
US 20200374197A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0374197 A1

Vysotsky et al . (43) Pub . Date : Nov. 26 , 2020

(54) NETWORK TRAFFIC STEERING WITH
PROGRAMMATICALLY GENERATED
PROXY AUTO - CONFIGURATION FILES

45/22 (2013.01) ; GO6F 9/45558 (2013.01) ;
H04L 61/6013 (2013.01)

(71) Applicant : Citrix Systems , Inc. , Fort Lauderdale ,
FL (US)

(57) ABSTRACT

(72) Inventors : Vladimir Vysotsky , Fremont , CA (US) ;
Snigdhendu Mukhopadhyay , San Jose ,
CA (US)

(21) Appl . No .: 16 / 417,018

(22) Filed : May 20 , 2019

Publication Classification

Described embodiments provide systems and methods for
steering network traffic using dynamically generated con
figuration scripts . A first device may generate a configura
tion script for an application on the client for connecting
with a server . The configuration script may specify the
application to establish a direct connection or an indirect
connection with the server . The first device may provide the
configuration script to be invoked by the application to
identify a first address to access the server based on a
determination to establish the direct connection or the indi
rect connection . The first device may receive , from the
client , an initiation request to connect with the server
including the first address . The first device may determine
second address by applying a routing policy to the first
address . The first device may establish one of the direct
connection or the indirect connection using the second
address .

(51) Int . Ci .
H04L 12/24 (2006.01)
H04L 29/12 (2006.01)
H04L 12/707 (2006.01)
GOOF 9/455 (2006.01)

(52) U.S. Cl .
CPC H04L 41/0886 (2013.01) ; H04L 61/1511

(2013.01) ; G06F 2009/45595 (2013.01) ; H04L

700a

Client 102 Applianca 200a
Browser
535

PAC File
540

Traffic Router
510

Appliance
2006

Access
Service

(702)

FindProxyForDry
(serVICEURL ,
service host : servicePort) map service

(704) address into
proxy alias (706)

1
1
1
1
1
1
1
1
1
1

PROXY
alias?p alasPORT
(708)
TOP SYN
dst IP ports alias PialasPORE
(710)

Parse and interpret
proxy_alias (712)
real proxy IP
and How service
parameters : 7143

Comm . Engine
520

TCR SYN
ost IP porta proxy P : proxyPORT
(736)
TCR SYNACK (718) JOR SYN ACK 720)

TCP ACK (722) 1 :

TCP ACK (724)
CONNECT I serviceHost : service Port
HITRI 1 (726) CONNECT

servicehost : servicePort HTTP / 1.1
728)

545a

38

100

R

Patent Application Publication

Client 102 (1)

Server 106 (1)

Appliance 200 (1)

Appliance 200 (n)

LEUTE

Network

Network 104 (1)

Network 104 (2)

104 (n)

Client 102 (2)

WAN Optimization 205 (1)

Server 106 (2)

WAN
Optimization !

205 (n)

1

Nov. 26 , 2020 Sheet 1 of 14

Colo

US 2020/0374197 A1

Client 102 (n)

FIG . 1A

Server

106 (n)

Application 16 '

Patent Application Publication

Computing Environment 15
? } { 2

Data file 17

5 { 5 ?

Application 16

2 5 ? }

Application Delivery System 190

200

Data file 17

} 5 2

Network

2

Network 104 (2)

104 (1)

Policy Engine
195

Appliance

Client Agent 120

performance monitoring agent
197

Nov. 26 , 2020 Sheet 2 of 14

Client
102

Server
106

US 2020/0374197 A1

FIG . 1B

101

Processor (s)
103

Volatile Memory 122

Communication Interface (s)
118

Patent Application Publication

150

Non - Volatile Memory 128

User Interface 123

Operating System 115

GUI 124

Nov. 26 , 2020 Sheet 3 of 14

Application (s)
116

1/0 Device (s)
126

Data 117

US 2020/0374197 A1

FIG . 1C

GUI 210

CLI 212

Shell Services 214

Health Monitoring Programs 216

User Space 202

System Daemon Services

Patent Application Publication

218

Software 205
NOUT.III.4

Cache Manager 232

Policy Engine 236

Compression Engine 238

Kernel Space 204
Kernel 230

Packet Engine 240

Encryption Engine 234

Nov. 26 , 2020 Sheet 4 of 14

Network Stack 267

Hardware

?

206

Encryption Processor 260
2

Processor 262
Processor 262
Memory 264
Network Ports 266

}

? 5

US 2020/0374197 A1

200

FIG . 2

400

device 402

VIRTUALIZATION LAYER 403 Virtual Machine 406a

Virtual Machine 406b

Patent Application Publication

Control Operating System

Guest Operating System

405

410a

1

3

3

Virtual Disk 442a

Virtual ! CPU 432a

i Virtual Disk 442b

Virtual CPU 432b

3 3

}
3

}

Nov. 26 , 2020 Sheet 5 of 14

3

3

HYPERVISOR LAYER 404
Hypervisor 401

HARDWARE LAYER 407

Physical Disk (s) 428

Physical CPU (S) 421

US 2020/0374197 A1

FIG . 3

? > 5

2

Appliance 200 (n)

}

}

Interface Slaves 610a - n

? { 2 5 ? } 5 2 3

Patent Application Publication

2 5 ?

Client Data Plane 602

$ 2 5

Appliance 200 (4)

Server Data Plane 604

? 5 ? 1 $ 1 }

{

Appliance 2003)

$? } 5 2 3

2 5 ?

Network

Network

5 ? }

2 5

104

104

? 5 ?

5 ?

3 ? 5

Appliance 200 (2)

{ } $

Nov. 26 , 2020 Sheet 6 of 14

1 5

? $? 1 $ 2

2

Appliance 200 (0)

1

? 1 5 ? }

? 2

$

} $

Interface Master 608

}

1 2

Appliance Cluster 600

Back Plane 606

US 2020/0374197 A1

FIG . 4

500 5007

Application 535

Patent Application Publication

Configuration Script 540

Script Generator 505

Server 106a

545b

Client 102a

Traffic Router 510

Network 104

Network 104

Network 104 "
Server 106b

Address Resolver 515

Client 102b

Communication Engine 520

Gateway Interface 530

Nov. 26 , 2020 Sheet 7 of 14

545a

Server 106n

Database 525

Appliance 200b

Client 102n

Appliance 200a

US 2020/0374197 A1

FIG . 5

200a

600

$ QWAN Appliance

525

Confaguration .

Patent Application Publication

510

505

PAG Ne generator

610

Enterprise Data

540
605

2006

106a

615

Nov. 26 , 2020 Sheet 8 of 14

???

Seore Gsieway 1

?

106b

106d

200b

102

535

Cloud Service 2

US 2020/0374197 A1

1060
FIG . 6

700a

Client 102

Appliance 200a

Browser 535

PAC File 540

Traffic Router 510

Appliance 2000

Patent Application Publication

Access Service (702)

FindProxyForum (serviceURL ,

serviceHost : servicePort map service

| (704)

address into
proxy alias (706)

| 1 | |

1 1 1 1 :

" PROXY alias P.aliasPORT (708) TCP SYN

dst IP : port = alias] P : aliasPOR

(710)

| Parse and interpret
proxy alias (712)

| 1 | | | |

1

real proxy IP and flow service
parameters 714)

Nov. 26 , 2020 Sheet 9 of 14

| |

Comm . Engine 520
TCP SYN

dst IP : port - proxylP : proxyPORT

(716)

LCP SYNACK (718)

f

1 1 1

|

TOP SYN . ACK (720)

|

TCP ACK (722)

f

TCP ACK (724)

CONNECT serviceHost : servicePort
HTTP / 1.1 (726)

| |

CONNECT
serviceHbst : serviceport HTTP / 1.1

(728)

US 2020/0374197 A1

FIG . 7A

545a

700b

Client 102

Appliance 2002

Browser 535

PAC File 540

Address Resolver 515

Traffic Router 510

Appliance 2005
Server 106 3

Access Service (702)

Patent Application Publication

*

1 {

FindProxyForUrl (serviceURL service
Host : servicePort (704)

*

encode
query (730)

* ::

{ 1 ! 1 3 1

*

3 :

:: 1

dnsResolve?query (732)

1

* 1:11 *** 1 * 3 :

1

1

DNS query (734)

?

1

Query from

2

&

PAC (736)

* 3 * } } 1 *

31

*

1 { 1

* ::

! 5

DNS Response (740)

reply to PAC " connect directly
(738)

1 :
*

{ 5 ! 1

* * *

dnsResolve (query)

encoded connect directly " . (742)

DIRECT (744)

! 1

Nov. 26 , 2020 Sheet 10 of 14

Comm . Engine 520

31 1

} * * *

! 1

3 :

*

TCP SYN

dst IP port = servicelP : servicePort (1:46))

3

3

1 }

3

TCP SYN (748)

1

3 :

*

1 :

3

:

TCP SYN , ACK (750)

}

1 :

TCP SYN , ACK (752)

3 }

3 :

3

! 1

3 :

1 :

TCP ACK (754)

! 1

TCP ACK (756)

*

1

:: 2 $ }

}
*

3

Get

! 11 1

}

GET

http : // serviceHost : servicePort / path HTTP / 1.1

(758)

3 3

http : // serviceHost : servicePort / path HTTP / 1.1 ,

(760)

US 2020/0374197 A1

?

