preprocessing
module 503a. Some of the preprocessing parameters that may be specified include, without
limitation, Heads_up_Period 621, Failure_Time 622, Healthy/Failed Disk ratio 623, and E-
Factor 624.

[0075] The GUI 600 may include a RNN/LSTM Hyper-Parameter Specification
component 630 for specifying hyper-parameter specifications 504 as input to the RNN LTSM
training module 505. Some of the hyper-parameters that may be specified include, without
limitation, Number of Layers 631 and Number of Neurons per layer 632.

[0076] The GUI 600 also may include an output display component 640, that may display
for a set of one or more Disk IDs 641, an Impending Failure Time 642, as well as a
Confidence Measure 643 associated with the impending failure date prediction.

[0077] FIG. 7 depicts an example of a tabular output display of Disk Failure Prediction
700 generated by some embodiments described herein. The table display may be generated on
a particular Date 701, showing the disk failure predictions for a Prediction Date 702. The
tabular display may include attribute values, failure alerts, general disk health and prediction
confidence values for a number of monitored disk drives with Disk SNs (Serial Numbers) 710
(710-1, 710-2, ..., 710-N). The Attribute Values are obtained from corresponding sensor
monitoring, for each of a number of different attributes — (720-1, 720-2, ..., 720M). Based on
the attribute values, the trained RNN LSTM model returns a Failure Alert 730 (730-1, 730-2,
...,730-N) for each of the disks with Disk ID (710-1, 710-2, ..., 710-N) respectively. The
Disk Health 740 for each disk may be classified by the RNN LSTM (Classifier Output 705) to
be in a numerical range between 0 .0 (Healthy 706) and 1.0 (Failed 707) as shown by each of
the entries in column 740, and explained in legend 703. The Prediction of Failure Alert 730
and Disk health 740 may also have an associated historical confidence measure 750, displayed
by the individual values 740-1, 740-2, ..., 740 N, respectively. 740 and 750 are based on
historical values derived from previous observations and model behavior to demonstrate how

accurate the model was performing since deployment.
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[0078] Thus, for example, as shown in the example values in FIG. 7, on the date of 29
May 2018’ a disk failure prediction has been generated and displayed for the date of ‘6 June
2018’. According to the display, disk with disk ID 710-2 is shown to be in a disk health value
of ‘0.93°, with a prediction confidence of ‘98% 740-2. Thus, Disk-2 is considered close to
failure, and a Failure Alert of “YES’ has been issued for Disk-2 710-2. Note from the date
values in 701 and 702 that the implicit Heads Up Time is eight days. The Failure Alert
Values of YES/No is a binary decision that may be made in some embodiments of the
invention using predefined thresholds (during model training) associated with determined disk
health values. In other embodiments, the thresholds may be tunable by a system administrator
using the GUI 600.
In some embodiments, the output may be in the form of a constantly maintained chart that
provides the disk health parameters for all the analyzed disks in the facility. In other
embodiments, the output may provide an explicit alert in the form of blinking visual and aural
indicators.
[0079] In some embodiments, the RNN LSTM design is simplified for the sake of
reducing training or inference (prediction) latency. However, use of the deeper RNN LSTM
achieves a greater generalization compared to the simplified shallow LSTM topology that only
works on a subset of the disk vendor/model population.
ADVANTAGES OVER OTHER APPROACHES
[0080] The disk drive failure prediction techniques described in various embodiments
presented herein allows for improvements in overall storage reliability, quality of service, and
cost reductions within any data storage facility due to following reasons:
* Avoid permanent data loss: Each disk failure causes a window of vulnerability within the
system, where multiple failures in the same volume may result in permanent data loss.
Embodiments presented herein enable predictions of disk failures so that informed volume
allocation decisions may be employed to spread the risk evenly on different volumes.
* Improve quality of service: With every disk failure, the system will go through an expensive
restore as the contents must be recovered from other replicas. By predicting the disk failures
in advance, the disk recovery operation is optimized for minimal impact on the storage
infrastructure. The embodiments presented herein provide significant improvements to the
quality of service of a system.
* Assessing the risks in datacenter infrastructure: Understanding the remaining useful life of a

disk is a significant factor in helping businesses with capacity planning, allocation, and
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forecasting. Embodiments described herein provide for informed decision-making during

