a2 United States Patent

Cooper et al.

US012003256B2

ao) Patent No.: US 12,003,256 B2

(54) SYSTEM AND METHOD FOR DATA
COMPRESSION WITH INTRUSION
DETECTION

(71) Applicant: AtomBeam Technologies Inc., Moraga,
CA (US)

(72) Inventors: Joshua Cooper, Columbia, SC (US);
Aliasghar Riahi, Orinda, CA (US);
Charles Yeomans, Orinda, CA (US)

(73) Assignee: ATOMBEAM TECHNOLOGIES
INC., Moraga, CA (US)

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 18/460,553
(22) Filed: Sep. 3, 2023

(65) Prior Publication Data
US 2023/0412192 Al Dec. 21, 2023

Related U.S. Application Data

(63) Continuation-in-part of application No. 18/161,080,
filed on Jan. 29, 2023, which is a continuation of
application No. 17/875,201, filed on Jul. 27, 2022,
now Pat. No. 11,700,013, which is a continuation of
application No. 17/514,913, filed on Oct. 29, 2021,
now Pat. No. 11,424,760, and a continuation of
application No. 17/458,747, filed on Aug. 27, 2021,
now Pat. No. 11,422.978, said application No.
17/514,913 is a continuation-in-part of application
No. 17/404,699, filed on Aug. 17, 2021, now Pat. No.
11,385,794, said application No. 18/460,553 is a
continuation-in-part of application No. 17/234,007,

(Continued)

45) Date of Patent: Jun. 4, 2024
(51) Int. CL
HO3M 7/30 (2006.01)
GO6F 21/55 (2013.01)
GO6N 20/00 (2019.01)
(52) US.CL
CPC ... HO3M 7/3059 (2013.01); GOG6F 21/554

(2013.01); GO6N 20/00 (2019.01); HO3M
7/6005 (2013.01)
(58) Field of Classification Search
CPC ..ocoivvrieriiecic GO6N 20/00; GO6F 21/554
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

9,954,920 B1* 4/2018 Paris
10,897,479 B1* 1/2021 Chen

(Continued)

HO4L 9/0822
GO06Q 20/425

FOREIGN PATENT DOCUMENTS

CN 112989334 A * 6/2021

Primary Examiner — Darshan 1 Dhruv
(74) Attorney, Agent, or Firm — Galvin Patent Law LLC;
Brian R. Galvin

(57) ABSTRACT

A system and method for data compression with intrusion
detection, that measures in real-time the probability distri-
bution of an encoded data stream, compares the probability
distribution to a reference probability distribution, and uses
one or more statistical algorithms to determine the diver-
gence between the two sets of probability distributions to
determine if an unusual distribution is the result of a data
intrusion. The system comprises both encoding and decod-
ing machines, an intrusion detection module, a codebook
training module, and various databases which perform vari-
ous analyses on encoded data streams.

6 Claims, 53 Drawing Sheets

5302~

Create one or more reference codebooks to be used as a baseline reference
probability distribution

l

5304~

Measure the probability distribution of Bive data within a given window of

time

'

Compare the reference

ion 10 the

5306 ~] distribution of the live data to compute the divergence between the two
probability distributions

5308 —\‘I Determine il an intrusion has oceutred based on the computed divergence

f 5310

3300

Torrusion
deiccted?

000

Yes

33 12’\‘{ Record intrusion cvent in database and generate an intrusion alert l

v

5314'\»{ Send the intrusion alert to the user interface for display o a user l

US 12,003,256 B2
Page 2

(60)

Related U.S. Application Data

filed on Apr. 19, 2021, now Pat. No. 11,782,879,
which is a continuation-in-part of application No.
17/180,439, filed on Feb. 19, 2021, now Pat. No.
11,366,790, which is a continuation-in-part of appli-
cation No. 16/923,039, filed on Jul. 7, 2020, now Pat.
No. 11,232,076, said application No. 17/458,747 is a
continuation-in-part of application No. 16/923,039,
filed on Jul. 7, 2020, now Pat. No. 11,232,076, which
is a continuation-in-part of application No. 16/716,
098, filed on Dec. 16, 2019, now Pat. No. 10,706,018,
which is a continuation of application No. 16/455,
655, filed on Jun. 27, 2019, now Pat. No. 10,509,771,
said application No. 17/404,699 is a continuation-in-
part of application No. 16/455,655, filed on Jun. 27,
2019, now Pat. No. 10,509,771, which is a continu-
ation-in-part of application No. 16/200,466, filed on
Nov. 26, 2018, now Pat. No. 10,476,519, which is a
continuation-in-part of application No. 15/975,741,
filed on May 9, 2018, now Pat. No. 10,303,391.

Provisional application No. 63/485,514, filed on Feb.
16, 2023, provisional application No. 63/140,111,
filed on Jan. 21, 2021, provisional application No.
63/027,166, filed on May 19, 2020, provisional
application No. 62/926,723, filed on Oct. 28, 2019,

provisional application No. 62/578,824, filed on Oct.

30, 2017.
(56)

References Cited

U.S. PATENT DOCUMENTS

10,984,423 B2 *
11,470,182 B1*
2014/0041032 Al*

4/2021
10/2022
2/2014

2014/0270404 Al* 9/2014

2016/0155069 Al* 6/2016
2017/0272100 Al*
2018/0053114 Al1*
2019/0129640 Al*
2020/0293653 Al*
2020/0382281 Al*
2021/0004677 Al*
2022/0171857 Al*
2022/0210167 Al*
2023/0138035 Al*

9/2017
2/2018
5/2019
9/2020
12/2020
1/2021
6/2022
6/2022
5/2023

2023/0140918 Al* 5/2023

2023/0246814 Al* 8/2023

2023/0336581 Al* 10/2023

* cited by examiner

Adjaoute GO6N 20/00
Virtser HO4AL 67/56
Schepercco...... HO4L 63/14
726/23

Hanna GO6V 40/45
382/116

Hoovercoc.c.... GO06Q 30/06
706/12

Yanovsky GOGF 12/1408
Adjaoute GO6N 20/00
Riahi GO6F 16/122
Huang GO6F 21/554
Fletcher GO6N 7/01
Menick GO6N 20/20
McHughc.c...... GOGF 21/52
Rajagopalan GOGF 9/45558
Lott oo G06Q 20/4014
705/44

Saxena ... G06Q 10/0635
705/7.27

Fromm HO04L 63/0281
713/171

Dunn HO4L 51/212

US 12,003,256 B2

Sheet 1 of 53

Jun. 4, 2024

U.S. Patent

B

01 | "By
VA /
\\\\I.I..I.l.’lll \ e
2|qe] 00}
obeiolg dnyoo-] >
Areiary Areiqry g
%00|q80IN0g 300[GOAINOS
\.\.\!I.I!llllll
€0l
\,//\\
A |
_ |
[|
| [
“ Jebeuey Aeiqr "
N »IIIIIIIIIIII IIIII B R Y
SYO0I092IN0S 55107 901 SOPOO SHI0|GBVINO0S
501 _< aoURID}B) 2V, mocmﬂ&@ _ a0l
T /NS
PR N
e1Ep | suiBug _ ebeioig | oubuy | erep |
BuloBino 1 uononisuoosy | PIOMBPOD ! vononssuooeq I Bulwoour”
! eleq _ b _
A] | eled 3
<) —) T
- 1senbas
LIE T I
elEep f—

US 12,003,256 B2

Sheet 2 of 53

Jun. 4, 2024

U.S. Patent

802 702 102 2 b4
/ \,/\\ \\ //\\ \\//\
Jebeuew wszindo szis Jebeuew
Areiql| wiosy u ¥20|q 824n08 Aeiqi) 031 100
$8p00 BousIaal wiouy Indu $)00|ge2IN0s
102
P P -y lllllllll...\\//\\
! _ 002
! 602 ! ‘.
| I Ve
! ¥ N | »
abeiols (1851 |
«— 013110 " V ko\gsw w ~) ioyessn "
SPIOMSBPOD | P POD 902 | 30o0|g8ainog |
o~ : | |
/ /{\\ i 1 |
0L¢ | I
I 502 _
! A ! 20z
_ A_mmcwwaov . | sezApuy | | eep
“ xoo_mmo\w_ow N g ele(_ __ Buiwoosul
i \/(\ |
_ £0¢ I
| I
" suIBug uoloNIIsU028Q B[..“

US 12,003,256 B2

Sheet 3 of 53

Jun. 4, 2024

U.S. Patent

20€ 90¢ o B4
N ﬂ Y
Jabeuew Jebeuew Aelq
Aeigl wo ul ol
01 1IN0 $8P0D BoUsIBal
$300|g80IN0s
LOE
—.l.l.lllllll!ll ——e— . e www owew owww. swew o owwn [wn wem owwe o . — — i
60¢ | 80% pog | 508
. s 4 / _ ’ N4
osn J8|qLuUIess ~ ! ’
— O N0 _W - v lonsliey | abriols woly
elep " ted PIOMBPOD) . __ Ul SPIOMBPOD
| |
! gog !
_ \\///,\\ _
|
" JoAI808Y "
| 1senbey e1eqg | s
_ | ~00€
_ |
l
| auIbug UOIIONNSUODRY Ble(] “
c0¢
1senbas /s
EELET

elep

US 12,003,256 B2

Sheet 4 of 53

Jun. 4, 2024

U.S. Patent

-

LY .
JAR" \,./m\,\v,v Y “ . N_‘v [837% 1% @_n*
S e - Areaqyy| Lou\o::wcommm\ i
Aelql) wiod) ul dmjooj 500|G0IN0S eyEp OF INO Adeigij 01 N0 $HD0|GeIN0S
SH00|0924N0S WO U :
pue Loy 80y
———mmb e - ——- gige1dmjoo| ~=-—-fF----- e ittt S
Wwoy} erep I 9jgel -
| Okp JUEIENEDY ! dmjoo
v 98P0 BOUBIRIBY |4— o011N0 —
_
JeziwndQ oziS poziuido | sepoo
9y ey xoo_%o noS 4 1 | 90UDIRB)
| ANy L0V 1SIX8 10U "
JonoLIoY ouIBU S0P Y00|gedInos
500]q dmsj00 8poD “
~82IN0G 9ouasejeY , S0 cov “ POV
p N " f NS
oulbug . : o
winiey SISIXS “ aj|ge
opos [* X001 dmjoo] 300jq D+— dMjoo] —
aousleey | ~9N0S ~80IN0s o woaul
_
I
iobeuey Ariqgr] |
lll -
123874
. Ty 5oy 207
JONASUOoel J01ONIISU0DE) £)
2]ED O} N0 BIEP WO Ul 10JONASUODEP 4515 ysuooep Woy »
$00)ge0INos S8P0O BOUBIBBI 0} 3n0 S8POI Ul S%90jge0IN0s
h 20Ul
| ooy

US 12,003,256 B2

Sheet 5 of 53

Jun. 4, 2024

U.S. Patent

0Ls . m\om coS %Om G @_H_
\\ N/ \\.....................s’.l./\ - \ NS \\...........!...........Ilp/\
sbeiolg l1qEL oBeI0g alqe] dnyjoon]
Areigr dnyjooT Aseiqr Areiar Areiqr
300|ge2IN0g A30|Ga0nog %00]g82.N0S }o0|gssineg
80% 0%
|||||||||||||| \\/(\, .I..I.-l.l.l.l.'.l'..l.l'.l.h\//(\
| | i |
! I
| " | “
! | | |
" JeBeuep Aeiqr | " JsBeuep Aeigr |
L0S c09
bLG ~ 90¢S A 05
ST e N
elep i sulbu3 | uoIssIuIsUBRL] i auibug I eep ~/
“~ BuioBino j UOHONNSUGOSY PIOMBPON) 1 uononssucseq “Almc_c_ooc_l
L Za ‘ | emeg
4///
g uoneoo | UonResoT 009

U.S. Patent Jun. 4, 2024 Sheet 6 of 53 US 12,003,256 B2

P! Firmware I
. I
p | : I

| |
: I Standardized Deconstruction/ I
P Sourceblock Reconstruction I
: : Library Algorithms : :
P! 7 4 |
v/ D |
Lo 604 : |
e e -=1
i) [|
I 603 -~ !
I J/ :
|
I Y 602 i
i |
I |
4 1

+—Inputs Processor Qutputs—
‘ l\\ //’/ (// '
l \\\\ ~) '
) > S
| s05 605 ¥ 607 |
| , |
| ' l
I o l
l On-chip Memory '
| 608 '
| |
i i
e e e =
/
\"\\
4)
/ 601

Fig. 6 600

US 12,003,256 B2

Sheet 7 of 53

Jun. 4, 2024

U.S. Patent

00CLOL LLOO L0

PRUsAUCD) S Ble(

/614
002
\\\
m/mom . mo\;
/ %

| 0010 0000 0000 0000

LOOO 0000 0000 000} 01 +000 6000 0000 0001
LOOO 0000 0000 000t

0000 0000 & 100 0000 10 o000 oo o
00L0 0000 0000 0000 00 fe——= 0200 oo oot sonn

so0ig BleQ opo0) ‘o

$o0ig eleq jo Aeigr

0000 0000 1100 0000

PBAIB08Y SE BlR(]

U.S. Patent Jun. 4, 2024 Sheet 8 of 53 US 12,003,256 B2

Storing Data

801/?_/ Receive data

Y

802/2/ Deconstruct data into sourceblocks

y

803/2/ Pass sourceblocks to library management module

A

Receive reference codes from library management
god” |-

module
805/2/ Create codewords
806/2/ Store codewords

/

Fig. 8 800

U.S. Patent Jun. 4, 2024 Sheet 9 of 53 US 12,003,256 B2

Retrieving Data

901/?/ Receive request for data
902/2/ Retrieve codewords

/z/ Pass reference codes to library
903 management module

Y

/2/ Receive sourceblocks from library
904 management module

1

905/2/ Assemble sourceblocks into original data

906/2/ Send data out to requestor

/

Fig.9 900

U.S. Patent Jun. 4, 2024 Sheet 10 of 53 US 12,003,256 B2

Encoding Data

Receive sourceblocks from deconstruction

1007 L~ engine

|

Check library for existing
sourcebiocks

1008 &

sourceblock sourceblock
does not exist exists

i

1003 |_-|Create new reference code for sourceblock

store sourceblock and
1004 L~ reference code

1 00{2/ Return reference gr?;i ;o deconstruction

’

