US 20170286707A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2017/0286707 A1

Eda et al.

43) Pub. Date: Oct. 5, 2017

(54)

(71)

(72)

@
(22)

(1)

UNIFIED FILE AND OBJECT STORAGE
ARCHITECTURE FOR CLUSTERED FILE
SYSTEMS

Applicant: International Business Machines
Corporation, Armonk, NY (US)
Inventors: Sasikanth Eda, Pune (IN); Dean
Hildebrand, Bellingham, WA (US);
Ashutosh V. Mate, Pune (IN); Varun
Mittal, Zirakpur (IN); William W.
Owen, Tucson, AZ (US); Sandeep R.
Patil, Pune (IN); Smita J. Raut, Pune

(IN)

Appl. No.: 15/085,367
Filed: Mar. 30, 2016

Publication Classification
Int. CL.
GOGF 21/62 (2006.01)
GOG6F 17/30 (2006.01)
HO4L 29/06 (2006.01)

oz

(52) US.CL
CPC GOGF 21/6218 (2013.01); HO4L 63/101
(2013.01); GOG6F 17/302 (2013.01); GO6F

1730091 (2013.01)

(57) ABSTRACT

A processor may identify a first directory in the UFO storage
system. The first directory may include one or more subdi-
rectories in one or more levels under the first directory. The
one or more subdirectories may include a second directory
that has includes one or more objects. The first directory may
be associated with a first inode, and the second directory
may be associated with a second inode. The processor may
perform a stat call on the second directory to determine
metadata attributes for the one or more objects that are
stored in the second directory. The metadata attributes for
the one or more objects may be stored in the second inode.
The processor may add the metadata attributes for the one or
more objects to the first inode.

{ Generate access control list (ACL) rule(s) for an object in a directory

302

!

[Receive a notification that a user has changed the ACTL rule for the object

ACL rules

different?

806

[Prompt user to approve ACL chaoge l

User approve
change?

812

Change ACL rule(s) for object
{ Update extended inodes for directory and parent directories
816

)
%

¥

(END ’

Patent Application Publication Oct. 5,2017 Sheet 1 of 11 US 2017/0286707 A1

100 N AR SOSSCERR0,
d CHent{s) 162

Load Balancer 104

Proxy Server Proxy Server Proxy Server
106A 1068 106€

Account 1 hj é;mg Container
Database B Database
116 118
Zone 1 110A Zone 2 1108 Zone 3 110C
Object Object Object Gbject Chject Object
Server Server Server Server Server Server
A b 4 k4 k 4 k4 b 4
Clustered Filesystem
114

FIG. 1

Patent Application Publication Oct. 5,2017 Sheet 2 of 11 US 2017/0286707 A1

200

Generate extended inode spaces for every directory in a unified tile and
object (UFO) namespace tor a UFO storage system

Identity a first directory in the UFO namespace E
204

I

Perform a stat call on the first directory
200

Pass the stat details to parent directory
208

Accumulate the details of all child directories in the inode for the parent
directory
210

7 Top level ™, Y%
directory? §

212

Perform a stat call on the parent directory
214

US 2017/0286707 Al

Oct. 5,2017 Sheet 3 of 11

Patent Application Publication

¢ DA

90t

[v« [oaasv | aor | cyios Jomalee T ocna ||
P 0 7 AI01oan(
ored
Ty TINEAD L €957 | 88L0T0 | zposlgo § 1 1ad
e TEgamO | aXor | v772360 | sw0elqo | 1 10T e
\!\. 1 Aopoangg
21t
Fo TINGAD | 30957 | 8874070 | ziosige § 1 1ag
Ve L INEMRO | 9oy | pTL860 | oswelgo | 1 g
Te | HAOXZ 5918007 | Thpezr | Twoofgo | o pag
pred
Ue | D4GSY | g1 | 7198 | omeslge | o zad
Ve JINEAD | gosT | egLozo | ziwelqo | o1ad =0T
Ty 1198M0 | 8Y0F | D860 | swelgo | 1 1Rg Azoj00a1(] AR dO
Fo 1 EADXZ | SAG 0T | 2hpeTt | wsigo | o 1ud
et
o 00€
- - . aum | BUBN] SUIBN
; ; Bo717 37IC . ~
1oV el LIS voneary | wofgn | Aooorgy - 0lE

Patent Application Publication Oct. 5,2017 Sheet 4 of 11 US 2017/0286707 A1

Determine that a file has been updated using a file interface
402

Determine one or more object-store specitic metadata parameters for the
UFO storage system
404

(Generate object-store specific metadata for the file IE
400

:

Update the extended inode for the directory that includes the file
408

Top Tovel ™
directory?

Pass the updated file attributes to the parent directory
412

Update the inode space for the parent directory }
4i4

Patent Application Publication Oct. 5,2017 Sheet 5 of 11 US 2017/0286707 A1

500 N

Directory
502

504

Objectl
Object metadata: { ‘content-length™: 207, *size’; ‘207 "Etag” ‘EDBCF’}

Filel
Object. metadata:NULL

51 2™) . 522 ™™ .
Objectl | 20 bytes - bytes used: 20
< .
324 Storage-Policy: 1
Container Database / Account Database /
Flat file structure Flat file siructure

FIG. 5A

Patent Application Publication Oct. 5,2017 Sheet 6 of 11 US 2017/0286707 A1

560 \

Directory

Objectl

Filel
Object metadata: { ‘conteni-length’: “40007; ‘size’: "1G7; ‘Filag’ “ABEFDS]

Sl Objectl | 20 bytes S22~ bytes used: 1G
5 1 Filel | iG 324~ Storage-Policy: 1
Container Database / Account Database /
Flat file structure Flat file structure

FIG. 5B

Patent Application Publication Oct. 5,2017 Sheet 7 of 11 US 2017/0286707 A1

N
o)
o]

Identify an Information Life Cycle Management (ILM) policy for a
directory or container
o602

i

- Scan the extended inode space for the directory to find one or more objects §
and/or subdirectories :
60

" Subdirectory need ™
to be migrated?
606

Migrate the subdirectory in accordance with the first rule
608

FIG. 6

US 2017/0286707 Al

LD

| V. 1 04asY | oE01 | Trios | oipelge | o zid

Em.\\

Oct. 5,2017 Sheet 8 of 11

Patent Application Publication

porerSiw
aq oy,
Ve PIANGAOD | GM9ST | 8872070 | TIO8IGO0 | T 1ag o,
Lo PLAEMO T 8MOP | pTL860 | g0k | Lag 1 0T
o~ | 171 Sooeng

3y ANEGAD | 9M9¢7 | 882070 | Tiwelge | 1 g

P P LWEMO | IOV § ¥TL860 | oswelge |1 juQ Iz
T AIC10911(]

D

Ve 1 9AOXZ 189890z | Trrent | owelgo 1 o tag

pied

VOLwor—d 1, | DIASY a01 v i9s | onwelgo | o zaQ

WNGAD | 93957 | 88°L070 | z1100igo | 1 1A 75T
Yo PINAMO | gdor | vTL860 | swalgo | 1 ing | | Aopang pasgdoy

=t

=

Iy | GADX7Z | A 07 | Zh beT [walgo | o 1a(GT

1 ma\\ bﬂ,
Z0L
Wi.! 00L

swiSug Aotiod W

Patent Application Publication Oct. 5,2017 Sheet 9 of 11 US 2017/0286707 A1

Generate access control list (ACL) rule(s) for an object in a directory
302

Receive a notification that a user has changed the ACL rule for the object }
804

different?

Prompt user to approve ACL change }

" User appr ove

N, Change? g

FiG. 8

US 2017/0286707 Al

Oct. 5,2017 Sheet 10 of 11

Patent Application Publication

6 "Old

06
nruyol G, [DAASY | g9l | crios Jomwdlge [o g | 0%
\m ¢ 7 Alopang
91¢
Ve PINGAD | 4957 | 88L0C0 | z1P9IG0 | 1 (A
Ty JLMAMO | E@¥0b | pTL860 | w0olgo 1 1 qug oS
I 1 Axoaseng
T PANEAD | GM9ST | 88L070 | Tiwelge |1 g
T (| LEEMO | @0 | L8600 | 819iq0 | 1 1uQ - FOE
Y. L HAOXZ | SR 07 | crpecl | (oolqo | o (g || O TAo0ena
TG aermmd MLUYOL T | DIASY | EDF TP'L9s | 011890 | o 7
Ty JNEAD | gY95T | 884070 | Ziwslqo | 1 g =57
Ty IAIMO | 8¥M0r | vTL860 | §199090 | pag | | Aopsig pasdog,
Ty ADXZ | 898G 07 | Zyperl | 1309090 | o 1

W!F 006

Patent Application Publication

1601

PROCESSOR

1002

CpPU
10024

CPU
10028

CPU

COMPUTER SYSTEM

Oct. 5, 2017

Sheet 11 of 11

MEMORY
1004

CACHE
1024

RAM
1022

MEMORY BUS 1003

1002¢

CPU

10020

SN S N —

STORAG

SYSTEM

1028

10 BUS INTERFACE 1010

10 BUS 1008

TERMINAL
INTERFACE
1012

VO DEVICE
INTERFACE
1014

STORAGE
INTERFACE
1016

NETWORK
INTERFACHE
1018

FIG. 10

US 2017/0286707 Al

US 2017/0286707 Al

UNIFIED FILE AND OBJECT STORAGE
ARCHITECTURE FOR CLUSTERED FILE
SYSTEMS

BACKGROUND

[0001] The present disclosure relates generally to the field
of computer storage, and more particularly to a unified file
and object storage architecture for clustered file systems.
[0002] The current day implementation of object storage
(both traditional commodity built as well as clustered file
system built) requires databases as a physical representation
for containers and accounts. The databases are used for
storing metadata, such as account name, container names,
access control lists (ACLs), storage policies, bytes used,
object names, size, entity tags (ETags), content-length, etc.
This kind of implementation results in numerous problems
(from object usage only, as well as from unified file and
object usage).