capacity planning and allocation.
MACHINE LEARNING MODEL
[0081] A machine learning model is trained using a particular machine leaming
algorithm. Once trained, input is applied to the machine learning model to make a prediction,
which may also be referred to herein as a predicated output or output.
[0082] A machine learning model includes a model data representation or model artifact.
A model artifact comprises parameters values, which may be referred to herein as theta values,
and which are applied by a machine learning algorithm to the input to generate a predicted
output. Training a machine learning model entails determining the theta values of the model
artifact. The structure and organization of the theta values depends on the machine learning
algorithm.
[0083] In supervised training, training data is used by a supervised training algorithm to
train a machine learning model. The training data includes input and a “known” output. In an
embodiment, the supervised training algorithm is an iterative procedure. In each iteration, the
machine learning algorithm applies the model artifact and the input to generate a predicated
output. An error or variance between the predicated output and the known output is calculated
using an objective function. In effect, the output of the objective function indicates the
accuracy of the machine learning model based on the particular state of the model artifact in
the iteration. By applying an optimization algorithm based on the objective function, the theta
values of the model artifact are adjusted. An example of an optimization algorithm is gradient
descent. The iterations may be repeated until a desired accuracy is achieved or some other
criteria is met.
[0084] In a software implementation, when a machine learning model is referred to as
receiving an input, executed, and/or as generating an output or predication, a computer system
process executing a machine learning algorithm applies the model artifact against the input to
generate a predicted output. A computer system process executes a machine learning
algorithm by executing software configured to cause execution of the algorithm.
[0085] Classes of problems that machine learning (ML) excels at include clustering,
classification, regression, anomaly detection, prediction, and dimensionality reduction (i.e.
simplification). Examples of machine learning algorithms include decision trees, support
vector machines (SVM), Bayesian networks, stochastic algorithms such as genetic algorithms

(GA), and connectionist topologies such as artificial neural networks (ANN).
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Implementations of machine learning may rely on matrices, symbolic models, and hierarchical
and/or associative data structures. Parameterized (i.¢. configurable) implementations of best
of breed machine learning algorithms may be found in open source libraries such as Google’s
TensorFlow for Python and C++ or Georgia Institute of Technology’s MLPack for C++.
Shogun is an open source C++ ML library with adapters for several programing languages
including C#, Ruby, Lua, Java, Matlab, R, and Python.

ARTIFICIAL NEURAL NETWORKS

[0086] An artificial neural network (ANN) is a machine learning model that at a high
level models a system of neurons interconnected by directed edges. An overview of neural
networks is described within the context of a layered feedforward neural network. Other types
of neural networks share characteristics of neural networks described below.

[0087] In a layered feed forward network, such as a multilayer perceptron (MLP), each
layer comprises a group of neurons. A layered neural network comprises an input layer, an
output layer, and one or more intermediate layers referred to hidden layers.

[0088] Neurons in the input layer and output layer are referred to as input neurons and
output neurons, respectively. A neuron in a hidden layer or output layer may be referred to
herein as an activation neuron. An activation neuron is associated with an activation function.
The input layer does not contain any activation neuron.

[0089] From each neuron in the input layer and a hidden layer, there may be one or more
directed edges to an activation neuron in the subsequent hidden layer or output layer. Each
edge is associated with a weight. An edge from a neuron to an activation neuron represents
input from the neuron to the activation neuron, as adjusted by the weight.

[0090] For a given input to a neural network, each neuron in the neural network has an
activation value. For an input node, the activation value is simply an input value for the input.
For an activation neuron, the activation value is the output of the respective activation function
of the activation neuron.

10100] Each edge from a particular node to an activation neuron represents that the
activation value of the particular neuron is an input to the activation neuron, that is, an input to
the activation function of the activation neuron, as adjusted by the weight of the edge. Thus,
an activation neuron in the subsequent layer represents that the particular neuron’s activation
value is an input to the activation neuron’s activation function, as adjusted by the weight of the

edge. An activation neuron can have multiple edges directed to the activation neuron, each
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edge representing that the activation value from the originating neuron, as adjusted by the
weight of the edge, is an input to the activation function of the activation neuron.

[6101] Each activation neuron is associated with a bias. To generate the activation value of
an activation node, the activation function of the neuron is applied to the weighted activation
values and the bias.

ILLUSTRATIVE DATA STRUCTURES FOR NEURAL NETWORK

[0102] The artifact of a neural network may comprise matrices of weights and biases.
Training a neural network may iteratively adjust the matrices of weights and biases.

[0103] For a layered feedforward network, as well as other types of neural networks, the
artifact may comprise one or more matrices of edges W. A matrix W represents edges from a
layer L-1 to a layer L. Given the number of nodes in layer L-1 and L is N[L-1] and N|L],
respectively, the dimensions of matrix W of N|L-1] columns and N|L-1] rows.