1

FIG . 7B

545b

700C

Client 102

Appliance 2002

Browser 535

PAC File 540

Address Resolver 515

Traffic Router 510

Appliance 2006

it

Access Service (702)

Patent Application Publication

$

FindProxyForUrl (serviceURL , service :
Host : serviceRort (704) .

encode
query (73)

dnsResolve (query) (732)

1 1

?

1

$

I

DNS quen (734

f 1

$

Query from PAC (736 .

$

f

reply to PAC kuse proxy "
(762)

1

$

1

dnsResolve (query) - encoded
(' use proxy (764)

} E

DNS Response (766)

Nov. 26 , 2020 Sheet 11 of 14

1

PROXY alias?p aliasPORT (768)

Comm . Engine 520

t S &

1

TOP SYN

dstumisport a proxyRiproxyport (770

??? ?? {

dst Raport proxyIP : proxyPORI

(772)

$

}

TCP SYN , ACK (774)

TCP SYN , ACK (776)

}

TCP ACK (778)

1

TCP ACK (780)

1 }

5

1

CONNECT
service Hostserviceport HTTP / 1.1

(782)

CONNECT
service host servicePort HIIP / 1.1

(784)

} 2

HIII

1 :

US 2020/0374197 A1

FIG . 7C

545a

Patent Application Publication Nov. 26 , 2020 Sheet 12 of 14 US 2020/0374197 A1

800

Client 102 Appliance 2002

806 802
Receive

Configuration
Script

Generate
Configuration

Script

808 804
Detect
Access
Request

Transmit
Configuration

Script
810 V

Invoke
Configuration

Script

812 816
Query

Appliance for
Request
Address ?

Receive
Query

818
814

Establish
Direct or indirect
Connection ? D Send

Query Direct Indirect

820 822

Send
Indication to

Directly
Connect

Send
Indication to
Indirectly
Connect

B

FIG . 8A

Patent Application Publication Nov. 26 , 2020 Sheet 13 of 14 US 2020/0374197 A1

800
Client 102 Appliance 2002

A

830
Set Alias

Address for
Request

832 834
Send

Initiation
Request

Receive
Initiation
Request

836
Parse Alias to
Identify Proxy

Address

838
Establish
Indirect

Connection

FIG . 8B

Patent Application Publication Nov. 26 , 2020 Sheet 14 of 14 US 2020/0374197 A1

800

Client 102 Appliance 2002

B

840

Receive
Indication

842

Parse
Indication

844

Establish
Direct or indirect
Connection ? Direct Indirect

852
846 848 Receive

Initiation
Request Set Server

Address for
Request

Set Proxy
Address for
Request 854

Establish
Connection 850

Send
Initiation
Request

FIG . 8C

US 2020/0374197 A1 Nov. 26 , 2020
1

NETWORK TRAFFIC STEERING WITH
PROGRAMMATICALLY GENERATED
PROXY AUTO - CONFIGURATION FILES

FIELD OF THE DISCLOSURE
[0001] The present application generally relates to net
work traffic steering . In particular , the present application
relates to systems and methods for steering network traffic
using dynamically generated configuration scripts .

BACKGROUND

[0002] In a networked environment , clients may access
resources hosted on servers through proxy or intermediary
devices . Properly routing network traffic between the clients
and the servers through the intermediary devices may be
challenging .

BRIEF SUMMARY

[0003] This summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description . This summary is not
intended to identify key features or essential features , nor is
it intended to limit the scope of the claims included here
with .
[0004] A client may communicate with a server through
one or more intermediary devices in a networked environ
ment (e.g . , software - defined wide - area network (SD - WAN))
to access resources hosted on the server . The intermediary
devices may steer or route network traffic exchange between
the client and the server in accordance with a routing policy .
The routing policy may be based on one or more criteria ,
such as : an application or modality classification of indi
vidual traffic flow based on a configurable taxonomy , iden
tity and access rights of the user associated with the traffic
flows , location and security characteristics of the source ,
intermediate , and destination networks , and current avail
ability , quality of service , and usage level of network
resources among the network locations . Some of these
criteria may be manually configured by system administra
tors , while other criteria may be automated .
[0005] The network traffic may originate from applica
tions running on the client (e.g. , a web browser) . Such
applications may embed or reuse web browser networking
functionality , and may support both direct connections to
network servers (e.g. , Hypertext Transfer Protocol (HTTP)
or Hypertext Transfer Protocol Secure (HTTPS) servers) or
indirect connections through one or more of the intermedi
ary devices (sometimes herein referred to as proxy devices) .
The determination of whether to connect directly or use one
of the intermediary devices can be automated using proxy
auto - config (PAC) files provided to the client . A PAC file
may be a script (e.g. , a JavaScript program) deployed to the
application and may be used by the application to determine
an access method for a particular Uniform Resource Locator
(URL) . For example , the PAC file may specify direct con
nections for one set of URLs and an intermediary device for
another set of URL for indirect connections . The access
methods may be manually set by system administrator for a
particular network .
[0006] Once deployed to client across the network , the
applications may use the PAC files to access resources
references by various URLs . But steering destination
addresses (or targets) for individual network flows may not

correspond to the destination addresses used by the appli
cations . The improper steering may be due to multiple
reasons . First , the applications may not be configured to use
the correct PAC files . Second , the information on the PAC
files may become obsolete or out - of - date , leading to
improper determination of access methods in retrieving
resources via various URLs . Third , dynamic traffic steering
criteria on the intermediary devices may not be taken into
account when configuring the PAC files . Fourth , the PAC file
may be incorrectly programmed , due to human error or
organizational errors in the network administration process .
These technical issues may exist in enterprise networking
configurations with a centralized proxy or gateway through
network traffic enters and leaves . But problems relating to
improper steering due to misconfigured or obsolete PAC
files may be exacerbated in complex network environments ,
such as in cloud computing systems . In such complex
network environments , network traffic may be at least par
tially offloaded from centralized proxies and directly onto
servers to minimize network latency and to enable higher
quality user experience .
[0007] One approach to address some of the problems
originating from such PAC files may include using an
automated Application Programming Interface (API) to pub
lish the list of domain names and Internet Protocol (IP)
addresses referencing network endpoints for various ser
vices . Each time the list of domain names and IP addresses
are published via the API , the PAC files may be updated . As
the publication of new lists may happen as often as daily , it
may be impracticable to have the system administrator
manually update the PAC files . Instead , a protocol proxy
service on one of the intermediary devices (e.g. , a SD - WAN
instance) may be used to update the PAC files to use the
proxy service for all network connections . Such an imple
mentation may provide the intermediary device flexibility
for steering the traffic originated by the applications running
on the clients . For each network connection handled by a
built - in protocol proxy , the intermediary device may make
an individual decision on whether to connect directly to the
target server or to send the connection through an upstream
proxy .
[0008] However , this approach may present a major effi
ciency challenge for the intermediary device . To achieve
maximum performance , such implementations may be
implemented as Layer 3 (network layer) entities in the Open
Systems Interconnection (OSI) model , and maintain fairly
lightweight state for each network data flow . Protocol prox
ies , on the other hand , may be implemented as Layer 4
(transport) to Layer 7 (application layer) entities that con
sume considerably more resources for stateful network flow
processing . Thus , the addition of protocol proxy function
ality may result in the drastic increase of resource require
ments and configurations . Such an implementation may also
lead to reduction maximum achievable throughput if addi
tional resources (e.g. , memory and CPU cycles) are not
available .
[0009] To address these and other technical challenges in
steering network traffic through intermediary devices , a
portion of the proxy - specific traffic path selection logic may
be implemented on the application via a configuration script .
To this end , the intermediary device may dynamically gen
erate the configuration script for traffic destination decision
making based on various policies and dynamic criteria . The
generated script may be deployed as a PAC file to applica