Fig. 10 1000

U.S. Patent Jun. 4, 2024 Sheet 11 of 53 US 12,003,256 B2

Decoding Data

Receive reference code from
1101/2/ reconstruction engine

1102/2/ Obtain sourceblock from library

11 03/2/ Return sourceb(lac?g? r;tg reconstruction

/

Fig.11 1100

US 12,003,256 B2

Sheet 12 of 53

Jun. 4, 2024

U.S. Patent

g1 "8

00¢1
M\N 0041
JU3s 9q -
* 01 218 IAPOIaD poprsuen
a [1apoous ” 10 PalI0ls
UOISSTISURI], | 2 01 Ble(]
T10GT
I07eI0U9S
roziumdo < $19S BIEp
e eiqq e
Arexqry surureiy,
W pozZIuo)sn))
b A—
0071 00€1

US 12,003,256 B2

Sheet 13 of 53

Jun. 4, 2024

U.S. Patent

e1 "8y

\Q,m.ﬁﬁ
...... g4 sﬂ 0z
FOST ¥
1ozrumdo N_ |
Are qr w&?ﬁ@% 1018010
J1apoous g o
0) ﬁp&wﬁc o oa1) URLM] 'Y
PHAAH E0ET
GOeT -, 0Teary | mdur jos) |
R RS E e RS mﬁﬁd,ﬂH »
S 1061
00¢1

J0JBIOURS ATelqy POZItolsn))

US 12,003,256 B2

Sheet 14 of 53

Jun. 4, 2024

U.S. Patent

71 8L

Arerqry |

xoznundo

HBSUIVIE]

ISPOIID

(]

$§§§e

0y

0071
1oziundo Areiqry

T1O¥V1
/

: N&wwmﬁ.ﬁw

&

US 12,003,256 B2

Sheet 15 of 53

Jun. 4, 2024

U.S. Patent

GT "SI

‘x NQEQEWV
o051 L Bl 1074
Iv[puey puno,j
[SPALARI AN Mmg@ pPOJIIWUSUE)
™ 1orereduiod 10 POIOIS
mdino _,ﬂmw papooury] Arexqry - 9(0] Ble(]
0051 1061 |

I9POIIP/ISPOIUS UOISSTWISURI],

U.S. Patent Jun. 4, 2024 Sheet 16 of 53 US 12,003,256 B2

1601,

Recetve dataset of words

1602
Construct a word library using Hulbman
codewords paired to words from the
dataset received

1603
A Y

Compare words in a subsequent dataset to
a word library

1604
S

Appending a codeword or mismatch-code to
a data stream, depending on match validity

-
1605
Ry |
Transmitting or store encoded datastream
1606,

Compare codewords in a subsequent dataset
16071 o o word bbrary
N

Appendmg an unencoded word
to o datastream

Transmitting or storing unencoded datastream

Fig. 16

U.S. Patent Jun. 4, 2024 Sheet 17 of 53 US 12,003,256 B2

1701

Create secondary Hulfman
binary tree

gy Ay tee
A

Creating keyv-value pairs of words and
&i‘ii&ﬁ?&i‘i&i} Huffman codewords for word
library

Receive mismatched words from
transtaission encoder, that were not
encoded properly with first Holfman tree

1704
Y

Parsing mismatched words into shorter words
corresponching o new codewords

C OMpPANng mxxzmid
iit*@;&mxmmx dece ﬁlil‘ *

AR TSRS SRR AN AR NN

~-§-§ 10 g; ansmission enco i‘ii‘ :

US 12,003,256 B2

Sheet 18 of 53

Jun. 4, 2024

U.S. Patent

00 10 00

0681
POLISAUOY) SB BIR(]

8!

01
01 11 [0
00 10 00

sypolg BIe(] opop Py

GeB1

SY[20[¢] ©IB(] JO ATRIqr] PUOIIG

g1 Si

000TOL 110010

0¢81

POATIIDIY] Se 'le(]

]

000101110010

GI8l

POLIdAUON) SE BIR(]

0000 0000 TT1TT 6000 I

1000 0000 0000 0001 0t

0000 0000 1100 0000 10

0010 06000 0000 0000 00

syo0[q ere(] apoD) 1oy
0181

$)[00]¢ er1e(] JO Areiqry 1SiL]

0010 0000 0000 0000
1000 0000 0000 0001
1000 0000 0000 0001
0000 0000 1111 06000
06010 0000 0000 0000
0000 0000 1100 0000

G081
PoATODIY Sk Ble(]

US 12,003,256 B2

Sheet 19 of 53

Jun. 4, 2024

U.S. Patent

61 L]

c01

Io8eueA AreIiqry

801
JUIBUTY
UONONIISUOINY]
ere(]

?@m. B 0161
J010919(T ATCQAC 101299
IDIATIG JO [RIUD(] Apewouy

PONLUSI(]

0061
Aemorer) AJLnoasIogAn)

90T
23e101g

ﬁu.w OMIPOo 8

1

601 erep
QuLsuLy .,
. SuTuIoOUy
UOTIDNISUOI(] BIR(] .

TN

101

US 12,003,256 B2

Sheet 20 of 53

Jun. 4, 2024

U.S. Patent

0906
BJep PapoIap

sindino wasig

ON

0G S1

0%0% | 0503
JBIEP SNORUWIOUE JO H—SSA Apewroue
Junoure 981e| \v— s3ep WNsAQ

0606
ejep 2pooIP
01 sydwione uraysig

060¢
Papo32IP 9q 01
1U9s ST Ble(]

010¢
SaLrerqry

2pod paurer)

ey WoIsAg

US 12,003,256 B2

Sheet 21 of 53

Jun. 4, 2024

U.S. Patent

vjep POpooap
sindino waysAg

ovlc¢
Jeiep jeadal jo
junoure 28re|

0610
BYep 9p029p
01 sydurolye waysdg

0¢1¢
P2po2ap aq 0}

Juas st eje(g

01T1¢
SOLIeIqI]

3pod pauten

Sey WIAISAG

15 S

0¢1¢

SoA—| SOAU 2lqrssod

sdep woIsAQ

US 12,003,256 B2

Sheet 22 of 53

Jun. 4, 2024

U.S. Patent

601
Io8eueA AreIiqry

801
JUIBUTY
UONONIISUOINY]
ere(]

90T

93eI0Ig

A 4

GG S

0166
QULSUT]
SISA[RUY BIB(]

PICMaPOr)

mo I
QuLsuLy
UOTINIISUOI(] BIB(]

e

eyep
surturoouy

N
101

U.S. Patent Jun. 4, 2024 Sheet 23 of 53 US 12,003,256 B2

System has
trained code
libraries

2310

Data 1s designated
for analysis

2320

System decodes
data
2330

l

r Decoded data 1s
searched
2340

Fig. 23

US 12,003,256 B2

Sheet 24 of 53

Jun. 4, 2024

U.S. Patent

u09t¢

901A(] 1981E],

05¥%
WIOYSAS
Surpodap
-3UTPOIUH

A

TG
ayepdn

BUTATIOAI
anduuon)

3

q09%¢

30TAD(] 1981E],

0576
JIOMIDN

¥G S

06V

WIB)SAS
BuIpooap
-BuIpoouy

01%¢6
ayepdn

Bunsor 12AI19g

e09%¢

IDTAD(] 1088,

U.S. Patent Jun. 4, 2024 Sheet 25 of 53 US 12,003,256 B2

Systems have
trained code

libraries
2510

Software update is
encoded

2520

v
Codebook is sent to
recipient
2530
¢ ™)
Encoded update
sent to recipient
2540
, v
Recipient decodes
data
2550
¥

Software update
installed

2560

-~

Fig. 25

US 12,003,256 B2

Sheet 26 of 53

Jun. 4, 2024

U.S. Patent

u099¢
901A3(T 19818,

0v9¢6

uone[eIsul
BUIAT031
1onduwon

A

q099¢

201A(1981e],

4
q0¢96
WID)SAS

Surpoosp
-surpoour]

A

0892
SEOMIIN]

9¢ SL

019¢

uoTne[eIsul
BunSOY JAIIG

€099¢

2D1AJ(] 1981e],

069

WIISAS
BuIpoOap
-surpoouy]

A 4
40596
UID)SAS

Surpooop
=surpooury]

H

€0G59¢6

WD1SAS
SuIpooap
=3urpoour]

U.S. Patent Jun. 4, 2024 Sheet 27 of 53 US 12,003,256 B2

Systems have
trained code
libraries

2710

Installation 1s
encoded

2720

v
Codebook 1s sent to
recipient
2730
g ¢ N
Encoded installation

sent to recipient

2740

. w

Y
Recipient decodes
data
2750
v

)

Software installed
2760

Fig. 27

US 12,003,256 B2

Sheet 28 of 53

Jun. 4, 2024

U.S. Patent

¢01

128PURTA ATCI(U]

m

; B80T :

i AuIsu ‘—
m v L=
 UOTDNISUODIY BIe(]

! }

0587 QUIYDR A SUIpoda(]

0086

on

8¢ ol

; T
. .ﬁwmd Q,w‘,—\é \w.\:w.a ﬁﬁwﬂ
-

068G LTI TR
1
§ —
e UWQS ¥ 0%8¢6 I
< I ! AMPOTN €
] Suruex 1 Yo0qepor) "
L el
0F86
W ettt et |
I .N.|]
UOISSTLUstRL} i Vm I 1
T —— aursus] e
PLOMIpo0 cor 1
1
]

8
X UTOUDILASUODI(] vle(y
J

0107 SULDEN SUIpodus]

098¢

ejep
20180

eyep
Q
SUNHOOUY

101

US 12,003,256 B2

Sheet 29 of 53

Jun. 4, 2024

U.S. Patent

64 11

0

Jadeuei

Caada <
CGOG ~ JOOQapPod Arexqr] 01 1IN0 ~— G168

parepdn
SYDOJYIIINOS MIU
S e
63 | A 4 "
S 0Co7 b | "
53PN QUIBUT '
' sepdy yoogopon X
; % 0F6e, SWILIOSTY "
' Surpona(y /surpoauy] '
i]
LR 1 P66 - '
T b 0 Seuey 9o1Aa(] JIOM '
Pwmap 0 PESEURIN 92TAS(] TOMION] I
i ¥
A _
G660 " €062
! %60 — “ pS
” IseCEI(] ebe 0165 " P
' JONUOTA] | mend < TOTOD[OY BTR(] < 1 Auruioour/sysonba >
' SISATRUY [eONISTEIG - . : ' :
¥]
t I
¥ }
t ¥
} J
t]
” T0GZ QPO SUIITEL], JOO(apo) "
L oion om o we e ee e W e e s ek MR W AR W A W A W W M W R WM AR W R R W NG W e R e K R W R W A W e e e e s e e e s el

US 12,003,256 B2

Sheet 30 of 53

Jun. 4, 2024

U.S. Patent

0F0¢ 21PpoN
sungedy,
WBIOMIST |

Ut og
DT HOMIIN]

0¥0¢ 2IMPOIN
Burrured)
JSTaMIYSTT

q0£0¢
IOTAR(T SHOMIAN]

OF0% 2IMpoN
sururery,
JBromIyary

LS04
DOIAI(] SHOMIIN]

on

0¢ -

0c0%
MYEOMIIN]

010%
ONpo FUTUIRIY

Ja3seia 3 UTSOL] DoALSG

Ly

eb

U.S. Patent Jun. 4, 2024 Sheet 31 of 53 US 12,003,256 B2

3101~

3102~

£ ™
Recetve requested data
" J
s ¢ ™
Format received data mnto a test dataset

3103~

3104~

3105

3106~

3108~

:)109’\-—

v

P4
Retrieve previous training dataset computed probability distributon
from storage
L l

p

Use one or more algorithma to measure the probahility distribution
of the test dataset

|

Compare the two measured probability distributions to compute the
difference in distribution statistics between the two training datasets

i J

25 e)
If the test dataset probability distribution exceeds a pre-determined

\

difference threshold, use test dataset to retrain encoding/decoding
L algorithms y
4 ¢ Y
Utilize retrained algorithms to create new data chunklets
ted
e ¢ .
Use data new data chunklets to update a codebook

v

Send updated codebook to encoding and decoding machines

Fig. 31

!

3100

US 12,003,256 B2

Sheet 32 of 53

Jun. 4, 2024

U.S. Patent

8066
BHNE 198
e1e(] popoaur]

59X

OOrs
9 CF?SOs

b

wﬁ‘: %QOQ&@CU —315
syooedanimos popoour]

900%

cPRISOYYXY

JAr4
JpRISNEXD

sposoed
~ADIN0G

ON

Jagmyg 1ospored
~omog [
papoour]

. | F0GE
00gs 1 ropoouy
103093

HOOIPOD)

8Ty
JOOAPOTY
6006
aseqrIRc]

{OOGIPOD)
¢0e¢
10y
1 wyoed
s@.v,nmcm

z6 Sy

A

1066
g vy

U.S. Patent Jun. 4, 2024 Sheet 33 of 53 US 12,003,256 B2

Recetve data set for encoding 3301

A 4

Store sourcepackets from data set in sourcepacket bufter 330

3

Obtain hist of codebooks from a codebook database, store the codebook
ID's from the list as an array 3303

4
Retrieve the next sourcepacket for encoding from the sourcepacket |
~ il
huffer 3304
¥
Encode the data from the current sourcepacket using the codebook |,
*

contained at the current array pointer 3305

Y

Store length of the encoded data in output buffer 3306

|

Smallest output length in buffer?

a) o FaSrs
Yes 3307 No
¥ 4
Update index of the best Retain index of the best
codehook to current 3308 codebook 3309
A\ 4

Iterate array

pointer 3310

Add encoded

™ . o - . “
sourcepacket [€Yes— Codebook 3}1;;, f,xbaustcd;’ No
and codehook] |
ID to encoded Yes
data set buffer v

3312

Fig. 33

Sourcepacket buffer exhausted?
3313

US 12,003,256 B2

Sheet 34 of 53

Jun. 4, 2024

U.S. Patent

XOPUI 2YIED JOOGIPOT) = Y1)

{"ayOBD 21 UI YOOYAPOTY YL XIPUL 01 3 1)) Yl
IS0 UL “JJO ST FRf [9y} J S9AG AROJ IXAU) UL SMOTO) (TIN L 1) (] Jooqapor) 0] |

(oxoed apod sy Jo 914q Ise] 2 UL PISN 30U $1Iq) JUNOD [PNPSAY = Y

{snq jonuod aze () Ny D)) G F IXU YL] JI) I[YYUT IXON =N

ajig oxruor)y
D J 9] I h | b N
0 I G $ 7 G 9 L s
[10F§

<« S04

«— 0F¢

US 12,003,256 B2

[fe]

A vjala]lolo]alt]v] «——ross

Sheet 35 of 53

laflalalollalv] <«—soc
A A A N A A

Jun. 4, 2024

~

o

[EaEaEnEaEnn] B

0Ce ‘Eﬁﬁcmﬁw ms:&s&w J0o woneloy

U.S. Patent

A

[Lp}
o0

(o s+)¢ o)1) "

U.S. Patent

Jun. 4, 2024

Sheet 36 of 53

Training
Data
3610

|

US 12,003,256 B2

Codebook Generator

3620

mnencoded data

Fig. 36

l

Clodebook
3630

encoded
data

Decoder
3650

decoded data

v

U.S. Patent Jun. 4, 2024 Sheet 37 of 53

fraining
Data
3710

Rules
3712

l

l

l

Transform

US 12,003,256 B2

Codebook Generator

3720
Mapping &
Codebook Codebook %{éi}s‘fo(g' .m
3730 3750 i pgfn X
Q/3i
encoded
data
decoded

unencoded data
data

v

~1

Fig. 3

and transformed

U.S. Patent Jun. 4, 2024 Sheet 38 of 53 US 12,003,256 B2

franing

Rules/ Limits /

Data iy
3810 RIAAS

Codebook Generator

3820
e e e Emmmmm———mmm e m e m e —————————————
.
i 1 b
H 1t
H g1t
: Behavior 0
, . 1
: Codebook Appendix i
¢ ¢ ¢ ¢ H
i 3830 3831 Ta
H it 1
H i1 §
i g1t
i 1t
i it 3
i 11t
% p
i " §t
i Pt 3
H it §
: encoded .
) g £ f
' data M
i g 14
H . 1
i PR
H i ! 1
¥ i 1 '
H ! 'S
! N N bt
: unencoded data decoded data P
i B R
i g1 f
i g1t
H
3 1
) Y : '
[R
' Distributed Network Nodes 3860 '
N oI oI oot

BB T T L i A R

U.S. Patent Jun. 4, 2024 Sheet 39 of 53 US 12,003,256 B2

Training
Data
3910

Codebook Generator

3920
. ; - Protocol
Encoder Codebook Decoder Anpendix
3930 Jlodebook . P{E o
o 3932
3931
encoded
data
unencoded data protocol formatted data

!