[0003] Scalability: Object storage systems are meant for
high scalability and supposed to support an infinite number
of objects. However, the container and account databases
(e.g., SQLite databases) grow in size as the number of
containers and objects increase. This growth in size results
in longer time to update or retrieve an entry from the
database (as database operations happen sequentially), and
also adds to the database performance overheads, negatively
impacting the overall object storage system performance and
potentially limiting the scalability of the object storage
system.

[0004] Unpredictable response times of metadata update
and/or retrieval during load conditions: At scale, object
storage systems give unpredictable response times for object
retrieval as well as for metadata updates. This problem is
currently addressed by placing container databases on faster
solid state drives (SSDs), rather than on hard disk drives
(HDDs). But, in the scenario of a unified file and object
(UFO) system, this behavior creates a serious concern as file
workloads expect instantaneous updates and a definitive,
uniform behavior.

[0005] Replication of databases across multiple sites: In a
multi-site cluster, replication of database files requires a
significant amount of time. The database files may need to
be replicated for consistency, error recovery (e.g., in case a
database file is corrupted), etc. In this kind of setup, it
frequently occurs that the listings in a database (e.g., at the
account and/or container level) are inaccurate due to pend-
ing queued database updates.

[0006] Objects generated via file interface: The UFO
specification allows users to access and modify data as
objects using a representational state transfer (REST) inter-
face, along with the ability to access and modify files from
network-attached storage (NAS) interfaces, including net-
work file system (NFS) and server message block (SMB)
interfaces. However, the current day object storage archi-
tectures lack the framework to automatically update the
object interface databases (e.g., container and/or account
databases) with objects created via file interfaces, such as
NFS, SMB, and portable operating system interface
(POSIX) interfaces.

[0007] Automatic Object metadata creation and/or updat-
ing for objects created via file interface: The present day
object storage architecture lacks the framework to automati-
cally create and/or append metadata for a file created via a

Oct. 5,2017

file interface, which helps it to be accessed via an object
interface (e.g., helps follow the object semantics).

[0008] Access control list (ACL) compatibility: The
object ACLs form a subset of File ACLs. Currently, in the
UFO architecture, there exists no functionality that helps
maintain compatibility between Object and File ACLs, and
there exists no notification mechanism related to ACL
changes.

SUMMARY

[0009] Embodiments of the present invention disclose a
method, computer program product, and system for gener-
ating an extended inode space for unified file and object
(UFO) storage systems. A processor may identify a first
directory in the UFO storage system. The first directory may
include one or more subdirectories in one or more levels
under the first directory. The one or more subdirectories may
include a second directory that has includes one or more
objects. The first directory may be associated with a first
inode, and the second directory may be associated with a
second inode. The processor may perform a stat call on the
second directory to determine metadata attributes for the one
or more objects that are stored in the second directory. The
metadata attributes for the one or more objects may be stored
in the second inode. The processor may add the metadata
attributes for the one or more objects to the first inode.

[0010] In some optional embodiments of the present dis-
closure, the processor may identify one or more metadata
parameters for objects in the UFO storage system. The UFO
storage system may have a UFO namespace where data can
be accessed as an object and as a file. The metadata
parameters may be parameters that are generated for objects
stored in the UFO storage system. The processor may
determine that a second object has been updated using a file
storage interface. The processor may generate metadata for
the second object. The generated metadata may include
values for the second object that correspond to the one or
more metadata parameters. The processor may add the
generated metadata to the second object.

[0011] In some optional embodiments of the present dis-
closure, the processor may determine that a first object that
is stored in the second directory has been modified. The
processor may determine updated metadata attributes for the
first object. The processor may update the second inode with
the updated metadata attributes. The processor may also pass
the updated metadata attributes for the first object to the first
directory, and update the metadata attributes for the first
object in the first inode.

[0012] In some optional embodiments, the processor may
determine that a user has modified an access control list
setting for a second object that is stored in a third directory.
The processor may compare the modified access control list
setting for the second object to a container access control list
setting for a first container by analyzing an inode associated
with the third directory. The first container may include the
second object. The processor may determine whether the
modified access control list setting for the second object
matches the container access control list setting. If they do
not match, the processor may notify the user that there is a
mismatch and prompt the user to approved the modified
access control list setting for the second object. The proces-
sor may update the inode associated with the third directory
if the user approves the modified access control list setting.

US 2017/0286707 Al

[0013] Thus, various embodiments of the present disclo-
sure advantageously provide a framework for a UFO storage
system in which data may be access as an object and as a file.
By storing the metadata attributes for the one or more
objects in the first inode, the computer system may eliminate
the need for container and account databases in the UFO
storage system. Optional embodiments may ensure that
objects include their object-store specific metadata, even if
they are updated using a file storage interface. Optional
embodiments may also ensure that inodes for higher level
directories are automatically updated whenever an object in
a lower level directory is updated. Finally, some embodi-
ments may automatically maintain file and object ACL
compatibility for the UFO storage system.

[0014] The above summary is not intended to describe
each illustrated embodiment or every implementation of the
present disclosure. The aforementioned advantages repre-
sent example advantages, and therefore, not all advantages
of the various embodiments are described herein. Further-
more, some embodiments of the present disclosure can
exhibit none, some, or all of the advantages listed herein
while remaining within the spirit and scope of the present
disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The drawings included in the present disclosure are
incorporated into, and form part of, the specification. They
illustrate embodiments of the present disclosure and, along
with the description, serve to explain the principles of the
disclosure. The drawings are only illustrative of typical
embodiments and do not limit the disclosure.

[0016] FIG. 1 illustrates an example object storage envi-
ronment using a clustered file system in which illustrative
embodiments of the present disclosure may be implemented.
[0017] FIG. 2 illustrates a flowchart of an example method
for generating and populating extended inode spaces for
directories using a recursive stat call, in accordance with
embodiments of the present disclosure.

[0018] FIG. 3 illustrates an example of an extended direc-
tory inode for a top-level directory, in accordance with
embodiments of the present disclosure.

[0019] FIG. 4 illustrates a flowchart of an example method
for generating object-store specific metadata for a file gen-
erated using a file system interface and updating extended
directory inodes, in accordance with embodiments of the
present disclosure.

[0020] FIG. 5A illustrates an example unified file and
object (UFO) namespace that includes a file created using a
file system interface, in accordance with embodiments of the
present disclosure.

[0021] FIG. 5B illustrates the example UFO namespace of
FIG. 5A after object-store specific metadata has been auto-
matically generated for the file, in accordance with embodi-
ments of the present disclosure.

[0022] FIG. 6 illustrates a flowchart of an example method
for determining whether to migrate one or more directories
based on an Information Lifecycle Management (ILM)
policy, in accordance with embodiments of the present
disclosure.

[0023] FIG. 7 illustrates an example of a UFO storage
system that uses an ILM policy engine to perform the
method of FIG. 6 to migrate a directory according to an ILM
policy, in accordance with embodiments of the present
disclosure.

Oct. 5,2017

[0024] FIG. 8 illustrates a flowchart of an example method
for managing access control list (ACL) rules for a UFO
storage system using extended directory inodes, in accor-
dance with embodiments of the present disclosure.

[0025] FIG. 9 illustrates an example of the extended
directory inode for a top-level directory of FIG. 3 being
changed in response to a user-approved ACL change to an
object, in accordance with embodiments of the present
disclosure.

[0026] FIG. 10 illustrates a high-level block diagram of an
example computer system that may be used in implementing
one or more of the methods, tools, and modules, and any
related functions, described herein, in accordance with
embodiments of the present disclosure.

[0027] While the embodiments described herein are ame-
nable to various modifications and alternative forms, spe-
cifics thereof have been shown by way of example in the
drawings and will be described in detail. It should be
understood, however, that the particular embodiments
described are not to be taken in a limiting sense. On the
contrary, the intention is to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope of
the invention.

DETAILED DESCRIPTION

[0028] Aspects of the present disclosure relate generally to
the field of computer storage, and in particular to a unified
file and object storage architecture for clustered file systems.
While the present disclosure is not necessarily limited to
such applications, various aspects of the disclosure may be
appreciated through a discussion of various examples using
this context.

[0029] Unified File and Object (UFO) Storage unifies
network-attached storage (NAS) and object storage tech-
nologies. It provides a system for data storage that enables
users to access the same data as an object and as a file, thus
simplifying management and controlling storage costs. It
allows users to access and modify data as objects from a
representational state transfer (REST) interface, while also
allowing users to access and modify the same data as files
using NAS interfaces including network file system (NFS),
server message block (SMB), and portable operating system
interface (POSIX) interfaces.

[0030] In some embodiments, the UFO storage system
may store objects and files using a file hierarchy that
includes directories and subdirectories, as with traditional
file system storage. Each directory may correspond to an
object’s account or container. The UFO storage system may
have a tree structure with one or more branches. The tree
structure may include one or more levels. The top-level may
be referred to as the root level, and may store the root
directory for the UFO storage system, while the bottom level
may be referred to as the leaf level, and it may include the
leaf nodes (also called end-nodes or leaves). Directories that
are not leaf directories (e.g., they have at least one nested
child subdirectory) and are not root directories (e.g., they
have a parent directory) may be referred to as intermediate
directories. Each branch may be a specific path from the root
directory to a leaf directory, and may include one or more
intermediate directories.

[0031] As used herein, a “file” may be a resource (e.g., a
container) for storing data in a computer system that is
generated using a file interface. In some embodiments, a file
may be organized into one-dimensional arrays of bytes, and

US 2017/0286707 Al

the file’s format may be defined by its content, and may be
indicated using a filename extension. Generally, though not
always, a file will include fixed metadata attributes (e.g.,
filename, creation date, type).