US 2020/0374197 A1 Nov. 26 , 2020
2

tions in the networks for which the intermediary device
provides connectivity for the clients . The functionality of the
configuration script may be further enhanced using indirec
tion (e.g. , proxy aliases with dynamic network address
translation (NAT)) or bi - directional remote procedure call
(RPC) via a domain name system (DNS) .
[0010] Upon deployment of the configuration script , the
application running on the client may select the proxy to
which to direct network traffic . With proxy selection per
formed on the application of the client , the traffic steering on
the intermediary device itself may be performed in a light
weight manner using Layer 3 functionality . The intermedi
ary device may classify the connection made by the appli
cation relative to the taxonomy for the application based on
the destination address and port in the first packet of the
connection (e.g. , a Transmission Control Protocol (TCP)
with a synchronization (SYN) message or equivalent under
User Datagram Protocol (UDP)) . Following the classifica
tion , the intermediary device may determine a target desti
nation and a network path for the flow . Once determined , the
intermediary device may automatically apply the deter
mined target destination and network path to subsequent
packets , without inspecting the remainder of the flow and
without maintaining a per - flow state . The intermediary
device may also implement firewall rules and may perform
detection and handling of non - compliant applications .
[0011] In one aspect , the present disclosure is directed to
a method of steering network traffic using dynamically
generated configuration scripts . A first device intermediary
between a client and a second device may generate a
configuration script for an application executing on the
client for connecting the client with a server . The configu
ration script may specify the application to establish one of
a direct connection with the server via the first device or an
indirect connection with the server via the first device and
the second device responsive to an access request to access
resources on the server . The first device may provide , to the
client , the configuration script to be invoked by the appli
cation executing on the client to identify a first address to
access the resources on the server based on a determination
to establish one of the direct connection or the indirect
connection with the server responsive to the access request .
The first device may receive , from the client , an initiation
request to connect with the server . The initiation request may
include the first address identified by the application in
accordance with the configuration script . The first device
may determine second address to connect with the server by
applying a routing policy to the first address included in the
initiation request received from the client . The routing
policy may be used to ify addresses for accessing the
resources on the server . The first device may establish one of
the direct connection or the indirect connection between the
client and the server using the second address determined by
applying the routing policy to the first address included in
the initiation request . The established direct connection or
the indirect connection may be used to steer traffic between
the client and the server .
[0012] In some embodiments , the first address may
include an alias address for a plurality of second devices
intermediary between the first device and the server to
access the resources on the server . In some embodiments ,
determining the second address may include selecting the
second device from a plurality of second devices interme
diary between the first device and the server by applying the

routing policy to the alias address . The routing policy may
be used to select of one of the plurality of second devices for
the alias address based on network path criteria . In some
embodiments , determining the second address may include
identifying the second address referencing the second device
selected from the plurality of second devices by applying the
routing policy .
[0013] In some embodiments , the first address may
include an alias address . The alias address may include a first
substring and a second substring . The first substring of the
alias address may correspond a plurality of second devices
intermediary between the first device and the server to
access the resources on the server . The second substring of
the alias address may identify service parameters to connect
with the server . In some embodiments , determining the
second address may include identifying the service param
eters from the first substring included in the alias address of
the initiation request . In some embodiments , determining the
second address may include selecting the second device
from the plurality of second devices by applying the routing
policy to the second substring of the alias address . The
routing policy may be used to select of one of the plurality
of second devices based on the service parameters identified
from the first substring of the alias address . In some embodi
ments , determining the second address may include identi
fying the second address referencing the second device
selected from the plurality of second devices by applying the
routing policy .
[0014] In some embodiments , the first device may receive ,
from the client , a domain name system (DNS) query
encoded by the application in accordance with the configu
ration script . The DNS query may include a service address
for the server . In some embodiments , the first device may
determine to establish one of the direct connection or the
indirect connection by applying the routing policy to the
service address . In some embodiments , the first device may
select the first address from a plurality of network addresses
based on the determination of establishing one of the direct
connection or the indirect connection . The plurality of
addresses may include a first network address to establish
the direct connection and a second network address to the
indirect connection . In some embodiments , the first device may provide , to the client , a DNS response including the first
address to establish one of the direct connection or the
indirect connection between the client and the server . In
some embodiments , determining the second address may
include using the first address as the second address to
connect with the server in accordance with the routing
policy .
[0015] In some embodiments , the first device may receive ,
from the client , a domain name system (DNS) query gen
erated by the application in accordance with the configura
tion script . The DNS query may include a service address for
the server . In some embodiments , the first device may
determine to establish the direct connection between the
client and the server via the first device by applying the
routing policy to the hostname in the DNS query . In some
embodiments , the first device may provide , to the client , a
DNS response with an indication to establish the direct
connection to cause the application to initiate the direct
connection by sending the initiation request including the
first address specified by the configuration script for the
direct connection with the server .

US 2020/0374197 A1 Nov. 26 , 2020
3

[0016] In some embodiments , the first device may receive ,
from the client , a domain name system (DNS) query gen
erated by the application in accordance with the configura
tion script . The DNS query may include a service address for
the server . In some embodiments , the first device may
determine to establish the indirect connection between the
client and the server via the first device by applying the
routing policy to the hostname in the DNS query . In some
embodiments , the first device may provide , to the client , a
DNS response with an indication to establish the indirect
connection to cause the application to initiate the indirect
connection by sending the initiation request including the
first address specified by the configuration script for the
indirect connection with the server via the second device .
[0017] In some embodiments , the first device may receive ,
from the client , a domain name system (DNS) query
encoded by the application in accordance with the configu
ration script . The DNS query may include a service address
having an encoded hostname corresponding to the server . In
some embodiments , the first device may find a plurality of
candidate network addresses from which to determine the
first address for the server using the encoded hostname from
the DNS query .
[0018] In some embodiments , the configuration script may
include a first proxy autoconfig (PAC) file . In some embodi
ments , the first device may generate , subsequent to gener
ating the first PAC file , a second PAC file , the second PAC
file specifying the application whether to establish the direct
connection or the indirect connection with the server . In
some embodiments , the first device may provide , to the
client , the second PAC file to generate a third address to
access the resources on the server on a second determination
of whether to establish the direct connection or the indirect
connection with the server responsive to a second access
request . The third address may be different from the first
address .
[0019] In some embodiments , the first device may identify
a pre - generated configuration script from an external source .
The pre - generated configuration script may include a plu
rality of routing actions . Each routing action may specif
one of the direct connection or the indirect connection . In
some embodiments , the first device may generate , for a
script generation policy , a plurality of templates using the
pre - generated configuration script , each template corre
sponding to one of the plurality of routing actions . In some
embodiments , generating the configuration script may
include generating the configuration script by selecting a
template from the plurality of templates in accordance to the
script generation policy based on at least one of an appli
cation profile for the application executing on the client , an
account profile of a user on the application , and a network
profile of the client . In some embodiments , the configuration
script generated for the client may differ from a second
configuration script generated for a second client .
[0020] In another aspect , the present disclosure is directed
to a system for steering network traffic using dynamically
generated configuration scripts . The system may include a
first device having one or more processors intermediary
between a client and a second device . The first device may generate a configuration script for an application executing
on the client for connecting the client with a server . The
configuration script may specify the application to establish
one of a direct connection with the server via the first device
or an indirect connection with the server via the first device

and the second device responsive to an access request to
access resources on the server . The first device may provide ,
to the client , the configuration script to be invoked by the
application executing on the client to identify a first address
to access the resources on the server based on a determina
tion to establish one of the direct connection or the indirect
connection with the server responsive to the access request .
The first device may receive , from the client , an initiation
request to connect with the server . The initiation request may
include the first address identified by the application in
accordance with the configuration script . The first device
may determine second address to connect with the server by
applying a routing policy to the first address included in the
initiation request received from the client . The routing
policy may be used to modify addresses for accessing the
resources on the server . The first device may establish one of
the direct connection or the indirect connection between the
client and the server using the second address determined by
applying the routing policy to the first address included in
the initiation request . The established direct connection or
the indirect connection may be used to steer traffic between
the client and the server .
[0021] In some embodiments , the first address may
include an alias address for a plurality of second devices
intermediary between the first device and the server to
access the resources on the server . In some embodiments ,
the first device may select the second device from a plurality
of second devices intermediary between the first device and
the server by applying the routing policy to the alias address .
The routing policy may be used to select of one of the
plurality of second devices for the alias address based on
network path criteria . In some embodiments , the first device
may identify the second address referencing the second
device selected from the plurality of second devices by
applying the routing policy .
[0022] In some embodiments , the first address may
include an alias address . The alias address may include a first
substring and a second substring . The first substring of the
alias address may correspond a plurality of second devices
intermediary between the first device and the server to
access the resources on the server . The second substring of
the alias address may identify service parameters to connect
with the server . In some embodiments , the first device may
identify the service parameters from the first substring
included in the alias address of the initiation request . In
some embodiments , the first device may select the second
device from the plurality of second devices by applying the
routing policy to the second substring of the alias address .
The routing policy may be used to select of one of the
plurality of second devices based on the service parameters
identified from the first substring of the alias address . In
some embodiments , the first device may identify the second
address referencing the second device selected from the
plurality of second devices by applying the routing policy .
[0023] In some embodiments , the first device may receive ,
from the client , a domain name system (DNS) query
encoded by the application in accordance with the configu
ration script . The DNS query may include a service address
for the server . In some embodiments , the first device may
determine to establish one of the direct connection or the
indirect connection by applying the routing policy to the
service address . In some embodiments , the first device may
select the first address from a plurality of network addresses
based on the determination of establishing one of the direct

US 2020/0374197 A1 Nov. 26 , 2020
4

pre - generated configuration script , each template corre
sponding to one of the plurality of routing actions . In some
embodiments , the first device may generate the configura
tion script based on at least one of an application profile for
the application executing on the client , an account profile of
a user on the application , and a network profile of the client .
In some embodiments , the configuration script generated for
the client may differ from a second configuration script
generated for a second client .