Fig. 39

U.S. Patent Jun. 4, 2024 Sheet 40 of 53 US 12,003,256 B2

Files
4010a-n

Codebook Generator

4020
A
r A
Codebook Codepackets
4030 4031
1
-
L J

Decoder
4050

encoded
file

File File
4010b 4010b

Fig. 40

U.S. Patent Jun. 4, 2024 Sheet 41 of 53 US 12,003,256 B2

Files
4110a-n

Codebook Generator

4120
o~ T ———
e R,
Codebook Codepackets
4130 4131
1
-
—__ Database or Operating System Files 4132

encoded

File File
4110b 4110b

Fig. 41

U.S. Patent Jun. 4, 2024 Sheet 42 of 53 US 12,003,256 B2

Training
Data
4210

!

Encoding/Decoding Engine

4220

Clodebook
4330

encoded, Data encoded,
T L. - Decoder
serialized Desentalization f~deserialized

4250

data 4271 cdata
v decoded data
unencoded,
serialized l
data

Data

Serializanon

4270

unencoded data

Fig. 42

US 12,003,256 B2

Sheet 43 of 53

Jun. 4, 2024

U.S. Patent

ARSIt |

1 Sd

or
93e101Q 9J0WIY

1 i
$OORJIOIU]

ol
108900

I
25'I01G TBI0]

Ol

US 12,003,256 B2

Sheet 44 of 53

Jun. 4, 2024

U.S. Patent

06

86
sinduy

G
sindinQ)

96
28e101Q

(%3
AIOWIN

%4
1AL

(%4

SIDTATIQ

GG
950

=

510552004

it |

US 12,003,256 B2

Sheet 45 of 53

Jun. 4, 2024

U.S. Patent

¢y
syuon)

e
saseqeIR(]

88

I3vIOIQ

JJOWIY

g

S0AQ IXT]

I
(S)yrOMIBN]

G} Sy

06

/

9¢
Aamoag

43
SIIAIIQ

T%

sty

US 12,003,256 B2

Sheet 46 of 53

Jun. 4, 2024

U.S. Patent

¢¢
IIINOY

9C
NVT $$913IM

Eae

9

LN |

ISNON preoqiay] vIaLIR)
SSI[ITIAN
DIN 0O/1 Aepdst(y

TS

DL
v
INAN WA,
0t

%
0dO

US 12,003,256 B2

Sheet 47 of 53

Jun. 4, 2024

U.S. Patent

BJEp POuonIpuo”)

ejep
“Indingy |

103 2Uisuo
UONONIISUOIIP
v1R(]

LY S1]

0LF Fouonipuod

WIS
proyseay) ssedAq
[} yet) S3001d
ploygsaa)
ssedAq TO0L¥ 1ozA[eur | wviep
Sunoowr | weang | anduy
SS[OO[(

00L¥

US 12,003,256 B2

Sheet 48 of 53

Jun. 4, 2024

U.S. Patent

WEAIs I0LI JSUTese

«YOX 191JE PaI0Isal
B)Eep [eUISLI()

8% Ul

103%

Tonids weang

Weans 0L pue eyep
passoxdwoda(g
T0E 2ULsU weoxs

UONONIISUOIM (e BIBP

vre(] suroouy
008¥

U.S. Patent Jun. 4, 2024 Sheet 49 of 53 US 12,003,256 B2

Receive incoming data stream for
encryption and compression 4910

4900

y

Compare data stream against
bypass threshold 4920

If bypass threshold is not met, send
stream to stream conditioner 4930

h 4

Stream conditioner compares non-bypass
blocks against conditioning threshold 4940

h 4

Apply conditioning rule to each block
exceeding conditioning threshold 4950

Y

Apply XOR to each block to
produce error stream 4960

A

Send output to data deconstruction engine 4970

Fig. 49

U.S. Patent Jun. 4, 2024 Sheet 50 of 53 US 12,003,256 B2

Receive incoming data
stream 5010

y

Decompress data stream using data

reconstruction engine 3020

A 4

Send decompressed data and error
stream to stream splitter 5030

Apply logical XOR to decompressed data using
error stream to reproduce original data blocks 3040

A4

Send decompressed and restored

data as output 2050

Fig. 50

US 12,003,256 B2

Sheet 51 of 53

Jun. 4, 2024

U.S. Patent

&0
JoseuRyA] Areagry

B 0 om0k B 300 e W A0, MG e MK OB MK DU MM o R

R T Bl B O

3

0¢l

S

0v1¢

S

QUISUT]
UOTONISUODY BIe(]

W e RO e B W BN NS G WM G M e M e M e

T Gt

UG TC sunpepy Suiposo(y

PIOMIPOD

g

001¢

I c{oTe () —

TOISSTUIS e}

H
¥
H
H
R
i
t
}

P]

L...

_llllll.llllllllll.l-
- 1
: 601 X
i Jogeuepy Areagry :
4
]
i

0v1C
STOPOIN
sutured |

6 FRN |

3
JOOUIPOY) “

- o -l

STOPOTN
{eRBIETg)
UOTSNIIU]

- - o wh

T R A IR NP

-
601 X
ULBUY i
t S J
v UOTIDNUISUCDR(] vIR(] 4
¢ }

e e e T e DN e M G R DM eR K em e R

TT1C sumey supoowy

08T¢

DICLIAUT 108}

eiep/ mw&m&d
I

0L1¢

101
S
P

Bunwoouy

US 12,003,256 B2

Sheet 52 of 53

Jun. 4, 2024

U.S. Patent

raaY
Ipo
sururen
€ HOOAPODI™ |

U101y /01

¢1ae

S

QDELLAIUL
Jasn 03

GG S

PO SULIIY

066¢
ULBIY

STSATEUY [EOTISTIRNG

0064

IMPOTN U011} 3 Uosnuy

0164

JOI0STIOT) PIOMDIPOT)

g

eep
[outtooul

U.S. Patent Jun. 4, 2024 Sheet 53 of 53 US 12,003,256 B2

5307 ~ Create one or more reference codebooks to be used as a baseline reference
' probability distribution

!

Measure the probability distribution of live data within a given window of
thne

|

Compare the reference probability distribution to the probability
5306 ~4 distribution of the live data to compute the divergence between the two
probability distributions

|

5308 ~ Determine if an intrusion has occurred based on the computed divergence

5304 ~~

Intrusion

detected? No
/ 5310 000
2300
Yes
3312 ~4 Record intrusion event in database and generate an intrusion alert
5314 ~~ Send the intrusion alert to the user interface for display to a user

US 12,003,256 B2

1
SYSTEM AND METHOD FOR DATA
COMPRESSION WITH INTRUSION
DETECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

Priority is claimed in the application data sheet to the
following patents or patent applications, each of which is
expressly incorporated herein by reference in its entirety:

63/485,514

Ser. No. 18/161,080

Ser. No. 17/875,201

Ser. No. 17/514,913

Ser. No. 17/404,699

Ser. No. 16/455,655

Ser. No. 16/200,466

Ser. No. 15/975,741

62/578,824

Ser. No. 17/458,747

Ser. No. 15/923,039

63/027,166

Ser. No. 16/716,098

62/926,723

Ser. No. 17/234,007

Ser. No. 17/180,439

63/140,111

Ser. No. 16/923,039

BACKGROUND OF THE INVENTION
Field of the Invention

The present invention is in the field of computer data
encoding, and in particular the usage of data compaction as
intrusion detection.

Discussion of the State of the Art

As computers become an ever-greater part of our lives,
and especially in the past few years, data storage has become
a limiting factor worldwide. Prior to about 2010, the growth
of data storage far exceeded the growth in storage demand.
In fact, it was commonly considered at that time that storage
was not an issue, and perhaps never would be, again. In
2010, however, with the growth of social media, cloud data
centers, high tech and biotech industries, global digital data
storage accelerated exponentially, and demand hit the zetta-
byte (1 trillion gigabytes) level. Current estimates are that
data storage demand will reach 175 zettabytes by 2025. By
contrast, digital storage device manufacturers produced
roughly 1 zettabyte of physical storage capacity globally in
2016. We are producing data at a much faster rate than we
are producing the capacity to store it. In short, we are
running out of room to store data, and need a breakthrough
in data storage technology to keep up with demand.

The primary solutions available at the moment are the
addition of additional physical storage capacity and data
compression. As noted above, the addition of physical
storage will not solve the problem, as storage demand has
already outstripped global manufacturing capacity. Data
compression is also not a solution. A rough average com-
pression ratio for mixed data types is 2:1, representing a
doubling of storage capacity. However, as the mix of global
data storage trends toward multi-media data (audio, video,
and images), the space savings yielded by compression
either decreases substantially, as is the case with lossless

10

15

20

25

30

35

40

45

50

55

60

65

2

compression which allows for retention of all original data
in the set, or results in degradation of data, as is the case with
lossy compression which selectively discards data in order
to increase compression. Even assuming a doubling of
storage capacity, data compression cannot solve the global
data storage problem. The method disclosed herein, on the
other hand, works the same way with any type of data.

Transmission bandwidth is also increasingly becoming a
bottleneck. Large data sets require tremendous bandwidth,
and we are transmitting more and more data every year
between large data centers. On the small end of the scale, we
are adding billions of low bandwidth devices to the global
network, and data transmission limitations impose con-
straints on the development of networked computing appli-
cations, such as the “Internet of Things”.

Existing intrusion detection systems (“IDS”) operate on a
basis that work by either looking for signatures of known
attacks or deviations from normal activity. These deviations
or anomalies are pushed up the stack and examined at the
protocol and application layer. Limitations of the current
IDS systems include the inability to process encrypted
packets, Internet Protocol (“IP”) packets can still be faked,
false positives are frequent, IDS are susceptible to protocol
based attacks, and the signature library of standard IDS
needs to be continually updated to detect the latest threats.
An IDS is only as good as its signature library. If it isn’t
updated frequently, it won’t register the latest attacks and it
can’t alert the user about them. Another issue is that existing
systems are vulnerable until a new threat has been added to
the signature library, so the latest attacks, and threats that are
too new to have previously been observed, will always be a
major concern. Moreover, even if a threat has been observed,
the signature library must be kept up to date on a highly
frequent basis, making user error and too-slow updates a
continuous concern.

What is needed is a system and method for data compac-
tion with intrusion detection which overcomes the limita-
tions of the existing art.

SUMMARY OF THE INVENTION

The inventor has developed a system and method for data
compression with intrusion detection, that measures in real-
time the probability distribution of an encoded data stream,
compares the probability distribution to a reference prob-
ability distribution, and uses one or more statistical algo-
rithms to determine the divergence between the two sets of
probability distributions to determine if an unusual distri-
bution is the result of a data intrusion. The system comprises
both encoding and decoding machines, an intrusion detec-
tion module, a codebook training module, and various
databases which perform various analyses on encoded data
streams.

According to a preferred embodiment, A system for data
compaction with intrusion detection is disclosed, compris-
ing: a computing device comprising a processor and a
memory; an intrusion detection module comprising a first
plurality of programming instructions stored in the memory
which, when operating on the processor, causes the com-
puting device to: receive a codeword data stream; use one or
more algorithms to compute the probability distribution of a
plurality of codewords within the codeword data stream;
compare the computed probability distribution with a refer-
ence probability distribution to compute an amount of
divergence between the computed probability distribution
and the reference probability distribution; if the computed
amount of divergence exceeds a configured risk sensitivity

US 12,003,256 B2

3

threshold, store the computed divergence, the computed
probability distribution, and the codeword as anomalous
event data in a database; generate an intrusion alert, the
intrusion alert comprising the anomalous event data; and
send the intrusion alert to a user interface to be viewed by
a user.

According to another preferred embodiment, a method for
data compaction with intrusion detection is disclosed, com-
prising the steps of: receiving a codeword data stream; using
one or more algorithms to compute the probability distri-
bution of a plurality of codewords within the codeword data
stream; comparing the computed probability distribution
with a reference probability distribution to compute an
amount of divergence between the computed probability
distribution and the reference probability distribution; if the
computed amount of divergence exceeds a configured risk
sensitivity threshold, storing the computed divergence, the
computed probability distribution, and the codeword as
anomalous event data in a database; generating an intrusion
alert, the intrusion alert comprising the anomalous event
data; and sending the intrusion alert to a user interface to be
viewed by a user.

According to an aspect of an embodiment, the user
interface is further configured to display device and system
compaction ratios, the risk sensitivity threshold, and average
real time compaction ratio.

According to an aspect of an embodiment, a codebook
training module comprising a second plurality of program-
ming instructions stored in the memory which, when oper-
ating on the processor, causes the computing device to:
receive a training dataset; use the training dataset to create
the reference probability distribution; send the reference
probability distribution to the intrusion detection module;
receive data; format the received data into a test dataset;
retrieve a first measured probability distribution associated
with the previous training dataset from a monitor database;
use one or more algorithms to measure a second probability
distribution of the test dataset; compare the first and second
measured probability distributions to compute the difference
in distribution statistics between the test dataset and the
previous training dataset; check if the difference in distri-
butions exceeds a pre-determined difference threshold; use
the test dataset to retrain encoding and decoding algorithms;
utilize the retrained algorithms to create new data source-
blocks; create new codeword for each new data sourceblock;
store each new data sourceblock and its associated new
codeword in an updated codebook; and send the updated
codebook to a plurality of encoding and decoding machines.