[0032] An “object,” as used herein, may be a resource for
storing data in a computer system that is generated using an
object interface (e.g., REST). Unlike files, objects often,
though not always, include additional metadata attributes.
These metadata attributes may be customizable by users or
according to the needs of the object store. Because a UFO
storage system allows data to be manipulated as both an
object and as a file, object and file are used interchangeably
throughout this disclosure to refer to a container for data,
except when explicitly stated or made clear by the context.
[0033] As used herein, an “inode” is a data structure that
stores metadata attributes for a file system object (e.g., an
object, file, or directory). For example, an inode may be a
table that has one or more columns and one or more rows.
Each column may correspond to a specific metadata param-
eter (e.g., object size), and each row may correspond to a
specific entry or record in the inode (e.g., to a specific file or
object).

[0034] While inodes generally refer to the data structure
used by UNIX® operating systems to store metadata, other
operating systems may have functional equivalents (UNIX
is a registered trademark owned by X/OPEN COMPANY
LIMITED CORPORATION, UNITED KINGDOM
THAMES TOWER, 37-45 STATION ROAD READING,
BERKSHIRE RG1 1LX UNITED KINGDOM). Accord-
ingly, the present disclosure should not be limited to UNIX®
operating systems. Metadata attributes saved in an inode
may include, but are not limited to, directory name, object
names, creation times for objects, size, ETag, manipulation
metadata (e.g., last access time, last modified time, change
time), and owner and permission data (e.g., ACLs, group-id,
user-id). Each inode may additionally include disk block
location(s) of the file system object’s data.

[0035] As used herein, a “stat call” refers to a system call
that returns file attributes about an inode. The file attributes
may include metadata (e.g., creation time, ETag, object size)
for one or more objects in the directory on which the stat call
was performed. The returned file attributes are referred to as
“stat details” herein. While stat calls generally refer to a
particular system calls in UNIX® operating systems, other
operating systems may have functional equivalents. Accord-
ingly, the present disclosure should not be limited to a
UNIX® operating system.

[0036] Embodiments of the present disclosure include a
framework for a UFO storage system that can be integrated
into a clustered file system architecture. In some embodi-
ments, the UFO storage system disclosed herein may elimi-
nate the need for databases and/or flat files to store metadata
for objects, containers, and accounts. The UFO architecture
involves the generation of extended directory inode spaces
(also referred to herein as extended inodes) for all directories
in the UFO storage system.

[0037] Current POSIX file systems limit their “stat” capa-
bility (e.g., their metadata identification capability) to the
parent layer (e.g., top most layer on which the stat call has
been executed), and fails to collect “stat” details from child
layers. For example, consider a file system layout with
“/topDir/uFilel” and “/topDir/childDir/cFilel.” If a stat call
is performed on the “topDir,” it will only retrieve the details
of the parent layer (e.g., it will list the details of “uFilel”),

Oct. 5,2017

and it will not include a listing of details for objects or files
in the child directory (e.g., “cFilel™).

[0038] Insome embodiments, a computer system may use
a new application programming interface (API) call to
perform a recursive stat (e.g., bottom-up) operation to gen-
erate the complete detail listing for a directory (even from
inner directory layers). Using the proposed API call, the
computer system performs a local stat call at each lower
directory (e.g., starting with the leaf directories) to retrieve
stat details found in the lower directory’s extended directory
inode. The computer system then passes the stat details of
the lower directories to the upper (e.g., parent) directory
layer. At the parent directory layer, details of one or more
child directories are accumulated in the extended directory
inode for the parent directory. If the parent directory is not
the top-level (e.g., root) directory, the stat details of the
parent directory and its children are passed to the next upper
directory layer. The computer system continues to recur-
sively populate extended directory inodes for each directory
in the UFO storage system with the stat details of all child
directories until it reaches the object store layer (e.g., the
topmost layer). By storing the stat details of all of the objects
and files in the topmost directory’s extended directory inode,
the computer system may remove the need for databases or
flat file structures. However, in some embodiments, the stat
details can be dumped into a flat file structure which is
optimized for random access. Likewise, the stat details may
be dumped into a database for archival purposes, or to make
the UFO storage system compatible with other storage
systems that use databases to store metadata.

[0039] In some embodiments, the computer system may
use file system event notification mechanisms (e.g., Data
Management API, general parallel file system (GPFS) Light
Weight Events, inotify, etc.) to identify files generated,
modified, and/or deleted via object or file interfaces. Based
on the type of event (e.g., CREATE, DELETE, MODIFY),
the computer system may update details stored in the
respective extended directory inodes (e.g., the extended
directory inode for the directory that stores the updated
object or file). The computer system may also update the
extended directory inodes for all parent directories in the
recursive fashion discussed herein. In some embodiments,
the computer system may also update listings that have been
dumped into a database or flat file structure.

[0040] Additionally, in some embodiments, the computer
system may enable usage of the event notifications by other
external APIs. For example, the generated events can be
further published to cloud messaging services or cloud
gateways. The cloud messaging services or cloud gateways
may use these events to derive workload patterns or trigger
analytic operations, for example. As another example, the
external APIs for an email server may use the event notifi-
cations to automatically email a user (e.g., an administrator)
whenever an event has occurred.

[0041] As yet another example, some file systems and/or
backends may not have inherent capability to publish event
notifications to an application layer. In these embodiments,
the file systems or backends may rely on external applica-
tions or middleware (e.g., configured at the application
layer). The middleware may hook to the I/O path and, based
on the /O mode (e.g., open, closed, etc.), publish the
notifications from a user space rather than from the kernel
space.

US 2017/0286707 Al

[0042] In current object storage systems, any object that
gets stored in an object store will be appended with object-
store specific system metadata attributes, such as Content-
Length, size, creation time, ETag, and/or other custom
metadata details. This metadata is in turn used by the object
store internally to determine whether the data has been
corrupted, to perform a health check, etc. However, if a UFO
system is built based on this architecture, objects generated
via a file interface will not include this metadata.

[0043] In some embodiments, the UFO storage system
disclosed herein automatically generates the object-store
specific metadata by default (e.g., after the file CLOSE call)
for any object that gets generated via a file interface (e.g.,
NFS, SMB, POSIX). The UFO storage system may use file
system event notification APIs (e.g., Data Management API,
GPFS Light Weight Events, inotify, etc.) to determine
whether a file or object has been updated using a file
interface and needs metadata creation. For example, if the
object is updated with using an NFS interface, the UFO
storage system may receive the “FILE UPDATE” notifica-
tion from the file system event notification API. In response
to receiving the “FILE UPDATE” notification, the UFO
storage system may generate the object-store specific meta-
data associated with the object (e.g., ETag, size, Content-
Length) and append the updated metadata to the object. The
computer system may then recursively update the extended
directory inodes for all parent directories above the object
(e.g., all upbranch directories). In some embodiments, the
metadata parameters may be user-configurable (e.g., during
the UFO namespace creation) according on the type of
metadata fields needed by the object store.

[0044] In some embodiments, the UFO storage system
may use an Information Lifecycle management (ILM)
policy engine to determine whether a directory or object
needs to be migrated to another storage location. A clustered
file system may use different hardware to store different
files. For example, the file system may have a pool of HDDs
and a pool of solid state drives (SSDs). The ILM policy
engine may identify migration candidates based on the
details stored in the extended directory inode spaces. For
example, assume that an end user deploys a rule which states
“migrate all containers with size >500 GB to SSD pool and
size <500 GB to HDD pool.” In this scenario, the ILM
policy engine may scan through the details (e.g., size) stored
in each extended directory inode space and decide which
directories need to be moved to an SSD pool and/or to a
HDD pool. This is in contrast to traditional ILM policy
engines, which must scan the entire file system and/or
namespace (e.g., all entries stored on the file system) to
determine which entries need to be migrated. Scanning
through the extended directory inode may be significantly
quicker and less resource intensive than performing a scan
of the entire file system and/or namespace.

[0045] In some embodiments, the computer system may
use the extended directory inodes to manage ACL settings
(also called ACL rules) for objects in the UFO storage
system. The computer system may first assign the object an
ACL setting. The initial ACL setting may be object specific
(e.g., determined for each object on an object-by-object
basis) or it may be based on the ACL setting of the container
that includes the object. This may be done using the object
interface and the extended directory inodes (e.g., by scan-
ning or analyzing the extended directory inode for the
container). If the end user tries to set a new ACL setting for

Oct. 5,2017

the object, the computer system may receive a file system
ACL change API request. The computer system may then
compare the current object (or container) ACL setting,
which is stored in the extended directory inode, with the
newly received ACL setting. If they are different, the com-
puter system may alert the user with a warning or other
notification related to the change in ACL settings. The
notification may prompt the user to decide whether he
approves the change in the ACL settings for the object. If the
user approves the new ACL setting, the computer system
may replace the old ACL stored in the directory inode. The
computer system may then update inodes for the upper
hierarchies (e.g., to the object layer).

[0046] Referring now to FIG. 1, shown is an example
object storage environment 100 for a UFO storage system
that uses a clustered file system in which illustrative embodi-
ments of the present disclosure may be implemented. The
object storage environment 100 may include one or more
clients (e.g., computer systems) 102 that are permitted to
access data stored in the UFO storage system. The clients
102 may send requests (e.g., to retrieve data, update data,
store data, etc.) to a load balancer 104, which may be
responsible for routing the request through one or more
proxy servers 106A-C. The proxy servers 106 A-C may be
computer systems that perform distributed load handling and
request handling for the UFO storage system. The proxy
servers 106A-C may pass the requests to the ring 108.
[0047] The ring 108 may be a data structure that is
responsible for determining where data should reside in a
cluster. For example, the ring 108 may route the data storage
requests to different zones (e.g., Zones 1 through 3 110A-C
in FIG. 1) so that different object servers (e.g., object servers
112A-F) handle the requests. The ring 108 may also be
responsible for ensuring that objects are redundantly stored
in different zones or regions. This may help ensure that data
is protected against location specific outages, and to ensure
that backups of all of the objects are kept. Finally, the ring
108 may be responsible for mapping an object name to its
storage location.

