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(57) ABSTRACT

Systems and methods are provided for vector-quantized
image modeling using vision transformers and improved
codebook handling. In particular, the present disclosure
provides a Vector-quantized Image Modeling (VIM)
approach that involves pretraining a machine learning model
(e.g., Transformer model) to predict rasterized image tokens
autoregressively. The discrete image tokens can be encoded
from a learned Vision-Transformer-based VQGAN (ex-
ample implementations of which can be referred to as
ViT-VQGAN). The present disclosure proposes multiple
improvements over vanilla VQGAN from architecture to
codebook learning, yielding better efficiency and reconstruc-
tion fidelity. The improved ViT-VQGAN further improves
vector-quantized image modeling tasks, including uncondi-
tional image generation, conditioned image generation (e.g.,
class-conditioned image generation), and unsupervised rep-
resentation learning.
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VECTOR-QUANTIZED IMAGE MODELING

RELATED APPLICATIONS

[0001] This application claims priority to and the benefit
of U.S. Provisional Patent Application No. 63/351,131,
Filed Jun. 10, 2022 and U.S. Provisional Patent Application
No. 63/252,452, Filed Oct. 5, 2021. Each of the aforemen-
tioned applications is hereby incorporated by reference in its
entirety.

FIELD

[0002] The present disclosure relates generally to image
modeling such as image synthesis and/or image generation.
More particularly, the present disclosure relates to vector-
quantized image modeling using vision transformers and
improved codebook handling.

BACKGROUND

[0003] In computer vision, the majority of recent unsu-
pervised or self-supervised learning techniques focus on
applying different random augmentations to an image with
the pretraining objective to distinguish image instances,
where the quality of learned representation relies on manu-
ally-picked augmentations like random brightness, crop-
ping, blurring and more.

[0004] Certain other approaches apply GPT-style genera-
tive pretraining on images to autoregressively predict pixels
without incorporating knowledge of the 2D structure, where
the pixel is a 9-bit value created by clustering (R, G, B) pixel
values using k-means with k=512. However, the color
encoding does not scale to typical image resolutions due to
much longer sequence length (e.g., 224x224 resolution leads
to 50,176 tokens per image) with much larger memory
consumption and more training compute than those in
language models. As a result, these works are only able to be
applied on a relatively small maximal resolution (e.g.,
64x64) for image recognition at scale, which severely limits
the representation capabilities.

[0005] On the other hand, remarkable image generation
results have been achieved by pre-quantizing images into
discrete latent variables and modeling them autoregres-
sively, including VQVAE (Oord et al., 2017), DALL-E
(Ramesh et al., 2021) and VQGAN (Esser et al., 2021). In
these approaches, a convolution neural network (CNN) is
learned to auto-encode an image and a second stage CNN or
Transformer is learned to model the density of input data.
These have been proved effective for image generation, but
few studies have evaluated the learned representation in
discriminative tasks.

[0006] One sub-field of image generation is text-to-image
generation, in which an image is synthesized based on a
input text, where the synthesized image depicts content
described by the input text. The ability to generate images
through language is appealing because language is the most
natural form of communication, and such generation capa-
bility can potentially unlock creative applications in many
areas such as arts, design, and multimedia content creation.
One line of research that has recently gained momentum in
the text-to-image generation space are techniques that lever-
age diffusion-based text-to-image models with the ability to
generate higher-fidelity images. These models eschew from
the use of discrete image tokens and instead use diffusion
models as the core modeling approach for image generation,
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achieving better zero-shot Fréchet Inception Distance (FID)
scores on MS-COCO and aesthetically pleasing visual out-
puts. Despite these advances, being able to apply autore-
gressive modeling to the task of text-to-image generation
remains practically appealing given a rich body of prior
works on large language models and the universal interface
of discrete tokens, which is readily applicable to many more
modalities.

SUMMARY

[0007] Aspects and advantages of embodiments of the
present disclosure will be set forth in part in the following
description, or can be learned from the description, or can be
learned through practice of the embodiments.

[0008] One example aspect of the present disclosure is
directed to computer-implemented method to perform vector
quantization of imagery. The method includes obtaining, by
a computing system comprising one or more computing
devices, a plurality of input image patches of an image. The
method includes processing, by the computing system, the
plurality of input image patches with a machine-learned
image encoder to generate a plurality of image tokens in a
latent space, wherein the plurality of image tokens corre-
spond to the plurality of input image patches, and wherein
the machine-learned image encoder performs one or more
self-attention operations to process the plurality of input
image patches to generate the plurality of image tokens in
the latent space. The method includes mapping, by the
computing system, the plurality of image tokens to a plu-
rality of quantized codes contained in a quantization code-
book that contains a plurality of candidate codes. The
method includes providing, by the computing system, the
plurality of quantized codes as an encoded version of the
image.

[0009] In some implementations, the machine-learned
image encoder comprises a vision transformer model.

[0010] In some implementations, the machine-learned
image encoder performs one of the one or more self-
attention operations on the plurality of input image patches.

[0011] In some implementations, the method further
includes processing, by the computing system, the plurality
of quantized codes with a machine-learned image decoder to
generate a plurality of synthesized image patches that form
a synthesized image; evaluating, by the computing system,
a loss function that provides a loss value based at least in part
on the synthesized image; and modifying, by the computing
system, one or more of: the machine-learned image encoder,
the machine-learned image decoder, and the plurality of
candidate codes based at least in part on the loss function.

[0012] In some implementations, the machine-learned
image decoder comprises a vision transformer model.

[0013] In some implementations, the loss function
includes: a logit-Laplace loss term; an L2 loss term; a
perceptual loss term; and/or a generative adversarial net-
work loss term.

[0014] In some implementations, mapping, by the com-
puting system, the plurality of image tokens to the plurality
of quantized codes contained in the quantization codebook
that contains the plurality of candidate codes comprises:
projecting, by the computing system, the plurality of image
tokens to a lower-dimensional space; and after projecting the
image tokens to the lower-dimensional space, mapping, by
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the computing system, the plurality of image tokens to the
plurality of quantized codes contained in the quantization
codebook.

[0015] In some implementations, mapping, by the com-
puting system, the plurality of image tokens to the plurality
of quantized codes contained in the quantization codebook
that contains the plurality of candidate codes comprises:
applying, by the computing system, an [.2 normalization to
one or both of the plurality of image tokens and the plurality
of candidate codes; and after applying the 1.2 normalization,
mapping, by the computing system, the plurality of image
tokens to the plurality of quantized codes contained in the
quantization codebook.

[0016] In some implementations, the method further
includes autoregressively predicting, by the computing sys-
tem using a machine-learned code prediction model, a
plurality of predicted codes from the quantization codebook
based at least in part on one or more of the plurality of
quantized codes; and processing, by the computing system,
the plurality of predicted codes with a machine-learned
image decoder to generate a plurality of synthesized image
patches that form a synthesized image.

[0017] In some implementations, the method further
includes evaluating, by the computing system, a code pre-
diction loss function that evaluates a negative log-likelihood
based on the plurality of predicted codes; and modifying, by
the computing system, one or more parameters of the
machine-learned code prediction model based on the code
prediction loss function.

[0018] Insome implementations, autoregressively predict-
ing, by the computing system using the machine-learned
code prediction model, the plurality of predicted codes
comprises conditioning, by the computing system, the
machine-learned code prediction model with auxiliary con-
ditioning data descriptive of one or more desired character-
istics of the synthesized image.

[0019] In some implementations, the auxiliary condition-
ing data comprises a class label descriptive of a desired class
of the synthesized image.

[0020] In some implementations, the auxiliary condition-
ing data comprises natural language text tokens.

[0021] In some implementations, the method further
includes extracting, by the computing system, one or more
intermediate features from the machine-learned code pre-
diction model; and predicting, by the computing system, a
class label for the image based at least in part on the
intermediate features.

[0022] Another example aspect is directed to a computer-
implemented method to perform vector quantization of
imagery. The method includes obtaining, by a computing
system comprising one or more computing devices, a plu-
rality of quantized codes that form an encoded version of an
image, wherein the plurality of quantized codes were
selected by mapping a plurality of image tokens generated
by a machine-learned image encoder model to the plurality
of quantized codes contained in a quantization codebook
that contains a plurality of candidate codes. The method
includes processing, by the computing system, the plurality
of quantized codes with a machine-learned image decoder to
generate a plurality of decoded image patches that form a
decoded version of the image. In some implementations, one
or both of the machine-learned image encoder model and the
machine-learned image decoder are configured to perform
one or more self-attention operations.
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[0023] Another example aspect is directed to a computer
system comprising one or more processors and one or more
non-transitory computer-readable media that collectively
store instructions that when executed by the one or more
processors cause the one or more processors to perform any
of the methods described herein.

[0024] Another example aspect is directed to a one or
more non-transitory computer-readable media that collec-
tively store instructions that when executed by one or more
processors cause the one or more processors to perform any
of the methods described herein.