According to an aspect of an embodiment, the monitor
database is stored in the memory of the computing device,
wherein the monitor database comprises a previous training
dataset, the first measured probability distribution associated
with the previous training dataset, performance metrics, and
model predictions.

According to an aspect of an embodiment, a data decon-
struction engine comprising a third plurality of program-
ming instructions stored in the memory which, when oper-
ating on the processor, causes the computing device to:
receive a plurality of codewords from a codeword storage;
and send the plurality of codewords as a codeword data
stream to the intrusion detection module.

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

The accompanying drawings illustrate several aspects
and, together with the description, serve to explain the

10

15

20

25

30

35

40

45

50

55

60

65

4

principles of the invention according to the aspects. It will
be appreciated by one skilled in the art that the particular
arrangements illustrated in the drawings are merely exem-
plary, and are not to be considered as limiting of the scope
of the invention or the claims herein in any way.

FIG. 1 is a diagram showing an embodiment of the system
in which all components of the system are operated locally.

FIG. 2 is a diagram showing an embodiment of one aspect
of the system, the data deconstruction engine.

FIG. 3 is a diagram showing an embodiment of one aspect
of the system, the data reconstruction engine.

FIG. 4 is a diagram showing an embodiment of one aspect
of the system, the library management module.

FIG. 5 is a diagram showing another embodiment of the
system in which data is transferred between remote loca-
tions.

FIG. 6 is a diagram showing an embodiment in which a
standardized version of the sourceblock library and associ-
ated algorithms would be encoded as firmware on a dedi-
cated processing chip included as part of the hardware of a
plurality of devices.

FIG. 7 is a diagram showing an example of how data
might be converted into reference codes using an aspect of
an embodiment.

FIG. 8 is a method diagram showing the steps involved in
using an embodiment to store data.

FIG. 9 is a method diagram showing the steps involved in
using an embodiment to retrieve data.

FIG. 10 is a method diagram showing the steps involved
in using an embodiment to encode data.

FIG. 11 is a method diagram showing the steps involved
in using an embodiment to decode data.

FIG. 12 is a diagram showing an exemplary system
architecture, according to a preferred embodiment of the
invention.

FIG. 13 is a diagram showing a more detailed architecture
for a customized library generator.

FIG. 14 is a diagram showing a more detailed architecture
for a library optimizer.

FIG. 15 is a diagram showing a more detailed architecture
for a transmission and storage engine.

FIG. 16 is a method diagram illustrating key system
functionality utilizing an encoder and decoder pair.

FIG. 17 is a method diagram illustrating possible use of
a hybrid encoder/decoder to improve the compression ratio.

FIG. 18 is a flow diagram illustrating the use of a data
encoding system used to recursively encode data to further
reduce data size.

FIG. 19 is an exemplary system architecture of a data
encoding system used for cyber security purposes.

FIG. 20 is a flow diagram of an exemplary method used
to detect anomalies in received encoded data and producing
a warning.

FIG. 21 is a flow diagram of a data encoding system used
for Distributed Denial of Service (DDoS) attack denial.

FIG. 22 is an exemplary system architecture of a data
encoding system used for data mining and analysis pur-
poses.

FIG. 23 is a flow diagram of an exemplary method used
to enable high-speed data mining of repetitive data.

FIG. 24 is an exemplary system architecture of a data
encoding system used for remote software and firmware
updates.

FIG. 25 is a flow diagram of an exemplary method used
to encode and transfer software and firmware updates to a
device for installation, for the purposes of reduced band-
width consumption.

US 12,003,256 B2

5

FIG. 26 is an exemplary system architecture of a data
encoding system used for large-scale software installation
such as operating systems.

FIG. 27 is a flow diagram of an exemplary method used
to encode new software and operating system installations
for reduced bandwidth required for transference.

FIG. 28 is a block diagram of an exemplary system
architecture of a codebook training system for a data encod-
ing system, according to an embodiment.

FIG. 29 is a block diagram of an exemplary architecture
for a codebook training module, according to an embodi-
ment.

FIG. 30 is a block diagram of another embodiment of the
codebook training system using a distributed architecture
and a modified training module.

FIG. 31 is a method diagram illustrating the steps
involved in using an embodiment of the codebook training
system to update a codebook.

FIG. 32 is an exemplary system architecture for an
encoding system with multiple codebooks.

FIG. 33 is a flow diagram describing an exemplary
algorithm for encoding of data using multiple codebooks.

FIG. 34 is a flow diagram describing an exemplary
codebook sorting algorithm for determining a plurality of
codebooks to be shuffled between during the encoding
process.

FIG. 35 is a diagram showing an exemplary codebook
shuflling method.

FIG. 36 shows an exemplary encoding/decoding configu-
ration as previously described in an embodiment.

FIG. 37 shows an exemplary encoding/decoding configu-
ration with extended functionality suitable to derive a dif-
ferent data set at the decoder from the data arriving at the
encoder.

FIG. 38 shows an exemplary encoding/decoding configu-
ration with extended functionality suitable for using in a
distributed computing environment.

FIG. 39 shows an exemplary encoding/decoding configu-
ration with extended functionality suitable for generating
protocol formatted data at the decoder derived from data
arriving at the encoder.

FIG. 40 shows an exemplary encoding/decoding configu-
ration with extended functionality suitable for file-based
encoding/decoding.

FIG. 41 shows an exemplary encoding/decoding configu-
ration with extended functionality suitable for file-based
encoding/decoding or operating system files.

FIG. 42 shows an exemplary encoding/decoding configu-
ration with data serialization and deserialization.

FIG. 43 is a block diagram illustrating an exemplary
hardware architecture of a computing device.

FIG. 44 is a block diagram illustrating an exemplary
logical architecture for a client device.

FIG. 45 is a block diagram showing an exemplary archi-
tectural arrangement of clients, servers, and external ser-
vices.

FIG. 46 is another block diagram illustrating an exem-
plary hardware architecture of a computing device.

FIG. 47 is a block diagram illustrating an exemplary
system architecture for combining data compression with
encryption using split-stream processing.

FIG. 48 is a block diagram illustrating an exemplary
system architecture for decompressing and decrypting
incoming data that was processed using split-stream pro-
cessing.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 49 is a flow diagram illustrating an exemplary
method for compressing and encrypting data using split-
stream processing.

FIG. 50 is a flow diagram illustrating an exemplary
method for decrypting and decompressing split-stream data.

FIG. 51 is a block diagram illustrating an exemplary
architecture for a data compaction and intrusion detection
system, according to an embodiment.

FIG. 52 is a block diagram illustrating an exemplary
architecture for an aspect of a system for data compaction
with intrusion detection, an intrusion detection module.

FIG. 53 is a flow diagram illustrating an exemplary
method for data compaction with intrusion detection,
according to an embodiment.

DETAILED DESCRIPTION OF THE
INVENTION

The inventor has conceived, and reduced to practice, a
system and method for data compression with intrusion
detection, that measures in real-time the probability distri-
bution of an encoded data stream, compares the probability
distribution to a reference probability distribution, and uses
one or more statistical algorithms to determine the diver-
gence between the two sets of probability distributions to
determine if an unusual distribution is the result of a data
intrusion.

Perhaps strongest argument for the disclosed system and
methods as a superior solution over the existing art may be
its advantage with respect to signature libraries, which is an
artifact of its fundamental difference in approach compared
to traditional IDS. The scientific basis of compaction-as-1DS
does not rely on signatures, but on a statistical analysis of
traffic payloads to detect divergence form an expected
probability distribution; signatures are an irrelevant consid-
eration. Threats are detected on the basis of deviation from
a normal behavior dynamically, rather than seeking to match
an observed behavior against a library of threat vectors as in
the case of traditional IDS. In addition, employment of the
dynamic codebook generator will ensure that compaction
ratios remain stable and measurable for purposes of intru-
sion detection in changing circumstances and in situations in
which a codebook has been compromised. The system and
methods benefits by having no dependence on any source of
information other than the flow of data from the system in
which it is installed.

In some embodiments, the data compaction system may
be configured to encode and decode genomic data. There are
many applications in biology and genomics in which large
amounts of DNA or RNA sequencing data must be searched
to identify the presence of a pattern of nucleic acid
sequences, or oligonucleotides. These applications include,
but are not limited to, searching for genetic disorders or
abnormalities, drug design, vaccine design, and primer
design for Polymerase Chain Reaction (PCR) tests or
sequencing reactions.

These applications are relevant across all species,
humans, animals, bacteria, and viruses. All of these appli-
cations operate within large datasets; the human genome for
example, is very large (3.2 billion base pairs). These studies
are typically done across many samples, such that proper
confidence can be achieved on the results of these studies.
So, the problem is both wide and deep, and requires modern
technologies beyond the capabilities of traditional or stan-
dard compression techniques. Current methods of compress-
ing data are useful for storage, but the compressed data

US 12,003,256 B2

7

cannot be searched until it is decompressed, which poses a
big challenge for any research with respect to time and
resources.

The compaction algorithms described herein not only
compress data as well as, or better than, standard compres-
sion technologies, but more importantly, have major advan-
tages that are key to much more efficient applications in
genomics. First, some configurations of the systems and
method described herein allow random access to compacted
data without unpacking them first. The ability to access and
search within compacted datasets is a major benefit and
allows for utilization of data for searching and identifying
sequence patterns without the time, expense, and computing
resources required to unpack the data. Additionally, for some
applications certain regions of the genomic data must be
searched, and certain configurations of the systems and
methods allow the search to be narrowed down even within
compacted data. This provides an enormous opportunity for
genomic researchers and makes mining genomics datasets
much more practical and efficient.

In some embodiments, data compaction may be combined
with data serialization to maximize compaction and data
transfer with extremely low latency and no loss. For
example, a wrapper or connector may be constructed using
certain serialization protocols (e.g., BeBop, Google Protocol
Buffers, MessagePack). The idea is to use known, determin-
istic file structure (schemes, grammars, etc.) to reduce data
size first via token abbreviation and serialization, and then to
use the data compaction methods described herein to take
advantage of stochastic/statistical structure by training it on
the output of serialization. The encoding process can be
summarized as: serialization-encode—compact-encode, and
the decoding process would be the reverse: compact-decode-
—sserialization-decode. The deterministic file structure
could be automatically discovered or encoded by the user
manually as a scheme/grammar. Another benefit of serial-
ization in addition to those listed above is deeper obfusca-
tion of data, further hardening the cryptographic benefits of
encoding using codebooks.

In some embodiments, the data compaction systems and
methods described herein may be used as a form of encryp-
tion. As a codebook created on a particular data set is unique
(or effectively unique) to that data set, compaction of data
using a particular codebook acts as a form of encryption as
that particular codebook is required to unpack the data into
the original data. As described previously, the compacted
data contains none of the original data, just codeword
references to the codebook with which it was compacted.
This inherent encryption avoids entirely the multiple stages
of encryption and decryption that occur in current comput-
ing systems, for example, data is encrypted using a first
encryption algorithm (say, AES-256) when stored to disk at
a source, decrypted using AES-256 when read from disk at
the source, encrypted using TLS prior to transmission over
a network, decrypted using TLS upon receipt at the desti-
nation, and re-encrypted using a possibly different algorithm
(say, TwoFish) when stored to disk at the destination.

In some embodiments, an encoding/decoding system as
described herein may be incorporated into computer moni-
tors, televisions, and other displays, such that the informa-
tion appearing on the display is encoded right up until the
moment it is displayed on the screen. One application of this
configuration is encoding/decoding of video data for com-
puter gaming and other applications where low-latency
video is required. This configuration would take advantage
of'the typically limited information used to describe scenery/
imagery in low-latency video software applications, such an

20

25

30

40

45

8

in gaming, AR/VR, avatar-based chat, etc. The encoding
would benefit from there being a particularly small number
of textures, emojis, AR/VR objects, orientations, etc., which
can occur in the user interface (UI) —at any point along the
rendering pipeline where this could be helpful.

In some embodiments, the data compaction systems and
methods described herein may be used to manage high
volumes of data produced in robotics and industrial auto-
mation. Many Al based industrial automation and robotics
applications collect a large amount of data from each
machine, particularly from cameras or other sensors. Based
upon the data collected, decisions are made as to whether the
process is under control or the parts that have been manu-
factured are in spec. The process is very high speed, so the
decisions are usually made locally at the machine based on
an Al inference engine that has been previously trained. The
collected data is sent back to a data center to be archived and
for the Al model to be refined.

In many of these applications, the amount of data that is
being created is extremely large. The high production rate of
these machines means that most factory networks cannot
transmit this data back to the data center in anything
approaching real time. In fact, if these machines are oper-
ating close to 24 hours a day, 7 days a week, then the factory
networks can never catch up and the entirety of the data
cannot be sent. Companies either do data selection or use
some type of compression requiring expensive processing
power at each machine to reduce the amount of data that
needs to be sent. However, this either loads down the
processors of the machine, or requires the loss of certain data
in order to reduce the required throughput.

The data encoding/decoding systems and methods
described herein can be used in some configurations to solve
this problem, as they represent a lightweight, low-latency,
and lossless solution that significantly reduces the amount of
data to be transmitted. Certain configurations of the system
could be placed on each machine and at the server/data
center, taking up minimal memory and processing power
and allowing for all data to be transmitted back to the data
center. This would enable audits whenever deeper analysis
needs to be performed as, for example, when there is a
quality problem. It also ensures that the data centers, where
the Al models are trained and retrained, have access to all of
the up-to-date data from all the machines.

One or more different aspects may be described in the
present application. Further, for one or more of the aspects
described herein, numerous alternative arrangements may be
described; it should be appreciated that these are presented
for illustrative purposes only and are not limiting of the
aspects contained herein or the claims presented herein in
any way. One or more of the arrangements may be widely
applicable to numerous aspects, as may be readily apparent
from the disclosure. In general, arrangements are described
in sufficient detail to enable those skilled in the art to
practice one or more of the aspects, and it should be
appreciated that other arrangements may be utilized and that
structural, logical, software, electrical and other changes
may be made without departing from the scope of the
particular aspects. Particular features of one or more of the
aspects described herein may be described with reference to
one or more particular aspects or figures that form a part of
the present disclosure, and in which are shown, by way of
illustration, specific arrangements of one or more of the
aspects. It should be appreciated, however, that such features
are not limited to usage in the one or more particular aspects
or figures with reference to which they are described. The
present disclosure is neither a literal description of all

US 12,003,256 B2

9

arrangements of one or more of the aspects nor a listing of
features of one or more of the aspects that must be present
in all arrangements.