[0104] Biases for a particular layer L may also be stored in matrix B having one column
with N[L] rows.

[6105] The matrices W and B may be stored as a vector or an array in RAM memory, or
comma separated set of values in memory. When an artifact is persisted in persistent storage,
the matrices W and B may be stored as comma separated values, in compressed and/serialized
form, or other suitable persistent form.

{0106] A particular input applied to a neural network comprises a value for each input
node. The particular input may be stored as vector. Training data comprises multiple inputs,
cach being referred to as sample in a set of samples. Each sample includes a value for each
input node. A sample may be stored as a vector of input values, while multiple samples may
be stored as a matrix, each row in the matrix being a sample.

[6107] When an input is applied to a neural network, activation values are generated for
the hidden layers and output layer. For each layer, the activation values for may be stored in
one column of a matrix A having a row for every node in the layer. In a vectorized approach
for training, activation values may be stored in a matrix, having a column for every sample in
the training data.

[0108] Training a neural network requires storing and processing additional matrices.
Optimization algorithms generate matrices of derivative values which are used to adjust
matrices of weights W and biases B. Generating derivative values may use and require storing

matrices of intermediate values generated when computing activation values for each layer.
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[0109] The number of nodes and/or edges determines the size of matrices needed to
implement a neural network. The smaller the number of nodes and edges in a neural network,
the smaller matrices and amount of memory needed to store matrices. In addition, a smaller
number of nodes and edges reduces the amount of computation needed to apply or train a
neural network. Less nodes means less activation values need be computed, and/or less
derivative values need be computed during training.

[0110] Properties of matrices used to implement a neural network correspond neurons and
edges. A cell in a matrix W represents a particular edge from a node in layer L-1 to L. An
activation neuron represents an activation function for the layer that includes the activation
function. An activation neuron in layer L corresponds to a row of weights in a matrix W for
the edges between layer L and L-1 and a column of weights in matrix W for edges between
layer L and L+1. During execution of a neural network, a neuron also corresponds to one or
more activation values stored in matrix A for the layer and generated by an activation
function.

[0111] An ANN is amenable to vectorization for data parallelism, which may exploit
vector hardware such as single instruction multiple data (SIMD), such as with a graphical
processing unit (GPU). Matrix partitioning may achieve horizontal scaling such as with
symmetric multiprocessing (SMP) such as with a multicore central processing unit (CPU) and
or multiple coprocessors such as GPUs. Feed forward computation within an ANN may occur
with one step per neural layer. Activation values in one layer are calculated based on
weighted propagations of activation values of the previous layer, such that values are
calculated for each subsequent layer in sequence, such as with respective iterations of a for
loop. Layering imposes sequencing of calculations that is not parallelizable. Thus, network
depth (i.c. amount of layers) may cause computational latency. Deep learning entails
endowing a multilayer perceptron (MLP) with many layers. Each layer achieves data
abstraction, with complicated (i.e. multidimensional as with several inputs) abstractions
needing multiple layers that achieve cascaded processing. Reusable matrix based
implementations of an ANN and matrix operations for feed forward processing are readily
available and parallelizable in neural network libraries such as Google’s TensorFlow for
Python and C++, OpenNN for C++, and University of Copenhagen’s fast artificial neural
network (FANN). These libraries also provide model training algorithms such as

backpropagation.
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BACKPROPAGATION

[0112] An ANN’s output may be more or less correct. For example, an ANN that
recognizes letters may mistake a I as an L because those letters have similar features. Correct
output may have particular value(s), while actual output may have somewhat different values.
The arithmetic or geometric difference between correct and actual outputs may be measured as
error according to a loss function, such that zero represents error free (i.e. completely
accurate) behavior. For any edge in any layer, the difference between correct and actual
outputs is a delta value.

[0113] Backpropagation entails distributing the error backward through the layers of the
ANN in varying amounts to all of the connection edges within the ANN. Propagation of error
causes adjustments to edge weights, which depends on the gradient of the error at each edge.
Gradient of an edge is calculated by multiplying the edge’s error delta times the activation
value of the upstream neuron. When the gradient is negative, the greater the magnitude of
error contributed to the network by an edge, the more the edge’s weight should be reduced,
which is negative reinforcement. When the gradient is positive, then positive reinforcement
entails increasing the weight of an edge whose activation reduced the error. An edge weight is
adjusted according to a percentage of the edge’s gradient. The steeper is the gradient, the
bigger is adjustment. Not all edge weights are adjusted by a same amount. As model training
continues with additional input samples, the error of the ANN should decline. Training may
cease when the error stabilizes (i.e. ceases to reduce) or vanishes beneath a threshold (i.c.
approaches zero). Example mathematical formulae and techniques for feedforward multilayer
perceptrons (MLP), including matrix operations and backpropagation, are taught in related
reference “EXACT CALCULATION OF THE HESSIAN MATRIX FOR THE MULTI-
LAYER PERCEPTRON,” by Christopher M. Bishop.