[0025] Another example aspect is directed to a computing
system comprising one or more processors and one or more
non-transitory computer-readable media that collectively
store a machine-learned image processing model. The
machine-learned image processing model comprises: an
encoder portion configured to encode one or more input
image patches into one or more image tokens in a latent
space; a quantization portion configured to quantize the one
or more image tokens into one or more quantized codes
selected from a codebook; a code prediction portion con-
figured to predict one or more predicted quantized codes
from the codebook based at least in part on the one or more
quantized codes; and a discriminative prediction portion
configured to generate one or more discriminative predic-
tions for the input image patches based at least in part on
data extracted from the code prediction portion.

[0026] In some implementations, the machine-learned
image processing model further comprises a decoder portion
configured to generate reconstructed image patches based on
the one or more quantized codes or to generate synthetic
image patches based at least in part on the one or more
predicted quantized codes.

[0027] In some implementations, the one or more dis-
criminative predictions comprise image classification pre-
dictions.

[0028] Another example aspect is directed to a computer-
implemented method to perform text-to-image generation.
The method includes obtaining, by a computing system
comprising one or more computing devices, a natural lan-
guage input descriptive of desired image content. The
method includes processing, by the computing system, the
natural language input with a text encoder portion of a
machine-learned code prediction model to generate a text
embedding. The method includes processing, by the com-
puting system, the text embedding with an autoregressive
code selection portion of the machine-learned code predic-
tion model to autoregressively predict a sequence of pre-
dicted codes from a quantization codebook that contains a
plurality of candidate codes. The method includes process-
ing, by the computing system, the sequence of quantized
codes with a machine-learned image decoder to generate a
plurality of synthesized image patches that form a synthe-
sized image. The synthesized image depicts the desired
image content.

[0029] In some implementations, one or more of the text
encoder portion of the machine-learned code prediction
model, the autoregressive code selection portion of the
machine-learned code prediction model, and the machine-
learned image decoder are configured to perform one or
more self-attention operations.

[0030] In some implementations, one or more of the text
encoder portion of the machine-learned code prediction
model, the autoregressive code selection portion of the
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machine-learned code prediction model, and the machine-
learned image decoder comprise transformer neural net-
works.

[0031] In some implementations, one or both of the
machine-learned image decoder and the codebook were
jointly learned with an image encoder model.

[0032] In some implementations, the text encoder portion
of the machine-learned code prediction model was pre-
trained on a pre-training task.

[0033] Another example aspect is directed to a computer-
implemented method to train a code prediction model. The
method includes obtaining, by a computing system com-
prising one or more computing devices, a training example
comprising a training image and a natural language input
descriptive of content of the training image. The method
includes processing, by the computing system, a plurality of
image patches from the training image with a machine-
learned image encoder to generate a plurality of image
tokens in a latent space, wherein the plurality of image
tokens correspond to the plurality of image patches. The
method includes mapping, by the computing system, the
plurality of image tokens to a plurality of quantized codes
contained in a quantization codebook that contains a plu-
rality of candidate codes. The method includes processing,
by the computing system, the natural language input with a
text encoder portion of the code prediction model to gener-
ate a text embedding. The method includes processing, by
the computing system, the text embedding with an autore-
gressive code selection portion of the code prediction model
to autoregressively predict a sequence of predicted codes
from the quantization codebook. The method includes
evaluating, by the computing system, a code prediction loss
function that compares the sequence of predicted codes to
the plurality of quantized codes. The method includes modi-
fying, by the computing system, one or more parameters of
the code prediction model based at least in part on the code
prediction loss function.

[0034] In some implementations, the machine-learned
image encoder performs one or more self-attention opera-
tions to process the plurality of input image patches to
generate the plurality of image tokens in the latent space.
[0035] In some implementations, the code prediction loss
function evaluates a negative log-likelihood of the predicted
codes relative to the quantized codes.

[0036] In some implementations, the machine-learned
image encoder and the codebook has been previously trained
with an image decoder in an autoencoder architecture.
[0037] In some implementations, modifying, by the com-
puting system, one or more parameters of the code predic-
tion model based at least in part on the code prediction loss
function comprises modifying, by the computing system,
one or more parameters of both the text encoder portion and
the autoregressive code selection portion of the code pre-
diction model based at least in part on the code prediction
loss function.

[0038] Other aspects of the present disclosure are directed
to various systems, apparatuses, non-transitory computer-
readable media, user interfaces, and electronic devices.
[0039] These and other features, aspects, and advantages
of various embodiments of the present disclosure will
become better understood with reference to the following
description and appended claims. The accompanying draw-
ings, which are incorporated in and constitute a part of this
specification, illustrate example embodiments of the present
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disclosure and, together with the description, serve to
explain the related principles.

BRIEF DESCRIPTION OF THE DRAWINGS

[0040] Detailed discussion of embodiments directed to
one of ordinary skill in the art is set forth in the specification,
which makes reference to the appended figures, in which:
[0041] FIG. 1 depicts a graphical diagram of example
machine learning models for performing vector quantization
of imagery according to example embodiments of the pres-
ent disclosure.

[0042] FIG. 2 depicts a graphical diagram of example
machine learning models for performing image generation
according to example embodiments of the present disclo-
sure.

[0043] FIG. 3 depicts a graphical diagram of example
machine learning models for performing image generation
according to example embodiments of the present disclo-
sure.

[0044] FIG. 4 depicts a graphical diagram of example
machine learning models for performing image generation
according to example embodiments of the present disclo-
sure.

[0045] FIG. 5 depicts a graphical overview of an approach
to perform text-to-image generation according to example
embodiments of the present disclosure.

[0046] FIG. 6 depicts a graphical diagram of an example
approach to scale model training according to example
embodiments of the present disclosure.

[0047] FIG. 7 depicts a graphical diagram of an example
model parallelism approach according to example embodi-
ments of the present disclosure.

[0048] FIG. 8A depicts a block diagram of an example
computing system according to example embodiments of the
present disclosure.

[0049] FIG. 8B depicts a block diagram of an example
computing device according to example embodiments of the
present disclosure.

[0050] FIG. 8C depicts a block diagram of an example
computing device according to example embodiments of the
present disclosure.

[0051] Reference numerals that are repeated across plural
figures are intended to identify the same features in various
implementations.

DETAILED DESCRIPTION

Overview

[0052] Generally, the present disclosure is directed to
vector-quantized image modeling using vision transformers
and improved codebook handling. In particular, the present
disclosure provides a Vector-quantized Image Modeling
(VIM) approach that involves pretraining a machine learn-
ing model (e.g., Transformer model) to predict rasterized
image tokens autoregressively. The discrete image tokens
can be encoded from a learned Vision-Transformer-based
VQGAN (example implementations of which can be
referred to as ViIT-VQGAN). The present disclosure pro-
poses multiple improvements over vanilla VQGAN from
architecture to codebook learning, yielding better efficiency
and reconstruction fidelity. The improved ViT-VQGAN fur-
ther improves vector-quantized image modeling tasks,
including unconditional image generation, conditioned
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image generation (e.g., class-conditioned image generation),
and unsupervised representation learning.

[0053] Example experiments demonstrate the technical
effectiveness of the proposed techniques. In particular, when
trained on ImageNet at 256x256 resolution, example imple-
mentations of the present disclosure achieve Inception Score
(IS) of 175.1 and Frechet Inception Distance (FID) of 4.17,
a dramatic improvement over the vanilla VQGAN, which
obtains 70.6 and 17.04 for IS and FID, respectively. Based
on ViT-VQGAN and unsupervised pretraining, example
experiments further evaluate the pretrained Transformer by
averaging intermediate features, similar to Image GPT
(1GPT). This ImageNet-pretrained VIM-L significantly beats
iGPT-L on linear-probe accuracy from 60.3% to 72.1% for
a similar model size. VIM-L also outperforms iGPT-XL
which is trained with extra web image data and larger model
size.

[0054] Another example aspect of the present disclosure is
directed to application of the proposed vector-quantized
image models to a text-to-image generation task. Specifi-
cally, the present disclosure provides autoregressive models
that can generate photorealistic images from text descrip-
tions, with distinct advantages from diffusion-based
approaches. Example implementations of these models can
be referred to as “Babeldraw”. In some implementations,
Babeldraw uses an improved image tokenizer, the Trans-
former-based ViT-VQGAN described herein, to encode an
image as a sequence of discrete tokens. This naturally
reduces the task at hand into the familiar problem of
machine translation, from text to image tokens. Second, by
scaling the encoder-decoder Transformer parameters from
350M and 750M to 3B and 20B, consistent quality improve-
ments are observed. Compared with recent diffusion-based
models, the 20B Babeldraw model achieves a comparable
zero-shot MS-COCO Frechet Inception Distance (FID)
score of 7.31, and an unprecedented FID score of 4.03 when
finetuned on MS-COCO train split. With a post super-
resolution upsampler learned on the frozen 256x256 image
tokenizer, Babeldraw reliably generates high-resolution
photorealistic images.