Headings of sections provided in this patent application
and the title of this patent application are for convenience
only, and are not to be taken as limiting the disclosure in any
way.

Devices that are in communication with each other need
not be in continuous communication with each other, unless
expressly specified otherwise. In addition, devices that are in
communication with each other may communicate directly
or indirectly through one or more communication means or
intermediaries, logical or physical.

A description of an aspect with several components in
communication with each other does not imply that all such
components are required. To the contrary, a variety of
optional components may be described to illustrate a wide
variety of possible aspects and in order to more fully
illustrate one or more aspects. Similarly, although process
steps, method steps, algorithms or the like may be described
in a sequential order, such processes, methods and algo-
rithms may generally be configured to work in alternate
orders, unless specifically stated to the contrary. In other
words, any sequence or order of steps that may be described
in this patent application does not, in and of itself, indicate
a requirement that the steps be performed in that order. The
steps of described processes may be performed in any order
practical. Further, some steps may be performed simultane-
ously despite being described or implied as occurring non-
simultaneously (e.g., because one step is described after the
other step). Moreover, the illustration of a process by its
depiction in a drawing does not imply that the illustrated
process is exclusive of other variations and modifications
thereto, does not imply that the illustrated process or any of
its steps are necessary to one or more of the aspects, and
does not imply that the illustrated process is preferred. Also,
steps are generally described once per aspect, but this does
not mean they must occur once, or that they may only occur
once each time a process, method, or algorithm is carried out
or executed. Some steps may be omitted in some aspects or
some occurrences, or some steps may be executed more than
once in a given aspect or occurrence.

When a single device or article is described herein, it will
be readily apparent that more than one device or article may
be used in place of a single device or article. Similarly,
where more than one device or article is described herein, it
will be readily apparent that a single device or article may
be used in place of the more than one device or article.

The functionality or the features of a device may be
alternatively embodied by one or more other devices that are
not explicitly described as having such functionality or
features. Thus, other aspects need not include the device
itself.

Techniques and mechanisms described or referenced
herein will sometimes be described in singular form for
clarity. However, it should be appreciated that particular
aspects may include multiple iterations of a technique or
multiple instantiations of a mechanism unless noted other-
wise. Process descriptions or blocks in figures should be
understood as representing modules, segments, or portions
of code which include one or more executable instructions
for implementing specific logical functions or steps in the
process. Alternate implementations are included within the
scope of various aspects in which, for example, functions
may be executed out of order from that shown or discussed,
including substantially concurrently or in reverse order,

10

15

20

25

30

35

40

45

50

55

60

65

10

depending on the functionality involved, as would be under-
stood by those having ordinary skill in the art.
Definitions

The term “bit” refers to the smallest unit of information
that can be stored or transmitted. It is in the form of a binary
digit (either 0 or 1). In terms of hardware, the bit is
represented as an electrical signal that is either off (repre-
senting 0) or on (representing 1).

The term “byte” refers to a series of bits exactly eight bits
in length.

The term “codebook™ refers to a database containing
sourceblocks each with a pattern of bits and reference code
unique within that library. The terms “library” and “encod-
ing/decoding library” are synonymous with the term code-
book.

The terms “compression” and “deflation” as used herein
mean the representation of data in a more compact form than
the original dataset. Compression and/or deflation may be
either “lossless”, in which the data can be reconstructed in
its original form without any loss of the original data, or
“lossy” in which the data can be reconstructed in its original
form, but with some loss of the original data.

The terms “compression factor” and “deflation factor” as
used herein mean the net reduction in size of the compressed
data relative to the original data (e.g., if the new data is 70%
of the size of the original, then the deflation/compression
factor is 30% or 0.3.)

The terms “compression ratio” and “deflation ratio”, and
as used herein all mean the size of the original data relative
to the size of the compressed data (e.g., if the new data is
70% of the size of the original, then the deflation/compres-
sion ratio is 70% or 0.7.)

The term “data” means information in any computer-
readable form.

The term “data set” refers to a grouping of data for a
particular purpose. One example of a data set might be a
word processing file containing text and formatting infor-
mation.

The term “effective compression” or “effective compres-
sion ratio” refers to the additional amount data that can be
stored using the method herein described versus conven-
tional data storage methods. Although the method herein
described is not data compression, per se, expressing the
additional capacity in terms of compression is a useful
comparison.

The term “sourcepacket™ as used herein means a packet of
data received for encoding or decoding. A sourcepacket may
be a portion of a data set.

The term “sourceblock™ as used herein means a defined
number of bits or bytes used as the block size for encoding
or decoding. A sourcepacket may be divisible into a number
of'sourceblocks. As one non-limiting example, a 1 megabyte
sourcepacket of data may be encoded using 512 byte source-
blocks. The number of bits in a sourceblock may be dynami-
cally optimized by the system during operation. In one
aspect, a sourceblock may be of the same length as the block
size used by a particular file system, typically 512 bytes or
4,096 bytes.

The term “codeword” refers to the reference code form in
which data is stored or transmitted in an aspect of the
system. A codeword consists of a reference code to a
sourceblock in the library plus an indication of that source-
block’s location in a particular data set.

Conceptual Architecture

FIG. 47 is a block diagram illustrating an exemplary
system architecture 4700 for combining data compression
with encryption using split-stream processing. According to

US 12,003,256 B2

11

the embodiment, an incoming data stream can be com-
pressed and encrypted simultaneously through the use of
split-stream processing, wherein the data stream is broken
into blocks that are compared against the stream as a whole
to determine their frequency (i.e., their probability distribu-
tion within the data stream). Huffman coding works prov-
ably ideally when the elements being encoded have dyadic
probabilities, that is probabilities that are all of the form
1/(2%); in actual practice, not all data blocks will have a
dyadic probability, and thus the efficiency of Huffman
coding decreases. To improve efficiency while also provid-
ing encryption of the data stream, those blocks that have
non-dyadic probability may be identified and replaced with
other blocks, effectively shuffling the data blocks until all
blocks present in the output stream have dyadic probability
by using some blocks more frequently and others less
frequently to “adjust” their probability within the output
stream. For purposes of reconstruction, a second error
stream is produced that contains the modifications made, so
that the recipient need only compare the error stream against
the received data stream to reverse the process and restore
the data.

A stream analyzer 4701 receives an input data stream and
analyzes it to determine the frequency of each unique data
block within the stream. A bypass threshold may be used to
determine whether the data stream deviates sufficiently from
an idealized value (for example, in a hypothetical data
stream with all-dyadic data block probabilities), and if this
threshold is met the data stream may be sent directly to a
data deconstruction engine 201 for deconstruction into code-
words as described below in greater detail (with reference to
FIG. 2). If the bypass threshold is not met, the data stream
is instead sent to a stream conditioner 4702 for conditioning.

Stream conditioner 4702 receives a data stream from
stream analyzer 4701 when the bypass threshold is not met,
and handles the encryption process of swapping data blocks
to arrive at a more-ideal data stream with a higher occur-
rence of dyadic probabilities; this facilitates both encryption
of'the data and greater compression efficiency by improving
the performance of the Huffman coding employed by data
deconstruction engine 201. To achieve this, each data block
in the data stream is checked against a conditioning thresh-
old using the algorithm (P, -P,)I>T., where P, is the actual
probability of the data block, P, is the ideal probability of the
block (generally, the nearest dyadic probability), and T is
the conditioning threshold value. If the threshold value is
exceeded (that is, the data block’s real probability is “too
far” from the nearest ideal probability), a conditioning rule
is applied to the data block. After conditioning, a logical
XOR operation may be applied to the conditioned data block
against the original data block, and the result (that is, the
difference between the original and conditioned data) is
appended to an error stream. The conditioned data stream
(containing both conditioned and unconditioned blocks that
did not meet the threshold) and the error stream are then sent
to the data deconstruction engine 201 to be compressed, as
described below in FIG. 2.

To condition a data block, a variety of approaches may be
used according to a particular setup or desired encryption
goal. One such exemplary technique may be to selectively
replace or “shuffle” data blocks based on their real prob-
ability as compared to an idealized probability: if the block
occurs less-frequently than desired or anticipated, it may be
added to a list of “swap blocks™ and left in place in the data
stream; if a data block occurs more frequently than desired,
it is replaced with a random block from the swap block list.
This increases the frequency of blocks that were originally

30

40

45

12

“too low”, and decreases it for those that were originally
“too high”, bringing the data stream closer in line with the
idealized probability and thereby improving compression
efficiency while simultaneously obfuscating the data.
Another approach may be to simply replace too-frequent
data blocks with any random data block from the original
data stream, eliminating the need for a separate list of swap
blocks, and leaving any too-low data blocks unmodified.
This approach does not necessarily increase the probability
of blocks that were originally too-low (apart from any that
may be randomly selected to replace a block that was
too-high), but it may improve system performance due to the
elimination of the swap block list and associated operations.

It should be appreciated that both the bypass and condi-
tioning thresholds used may vary, for example, one or both
may be a manually-configured value set by a system opera-
tor, a stored value retrieved from a database as part of an
initial configuration, or a value that may be adjusted on-the-
fly as the system adjusts to operating conditions and live
data.

FIG. 48 is a block diagram illustrating an exemplary
system architecture 4800 for decompressing and decrypting
incoming data that was processed using split-stream pro-
cessing. To decompress and decrypt received data, a data
reconstruction engine 301 may first be used to reverse the
compression on a data stream as described below in FIG. 3,
passing the decompressed (but still encrypted) data to a
stream splitter 4801. The corresponding error stream may be
separated from the data stream (for example, the two streams
may have been combined during compression but during
decompression they are separated) or it may be received
independently as a second data stream. Stream splitter 4801
applies XOR logical operations to each data block according
to the error stream, reversing the original block conditioning
process and restoring the original data on a block-by-block
basis.

FIG. 49 is a flow diagram illustrating an exemplary
method 4900 for compressing and encrypting data using
split-stream processing. In an initial step 4910, a data stream
is received for compression and encryption. Each block in
the data stream may be compared against a bypass threshold
4920 to determine whether the stream should be condi-
tioned, and if so the stream is then passed 4930 to a stream
conditioner 4702. The stream conditioner 4702 then com-
pares each block 4940 against a conditioning threshold
based on the block’s actual vs. ideal frequency, and those
blocks that exceed the threshold have a conditioning rule
applied 4950. Each block may then be processed using an
XOR logical operation 4960, and the output appended to an
error stream that correspond to the difference between the
original data and the conditioned data. The conditioned data
and the error stream are then sent as output 4970 for
compression as described in further detail below, with
reference to at least FIG. 10.

FIG. 50 is a flow diagram illustrating an exemplary
method 5000 for decrypting and decompressing split-stream
data. In an initial step 5010, a data stream is received at a
data decompression engine 301. The data stream is decom-
pressed 5020 by reversing the encoding as described below
with reference to FIG. 11, and the decompressed (but still
encrypted) data and error stream are passed 5030 to a stream
splitter 4801. The stream splitter performs logical XOR
operations on each data block 5040 using the error stream,
reversing any conditioning done to each data block, produc-
ing the original data as output 5050.

FIG. 1 is a diagram showing an embodiment 100 of the
system in which all components of the system are operated

US 12,003,256 B2

13

locally. As incoming data 101 is received by data decon-
struction engine 102. Data deconstruction engine 102 breaks
the incoming data into sourceblocks, which are then sent to
library manager 103. Using the information contained in
sourceblock library lookup table 104 and sourceblock
library storage 105, library manager 103 returns reference
codes to data deconstruction engine 102 for processing into
codewords, which are stored in codeword storage 106.
When a data retrieval request 107 is received, data recon-
struction engine 108 obtains the codewords associated with
the data from codeword storage 106, and sends them to
library manager 103. Library manager 103 returns the appro-
priate sourceblocks to data reconstruction engine 108, which
assembles them into the proper order and sends out the data
in its original form 109.

FIG. 2 is a diagram showing an embodiment of one aspect
200 of the system, specifically data deconstruction engine
201. Incoming data 202 is received by data analyzer 203,
which optimally analyzes the data based on machine learn-
ing algorithms and input 204 from a sourceblock size
optimizer, which is disclosed below. Data analyzer may
optionally have access to a sourceblock cache 205 of
recently-processed sourceblocks, which can increase the
speed of the system by avoiding processing in library
manager 103. Based on information from data analyzer 203,
the data is broken into sourceblocks by sourceblock creator
206, which sends sourceblocks 207 to library manager 203
for additional processing. Data deconstruction engine 201
receives reference codes 208 from library manager 103,
corresponding to the sourceblocks in the library that match
the sourceblocks sent by sourceblock creator 206, and
codeword creator 209 processes the reference codes into
codewords comprising a reference code to a sourceblock and
a location of that sourceblock within the data set. The
original data may be discarded, and the codewords repre-
senting the data are sent out to storage 210.

FIG. 3 is a diagram showing an embodiment of another
aspect of system 300, specifically data reconstruction engine
301. When a data retrieval request 302 is received by data
request receiver 303 (in the form of a plurality of codewords
corresponding to a desired final data set), it passes the
information to data retriever 304, which obtains the
requested data 305 from storage. Data retriever 304 sends,
for each codeword received, a reference codes from the
codeword 306 to library manager 103 for retrieval of the
specific sourceblock associated with the reference code.
Data assembler 308 receives the sourceblock 307 from
library manager 103 and, after receiving a plurality of
sourceblocks corresponding to a plurality of codewords,
assembles them into the proper order based on the location
information contained in each codeword (recall each code-
word comprises a sourceblock reference code and a location
identifier that specifies where in the resulting data set the
specific sourceblock should be restored to. The requested
data is then sent to user 309 in its original form.

FIG. 4 is a diagram showing an embodiment of another
aspect of the system 400, specifically library manager 401.
One function of library manager 401 is to generate reference
codes from sourceblocks received from data deconstruction
engine 301. As sourceblocks are received 402 from data
deconstruction engine 301, sourceblock lookup engine 403
checks sourceblock library lookup table 404 to determine
whether those sourceblocks already exist in sourceblock
library storage 105. If a particular sourceblock exists in
sourceblock library storage 105, reference code return
engine 405 sends the appropriate reference code 406 to data
deconstruction engine 301. If the sourceblock does not exist

10

15

20

25

30

35

40

45

50

55

60

65

14

in sourceblock library storage 105, optimized reference code
generator 407 generates a new, optimized reference code
based on machine learning algorithms. Optimized reference
code generator 407 then saves the reference code 408 to
sourceblock library lookup table 104; saves the associated
sourceblock 409 to sourceblock library storage 105; and
passes the reference code to reference code return engine
405 for sending 406 to data deconstruction engine 301.
Another function of library manager 401 is to optimize the
size of sourceblocks in the system. Based on information
411 contained in sourceblock library lookup table 104,
sourceblock size optimizer 410 dynamically adjusts the size
of sourceblocks in the system based on machine learning
algorithms and outputs that information 412 to data analyzer
203. Another function of library manager 401 is to return
sourceblocks associated with reference codes received from
data reconstruction engine 301. As reference codes are
received 414 from data reconstruction engine 301, reference
code lookup engine 413 checks sourceblock library lookup
table 415 to identify the associated sourceblocks; passes that
information to sourceblock retriever 416, which obtains the
sourceblocks 417 from sourceblock library storage 105; and
passes them 418 to data reconstruction engine 301.