[0114] Model training may be supervised or unsupervised. For supervised training, the
desired (i.e. correct) output is already known for each example in a training set. The training
set is configured in advance by (e.g. a human expert) assigning a categorization label to each
example. For example, the training set for optical character recognition may have blurry
photographs of individual letters, and an expert may label each photo in advance according to
which letter is shown. Error calculation and backpropagation occurs as explained above.
[0115] Unsupervised model training is more involved because desired outputs need to be
discovered during training. Unsupervised training may be easier to adopt because a human

expert is not needed to label training examples in advance. Thus, unsupervised training saves
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human labor. A natural way to achieve unsupervised training is with an autoencoder, which is
akind of ANN. An autoencoder functions as an encoder/decoder (codec) that has two sets of
layers. The first set of layers encodes an input example into a condensed code that needs to be
learned during model training. The second set of layers decodes the condensed code to
regenerate the original input example. Both sets of layers are trained together as one
combined ANN. Error is defined as the difference between the original input and the
regenerated input as decoded. After sufficient training, the decoder outputs more or less
exactly whatever is the original input.

[0116] An autoencoder relies on the condensed code as an intermediate format for each
input example. It may be counter-intuitive that the intermediate condensed codes do not
mitially exist and instead emerge only through model training. Unsupervised training may
achieve a vocabulary of intermediate encodings based on features and distinctions of
unexpected relevance. For example, which examples and which labels are used during
supervised training may depend on somewhat unscientific (¢.g. anecdotal) or otherwise
incomplete understanding of a problem space by a human expert. Whereas, unsupervised
training discovers an apt intermediate vocabulary based more or less entirely on statistical
tendencies that reliably converge upon optimality with sufficient training due to the internal
feedback by regenerated decodings. Autoencoder implementation and integration techniques
are taught in related U.S. patent application No. 14/558,700, entitled “AUTO-ENCODER
ENHANCED SELF-DIAGNOSTIC COMPONENTS FOR MODEL MONITORING”. That
patent application elevates a supervised or unsupervised ANN model as a first class object that
is amenable to management techniques such as monitoring and governance during model
development such as during training.

DEEP CONTEXT OVERVIEW

[6117] As described above, an ANN may be stateless such that timing of activation is
more or less irrelevant to ANN behavior. For example, recognizing a particular letter may
occur in isolation and without context. More complicated classifications may be more or less
dependent upon additional contextual information. For example, the information content (i.c.
complexity) of a momentary input may be less than the information content of the surrounding
context. Thus, semantics may occur based on context, such as a temporal sequence across
inputs or an extended pattern (¢.g. compound geometry) within an input example. Various
techniques have emerged that make deep learning be contextual. One general strategy is

contextual encoding, which packs a stimulus input and its context (i.e. surrounding/related
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details) into a same (¢.g. densely) encoded unit that may be applied to an ANN for analysis.
One form of contextual encoding is graph embedding, which constructs and prunes (i.c. limits
the extent of) a logical graph of (e.g. temporally or semantically) related events or records.
The graph embedding may be used as a contextual encoding and input stimulus to an ANN.
[0118] Hidden state (i.e. memory) is a powerful ANN enhancement for (especially
temporal) sequence processing. Sequencing may facilitate prediction and operational anomaly
detection, which can be important techniques. A recurrent neural network (RNN) is a stateful
MLP that is arranged in topological steps that may operate more or less as stages of a
processing pipeline. In a folded/rolled embodiment, all of the steps have identical connection
weights and may share a single one dimensional weight vector for all steps. In a recursive
embodiment, there is only one step that recycles some of its output back into the one step to
recursively achieve sequencing. In an unrolled/unfolded embodiment, each step may have
distinct connection weights. For example, the weights of each step may occur in a respectvie
column of a two dimensional weight matrix.