[0055] Thus, example implementations of the present dis-
closure relate to the Vector-quantized Image Modeling
(VIM) method for both image generation and image under-
standing tasks. Specifically, some example implementations
adhere to the following two-stage approach:

[0056] Stage 1: Vector Quantization. Given an image
(e.g., of resolution 256x256), a Vision-Transformer-
based VQGAN encodes it into a number of discretized
latent codes (e.g., 32x32) contained within a codebook
(e.g., the codebook size can be 8192). The present
disclosure proposes multiple improvements from archi-
tecture to codebook learning on top of VQGAN (Esser
et al., 2021). The resulted ViT-VQGAN has better
efficiency and reconstruction fidelity in terms of pixel-
wise reconstruction metrics, Inception Score (IS) and
Frechet Inception Distance (FID). ViIT-VQGAN can be
trained end-to-end on image-only data with a combined
objective functions of logit-Laplace loss, L2 loss,
adversarial loss, and/or perceptual loss.

[0057] Stage 2: Vector-quantized Image Modeling.
Some example implementations can include training a
Transformer model to predict rasterized (e.g.,
32x32=1024) image tokens autoregressively, where
image tokens are encoded by the frozen Stage 1 ViTl-
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VQGAN. For unconditional image synthesis or unsu-
pervised learning, a decoder-only Transformer model
can be trained to predict the next tokens. For condi-
tioned image synthesis (e.g., class-conditioned image
synthesis), conditioning data (e.g., a class-id token) can
be prepended at the beginning of all image tokens.
[0058] To evaluate the quality of unsupervised learning,
the intermediate Transformer features can be extracted (e.g.,
and averaged) and a linear head can be trained to predict the
logit of the classes (a.k.a., linear-probe accuracy).
[0059] One key component for improving both image
generation and image understanding with VIM is to have a
better image quantizer in terms of computational efficiency
and reconstruction quality. An efficient quantizer can speed
up Stage 2 training where random augmentations are firstly
applied on images, followed by encoder of image quantizer
as the input tokens. Moreover, an image quantizer with
better reconstruction quality can potentially reduce informa-
tion loss compared with the original image in pixel space,
which is critical for image understanding tasks.
[0060] Additional example aspects of the present disclo-
sure are directed to autoregressive image generation models
that can generate photorealistic images from text descrip-
tions. The autoregressive models provided herein can benefit
from a better image tokenizer and also the scaling of the
model. More specifically, the present disclosure provides a
transformer-based sequence-to-sequence model for image
generation (example implementations of which can be
referred to as “Babeldraw”). The image generation model
can take tokenized text tokens as inputs to an encoder and
predict discrete image tokens with a decoder in an autore-
gressive fashion. The image tokens can, in some examples,
be produced by the transformer-based ViT-VQGAN image
tokenizer described herein, a better model than VQGAN in
terms of efficiency and image reconstruction fidelity.
[0061] In some implementations, all components of the
image generation model—encoder, decoder and image
tokenizer—can be based on standard transformer model.
This makes it easy to scale the models. To test the limits of
the aforementioned two-stage text-to-image framework, the
parameter size of example Babeldraw models was scaled
from 350M, to 750M, 3B, and 20B, and quality improve-
ments were observed both in terms of text-image alignment
and image photorealism. The 20B Babeldraw model
achieves a strong zero-shot FID score of 7.31, comparable to
state-of-the-art diffusion-based models. Remarkably, when
finetuned on MS-COCO, an example Babeldraw model
achieves an unprecedented low FID score of 4.07.
[0062] While most works fixate on the MS-COCO bench-
mark, example experiments show that strong zero-shot and
finetuned results can also be achieved on the Localized
Narratives dataset, which has descriptions that are 4 times
longer than MS-COCO on average. These results clearly
demonstrate the strong generalization capability of the pro-
posed model to longer descriptions.
[0063] Thus, the present disclosure provides a number of
contributions as relates to text-to-image generation. First, it
is recognized that the image tokenizer is one of the key
ingredients for two-stage text-to-image generation model,
and has direct connection to the visual quality of generated
images. Second, with the exact same image tokenizer and
training data, simply scaling encoder-decoder is effective for
text-to-image generation. Third, text encoder pretraining
with BERT only mildly helps natural language understand-
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ing for text-to-image systems; the text encoder finetuned on
text-to-image generation has worse results on language
understanding tasks, suggesting a potential gap for general
language understanding and visually-grounded language
understanding.

[0064] The systems and methods of the present disclosure
provide a number of technical effects and benefits. As one
example, the proposed techniques are able to achieve com-
parable results to current state of the art models (e.g., iGPT)
for certain tasks (e.g., image recognition with generative
pre-training), but with a smaller model and less data.
Enabling the use of a smaller model with less data (while
obtaining comparable results), reduces the consumption of
computational resources such as processor usage, memory
usage, network bandwidth, etc. Thus, the proposed
approaches save computing resources and are an improve-
ment in the functioning of a computer.

[0065] As another example, example implementations of
the present disclosure have superior efficiency and recon-
struction fidelity in terms of pixel-wise reconstruction met-
rics, Inception Score (IS) and Frechet Inception Distance
(FID) relative to existing models. Thus, the present disclo-
sure represents an improvement in the ability to encode
image data into an encoded representation. Encoding data
has numerous benefits including savings of memory space
and network bandwidth. The present disclosure enables a
system to encode imagery to achieve such benefits, all while
reducing the loss of data experienced when decoding the
imagery to a decoded image.

[0066] As another example technical effect and benefit,
the present disclosure provides improved image generation
and image understanding with VIM by providing an
improved image quantizer in terms of computational effi-
ciency and reconstruction quality. An efficient quantizer can
speed up Stage 2 training where random augmentations are
firstly applied on images, followed by encoder of image
quantizer as the input tokens. Increasing training speed can
result in savings of computational resources such as proces-
sor usage, memory usage, and/or network bandwidth usage.
Moreover, an image quantizer with better reconstruction
quality can potentially reduce information loss compared
with the original image in pixel space, which is critical for
image understanding tasks. Thus, the performance of a
computer on image understanding tasks can be improved.

[0067] With reference now to the Figures, example
embodiments of the present disclosure will be discussed in
further detail.

Example Stage 1 Techniques

[0068] FIG. 1 depicts a graphical diagram of example
machine learning models for performing vector quantization
of imagery according to example embodiments of the pres-
ent disclosure.

[0069] In particular, as shown in FIG. 1, a computing
system can obtain a plurality of input image patches 12 of an
image 14.

[0070] The computing system can process the plurality of
input image patches 12 with a machine-learned image
encoder 16 to generate a plurality of image tokens 18 in a
latent space. The plurality of image tokens 18 can corre-
spond to the plurality of input image patches 12. The
machine-learned image encoder 16 can perform one or more

Apr. 4,2024

self-attention operations to process the plurality of input
image patches 12 to generate the plurality of image tokens
18 in the latent space.

[0071] The computing system can map the plurality of
image tokens 18 to a plurality of quantized codes 20
contained in a quantization codebook 22 that contains a
plurality of candidate codes. The computing system can
provide the plurality of quantized codes 20 as an encoded
version of the image.

[0072] Further, in some implementations, the computing
system (i.e., the same or different component computing
devices thereof) can process the plurality of quantized codes
20 with a machine-learned image decoder 24 to generate a
plurality of synthesized image patches 26 that form a
synthesized image 28.

[0073] The computing system can evaluate a loss function
30 that provides a loss value based at least in part on the
synthesized image. The loss function can include a logit-
Laplace loss term; an L2 loss term; a perceptual loss term;
and/or a generative adversarial network loss term (e.g., the
GAN evaluation is specifically illustrated at 30 while the
others are not).

[0074] The computing system can modify one or more of:
the machine-learned image encoder 16, the machine-learned
image decoder 24, and the plurality of candidate codes 22
based at least in part on the loss function.

[0075] In some implementations, mapping the plurality of
image tokens 18 to the plurality of quantized codes 20 can
include projecting the plurality of image tokens 18 to a
lower-dimensional space and, after projecting the image
tokens 18 to the lower-dimensional space, mapping the
plurality of image tokens to the plurality of quantized codes
contained in the quantization codebook. The quantized
codes 20 can then be re-projected back up to the higher-
dimensional space prior to being processed by the decoder
24.

[0076] In some implementations, mapping the plurality of
image tokens 18 to the plurality of quantized codes 20 can
include applying an [.2 normalization to one or both of the
plurality of image tokens 18 and the plurality of candidate
codes in the codebook 22 and, after applying the L2 nor-
malization, mapping the plurality of image tokens 18 to the
plurality of quantized codes 20 contained in the quantization
codebook 22.

Example Stage 2 Techniques

[0077] FIG. 2 depicts a graphical diagram of example
machine learning models for performing vector quantization
of imagery according to example embodiments of the pres-
ent disclosure.

[0078] In particular, as shown in FIG. 2, a computing
system can obtain one or more input image patches 212 of
an image 214.