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

a

connection or the indirect connection . In some embodi
ments , the first device may provide , to the client , a DNS
response including the first address to establish one of the
direct connection or the indirect connection between the
client and the server . In some embodiments , the first device
may use the first address as the second address to connect
with the server in accordance with the routing policy .
[0024] In some embodiments , the first device may receive ,
from the client , a domain name system (DNS) query gen
erated by the application in accordance with the configura
tion script . The DNS query may include a service address for
the server . In some embodiments , the first device may
determine to establish the direct connection between the
client and the server via the first device by applying the
routing policy to the hostname in the DNS query . In some
embodiments , the first device may provide , to the client ,
DNS response with an indication to establish the direct
connection to cause the application to initiate the direct
connection by sending the initiation request including the
first address specified by the configuration script for the
direct connection with the server .
[0025] In some embodiments , the first device may receive ,
from the client , a domain name system (DNS) query gen
erated by the application in accordance with the configura
tion script . The DNS query may include a service address for
the server . In some embodiments , the first device may
determine to establish the indirect connection between the
client and the server via the first device by applying the
routing policy to the hostname in the DNS query . In some
embodiments , the first device may provide , to the client , a
DNS response with an indication to establish the indirect
connection to cause the application to initiate the indirect
connection by sending the initiation request including the
first address specified by the configuration script for the
indirect connection with the server via the second device .
[0026] In some embodiments , the first device may receive ,
from the client , a domain name system (DNS) query
encoded by the application in accordance with the configu
ration script . The DNS query may include a service address
having an encoded hostname corresponding to the server . In
some embodiments , the first device may find a plurality of
candidate network addresses from which to determine the
first address for the server using the encoded hostname from
the DNS query .
[0027] In some embodiments , the configuration script may
include a first proxy autoconfig (PAC) file . In some embodi
ments , the first device may generate , subsequent to gener
ating the first PAC file , a second PAC file , the second PAC
file specifying the application whether to establish the direct
connection or the indirect connection with the server . In
some embodiments , the first device may provide , to the
client , the second PAC file to generate a third address to
access the resources on the server on a second determination
of whether to establish the direct connection or the indirect
connection with the server responsive to a second access
request . The third address may be different from the first
address .
[0028] In some embodiments , the first device may identify
a pre - generated configuration script from an external source .
The pre - generated configuration script may include a plu
rality of routing actions . Each routing action may specify
one of the direct connection or the indirect connection . In
some embodiments , the first device may generate , for a
script generation policy , a plurality of templates using the

[0029] Objects , aspects , features , and advantages of
embodiments disclosed herein will become more fully
apparent from the following detailed description , the
appended claims , and the accompanying drawing figures in
which like reference numerals identify similar or identical
elements . Reference numerals that are introduced in the
specification in association with a drawing figure may be
repeated in one or more subsequent figures without addi
tional description in the specification in order to provide
context for other features , and not every element may be
labeled in every figure . The drawing figures are not neces
sarily to scale , emphasis instead being placed upon illus
trating embodiments , principles and concepts . The drawings
are not intended to limit the scope of the claims included
herewith .
(0030] FIG . 1A is a block diagram of a network computing
system , in accordance with an illustrative embodiment ;
[0031] FIG . 1B is a block diagram of a network computing
system for delivering a computing environment from a
server to a client via an appliance , in accordance with an
illustrative embodiment ;
[0032] FIG . 1C is a block diagram of a computing device ,
in accordance with an illustrative embodiment ;
[0033] FIG . 2 is a block diagram of an appliance for
processing communications between a client and a server , in
accordance with an illustrative embodiment ;
[0034] FIG . 3 is a block diagram of a virtualization
environment , in accordance with an illustrative embodi
ment ;
[0035] FIG . 4 is a block diagram of a cluster system , in
accordance with an illustrative embodiment ;
[0036] FIG . 5 is a block diagram of an embodiment of a
system for steering network traffic using dynamically gen
erated configuration scripts ;
[0037] FIG . 6 is a component diagram of an embodiment
of a system for system for steering network traffic using
dynamically generated configuration scripts in a use case
environment ;
[0038] FIG . 7A - 7C are sequence diagrams of an embodi
ment of a process for steering network traffic using dynami
cally generated configuration scripts ; and
[0039] FIG . 8A - 8C are flow diagrams of an embodiment
of a method of steering network traffic using dynamically
generated configuration scripts .
[0040] The features and advantages of the present solution
will become more apparent from the detailed description set
forth below when taken in conjunction with the drawings , in
which like reference characters identify corresponding ele
ments throughout . In the drawings , like reference numbers
generally indicate identical , functionally similar , and / or
structurally similar elements .

US 2020/0374197 A1 Nov. 26 , 2020
5

DETAILED DESCRIPTION

[0041] For purposes of reading the description of the
various embodiments below , the following descriptions of
the sections of the specification and their respective contents
may be helpful :
[0042] Section A describes a network environment and
computing environment which may be useful for practicing
embodiments described herein ;
[0043] Section B describes embodiments of systems and
methods for delivering a computing environment to a remote
user ;
[0044] Section C describes embodiments of systems and
methods for virtualizing an application delivery controller ;
[0045] Section D describes embodiments of systems and
methods for providing a clustered appliance architecture
environment ; and
[0046] Section E describes embodiments of systems and
methods for steering network traffic using dynamically
generated configuration scripts .

A. Network and Computing Environment
[0047] Referring to FIG . 1A , an illustrative network envi
ronment 100 is depicted . Network environment 100 may
include one or more clients 102 (1) -102 (n) (also generally
referred to as local machine (s) 102 or client (s) 102) in
communication with one or more servers 106 (1) -106 (n)
(also generally referred to as remote machine (s) 106 or
server (s) 106) via one or more networks 104 (1) -104n (gen
erally referred to as network (s) 104) . In some embodiments ,
a client 102 may communicate with a server 106 via one or
more appliances 200 (1) -200n (generally referred to as appli
ance (s) 200 or gateway (s) 200) .
[0048] Although the embodiment shown in FIG . 1A shows
one or more networks 104 between clients 102 and servers
106 , in other embodiments , clients 102 and servers 106 may
be on the same network 104. The various networks 104 may
be the same type of network or different types of networks .
For example , in some embodiments , network 104 (1) may be
a private network such as a local area network (LAN) or a
company Intranet , while network 104 (2) and / or network
104 (n) may be a public network , such as a wide area network
(WAN) or the Internet . In other embodiments , both network
104 (1) and network 104 (n) may be private networks . Net
works 104 may employ one or more types of physical
networks and / or network topologies , such as wired and / or
wireless networks , and may employ one or more commu
nication transport protocols , such as transmission control
protocol (TCP) , internet protocol (IP) , user datagram pro
tocol (UDP) or other similar protocols .
[0049] As shown in FIG . 1A , one or more appliances 200
may be located at various points or in various communica
tion paths of network environment 100. For example , appli
ance 200 may be deployed between two networks 104 (1)
and 104 (2) , and appliances 200 may communicate with one
another to work in conjunction to , for example , accelerate
network traffic between clients 102 and servers 106. In other
embodiments , the appliance 200 may be located on a net
work 104. For example , appliance 200 may be implemented
as part of one of clients 102 and / or servers 106. In an
embodiment , appliance 200 may be implemented as a net
work device such Citrix networking (formerly
NetScaler®) products sold by Citrix Systems , Inc. of Fort
Lauderdale , Fla .

[0050] As shown in FIG . 1A , one or more servers 106 may
operate as a server farm 38. Servers 106 of server farm 38
may be logically grouped , and may either be geographically
co - located (e.g. , on premises) or geographically dispersed
(e.g. , cloud based) from clients 102 and / or other servers 106 .
In an embodiment , server farm 38 executes one or more
applications on behalf of one or more of clients 102 (e.g. , as
an application server) , although other uses are possible , such
as a file server , gateway server , proxy server , or other similar
server uses . Clients 102 may seek access to hosted applica
tions on servers 106 .
[0051] As shown in FIG . 1A , in some embodiments ,
appliances 200 may include , be replaced by , or be in
communication with , one or more additional appliances ,
such as WAN optimization appliances 205 (1) -205 (n) ,
referred to generally as WAN optimization appliance (s) 205 .
For example , WAN optimization appliance 205 may accel
erate , cache , compress or otherwise optimize or improve
performance , operation , flow control , or quality of service of
network traffic , such as traffic to and / or from a WAN
connection , such as optimizing Wide Area File Services
(WAFS) , accelerating Server Message Block (SMB) or
Common Internet File System (CIFS) . In some embodi
ments , appliance 205 may be a performance enhancing
proxy or a WAN optimization controller . In one embodi
ment , appliance 205 may be implemented as Citrix SD
WAN products sold by Citrix Systems , Inc. of Fort Lauder
dale , Fla .
[0052] Referring to FIG . 1B , an example network envi
ronment , 100 ' , for delivering and / or operating a computing
network environment on a client 102 is shown . As shown in
FIG . 1B , a server 106 may include an application delivery
system 190 for delivering a computing environment , appli
cation , and / or data files to one or more clients 102. Client
102 may include client agent 120 and computing environ
ment 15. Computing environment 15 may execute or operate
an application , 16 , that accesses , processes or uses a data file
17. Computing environment 15 , application 16 and / or data
file 17 may be delivered via appliance 200 and / or the server
106 .
[0053] Appliance 200 may accelerate delivery of all or a
portion of computing environment 15 to a client 102 , for
example by the application delivery system 190. For
example , appliance 200 may accelerate delivery of a stream
ing application and data file processable by the application
from a data center to a remote user location by accelerating
transport layer traffic between a client 102 and a server 106 .
Such acceleration may be provided by one or more tech
niques , such as : 1) transport layer connection pooling , 2)
transport layer connection multiplexing , 3) transport control
protocol buffering , 4) compression , 5) caching , or other
techniques . Appliance 200 may also provide load balancing
of servers 106 to process requests from clients 102 , act as a
proxy or access server to provide access to the one or more
servers 106 , provide security and / or act as a firewall between
a client 102 and a server 106 , provide Domain Name Service
(DNS) resolution , provide one or more virtual servers or
virtual internet protocol servers , and / or provide a secure
virtual private network (VPN) connection from a client 102
to a server 106 , such as a secure socket layer (SSL) VPN
connection and / or provide encryption and decryption opera
tions .
[0054] Application delivery management system 190 may
deliver computing environment 15 to a user (e.g. , client