[6119] A sequence of inputs may be simultancously or sequentially applied to respective
steps of an RNN to cause analysis of the whole sequence. For each input in the sequence, the
RNN predicts a next sequential input based on all previous inputs in the sequence. An RNN
may predict or otherwise output almost all of the input sequence already received and also a
next sequential input not yet received. Prediction of a next input by itself may be valuable.
Comparison of a predicted sequence to an actually received (and applied) sequence may
facilitate anomaly detection. For example, an RNN based spelling model may predict that a U
follows a Q while reading a word letter by letter. If a letter actually following the Q is not a U
as expected, then an anomaly is detected.

[6120] Unlike a neural layer that is composed of individual neurons, each recurrence step
of an RNN may be an MLP that is composed of cells, with each cell containing a few specially
arranged neurons. An RNN cell operates as a unit of memory. An RNN cell may be
implemented by a long short term memory (LSTM) cell. The way LSTM arranges neurons is
different from how transistors are arranged in a flip flop, but a same theme of a few control
gates that are specially arranged to be stateful is a goal shared by LSTM and digital logic. For
example, a neural memory cell may have an input gate, an output gate, and a forget (i.e. reset)
gate. Unlike a binary circuit, the input and output gates may conduct an (e.g. unit normalized)

numeric value that is retained by the cell, also as a numeric value.
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[0121] An RNN has two major internal enhancements over other MLPs. The first is
localized memory cells such as LSTM, which involves microscopic details. The other is cross
activation of recurrence steps, which is macroscopic (i.e. gross topology). Each step receives
two inputs and outputs two outputs. One input is external activation from an item in an input
sequence. The other input is an output of the adjacent previous step that may embed details
from some or all previous steps, which achieves sequential history (i.e. temporal context).

The other output is a predicted next item in the sequence. Example mathematical formulae
and techniques for RNNs and LSTM are taught in related U.S. patent application No.
15/347,501, entitled “MEMORY CELL UNIT AND RECURRENT NEURAL NETWORK
INCLUDING MULTIPLE MEMORY CELL UNITS.”

[0122] Sophisticated analysis may be achieved by a so-called stack of MLPs. An example
stack may sandwich an RNN between an upstream encoder ANN and a downstream decoder
ANN, either or both of which may be an autoencoder. The stack may have fan-in and/or fan-
out between MLPs. For example, an RNN may directly activate two downstream ANNSs, such
as an anomaly detector and an autodecoder. The autodecoder might be present only during
model training for purposes such as visibility for monitoring training or in a feedback loop for
unsupervised training. RNN model training may use backpropagation through time, which is
a technique that may achieve higher accuracy for an RNN model than with ordinary
backpropagation. Example mathematical formulae, pseudocode, and techniques for training
RNN models using backpropagation through time are taught in related W.I1.P.O. patent
application No. PCT/US2017/033698, entitled “MEMORY-EFFICIENT
BACKPROPAGATION THROUGH TIME”.

SOFTWARE OVERVIEW

[0123] FIG. 8 is a block diagram of a basic software system 800 that may be employed for
controlling the operation of computing system 900 of FIG. 9. Software system 800 and its
components, including their connections, relationships, and functions, is meant to be
exemplary only, and not meant to limit implementations of the example embodiment(s). Other
software systems suitable for implementing the example embodiment(s) may have different
components, including components with different connections, relationships, and functions.
[0124] Software system 800 is provided for directing the operation of computing system
900. Software system 800, which may be stored in system memory (RAM) 906 and on fixed
storage (¢.g., hard disk or flash memory) 910, includes a kernel or operating system (OS) 810.
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[0125] The OS 810 manages low-level aspects of computer operation, including managing
execution of processes, memory allocation, file input and output (I/0), and device 1/0. One or
more application programs, represented as 802A, 8§02B, 802C ... 802N, may be “loaded”
(e.g., transferred from fixed storage 910 into memory 906) for execution by the system 800.
The applications or other software intended for use on computer system 900 may also be
stored as a set of downloadable computer-executable instructions, for example, for
downloading and installation from an Intemet location (e.g., a Web server, an app store, or
other online service).

[0126] Software system 800 includes a graphical user interface (GUI) 815, for receiving
user commands and data in a graphical (e.g., “point-and-click” or “touch gesture™) fashion.
These inputs, in turn, may be acted upon by the system 800 in accordance with instructions
from operating system 810 and/or application(s) 802. The GUI 815 also serves to display the
results of operation from the OS 810 and application(s) 802, whereupon the user may supply
additional inputs or terminate the session (e.g., log off).

