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ABSTRACT 

Multimodal multitask machine learning system for document intelligence tasks 

includes a feature extractor processing token values obtained from a document to obtain 

features, and a token extraction head classifying, using the features, the token values to 

obtain classified tokens. The classified tokens are aggregated into entities. A document 

classification model is executed on the features to classify the document and obtain a 

document label prediction. Further a confidence head model applying the document label 

prediction processes the entities to obtain a result.  
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BACKGROUND 

[0001] Automatic data extraction is complex because computers do not "read" 

documents in a similar manner to humans. Namely, computers, which operate on 

encodings, cannot simply look at a document and gather the pertinent information.  

Data extraction is even more complex when the document type of the document is 

unknown. For example, in the financial sector, whether a document is a bill, an 

invoice, a receipt, or a donation acknowledgement letter has implications on the 

data that can be extracted from the document. To perform data extraction, 

computers apply heuristics in the form of machine learning models to the 

documents. A problem exists in improving the accuracy of such computer 

automated data extraction using models.  

[0002] It is desired to address or ameliorate one or more disadvantages or limitations 

associated with the prior art, or to at least provide a useful alternative.  

SUMMARY 

[0002a] In at least one embodiment, the present invention provides a method 

comprising: processing, by a feature extractor, a plurality of token values obtained 

from a document to obtain a plurality of features; feeding the plurality of features 

into a token extraction head and a document classification model; classifying, by 

the token extraction head and using the plurality of features, the plurality of token 

values to obtain a plurality of classified tokens; aggregating the plurality of 

classified tokens into a plurality of entities; generating, by the document 

classification model, a document label prediction based on executing the document 

classification model on the plurality of features; and combining, by a confidence 

head model, outputs of the token extraction head and the document classification 
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model to process, based on applying the document label prediction, the plurality 

of entities to obtain a task consistent confidence loss or to extract content.  

[0002b] In at least a further embodiment, the present invention provides a system 

comprising: a feature extractor executing on a computer processor for processing 

a plurality of token values obtained from a document to obtain a plurality of 

features and feeding the plurality of features into a token extraction head and a 

document classification model executing on the computer processor; the token 

extraction head for classifying, using the plurality of features, the plurality of token 

values to obtain a plurality of classified tokens; a token aggregator executing on 

the computer processor for aggregating the plurality of classified tokens into a 

plurality of entities; the document classification model for classifying, using the 

plurality of features, the document to obtain a document label prediction; and a 

confidence head model executing on the computer processor for combining 

outputs of the token extraction head and the document classification model to 

process, by applying the document label prediction, the plurality of entities to 

obtain a task consistent confidence loss or to extract content.  

BRIEF DESCRIPTION OF DRAWINGS 

[0003] One or more embodiments of the present invention are hereinafter described, 

by way of example only, with reference to the accompanying drawings, in which: 

[0004] FIG 1 shows a diagram of a document in accordance with one or more 

embodiments.  

[0005] FIG. 2 shows a diagram of a training system in accordance with one or more 

embodiments.  

[0006] FIG. 3 shows a diagram of a production system in accordance with one or 

more embodiments.  
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[0007] FIG. 4 shows a general flowchart in accordance with one or more 

embodiments.  

[0008] FIG. 5 shows a detailed flowchart in accordance with one or more 

embodiments.  

[0009] FIGs. 6A, 6B, and 6C show an example in accordance with one or more 

embodiments.  

[0010] FIGs. 7A and 7B show computing system in accordance with one or more 

embodiments.  

DETAILED DESCRIPTION 

[0011] In general, in one aspect, one or more embodiments relate to a method that 

includes processing, by a feature extractor, token values obtained from a document 

to obtain features, classifying, by a token extraction head using the features, the 

token values to obtain classified tokens, and aggregating the classified tokens into 

entities. The method further includes executing a document classification model 

on the features to classify the document and obtain a document label prediction; 

and processing, by a confidence head model applying the document label 

prediction, the entities to obtain a result, where the result is a task consistent 

confidence loss or extracted content.  

[0012] In general, in one aspect, one or more embodiments relate to a system that 

includes a feature extractor executing on a computer processor for processing 

token values obtained from a document to obtain features, a token extraction head 

executing on the computer processor for classifying, using the features, the token 

values to obtain classified tokens, a token aggregator executing on the computer 

processor for aggregating the classified tokens into entities, a document 

classification model executing on the computer processor for classifying, using the 

features, the document to obtain a document label prediction, and a confidence 
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head model executing on the computer processor for processing, by applying the 

document label prediction, the entities to obtain a result, where the result is a task 

consistent confidence loss or extracted content.  

[0013] In general, in one aspect, one or more embodiments relate to a non-transitory 

computer readable medium comprising computer readable program code for 

causing a computer system to perform operations. The operations include 

processing, by a feature extractor, token values obtained from a document to obtain 

features, classifying, by a token extraction head using the features, the token values 

to obtain classified tokens, and aggregating the classified tokens into entities. The 

operations further include executing a document classification model on the 

features to classify the document and obtain a document label prediction; and 

processing, by a confidence head model applying the document label prediction, 

the entities to obtain a result, where the result is a task consistent confidence loss 

or extracted content.  

[0014] In general, in one aspect, one or more embodiments relate to a method 

comprising processing, by a feature extractor, a plurality of token values obtained 

from a document to obtain a plurality of features; classifying, using the plurality 

of features, the plurality of token values to obtain a plurality of classified tokens; 

and aggregating the plurality of classified tokens into a plurality of entities. The 

method further includes generating a document label prediction based on 

executing a document classification model on the plurality of features; processing, 

based on applying the document label prediction, the plurality of entities to obtain 

extracted content of the document; and storing the extracted content.  

[0015] Specific embodiments of the invention will now be described in detail with 

reference to the accompanying figures. Like elements in the various figures are 

denoted by like reference numerals for consistency.  
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[0016] In the following detailed description of embodiments of the invention, 

numerous specific details are set forth in order to provide a more thorough 

understanding of the invention. However, it will be apparent to one of ordinary 

skill in the art that the invention may be practiced without these specific details.  

In other instances, well-known features have not been described in detail to avoid 

unnecessarily complicating the description.  

[0017] In general, embodiments of the invention are directed to data extraction from 

documents using machine learning models. Documents have content to be 

extracted. Further, documents may be of various types. Thus, to extract content 

from the heterogeneous documents, one or more embodiments have a particular 

arrangement of machine learning models. The machine learning models are 

arranged in a multi-task setup such that learnable features of the document are 

extracted from raw documents and then simultaneously fed into a token classifier 

head and a document classification model. The token classifier head classifies 

individual textual tokens into different token types. The document classification 

model is a machine learning model that determines the document type of document 

(e.g. receipts, bill, donation letter, etc.). A trainable confidence head combines the 

output of the token extraction head and the document classification model to 

process the extracted content based on the document type prediction. Thus, the 

machine learning models are trained to generate classified content that is for a 

particular document type.  

[0018] The arrangement of the machine learning models creates a single end-to-end 

architecture for the related tasks of document classification and key information 

extraction of target documents. Further, the same token extraction head may be 

used for multiple related documents, which is possible because the extraction 

outputs are combined with the output from the classification head at inference 

time.  
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[0019] From a training standpoint, one or more embodiments have a new task 

consistency confidence loss in which the conditional routing loss only considers 

the document type specific subset of expected entities, derived from the predicted 

document type by the classification output head. Further, the training efficiency 

of the overall machine learning system is increased, because one or more leverage 

the relationship between tasks (e.g., document classification and key information 

extraction) to constrain the model parameter optimization, thus enhancing the 

training efficiency of the overall machine learning system.  

[0020] FIG. 1 shows a diagram of a document (100) in one or more embodiments.  