FIG. 5 is a diagram showing another embodiment of
system 500, in which data is transferred between remote
locations. As incoming data 501 is received by data decon-
struction engine 502 at Location 1, data deconstruction
engine 301 breaks the incoming data into sourceblocks,
which are then sent to library manager 503 at Location 1.
Using the information contained in sourceblock library
lookup table 504 at Location 1 and sourceblock library
storage 505 at Location 1, library manager 503 returns
reference codes to data deconstruction engine 301 for pro-
cessing into codewords, which are transmitted 506 to data
reconstruction engine 507 at Location 2. In the case where
the reference codes contained in a particular codeword have
been newly generated by library manager 503 at Location 1,
the codeword is transmitted along with a copy of the
associated sourceblock. As data reconstruction engine 507 at
Location 2 receives the codewords, it passes them to library
manager module 508 at Location 2, which looks up the
sourceblock in sourceblock library lookup table 509 at
Location 2, and retrieves the associated from sourceblock
library storage 510. Where a sourceblock has been trans-
mitted along with a codeword, the sourceblock is stored in
sourceblock library storage 510 and sourceblock library
lookup table 504 is updated. Library manager 503 returns
the appropriate sourceblocks to data reconstruction engine
507, which assembles them into the proper order and sends
the data in its original form 511.

FIG. 6 is a diagram showing an embodiment 600 in which
a standardized version of a sourceblock library 603 and
associated algorithms 604 would be encoded as firmware
602 on a dedicated processing chip 601 included as part of
the hardware of a plurality of devices 600. Contained on
dedicated chip 601 would be a firmware area 602, on which
would be stored a copy of a standardized sourceblock library
603 and deconstruction/reconstruction algorithms 604 for
processing the data. Processor 605 would have both inputs
606 and outputs 607 to other hardware on the device 600.
Processor 605 would store incoming data for processing on
on-chip memory 608, process the data using standardized
sourceblock library 603 and deconstruction/reconstruction
algorithms 604, and send the processed data to other hard-
ware on device 600. Using this embodiment, the encoding
and decoding of data would be handled by dedicated chip
601, keeping the burden of data processing off device’s 600

US 12,003,256 B2

15

primary processors. Any device equipped with this embodi-
ment would be able to store and transmit data in a highly
optimized, bandwidth-efficient format with any other device
equipped with this embodiment.

FIG. 12 is a diagram showing an exemplary system
architecture 1200, according to a preferred embodiment of
the invention. Incoming training data sets may be received
at a customized library generator 1300 that processes train-
ing data to produce a customized word library 1201 com-
prising key-value pairs of data words (each comprising a
string of bits) and their corresponding calculated binary
Huffman codewords. The resultant word library 1201 may
then be processed by a library optimizer 1400 to reduce size
and improve efficiency, for example by pruning low-occur-
rence data entries or calculating approximate codewords that
may be used to match more than one data word. A trans-
mission encoder/decoder 1500 may be used to receive
incoming data intended for storage or transmission, process
the data using a word library 1201 to retrieve codewords for
the words in the incoming data, and then append the
codewords (rather than the original data) to an outbound
data stream. Each of these components is described in
greater detail below, illustrating the particulars of their
respective processing and other functions, referring to FIGS.
2-4.

System 1200 provides near-instantaneous source coding
that is dictionary-based and learned in advance from sample
training data, so that encoding and decoding may happen
concurrently with data transmission. This results in compu-
tational latency that is near zero but the data size reduction
is comparable to classical compression. For example, if N
bits are to be transmitted from sender to receiver, the
compression ratio of classical compression is C, the ratio
between the deflation factor of system 1200 and that of
multi-pass source coding is p, the classical compression
encoding rate is R bit/s and the decoding rate is R, bit/s,
and the transmission speed is S bit/s, the compress-send-
decompress time will be

N N N

od = oo tos T CRp
while the transmit-while-coding time for system 1200 will
be (assuming that encoding and decoding happen at least as
quickly as network latency):

Thew = 7

cs

so that the total data transit time improvement factor is

20

25

30

35

40

45

50

55

60

65

16
This is a reasonable scenario given that typical values in
real-world practice are C=0.32, R=1.1-10"%, R ,=4.2:10,
S=10"", giving

cs S
= 2 0.083. ...,
Re Rp

such that system 1200 will outperform the total transit time
of the best compression technology available as long as its
deflation factor is no more than 5% worse than compression.
Such customized dictionary-based encoding will also some-
times exceed the deflation ratio of classical compression,
particularly when network speeds increase beyond 100 Gb/s.

The delay between data creation and its readiness for use
at a receiving end will be equal to only the source word
length t (typically 5-15 bytes), divided by the deflation factor
C/p and the network speed S, i.e.

ip
delay,youign = Cs
since encoding and decoding occur concurrently with data
transmission. On the other hand, the latency associated with
classical compression is

N N
delay ;e = %o tost o
where N is the packet/file size. Even with the generous
values chosen above as well as N=512K, t=10, and p=1.05,
this results in delay,,,,oprion=3.3-1071° while
delayprigmrtzl.3-10_7, a more than 400-fold reduction in
latency.

A key factor in the efficiency of Huffman coding used by
system 1200 is that key-value pairs be chosen carefully to
minimize expected coding length, so that the average defla-
tion/compression ratio is minimized. It is possible to achieve
the best possible expected code length among all instanta-
neous codes using Huffman codes if one has access to the
exact probability distribution of source words of a given
desired length from the random variable generating them. In
practice this is impossible, as data is received in a wide
variety of formats and the random processes underlying the
source data are a mixture of human input, unpredictable
(though in principle, deterministic) physical events, and
noise. System 1200 addresses this by restriction of data
types and density estimation; training data is provided that
is representative of the type of data anticipated in “real-
world” use of system 1200, which is then used to model the
distribution of binary strings in the data in order to build a
Huffman code word library 1200.

FIG. 13 is a diagram showing a more detailed architecture
for a customized library generator 1300. When an incoming
training data set 1301 is received, it may be analyzed using
afrequency creator 1302 to analyze for word frequency (that
is, the frequency with which a given word occurs in the
training data set). Word frequency may be analyzed by
scanning all substrings of bits and directly calculating the
frequency of each substring by iterating over the data set to
produce an occurrence frequency, which may then be used
to estimate the rate of word occurrence in non-training data.
A first Huffman binary tree is created based on the frequency
of occurrences of each word in the first dataset, and a
Huffman codeword is assigned to each observed word in the

US 12,003,256 B2

17

first dataset according to the first Huffman binary tree.
Machine learning may be utilized to improve results by
processing a number of training data sets and using the
results of each training set to refine the frequency estima-
tions for non-training data, so that the estimation yield better
results when used with real-world data (rather than, for
example, being only based on a single training data set that
may not be very similar to a received non-training data set).
A second Huffman tree creator 1303 may be utilized to
identify words that do not match any existing entries in a
word library 1201 and pass them to a hybrid encoder/
decoder 1304, that then calculates a binary Huffman code-
word for the mismatched word and adds the codeword and
original data to the word library 1201 as a new key-value
pair. In this manner, customized library generator 1300 may
be used both to establish an initial word library 1201 from
a first training set, as well as expand the word library 1201
using additional training data to improve operation.

FIG. 14 is a diagram showing a more detailed architecture
for a library optimizer 1400. A pruner 1401 may be used to
load a word library 1201 and reduce its size for efficient
operation, for example by sorting the word library 1201
based on the known occurrence probability of each key-
value pair and removing low-probability key-value pairs
based on a loaded threshold parameter. This prunes low-
value data from the word library to trim the size, eliminating
large quantities of very-low-frequency key-value pairs such
as single-occurrence words that are unlikely to be encoun-
tered again in a data set. Pruning eliminates the least-
probable entries from word library 1201 up to a given
threshold, which will have a negligible impact on the
deflation factor since the removed entries are only the
least-common ones, while the impact on word library size
will be larger because samples drawn from asymptotically
normal distributions (such as the log-probabilities of words
generated by a probabilistic finite state machine, a model
well-suited to a wide variety of real-world data) which occur
in tails of the distribution are disproportionately large in
counting measure. A delta encoder 1402 may be utilized to
apply delta encoding to a plurality of words to store an
approximate codeword as a value in the word library, for
which each of the plurality of source words is a valid
corresponding key. This may be used to reduce library size
by replacing numerous key-value pairs with a single entry
for the approximate codeword and then represent actual
codewords using the approximate codeword plus a delta
value representing the difference between the approximate
codeword and the actual codeword. Approximate coding is
optimized for low-weight sources such as Golomb coding,
run-length coding, and similar techniques. The approximate
source words may be chosen by locality-sensitive hashing,
so as to approximate Hamming distance without incurring
the intractability of nearest-neighbor-search in Hamming
space. A parametric optimizer 1403 may load configuration
parameters for operation to optimize the use of the word
library 1201 during operation. Best-practice parameter/hy-
perparameter optimization strategies such as stochastic gra-
dient descent, quasi-random grid search, and evolutionary
search may be used to make optimal choices for all inter-
dependent settings playing a role in the functionality of
system 1200. In cases where lossless compression is not
required, the delta value may be discarded at the expense of
introducing some limited errors into any decoded (recon-
structed) data.

FIG. 15 is a diagram showing a more detailed architecture
for a transmission encoder/decoder 1500. According to
various arrangements, transmission encoder/decoder 1500

25

30

35

40

45

18

may be used to deconstruct data for storage or transmission,
or to reconstruct data that has been received, using a word
library 1201. A library comparator 1501 may be used to
receive data comprising words or codewords, and compare
against a word library 1201 by dividing the incoming stream
into substrings of length t and using a fast hash to check
word library 1201 for each substring. If a substring is found
in word library 1201, the corresponding key/value (that is,
the corresponding source word or codeword, according to
whether the substring used in comparison was itself a word
or codeword) is returned and appended to an output stream.
If a given substring is not found in word library 1201, a
mismatch handler 1502 and hybrid encoder/decoder 1503
may be used to handle the mismatch similarly to operation
during the construction or expansion of word library 1201.
A mismatch handler 1502 may be utilized to identify words
that do not match any existing entries in a word library 1201
and pass them to a hybrid encoder/decoder 1503, that then
calculates a binary Huffman codeword for the mismatched
word and adds the codeword and original data to the word
library 1201 as a new key-value pair. The newly-produced
codeword may then be appended to the output stream. In
arrangements where a mismatch indicator is included in a
received data stream, this may be used to preemptively
identify a substring that is not in word library 1201 (for
example, if it was identified as a mismatch on the transmis-
sion end), and handled accordingly without the need for a
library lookup.

FIG. 19 is an exemplary system architecture of a data
encoding system used for cyber security purposes. Much
like in FIG. 1, incoming data 101 to be deconstructed is sent
to a data deconstruction engine 102, which may attempt to
deconstruct the data and turn it into a collection of code-
words using a library manager 103. Codeword storage 106
serves to store unique codewords from this process, and may
be queried by a data reconstruction engine 108 which may
reconstruct the original data from the codewords, using a
library manager 103. However, a cybersecurity gateway
1900 is present, communicating in-between a library man-
ager 103 and a deconstruction engine 102, and containing an
anomaly detector 1910 and distributed denial of service
(DDoS) detector 1920. The anomaly detector examines
incoming data to determine whether there is a dispropor-
tionate number of incoming reference codes that do not
match reference codes in the existing library. A dispropor-
tionate number of non-matching reference codes may indi-
cate that data is being received from an unknown source, of
an unknown type, or contains unexpected (possibly mali-
cious) data. If the disproportionate number of non-matching
reference codes exceeds an established threshold or persists
for a certain length of time, the anomaly detector 1910 raises
a warning to a system administrator. Likewise, the DDoS
detector 1920 examines incoming data to determine whether
there is a disproportionate amount of repetitive data. A
disproportionate amount of repetitive data may indicate that
a DDoS attack is in progress. If the disproportionate amount
of repetitive data exceeds an established threshold or persists
for a certain length of time, the DDoS detector 1910 raises
a warning to a system administrator. In this way, a data
encoding system may detect and warn users of, or help
mitigate, common cyber-attacks that result from a flow of
unexpected and potentially harmful data, or attacks that
result from a flow of too much irrelevant data meant to slow
down a network or system, as in the case of a DDoS attack.

FIG. 22 is an exemplary system architecture of a data
encoding system used for data mining and analysis pur-
poses. Much like in FIG. 1, incoming data 101 to be

US 12,003,256 B2

19

deconstructed is sent to a data deconstruction engine 102,
which may attempt to deconstruct the data and turn it into a
collection of codewords using a library manager 103. Code-
word storage 106 serves to store unique codewords from this
process, and may be queried by a data reconstruction engine
108 which may reconstruct the original data from the
codewords, using a library manager 103. A data analysis
engine 2210, typically operating while the system is other-
wise idle, sends requests for data to the data reconstruction
engine 108, which retrieves the codewords representing the
requested data from codeword storage 106, reconstructs
them into the data represented by the codewords, and send
the reconstructed data to the data analysis engine 2210 for
analysis and extraction of useful data (i.e., data mining).
Because the speed of reconstruction is significantly faster
than decompression using traditional compression technolo-
gies (i.e., significantly less decompression latency), this
approach makes data mining feasible. Very often, data stored
using traditional compression is not mined precisely because
decompression lag makes it unfeasible, especially during
shorter periods of system idleness. Increasing the speed of
data reconstruction broadens the circumstances under which
data mining of stored data is feasible.

FIG. 24 is an exemplary system architecture of a data
encoding system used for remote software and firmware
updates. Software and firmware updates typically require
smaller, but more frequent, file transfers. A server which
hosts a software or firmware update 2410 may host an
encoding-decoding system 2420, allowing for data to be
encoded into, and decoded from, sourceblocks or code-
words, as disclosed in previous figures. Such a server may
possess a software update, operating system update, firm-
ware update, device driver update, or any other form of
software update, which in some cases may be minor changes
to a file, but nevertheless necessitate sending the new,
completed file to the recipient. Such a server is connected
over a network 2430, which is further connected to a
recipient computer 2440, which may be connected to a
server 2410 for receiving such an update to its system. In this
instance, the recipient device 2440 also hosts the encoding
and decoding system 2450, along with a codebook or library
of reference codes that the hosting server 2410 also shares.
The updates are retrieved from storage at the hosting server
2410 in the form of codewords, transferred over the network
2430 in the form of codewords, and reconstructed on the
receiving computer 2440. In this way, a far smaller file size,
and smaller total update size, may be sent over a network.
The receiving computer 2440 may then install the updates
on any number of target computing devices 2460a-7, using
a local network or other high-bandwidth connection.