[6127] OS 810 can execute directly on the bare hardware 820 (e.g., processor(s) 904) of
computer system 900. Alternatively, a hypervisor or virtual machine monitor (VMM) 830 may
be interposed between the bare hardware 820 and the OS 810. In this configuration, VMM 830
acts as a software “cushion” or virtualization layer between the OS 810 and the bare hardware
820 of the computer system 900.

|0128] VMM 830 instantiates and runs one or more virtual machine instances (“guest
machines”). Each guest machine comprises a “guest” operating system, such as OS 810, and
one or more applications, such as application(s) 802, designed to execute on the guest
operating system. The VMM 830 presents the guest operating systems with a virtual operating
platform and manages the execution of the guest operating systems.

[0129] In some instances, the VMM 830 may allow a guest operating system (OS) to run
as if the guest OS is running on the bare hardware 820 of computer system 900 directly. In
these instances, the same version of the guest operating system configured to execute on the
bare hardware 820 directly may also execute on VMM 830 without modification or
reconfiguration. In other words, VMM 830 may provide full hardware and CPU virtualization
to a guest operating system in some instances.

[0130] In other instances, a guest operating system may be specially designed or

configured to execute on VMM 830 for efficiency. In these instances, the guest operating
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system is “aware” that it executes on a virtual machine monitor. In other words, VMM 830
may provide para-virtualization to a guest operating system in some instances.

[0131] A computer system process comprises an allotment of hardware processor time,
and an allotment of memory (physical and/or virtual), the allotment of memory being for
storing instructions executed by the hardware processor, for storing data generated by the
hardware processor executing the instructions, and/or for storing the hardware processor state
(e.g. content of registers) between allotments of the hardware processor time when the
computer system process is not running. Computer system processes run under the control of
an operating system, and may run under the control of other programs being executed on the
computer system.

[0132] Multiple threads may run within a process. Each thread also comprises an
allotment of hardware processing time but share access to the memory allotted to the process.
The memory is used to store content of processors between the allotments when the thread is
not running. The term thread may also be used to refer to a computer system process in
multiple threads are not running.

CLOUD COMPUTING

[0133] The term "cloud computing” is generally used herein to describe a computing
model which enables on-demand access to a shared pool of computing resources, such as
computer networks, servers, software applications, and services, and which allows for rapid
provisioning and release of resources with minimal management effort or service provider
interaction.

[0134] A cloud computing environment (sometimes referred to as a cloud environment, or
a cloud) can be implemented in a variety of different ways to best suit different requirements.
For example, in a public cloud environment, the underlying computing infrastructure is owned
by an organization that makes its cloud services available to other organizations or to the
general public. In contrast, a private cloud environment is generally intended solely for use by,
or within, a single organization. A community cloud is intended to be shared by several
organizations within a community; while a hybrid cloud comprise two or more types of cloud
(e.g., private, community, or public) that are bound together by data and application
portability.

[0135] Generally, a cloud computing model enables some of those responsibilities which
previously may have been provided by an organization's own information technology

department, to instead be delivered as service layers within a cloud environment, for use by
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consumers (either within or external to the organization, according to the cloud's
public/private nature). Depending on the particular implementation, the precise definition of
components or features provided by or within each cloud service layer can vary, but common
examples include: Software as a Service (SaaS), in which consumers use software applications
that are running upon a cloud infrastructure, while a SaaS provider manages or controls the
underlying cloud infrastructure and applications. Platform as a Service (PaaS), in which
consumers can use software programming languages and development tools supported by a
PaaS provider to develop, deploy, and otherwise control their own applications, while the
PaaS provider manages or controls other aspects of the cloud environment (i.¢., everything
below the run-time execution environment). Infrastructure as a Service (IaaS), in which
consumers can deploy and run arbitrary software applications, and/or provision processing,
storage, networks, and other fundamental computing resources, while an laaS provider
manages or controls the underlying physical cloud infrastructure (i.e., everything below the
operating system layer). Database as a Service (DBaaS) in which consumers use a database
server or Database Management System that is running upon a cloud infrastructure, while a
DbaaS provider manages or controls the underlying cloud infrastructure, applications, and
servers, including one or more database servers.

HARDWARE OVERVIEW

[0136] According to one embodiment, the techniques described herein are implemented by
one or more special-purpose computing devices. The special-purpose computing devices may
be hard-wired to perform the techniques, or may include digital electronic devices such as one
or more application-specific integrated circuits (ASICs) or field programmable gate arrays
(FPGAG ) that are persistently programmed to perform the techniques, or may include one or
more general purpose hardware processors programmed to perform the techniques pursuant to
program instructions in firmware, memory, other storage, or a combination. Such special-
purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs
with custom programming to accomplish the techniques. The special-purpose computing
devices may be desktop computer systems, portable computer systems, handheld devices,
networking devices or any other device that incorporates hard-wired and/or program logic to
implement the techniques.