[0079] The computing system can process the one or more
input image patches 212 with a machine-learned image
encoder 216 to generate one or more image tokens 218 in a
latent space. The one or more image tokens 218 can corre-
spond to the one or more input image patches 212. The
machine-learned image encoder 216 can perform one or
more self-attention operations to process the one or more
input image patches 212 to generate the one or more image
tokens 218 in the latent space. For example, the machine-
learned image encoder 216 can have been trained or learned
according to the process shown in FIG. 1.
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[0080] The computing system can map the one or more
image tokens 218 to one or more quantized codes 220
contained in a quantization codebook 222 that contains a
plurality of candidate codes. For example, the quantization
codebook 222 can have been learned according to the
process shown in FIG. 1.

[0081] Further, in some implementations, the computing
system (i.e., the same or different component computing
devices thereof) can process the one or more quantized
codes 220 with a machine-learned code prediction model
224 to autoregressively predict a plurality of predicted codes
226 from the quantization codebook 222 based at least in
part on the one or more quantized codes 220.

[0082] The computing system can process the plurality of
predicted codes 226 with a machine-learned image decoder
228 to generate a plurality of synthesized image patches 230
that form a synthesized image 232.

[0083] Insome implementations or instances, the comput-
ing system can further evaluate a code prediction loss
function that evaluates a negative log-likelihood based on
the plurality of predicted codes 226. The computing system
can modify one or more parameters of the machine-learned
code prediction model 224 based on the code prediction loss
function. For example, the code prediction model 224 can be
trained to learn the distribution of tokens over a corpus of
imagery using, for example, the code prediction loss func-
tion.

[0084] In some implementations, during training and/or
inference, the machine-learned code prediction model 224
can be conditioned with auxiliary conditioning data descrip-
tive of one or more desired characteristics of the synthesized
image. As one example, the auxiliary conditioning data can
include a class label descriptive of a desired class of the
synthesized image 232. For example, in FIG. 2, the model
224 is conditioned with the label of [Cat] so that the
synthesized image 232 depicts a cat but the synthesized
image 232 shares visual characteristics with the image 214.
As another example, the auxiliary conditioning data can
include natural language text tokens and/or any other con-
ditioning data that provides a prior for the synthesis of the
imagery.

[0085] FIG. 2 shows an example approach in which the
image generation process is conditioned both on patch(es)
212 from an input image 214 and also on a textual input
(e.g., a class label). However, in some implementations, the
image generation can be conditioned on text only. For
example, FIG. 3 illustrates an example in which the gen-
eration of a synthetic image 332 is conditioned on a natural
language input 334 of “angry cat.” For example, the natural
language input 334 can be transformed into tokens and then
provided as input to the code prediction model 224.
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[0086] According to an aspect of the present disclosure, in
some implementations that include text conditioning and/or
perform a text-to-image generation task, the code prediction
model 224 can include a text encoder that generates a text
embedding from the textual input.

[0087] As an example, FIG. 4 shows an example image
generation approach in which the code prediction model 224
includes a text encoder 402 and an autoregressive code
selector 404. The text encoder 402 can receive the input text
334 and generate a text embedding 406. The text embedding
406 can be provided as an input to the autoregressive code
selector 404. For example, the text embedding 406 can be
provided as an initial prompting token to the autoregressive
code selector 404.

[0088] In some implementations, one or both of the text
encoder 402 and the autoregressive code selector 404 can be
or include transformer models or other models that perform
self-attention. In some implementations, the text encoder
can be pre-trained (e.g., using masked language modeling
pre-training approaches, contrastive learning approaches,
and/or other pre-training approaches). In some implemen-
tations, the parameters of the text encoder 402 and the
autoregressive code selector 404 can be trained jointly (e.g.,
using a code prediction loss function) to learn the distribu-
tion of tokens over a set of text and image training examples
that each includes a pair of text and image.

Example Vector-Quantized Images with
ViT-VQGAN

[0089] The Vector-quantized Variational AutoEncoder
(VQVAE) is a CNN-based auto-encoder whose latent space
is a matrix of discrete learnable variables, trained end-to-end
via straight-through estimation. VQGAN is a model which
improves upon VQVAE by introducing an adversarial loss
produced by a discriminator. Herein, further improvements
to VQGAN are provided that boost efficiency and enhance
reconstruction quality.

Example VQGAN with Vision Transformers

[0090] The core network architectures used by both
VQVAE and VQGAN to encode and reconstruct images are
CNNs. VQGAN introduces transformer-like elements in the
form of non-local attention block, allowing it to capture
distant interactions with fewer layers. Example implemen-
tations of the present disclosure this approach one step
further by replacing the CNN encoder and decoder with
Vision Transformer (ViT) . Given sufficient data (for which
unlabeled image data is plentiful) we find that ViT-VQGAN
is less constrained by the inductive priors imposed by
convolutions. Furthermore, ViT-VQGAN yields better com-
putational efficiency on accelerators, and produces higher
quality reconstructions, as shown in Table 1 below.

TABLE 1

Example implementations of VIT-VQGAN achieve better speed-quality trade-
offs compared with CNN-VQGAN. This in turn further speeds up Stage 2 training.
Throughputs are benchmarked with the same 128 CloudTPUv4 devices.

Model Size

(encoder- Throughput 1 €, loss | Logit-Laplace
Architecture decoder) (imgs/sec) (le=2) loss | FID| ISt
ViT-VQGAN  Small-Small 1520 3.34 -2.44 1.99 1844
CNN-VQGAN Channels x 1 946 3.81 -2.36 226 1787
ViT-VQGAN  Base-Base 960 3.09 -2.54 1.55 190.2
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TABLE 1-continued
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Example implementations of ViT-VQGAN achieve better speed-quality trade-
offs compared with CNN-VQGAN. This in turn further speeds up Stage 2 training.
Throughputs are benchmarked with the same 128 CloudTPUv4 devices.

Model Size

(encoder- Throughput T €, loss |  Logit-Laplace
Architecture decoder) (imgs/sec) (le-2) loss 4 FD! IS7T
CNN-VQGAN Channels x 2 400 344 —2.46 191 1834
ViT-VQGAN  Small-Large 384 2.88 —2.58 128 1923

[0091] An example encoder of ViT-VQGAN first maps
8x8 non-overlapping image patches into image tokens,
followed by Transformer blocks, encoding a 256x256 reso-
Iution image into a 32x32=1024 token sequence. An
example decoder performs the inverse operation, mapping
each image token from latent variables back to 8x8 image
patches and regrouping them into a 256x256 image. In some
implementations, at the output of transformer blocks, we
apply a two-layer feed-forward network with a tanh activa-
tion layer in the middle. In some implementations, no
activation is applied at the output of ViT-VQGAN encoder
or decoder (except the mean prediction of the logit-laplace
loss). In some implementations, the sigmoid activation is
applied for the mean prediction of the decoder due to the
logit-laplace loss. This example approach yields high quality
reconstructions without any noticeable grid artifacts.

Example Codebook Learning

[0092] Vanilla VQVAEs usually suffer from low codebook
usage due to the poor initialization of the codebook. There-
fore, during training a significant portion of codes are rarely
used, or dead. The reduction in effective codebook size
results in worse reconstructions in stage 1 quantizer training
and poor diversity in stage 2 for image synthesis. As a result,
VQGAN relies on top-k and top-p (nucleus) sampling
heuristics with a default codebook size of 1024 to obtain best
results for image synthesis. Example implementations of the
present disclosure include two improvements that can sig-
nificantly encourage the codebook usage even with a larger
codebook size of 8192. During image synthesis, example
implementations perform simple sampling with temperature
of 1.0 without top-k and top-p heuristics.

[0093] One example training objective of vector-quanti-
zation is defined as follows:

Lyw = lIsglze@)] - ell? + Bllz=(x) - sglelll3. M

d
Here, sg(x) = x, —sgx)=0
dx

is the stop-gradient operator, f is a commitment loss hyper-
parameter set to 0.25 in all our experiments, and e is the
codebook vector. In some implementations, the quantized
codebook index is determined by looking up the codebook
vector closest to the input features z,(x) in terms of the
Euclidean distance, yielding i=argminj|\zg(x)—ej|\22.

[0094] Factorized codes. Some example implementations
of the present disclosure include a linear projection from the
output of the encoder to a low-dimensional latent variable
space for code index lookup (reduced from a 768-d vector to
a 32-d or 8-d vector per code). This has an immediate boost

of codebook usage. The factorization can be viewed as
decoupling code lookup and code embedding: some
example implementations lookup the closest variable
encoded from input on a lower-dimensional lookup space
and then project the matched latent code to the high-
dimensional embedding space. Example experiments show
reducing dimension of lookup space from 256-d to 32-d
consistently improves reconstruction quality.