As shown in FIG. 1, the document (100) contains entity values (e.g., entity value 

X (102), entity value Y (104)). Entity values are the content of the document that 

is the target of the extraction. Namely, the goal of content extraction of a document 

is to extract the entity values from the document and associate the entity values 

with an entity identifier to form an entity. Thus, an entity is an entity value, entity 

identifier pair. The entity identifier relates the entity value to the type of 

information represented by the entity value. The entity with the entity identifier, 

entity value pair may be referred to as a field-value pair, key-value pair or other 

pair that relates a value to the information defining what the value represents. For 

example, if the extracted content is to be stored in a relational database, the entity 

identifier is the attribute, and the entity value is the attribute value that is stored.  

[0021] Entity values (e.g., entity value X (102), entity value Y (104)) in the 

document (100) may be composed of one or more token values (e.g., entity value 

X token 1 (106), entity value X token N (108), entity value Y token 1 (110), entity 

value Y token M (112)). A token value is often an individual word or term within 

a sentence or phrase. In some examples, the token value may be punctuation 

characters, special characters (e.g., monetary symbol) or other character or 

collection of characters produced by a tokenization process.  
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[0022] In one or more embodiments, the input document obtained by the system is 

a document image. A document image is a document in an image file format. In 

the image file format, the computer encoding of content in the document encodes 

the location of colors of pixels rather than character or word encoding. For 

example, the original document may be a scanned version of the document.  

[0023] In one or more embodiments, the original document includes a character 

encoding. However, the characters in the document may be unassociated with 

what the characters represent. For example, numbers may be unassociated with 

that which the numbers represent. Similarly, words or letters may be unassociated 

with the information represented by the words or numbers.  

[0024] In some embodiments, the input document (100) is a financial document.  

The financial document may be any document that includes financial information.  

Some examples of the financial document include a receipt, a tax document (e.g., 

W2), a bank statement, a balance sheet, a cash flow statement, a profit and loss 

statement, etc. The financial document may include text that may indicate financial 

values and information, names of business entities, date, address, codes and 

symbols, etc.  

[0025] In one or more embodiments, the document may be a structured document.  

A structured document may comprise a plurality of pre-defined fields. Each field 

is a particular location of an entity value, such as relative to the document 

dimension. Examples of structured documents may include standardized forms.  

The input text token values may be derived from the financial document based on 

the pre-defined fields. The structure of the structured document may be unknown 

to the system. For example, while the structured document may follow a template, 

the template may be unknown to the overall system. Thus, the association of the 

entity value with the entity identifier may be unknown based on the structured 

document.  
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[0026] In one or more embodiments, the document (100) may be an unstructured 

document. In an unstructured document, the entity values may appear in 

nondeterministic locations within the document. Examples of unstructured 

documents include letters, contracts, variable length receipts, etc.  

[0027] FIG. 2 shows a diagram of a training system (200) in accordance with one or 

more embodiments. The training system (200) is a system used to train the 

machine learning models. The training system (200) may be the same computing 

system or a different computing system than the production system (shown in FIG.  

3).  

[0028] As shown in FIG. 2, the training document repository (201) is a data 

repository for storing training data. A data repository, in general, is any type of 

storage unit, device, or storage structure for storing data. In the training data 

repository (200), the training data includes training documents (202) and ground 

truth information (204). Training documents (202) are documents that are each 

associated with corresponding ground truth information (204). For a particular 

training document, the corresponding ground truth information includes a correct 

document label of the corresponding training document, and entity identifiers that 

are each associated with the corresponding entity value in the corresponding 

training document. The document label is an identifier of the document type of 

the training document. Thus, the ground truth information is deemed correct 

extracted content from the corresponding training document. Ground truth 

information may be information extracted by a human review of the document.  

[0029] If the training document is a document image, the document image (206) 

may be transmitted to an Optical Character Recognition (OCR) engine (208). The 

OCR engine is a visual based model that is trained to detect text from the image 

formatted document (e.g., electronic/scanned copy or a hard copy format or mobile 

captured images) and generate output including machine encoded text. In some 
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examples, specialized software may be used to convert scanned images of text to 

electronic text that may enable searching, indexing and/or retrieval of digitized 

data. In some example embodiments, OCR engine (208) may be developed and 

optimized for extracting data from business/financial documents, tax documents, 

checks, invoices, bank statements, insurance documents, and/or alike. The OCR 

engine (208) may be trained and optimized by processing data sets of scanned 

documents and/or images. In some examples, the OCR engine (208) may be 

implemented by one or more processors.  

[0030] The OCR engine may identify text as a linear sequence of individual 

characters with corresponding character bounding boxes from the document. Then, 

a tokenizer partitions the linear sequence of characters into sub-word pieces, words 

or terms. The tokenization process may convert the characters into token values.  

The token values may be useful semantic units for further processing. The 

tokenization is performed by locating word boundaries (e.g., ending point of a 

word and beginning point of the next word) in a piece of text. In some examples, 

the tokenization process may discard certain characters (e.g., punctuation, etc.).  

[0031] The output of the OCR engine (208) includes text and positional information 

(212) of the document image (206). The text includes the token values and 

information about the location of the token values in the document image. The 

positional information includes the bounding boxes around all the tokens in the 

document image.  

[0032] The document image (206) may also be transformed into an image feature 

vector by an image embedding model (210). The image embedding model (210) 

is configured to generate image feature vector (214) obtained by mapping the raw 

input images (i.e., document images) using a pretrained model used for document 

image classification. The image embedding model (210) may be a trained 

convolutional neural network (CNN) model that is trained to classify document 
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images into predefined categories of a particular domain (e.g., classify financial 

document images into particular types of documents). An example of a CNN 

model architecture that may be used is MaskRCNN. Other CNN architectures may 

be used without departing from the scope of the invention. In one or more 

embodiments, the output of the fully connected layer of the CNN is the image 

feature vector (214) produced by image embedding model (210).  

[0033] Continuing with FIG. 2, the OCR engine (208) and the image embedding 

model (210) are connected to a machine learning framework that includes at least 

a feature extractor (216), a token extraction head (218), a confidence head (220), 

and a document classification model (222). Each of these components are 

described individually below after the overall machine learning framework is 

described.  

[0034] Turning to the machine learning framework, the machine learning 

framework implements a layoutLMv2 model having a repeated stack of 

transformer's encoder layers each of which encodes bidirectional representations 

from the multi-modal inputs (e.g., text, layout, and image) in one or more 

embodiments. An output of an encoder block may be used as features for 

downstream tasks (for example, token extraction, confidence head, document 

classification).  

[0035] The input to the machine learning framework is the text and layout (212) and 

the image feature vector (214) in or more embodiments. The text and layout is 

input to an embedding process that converts the token values into word 

embeddings. The word embeddings may be vectors of real numbers. For example, 

token values in the phrase "700 shares of ACME ... " are converted into 

corresponding vectors (X1, X2, X3, X4, ... ). The word embeddings are then 

utilized by the encoder as input. The size of the vectors (size of X1, X2, ... ) may 

be constant. In some examples, the size of the vectors that are input or output from 
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different encoders and/or decoders may be fixed. In some examples, the size of a 

word embedding vector may be a configurable parameter.  

[0036] The machine learning processes of the example embodiments operate on 

vectors of real values instead of strings of plain texts. In addition to being more 

amenable to the machine learning processes disclosed by the example 

embodiments, the real-valued vectors enable operation on a vector space with 

reduced dimension. In other words, the space spanned by the vectors representing 

the token embeddings have a much lower dimensionality compared to the space 

spanned by the actual token values and hence it is much easier to perform the 

machine learning processes on the vectors.  

[0037] The encoder portion of the transformer model may include a stack of encoders. An 

output of a first encoder layer in the encoders may be an input of a second encoder layer.  

Similarly, an output of a first decoder layer may be an input of a second decoder layer.  

In some examples, the number of encoders may be the same or different from the number 

of decoders. The encoder(s) may each include a feed forward neural network (NN) 

sublayer and a self-attention sublayer. The self-attention sublayer enables the encoder 

to consider other positions of an input sequence when processing a given position 

of the input sequence. For example, the other positions may be non-contiguous to 

the position that is being processed. The outputs of the self-attention sublayer may 

be fed to the feedforward NN sublayer. In the example embodiments, the same 

structure of the feedforward NN sublayer may be used in all encoder layers of an 

encoder block.  