as

US 2020/0374197 A1 Nov. 26 , 2020
6

servers

102) , remote or otherwise , based on authentication and
authorization policies applied by policy engine 195. A
remote user may obtain a computing environment and
access to server stored applications and data files from any
network - connected device (e.g. , client 102) . For example ,
appliance 200 may request an application and data file from
server 106. In response to the request , application delivery
system 190 and / or server 106 may deliver the application
and data file to client 102 , for example via an application
stream to operate in computing environment 15 on client
102 , or via a remote - display protocol or otherwise via
remote - based or server - based computing . In an embodiment ,
application delivery system 190 may be implemented as any
portion of the Citrix Workspace SuiteTM by Citrix Systems ,
Inc. , such as Citrix Virtual Apps and Desktops (formerly
XenApp® and XenDesktop®) .
[0055] Policy engine 195 may control and manage the
access to , and execution and delivery of , applications . For
example , policy engine 195 may determine the one or more
applications a user or client 102 may access and / or how the
application should be delivered to the user or client 102 ,
such as a server - based computing , streaming or delivering
the application locally to the client 120 for local execution .
[0056] For example , in operation , a client 102 may request
execution of an application (e.g. , application 16 ') and appli
cation delivery system 190 of server 106 determines how to
execute application 16 ' , for example based upon credentials
received from client 102 and a user policy applied by policy
engine 195 associated with the credentials . For example ,
application delivery system 190 may enable client 102 to
receive application - output data generated by execution of
the application on a server 106 , may enable client 102 to
execute the application locally after receiving the applica
tion from server 106 , or may stream the application via
network 104 to client 102. For example , in some embodi
ments , the application may be a server - based or a remote
based application executed on server 106 on behalf of client
102. Server 106 may display output to client 102 using a
thin - client or remote - display protocol , such as the Indepen
dent Computing Architecture (ICA) protocol by Citrix Sys
tems , Inc. of Fort Lauderdale , Fla . The application may be
any application related to real - time data communications , such as applications for streaming graphics , streaming video
and / or audio or other data , delivery of remote desktops or
workspaces or hosted services or applications , for example
infrastructure as a service (IaaS) , desktop as a service
(DaaS) , workspace as a service (WaaS) , software as a
service (SaaS) or platform as a service (PaaS) .
[0057] One or more of servers 106 may include a perfor
mance monitoring service or agent 197. In some embodi
ments , a dedicated one or more servers 106 may be
employed to perform performance monitoring . Performance
monitoring may be performed using data collection , aggre
gation , analysis , management and reporting , for example by
software , hardware or a combination thereof . Performance
monitoring may include one or more agents for performing
monitoring , measurement and data collection activities on
clients 102 (e.g. , client agent 120) , servers 106 (e.g. , agent
197) or an appliance 200 and / or 205 (agent not shown) . In
general , monitoring agents (e.g. , 120 and / or 197) execute
transparently (e.g. , in the background) to any application
and / or user of the device . In some embodiments , monitoring
agent 197 includes any of the product embodiments referred

to as Citrix Analytics or Citrix Application Delivery Man
agement by Citrix Systems , Inc. of Fort Lauderdale , Fla .
[0058] The monitoring agents 120 and 197 may monitor ,
measure , collect , and / or analyze data on a predetermined
frequency , based upon an occurrence of given event (s) , or in
real time during operation of network environment 100. The
monitoring agents may monitor resource consumption and /
or performance of hardware , software , and / or communica
tions resources of clients 102 , networks 104 , appliances 200
and / or 205 , and / or servers 106. For example , network con
nections such as a transport layer connection , network
latency , bandwidth utilization , end - user response times ,
application usage and performance , session connections to
an application , cache usage , memory usage , processor
usage , storage usage , database transactions , client and / or
server utilization , active users , duration of user activity ,
application crashes , errors , or hangs , the time required to
log - in to an application , a server , or the application delivery
system , and / or other performance conditions and metrics
may be monitored .
[0059] The monitoring agents 120 and 197 may provide
application performance management for application deliv
ery system 190. For example , based upon one or more
monitored performance conditions or metrics , application
delivery system 190 may be dynamically adjusted , for
example periodically or in real - time , to optimize application
delivery by servers 106 to clients 102 based upon network
environment performance and conditions .
[0060] In described embodiments , clients 102 ,
106 , and appliances 200 and 205 may be deployed as and / or
executed on any type and form of computing device , such as
any desktop computer , laptop computer , or mobile device
capable of communication over at least one network and
performing the operations described herein . For example ,
clients 102 , servers 106 and / or appliances 200 and 205 may
each correspond to one computer , a plurality of computers ,
or a network of distributed computers such as computer 101
shown in FIG . 1C .

[0061] As shown in FIG . 1C , computer 101 may include
one or more processors 103 , volatile memory 122 (e.g. ,
RAM) , non - volatile memory 128 (e.g. , one or more hard
disk drives (HDDs) or other magnetic or optical storage
media , one or more solid state drives (SSDs) such as a flash
drive or other solid state storage media , one or more hybrid
magnetic and solid state drives , and / or one or more virtual
storage volumes , such as a cloud storage , or a combination
of such physical storage volumes and virtual storage vol
umes or arrays thereof) , user interface (UI) 123 , one or more
communications interfaces 118 , and communication bus
150. User interface 123 may include graphical user interface
(GUI) 124 (e.g. , a touchscreen , a display , etc.) and one or
more input / output (1/0) devices 126 (e.g. , a mouse , a
keyboard , etc.) . Non - volatile memory 128 stores operating
system 115 , one or more applications 116 , and data 117 such
that , for example , computer instructions of operating system
115 and / or applications 116 are executed by processor (s)
103 out of volatile memory 122. Data may be entered using
an input device of GUI 124 or received from I / O device (s)
126. Various elements of computer 101 may communicate
via communication bus 150. Computer 101 as shown in FIG .
1C is shown merely as an example , as clients 102 , servers
106 and / or appliances 200 and 205 may be implemented by
any computing or processing environment and with any type

US 2020/0374197 A1 Nov. 26 , 2020
7

of machine or set of machines that may have suitable
hardware and / or software capable of operating as described
herein .
[0062] Processor (s) 103 may be implemented by one or
more programmable processors executing one or more com
puter programs to perform the functions of the system . As
used herein , the term “ processor ” describes an electronic
circuit that performs a function , an operation , or a sequence
of operations . The function , operation , or sequence of opera
tions may be hard coded into the electronic circuit or soft
coded by way of instructions held in a memory device . A
" processor ” may perform the function , operation , or
sequence of operations using digital values or using analog
signals . In some embodiments , the “ processor ” can be
embodied in one or more application specific integrated
circuits (ASICs) , microprocessors , digital signal processors ,
microcontrollers , field programmable gate arrays (FPGAs) ,
programmable logic arrays (PLAs) , multi - core processors ,
or general - purpose computers with associated memory . The
" processor ” may be analog , digital or mixed - signal . In some
embodiments , the “ processor ” may be one or more physical
processors or one or more “ virtual ” (e.g. , remotely located
or " cloud ”) processors .
[0063] Communications interfaces 118 may include one or
more interfaces to enable computer 101 to access a computer
network such as a LAN , a WAN , or the Internet through a
variety of wired and / or wireless or cellular connections .
[0064] In described embodiments , a first computing
device 101 may execute an application on behalf of a user
of a client computing device (e.g. , a client 102) , may execute
a virtual machine , which provides an execution session
within which applications execute on behalf of a user or a
client computing device (e.g. , a client 102) , such as a hosted
desktop session , may execute a terminal services session to
provide a hosted desktop environment , or may provide
access to a computing environment including one or more
of : one or more applications , one or more desktop applica
tions , and one or more desktop sessions in which one or
more applications may execute .