[0095] £ ,-normalized codes. Some example implementa-
tions also apply £, normalization on the encoded latent
variables z,(x) and codebook latent variables e. In some
implementations, the codebook variables are initialized from
a normal distribution. By mapping all latent variables on a
sphere, the Euclidean distance of ¢ ,-normalized latent
variables || ,(z (x))—¢ 2(ej)H22 evolves to the cosine simi-
larity of two vectors between z,(x) and e, further improving
training stability and reconstruction quality shown in our
experiments.

Example ViT-VQGAN Training Losses

[0096] Some example implementations use a combination
of logit-laplace loss, € , loss, perceptual loss based on VGG
network and GAN loss with architecture of StyleGAN
discriminator. Loss balancing weights can be configured
with a hyper-parameter sweep to optimize image reconstruc-
tion quality, codebook usage, FID and Inception Score. After
the sweep, some example implementations apply the same
set of hyper-parameters of training losses to all datasets
including CelebA-HQ, FFHQ, and ImageNet. Logit-Laplace
loss can be viewed as normalized ¢ | loss which assumes the
noise at the pixel level is laplace-distributed while €, loss
assumes the noise is of a Gaussian distribution. We find
logit-laplace loss contributes to codebook usage while £,
loss and perceptual loss significantly contribute to FID. The
final loss combination we used by default is L=Ly,+0.1
Last0.1 Lpprppiat0.1 L +1.0 L,.

[0097] One caveat on the VGG-based perceptual loss is
that the VGG network is pretrained with supervised classi-
fication loss, so the supervision might leak into Stage 2 for
linear-probe accuracy measurement. Thus, for all of our
reported unsupervised learning results, some example
implementations exclude the perceptual loss during ViT-
VQGAN training. For all unconditional and class-condi-
tioned image synthesis, some example implementations use
VIT-VQGAN quantizers trained with perceptual loss, as it
leads to higher-fidelity reconstructions.

Logir—laplace

Example Vector-Quantized Image Modeling

[0098] With a learned ViT-VQGAN, images can be
encoded into discrete latent code ids flattened in the raster
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order, similar to Image GPT. A decoder-only Transformer
model can be used to model the density of image data P(x)
autoregressively as

: @
P =[ P61, 30, s 15 0),

=1

where 0 is learnable weights. The training objective is to
minimize the negative log-likelihood of the data L=E ,_
[log P(x)].

[0099] Table 2 summarizes example architecture configu-
rations for the Transformers. Some example implementa-
tions first embed discrete image token ids into a learnable
embedding space at each position, with an additive learnable
2D positional embedding. Both embedding dimensions are
the same as model dimension. Some example implementa-
tions apply a stack of Transformer blocks to the inputs with
causal attention over the entire sequence. A dropout ratio of
0.1 can be used in all residual, activation and attention
outputs. At the final layer of all Transformer blocks, some
example implementations apply an additional layer normal-
ization.

TABLE 2
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pretrained Transformer, and get a sequence of 1024 token
features. Some example implementations take a layer output
at a specific block 1 over total blocks L, average over the
sequence of token features (frozen) and insert a softmax
layer (learnable) projecting averaged feature to class logits.
Some example implementations only take one specific
Transformer block output instead of concatenating different
block outputs as in iGPT. Often, the most discriminating
feature for the linear-probe is typically near the middle of all
Transformer blocks.

Example Babeldraw Models

[0103] Some example implementations of Babeldraw is a
two-stage model composed of an image tokenizer and an
autoregressive model over both language and image tokens.

Example Image Tokenizer

[0104] Autoregressive text-to-image models rely on some
forms of linearization of 2D images into 1D sequence of
patch representations. In the limit, these are just pixels, but
this requires modeling very long sequences for even rela-
tively small images (e.g., a 256x256 image leads to 65536
rasterized pixels). Worse, it is based on a very low-level

Example Transformer architectures of Stage 1 ViT-VOGAN and Stage 2 VIM.

Model Hidden
Model Size #Params #Blocks #Heads Dim Dim  Dropout #Tokens
VIT-VQGAN  Small 32M 8 8 512 2048 0.0 1024
ViT-VQGAN  Base 91IM 12 12 768 3072 0.0 1024
ViT-VQGAN  Large 599M 32 16 1280 5120 0.0 1024
VIM Base 650M 24 16 1536 6144 0.1 1024
VIM Large 1697M 36 32 2048 8192 0.1 1024

Example Image Synthesis

[0100] With a pretrained generative Transformer model,
unconditional image generation can be achieved by simply
sampling token-by-token from the output softmax distribu-
tion. All samples used for both qualitative and quantitative
results can be obtained without temperature reduction. The
sampled tokens can then be fed into the decoder of ViT-
VQGAN to decode output images. An example default
Stage 1 ViT-VQGAN encodes input images of resolution
256%256 into 32x32 latent codes with a codebook size 8192,
while Stage 2 Transformer takes the flattened image tokens
with total a length of 1024.

[0101] Class-conditioned ImageNet generation is also a
widely used benchmark for measuring capabiltiy of models
for image synthesis. Some example implementations extend
the unconditional generation to class-conditioned generation
by prepending a class-id token before the image tokens.
Separate embedding layers can be learned from scratch for
class-id token and image tokens, with the embedding dimen-
sion the same as the Transformer model dimension. During
sampling, a class-id token can be provided at the first
position to decode the remaining image tokens autoregres-
sively.

Example Unsupervised Learning

[0102] For the image understanding task, some example
implementations feed all image tokens of the input into a

representation of the inputs rather than a richer one informed
by the position of a pixel in the context of the image. Many
works solved aforementioned problem by using a discrete
variational auto-encoder to learn quantized representations
of image patches over a collection of raw images. Instead of
learning representations that can take any value in the latent
space, a visual codebook is learned that snaps a patch
embedding to its nearest codebook entry—which is a
learned and index-able location in the overall latent space.
These entries can be thought of as visual word types, and the
appearance of any of these words in a patch in a given image
is thus an image token.

[0105] To be most useful for the second stage model, the
image tokenizer should learn (a) an effective visual code-
book that supports balanced usage of its entries across a
broad range of images and (b) support reconstruction of a
sequence of visual tokens as a high-quality output image.
Some example implementations use VIT-VQGAN,
examples described herein, which addresses both require-
ments by using techniques that improve codebook learning:
namely normalization and factorized codes which contribute
to training stability, reconstruction quality and codebook
usage.

[0106] For Babeldraw’s image tokenizer, some example
implementations train ViT-VQGAN as described above, but
use the images in a larger image-text training data (e.g.,
instead of ImageNet, CelebA-HQ or FFHQ). Some example
implementations first train a ViT-VQGAN-Small configura-
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tion (8 blocks, 8 heads, model dimension 512, and hidden
dimension 2048), and learn 8192 image token classes for the
codebook. Note that the 2nd stage encoder-decoder training
only relies on the encoder and the codebook of a learned
quantizer. To further improve visual acuity of the recon-
structed images, some example implementations freeze the
encoder and codebook after training, and fine-tune with a
larger-size decoder (32 blocks, 16 heads, model dimension
1280, and hidden dimension 5120). Both the input and
output of the image tokenizer can be of resolution 256x256.
[0107] Some example implementations demonstrate pix-
elation patterns (saturated pixel values) in the outputs of
ViT-VQGAN when zooming in on some of the images. To
resolve this issue, some example implementations remove
the final sigmoid layer and expose the raw values as RGB
pixel values (in range [0, 1]). Conveniently, this fix could be
hot-swapped into an already trained model by fine-tuning
the decoder.

[0108] In addition, while images of resolution 256x256
capture most of the contents, structures and textures, it is
more visually pleasing with higher-resolution images like
512x512 or 1024x1024. To this end, some example imple-
mentations leverage a simple super-resolution module on
top of the image tokenizer. Stacked convolutional layers
with residual connections can be used as the super-resolu-
tion network module. It can be learned with the same losses
of ViIT-VQGAN (perceptual loss, StyleGAN loss and [.2
loss) to map from reconstructed images to higher-resolution
reconstructed images. Note that diffusion models could also
be used here as iterative refinement super-resolution mod-
ules either with or without conditioning on text inputs.
Example Text-to-Image with Encoder-Decoder

[0109] In some example implementations, a standard
encoder-decoder transformer model is trained at the second
stage, by treating text-to-image as a sequence-to-sequence
modeling problem. The model can take text as input and is
trained using next-token prediction of image latent codes
generated from the first stage image tokenizer. At inference
time, the model can sample image tokens autoregressively,
which are later decoded into pixels using the decoder of a
previously learned image tokenizer.

[0110] Text prompts can be truncated to a maximum
length of 128, and images of resolution 256x256 can be
encoded into tokens of length 1024 (32x32). Some example
implementations train with cross-entropy loss and use an
int8-quantized Adafactor optimizer with constant-decaying
second-moment factor (betal=0.9, beta2=0.96). Data types
can be cast to bfloatl6 or attention projection and feed-
forward transformers layers, while all layer norms and
model output can be kept as float32. All models can use
cony-shaped masked sparse attention, and some example
implementations train four size variants ranging from 350
million to 20 billion parameters.