FIG. 26 is an exemplary system architecture of a data
encoding system used for large-scale software installation
such as operating systems. Large-scale software installations
typically require very large, but infrequent, file transfers. A
server which hosts an installable software 2610 may host an
encoding-decoding system 2620, allowing for data to be
encoded into, and decoded from, sourceblocks or code-
words, as disclosed in previous figures. The files for the
large scale software installation are hosted on the server
2610, which is connected over a network 2630 to a recipient
computer 2640. In this instance, the encoding and decoding
system 2650a-n is stored on or connected to one or more
target devices 2660a-n, along with a codebook or library of
reference codes that the hosting server 2610 shares. The
software is retrieved from storage at the hosting server 2610
in the form of codewords, and transferred over the network
2630 in the form of codewords to the receiving computer

25

30

40

45

55

20

2640. However, instead of being reconstructed at the receiv-
ing computer 2640, the codewords are transmitted to one or
more target computing devices, and reconstructed and
installed directly on the target devices 2660a-%. In this way,
a far smaller file size, and smaller total update size, may be
sent over a network or transferred between computing
devices, even where the network 2630 between the receiving
computer 2640 and target devices 2660a-z is low band-
width, or where there are many target devices 2660a-7.

FIG. 28 is a block diagram of an exemplary system
architecture 2800 of a codebook training system for a data
encoding system, according to an embodiment. According to
this embodiment, two separate machines may be used for
encoding 2810 and decoding 2820. Much like in FIG. 1,
incoming data 101 to be deconstructed is sent to a data
deconstruction engine 102 residing on encoding machine
2810, which may attempt to deconstruct the data and turn it
into a collection of codewords using a library manager 103.
Codewords may be transmitted 2840 to a data reconstruction
engine 108 residing on decoding machine 2820, which may
reconstruct the original data from the codewords, using a
library manager 103. However, according to this embodi-
ment, a codebook training module 2830 is present on the
decoding machine 2810, communicating in-between a
library manager 103 and a deconstruction engine 102.
According to other embodiments, codebook training module
2830 may reside instead on decoding machine 2820 if the
machine has enough computing resources available; which
machine the module 2830 is located on may depend on the
system user’s architecture and network structure. Codebook
training module 2830 may send requests for data to the data
reconstruction engine 2810, which routes incoming data 101
to codebook training module 2830. Codebook training mod-
ule 2830 may perform analyses on the requested data in
order to gather information about the distribution of incom-
ing data 101 as well as monitor the encoding/decoding
model performance. Additionally, codebook training module
2830 may also request and receive device data 2860 to
supervise network connected devices and their processes
and, according to some embodiments, to allocate training
resources when requested by devices running the encoding
system. Devices may include, but are not limited to, encod-
ing and decoding machines, training machines, sensors,
mobile computing devices, and Internet-of-things (“IoT”)
devices. Based on the results of the analyses, the codebook
training module 2830 may create a new training dataset from
a subset of the requested data in order to counteract the
effects of data drift on the encoding/decoding models, and
then publish updated 2850 codebooks to both the encoding
machine 2810 and decoding machine 2820.

FIG. 29 is a block diagram of an exemplary architecture
for a codebook training module 2900, according to an
embodiment. According to the embodiment, a data collector
2910 is present which may send requests for incoming data
2905 to a data deconstruction engine 102 which may receive
the request and route incoming data to codebook training
module 2900 where it may be received by data collector
2910. Data collector 2910 may be configured to request data
periodically such as at schedule time intervals, or for
example, it may be configured to request data after a certain
amount of data has been processed through the encoding
machine 2810 or decoding machine 2820. The received data
may be a plurality of sourceblocks, which are a series of
binary digits, originating from a source packet otherwise
referred to as a datagram. The received data may compiled
into a test dataset and temporarily stored in a cache 2970.
Once stored, the test dataset may be forwarded to a statistical

US 12,003,256 B2

21

analysis engine 2920 which may utilize one or more algo-
rithms to determine the probability distribution of the test
dataset. Best-practice probability distribution algorithms
such as Kullback-Leibler divergence, adaptive windowing,
and Jensen-Shannon divergence may be used to compute the
probability distribution of training and test datasets. A
monitoring database 2930 may be used to store a variety of
statistical data related to training datasets and model per-
formance metrics in one place to facilitate quick and accu-
rate system monitoring capabilities as well as assist in
system debugging functions. For example, the original or
current training dataset and the calculated probability dis-
tribution of this training dataset used to develop the current
encoding and decoding algorithms may be stored in monitor
database 2930.

Since data drifts involve statistical change in the data, the
best approach to detect drift is by monitoring the incoming
data’s statistical properties, the model’s predictions, and
their correlation with other factors. After statistical analysis
engine 2920 calculates the probability distribution of the test
dataset it may retrieve from monitor database 2930 the
calculated and stored probability distribution of the current
training dataset. It may then compare the two probability
distributions of the two different datasets in order to verify
if the difference in calculated distributions exceeds a pre-
determined difference threshold. If the difference in distri-
butions does not exceed the difference threshold, that indi-
cates the test dataset, and therefore the incoming data, has
not experienced enough data drift to cause the encoding/
decoding system performance to degrade significantly,
which indicates that no updates are necessary to the existing
codebooks. However, if the difference threshold has been
surpassed, then the data drift is significant enough to cause
the encoding/decoding system performance to degrade to the
point where the existing models and accompanying code-
books need to be updated. According to an embodiment, an
alert may be generated by statistical analysis engine 2920 if
the difference threshold is surpassed or if otherwise unex-
pected behavior arises.

In the event that an update is required, the test dataset
stored in the cache 2970 and its associated calculated
probability distribution may be sent to monitor database
2930 for long term storage. This test dataset may be used as
a new training dataset to retrain the encoding and decoding
algorithms 2940 used to create new sourceblocks based
upon the changed probability distribution. The new source-
blocks may be sent out to a library manager 2915 where the
sourceblocks can be assigned new codewords. Each new
sourceblock and its associated codeword may then be added
to a new codebook and stored in a storage device. The new
and updated codebook may then be sent back 2925 to
codebook training module 2900 and received by a codebook
update engine 2950. Codebook update engine 2950 may
temporarily store the received updated codebook in the
cache 2970 until other network devices and machines are
ready, at which point codebook update engine 2950 will
publish the updated codebooks 2945 to the necessary net-
work devices.

A network device manager 2960 may also be present
which may request and receive network device data 2935
from a plurality of network connected devices and
machines. When the disclosed encoding system and code-
book training system 2800 are deployed in a production
environment, upstream process changes may lead to data
drift, or other unexpected behavior. For example, a sensor
being replaced that changes the units of measurement from
inches to centimeters, data quality issues such as a broken

15

25

35

40

45

50

55

22

sensor always reading 0, and covariate shift which occurs
when there is a change in the distribution of input variables
from the training set. These sorts of behavior and issues may
be determined from the received device data 2935 in order
to identify potential causes of system error that is not related
to data drift and therefore does not require an updated
codebook. This can save network resources from being
unnecessarily used on training new algorithms as well as
alert system users to malfunctions and unexpected behavior
devices connected to their networks. Network device man-
ager 2960 may also utilize device data 2935 to determine
available network resources and device downtime or periods
of time when device usage is at its lowest. Codebook update
engine 2950 may request network and device availability
data from network device manager 2960 in order to deter-
mine the most optimal time to transmit updated codebooks
(i.e., trained libraries) to encoder and decoder devices and
machines.

FIG. 30 is a block diagram of another embodiment of the
codebook training system using a distributed architecture
and a modified training module. According to an embodi-
ment, there may be a server which maintains a master
supervisory process over remote training devices hosting a
master training module 3010 which communicates via a
network 3020 to a plurality of connected network devices
3030a-n. The server may be located at the remote training
end such as, but not limited to, cloud-based resources, a
user-owned data center, etc. The master training module
located on the server operates similarly to the codebook
training module disclosed in FIG. 29 above, however, the
server 3010 utilizes the master training module via the
network device manager 2960 to farm out training resources
to network devices 3030a-n. The server 3010 may allocate
resources in a variety of ways, for example, round-robin,
priority-based, or other manner, depending on the user
needs, costs, and number of devices running the encoding/
decoding system. Server 3010 may identify elastic resources
which can be employed if available to scale up training when
the load becomes too burdensome. On the network devices
3030a-2 may be present a lightweight version of the training
module 3040 that trades a little suboptimality in the code-
book for training on limited machinery and/or makes train-
ing happen in low-priority threads to take advantage of idle
time. In this way the training of new encoding/decoding
algorithms may take place in a distributed manner which
allows data gathering or generating devices to process and
train on data gathered locally, which may improve system
latency and optimize available network resources.

FIG. 32 is an exemplary system architecture for an
encoding system with multiple codebooks. A data set to be
encoded 3201 is sent to a sourcepacket buffer 3202. The
sourcepacket buffer is an array which stores the data which
is to be encoded and may contain a plurality of sourcepack-
ets. Each sourcepacket is routed to a codebook selector
3300, which retrieves a list of codebooks from a codebook
database 3203. The sourcepacket is encoded using the first
codebook on the list via an encoder 3204, and the output is
stored in an encoded sourcepacket buffer 3205. The process
is repeated with the same sourcepacket using each subse-
quent codebook on the list until the list of codebooks is
exhausted 3206, at which point the most compact encoded
version of the sourcepacket is selected from the encoded
sourcepacket buffer 3205 and sent to an encoded data set
buffer 3208 along with the ID of the codebook used to
produce it. The sourcepacket buffer 3202 is determined to be
exhausted 3207, a notification is sent to a combiner 3400,
which retrieves all of the encoded sourcepackets and code-

US 12,003,256 B2

23
book IDs from the encoded data set buffer 3208, and
combines them into a single file for output.

According to an embodiment, the list of codebooks used
in encoding the data set may be consolidated to a single
codebook which is provided to the combiner 3400 for output
along with the encoded sourcepackets and codebook 1Ds. In
this case, the single codebook will contain the data from, and
codebook IDs of, each of the codebooks used to encode the
data set. This may provide a reduction in data transfer time,
although it is not required since each sourcepacket (or
sourceblock) will contain a reference to a specific codebook
ID which references a codebook that can be pulled from a
database or be sent alongside the encoded data to a receiving
device for the decoding process.

In some embodiments, each sourcepacket of a data set
3201 arriving at the encoder 3204 is encoded using a
different sourceblock length. Changing the sourceblock
length changes the encoding output of a given codebook.
Two sourcepackets encoded with the same codebook but
using different sourceblock lengths would produce different
encoded outputs. Therefore, changing the sourceblock
length of some or all sourcepackets in a data set 3201
provides additional security. Even if the codebook was
known, the sourceblock length would have to be known or
derived for each sourceblock in order to decode the data set
3201. Changing the sourceblock length may be used in
conjunction with the use of multiple codebooks.

FIG. 33 is a flow diagram describing an exemplary
algorithm for encoding of data using multiple codebooks. A
data set is received for encoding 3301, the data set com-
prising a plurality of sourcepackets. The sourcepackets are
stored in a sourcepacket buffer 3302. A list of codebooks to
be used for multiple codebook encoding is retrieved from a
codebook database (which may contain more codebooks
than are contained in the list) and the codebook IDs for each
codebook on the list are stored as an array 3303. The next
sourcepacket in the sourcepacket buffer is retrieved from the
sourcepacket buffer for encoding 3304. The sourcepacket is
encoded using the codebook in the array indicated by a
current array pointer 3305. The encoded sourcepacket and
length of the encoded sourcepacket is stored in an encoded
sourcepacket buffer 3306. If the length of the most recently
stored sourcepacket is the shortest in the buffer 3307, an
index in the buffer is updated to indicate that the codebook
indicated by the current array pointer is the most efficient
codebook in the buffer for that sourcepacket. If the length of
the most recently stored sourcepacket is not the shortest in
the buffer 3307, the index in the buffer is not updated 3308
because a previous codebook used to encode that source-
packet was more efficient 3309. The current array pointer is
iterated to select the next codebook in the list 3310. If the list
of codebooks has not been exhausted 3311, the process is
repeated for the next codebook in the list, starting at step
3305. If the list of codebooks has been exhausted 3311, the
encoded sourcepacket in the encoded sourcepacket buffer
(the most compact version) and the codebook ID for the
codebook that encoded it are added to an encoded data set
buffer 3312 for later combination with other encoded sour-
cepackets from the same data set. At that point, the source-
packet buffer is checked to see if any sourcepackets remain
to be encoded 3313. If the sourcepacket buffer is not
exhausted, the next sourcepacket is retrieved 3304 and the
process is repeated starting at step 3304. If the sourcepacket
buffer is exhausted 3313, the encoding process ends 3314. In
some embodiments, rather than storing the encoded source-
packet itself in the encoded sourcepacket buffer, a universal
unique identification (UUID) is assigned to each encoded

10

15

20

25

30

35

40

45

50

55

60

65

24

sourcepacket, and the UUID is stored in the encoded sour-
cepacket buffer instead of the entire encoded sourcepacket.

FIG. 34 is a diagram showing an exemplary control byte
used to combine sourcepackets encoded with multiple code-
books. In this embodiment, a control byte 3401 (i.e., a series
of 8 bits) is inserted at the before (or after, depending on the
configuration) the encoded sourcepacket with which it is
associated, and provides information about the codebook
that was used to encode the sourcepacket. In this way,
sourcepackets of a data set encoded using multiple code-
books can be combined into a data structure comprising the
encoded sourcepackets, each with a control byte that tells the
system how the sourcepacket can be decoded. The data
structure may be of numerous forms, but in an embodiment,
the data structure comprises a continuous series of control
bytes followed by the sourcepacket associated with the
control byte. In some embodiments, the data structure will
comprise a continuous series of control bytes followed by
the UUID of the sourcepacket associated with the control
byte (and not the encoded sourcepacket, itself). In some
embodiments, the data structure may further comprise a
UUID inserted to identify the codebook used to encode the
sourcepacket, rather than identifying the codebook in the
control byte. Note that, while a very short control code (one
byte) is used in this example, the control code may be of any
length, and may be considerably longer than one byte in
cases where the sourceblocks size is large or in cases where
a large number of codebooks have been used to encode the
sourcepacket or data set.