[0048] The object servers 112A-F may be computer sys-
tems that perform the actual reading/writing of objects
from/to the physical hardware (e.g., to HDDs). In a clustered
UFO storage system, the object servers 112A-F may all
write to, and read from, hardware (e.g., SSDs or HDDs) that
use a single clustered file system 114 with a single UFO
namespace. In some embodiments, the object servers
112A-F may be responsible for writing to and reading from
a cluster that includes multiple file systems or filesets. These
file systems may use different architectures (e.g., the single
cluster may have a traditional file system and a UFO file
system), or they may use the same file system (e.g., the
cluster may have two or more separate UFO file systems).
[0049] The object storage environment 100 may also
include an account database 116 and a container database
118. The account database 116 may store metadata attributes
for one or more accounts. Each account may include one or
more containers. The container database 118 may store
metadata attributes for one or more containers, each of
which may include one or more objects. Due to the merging
of file system storage and object storage, in current UFO
storage systems, the account and container databases 116
and 118 may be maintained in addition to inodes, which
store metadata information for file system object. As dis-
cussed herein, embodiments of the present disclosure may

US 2017/0286707 Al

not need the account and container databases. Accordingly,
in some embodiments, the UFO storage system may not
include the account database 116 or the container database
118.

[0050] Although not shown in FIG. 1, the various systems
in the object storage environment 100 may communicate
with each other over one or more networks. For example, the
clients 102 may communicate with the load balancer 104
over a network. Likewise, the load balancer 104 may
communicate with the proxy servers 106A-C over a net-
work, and the proxy servers 106 A-C may communicate with
the ring 108 over a network. In some embodiments, the
various networks can be implemented using any number of
any suitable communications media. For example, the net-
work may be a wide area network (WAN), a local area
network (LAN), an internet, or an intranet.

[0051] In certain embodiments, the various systems may
be local to each other, and communicate via any appropriate
local communication medium. For example, the proxy serv-
ers 106A-C may communicate with the ring 108 using a
local area network (LAN), one or more hardwire connec-
tions, a wireless link or router, or an intranet. In some
embodiments, the various systems may be communicatively
coupled using a combination of one or more networks and/or
one or more local connections. For example, a proxy servers
106A-C may be hardwired (e.g., connected with an Ethernet
cable) to the ring 108, either directly or indirectly, while the
clients 102 may communicate with the proxy servers
106A-C using a wireless network (e.g., over the Internet).
[0052] Referring now to FIG. 2, shown is a flowchart of an
example method 200 for generating and populating extended
inode spaces for directories using a recursive stat call, in
accordance with embodiments of the present disclosure. The
method 200 may be performed by a computer system (e.g.,
an object server or storage server). In some embodiments,
one or more operations of the method 200 may be performed
by a user, or by the computer system in response to user
input. The method 200 may begin at operation 202, where
the computer system may generate extended inode spaces
for every directory in a UFO namespace.

[0053] In some embodiments, the computer system may
generate a set of extended inodes (e.g., data structures) to
store metadata about the objects and/or files located in the
UFO file system. Each inode may have an associated direc-
tory in the UFO file system. Each inode may have an integer
number, also known as an i-number or inode number, that
identifies the particular inode. The computer system may
generate an index table (or inode table) that uses the integer
numbers of the inodes to index them so that a file system
driver portion of an operating system kernel can access the
contents of the inodes, including the location of the under-
lying data (e.g., the file or object) on a physical hardware
device (e.g., HDD or SSD). Each extended inode may be
initially allocated a certain amount of storage space (e.g.,
have a default size). If necessary, the extended inode space
may be dynamically adjusted as the number of objects
cataloged by the inode increases.

[0054] After generating the extended inodes at operation
202, the computer system may identity a first directory in the
UFO namespace at operation 204. The first directory may
not be a root directory (e.g., the first directory may have a
parent directory). In some embodiments, the first directory
may be a leaf directory (e.g., a directory that does not
include any subdirectories). The computer system may start

Oct. 5,2017

with leaf directories as part of a recursive operation to
populate extended inodes from the bottom level towards the
top. This may allow the extended inodes to be generated
with the fewest number of stat calls because each directory
will only have a stat call performed once.

[0055] For example, a UFO namespace may include three
directories. The first directory may be a root directory, the
second directory may be nested within the first directory, and
the third directory may be nested within the second direc-
tory. If the computer system populates the extended inodes
from the top-level to the bottom level, the third directory
will have a stat call performed twice; once when populating
the extended inode for the first directory and once when
populating the extended inode for the second directory.
However, if the computer system starts with leaf directories
(e.g., from the bottom), the third directory will only have a
stat call performed once: when populating the inode for the
second directory. The inode for the first directory will then
be populated by performing a stat call on the inode for the
second directory.

[0056] After identifying the first directory at operation
204, the computer system may perform a stat call on the first
directory at operation 206. The computer system may use
the stat call to retrieve metadata attributes (also referred to
herein as stat details) for one or more objects stored in the
first directory. The stat call may retrieve the stat details from
an inode that is associated with the first directory. The stat
details may include all of the metadata information that is
stored in the inode associated with the first directory. For
example, the stat details may include information such as
creation time and size for all objects and files stored in the
first directory.

[0057] Insome embodiments, the stat call may retrieve all
information that is stored in the inode for the first directory,
and not just the metadata attributes for objects nested within
the first directory. This may include metadata attributes
associated with objects that are stored in a subdirectory of
the first directory. In other words, the first directory may be
a parent directory for a child directory, and the child
directory may include one or more objects. The extended
inode for the first directory may include metadata attributes
for the one or more objects stored in the child directory.
Accordingly, a stat call of the first directory may return the
stat details of the one or more objects from the child
directory.

[0058] After performing a stat call on the first directory at
operation 206, the computer system may pass the retrieved
stat details to the first directory’s parent directory (e.g., to a
second directory). As used herein, passing information to a
parent directory means making the information available
such that the computer system is able to add the information
to the inode for the parent directory. In some embodiments,
passing information to a parent directory may include mov-
ing the information to memory (e.g., loading it in to DRAM
or cache) so that it can be written to the parent directory’s
inode.

[0059] In embodiments where the directories are stored on
physical drives in different geographic locations, passing the
information may mean transmitting the information from
one object server to another object server. The metadata
information may be passed over a network. In some embodi-
ments, the network can be implemented using any number
of any suitable communications media. For example, the
network may be a wide area network (WAN), a local area

US 2017/0286707 Al

network (LAN), an internet, or an intranet. In certain
embodiments, the object servers may be local to each other,
and communicate via any appropriate local communication
medium. For example, the object servers may communicate
using a local area network (LAN), one or more hardwire
connections, a wireless link or router, or an intranet. In some
embodiments, the object servers may be communicatively
coupled using a combination of one or more networks and/or
one or more local connections. For example, a first object
server may be hardwired (e.g., connected with an Ethernet
cable) to a second object server, either directly or indirectly,
while a third object server may communicate with the first
object server using the network (e.g., over the Internet).
[0060] After passing the stat details to the parent directory
at operation 208, the computer system may accumulate the
stat details for all child directories in the parent directory’s
extended inode at operation 210. In some embodiments, the
parent directory may have more than one child directory.
The computer system may perform a stat call for each child
directory at operation 206, and then pass the information
retrieved from each stat call to the parent directory at
operation 208. The computer system may then add the stat
details for each object in the child directories to the extended
inode for the parent directory at operation 210.

[0061] After accumulating the stat details for all child
directories in the parent directory’s extended inode at opera-
tion 210, the computer system may determine whether the
parent directory is a top-level (e.g., root) directory at deci-
sion block 212. If the computer system determines that the
parent directory is a top-level directory at decision block
212, the method 200 may end. If, however, the computer
system determines that the parent directory is not a top-level
directory at decision block 212, the computer system may
perform a stat call on the parent directory at operation 214.
As discussed herein, the computer system may use the stat
call to retrieve stat details for all objects located in the parent
directory and in all lower level directories. For example, the
stat call of the parent directory may include information
about objects stored in the first directory, the stat details of
said objects having been added to the inode for the parent
directory at operation 210.

[0062] After performing a stat call of the parent directory
at operation 214, the method may return to operation 208,
where the stat details retrieved at operation 214 may be
passed to the next higher directory. Operations 208 through
214 may be repeated until the stat details for all directories
reach the root directory, at which point the method 200 may
end.

[0063] Referring now to FIG. 3, shown is an example of
a UFO file system 300 with extended directory inodes for
each directory in the file system 300, in accordance with
embodiments of the present disclosure. The UFO file system
300 has three levels of directories. The top-level, also known
as the root level, includes the top-level directory 302, also
known as the root directory. The first directory 304 and the
second directory 306 are second level directories, and they
are child directories (e.g., subdirectories nested within a
parent directory) of the root directory 302. The first and
second directories 304 and 306 may correspond to a specific
object-store account or container. For example, the first
directory 304 may correspond to a first account, and the
second directory 306 may correspond to a first container.
The third directory 308 is a child directory of the first
directory 304 and is a third level directory. The third

Oct. 5,2017

directory 308 may also correspond to an account or a
container (e.g., to a second container). Accordingly, the root
directory 302 is a parent directory of the first and second
directories 304 and 306, and the first directory 304 is a
parent directory of the third directory 308.