[0038] Returning to the embodiment shown in FIG. 2, the feature extractor (216) 

implements an encoder portion of the transformer model described above. In one 

or more embodiments, a feature extractor (216) is configured to obtain at least the 

text of the document. In the embodiment shown in FIG. 2, the feature extractor 

(216) is configured to receive the text and layout (212) from the OCR engine (208) 

and the image feature vector (214) from the image embedding model (210).  
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However, other configurations of the training system (200) may be used. For 

example, the feature extractor may be directly connected to the training document 

repository and obtain the training document directly, such as when the training 

document is in text encoding. The feature extractor (216) is configured to generate 

features from the input. When the feature extractor (216) encodes text, layout, and 

an image feature vector, the resulting features extracted are referred to as 

multimodal features (224). Namely, multimodal refers to the property that the 

features are from different modes of the document (e.g., layout, image, text), 

whereby each mode conveys meaning.  

[0039] In one or more embodiments, the feature extractor (216) is implemented using a 

LayoutLMv2 model. LayoutLMv2 includes multiple encoder layers, the number of 

which may vary based on the model size. The output of the encodings may be 

feature embeddings that may be input to downstream tasks which may have similar 

decoder structures of the transformer model.  

[0040] The LayoutLMv2 model enables contextual embedding of the input token 

values, wherein the embedding of a word may consider the context in which the 

word appears including the layout of the overall document and the document 

image. For example, without contextual awareness, the word "plane" would be 

represented by the same embedding in the following sentences: "The plane took 

off at nine in the morning", "The plane surface is a must in baseball" and "Plane 

geometry is an interesting area" even though the meaning of "plane" changes based 

on the context. Additionally, the LayoutLMv2 not only uses the existing masked 

visual-language modeling task but also the new text-image alignment and text

image matching tasks in the pre-training stage, where cross-modality interaction 

(e.g., the relationship between layout, text, and image) is better learned. Thus, 

LayoutLMv2 also implements a spatial-aware self-attention mechanism into the 

Transformer model, so that the transformer model can learn to associate the 

relative positional relationship among different text blocks. The input of each 
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modality is converted to an embedding sequence and fused by the encoder.  

LayoutLMv2 is described in Xu, Y., Xu, Y., Lv, T., Cui, L., Wei, F., Wang, G., ...  

& Zhou, L. (2020). LayoutLMv2: Multi-modal pre-training for visually-rich 

document understanding. arXiv preprint arXiv:2012.14740.  

[0041] Example embodiments may be implemented using one of multiple 

architectures for the LayoutLMv2 models. The plurality of architectures may 

include a LayoutLMv2 BASE model in which the number of encoder layers may 

be set to a first number (e.g., 12) and a LayoutLMv2 LARGE model in which the 

number of encoder layers may be set to a second number larger than the first 

number (e.g., the second number may be set to 24). The feedforward NNs 

employed by the encoder layers in the LayoutLMv2 model (for example shown as 

feedforward NN sublayer of encoder in the context of transformers) may have a 

large dimension (width) of hidden layers (in some examples 768 hidden layers for 

LayoutLMv2 BASE model and 1024 hidden dimension for LayoutLMv2 LARGE 

model). The attention layer may be multi-headed as described in the transformer 

model and in some examples, the number of attention heads may be 12 and 16 for 

the LayoutLMv2 BASE model and the LayoutLMv2 LARGE model, respectively.  

The LayoutLMv2 transformer may use a bidirectional self-attention model 

enabling the encoder to incorporate context (e.g., text tokens) from both left and 

right directions.  

[0042] The first token among the tokens that are input to the LayoutLMv2 may be a 

special token referred to as [CLS] (e.g., standing for classification). Similar to the 

transformer model, LayoutLMv2 may take a sequence of tokens as input which 

may keep flowing through the stack of the encoder layers. Each layer may apply 

self-attention and may pass the results through a feed-forward network, and then 

may hand the results off to the next encoder. Each position in the output of the 

encoder outputs a vector of size hidden dimension. In some example embodiments, 

the value of hidden size may be 768. The hidden dimension is determined by the 
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output dimension of the self-attention (SA) sublayer multiplied by the number of 

self-attention heads (e.g. BASE: 64 SA output size x 12 heads = 768 hidden size, 

LARGE: 64 SA output size x 16 heads = 1024 hidden size, etc.). In some 

examples, the output corresponding to the first position (e.g., position of the [CLS] 

token) may be input to a downstream task (e.g., classifier).  

[0043] The LayoutLMv2 model may be a pre-trained model of a stack of encoders.  

In some examples, the corpus used for the pre-training may be unsupervised 

(unlabeled) and/or non-task-specific and without dependence on the downstream 

tasks. In some examples, the pre-training may use task specific corpus to adapt the 

model for downstream tasks. The pre-trained LayoutLMv2 model may be used for 

encoding the inputs to the feature extractor (216) to generate multimodal features 

(224) having token embeddings. The token embeddings may be used as input to a 

token extraction head (218) and a document classification model (222). The token 

extraction head (218), and a document classification model (222) may have similar 

structure of decoder blocks described in the context of the transformers, wherein 

each model comprises one or more decoder layers. A decoder layer may employ a 

feedforward neural NN sublayer and may additionally have self-attention and/or 

encoder-decoder attention sublayers. In some examples, the decoders used for the 

token extraction head (218) and a document classification model (222) may be 

linear decoders employing a linear neural network model. A linear neural network 

uses a linear transfer function, wherein an output of the network is a linear function 

of its input.  

[0044] The token extraction head (218) is configured, through training, to classify 

each token value of the extracted content to generate classified tokens (228).  

Classified tokens (228) are token values that are each assigned a token label 

identifying the type of information in the token value. A token, or classified token, 

is a combination of token value and token label. For example, consider the 

scenario in which an entity value is a street address. The token values in the entity 
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value may identify a particular street number, one or more street names, and type 

of roadway (e.g., street, drive, lane, avenue, etc.). The token labels, in the example, 

identify the token values as a street number, one or more street names, type of 

roadway (e.g., street, drive, lane, avenue, etc.), or other type of information (e.g., 

person name, monetary amounts, etc.).  

[0045] In one or more embodiments, the token labels are a predefined set of token 

labels. The token extraction head (218) classifies each token value into the 

predefined set of token labels by identifying the corresponding probability that the 

token value belongs to each token label. In one or more embodiments, the 

predefined set includes the superset of token labels for the various document types 

processed by the system. Thus, the output of the token extraction head (218) is a 

set of probabilities, whereby the token value is assigned a token label of the set 

having the greatest probability.  

[0046] As discussed above, the token extraction head (218) is trained using a 

supervised training process. As such the token extraction head (218) includes or 

is connected to an extraction head loss function (226) to generate an extraction 

loss. In one or more embodiments, the extraction head loss function (226) is a 

multi-class cross entropy loss function. The cross entropy losses function 

measures the difference between (average number of information theoretic bits 

required to represent an input training data point x from) a predicted P vs.  

groundtruth probability distribution Ptrue. In multiclass classification model 

optimization, cross entropy loss can be expressed as the summation over each class 

(i.e., each token label), the probability of the token label belonging to the class in 

the ground truth information multiplied by a function (e.g., logarithmic function) 

of the probability of the token label belonging to the class in the prediction (e.g., 

output of the token extraction head) multiplied by negative one. If the ground truth 

information assigns the token value to a single class, then the cross entropy loss is 

negative one multiplied by the function of the probability of the token label 

15



belonging to the correct class in the prediction. The extraction head loss function 

(226) calculates the summation of the cross entropy loss over all tokens in the 

training document to obtain a total loss.  