[0111] Most of the existing two-stage text-to-image gen-
eration models are decoder-only models. In early explora-
tions at the scale of 350-million to 750-million parameters,
it was found that encoder-decoder variants of Babeldraw
outperformed decoder-only ones both in terms of training
loss and text-to-image generation quality.

Example Text Encoder Pretraining

[0112] The encoder-decoder architecture decouples text
encoding from image-token generation. Thus, some
example implementations also include a straightforward
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way to warm-start the model with a pretrained text encoder.
Intuitively, a good text encoder for visual synthesis should
be capable of generic language understanding in addition to
visually-grounded prompts. Some example implementations
pretrain text encoder on two datasets: the Colossal Clean
Crawled Corpus (C4) with BERT pretraining objective, and
the image-text dataset with contrastive learning objective.
After pretraining, some example implementations continue
training both encoder and decoder for text-to-image genera-
tion with softmax cross-entropy loss on a vocabulary of
8192 discrete image tokens.

Example Classifier-Free Guidance and Reranking

[0113] Classifier-free guidance is usually used in the con-
text of improving the sample quality of diffusion models
without a pretrained classifiers. In this setup, a generative
model G is trained to be able to perform unconditional
generation G(z) (where z represents random noise) and
conditional generation G(z, c¢) (where ¢ represents some
condition, such as language descriptions in our case). It is
simply implemented as randomly dropping out conditional
vector (masking out or switching to a learned embedding)
with certain probability. Then, during the inference process,
sampling of an output I is done by using a linear combina-
tion of the unconditional and conditional predictions:

I=G(z)+MG(z, c)-G(z)), 3)

where A is a hyperparameter representing the weight of
classifier-free guidance. Intuitively it decreases the uncon-
ditional likelihood of the sample while increasing the con-
ditional likelihood, which can be viewed as improving the
alignment of the generated sample with respect to the
condition.

[0114] Classifier-free guidance has been similarly applied
in the context of autoregressive models for text-to-image
generation to great effect. One example approach finetunes
the model while randomly replacing the text prompts with
padded tokens. During inference, a linear combination of
logits sampled from an unconditional model (conditioned on
padding tokens) and a model conditioned on the original text
prompt is taken.

[0115] Some example implementations also apply classi-
fier-free guidance in Babeldraw, and find it has a positive
impact on output quality especially on challenging text
prompts. Some example implementations finetune the model
for 100,000 steps, randomly replacing the text prompt with
padding tokens. During sampling, some example implemen-
tations sample from logits from a linear combination of
unconditional and conditional logits.

[0116] Some example implementations sample 16 images
per text prompt. For each output, some example implemen-
tations rerank them based on the alignment score of image
and text embedding of a Contrastive Captioners model
(CoCa). A CoCa base-size model can be trained on the same
dataset. It is noteworthy that reranking over a small set of
images is computationally cheap in the text-to-image gen-
eration sampling.

Example Scaling Approaches

[0117] Some example implementations use GSPMD and
Lingvo framework to scale models on CloudTPUv4 hard-
ware for both training and inference. GSPMD is an X[LA
compiler-based model partitioning system, which allows to
treat a cluster of TPUs as a single virtual device, and use
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sharding annotations on a few tensors to instruct the com-
piler to automatically distribute the data and compute on
thousands of devices.

[0118] Training. For both 350M and 750M model, some
example implementations simply train the models with data
parallelism. For the 3B model, some example implementa-
tions use 4-way in-layer model parallelism, and 128-way
data parallelism. Partitioning a single dimension in each
tensor is sufficient to scale a 3B model. The model weights
can be partitioned on the feed-forward hidden dimension
and the number of attention heads dimension; the internal
activation tensors of the feed-forward and attention layers
can also be partitioned on the hidden and heads dimensions,
but a difference from Megatron-LM is that some example
implementations also fully partition the output activations of
feed-forward and attention layers on a different dimension
(they do not have the hidden/heads dimensions). This strat-
egy will result in ReduceScatter and AllGather communi-
cation patterns instead of AllReduce, which significantly
reduce peak activation memory.

[0119] As one example, FIG. 6 depicts a graphical dia-
gram of an example approach to scale model training
according to example embodiments of the present disclo-
sure. In particular, FIG. 6 is an illustration of 4-way in-layer
model parallelism with fully partitioned activations to scale
an example 3B model training. FIG. 6 shows a simplified
Transformer feed-forward layer (with the sequence dimen-
sion omitted), and each shading represents data on one
device. Some example implementations additionally use
128-way data parallelism.

[0120] One example 20B model has 16 encoder layers,
and 64 decoder layers. The size of the weight in each layer
is moderate (as opposed to being very wide), which makes
pipeline parallelism a good option for scaling. A generic
pipelining wrapper layer is implemented allowing example
implementations to specify a single-stage program, which
will later be automatically transformed into a multi-stage
pipelining program; the wrapper layers uses vectorization
and shifting buffers to reduce pipelining into a tensor par-
titioning problem thus all lower-level infrastructure can be
reused for pipelining. There are two additional benefits from
adoption of GSPMD pipelining: 1) it allows example imple-
mentations to conveniently configure pipelines within sub-
components of the model, which simplifies the overall
complexity for encoder-decoder models, and 2) since pipe-
lining is implemented as tensor partitioning on vectorized
programs, example implementations can reuse the same set
of devices for other types of parallelism outside the trans-
former layers.

[0121] As one example, FIG. 7 depicts a graphical dia-
gram of an example model parallelism approach according
to example embodiments of the present disclosure. In par-
ticular, FIG. 7 depicts an illustration of example 16-stage
GSPMD pipelines to scale an example 20B model training.
FIG. 7 shows how the 16 devices are used for data paral-
lelism in quantizer, embedding, and softmax layers, but
repurposed for pipelining in the encoder and decoder layers.
Each shading represents data or layer assigned to one device.
The decoder users 4-round circular schedule to further
reduce the pipeline bubble ratio. On top of this, example
implementations additionally use 64-way data parallelism
for all layers.

[0122] Some example implementations configure the
model to have separate encoder and decoder pipelines, each
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of' which has 16 stages. Some example implementations also
use 64-way data parallelism in addition to pipelining to
speed up training. However it makes per-core batch size
small exposing an additional challenge of excessive pipeline
bubbles. To reduce the ratio of pipeline bubbles, some
example implementations adapt the circular schedule in the
decoder pipeline, where the 4 layers in each stage are
executed in a round-robin order. Outside the encoder and
decoder, some example implementations use the same set of
devices to do data parallelism instead of pipelining for the
embedding, softmax, and image tokenizer layers.

[0123] During training, Adafactor optimizer can be used to
save memory with betal=0.9, beta2=0.96 and decoupled
weight decay value of 4.5e-2. The first moments of opti-
mizer slot variables are additionally quantized from float32
to int8. Some example implementations use default dropout
ratio 0.1 for all models in both encoder and decoder. A
deterministic version of dropout layer can be used in the 20B
model to enable model pipelining. Some example imple-
mentations use a default learning rate of 4.5e-5 and expo-
nential learning rate schedule with 5,000 warmup steps. The
exponential decaying starts at training steps 85,000 with a
total 450,000 steps and a final ratio of 0.025. Some example
implementations do not use exponential moving average of
the model weights to save device memory. For text encod-
ing, some example implementations build a sentence-piece
model of vocabulary size 16,000 on a subset of training data.
Cony-shaped sparse attention can be used in the decoder
transformers. Some example implementations additionally
clip gradient norm to value of 4.0 to stabilize the training
especially at the beginning. At the output of both encoder
and decoder, some example implementations apply an addi-
tional layer normalization layer.

[0124] Inference. One primary goal for inference optimi-
zation is to speed up small-batch image generation. Some
example implementations choose in-layer model parallelism
for both the 3B and 20B models. As opposed to training,
some example implementations do not fully partition the
output activations for feedforward and attention layers for
inference; this is because 1) each step of the auto-regressive
decoding produces much smaller tensors and (at the time of
writing) AllReduce performs better on small data, 2) acti-
vation memory is not a concern during inference which does
not have a backward pass.

Example Devices and Systems

[0125] FIG. 8A depicts a block diagram of an example
computing system 100 according to example embodiments
of the present disclosure. The system 100 includes a user
computing device 102, a server computing system 130, and
a training computing system 150 that are communicatively
coupled over a network 180.

[0126] The user computing device 102 can be any type of
computing device, such as, for example, a personal com-
puting device (e.g., laptop or desktop), a mobile computing
device (e.g., smartphone or tablet), a gaming console or
controller, a wearable computing device, an embedded com-
puting device, or any other type of computing device.
[0127] The user computing device 102 includes one or
more processors 112 and a memory 114. The one or more
processors 112 can be any suitable processing device (e.g.,
a processor core, a microprocessor, an ASIC, an FPGA, a
controller, a microcontroller, etc.) and can be one processor
or a plurality of processors that are operatively connected.
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The memory 114 can include one or more non-transitory
computer-readable storage media, such as RAM, ROM,
EEPROM, EPROM, flash memory devices, magnetic disks,
etc., and combinations thereof. The memory 114 can store
data 116 and instructions 118 which are executed by the
processor 112 to cause the user computing device 102 to
perform operations.