[0064] The UFO file system 300 has two branches. A
branch, as used herein, may be a path from a root directory
to a leaf directory and includes all directories in the path. A
leaf directory may be a directory that does not include any
subdirectories. The first branch follows the path from the
root directory 302 to the third directory 308. The second
branch follows the path from the root directory 302 to the
second directory 306. Because the second and third direc-
tories 306 and 308 do not contain any subdirectories, they
are considered leaf directories.

[0065] A first directory is said to be upbranch of a second
directory if both directories are in the same branch, and the
first directory is at a higher level (e.g., closer to the root
directory) than the second directory. Likewise, the second
directory is considered to be a downbranch directory of the
first directory (or simply downbranch from the first direc-
tory). For example, the first directory 304 is considered to be
an upbranch directory of the third directory 308. As used
herein, information being passed to “parent directories” or to
“upper level directories” may mean that the information is
passed to all upbranch directories (e.g., up the branch
towards the root directory 302).

[0066] Each directory in the file system 300 may have an
extended directory inode that stores metadata attributes
about one or more objects stored in each directory, as
discussed herein. In some embodiments, the metadata attri-
butes stored in extended directory inodes may include
object-store specific metadata attributes. As discussed
herein, object-store specific metadata attributes may be user
configurable and may, in some embodiments, be based on
the needs of the object store. In some embodiments, the
object-store specific metadata attributes may be automati-
cally created by a computer system in response to a file
being modified/created/deleted using a file interface.
[0067] Each directory 302-308 in FIG. 3 may have an
associated extended directory inode. The root directory 302
may be associated with the root inode 312; the first directory
304 may be associated with the first inode 314; the second
directory 306 may be associated with the second inode 316;
and the third directory 308 may be associated with the third
inode 318. Each inode 312-318 in FIG. 3 uses the same
schema, as shown by the legend 310.

[0068] Insome embodiments of the present disclosure, the
extended directory inodes 312-318 may include metadata
attributes and disk block locations for objects stored in
subdirectories (e.g., child directories and other downbranch
directories, such as any grand-child directories) as well as
for object stored in the directory associated with the inode.
This is in contrast to traditional inodes, which may store
only metadata associated with the objects nested directly in
the particular directory that is associated with the inode.
[0069] For example, the third directory 308 (which is a
leaf directory) has two objects: object8 and objectl2.
Accordingly, the third inode 318 includes records (or
entries) for both object8 and objectl2. Meanwhile, the first
directory 304, which is the parent directory for the third
directory 308, includes one object: objectl. Because the first
inode 314 is an extended directory inode, it may include
records for each object stored in the first directory 304

US 2017/0286707 Al

(namely, objectl), as well as for objects stored in child and
other downbranch directories, which may include object8
and object12.

[0070] In some embodiments, a computer system may
generate the extended directory inodes 312-318 using a
recursive stat call. The computer system may identify bot-
tom level (e.g., leaf) directories. The computer system may
then perform a local stat call of the bottom level directories
to retrieve the stat details stored in their inodes. The com-
puter system may then pass the metadata attributes for
objects in the bottom level directories to parent directories.
The computer system may then add the metadata attributes
for objects in the child directories to the inode for the parent
directories. In other words, the computer system may gen-
erate new records or entries in the inodes for the parent
directories. The computer system may then populate the new
records with the information (e.g., metadata attributes)
stored in the child directories’ inodes. The computer system
may repeat the passing and aggregating of metadata attri-
butes for each level until the inode for the root directory is
populated with metadata attributes for all objects in the file
system.

[0071] For example, the computer system may determine
that the file system 300 has three levels of directories, with
the third directory 308 being the only bottom level directory
for the file system 300. The third directory may include two
objects: object8 and objectl2. The computer system may
perform a stat call of the third directory 308 to retrieve the
stat details stored in the third inode 318 (e.g., the metadata
attributes for object8 and object12). The computer system
may then pass the information stored in the third inode 318
to the first directory 304, which is a second level directory
and is the parent directory of the third directory 308. The
computer system may then add the stat details from the third
directory 308 to the inode for the first directory 304 (e.g., the
first inode 314), which may already include metadata attri-
butes for objectl, which is stored in the first directory 304.
In some embodiments, such as those where the inodes are
being generated for the first time, the computer system may
perform a stat call on the first directory 304 to identify the
metadata attributes for objectl. Likewise, the computer
system may retrieve the stat details stored in the inode for
the second directory 306 (e.g., the second inode 316), which
is the other second level directory. Finally, the computer
system may pass the stat details for all second level direc-
tories (e.g., the first and second directories 304 and 306) to
their parent directory (e.g., the root directory 302), where the
stat details for all objects in the file system 300 may be
aggregated in the root inode 312.

[0072] In some embodiments, the computer system may
only generate and populate extended directory inodes for
some of the directories in the file system. For example, the
computer system may generate an extended directory inode
for the root directory 302, while all other directories may
have traditional inodes that only store the stat details for
objects nested directly within the associated directory. An
advantage of these embodiments is that stat details may not
be needlessly duplicated, lowering the amount of storage
space needed for inodes. For example, a file system with
seven directory levels will only store stat details for seventh
level directories in inodes for the seventh level directories
and in the root inode, instead of in all intermediary inodes.
As another example, the stat details for object8 and object 12
in FIG. 3 may only be stored in the third inode 318 and the

Oct. 5,2017

root inode 312, and not in the first inode 314. This may be
particularly beneficial when the computer system is config-
ured to search only the root directory inodes to identity, e.g.,
directories that need to be migrated according to an ILM
policy.

[0073] Referring now to FIG. 4, shown is a flowchart of an
example method 400 for generating object-store specific
metadata for a file generated using a file system interface and
for updating extended directory inodes, in accordance with
embodiments of the present disclosure. The method 400 may
be performed by a computer system (e.g., an object server or
storage server). In some embodiments, one or more opera-
tions of the method 400 may be performed by a user, or by
the computer system in response to user input. The method
400 may begin at operation 402, where the computer system
may determine that a file has been updated using a file
interface.

[0074] A file may be considered to have been updated if it
is created, deleted, or modified in any way (including, in
some embodiments, by being accessed). The computer sys-
tem may use a file system event notification mechanism
(e.g., Data Management API, general parallel file system
(GPFS) Light Weight Events, inotify, etc.) to determine
when a file has been updated using a file interface. For
example, if the object is updated with using an NFS inter-
face, the computer system may receive the “FILE UPDATE”
notification from the file system event notification API,
indicating that the file has been updated.

[0075] After determining that the file has been updated at
operation 402, the computer system may determine one or
more object-store specific metadata parameters that are used
by the UFO storage system at operation 404. Object-store
specific metadata parameters may include metadata param-
eters that the computer system generates whenever an object
is created, but is not generated when a file is updated or
generated using a file interface. For example, the object-
store specific metadata parameters may include Content-
Length, size, creation time, ETag, and/or other custom
metadata details.

[0076] This metadata may be used by the object store
internally to monitor for data corruption, perform a health
check, etc. Additionally, the object-store specific metadata
parameters may be used in conjunction with an ILM policy
to determine where to store specific objects or directories, or
in conjunction with ACL settings to manage access permis-
sions for one or more groups of users. In some embodiments,
the object-store specific metadata parameters may be user
configurable. The user may change the object-store specific
metadata parameters according to the specific needs of the
user, or of the system that uses the data stored in the UFO
storage system.

[0077] After determining one or more object-store specific
metadata parameters used by the UFO system at operation
404, the computer system may generate object-store specific
metadata for the file at operation 406. The object-store
specific metadata may correspond to the metadata param-
eters identified at operation 404. For example, the computer
system may generate metadata related to the content-length,
size, or ETag for the file. In other words, the metadata
parameters describe the type of metadata generated for an
object or file (e.g., size, creation time), and the metadata
attributes are the actual metadata values for an object (e.g.,
1 GB, Feb. 2, 2015 at 2:31:42 PM).

US 2017/0286707 Al

[0078] After generating the object-store specific metadata
for the file at operation 406, the computer system may
update the extended inode for the directory that includes the
file at operation 408. For example, if the file update identi-
fied at operation 402 is a modification to the file that affects
the size of the file, the inode for the directory may be
updated to include the new file size.

[0079] Insome embodiments, updating the extended inode
for the directory may include generating a new entry in the
extended inode. For example, the file update may be the
creation of a new file. Because the new file was recently
created, it may not be included in the extended inode for the
directory. Accordingly, the computer system may generate
an entry for the new file in the inode and populate the fields
of the inode with the metadata attributes of the file. In some
embodiments, the metadata attributes in the inode may
include only the object-store specific metadata. In other
embodiments, the metadata stored in the inode may addi-
tionally include other metadata attributes for the file.
[0080] After updating the extended inode for the directory
that includes the file at operation 408, the computer system
may determine whether the directory is a top-level directory
at decision block 410. If the computer system determines
that the directory that stores the file is a top-level directory
at decision block 410, the method 400 may end. If, however,
the computer system determines that the directory that stores
the file is not a top-level directory, the computer system may
pass the updated file attributes to the parent directory at
operation 412. Passing the updated file attributes to the
parent directory may be performed as discussed in reference
to operation 208 in FIG. 2.

[0081] After passing the updated file attributes to the
parent directory at operation 412, the computer system may
update the inode space for the parent directory at operation
414. As discussed in reference to operation 408, updating the
inode may include simply updating specific metadata attri-
butes (e.g., size), or it may include generating a new entry
in the inode for the file (e.g., if the file was newly created).
After updating the extended inode for the parent directory,
the method 400 may return to decision block 410, where the
computer system may determine whether the parent direc-
tory is a top-level directory. Operations 410 through 414
may be repeated until the updated metadata attributes for the
file reaches the root directory, at which point the method 400
may end.