[0047] The classified tokens (228) are passed to a token aggregator (230). The token 

aggregator (230) is configured to aggregate tokens into entity values using a set of 

rules applied over the sequence of predicted tokens classifier outputs. The set of 

rules may use the predicted token labels of the tokens, the order of appearance of 

the token values in the original document with respect to each other (e.g., 

adjacency, etc.), and other information about the tokens. For example, token 

values that are adjacent and assigned the same or similar token labels may be 

grouped by the token aggregator. Token values in the group may be ordered 

according to the order in the original document. In one or more embodiments, 

tokens concatenated together into an entity.  

[0048] The token aggregator (230) may further infer an entity label to each predicted 

entity. In one or more embodiments, the entity label is assigned based on the token 

labels of the tokens.  

[0049] For example, in one or more embodiments, the token labels in a set of token 

labels are the same as the entity labels in the set of entity labels. In such an 

example, tokens are grouped when the token values have the same token label and 

are adjacent. The same token label becomes the assigned entity label for the group 

of tokens. By way of an example, the first three digits of a social security number 

(SSN), second two digits of the SSN, and last four digits of an SSN may each be 

assigned the same token label of "SSN". Based on adjacency and having the same 

token label, the tokens are grouped as an ordered set into an entity, which is then 

assigned the entity label "SSN".  
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[0050] In other embodiments, different token labels are assigned to different tokens, 

which are then grouped by the token aggregator (230) into an entity having the 

same single token label based on a rule defining the particular grouping.  

[0051] Continuing with FIG. 2, the multimodal features (224) are also passed to a 

document classification model (222). The document classification model (222) is 

configured to generate a document label prediction (234). The document label 

prediction (234) is a unique identifier of the document type of the document and, 

optionally, a corresponding document label probability. The document type refers 

to the type of contents in the document. For example, the document type may be 

bill, invoice, tax return form, W-2 form, application, contract, or other document 

type.  

[0052] The document classification model (222) classifies each document into the 

predefined set of document labels by identifying the corresponding probability that 

the document belongs to each document label. Thus, the document classification 

model (222) may generate a set of probabilities. The output of the document 

classification model (222) may be a document label prediction (234) having a 

document label in the set having the greatest document label probability, and the 

document label probability thereof. The document label prediction (234) may 

alternatively or additionally include the set of document label probabilities that has 

a corresponding document label probability for each document label in the 

predefined set of document labels. If the output of the set of document label 

probabilities, the set may be filtered to remove zero probabilities or any probability 

that is less than a prespecified threshold.  

[0053] Similar to the token extraction head (218), the document classification model 

(222) is also trained using a supervised training process. As such, the document 

classification model (222) is connected to a document classification loss function 

(236) that generates a document classification loss. In one or more embodiments, 
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the document classification loss function (236) is a multi-class cross entropy loss.  

In the case of the document classification model (222), the document label 

probability assigned to the document label prediction (234) is compared against 

the training document label that is in the ground truth which is expressed 

computationally via the multi-class cross entropy loss function. The same multi

class cross entropy loss function may be used for both the extraction head and the 

document classification model. Alternatively, different loss functions may be 

used. Further, the loss functions for either model may be different than cross 

entropy loss, such as multiclass Kullback Leibler (KL) loss without departing from 

the scope of the disclosure.  

[0054] The confidence head (220) assigns a probability of exact match prediction to 

each predicted entity. Namely, for each entity, the confidence head outputs the 

probability that the entity value (derived from token classification and token 

aggregation) matches the ground truth. In one or more embodiments, the 

probability is based on exact match (i.e., character by character). The confidence 

head (220) may be a neural network model whereby the target is a match or non

match (i.e., a binary value). The output of the confidence head (220) is the class 

match or non-match, with the probability of each class. Thus, the probability of 

match, is determined by the soft-argmax (normalized logits of the raw confidence 

head outputs). The confidence head model may use a sigmoid activation function 

to generate the probability. The confidence head (220) is trained to determine the 

accuracy of prediction using a supervised training objective to compute the loss 

(238). Because the target outcome is match or non-match (binary classification), 

a binary cross entropy loss function may be used. The binary cross entropy loss 

compares the probabilities assigned by the confidence head (220) to the target of 

whether the entity has a match or non-match prediction as assigned by the token 

classification output head followed by the token aggregator (230). Across the 
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entities in an entire document, a summation of the binary cross entropy loss may 

be used as the confidence loss.  

[0055] The confidence head (220) can be modified to account for task consistency 

(240). The task consistent loss function (240) is a combination, for each entity, of 

the confidence loss from the confidence head loss function (238), the document 

label probability in the document label prediction, and a binary value that is 

dependent on whether the entity label of the entity is in the document type 

corresponding to the document label. As discussed above, each document type 

has types of entities that may be present in the document type. Conversely, some 

types of entities may not be present in the document type. For example, a receipt 

may have the last digits of a credit card number whereas a bill does not have any 

digits of a credit card number. Thus, for each document type, the task consistent 

loss function (240) is determined by a mapping repository that relates each 

document label corresponding to a document type to the set of entity labels of the 

entity types that may be in the document type. Given an entity and a document 

type predicted by the document classification model, the task consistent loss 

function (240) evaluates to zero if the entity label assigned to the entity is not 

related in the mapping repository to the document label output by the document 

classification head, and to a nonzero number if and only if 1) entity label is not 

related to the document label and 2) the predicted entity value is a non-match.  

[0056] The task consistent loss function (240) may calculate an individual task 

consistent loss for each entity. For example, the task consistent loss function may 

be a product of the confidence loss, the document label probability, and an 

indicator function that evaluates to zero when the entity label is not related to the 

document label and one when the entity label is related to the document label. The 

output of the task consistent loss function is a task consistent confidence loss for 

the entity. In one or more embodiments, if the document classification head 

outputs a set of document label probabilities for multiple document labels, then the 
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task consistent confidence loss may be a sum, over the document labels, of a 

product of the confidence loss, the document label probability for the document 

label, and a binary value that is zero when the entity label is not related to the 

document label and one when the entity label is related to the document label. In 

equation form, equation Eq. 1 as follows may be used.  

Yd [CE( g*i , gi ) X Prob (ydci= d) X 1(e, d)] 

where Prob (ydc= d ) = Softmax (y*doci, d) 

and gi(y*enti , yenti)= (y*enti == yenti) according to 

groundtruth 

and g*i(y*enti , yenti) is the confidence head prediction of 

exact-match vs. non-match 

and (e, d) = 1 iff e E Ed otherwise 0 

(Eq. 1) 

In Eq. 1, CE stands for CrossEntropy; the indicator function (i.e., "1(e, d)") 

specifies whether entity e is a target entity for document label d and the document 

label probability (i.e., "Prob (y*doc,)") weighs the loss for each entity. Further, 

"*" is the prediction. Thus, y*enti is the prediction of the label for the entity and 

yenti is the ground truth value for the label.  

[0057] Continuing with FIG. 2, as discussed above, the outputs of the token 

extraction head (218), aggregator (230), and confidence head (220) are 

interrelated. For example, the output of the aggregator is an entity label assigned 

to each entity value and the confidence head (220) may determine the loss for the 

entity labels associated with each entity value established by the aggregator. The 

parameters of the LaytouLMv2 model, the token extraction head (218) and the 

confidence head (220) may, therefore, be jointly optimized. During the training 

phase, the parameters of the entire network including the LayoutLMv2 model, the 
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token extraction head and the confidence head respective models may also change 

through the gradient based optimization. The act of taking a pre-trained model and 

adapting it to downstream tasks is known as fine-tuning. The fine-tuning process 

in example embodiments may take a linear combination of extraction loss, task 

consistent confidence loss, and the document classification loss to generate a 

combined loss. The gradient of the combined loss is back-propagated (242) 

through the entire network consisting of the confidence head (220), token 

extraction head (218). Thus, the neural network parameters are iteratively updated 

through the fine tuning steps.  

[0058] When the models are deemed trained, such as by satisfying a convergence 

criterion, the system may be deployed to a production system. The production 

system may be the same or different computer system than the training system 

(200). FIG. 3 shows a diagram of a production system (300) in accordance with 

one or more embodiments.  