[0137] For example, FIG. 9 is a block diagram that illustrates a computer system 900 upon
which an embodiment of the invention may be implemented. Computer system 900 includes a

bus 902 or other communication mechanism for communicating information, and a hardware
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processor 904 coupled with bus 902 for processing information. Hardware processor 904 may
be, for example, a general purpose microprocessor.

[0138] Computer system 900 also includes a main memory 906, such as a random access
memory (RAM) or other dynamic storage device, coupled to bus 902 for storing information
and instructions to be executed by processor 904. Main memory 906 also may be used for
storing temporary variables or other intermediate information during execution of instructions
to be executed by processor 904. Such instructions, when stored in non-transitory storage
media accessible to processor 904, render computer system 900 into a special-purpose
machine that is customized to perform the operations specified in the instructions.

[0139] Computer system 900 further includes a read only memory (ROM) 908 or other
static storage device coupled to bus 902 for storing static information and instructions for
processor 904. A storage device 910, such as a magnetic disk, optical disk, or solid-state drive
is provided and coupled to bus 902 for storing information and instructions.

[0140] Computer system 900 may be coupled via bus 902 to a display 912, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device 914,
including alphanumeric and other keys, is coupled to bus 902 for communicating information
and command selections to processor 904. Another type of user input device is cursor control
916, such as a mouse, a trackball, or cursor direction keys for communicating direction
information and command selections to processor 904 and for controlling cursor movement on
display 912. This input device typically has two degrees of freedom in two axes, a first axis
(e.g.. x) and a second axis (¢.g., ), that allows the device to specify positions in a plane.
[0141] Computer system 900 may implement the techniques described herein using
customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic
which in combination with the computer system causes or programs computer system 900 to
be a special-purpose machine. According to one embodiment, the techniques herein are
performed by computer system 900 in response to processor 904 executing one or more
sequences of one or more instructions contained in main memory 906. Such instructions may
be read into main memory 906 from another storage medium, such as storage device 910.
Execution of the sequences of instructions contained in main memory 906 causes processor
904 to perform the process steps described herein. In alternative embodiments, hard-wired
circuitry may be used in place of or in combination with software instructions.

[0142] The term “storage media” as used herein refers to any non-transitory media that

store data and/or instructions that cause a machine to operate in a specific fashion. Such
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storage media may comprise non-volatile media and/or volatile media. Non-volatile media
includes, for example, optical disks, magnetic disks, or solid-state drives, such as storage
device 910. Volatile media includes dynamic memory, such as main memory 906. Common
forms of storage media include, for example, a floppy disk, a flexible disk, hard disk, solid-
state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other
optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM,
and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge.

[0143] Storage media is distinct from but may be used in conjunction with transmission
media. Transmission media participates in transferring information between storage media.
For example, transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 902. Transmission media can also take the form of
acoustic or light waves, such as those generated during radio-wave and infra-red data
communications.

[0144] Various forms of media may be involved in carrying one or more sequences of one
or more instructions to processor 904 for execution. For example, the instructions may
initially be carried on a magnetic disk or solid-state drive of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 900 can receive the data
on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal.
An infra-red detector can receive the data carried in the infra-red signal and appropriate
circuitry can place the data on bus 902. Bus 902 carries the data to main memory 906, from
which processor 904 retrieves and executes the instructions. The instructions received by
main memory 906 may optionally be stored on storage device 910 either before or after
execution by processor 904,

|0145] Computer system 900 also includes a communication interface 918 coupled to bus
902. Communication interface 918 provides a two-way data communication coupling to a
network link 920 that is connected to a local network 922. For example, communication
interface 918 may be an integrated services digital network (ISDN) card, cable modem,
satellite modem, or a modem to provide a data communication connection to a corresponding
type of telephone line. As another example, communication interface 918 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN.

Wireless links may also be implemented. In any such implementation, communication
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interface 918 sends and receives electrical, electromagnetic or optical signals that carry digital
data streams representing various types of information.