[0082] In some embodiments, the metadata attributes may
also be stored in container and/or account databases or flat
files. The computer system may also update the container
and/or account databases or flat files whenever a file is
updated using a file interface.

[0083] Referring now to FIG. 5A, shown is an example of
a traditional unified file and object (UFO) namespace 500
that includes a file 506 created using a file system interface,
in accordance with embodiments of the present disclosure.
The file 506 is stored along with an object 504 in a first
directory 502. The object 504, which may have been gen-
erated using an object interface, includes a set of object-store
specific metadata, shown as “Object.metadata” in the figure.
Because the file 506 was generated using a file interface, it
lacks any object-store specific metadata.

[0084] Also shown in FIG. 5A is a container database 510
for the first directory 502, and an account database 520. The
container database 510 includes an entry 512 for the object
504. There is no entry for the file 506, however, because the

Oct. 5,2017

file 506 was generated using a file interface and, therefore,
was not added to the container database 510. Likewise, the
account database 520, which stored metadata information
for the container (also known as container statistics) such as
total size 522 and storage policy 524, does not include any
information regarding the file 506. For example, the total
size of the container (e.g., the directory 602) is shown as
being only 20 bytes, which is the size of the object 504 and
does not include the file 506.

[0085] Referring now to FIG. 5B, shown is the example
UFO namespace 500 of FIG. 5A after object-store specific
metadata has been automatically generated for the file, in
accordance with embodiments of the present disclosure. The
computer system may generate the object-store specific
metadata after the file 506 is saved (e.g., after receiving a
CLOSE call). The metadata attributes generated for the file
506 may be the same as those generated for objects (e.g., the
object 504). After generating the object-store specific meta-
data for the file 506, the computer system may update the
inode for the first directory 502, as well as the inodes for any
parent directory or other upbranch directories.

[0086] In some embodiments, such as those where flat
files and/or database are kept for archival or random access
reasons, the computer system may also update a container
database 510 and/or account database 520. As shown in FIG.
5B, the container database 510 may be updated to include an
entry 514 for the file 506, in addition to the entry 512 for the
object 504. Likewise, the account database 520 may be
updated to include a new total size 522 for the container
(e.g., for the directory 502). The storage policy 524 may be
the same for the file 506 and the object 504, so the account
database 520 may have the same storage policy 524 as
before.

[0087] Referring now to FIG. 6, shown is a flowchart of an
example method 600 for determining whether to migrate one
or more directories based on an Information Lifecycle
Management (ILM) policy, in accordance with embodi-
ments of the present disclosure. The method 600 may be
performed by a computer system (e.g., an object server or
storage server). In some embodiments, one or more opera-
tions of the method 600 may be performed by a user, or by
the computer system in response to user input. The method
600 may begin at operation 602, where the computer system
may identify an ILM policy for a directory or container.
[0088] The ILM policy may include one or more rules
relating to the storage of objects and files in the UFO storage
system. For example, the ILM policy may include rules
related to data backup (e.g., how many copies of data are
stored, where they are stored, etc.), disaster recovery (e.g.,
how to respond to the corruption of a file or object),
archiving, and data replication. The ILLM policy may also
include rules related to which physical storage devices
should store objects based on, for example, the size of the
object or the sensitivity of the data. For example, the ILM
policy may include a first rule. The first rule may indicate
that objects that are larger than a threshold size (e.g., 512
Megabytes) should be stored in an SSD pool, while objects
that are not larger than the threshold should be stored in a
HDD pool.

[0089] After identifying the ILM policy for a directory or
container at operation 602, the computer system may scan
the extended inode for the directory to find one or more
objects and/or subdirectories in the directory at operation
604. At decision block 606, the computer system may

US 2017/0286707 Al

determine whether a subdirectory or object needs to be
migrated. In order to determine whether to migrate a sub-
directory, the computer system may compare metadata attri-
butes for the objects and/or subdirectories to the one or more
rules in the ILM policy. For example, the ILM policy may
include the first rule described above. The computer system
may scan the extended inode for the directory to identify
which objects or subdirectories are larger than 512 Mega-
bytes, and which are smaller. The computer system may also
determine where the directory is currently stored (e.g., in
what resource pool). If the computer system identifies an
object that is larger than 512 Megabytes, and determines that
the object is stored in a HDD pool, the computer system may
determine that the subdirectory containing the object should
be migrated to an SSD pool.

[0090] As another example, the extended inodes may
include information regarding the sensitivity of the data. The
ILM policy may have a rule that states that highly sensitive
data (e.g., objects marked by a user as highly sensitive) must
be stored in a particular pool of storage resources. This may
be because, for example, the particular pool of storage
resources are behind a firewall or are otherwise more secure
than other storage resources in the UFO storage system. If
the computer system determines that a highly sensitive
object is currently stored in an unsecure (or insufficiently
secure) storage device, the computer system may determine
that the subdirectory with the object needs to be migrated.
[0091] If the computer system determines that no subdi-
rectories (or objects) need to be migrated at decision block
606, the method 600 may end. If, however, the computer
system determines that a subdirectory needs to be migrated
at decision block 606, the computer system may migrate the
subdirectory at operation 608 and the method 600 may end.
[0092] In some embodiments, migrating the subdirectory
may include moving the subdirectory such that it has a new
parent directory. In these embodiments, the computer system
may update the extended inode for the old parent directory
(and all other upbranch directories) as necessary. Likewise,
the computer system may update the extended inode for the
new parent directory, as well as for any new upbranch
directories. The computer system may perform operations
similar to operations 410 through 414 in FIG. 4 to update the
extended inodes.

[0093] Referring now to FIG. 7, shown is an example of
a UFO storage system 700 that uses an ILLM policy engine
702 to perform the method of FIG. 6 to migrate a directory
according to an ILM policy, in accordance with embodi-
ments of the present disclosure. The ILM policy engine 702
may have one or more policy rules. For example, an ILM
rule may indicate that any directory that includes an object
larger than 512 Megabytes should be migrated from a SATA
HDD pool to an SSD pool, and anything that is less than 512
Megabytes should be stored in the SATA HDD pool.
[0094] The computer system may scan the inode 312 for
the root directory 302 to identify one or more subdirectories
that need to be migrated according to the ILLM policy engine
702. The computer system may determine that object10,
which is stored in the second directory 306, is 1 GB in size
by determining that the fourth entry 704 in the root inode
312 is for a 1 GB object. Accordingly, the computer system
may determine that the second directory 306 should be
migrated to the SSD pool.

[0095] In some embodiments, each container (e.g., direc-
tory) may have different ILM policies with different ILM

Oct. 5,2017

rules. For example, the first directory 304 may correspond to
a first container that has an ILM rule that states that the
threshold object size for migration to an SSD pool is 512
Megabytes, as discussed above. Meanwhile, the third direc-
tory 306, which may correspond to a second container, may
have an ILM policy that states the threshold object size for
migration to an SSD pool is 2 GB. In these embodiments, the
computer system may scan the inodes for each container
(e.g., the first inode 314 and the second inode 316) indi-
vidually, instead of scanning the root inode 312. The com-
puter system may then compare the objects or other entries
in the first and second inodes 314 and 316 to their respective
ILM policies to determine whether a directory should be
migrated.

[0096] Referring now to FIG. 8, shown is a flowchart of an
example method 800 for managing access control list (ACL)
rules for a UFO storage system using extended directory
inodes, in accordance with embodiments of the present
disclosure. The method 800 may be performed by a com-
puter system (e.g., an object server or storage server). In
some embodiments, one or more operations of the method
800 may be performed by a user, or by the computer system
in response to user input. The method 800 may begin at
operation 802, where the computer system may generate one
or more access control list (ACL) rules for an object stored
in a first directory.

[0097] The ACL rules may establish permissions that
indicate whether users, user groups, or system processes are
able to access the object, the level of access each user, user
group, or system process has to the object, as well as what
operations are allowed to be performed on the object. The
ACL rules may establish which users may read the file and
which users may edit (e.g., write) the file. For example, the
ACL rule for a file may indicate that all users connected to
the file (e.g., that have mounted the file system with the file
in it) have read access, but only a subset of users have write
permission.

[0098] In some embodiments, the ACL rules may be
initially set according to default rules. The default rules may
be based on the container that includes the object (e.g., the
directory rules). For example, in some embodiments all
objects in a first directory may have a default rule that allows
all users to read the object, but only the owner (e.g., creator)
has write permission. In other embodiments, the default
rules may be set by the user during creation of the object. For
example, when the user saves a new object in the directory,
the computer system may prompt the user to set ACL rules
for the object. In some embodiments, the computer system
may provide the creator with a list of users and/or user
groups, and the user may select ACL rules for each user/user
group.

[0099] After generating the ACL rules for the object at
operation 802, the computer system may receive a notifica-
tion that a user has changed the ACL rule for the object at
operation 804. The computer system may receive a file
system ACL change API request whenever the user attempts
to change the ACL rule for the object. At decision block 806,
the computer system may compare the newly received ACL
rules (e.g., the new ACL template) to the old ACL rules to
determine whether they differ. If the new ACL rules are the
same as the old ACL rules, the method 800 may end. If,
however, the new ACL rules are different, the computer
system may prompt the user to approve the ACL change at
operation 808.

US 2017/0286707 Al

[0100] In some embodiments, the computer system may
prompt the user that requested the change to approve the
change at operation 808. This may be done to ensure that the
user is aware that the proposed ACL rules differ from the
original ACL rules (e.g., differ from the default rules for the
container). In other embodiments, the computer system may
prompt a different user (e.g., an administrator or the owner
of the object) to approve the change. In still other embodi-
ments, the computer system may prompt both the user
requesting the change and the owner/administrator.