space 204 is reserved for running kernel 230 , including any
device drivers , kernel extensions or other kernel related
software . As known to those skilled in the art , kernel 230 is
the core of the operating system , and provides access ,
control , and management of resources and hardware - related
elements of application 104. Kernel space 204 may also
include a number of network services or processes working
in conjunction with cache manager 232 .
[0067] Appliance 200 may include one or more network
stacks 267 , such as a TCP / IP based stack , for communicat
ing with client (s) 102 , server (s) 106 , network (s) 104 , and / or
other appliances 200 or 205. For example , appliance 200
may establish and / or terminate one or more transport layer
connections between clients 102 and servers 106. Each
network stack 267 may include a buffer 243 for queuing one
or more network packets for transmission by appliance 200 .
[0068] Kernel space 204 may include cache manager 232 ,
packet engine 240 , encryption engine 234 , policy engine 236
and compression engine 238. In other words , one or more of
processes 232 , 240 , 234 , 236 and 238 run in the core address
space of the operating system of appliance 200 , which may
reduce the number of data transactions to and from the
memory and / or context switches between kernel mode and
user mode , for example since data obtained in kernel mode
may not need to be passed or copied to a user process , thread
or user level data structure .
[0069] Cache manager 232 may duplicate original data
stored elsewhere or data previously computed , generated or
transmitted to reducing the access time of the data . In some
embodiments , the cache memory may be a data object in
memory 264 of appliance 200 , or may be a physical memory
having a faster access time than memory 264 .
[0070] Policy engine 236 may include a statistical engine
or other configuration mechanism to allow a user to identify ,
specify , define or configure a caching policy and access ,
control and management of objects , data or content being
cached by appliance 200 , and define or configure security ,
network traffic , network access , compression or other func
tions performed by appliance 200 .
[0071] Encryption engine 234 may process any security
related protocol , such as SSL or TLS . For example , encryp
tion engine 234 may encrypt and decrypt network packets ,
or any portion thereof , communicated via appliance 200 ,
may setup or establish SSL , TLS or other secure connec
tions , for example between client 102 , server 106 , and / or
other appliances 200 or 205. In some embodiments , encryp
tion engine 234 may use a tunneling protocol to provide a
VPN between a client 102 and a server 106. In some
embodiments , encryption engine 234 is in communication
with encryption processor 260. Compression engine 238
compresses network packets bi - directionally between clients
102 and servers 106 and / or between one or more appliances
200 .

[0072] Packet engine 240 may manage kernel - level pro
cessing of packets received and transmitted by appliance
200 via network stacks 267 to send and receive network
packets via network ports 266. Packet engine 240 may
operate in conjunction with encryption engine 234 , cache
manager 232 , policy engine 236 and compression engine
238 , for example to perform encryption / decryption , traffic
management such as request - level content switching and
request - level cache redirection , and compression and
decompression of data .

B. Appliance Architecture
[0065] FIG . 2 shows an example embodiment of appliance
200. As described herein , appliance 200 may be imple
mented as a server , gateway , router , switch , bridge or other
type of computing or network device . As shown in FIG . 2 ,
an embodiment of appliance 200 may include a hardware
layer 206 and a software layer 205 divided into a user space
202 and a kernel space 204. Hardware layer 206 provides the
hardware elements upon which programs and services
within kernel space 204 and user space 202 are executed and
allow programs and services within kernel space 204 and
user space 202 to communicate data both internally and
externally with respect to appliance 200. As shown in FIG .
2 , hardware layer 206 may include one or more processing
units 262 for executing software programs and services ,
memory 264 for storing software and data , network ports
266 for transmitting and receiving data over a network , and
encryption processor 260 for encrypting and decrypting data
such as in relation to Secure Socket Layer (SSL) or Trans
port Layer Security (TLS) processing of data transmitted
and received over the network .
[0066] An operating system of appliance 200 allocates ,
manages , or otherwise segregates the available system
memory into kernel space 204 and user space 202. Kernel

US 2020/0374197 A1 Nov. 26 , 2020
8

address and port controlled or managed by client agent 120 .
Thus , client agent 120 may transparently intercept any
protocol layer below the transport layer , such as the network
layer , and any protocol layer above the transport layer , such
as the session , presentation or application layers . Client
agent 120 can interface with the transport layer to secure ,
optimize , accelerate , route or load balance any communica
tions provided via any protocol carried by the transport
layer .
[0078] In some embodiments , client agent 120 is imple
mented as an Independent Computing Architecture (ICA)
client developed by Citrix Systems , Inc. of Fort Lauderdale ,
Fla . Client agent 120 may perform acceleration , streaming ,
monitoring , and / or other operations . For example , client
agent 120 may accelerate streaming an application from a
server 106 to a client 102. Client agent 120 may also perform
end - point detection / scanning and collect end - point informa
tion about client 102 for appliance 200 and / or server 106 .
Appliance 200 and / or server 106 may use the collected
information to determine and provide access , authentication
and authorization control of the client's connection to net
work 104. For example , client agent 120 may identify and
determine one or more client - side attributes , such as : the
operating system and / or a version of an operating system , a
service pack of the operating system , a running service , a
running process , a file , presence or versions of various
applications of the client , such as antivirus , firewall , secu
rity , and / or other software .

[0073] User space 202 is a memory area or portion of the
operating system used by user mode applications or pro
grams otherwise running in user mode . A user mode appli
cation may not access kernel space 204 directly and uses
service calls in order to access kernel services . User space
202 may include graphical user interface (GUI) 210 , a
command line interface (CLI) 212 , shell services 214 , health
monitor 216 , and daemon services 218. GUI 210 and CLI
212 enable a system administrator or other user to interact
with and control the operation of appliance 200 , such as via
the operating system of appliance 200. Shell services 214
include the programs , services , tasks , processes or execut
able instructions to support interaction with appliance 200
by a user via the GUI 210 and / or CLI 212 .
[0074) Health monitor 216 monitors , checks , reports and
ensures that network systems are functioning properly and
that users are receiving requested content over a network , for
example by monitoring activity of appliance 200. In some
embodiments , health monitor 216 intercepts and inspects
any network traffic passed via appliance 200. For example ,
health monitor 216 may interface with one or more of
encryption engine 234 , cache manager 232 , policy engine
236 , compression engine 238 , packet engine 240 , daemon
services 218 , and shell services 214 to determine a state ,
status , operating condition , or health of any portion of the
appliance 200. Further , health monitor 216 may determine if
a program , process , service or task is active and currently
running , check status , error or history logs provided by any
program , process , service or task to determine any condi
tion , status or error with any portion of appliance 200 .
Additionally , health monitor 216 may measure and monitor
the performance of any application , program , process , ser
vice , task or thread executing on appliance 200 .
[0075] Daemon services 218 are programs that run con
tinuously or in the background and handle periodic service
requests received by appliance 200. In some embodiments ,
a daemon service may forward the requests to other pro
grams or processes , such as another daemon service 218 as
appropriate .
[0076] As described herein , appliance 200 may relieve
servers 106 of much of the processing load caused by
repeatedly opening and closing transport layer connections
to clients 102 by opening one or more transport layer
connections with each server 106 and maintaining these
connections to allow repeated data accesses by clients via
the Internet (e.g. , " connection pooling ”) . To perform con
nection pooling , appliance 200 may translate or multiplex
communications by modifying sequence numbers and
acknowledgment numbers at the transport layer protocol
level (e.g. , " connection multiplexing ”) . Appliance 200 may
also provide switching or load balancing for communica
tions between the client 102 and server 106 .
[0077] As described herein , each client 102 may include
client agent 120 for establishing and exchanging communi
cations with appliance 200 and / or server 106 via a network
104. Client 102 may have installed and / or execute one or
more applications that are in communication with network
104. Client agent 120 may intercept network communica
tions from a network stack used by the one or more
applications . For example , client agent 120 may intercept a
network communication at any point in a network stack and
redirect the network communication to a destination desired ,
managed or controlled by client agent 120 , for example to
intercept and redirect a transport layer connection to an IP

C. Systems and Methods for Providing Virtualized
Application Delivery Controller
[0079] Referring now to FIG . 3 , a block diagram of a
virtualized environment 300 is shown . As shown , a com
puting device 302 in virtualized environment 300 includes a
virtualization layer 303 , a hypervisor layer 304 , and a
hardware layer 307. Hypervisor layer 304 includes one or
more hypervisors (or virtualization managers) 301 that allo
cates and manages access to a number of physical resources
in hardware layer 307 (e.g. , physical processor (s) 321 and
physical disk (s) 328) by at least one virtual machine (VM)
(e.g. , one of VMs 306) executing in virtualization layer 303 .
Each VM 306 may include allocated virtual resources such
as virtual processors 332 and / or virtual disks 342 , as well as
virtual resources such as virtual memory and virtual network
interfaces . In some embodiments , at least one of VMs 306
may include a control operating system (e.g. , 305) in com
munication with hypervisor 301 and used to execute appli
cations for managing and configuring other VMs (e.g. , guest
operating systems 310) on device 302 .
[0080] In general , hypervisor (s) 301 may provide virtual
resources to an operating system of VMs 306 in any manner
that simulates the operating system having access to a
physical device . Thus , hypervisor (s) 301 may be used to
emulate virtual hardware , partition physical hardware , vir
tualize physical hardware , and execute virtual machines that
provide access to computing environments . In an illustrative
embodiment , hypervisor (s) 301 may be implemented as a
Citrix Hypervisor by Citrix Systems , Inc. of Fort Lauder
dale , Fla . In an illustrative embodiment , device 302 execut
ing a hypervisor that creates a virtual machine platform on
which guest operating systems may execute is referred to as
a host server . 302
[0081] Hypervisor 301 may create one or more VMs 306
in which an operating system (e.g. , control operating system