[0059] Turning to FIG. 3, like reference numbers are used for the same elements as 

shown in FIG. 2. The like numbered components shown in FIG. 3 may be deemed 

trained versions of the like numbered components shown in FIG. 2. Continual 

training may optionally be performed resulting in additional components which 

are not shown in FIG. 3.  

[0060] In FIG. 3, the document images (302) are the target document images for 

extracting entities. For example, the document images (302) may be image 

formatted versions of documents that are of heterogeneous document types. For 

example, a user may scan or take pictures of a variety of documents and not bother 

labeling what each document is. The production system (300) is configured to 

extract the entities as extracted content (306) from the various document images 

(302).  
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[0061] The operations of the production system (300) may be the same or similar to 

the operations of the training system (200), without the training. For example, a 

document image (206) from the document repository (200) may be passed to an 

OCR engine (208) that outputs text and layout (212), and an image embedding 

model (210) that outputs and image feature vector (214). The feature extractor 

(216) may take as input one or more of the text, layout, and image feature vector 

(214) to generate features. The features may be multimodal features (224) if image 

features and layout are also used. The features may be transmitted to a document 

classification model (222) that classifies the document and generates a document 

label prediction (234). The features are also passed to the token extraction head 

(218) that generates classified tokens (228) for input to the token aggregator (230).  

The token aggregator (230) outputs entities to the confidence head (220).  

[0062] The confidence head determines the probability that the entity value is 

accurately labeled. In the production system (300), the confidence head (220) 

includes or is connected to an entity selector (304). The entity selector (304) is 

configured to determine, for each entity, whether to output the entity based on 

whether the entity label is related, in the mapping repository, to the document type 

of the predicted document label in the document label prediction. The confidence 

head (220) may output the entities of the document in extracted content (306). In 

the extracted content, one or more of the entities may be related to a unique 

document identifier of the document image.  

[0063] In one or more embodiments, the extracted content (306) is stored in the data 

repository (200) as stored extracted content (308). In the stored extracted content 

(308), the formatting of the entities may be changed based on the data structure of 

the storage. For example, extracted content (306) may be entity value, entity label 

pairs while the stored extracted content (308) is in a relational database.  
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[0064] While FIGs. 1-3 shows a configuration of components, other configurations 

may be used without departing from the scope of the invention. For example, 

various components may be combined to create a single component. As another 

example, the functionality performed by a single component may be performed by 

two or more components.  

[0065] FIGs. 4 and 5 show flowcharts in accordance with one or more embodiments.  

FIG. 4 shows a general flowchart that may be used for training or production, while 

FIG. 5 shows a more detailed flowchart. While the various steps in these 

flowcharts are presented and described sequentially, at least some of the steps may 

be executed in different orders, may be combined or omitted, and some of the steps 

may be executed in parallel. Furthermore, the steps may be performed actively or 

passively.  

[0066] Turning to FIG. 4, in Step 401, a feature extractor processes token values 

obtained from a document image to obtain features of the document image. The 

feature extractor takes the output of the OCR engine, which includes text and 

bounding boxes identifying the location of the text. A tokenizer may group 

individual characters into words. The feature extractor processes the text to obtain 

a feature vector for the text. If the feature extractor uses multimodal input, then 

the output features are multimodal features. The result of the feature extraction is 

multimodal features for each token value.  

[0067] In Step 403, the token extraction head classifies, using the features, the token 

values to obtain classified tokens. The token extraction head processes the features 

on a per token value basis to obtain a probability for each possible token label to 

which the token value should be assigned. The token value is assigned the token 

label having the greatest probability. The process is performed for each token 

value in the document. If the operations of FIG. 4 are performed during training, 

then a loss function is calculated by comparing the predicted classified tokens with 
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the ground truth information discussed above with reference to FIG. 2 to obtain 

extraction (token classification) loss.  

[0068] In Step 407, the classified tokens are aggregated into entities. Tokens that 

are adjacent or consecutive are aggregated based on one or more rules. The rules 

may specify a number, type or set of tokens that are grouped based on the 

corresponding token labels and relative locations to each other. The rules may also 

specify an entity label to apply to the tokens. The token aggregator may apply the 

rules to the tokens using the locations of the tokens in the document image to group 

the tokens into entity values, and then apply the entity label to the group and form 

entities.  

[0069] In Step 407, a document classification model is executed on the features to 

classify the document image and obtain a document label prediction. The 

document classification model executes as a neural network classifier using the 

features to determine the probability that the document is correctly assigned to 

each document label. The document label prediction may be the set of 

probabilities, where an individual probability exists in the set for each of multiple 

document labels. The document label prediction may also or alternatively include 

a predicted document label and corresponding probability, whereby the predicted 

document label is the document label having the greatest probability. If the 

operations of FIG. 4 are performed during training, then a loss function is 

calculated by comparing the document label prediction with the ground truth 

information discussed above with reference to FIG. 2 to obtain the document 

classification loss.  

[0070] In Step 409, the confidence head model applies the document label prediction 

to process the entities and obtain a result. In one or more embodiments, the 

processing is performed on a per entity basis. As discussed above, the confidence 

head model has a mapping repository that maps each document label to the 
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possible entity labels of entity types that may be in the document type 

corresponding to the document label. Thus, if any entity from Step 407 has an 

entity label that is not mapped to the document label in the mapping repository, 

the entity and document label combination is excluded from the result.  

[0071] During training, the result is a task consistent loss. The removed entity 

document label combination is not "task consistent" because the entity does not 

match the document type of the document label. Therefore, the removed entity 

document label combination does not substantively contribute to the task 

consistent confidence loss that is calculated. Specifically, the contribution is 

weighted by the probabilities over the document classes.  

[0072] During production operations, when new document images are processed, 

the result is the extracted content. In one or more embodiments, only the single 

predicted document label is considered. The processing thus filters any entities 

output by the token aggregator that are mapped to the predicted document label in 

the mapping repository. Because the removed entities, that are removed through 

the filtering, do not belong to the document type of the predicted document labels, 

the removed entities do not make sense based on the type of document. Thus, the 

extracted content does not include the removed entities. In some embodiments, an 

alert, such as through a popup or other notification may be presented to the user, 

to give the user an option to specify an entity label, provide a correction, or 

override the filtering.  

[0073] FIG. 5 shows a more detailed diagram. In Step 501, a document image is 

processed through an OCR engine to obtain token values and token bounding 

boxes. The OCR engine analyzes the pixels of the document image and detects 

the characters that the set of pixels represent. The OCR engine encodes the 

identified characters into a character encoding and produces OCR output. The 

OCR engine may include a segmentation engine. The segmentation engine may 
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be configured to segment the document image in order to detect text lines or 

bounding boxes around groups of text. The segmentation engine may be 

performed as a preprocessing operation, during, or postprocessing operation to the 

character recognition. Thus, the output of the OCR engine is the sequence of 

characters and the corresponding character bounding boxes.  

[0074] In Step 503, the document image is processed through an image embedding 

model to obtain an image feature vector for the document image. The pixel values 

are processed to classify document images into predefined categories of a 

particular domain (e.g., classify financial document images into particular types of 

documents). An example of a CNN model architecture that may be used is 

MaskRCNN. In one or more embodiments, the output of the fully connected layer 

in the image embedding model is the image feature vector.  

[0075] In Step 505, the feature extractor processes the token values, the layout of 

the document image and the image feature vector to obtain multimodal features.  

In one or more embodiments, a LayoutLMv2 model is executed on the token 

values, layout, and image feature vector to obtain multimodal features.  

[0076] In Step 507, the token extraction head classifies, using the multimodal 

features, the token values to obtain classified tokens. The token extraction head 

may perform similar operations discussed above with reference to FIG. 4. With 

multimodal features, the features are richer in information and therefore result in 

more accurate classified tokens.  

[0077] In Step 509, the classified tokens are aggregated into entities. Aggregating 

the tokens into entities may be performed as discussed above with reference to 

Step 405 of FIG. 4.  