[0101] Ifthe computer system determines that the user (or
all users, if multiple are prompted to accept the change) has
not approved the change at decision block 812, the method
800 may end. Otherwise, the computer system may change
the ACL rules for the object at operation 814. After changing
the ACL rules for the object at operation 814, the computer
system may update the extended inodes for the first directory
and for all other upbranch directories at operation 816. The
computer system may perform operations similar to opera-
tions 410 through 414 in FIG. 4 to update the extended
inodes. After updating the extended inodes for the directory
and all upbranch directories at operation 816, the method
800 may end.

[0102] Referring now to FIG. 9, shown is an example of
the extended directory inode 900 for the top-level directory
of FIG. 3 being changed in response to a user-approved ACL
change to an object, in accordance with embodiments of the
present disclosure. As shown in FIG. 3, the original ACL
setting for objectl0 is “*.r,” meaning that all users have
read-only access to objectl0. After receiving the ACL
change API request, the computer system may determine
whether the new ACL rule matches the old ACL rule. If they
do not match, the computer system may prompt the user to
approve the change. For example, if a user changed the ACL.
setting for objectl0 to give user “John” read and write
access, the computer system may prompt the user to confirm
the change. If the user confirms the change, the inode 316 for
the second directory 306 may be updated. For example, the
second inode 316 may include a change 904 to the ACL
permissions for object10. The changes may then be passed
to higher level directories (e.g., to the root directory 302),
and the inodes for the higher level directories may be
updated accordingly. For example, the fourth entry 902 in
the root inode 312 (corresponding to the root directory 302)
may be updated to reflect the changed ACL permissions for
object10.

[0103] Referring now to FIG. 10, shown is a high-level
block diagram of an example computer system 1001 that
may be used in implementing one or more of the methods,
tools, and modules, and any related functions, described
herein (e.g., using one or more processor circuits or com-
puter processors of the computer), in accordance with
embodiments of the present disclosure. In some embodi-
ments, the major components of the computer system 1001
may comprise one or more CPUs 1002, a memory subsys-
tem 1004, a terminal interface 1012, a storage interface
1016, an /O (Input/Output) device interface 1014, and a
network interface 1018, all of which may be communica-
tively coupled, directly or indirectly, for inter-component
communication via a memory bus 1003, an I/O bus 1008,
and an I/O bus interface unit 1010.

[0104] The computer system 1001 may contain one or

more general-purpose programmable central processing
units (CPUs) 10024, 1002B, 1002C, and 1002D, herein

Oct. 5,2017

generically referred to as the CPU 1002. In some embodi-
ments, the computer system 1001 may contain multiple
processors typical of a relatively large system; however, in
other embodiments the computer system 1001 may alterna-
tively be a single CPU system. Each CPU 1002 may execute
instructions stored in the memory subsystem 1004 and may
include one or more levels of on-board cache.

[0105] System memory 1004 may include computer sys-
tem readable media in the form of volatile memory, such as
random access memory (RAM) 1022 or cache memory
1024. Computer system 1001 may further include other
removable/non-removable, volatile/non-volatile computer
system storage media. By way of example only, storage
system 1026 can be provided for reading from and writing
to a non-removable, non-volatile magnetic media, such as a
“hard drive.” Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), or an optical disk drive for
reading from or writing to a removable, non-volatile optical
disc such as a CD-ROM, DVD-ROM or other optical media
can be provided. In addition, memory 1004 can include flash
memory, e.g., a flash memory stick drive or a flash drive.
Memory devices can be connected to memory bus 1003 by
one or more data media interfaces. The memory 1004 may
include at least one program product having a set (e.g., at
least one) of program modules that are configured to carry
out the functions of various embodiments.

[0106] One or more programs/utilities 1028, each having
at least one set of program modules 1030 may be stored in
memory 1004. The programs/utilities 1028 may include a
hypervisor (also referred to as a virtual machine monitor),
one or more operating systems, one or more application
programs, other program modules, and program data. Each
of the operating systems, one or more application programs,
other program modules, and program data or some combi-
nation thereof, may include an implementation of a net-
working environment. Programs 1028 and/or program mod-
ules 1030 generally perform the functions or methodologies
of various embodiments.

[0107] Although the memory bus 1003 is shown in FIG.
10 as a single bus structure providing a direct communica-
tion path among the CPUs 1002, the memory subsystem
1004, and the I/O bus interface 1010, the memory bus 1003
may, in some embodiments, include multiple different buses
or communication paths, which may be arranged in any of
various forms, such as point-to-point links in hierarchical,
star or web configurations, multiple hierarchical buses,
parallel and redundant paths, or any other appropriate type
of configuration. Furthermore, while the /O bus interface
1010 and the /O bus 1008 are shown as single respective
units, the computer system 1001 may, in some embodiments,
contain multiple /O bus interface units 1010, multiple I/O
buses 1008, or both. Further, while multiple /O interface
units are shown, which separate the 1/O bus 1008 from
various communications paths running to the various I/O
devices, in other embodiments some or all of the I/O devices
may be connected directly to one or more system /O buses.
[0108] In some embodiments, the computer system 1001
may be a multi-user mainframe computer system, a single-
user system, or a server computer or similar device that has
little or no direct user interface, but receives requests from
other computer systems (clients). Further, in some embodi-
ments, the computer system 1001 may be implemented as a
desktop computer, portable computer, laptop or notebook

US 2017/0286707 Al

computer, tablet computer, pocket computer, telephone,
smart phone, network switches or routers, or any other
appropriate type of electronic device.

[0109] It is noted that FIG. 10 is intended to depict the
representative major components of an exemplary computer
system 1001. In some embodiments, however, individual
components may have greater or lesser complexity than as
represented in FIG. 10, components other than or in addition
to those shown in FIG. 10 may be present, and the number,
type, and configuration of such components may vary.
[0110] As discussed in more detail herein, it is contem-
plated that some or all of the operations of some of the
embodiments of methods described herein may be per-
formed in alternative orders or may not be performed at all;
furthermore, multiple operations may occur at the same time
or as an internal part of a larger process.

[0111] As discussed in more detail herein, it is contem-
plated that some or all of the operations of some of the
embodiments of methods described herein may be per-
formed in alternative orders or may not be performed at all;
furthermore, multiple operations may occur at the same time
or as an internal part of a larger process.

[0112] The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.

[0113] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to,
an electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD-
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch-
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore-
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals per se, such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave-
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

[0114] Computer readable program instructions described
herein can be downloaded to respective computing/process-
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net-
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, switches,
gateway computers, and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions

Oct. 5,2017

from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

[0115] Computer readable program instructions for carry-
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++ or
the like, and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

[0116] Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer
program products according to embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

[0117] These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

[0118] The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com-
puter implemented process, such that the instructions which

US 2017/0286707 Al

execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

[0119] The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

[0120] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the various embodiments. As used herein,
the singular forms “a,” “an,” and “the” are intended to
include the plural forms as well, unless the context clearly
indicates otherwise. It will be further understood that the
terms “includes” and/or “including,” when used in this
specification, specify the presence of the stated features,
integers, steps, operations, elements, and/or components, but
do not preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof. In the previous detailed description of
example embodiments of the various embodiments, refer-
ence was made to the accompanying drawings (where like
numbers represent like elements), which form a part hereof,
and in which is shown by way of illustration specific
example embodiments in which the various embodiments
may be practiced. These embodiments were described in
sufficient detail to enable those skilled in the art to practice
the embodiments, but other embodiments may be used and
logical, mechanical, electrical, and other changes may be
made without departing from the scope of the various
embodiments. In the previous description, numerous spe-
cific details were set forth to provide a thorough understand-
ing the various embodiments. But, the various embodiments
may be practiced without these specific details. In other
instances, well-known circuits, structures, and techniques
have not been shown in detail in order not to obscure
embodiments.

[0121] Different instances of the word “embodiment” as
used within this specification do not necessarily refer to the
same embodiment, but they may. Any data and data struc-
tures illustrated or described herein are examples only, and
in other embodiments, different amounts of data, types of
data, fields, numbers and types of fields, field names, num-
bers and types of rows, records, entries, or organizations of
data may be used. In addition, any data may be combined
with logic, so that a separate data structure may not be
necessary. The previous detailed description is, therefore,
not to be taken in a limiting sense.

Oct. 5,2017

[0122] The descriptions of the various embodiments of the
present disclosure have been presented for purposes of
illustration, but are not intended to be exhaustive or limited
to the embodiments disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the
art without departing from the scope and spirit of the
described embodiments. The terminology used herein was
chosen to best explain the principles of the embodiments, the
practical application or technical improvement over tech-
nologies found in the marketplace, or to enable others of
ordinary skill in the art to understand the embodiments
disclosed herein.

[0123] Although the present invention has been described
in terms of specific embodiments, it is anticipated that
alterations and modification thereof will become apparent to
the skilled in the art. Therefore, it is intended that the
following claims be interpreted as covering all such altera-
tions and modifications as fall within the true spirit and
scope of the invention.

What is claimed is:

1. A computer implemented method comprising:

identifying, by a processor, a first directory in a unified

file and object (UFO) storage system, the first directory
having one or more subdirectories in one or more levels
under the first directory, the one or more subdirectories
including a second directory, the second directory hav-
ing one or more objects, the first directory being
associated with a first inode and the second directory
being associated with a second inode;

performing a stat call on the second directory to determine

metadata attributes for the one or more objects, the
metadata attributes for the one or more objects being
stored in the second inode; and

adding the metadata attributes for the one or more objects

to the first inode.

2. The method of claim 1, the method further comprising:

determining metadata attributes for a first object that is in

the first directory; and

populating the first inode with at least the metadata

attributes for the first object.