[0128] In some implementations, the user computing
device 102 can store or include one or more machine-
learned models 120. For example, the machine-learned
models 120 can be or can otherwise include various
machine-learned models such as neural networks (e.g., deep
neural networks) or other types of machine-learned models,
including non-linear models and/or linear models. Neural
networks can include feed-forward neural networks, recur-
rent neural networks (e.g., long short-term memory recur-
rent neural networks), convolutional neural networks or
other forms of neural networks. Some example machine-
learned models can leverage an attention mechanism such as
self-attention. For example, some example machine-learned
models can include multi-headed self-attention models (e.g.,
transformer models). Example machine-learned models 120
are discussed with reference to FIGS. 1 and 2.

[0129] In some implementations, the one or more
machine-learned models 120 can be received from the server
computing system 130 over network 180, stored in the user
computing device memory 114, and then used or otherwise
implemented by the one or more processors 112. In some
implementations, the user computing device 102 can imple-
ment multiple parallel instances of a single machine-learned
model 120 (e.g., to perform parallel image quantization
across multiple instances of images).

[0130] Additionally or alternatively, one or more machine-
learned models 140 can be included in or otherwise stored
and implemented by the server computing system 130 that
communicates with the user computing device 102 accord-
ing to a client-server relationship. For example, the
machine-learned models 140 can be implemented by the
server computing system 140 as a portion of a web service
(e.g., an image quantization, understanding, and/or genera-
tion service). Thus, one or more models 120 can be stored
and implemented at the user computing device 102 and/or
one or more models 140 can be stored and implemented at
the server computing system 130.

[0131] The user computing device 102 can also include
one or more user input components 122 that receives user
input. For example, the user input component 122 can be a
touch-sensitive component (e.g., a touch-sensitive display
screen or a touch pad) that is sensitive to the touch of a user
input object (e.g., a finger or a stylus). The touch-sensitive
component can serve to implement a virtual keyboard. Other
example user input components include a microphone, a
traditional keyboard, or other means by which a user can
provide user input.

[0132] The server computing system 130 includes one or
more processors 132 and a memory 134. The one or more
processors 132 can be any suitable processing device (e.g.,
a processor core, a microprocessor, an ASIC, an FPGA, a
controller, a microcontroller, etc.) and can be one processor
or a plurality of processors that are operatively connected.
The memory 134 can include one or more non-transitory
computer-readable storage media, such as RAM, ROM,
EEPROM, EPROM, flash memory devices, magnetic disks,
etc., and combinations thereof. The memory 134 can store
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data 136 and instructions 138 which are executed by the
processor 132 to cause the server computing system 130 to
perform operations.

[0133] In some implementations, the server computing
system 130 includes or is otherwise implemented by one or
more server computing devices. In instances in which the
server computing system 130 includes plural server com-
puting devices, such server computing devices can operate
according to sequential computing architectures, parallel
computing architectures, or some combination thereof.

[0134] As described above, the server computing system
130 can store or otherwise include one or more machine-
learned models 140. For example, the models 140 can be or
can otherwise include various machine-learned models.
Example machine-learned models include neural networks
or other multi-layer non-linear models. Example neural
networks include feed forward neural networks, deep neural
networks, recurrent neural networks, and convolutional neu-
ral networks. Some example machine-learned models can
leverage an attention mechanism such as self-attention. For
example, some example machine-learned models can
include multi-headed self-attention models (e.g., trans-
former models). Example models 140 are discussed with
reference to FIGS. 1 and 2.

[0135] The user computing device 102 and/or the server
computing system 130 can train the models 120 and/or 140
via interaction with the training computing system 150 that
is communicatively coupled over the network 180. The
training computing system 150 can be separate from the
server computing system 130 or can be a portion of the
server computing system 130.

[0136] The training computing system 150 includes one or
more processors 152 and a memory 154. The one or more
processors 152 can be any suitable processing device (e.g.,
a processor core, a microprocessor, an ASIC, an FPGA, a
controller, a microcontroller, etc.) and can be one processor
or a plurality of processors that are operatively connected.
The memory 154 can include one or more non-transitory
computer-readable storage media, such as RAM, ROM,
EEPROM, EPROM, flash memory devices, magnetic disks,
etc., and combinations thereof. The memory 154 can store
data 156 and instructions 158 which are executed by the
processor 152 to cause the training computing system 150 to
perform operations. In some implementations, the training
computing system 150 includes or is otherwise implemented
by one or more server computing devices.

[0137] The training computing system 150 can include a
model trainer 160 that trains the machine-learned models
120 and/or 140 stored at the user computing device 102
and/or the server computing system 130 using various
training or learning techniques, such as, for example, back-
wards propagation of errors. For example, a loss function
can be backpropagated through the model(s) to update one
or more parameters of the model(s) (e.g., based on a gradient
of'the loss function). Various loss functions can be used such
as mean squared error, likelihood loss, cross entropy loss,
hinge loss, and/or various other loss functions. Gradient
descent techniques can be used to iteratively update the
parameters over a number of training iterations.

[0138] In some implementations, performing backwards
propagation of errors can include performing truncated
backpropagation through time. The model trainer 160 can
perform a number of generalization techniques (e.g., weight
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decays, dropouts, etc.) to improve the generalization capa-
bility of the models being trained.

[0139] In particular, the model trainer 160 can train the
machine-learned models 120 and/or 140 based on a set of
training data 162. The training data 162 can include, for
example, unsupervised and/or supervised training images.
[0140] In some implementations, if the user has provided
consent, the training examples can be provided by the user
computing device 102. Thus, in such implementations, the
model 120 provided to the user computing device 102 can be
trained by the training computing system 150 on user-
specific data received from the user computing device 102.
In some instances, this process can be referred to as per-
sonalizing the model.

[0141] The model trainer 160 includes computer logic
utilized to provide desired functionality. The model trainer
160 can be implemented in hardware, firmware, and/or
software controlling a general purpose processor. For
example, in some implementations, the model trainer 160
includes program files stored on a storage device, loaded
into a memory and executed by one or more processors. In
other implementations, the model trainer 160 includes one
or more sets of computer-executable instructions that are
stored in a tangible computer-readable storage medium such
as RAM, hard disk, or optical or magnetic media.

[0142] The network 180 can be any type of communica-
tions network, such as a local area network (e.g., intranet),
wide area network (e.g., Internet), or some combination
thereof and can include any number of wired or wireless
links. In general, communication over the network 180 can
be carried via any type of wired and/or wireless connection,
using a wide variety of communication protocols (e.g.,
TCP/IP, HTTP, SMTP, FTP), encodings or formats (e.g.,
HTML, XML), and/or protection schemes (e.g., VPN,
secure HTTP, SSL).

[0143] The machine-learned models described in this
specification may be used in a variety of tasks, applications,
and/or use cases.

[0144] Insome implementations, the input to the machine-
learned model(s) of the present disclosure can be image data.
The machine-learned model(s) can process the image data to
generate an output. As an example, the machine-learned
model(s) can process the image data to generate an image
recognition output (e.g., a recognition of the image data, a
latent embedding of the image data, an encoded represen-
tation of the image data, a hash of the image data, etc.). As
another example, the machine-learned model(s) can process
the image data to generate an image segmentation output. As
another example, the machine-learned model(s) can process
the image data to generate an image classification output. As
another example, the machine-learned model(s) can process
the image data to generate an image data modification output
(e.g., an alteration of the image data, etc.). As another
example, the machine-learned model(s) can process the
image data to generate an encoded image data output (e.g.,
an encoded and/or compressed representation of the image
data, etc.). As another example, the machine-learned model
(s) can process the image data to generate an upscaled image
data output. As another example, the machine-learned model
(s) can process the image data to generate a prediction
output.

[0145] Insome implementations, the input to the machine-
learned model(s) of the present disclosure can be latent
encoding data (e.g., a latent space representation of an input,

Apr. 4,2024

etc.). The machine-learned model(s) can process the latent
encoding data to generate an output. As an example, the
machine-learned model(s) can process the latent encoding
data to generate a recognition output. As another example,
the machine-learned model(s) can process the latent encod-
ing data to generate a reconstruction output. As another
example, the machine-learned model(s) can process the
latent encoding data to generate a search output. As another
example, the machine-learned model(s) can process the
latent encoding data to generate a reclustering output. As
another example, the machine-learned model(s) can process
the latent encoding data to generate a prediction output.

[0146] In some cases, the machine-learned model(s) can
be configured to perform a task that includes encoding input
data for reliable and/or efficient transmission or storage
(and/or corresponding decoding). For example, the task may
be an audio compression task. The input may include audio
data and the output may comprise compressed audio data. In
another example, the input includes visual data (e.g. one or
more images or videos), the output comprises compressed
visual data, and the task is a visual data compression task. In
another example, the task may comprise generating an
embedding for input data (e.g. input audio or visual data).