[0078] In Step 511, the document classification model is executed to classify the 

document image and obtain a document label prediction. In one or more 

embodiments, multimodal features are used to classify the document image.  
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Because the multimodal features include features from text, layout, and image, the 

input to the document classification model is richer, thereby improving the 

accuracy of prediction.  

[0079] In Step 513, the confidence head model, by applying the document label 

prediction, processes the entities to obtain a result. Step 513 may be performed in 

a same or similar manner discussed above with reference to Step 409 of FIG. 4.  

[0080] FIG. 6A, FIG. 6B, and FIG. 6C show an example in accordance with one or 

more embodiments. The following example is for explanatory purposes only and 

not intended to limit the scope of the invention.  

[0081] Turning to FIG. 6A, the example includes document images for a receipt 

(600) and a bill (602). As shown in FIG. 6A, certain entity types are found in both 

receipts (600) and bills (602). For example, receipts (600) and bills (602) may 

both have a vendor (606), a bill date (608), and a total amount (612). Other entities 

are in either receipts (600) or bills (602), but not both. For example, account 

number (604) may be in a bill (602) and not a receipt (600). Conversely, credit 

card number (610) and tax amount (614) may be in a receipt (600) and not a bill 

(602). One or more embodiments allow for processing both types of documents 

through a single framework and accounting for the document type only after the 

entities are extracted and labeled.  

[0082] FIG. 6B shows an example schematic diagram for processing the documents 

in accordance with one or more embodiments. In the example shown in FIG. 6B, 

document images (620) and ground truth information (622) are used to train the 

system. The document images (620) are passed through an OCR engine to obtain 

OCR text and bounding boxes (624). Through a tokenization process (626), 

individual token values are identified. Further, the token extraction head generates 

classified tokens (628) from the extracted token values. The extraction head loss 

function uses the ground truth information (622) to generate an extraction loss 
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based on whether the tokens are correctly labeled in the classified tokens. As 

shown in box (628), tokens belonging to the same entity, such as the different 

digits of monetary amounts "9168" and ".26", and "17505" and ".43", are 

separately labeled and are individual tokens. Based on adjacency and rules about 

monetary amounts, the tokens may be grouped into entities "17505.43" and 

"9168.26" and labeled with entity labels "MedicalWagesAmount" and 

"WagesAmount", respectively. The entities are passed to a confidence head to 

determine task consistency loss.  

[0083] FIG. 6C shows an example of task consistency confidence loss calculation.  

As shown in FIG. 6C, the token aggregator output (650) in the example includes a 

vendor, account number, bill date, credit card number, and total and tax amounts.  

The ground truth information (652) includes a vendor, account number, bill date, 

credit card number, total amount, and tax amount.  

[0084] The system also has task consistency constraints (654) that a vendor is on a 

bill and a receipt while an account number is on a bill and not on a receipt. The 

document classification model output (656) is that the document has a five percent 

chance of being a bill and a ninety-five percent chance of being a receipt.  

[0085] Turning to the task consistency loss for the vendor entity (658) and the 

receipt entity (660), the following calculations are performed. To calculate task 

consistency loss for the vendor entity (658), the calculation is: "(AROMA CAFE 

!= AROMA CAFE) * Pr(Bill features)* I(Vendor I Bill) + (AROMA CAFE!= 

AROMA CAFE) * Pr(Receipt features) *I(Vendor I Receipt). Using the numbers 

shown in FIG. 6C, the calculation is: "(0) * (0.05) * (1) + (0) * (0.95) * (1) = 0".  

[0086] To calculate the task consistency loss for the account number (660), the 

following calculation is performed: "(1023456789-0 != "") * Prob(Bill I features) 

* I(Account No | Bill) + (1023456789-0 != "") * Prob(Receipt I features) * 

I(Account No | Receipt)". Using the numbers shown in FIG. 6C, the calculation is: 
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(1) * (0.05) * (1) + (1) * (0.95) * (0) = 0.05. Because an account number is not on 

a receipt, the task consistency loss for the second term evaluates to "0", and does 

not contribute to the total loss. Thus, the entity of account number is effectively 

filtered out as it only contributes to .05 of the total loss.  

[0087] Embodiments of the invention may be implemented on a computing system 

specifically designed to achieve an improved technological result. When 

implemented in a computing system, the features and elements of the disclosure 

provide a significant technological advancement over computing systems that do 

not implement the features and elements of the disclosure. Any combination of 

mobile, desktop, server, router, switch, embedded device, or other types of 

hardware may be improved by including the features and elements described in the 

disclosure. For example, as shown in FIG. 7A, the computing system (700) may 

include one or more computer processors (702), non-persistent storage (704) (e.g., 

volatile memory, such as random access memory (RAM), cache memory), 

persistent storage (706) (e.g., a hard disk, an optical drive such as a compact disk 

(CD) drive or digital versatile disk (DVD) drive, a flash memory, etc.), a 

communication interface (712) (e.g., Bluetooth interface, infrared interface, 

network interface, optical interface, etc.), and numerous other elements and 

functionalities that implement the features and elements of the disclosure.  

[0088] The computer processor(s) (702) may be an integrated circuit for processing 

instructions. For example, the computer processor(s) may be one or more cores or 

micro-cores of a processor. The computing system (700) may also include one or 

more input devices (710), such as a touchscreen, keyboard, mouse, microphone, 

touchpad, electronic pen, or any other type of input device.  

[0089] The communication interface (712) may include an integrated circuit for 

connecting the computing system (700) to a network (not shown) (e.g., a local area 

network (LAN), a wide area network (WAN) such as the Internet, mobile network, 

29



or any other type of network) and/or to another device, such as another computing 

device.  

[0090] Further, the computing system (700) may include one or more output devices 

(708), such as a screen (e.g., a liquid crystal display (LCD), a plasma display, 

touchscreen, cathode ray tube (CRT) monitor, projector, or other display device), 

a printer, external storage, or any other output device. One or more of the output 

devices may be the same or different from the input device(s). The input and 

output device(s) may be locally or remotely connected to the computer 

processor(s) (702), non-persistent storage (704), and persistent storage (706).  

Many different types of computing systems exist, and the aforementioned input 

and output device(s) may take other forms.  

[0091] Software instructions in the form of computer readable program code to 

perform embodiments of the invention may be stored, in whole or in part, 

temporarily or permanently, on a non-transitory computer readable medium such 

as a CD, DVD, storage device, a diskette, a tape, flash memory, physical memory, 

or any other computer readable storage medium. Specifically, the software 

instructions may correspond to computer readable program code that, when 

executed by a processor(s), is configured to perform one or more embodiments of 

the invention.  

[0092] The computing system (700) in FIG. 7A may be connected to or be a part of 

a network. For example, as shown in FIG. 7B, the network (720) may include 

multiple nodes (e.g., node X (722), node Y (724)). Each node may correspond to 

a computing system, such as the computing system shown in FIG. 7A, or a group 

of nodes combined may correspond to the computing system shown in FIG. 7A.  

By way of an example, embodiments of the invention may be implemented on a 

node of a distributed system that is connected to other nodes. By way of another 

example, embodiments of the invention may be implemented on a distributed 

30



computing system having multiple nodes, where each portion of the invention may 

be located on a different node within the distributed computing system. Further, 

one or more elements of the aforementioned computing system (700) may be 

located at a remote location and connected to the other elements over a network.  

[0093] Although not shown in FIG. 7B, the node may correspond to a blade in a 

server chassis that is connected to other nodes via a backplane. By way of another 

example, the node may correspond to a server in a data center. By way of another 

example, the node may correspond to a computer processor or micro-core of a 

computer processor with shared memory and/or resources.  

[0094] The nodes (e.g., node X (722), node Y (724)) in the network (720) may be 

configured to provide services for a client device (726). For example, the nodes 

may be part of a cloud computing system. The nodes may include functionality to 

receive requests from the client device (726) and transmit responses to the client 

device (726). The client device (726) may be a computing system, such as the 

computing system shown in FIG. 7A. Further, the client device (726) may include 

and/or perform all or a portion of one or more embodiments of the invention.  