3. The method of claim 1, wherein the adding the meta-
data attributes for the one or more objects to the first inode
comprises:

determining that the first inode includes one or more

entries;

determining that the one or more entries do not include an

entry for the one or more objects;

generating a new entry in the first inode for each of the

one or more objects; and

populating each new entry with the metadata attributes for

one of the one or more objects such that each of the one
or more objects has an associated entry in the first
inode.
4. The method of claim 2, the method further comprising:
identifying one or more metadata parameters for objects
in the UFO storage system, the UFO storage system
having a UFO namespace where data can be accessed
as an object and as a file, the one or more metadata
parameters being parameters that are generated for
objects stored in the UFO storage system;

determining that a second object has been updated using
a file storage interface;

generating, by the processor and in response to determin-

ing that the second object has been updated using the

US 2017/0286707 Al

file storage interface, metadata for the second object,
the generated metadata including values for the one or
more metadata parameters; and

appending the metadata to the second object.

5. The method of claim 4, wherein the determining that
the second object has been updated using the file storage
interface comprises:

receiving, by the processor, a file system event notifica-

tion.

6. The method of claim 5, wherein the file system event
notification is selected from a group consisting of a file
update notification, a close call, a save call, a file creation
notification, and a file deletion notification.

7. The method of claim 4, wherein the one or more
metadata parameters are configurable by a user during a
creation of the UFO namespace.

8. The method of claim 4, the method further comprising:

identifying a third directory, the third directory being a

directory in the file storage system that contains the
second object;

updating a third inode for the third directory, the third

inode storing the metadata attributes for the second
object, wherein the updating includes updating the
metadata attributes of the second object;

determining that the third directory is not a top-level

directory;

passing, in response to determining that the third directory

is not the top-level directory, the metadata attributes for
the second object to a fourth directory, the fourth
directory being a parent directory of the third directory;
and

updating a fourth inode using the metadata attributes for

the second object, the fourth inode being associated
with the fourth directory.

9. The method of claim 4, the method further comprising:

updating a first container database file, the first container

database file storing a list of objects in a first container
and associated object statistics for the objects in the
first container, the objects in the first container includ-
ing the second object; and

updating a first account database file, the first account

database file storing a list of one or more containers and
associated container statistics for the one or more
containers, the one or more containers including the
first container.

10. The method of claim 1, wherein the one or more
objects includes a first object, the method further compris-
ing;

determining that the first object has been modified;

determining updated metadata attributes for the first

object;

updating the second inode with the updated metadata

attributes for the first object;

passing the updated metadata attributes for the first object

to the first directory; and

updating the metadata attributes for the first object in the

first inode.

11. The method of claim 10, wherein the determining that
the first object has been modified comprises:

receiving, by the processor, a file system event notifica-

tion for the first object, the file system event notification
indicating that the first object has been modified.

12. The method of claim 2, the method further compris-
ing:

Oct. 5,2017

identifying, by an Information Lifecycle Management
(ILM) policy engine, a first rule;
determining, by analyzing the first inode using the first
rule, a second object in the UFO storage system, the
second object being an object that needs to be migrated
to a new storage device; and
migrating the second object to the new storage device.
13. The method of claim 2, the method further compris-
ing:
determining that a user has modified an access control list
setting for a second object that is stored in a third
directory;
comparing the modified access control list setting for the
second object to a container access control list setting
for a first container by analyzing an inode associated
with the third directory, the first container including the
second object; and
determining whether the modified access control list
setting for the second object matches the container
access control list setting.
14. The method of claim 13, the method further compris-
ing:
notifying, in response to determining that the modified
access control list setting for the second object does not
match the container access control list setting, the user
of the mismatch;
prompting the user to approve the modified access control
list setting for the second object; and
updating, in response to the user approving the modified
access control list setting, the inode associated with the
third directory.
15. A computer implemented method comprising:
identifying a first directory in a unified file and object
(UFO) storage system, the first directory being a root
directory having a tree structure with one or more
subdirectories organized in one or more levels, the first
directory and each of the one or more subdirectories
having an associated inode that stores metadata;
identifying a leaf directory, the leaf directory being a
subdirectory of the first directory, the leaf directory
having no child directory;
determining metadata attributes for the leaf directory;
storing the metadata attributes for the leaf directory in the
inode for the leaf directory;
passing the metadata attributes for the leaf directory to a
first parent directory, the first parent directory being the
parent directory of the leaf directory;
accumulating the metadata attributes for the leaf directory
in the inode for the first parent directory; and
determining whether the first parent directory is the first
directory.
16. The method of claim 15, the method further compris-
ing:
determining, in response to determining that the first
parent directory is not the first directory, that the first
parent directory is an intermediate directory;
determining metadata attributes for the first parent direc-
tory;
storing the metadata attributes for the first parent directory
and the metadata attributes for the leaf directory in the
inode for the first parent directory, the inode for the first
parent directory having an extended inode space;
passing the metadata attributes for the leaf directory and
the metadata attributes for the first parent directory to

US 2017/0286707 Al

a second parent directory, the second parent directory
being the parent directory of the first parent directory;

accumulating the metadata attributes for the leaf directory
and the first parent directory in the inode for the second
parent directory; and

determining whether the second parent directory is the
first directory.

17. The method of claim 15, the method further compris-

ing:

determining, in response to determining that the first
parent directory is the first directory, metadata attri-
butes for the first directory; and

storing the metadata attributes for the first directory and
the metadata attributes for the leaf directory in the
inode for the first directory, the inode for the first
directory having an extended inode space.

18. A system comprising:

a memory;

a processor in communication with the memory, the
processor being configured to perform a method com-
prising:

identifying a first directory in a unified file and object
(UFO) storage system, the first directory having one or
more subdirectories in one or more levels under the first
directory, the one or more subdirectories including a
second directory, the second directory having one or
more objects, the first directory being associated with a
first inode and the second directory being associated
with a second inode;

performing a stat call on the second directory to determine
metadata attributes for the one or more objects, the
metadata attributes for the one or more objects being
stored in the second inode; and

adding the metadata attributes for the one or more objects
to the first inode.

19. The system of claim 18, wherein the method per-

formed by the processor further comprises:

identifying one or more metadata parameters for objects
in the UFO storage system, the UFO storage system
having a UFO namespace where data can be accessed
as an object and as a file, the one or more metadata
parameters being parameters that are generated for
objects stored in the UFO storage system;

determining that a second object has been updated using
a file storage interface;

generating, by the processor and in response to determin-
ing that the second object has been updated using the
file storage interface, metadata for the second object,
the generated metadata including values for the one or
more metadata parameters; and

appending the metadata to the second object.

20. The system of claim 18, wherein the one or more
objects includes a first object, the method performed by the
processor further comprising;

determining that the first object has been modified;

determining updated metadata attributes for the first
object;

updating the second inode with the updated metadata
attributes for the first object;

passing the updated metadata attributes for the first object
to the first directory; and

updating the metadata attributes for the first object in the
first inode.

Oct. 5,2017

21. The system of claim 18, wherein the method per-
formed by the processor further comprises:

determining that a user has modified an access control list

setting for a second object that is stored in a third
directory;

comparing the modified access control list setting for the

second object to a container access control list setting
for a first container by analyzing an inode associated
with the third directory, the first container including the
second object;

determining whether the modified access control list

setting for the second object matches the container
access control list setting;

notifying, in response to determining that the modified

access control list setting for the second object does not
match the container access control list setting, the user
of the mismatch;

prompting the user to approve the modified access control

list setting for the second object; and

updating, in response to the user approving the modified

access control list setting, the inode associated with the
third directory.

22. A computer program product comprising a computer
readable storage medium having program instructions
embodied therewith, the program instructions executable by
a processor to cause the processor to perform a method
comprising:

identifying, by the processor, a first directory in a unified

file and object (UFO) storage system, the first directory
having one or more subdirectories in one or more levels
under the first directory, the one or more subdirectories
including a second directory, the second directory hav-
ing one or more objects, the first directory being
associated with a first inode and the second directory
being associated with a second inode;

performing a stat call on the second directory to determine

metadata attributes for the one or more objects, the
metadata attributes for the one or more objects being
stored in the second inode; and

adding the metadata attributes for the one or more objects

to the first inode.
23. The computer program product of claim 22, wherein
the method performed by the processor further comprises:
identifying one or more metadata parameters for objects
in the UFO storage system, the UFO storage system
having a UFO namespace where data can be accessed
as an object and as a file, the one or more metadata
parameters being parameters that are generated for
objects stored in the UFO storage system;

determining that a second object has been updated using
a file storage interface;

generating, by the processor and in response to determin-
ing that the second object has been updated using the
file storage interface, metadata for the second object,
the generated metadata including values for the one or
more metadata parameters; and

appending the metadata to the second object.

24. The computer program product of claim 22, wherein
the one or more objects includes a first object, the method
performed by the processor further comprising;

determining that the first object has been modified;

determining updated metadata attributes for the first
object;

US 2017/0286707 Al Oct. 5,2017
15

updating the second inode with the updated metadata
attributes for the first object;

passing the updated metadata attributes for the first object
to the first directory; and

updating the metadata attributes for the first object in the
first inode.

25. The computer program product of claim 22, wherein

the method performed by the processor further comprises:

determining that a user has modified an access control list
setting for a second object that is stored in a third
directory;

comparing the modified access control list setting for the
second object to a container access control list setting
for a first container by analyzing an inode associated
with the third directory, the first container including the
second object;

determining whether the modified access control list
setting for the second object matches the container
access control list setting;

notifying, in response to determining that the modified
access control list setting for the second object does not
match the container access control list setting, the user
of the mismatch;

prompting the user to approve the modified access control
list setting for the second object; and

updating, in response to the user approving the modified
access control list setting, the inode associated with the
third directory.