[0147] In some cases, the input includes visual data and
the task is a computer vision task. In some cases, the input
includes pixel data for one or more images and the task is an
image processing task. For example, the image processing
task can be image classification, where the output is a set of
scores, each score corresponding to a different object class
and representing the likelihood that the one or more images
depict an object belonging to the object class. The image
processing task may be object detection, where the image
processing output identifies one or more regions in the one
or more images and, for each region, a likelihood that region
depicts an object of interest. As another example, the image
processing task can be image segmentation, where the image
processing output defines, for each pixel in the one or more
images, a respective likelihood for each category in a
predetermined set of categories. For example, the set of
categories can be foreground and background. As another
example, the set of categories can be object classes. As
another example, the image processing task can be depth
estimation, where the image processing output defines, for
each pixel in the one or more images, a respective depth
value. As another example, the image processing task can be
motion estimation, where the network input includes mul-
tiple images, and the image processing output defines, for
each pixel of one of the input images, a motion of the scene
depicted at the pixel between the images in the network
input.

[0148] FIG. 8A illustrates one example computing system
that can be used to implement the present disclosure. Other
computing systems can be used as well. For example, in
some implementations, the user computing device 102 can
include the model trainer 160 and the training dataset 162.
In such implementations, the models 120 can be both trained
and used locally at the user computing device 102. In some
of'such implementations, the user computing device 102 can
implement the model trainer 160 to personalize the models
120 based on user-specific data.

[0149] FIG. 8B depicts a block diagram of an example
computing device 10 that performs according to example
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embodiments of the present disclosure. The computing
device 10 can be a user computing device or a server
computing device.

[0150] The computing device 10 includes a number of
applications (e.g., applications 1 through N). Each applica-
tion contains its own machine learning library and machine-
learned model(s). For example, each application can include
a machine-learned model. Example applications include a
text messaging application, an email application, a dictation
application, a virtual keyboard application, a browser appli-
cation, etc.

[0151] As illustrated in FIG. 8B, each application can
communicate with a number of other components of the
computing device, such as, for example, one or more sen-
sors, a context manager, a device state component, and/or
additional components. In some implementations, each
application can communicate with each device component
using an API (e.g., a public API). In some implementations,
the API used by each application is specific to that applica-
tion.

[0152] FIG. 8C depicts a block diagram of an example
computing device 50 that performs according to example
embodiments of the present disclosure. The computing
device 50 can be a user computing device or a server
computing device.

[0153] The computing device 50 includes a number of
applications (e.g., applications 1 through N). Each applica-
tion is in communication with a central intelligence layer.
Example applications include a text messaging application,
an email application, a dictation application, a virtual key-
board application, a browser application, etc. In some imple-
mentations, each application can communicate with the
central intelligence layer (and model(s) stored therein) using
an API (e.g., a common API across all applications).
[0154] The central intelligence layer includes a number of
machine-learned models. For example, as illustrated in FIG.
8C, a respective machine-learned model can be provided for
each application and managed by the central intelligence
layer. In other implementations, two or more applications
can share a single machine-learned model. For example, in
some implementations, the central intelligence layer can
provide a single model for all of the applications. In some
implementations, the central intelligence layer is included
within or otherwise implemented by an operating system of
the computing device 50.

[0155] The central intelligence layer can communicate
with a central device data layer. The central device data layer
can be a centralized repository of data for the computing
device 50. As illustrated in FIG. 8C, the central device data
layer can communicate with a number of other components
of the computing device, such as, for example, one or more
sensors, a context manager, a device state component, and/or
additional components. In some implementations, the cen-
tral device data layer can communicate with each device
component using an API (e.g., a private API).

Additional Disclosure

[0156] The technology discussed herein makes reference
to servers, databases, software applications, and other com-
puter-based systems, as well as actions taken and informa-
tion sent to and from such systems. The inherent flexibility
of computer-based systems allows for a great variety of
possible configurations, combinations, and divisions of tasks
and functionality between and among components. For
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instance, processes discussed herein can be implemented
using a single device or component or multiple devices or
components working in combination. Databases and appli-
cations can be implemented on a single system or distributed
across multiple systems. Distributed components can oper-
ate sequentially or in parallel.

[0157] While the present subject matter has been
described in detail with respect to various specific example
embodiments thereof, each example is provided by way of
explanation, not limitation of the disclosure. Those skilled in
the art, upon attaining an understanding of the foregoing,
can readily produce alterations to, variations of, and equiva-
lents to such embodiments. Accordingly, the subject disclo-
sure does not preclude inclusion of such modifications,
variations and/or additions to the present subject matter as
would be readily apparent to one of ordinary skill in the art.
For instance, features illustrated or described as part of one
embodiment can be used with another embodiment to yield
a still further embodiment. Thus, it is intended that the
present disclosure cover such alterations, variations, and
equivalents.

1-30. (canceled)

31. A computer-implemented method to train a machine
learning model to generate imagery, the method comprising:
obtaining, by a computing system comprising one or more
computing devices, an image;
processing, by the computing system, the image with a
machine-learned image encoder to generate a plurality
of tokens in a latent space;
obtaining, by the computing system, auxiliary condition-
ing data descriptive of one or more desired character-
istics of a synthesized image;
processing, by the computing system, the plurality of
tokens with a machine-learned image decoder to gen-
erate the synthesized image,
wherein the machine-learned image decoder applies
one or more attention operations to the plurality of
tokens, and
wherein processing, by the computing system, the
plurality of tokens with a machine-learned image
decoder to generate the synthesized image comprises
conditioning, by the computing system, the machine-
learned image decoder with the auxiliary condition-
ing data;
evaluating, by the computing system, a loss function that
provides a loss value based at least in part on the
synthesized image; and
modifying, by the computing system, one or more of: the
machine-learned image encoder and the machine-
learned image decoder based at least in part on the loss
function.
32. The computer-implemented method of claim 31,
wherein the loss function comprises:

an L2 loss term; or
a perceptual loss term.

33. The computer-implemented method of claim 31,
wherein the auxiliary conditioning data comprises a class
label descriptive of a desired class of the synthesized image.

34. The computer-implemented method of claim 31,
wherein the auxiliary conditioning data comprises natural
language text tokens.
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35. The computer-implemented method of claim 34,
wherein conditioning, by the computing system, the
machine-learned image decoder with the natural language
text tokens comprises:

processing, by the computing system, the natural lan-

guage text tokens with a text encoder to generate a text
embedding; and

providing, by the computing system, the text embedding

as an input to the machine-learned image decoder.
36. The computer-implemented method of claim 35,
wherein the text encoder comprises a transformer model.
37. A computing system configured to perform image
generation, the computing system configured to perform
operations, the operations comprising:
obtaining, by the computing system, a plurality of tokens
in a latent space that form an encoded version of an
image, wherein the plurality of tokens were generated
by a machine-learned image encoder model; and

obtaining, by the computing system, auxiliary condition-
ing data descriptive of one or more desired character-
istics of a decoded version of the image;
processing, by the computing system, the plurality of
tokens in the latent space with a machine-learned image
decoder to generate the decoded version of the image;

wherein the machine-learned image decoder is configured
to perform one or more attention operations; and

wherein processing, by the computing system, the plural-
ity of tokens with the machine-learned image decoder
to generate the decoded version of the image comprises
conditioning, by the computing system, the machine-
learned image decoder with the auxiliary conditioning
data.

38. The computing system of claim 37, wherein the
auxiliary conditioning data comprises a class label descrip-
tive of a desired class of the synthesized image.
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39. The computing system of claim 37, wherein the
auxiliary conditioning data comprises natural language text
tokens.

40. The computing system of claim 39, wherein condi-
tioning, by the computing system, the machine-learned
image decoder with the natural language text tokens com-
prises:

processing, by the computing system, the natural lan-

guage text tokens with a text encoder to generate a text
embedding; and

providing, by the computing system, the text embedding

as an input to the machine-learned image decoder.
41. The computing system of claim 40, wherein the text
encoder comprises a transformer model.
42. One or more non-transitory computer-readable media
that collectively store instructions for performing text-to-
image generation, wherein, when executed by a computing
system comprising one or more computing devices, the
instructions cause the computing system to perform opera-
tions, the operations comprising:
obtaining, by the computing system, a natural language
input descriptive of desired image content;

processing, by the computing system, the natural lan-
guage input with a text encoder to generate a text
embedding, wherein the text encoder comprises a trans-
former model; and

processing, by the computing system, the text embedding

with a machine-learned image decoder to generate a
synthesized image, wherein the machine-learned image
decoder is configured to perform one or more attention
operations;

wherein the synthesized image depicts the desired image

content.

43. The one or more non-transitory computer-readable
media of claim 38, wherein the text encoder was pre-trained
on a pre-training task.
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