US 2020/0374197 A1 Nov. 26 , 2020
9

305 and / or guest operating system 310) executes . For
example , the hypervisor 301 loads a virtual machine image
to create VMs 306 to execute an operating system . Hyper
visor 301 may present VMs 306 with an abstraction of
hardware layer 307 , and / or may control how physical capa
bilities of hardware layer 307 are presented to VMs 306. For
example , hypervisor (s) 301 may manage a pool of resources
distributed across multiple physical computing devices .
[0082] In some embodiments , one of VMs 306 (e.g. , the
VM executing control operating system 305) may manage
and configure other of VMs 306 , for example by managing
the execution and / or termination of a VM and / or managing
allocation of virtual resources to a VM . In various embodi
ments , VMs may communicate with hypervisor (s) 301 and /
or other VMs via , for example , one or more Application
Programming Interfaces (APIs) , shared memory , and / or
other techniques .
[0083] In general , VMs 306 may provide a user of device
302 with access to resources within virtualized computing
environment 300 , for example , one or more programs ,
applications , documents , files , desktop and / or computing
environments , or other resources . In some embodiments ,
VMs 306 may be implemented as fully virtualized VMs that
are not aware that they are virtual machines (e.g. , a Hard
ware Virtual Machine or HVM) . In other embodiments , the
VM may be aware that it is a virtual machine , and / or the VM
may be implemented as a paravirtualized (PV) VM .
[0084] Although shown in FIG . 3 as including a single
virtualized device 302 , virtualized environment 300 may
include a plurality of networked devices in a system in
which at least one physical host executes a virtual machine .
A device on which a VM executes may be referred to as a
physical host and / or a host machine . For example , appliance
200 may be additionally or alternatively implemented in a
virtualized environment 300 on any computing device , such
as a client 102 , server 106 or appliance 200. Virtual appli
ances may provide functionality for availability , perfor
mance , health monitoring , caching and compression , con
nection multiplexing and pooling and / or security processing
(e.g. , firewall , VPN , encryption / decryption , etc.) , similarly
as described in regard to appliance 200 .
[0085] In some embodiments , a server may execute mul
tiple virtual machines 306 , for example on various cores of
a multi - core processing system and / or various processors of
a multiple processor device . For example , although gener
ally shown herein as “ processors ” (e.g. , in FIGS . 1C , 2 and
3) , one or more of the processors may be implemented as
either single- or multi - core processors to provide a multi
threaded , parallel architecture and / or multi - core architec
ture . Each processor and / or core may have or use memory
that is allocated or assigned for private or local use that is
only accessible by that processor / core , and / or may have or
use memory that is public or shared and accessible by
multiple processors / cores . Such architectures may allow
work , task , load or network traffic distribution across one or
more processors and / or one or more cores (e.g. , by func
tional parallelism , data parallelism , flow - based data paral
lelism , etc.) .
[0086] Further , instead of (or in addition to) the function
ality of the cores being implemented in the form of a
physical processor / core , such functionality may be imple
mented in a virtualized environment (e.g. , 300) on a client
102 , server 106 or appliance 200 , such that the functionality
may be implemented across multiple devices , such as a

cluster of computing devices , a server farm or network of
computing devices , etc. The various processors / cores may
interface or communicate with each other using a variety of
interface techniques , such as core to core messaging , shared
memory , kernel APIs , etc.
[0087] In embodiments employing multiple processors
and / or multiple processor cores , described embodiments
may distribute data packets among cores or processors , for
example to balance the flows across the cores . For example ,
packet distribution may be based upon determinations of
functions performed by each core , source and destination
addresses , and / or whether : a load on the associated core is
above a predetermined threshold ; the load on the associated
core is below a predetermined threshold ; the load on the
associated core is less than the load on the other cores ; or any
other metric that can be used to determine where to forward
data packets based in part on the amount of load on a
processor .
[0088] For example , data packets may be distributed
among cores or processes using receive - side scaling (RSS)
in order to process packets using multiple processors / cores
in a network . RSS generally allows packet processing to be
balanced across multiple processors / cores while maintaining
in - order delivery of the packets . In some embodiments , RSS
may use a hashing scheme to determine a core or processor
for processing a packet .
[0089] The RSS may generate hashes from any type and
form of input , such as a sequence of values . This sequence
of values can include any portion of the network packet ,
such as any header , field or payload of network packet , and
include any tuples of information associated with a network
packet or data flow , such as addresses and ports . The hash
result or any portion thereof may be used to identify a
processor , core , engine , etc. , for distributing a network
packet , for example via a hash table , indirection table , or
other mapping technique .

D. Systems and Methods for Providing a Distributed Cluster
Architecture

[0090] Although shown in FIGS . 1A and 1B as being
single appliances , appliances 200 may be implemented as
one or more distributed or clustered appliances . Individual
computing devices or appliances may be referred to as nodes
of the cluster . A centralized management system may per
form load balancing , distribution , configuration , or other
tasks to allow the nodes to operate in conjunction as a single
computing system . Such a cluster may be viewed as a single
virtual appliance or computing device . FIG . 4 shows a block
diagram of an illustrative computing device cluster or appli
ance cluster 400. A plurality of appliances 200 or other
computing devices (e.g. , nodes) may be joined into a single
cluster 400. Cluster 400 may operate as an application
server , network storage server , backup service , or any other
type of computing device to perform many of the functions
of appliances 200 and / or 205 .
[0091] In some embodiments , each appliance 200 of clus
ter 400 may be implemented as a multi - processor and / or
multi - core appliance , as described herein . Such embodi
ments may employ a two - tier distribution system , with one
appliance if the cluster distributing packets to nodes of the
cluster , and each node distributing packets for processing to
processors / cores of the node . In many embodiments , one or
more of appliances 200 of cluster 400 may be physically
grouped or geographically proximate to one another , such as

US 2020/0374197 A1 Nov. 26 , 2020
10

a group of blade servers or rack mount devices in a given
chassis , rack , and / or data center . In some embodiments , one
or more of appliances 200 of cluster 400 may be geographi
cally distributed , with appliances 200 not physically or
geographically co - located . In such embodiments , geographi
cally remote appliances may be joined by a dedicated
network connection and / or VPN . In geographically distrib
uted embodiments , load balancing may also account for
communications latency between geographically remote
appliances .
[0092] In some embodiments , cluster 400 may be consid
ered a virtual appliance , grouped via common configuration ,
management , and purpose , rather than as a physical group .
For example , an appliance cluster may comprise a plurality
of virtual machines or processes executed by one or more
servers .

[0093] As shown in FIG . 4 , appliance cluster 400 may be
coupled to a first network 104 (1) via client data plane 402 ,
for example to transfer data between clients 102 and appli
ance cluster 400. Client data plane 402 may be implemented
a switch , hub , router , or other similar network device inter
nal or external to cluster 400 to distribute traffic across the
nodes of cluster 400. For example , traffic distribution may be
performed based on equal - cost multi - path (ECMP) routing
with next hops configured with appliances or nodes of the
cluster , open - shortest path first (OSPF) , stateless hash - based
traffic distribution , link aggregation (LAG) protocols , or any
other type and form of flow distribution , load balancing , and
routing
[0094] Appliance cluster 400 may be coupled to a second
network 104 (2) via server data plane 404. Similarly to client
data plane 402 , server data plane 404 may be implemented
as a switch , hub , router , or other network device that may be
internal or external to cluster 400. In some embodiments ,
client data plane 402 and server data plane 404 may be
merged or combined into a single device .
[0095] In some embodiments , each appliance 200 of clus
ter 400 may be connected via an internal communication
network or back plane 406. Back plane 406 may enable
inter - node or inter - appliance control and configuration mes
sages , for inter - node forwarding of traffic , and / or for com
municating configuration and control traffic from an admin
istrator or user to cluster 400. In some embodiments , back
plane 406 may be a physical network , a VPN or tunnel , or
a combination thereof .
We claim :
1. A method of steering network traffic using dynamically

generated configuration scripts , comprising :
generating , by a first device intermediary between a client

and a second device , a configuration script for an
application executing on the client for connecting the
client with a server , the configuration script specifying
the application to establish one of a direct connection
with the server via the first device or an indirect
connection with the server via the first device and the
second device responsive to an access request to access
resources on the server ;

providing , by the first device to the client , the configu
ration script to be invoked by the application executing
on the client to identify a first address to access the
resources on the server based on a determination to
establish one of the direct connection or the indirect
connection with the server responsive to the access
request ;

receiving , by the first device from the client , an initiation
request to connect with the server , the initiation request
including the first address identified by the application
in accordance with the configuration script ;

determining , by the first device , a second address to
connect with the server by applying a routing policy to
the first address included in the initiation request
received from the client , the routing policy used to
modify addresses for accessing the resources on the
server ; and

establishing , by the first device , one of the direct connec
tion or the indirect connection between the client and
the server using the second address determined by
applying the routing policy to the first address included
in the initiation request , the established direct connec
tion or the indirect connection used to steer traffic
between the client and the server .

2. The method of claim 1 , wherein the first address
includes an alias address for a plurality of second devices
intermediary between the first device and the server to
access the resources on the server , and

wherein determining the second address further com
prises :
selecting the second device from a plurality of second

devices intermediary between the first device and the
server by applying the routing policy to the alias
address , the routing policy to select of one of the
plurality of second devices for the alias address
based on network path criteria ; and

identifying the second address referencing the second
device selected from the plurality of second devices
by applying the routing policy .