[0095] The computing system or group of computing systems described in FIG. 7A 

and 7B may include functionality to perform a variety of operations disclosed 

herein. For example, the computing system(s) may perform communication 

between processes on the same or different system. A variety of mechanisms, 

employing some form of active or passive communication, may facilitate the 

exchange of data between processes on the same device. Examples representative 

of these inter-process communications include, but are not limited to, the 

implementation of a file, a signal, a socket, a message queue, a pipeline, a 

semaphore, shared memory, message passing, and a memory-mapped file. Further 

details pertaining to a couple of these non-limiting examples are provided below.  
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[0096] Based on the client-server networking model, sockets may serve as interfaces 

or communication channel end-points enabling bidirectional data transfer between 

processes on the same device. Foremost, following the client-server networking 

model, a server process (e.g., a process that provides data) may create a first socket 

object. Next, the server process binds the first socket object, thereby associating 

the first socket object with a unique name and/or address. After creating and 

binding the first socket object, the server process then waits and listens for 

incoming connection requests from one or more client processes (e.g., processes 

that seek data). At this point, when a client process wishes to obtain data from a 

server process, the client process starts by creating a second socket object. The 

client process then proceeds to generate a connection request that includes at least 

the second socket object and the unique name and/or address associated with the 

first socket object. The client process then transmits the connection request to the 

server process. Depending on availability, the server process may accept the 

connection request, establishing a communication channel with the client process, 

or the server process, busy in handling other operations, may queue the connection 

request in a buffer until server process is ready. An established connection informs 

the client process that communications may commence. In response, the client 

process may generate a data request specifying the data that the client process 

wishes to obtain. The data request is subsequently transmitted to the server 

process. Upon receiving the data request, the server process analyzes the request 

and gathers the requested data. Finally, the server process then generates a reply 

including at least the requested data and transmits the reply to the client process.  

The data may be transferred, more commonly, as datagrams or a stream of 

characters (e.g., bytes).  

[0097] Shared memory refers to the allocation of virtual memory space in order to 

substantiate a mechanism for which data may be communicated and/or accessed 

by multiple processes. In implementing shared memory, an initializing process 
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first creates a shareable segment in persistent or non-persistent storage. Post 

creation, the initializing process then mounts the shareable segment, subsequently 

mapping the shareable segment into the address space associated with the 

initializing process. Following the mounting, the initializing process proceeds to 

identify and grant access permission to one or more authorized processes that may 

also write and read data to and from the shareable segment. Changes made to the 

data in the shareable segment by one process may immediately affect other 

processes, which are also linked to the shareable segment. Further, when one of 

the authorized processes accesses the shareable segment, the shareable segment 

maps to the address space of that authorized process. Often, only one authorized 

process may mount the shareable segment, other than the initializing process, at 

any given time.  

[0098] Other techniques may be used to share data, such as the various data 

described in the present application, between processes without departing from the 

scope of the invention. The processes may be part of the same or different 

application and may execute on the same or different computing system.  

[0099] Rather than or in addition to sharing data between processes, the computing 

system performing one or more embodiments of the invention may include 

functionality to receive data from a user. For example, in one or more 

embodiments, a user may submit data via a graphical user interface (GUI) on the 

user device. Data may be submitted via the graphical user interface by a user 

selecting one or more graphical user interface widgets or inserting text and other 

data into graphical user interface widgets using a touchpad, a keyboard, a mouse, 

or any other input device. In response to selecting a particular item, information 

regarding the particular item may be obtained from persistent or non-persistent 

storage by the computer processor. Upon selection of the item by the user, the 

contents of the obtained data regarding the particular item may be displayed on the 

user device in response to the user's selection.  
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[00100] By way of another example, a request to obtain data regarding the particular 

item may be sent to a server operatively connected to the user device through a 

network. For example, the user may select a uniform resource locator (URL) link 

within a web client of the user device, thereby initiating a Hypertext Transfer 

Protocol (HTTP) or other protocol request being sent to the network host 

associated with the URL. In response to the request, the server may extract the 

data regarding the particular selected item and send the data to the device that 

initiated the request. Once the user device has received the data regarding the 

particular item, the contents of the received data regarding the particular item may 

be displayed on the user device in response to the user's selection. Further to the 

above example, the data received from the server after selecting the URL link may 

provide a web page in Hyper Text Markup Language (HTML) that may be 

rendered by the web client and displayed on the user device.  

[00101] Once data is obtained, such as by using techniques described above or from 

storage, the computing system, in performing one or more embodiments of the 

invention, may extract one or more data items from the obtained data. For 

example, the extraction may be performed as follows by the computing system in 

FIG. 7A. First, the organizing pattern (e.g., grammar, schema, layout) of the data 

is determined, which may be based on one or more of the following: position (e.g., 

bit or column position, Nth token in a data stream, etc.), attribute (where the 

attribute is associated with one or more values), or a hierarchical/tree structure 

(consisting of layers of nodes at different levels of detail-such as in nested packet 

headers or nested document sections). Then, the raw, unprocessed stream of data 

symbols is parsed, in the context of the organizing pattern, into a stream (or layered 

structure) of tokens (where each token may have an associated token "type").  

[00102] Next, extraction criteria are used to extract one or more data items from the 

token stream or structure, where the extraction criteria are processed according to 

the organizing pattern to extract one or more tokens (or nodes from a layered 
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structure). For position-based data, the token(s) at the position(s) identified by the 

extraction criteria are extracted. For attribute/value-based data, the token(s) and/or 

node(s) associated with the attribute(s) satisfying the extraction criteria are 

extracted. For hierarchical/layered data, the token(s) associated with the node(s) 

matching the extraction criteria are extracted. The extraction criteria may be as 

simple as an identifier string or may be a query presented to a structured data 

repository (where the data repository may be organized according to a database 

schema or data format, such as XML).  

[00103] The extracted data may be used for further processing by the computing 

system. For example, the computing system of FIG. 7A, while performing one or 

more embodiments of the invention, may perform data comparison. Data 

comparison may be used to compare two or more data values (e.g., A, B). For 

example, one or more embodiments may determine whether A > B, A = B, A != 

B, A < B, etc. The comparison may be performed by submitting A, B, and an 

opcode specifying an operation related to the comparison into an arithmetic logic 

unit (ALU) (i.e., circuitry that performs arithmetic and/or bitwise logical 

operations on the two data values). The ALU outputs the numerical result of the 

operation and/or one or more status flags related to the numerical result. For 

example, the status flags may indicate whether the numerical result is a positive 

number, a negative number, zero, etc. By selecting the proper opcode and then 

reading the numerical results and/or status flags, the comparison may be executed.  

For example, in order to determine if A > B, B may be subtracted from A (i.e., A 

- B), and the status flags may be read to determine if the result is positive (i.e., if 

A > B, then A - B > 0). In one or more embodiments, B may be considered a 

threshold, and A is deemed to satisfy the threshold if A = B or if A > B, as 

determined using the ALU. In one or more embodiments of the invention, A and 

B may be vectors, and comparing A with B requires comparing the first element 

of vector A with the first element of vector B, the second element of vector A with 
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the second element of vector B, etc. In one or more embodiments, if A and B are 

strings, the binary values of the strings may be compared.  

[00104] The computing system in FIG. 7A may implement and/or be connected to a 

data repository. For example, one type of data repository is a database. A database 

is a collection of information configured for ease of data retrieval, modification, 

re-organization, and deletion. Database Management System (DBMS) is a 

software application that provides an interface for users to define, create, query, 

update, or administer databases.  

[00105] The user, or software application, may submit a statement or query into the 

DBMS. Then the DBMS interprets the statement. The statement may be a select 

statement to request information, update statement, create statement, delete 

statement, etc. Moreover, the statement may include parameters that specify data, 

data containers (database, table, record, column, view, etc.), identifiers, conditions 

(comparison operators), functions (e.g. join, full join, count, average, etc.), sorts 

(e.g. ascending, descending), or others. The DBMS may execute the statement.  