[0146] Network link 920 typically provides data communication through one or more
networks to other data devices. For example, network link 920 may provide a connection
through local network 922 to a host computer 924 or to data equipment operated by an
Internet Service Provider (ISP) 926. ISP 926 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as the
“Internet” 928. Local network 922 and Internet 928 both use ¢lectrical, electromagnetic or
optical signals that carry digital data streams. The signals through the various networks and
the signals on network link 920 and through communication interface 918, which carry the
digital data to and from computer system 900, are example forms of transmission media.
[0147] Computer system 900 can send messages and receive data, including program
code, through the network(s), network link 920 and communication interface 918. In the
Internet example, a server 930 might transmit a requested code for an application program
through Internet 928, ISP 926, local network 922 and communication interface 918.

[0148] The received code may be executed by processor 904 as it is received, and/or
stored in storage device 910, or other non-volatile storage for later execution.

[0149] In the foregoing specification, embodiments of the invention have been described
with reference to numerous specific details that may vary from implementation to
implementation. The specification and drawings are, accordingly, to be regarded in an
illustrative rather than a restrictive sense. The sole and exclusive indicator of the scope of the
invention, and what is intended by the applicants to be the scope of the invention, is the literal
and equivalent scope of the set of claims that issue from this application, in the specific form

in which such claims issue, including any subsequent correction.
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CLAIMS

What is claimed is:

1. A method for predicting multivariate time-series data and identifying anomalies in the
time-series data, comprising:

receiving input data for a disk drive, wherein the input data comprises time-
stamped sensor attribute values from sensors monitoring the disk drive;

automatically preprocessing the input data to generate one or more enhanced
feature sequences, said one or more enhanced feature sequences including
values generated by applying statistical functions to said input data;

providing the one or more enhanced feature sequences to a trained machine
learning model; and

receiving, from the trained machine learning model, predictions regarding
impending failures in the disk drive in threshold period of time in the
future;

wherein the method is performed by one or more computing devices.

2. The method of claim 1, wherein preprocessing the input data to generate one or more
enhanced feature sequences comprises applying a set of one or more enhance functions
on the input data.

3. The method of claim 2, wherein applying the set of one or more enhance functions on the
input data comprises:

generating, using a pre-specified value of an enhancement-factor parameter, a set
of moving window averages from the input data; and

concatenating the input data and the set of generated moving window averages to
generate one or more enhanced feature sequences.

4. The method of claim 1, wherein, prior to providing the one or more enhanced feature
sequences to a trained machine learning model, the method further comprises:

performing a plurality of training phases, wherein each of the plurality of training

phases comprises training the machine learning model using each of a

corresponding plurality of enhanced feature sequence training data sets;
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evaluating the machine learning model being trained on each of the corresponding
plurality of enhanced feature sequence training data sets using a set of test
data and validation data; and

establishing the trained machine learning model for predicting disk drive failures
based on the results from using the test and validation data.

5. The method of claim 4, wherein prior to performing the one or more training phases,
receiving values for a set of preprocessing parameters, the preprocessing parameters
comprising;

a heads-up-period parameter;

an enhancement-factor parameter;
a failure-time parameter; and

a healthy/failed ratio.

6. The method of claim 4, wherein prior to performing the one or more training phases,

the machine learning model is tuned using a set of pre-specified hyper-parameters.

7. The method of claim 4, wherein the machine learning model is a recurrent neural

network long short-term memory model.

8. The method of claim 5, wherein each of the corresponding one or more enhanced

feature sequence training data sets is generated by:
receiving one or more training data sets corresponding to time-stamped sensor
attribute values for one or more sensors monitoring the one or more disk
drives; and
preprocessing the received training data sets to generate each of one or more
enhanced feature sequence training data sets.
9. The method of claim 8, wherein preprocessing the received training data sets
comprises:
establishing a time-stamp for a last valid sample in the training data set based on
the values of the parameters for the failure-time and the heads-up-period,
wherein the time-stamp, L, for the last valid sample, is given by

L = failure-time — heads-up-period; and
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generating, from the one or more training data sets, a set of first sample training
sequences by limiting the one or more training data sets to only those data
sets that are dated less than the time-stamp for the last valid sample, L.
10. The method of claim 9, wherein preprocessing the received training data sets further
comprises selecting, from the set of first sample training sequences, a set of second
sample training sequences based on the value of the parameter for healthy/failed ratio,
wherein the set of second sample training sequences prevent class imbalance in the
selection of sensor attribute data from healthy disks and failed disks in the received
training data.
11. The method of claim 10, wherein preprocessing the received training data sets further
comprises:
using the received value for the enhancement-factor parameter to generate a set of
moving window averages from the second set of sample sequences; and
concatenating the second set of sample sequences and the generated set of moving
averages to generate the corresponding plurality of enhanced feature sequence

training data sets for training the machine learning model.
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