3. The method of claim 1 , wherein the first address
includes an alias address , the alias address including a first
substring and a second substring , the first substring of the
alias address corresponding a plurality of second devices
intermediary between the first device and the server to
access the resources on the server , the second substring of
the alias address identifying service parameters to connect
with the server ; and

wherein determining the second address further com
prises :
identifying the service parameters from the first sub

string included in the alias address of the initiation
request ;

selecting the second device from the plurality of second
devices by applying the routing policy to the second
substring of the alias address , the routing policy to
select of one of the plurality of second devices based
on the service parameters identified from the first
substring of the alias address ; and

identifying the second address referencing the second
device selected from the plurality of second devices
by applying the routing policy .

4. The method of claim 1 , further comprising :
receiving , by the first device from the client , a domain
name system (DNS) query encoded by the application
in accordance with the configuration script , the DNS
query including a service address for the server ,

determining , by the first device , to establish one of the
direct connection or the indirect connection by apply
ing the routing policy to the service address ;

selecting , by the first device , the first address from a
plurality of network addresses based on the determi

US 2020/0374197 A1 Nov. 26 , 2020
11

nation of establishing one of the direct connection or
the indirect connection , the plurality of addresses
including a first network address to establish the direct
connection and a second network address to the indirect
connection ;

providing , by the first device to the client , a DNS response
including the first address to establish one of the direct
connection or the indirect connection between the
client and the server ; and

wherein determining the second address further com
prises using the first address as the second address to
connect with the server in accordance with the routing
policy .

5. The method of claim 1 , further comprising :
receiving , by the first device from the client , a domain
name system (DNS) query generated by the application
in accordance with the configuration script , the DNS
query including a service address for the server ;

determining , by the first device , to establish the direct
connection between the client and the server via the
first device by applying the routing policy to the
hostname in the DNS query ; and

providing , by the first device to the client , a DNS response
with an indication to establish the direct connection to
cause the application to initiate the direct connection by
sending the initiation request including the first address
specified by the configuration script for the direct
connection with the server .

6. The method of claim 1 , further comprising :
receiving , by the first device from the client , a domain
name system (DNS) query generated by the application
in accordance with the configuration script , the DNS
query including a service address for the server ;

determining , by the first device , to establish the indirect
connection between the client and the server via the
first device by applying the routing policy to the
hostname in the DNS query ; and

providing , by the first device to the client , a DNS response
with an indication to establish the indirect connection
to cause the application to initiate the indirect connec
tion by sending the initiation request including the first
address specified by the configuration script for the
indirect connection with the server via the second
device .

7. The method of claim 1 , further comprising :
receiving , by the first device from the client , a domain
name system (DNS) query encoded by the application
in accordance with the configuration script , the DNS
query including a service address having an encoded
hostname corresponding to the server ; and

finding , by the first device , a plurality of candidate
network addresses from which to determine the first
address for the server using the encoded hostname from
the DNS query .

8. The method of claim 1 , wherein the configuration script
includes a first proxy autoconfig (PAC) file ; and further
comprising :

generating , by the first device , subsequent to generating
the first PAC file , a second PAC file , the second PAC
file specifying the application whether to establish the
direct connection or the indirect connection with the
server ; and

providing , by the first device to the client , the second PAC
file to generate a third address to access the resources

on the server on a second determination of whether to
establish the direct connection or the indirect connec
tion with the server responsive to a second access
request , the third address different from the first
address .

9. The method of claim 1 , further comprising :
identifying , by the first device , a pre - generated configu

ration script from an external source , the pre - generated
configuration script comprising a plurality of routing
actions , each routing action specifying one of the direct
connection or the indirect connection ;

generating , by the first device , for a script generation
policy , a plurality of templates using the pre - generated
configuration script , each template corresponding to
one of the plurality of routing actions ;

wherein generating the configuration script further com
prises generating the configuration script by selecting a
template from the plurality of templates in accordance
to the script generation policy based on at least one of
an application profile for the application executing on
the client , an account profile of a user on the applica
tion , and a network profile of the client .

10. The method of claim 1 , wherein the configuration
script generated for the client differs from a second con
figuration script generated for a second client .

11. A system for steering network traffic using dynami
cally generated configuration scripts , comprising :

a first device having one or more processors intermediary
between a client and a second device , configured to :
generate a configuration script for an application

executing on the client for connecting the client with
a server , the configuration script specifying the appli
cation to establish one of a direct connection with the
server via the first device or an indirect connection
with the server via the first device and the second
device responsive to an access request to access
resources on the server ,

provide the configuration script to be invoked by the
application executing on the client to identify a first
address to access the resources on the server based
on a determination to establish one of the direct
connection or the indirect connection with the server
responsive to the access request ;

receive , from the client , an initiation request to connect
with the server , the initiation request including the
first address identified by the application in accor
dance with the configuration script ;

determine a second address to connect with the server
by applying a routing policy to the first address
included in the initiation request received from the
client , the routing policy used to modify addresses
for accessing the resources on the server ; and

establish one of the direct connection or the indirect
connection between the client and the server using
the second address determined by applying the rout
ing policy to the first address included in the initia
tion request , the established direct connection or the
indirect connection used to steer traffic between the
client and the server .

12. The system of claim 11 , wherein the first address
includes an alias address for a plurality of second devices
intermediary between the first device and the server to
access the resources on the server ; and

US 2020/0374197 A1 Nov. 26 , 2020
12

request including the first address specified by the
configuration script for the direct connection with the
server .

wherein the first device is further configured to :
select the second device from a plurality of second

devices intermediary between the first device and the
server by applying the routing policy to the alias
address , the routing policy to select of one of the
plurality of second devices for the alias address
based on network path criteria ; and

identify the second address referencing the second
device selected from the plurality of second devices
by applying the routing policy .

13. The system of claim 11 , wherein the first address
includes an alias address , the alias address including a first
substring and a second substring , the first substring of the
alias address corresponding a plurality of second devices
intermediary between the first device and the server to
access the resources on the server , the second substring of
the alias address identifying service parameters to connect
with the server ; and

wherein the first device is further configured to :
identify the service parameters from the first substring

included in the alias address of the initiation request ;
select the second device from the plurality of second

devices by applying the routing policy to the second
substring of the alias address , the routing policy to
select of one of the plurality of second devices based
on the service parameters identified from the first
substring of the alias address ; and

identify the second address referencing the second
device selected from the plurality of second devices
by applying the routing policy

14. The system of claim 11 , wherein the first device is
further configured to :

receive , from the client , a domain name system (DNS)
query encoded by the application in accordance with
the configuration script , the DNS query including a
service address for the server ;

determine to establish one of the direct connection or the
indirect connection by applying the routing policy to
the service address ;

select the first address from a plurality of network
addresses based on the determination of establishing
one of the direct connection or the indirect connection ,
the plurality of addresses including a first network
address to establish the direct connection and a second
network address to the indirect connection ;

provide , to the client , a DNS response including the first
address to establish one of the direct connection or the
indirect connection between the client and the server ;
and

use the first address as the second address to connect with
the server in accordance with the routing policy .

15. The system of claim 11 , wherein the first device is
further configured to :

receive , from the client , a domain name system (DNS)
query generated by the application in accordance with
the configuration script , the DNS query including a
service address for the server ;

determine to establish the direct connection between the
client and the server via the first device by applying the
routing policy to the hostname in the DNS query ; and

provide , the client , a DNS response with an indication to
establish the direct connection to cause the application
to initiate the direct connection by sending the initiation

16. The system of claim 11 , wherein the first device is
further configured to :

receive , from the client , a domain name system (DNS)
query generated by the application in accordance with
the configuration script , the DNS query including a
service address for the server ;

determine to establish the indirect connection between the
client and the server via the first device by applying the
routing policy to the hostname in the DNS query ; and

provide , to the client , a DNS response with an indication
to establish the indirect connection to cause the appli
cation to initiate the indirect connection by sending the
initiation request including the first address specified by
the configuration script for the indirect connection with
the server via the second device .

17. The system of claim 11 , wherein the first device is
further configured to :

receive , from the client , a domain name system (DNS)
query encoded by the application in accordance with
the configuration script , the DNS query including a
service address having an encoded hostname corre
sponding to the server ; and

find a plurality of candidate network addresses from
which to determine the first address for the server using
the encoded hostname from the DNS query .

18. The system of claim 11 , wherein the configuration
script includes a first proxy autoconfig (PAC) file ; and

wherein the first device is further configured to :
generate , subsequent to generating the first PAC file , a

second PAC file , the second PAC file specifying the
application whether to establish the direct connec
tion or the indirect connection with the server ; and

provide , to the client , the second PAC file to generate
a third address to access the resources on the server
on a second determination of whether to establish the
direct connection or the indirect connection with the
server responsive to a second access request , the
third address different from the first address .

19. The system of claim 11 , wherein the first device is
further configured to :

identify a pre - generated configuration script from an
external source , the pre - generated configuration script
comprising a plurality of routing actions , each routing
action specifying one of the direct connection or the
indirect connection ;

generate , for a script generation policy , a plurality of
templates using the pre - generated configuration script ,
each template corresponding to one of the plurality of
routing actions ;

generate the configuration script by selecting a template
from the plurality of templates in accordance to the
script generation policy based on at least one of an
application profile for the application executing on the
client , an account profile of a user on the application ,
and a network profile of the client .

20. The system of claim 11 , wherein the configuration
script generated for the client differs from a second con
figuration script generated for the second client .