For example, the DBMS may access a memory buffer, a reference or index a file 

for read, write, deletion, or any combination thereof, for responding to the 

statement. The DBMS may load the data from persistent or non-persistent storage 

and perform computations to respond to the query. The DBMS may return the 

result(s) to the user or software application.  

[00106] The computing system of FIG. 7A may include functionality to present raw 

and/or processed data, such as results of comparisons and other processing. For 

example, presenting data may be accomplished through various presenting 

methods. Specifically, data may be presented through a user interface provided by 

a computing device. The user interface may include a GUI that displays 

information on a display device, such as a computer monitor or a touchscreen on 

a handheld computer device. The GUI may include various GUI widgets that 
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organize what data is shown as well as how data is presented to a user.  

Furthermore, the GUI may present data directly to the user, e.g., data presented as 

actual data values through text, or rendered by the computing device into a visual 

representation of the data, such as through visualizing a data model.  

[00107] For example, a GUI may first obtain a notification from a software 

application requesting that a particular data object be presented within the GUI.  

Next, the GUI may determine a data object type associated with the particular data 

object, e.g., by obtaining data from a data attribute within the data object that 

identifies the data object type. Then, the GUI may determine any rules designated 

for displaying that data object type, e.g., rules specified by a software framework 

for a data object class or according to any local parameters defined by the GUI for 

presenting that data object type. Finally, the GUI may obtain data values from the 

particular data object and render a visual representation of the data values within 

a display device according to the designated rules for that data object type.  

[00108] The above description of functions presents only a few examples of functions 

performed by the computing system of FIG. 7A and the nodes and/ or client device 

in FIG. 7B. Other functions may be performed using one or more embodiments 

of the invention.  

[00109] Throughout the application, ordinal numbers (e.g., first, second, third, etc.) 

are used as an adjective for an element (i.e., any noun in the application). The use 

of ordinal numbers is not to imply or create any particular ordering of the elements 

nor to limit any element to being only a single element unless expressly disclosed, 

such as by the use of the terms "before", "after", "single", and other such 

terminology. Rather, the use of ordinal numbers is to distinguish between the 

elements. By way of an example, a first element is distinct from a second element, 

and the first element may encompass more than one element and succeed (or 

precede) the second element in an ordering of elements.  
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[00110] While the invention has been described with respect to a limited number of 

embodiments, those skilled in the art, having benefit of this disclosure, will 

appreciate that other embodiments can be devised which do not depart from the 

scope of the invention as disclosed herein. Accordingly, the scope of the invention 

should be limited only by the attached claims.  

[00111] Throughout this specification and the claims which follow, unless the context 

requires otherwise, the word "comprise", and variations such as "comprises" and 

"comprising", will be understood to imply the inclusion of a stated integer or step 

or group of integers or steps but not the exclusion of any other integer or step or 

group of integers or steps.  

[00112] The reference in this specification to any prior publication (or information 

derived from it), or to any matter which is known, is not, and should not be taken 

as an acknowledgment or admission or any form of suggestion that that prior 

publication (or information derived from it) or known matter forms part of the 

common general knowledge in the field of endeavor to which this specification 

relates.  
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THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS: 

1. A method comprising: 

processing, by a feature extractor, a plurality of token values obtained from a 

document to obtain a plurality of features; 

feeding the plurality of features into a token extraction head and a document 

classification model; 

classifying, by the token extraction head and using the plurality of features, the 

plurality of token values to obtain a plurality of classified tokens; 

aggregating the plurality of classified tokens into a plurality of entities; 

generating, by the document classification model, a document label prediction based 

on executing the document classification model on the plurality of features; 

and 

combining, by a confidence head model, outputs of the token extraction head and 

the document classification model to process, based on applying the 

document label prediction, the plurality of entities to obtain a task consistent 

confidence loss or to extract content.  

2. The method of claim 1, wherein the result is a task consistent confidence loss.  

3. The method of claim 2, wherein the task consistent confidence loss is a function of 

parameters comprising a binary cross entropy loss, a document label probability, and 

an indicator function.  

4. The method of claim 2 or 3 where the processing of the plurality of entities obtains a 

task consistent confidence loss, further comprising: 

backpropagating, during training, the task consistent confidence loss through the 

document classification model, the token extraction head, and the feature 

extractor.  
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5. The method of any one of the preceding claims, further comprising: 

calculating a cross entropy loss by comparing a training document label with the 

document label prediction; and 

backpropagating the cross entropy loss through a document classification model.  

6. The method of any one of the preceding claims, wherein the result is extracted content 

comprising entity value, entity identifier pairs in the document.  

7. The method of any one of the preceding claims, further comprising: 

processing a document image through an optical character recognition (OCR) 

engine to obtain the plurality of token values, wherein the document 

comprises the document image.  

8. The method of any one of the preceding claims, further comprising: 

obtaining the plurality of token values and a layout of the document; and 

processing, by the feature extractor, a layout of the document, and the plurality of 

token values to obtain a plurality of multimodal features, 

wherein the plurality of features comprises the plurality of multimodal features.  

9. The method of any one of the preceding claims, further comprising: 

processing a document image through an image embedding model to obtain an 

image feature vector for the document image, wherein the document is a 

document image; and 

processing, by the feature extractor, the plurality of token values, a layout of the 

document image, and the image feature vector to obtain a plurality of 

multimodal features, 

wherein the plurality of features comprises the plurality of multimodal features.  

10. The method of claim 1, wherein the result is extracted content of the document, the 

method further comprising storing the extracted content.  
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11. A system comprising: 

a feature extractor executing on a computer processor for processing a plurality of 

token values obtained from a document to obtain a plurality of features and 

feeding the plurality of features into a token extraction head and a document 

classification model executing on the computer processor; 

the token extraction head for classifying, using the plurality of features, the plurality 

of token values to obtain a plurality of classified tokens; 

a token aggregator executing on the computer processor for aggregating the plurality 

of classified tokens into a plurality of entities; 

the document classification model for classifying, using the plurality of features, the 

document to obtain a document label prediction; and 

a confidence head model executing on the computer processor for combining 

outputs of the token extraction head and the document classification model 

to process, by applying the document label prediction, the plurality of entities 

to obtain a task consistent confidence loss or to extract content.  

12. The system of claim 11, wherein the system is a training system, and the result is a 

task consistent confidence loss.  

13. The system of claim 12 where the confidence head model obtains a task consistent 

confidence loss, further comprising: 

a task consistent loss function executing on the computer processor to calculate the 

task consistent confidence loss using parameters comprising a binary cross 

entropy loss, a document label probability, and an indicator function.  

14. The system of claim 13, wherein the task consistent confidence loss is backpropagated 

through the document classification model, the token extraction head, and the feature 

extractor.  
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15. The system of any of claims 11-14, wherein the system is a production system, and 

the result is extracted content comprising entity value, entity identifier pairs in the 

document.  
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FIG. 4FIG. 4

END

START

Processing, by a feature extractor, token 

values obtained from a document image to 

obtain features of the document image

Classifying, by a token extraction head using 

the features, the token values to obtain 

classified tokens

Aggregating the classified tokens into entities

Executing a document classification model on 

the features to classify the document image 

and obtain a document label prediction

Processing, by a confidence head model 

applying the document label prediction, the 

entities to obtain a filtered result 

Step 401

Step 403

Step 405

Step 407

Step 409
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FIG. 5FIG. 5

Processing a document image through 

an optical character recognition (OCR) 

engine to obtain token values

END

START

Processing the document image through 

an image embedding model to obtain an 

image feature vector for the document 

image

Processing, by a feature extractor, the 

token values, a layout of the document 

image, and the image feature vector to 

obtain multimodal features

Classifying, by a token extraction head 

using the multimodal features, the token 

values to obtain classified tokens

Aggregating the classified tokens into 

entities

Executing a document classification 

model to classify the document image 

and obtain a document label prediction

Processing, by a confidence head model 

applying the document label prediction, 

the entities to obtain a result 

Step 511

Step 513

Step 501

Step 503

Step 505

Step 507

Step 509
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