In this embodiment, for each bit location 3402 of the
control byte 3401, a data bit or combinations of data bits
3403 provide information necessary for decoding of the
sourcepacket associated with the control byte. Reading in
reverse order of bit locations, the first bit N (location 7)
indicates whether the entire control byte is used or not. If a
single codebook is used to encode all sourcepackets in the
data set, N is set to 0, and bits 3 to 0 of the control byte 3401
are ignored. However, where multiple codebooks are used,
N is set to 1 and all 8 bits of the control byte 3401 are used.
The next three bits RRR (locations 6 to 4) are a residual
count of the number of bits that were not used in the last byte
of the sourcepacket. Unused bits in the last byte of a
sourcepacket can occur depending on the sourceblock size
used to encode the sourcepacket. The next bit I (location 3)
is used to identify the codebook used to encode the source-
packet. If bit I is 0, the next three bits CCC (locations 2 to
0) provide the codebook ID used to encode the sourcepacket.
The codebook ID may take the form of a codebook cache
index, where the codebooks are stored in an enumerated
cache. If bit I is 1, then the codebook is identified using a
four-byte UUID that follows the control byte.

FIG. 35 is a diagram showing an exemplary codebook
shuflling method. In this embodiment, rather than selecting
codebooks for encoding based on their compaction effi-
ciency, codebooks are selected either based on a rotating list
or based on a shuflling algorithm. The methodology of this
embodiment provides additional security to compacted data,
as the data cannot be decoded without knowing the precise
sequence of codebooks used to encode any given source-
packet or data set.

Here, a list of six codebooks is selected for shuffling, each
identified by a number from 1 to 6 3501a. The list of
codebooks is sent to a rotation or shuffling algorithm 3502,
and reorganized according to the algorithm 350154. The first
six of a series of sourcepackets, each identified by a letter
from A to E, 3503 is each encoded by one of the algorithms,
in this case A is encoded by codebook 1, B is encoded by

US 12,003,256 B2

25

codebook 6, C is encoded by codebook 2, D is encoded by
codebook 4, E is encoded by codebook 13 A is encoded by
codebook 5. The encoded sourcepackets 3503 and their
associated codebook identifiers 35015 are combined into a
data structure 3504 in which each encoded sourcepacket is
followed by the identifier of the codebook used to encode
that particular sourcepacket.

According to an embodiment, the codebook rotation or
shuflling algorithm 3502 may produce a random or pseudo-
random selection of codebooks based on a function. Some
non-limiting functions that may be used for shuffling
include:

1. given a function f(n) which returns a codebook accord-
ing to an input parameter n in the range 1 to N are, and
given t the number of the current sourcepacket or
sourceblock: f(t*M modulo p), where M is an arbitrary
multiplying factor (1<=M<=p-1) which acts as a key,
and p is a large prime number less than or equal to N;

2. f(A"t modulo p), where A is a base relatively prime to
p-1 which acts as a key, and p is a large prime number
less than or equal to N;

3. f(floor(t*x) modulo N), and x is an irrational number
chosen randomly to act as a key;

4. {(t XOR K) where the XOR is performed bit-wise on
the binary representations of t and a key K with same
number of bits in its representation of N. The function
f(n) may return the nth codebook simply by referencing
the nth element in a list of codebooks, or it could return
the nth codebook given by a formula chosen by a user.

In one embodiment, prior to transmission, the endpoints
(users or devices) of a transmission agree in advance about
the rotation list or shuffling function to be used, along with
any necessary input parameters such as a list order, function
code, cryptographic key, or other indicator, depending on the
requirements of the type of list or function being used. Once
the rotation list or shuffling function is agreed, the endpoints
can encode and decode transmissions from one another
using the encodings set forth in the current codebook in the
rotation or shuffle plus any necessary input parameters.

In some embodiments, the shuffling function may be
restricted to permutations within a set of codewords of a
given length.

Note that the rotation or shuffling algorithm is not limited
to cycling through codebooks in a defined order. In some
embodiments, the order may change in each round of
encoding. In some embodiments, there may be no restric-
tions on repetition of the use of codebooks.

In some embodiments, codebooks may be chosen based
on some combination of compaction performance and rota-
tion or shuffling. For example, codebook shuffling may be
repeatedly applied to each sourcepacket until a codebook is
found that meets a minimum level of compaction for that
sourcepacket. Thus, codebooks are chosen randomly or
pseudo-randomly for each sourcepacket, but only those that
produce encodings of the sourcepacket better than a thresh-
old will be used.

FIG. 36 shows an encoding/decoding configuration as
previously described in an embodiment. In certain previ-
ously-described embodiments, training data 3610 is fed to a
codebook generator 3620, which generates a codebook
based on the training data. The codebook 3630 is sent to both
an encoder 3640 and a decoder 3650 which may be on the
same computer or on different computers, depending on the
configuration. The encoder 3640 receives unencoded data,
encodes it into codewords using the codebook 3630, and
sends encoded data in the form of codewords to the decoder
3650. The decoder 3650 receives the encoded data in the

10

20

25

30

35

40

45

50

55

60

65

26

form of codewords, decodes it using the same codebook
3630 (which may be a different copy of the codebook in
some configurations), and outputs decoded data which is
identical to the unencoded data received by the encoder
3640.

FIG. 37 shows an encoding/decoding configuration with
extended functionality suitable to derive a different data set
at the decoder from the data arriving at the encoder. In this
configuration, mapping rules 3711 and data transformation
rules 3712 are combined with the training data 3710 fed into
the codebook generator. The codebook generator 3720 cre-
ates a codebook 3730 from the training data. The codebook
3730 is sent to the encoder 3740 which receives unencoded
data, encodes it into codewords using the codebook 3730,
and sends encoded data in the form of codewords to the
decoder 3750. In this configuration, however, the codebook
generator 3720 also creates a mapping and transformation
appendix 3731 which it appends to the copy of the codebook
3730 sent to the decoder. The appendix 3731 may be a
separate file or document, or may be integrated into the
codebook 3730, such as in the form of bit extensions
appended to each sourceblock in the codebook 3730 or an
additional dimensional array to the codebook 3730 which
provides instructions as to mapping and transformations.

The decoder 3750 receives the encoded data in the form
of codewords, decodes it using the same codebook 3730
(which may be a different copy of the codebook in some
configurations), but instead of outputting decoded data
which is identical to the unencoded data received by the
encoder 3740, the decoder maps and/or transforms the
decoded data according to the mapping and transformation
appendix, converting the decoded data into a transformed
data output. As a simple example of the operation of this
configuration, the unencoded data received by the encoder
3740 might be a list of geographical location names, and the
decoded and transformed data output by the decoder based
on the mapping and transformation appendix 3731 might be
a list of GPS coordinates for those geographical location
names.

In some embodiments, artificial intelligence or machine
learning algorithms might be used to develop or generate the
mapping and transformation rules. For example, the training
data might be processed through a machine learning algo-
rithm trained (on a different set of training data) to identify
certain characteristics within the training data such as
unusual numbers of repetitions of certain bit patterns,
unusual amounts of gaps in the data (e.g., large numbers of
zeros), or even unusual amounts of randomness, each of
which might indicate a problem with the data such as
missing or corrupted data, possible malware, possible
encryption, etc. As the training data is processed, the map-
ping and transform appendix 3731 is generated by the
machine learning algorithm based on the identified charac-
teristics. In this example, the output of the decoder might be
indications of the locations of possible malware in the
decoded data or portions of the decoded data that are
encrypted. In some embodiments, direct encryption (e.g.,
SSL) might be used to further protect the encoded data
during transmission.

FIG. 38 shows an encoding/decoding configuration with
extended functionality suitable for using in a distributed
computing environment comprising a plurality of distributed
network nodes 3860. In this configuration, network rules and
limits 3811 and network policies 3812 are combined with
the training data 3810 fed into the codebook generator. The
codebook generator 3820 creates a codebook 3830 from the
training data. The codebook generator 3820 also creates a

US 12,003,256 B2

27

behavior appendix 3831 which it appends to the copies of
the codebook 3830 sent to both the encoder 3840 and
decoder 3850. The appendix 3831 may be a separate file or
document, or may be integrated into the codebook 3830,
such as in the form of bit extensions appended to each
sourceblock in the codebook 3830 which provide instruc-
tions as to mapping and transformations. In some embodi-
ments, the behavior appendix 3831 may be sent only to the
encoder 3840 or decoder 3850, depending on network
configuration and other parameters.

The encoder 3840 receives unencoded data, implements
any behaviors required by the behavior appendix 3831 such
as limit checking, network policies, data prioritization, per-
missions, etc., as encodes it into codewords using the
codebook 3830. For example, as data is encoded, the
encoder may check the behavior appendix for each source-
block within the data to determine whether that sourceblock
(or a combination of sourceblocks) violates any network
rules. As a couple of non-limiting examples, certain source-
blocks may be identified, for example, as fingerprints for
malware or viruses, and may be blocked from further
encoding or transmission, or certain sourceblocks or com-
binations of sourceblocks may be restricted to encoding on
some nodes of the network, but not others. The decoder
works in a similar manner. The decoder 3850 receives
encoded data, implements any behaviors required by the
behavior appendix 3831 such as limit checking, network
policies, data prioritization, permissions, etc., as decodes it
into decoded data using the codebook 3830 resulting in data
identical to the unencoded data received by the encoder
3840. For example, as data is decoded, the decoder may
check the behavior appendix for each sourceblock within the
data to determine whether that sourceblock (or a combina-
tion of sourceblocks) violates any network rules. As a couple
of non-limiting examples, certain sourceblocks may be
identified, for example, as fingerprints for malware or
viruses, and may be blocked from further decoding or
transmission, or certain sourceblocks or combinations of
sourceblocks may be restricted to decoding on some nodes
of the network, but not others.

In some embodiments, artificial intelligence or machine
learning algorithms might be used to develop or generate the
behavioral appendix 3831. For example, the training data
might be processed through a machine learning algorithm
trained (on a different set of training data) to identify certain
characteristics within the training data such as unusual
numbers of repetitions of certain bit patterns, unusual
amounts of gaps in the data (e.g., large numbers of zeros),
or even unusual amounts of randomness, each of which
might indicate a problem with the data such as missing or
corrupted data, possible malware, possible encryption, etc.
As the training data is processed, the mapping and transform
appendix 3831 is generated by the machine learning algo-
rithm based on the identified characteristics. As a couple of
non-limiting examples, the machine learning algorithm
might generate a behavior appendix 3831 in which certain
sourceblocks are identified, for example, as fingerprints for
malware or viruses, and are blocked from further decoding
or transmission, or in which certain sourceblocks or com-
binations of sourceblocks are restricted to decoding on some
nodes of the network, but not others.

FIG. 39 shows an encoding/decoding configuration with
extended functionality suitable for generating protocol for-
matted data at the decoder derived from data arriving at the
encoder. In this configuration, protocol formatting policies
3911 are combined with the training data 3910 fed into the
codebook generator. The codebook generator 3920 creates a

10

25

35

40

45

28
codebook 3930 from the training data. The codebook 3930
is sent to the encoder 3940 which receives unencoded data,
encodes it into codewords using the codebook 3930, and
sends encoded data in the form of codewords to the decoder
3950. In this configuration, however, the codebook genera-
tor 3920 also creates a protocol appendix 3931 which it
appends to the copy of the codebook 3930 sent to the
decoder. The appendix 3931 may be a separate file or
document, or may be integrated into the codebook 3930,
such as in the form of bit extensions appended to each
sourceblock in the codebook 3930 or an additional dimen-
sional array to the codebook 3930 which provides instruc-
tions as to protocol formatting.

The decoder 3950 receives the encoded data in the form
of codewords, decodes it using the same codebook 3930
(which may be a different copy of the codebook in some
configurations), and but instead of outputting decoded data
which is identical to the unencoded data received by the
encoder 3940, the decoder converts the decoded data accord-
ing to the protocol appendix, converting the decoded data
into a protocol formatted data output. As a simple example
of the operation of this configuration, the unencoded data
received by the encoder 3940 might be a data to be trans-
ferred over a TCP/IP connection, and the decoded and
transformed data output by the decoder based on the proto-
col appendix 3931 might be the data formatted according to
the TCP/IP protocol.

In some embodiments, artificial intelligence or machine
learning algorithms might be used to develop or generate the
protocol policies. For example, the training data might be
processed through a machine learning algorithm trained (on
a different set of training data) to identify certain character-
istics within the training data such as types of files or
portions of data that are typically sent to a particular port on
a particular node of a network, etc. As the training data is
processed, the protocol appendix 3931 is generated by the
machine learning algorithm based on the identified charac-
teristics. In this example, the output of the decoder might be
the unencoded data formatted according to the TCP/IP
protocol in which the TCP/IP destination is changed based
on the contents of the data or portions of the data (e.g.,
portions of data of one type are sent to one port on a node
and portions of data of a different type are sent to a different
port on the same node). In some embodiments, direct
encryption (e.g., SSL) might be used to further protect the
encoded data during transmission.

FIG. 40 shows an exemplary encoding/decoding configu-
ration with extended functionality suitable for file-based
encoding/decoding. In this configuration, training data in the
form of a set of files 4010 is fed to a codebook generator
4020, which generates a codebook based on the files 4010.
The codebook may comprise a single codebook 4030 gen-
erated from all of the files, or a set of smaller codebooks
called codepackets 4031, each codepacket 4031 being gen-
erated from one of the files, or a combination of both. The
codebook 4030 and/or codepackets 4031 are sent to both an
encoder 4040 and a decoder 4050 which may be on the same
computer or on different computers, depending on the con-
figuration. The encoder 4040 receives a file, encodes it into
codewords using the codebook 4030 or one of the code-
packets 4031, and sends encoded file in the form of code-
words to the decoder 4050. The decoder 4050 receives the
encoded file in the form of codewords, decodes it using the
same codebook 4030 (which may be a different copy of the
codebook in some configurations), and outputs a decoded
file which is identical to the unencoded data received by the
encoder 4040. Any codebook miss (a codeword that can’t be

US 12,003,256 B2

29

found either in the codebook 4030 or the relevant code-
packet 4031) that occurs during decoding indicates that the
file 4011 has been changed between encoding and decoding,
thus providing the file-based encoding/decoding with inher-
ent protection against changes.

FIG. 41 shows an exemplary encoding/decoding configu-
ration with extended functionality suitable for file-based
encoding/decoding or operating system files. File-based
encoding/decoding of operating system files is a variant of
the file-based encoding/decoding configuration described
above. In file-based encoding/decoding of operating sys-
tems, one or more operating system files 4010a-7 are used
to create a codebook 4030 or a set of smaller files called
codepackets 4031, each codepacket 4031 being created from
a particular operating system file. Encoding and decoding of
those same operating system files 4110a-» would be per-
formed using the codebook 4130 or codepackets 4131
created from the operating system files 4110a-1z. Conse-
quently, encoding and decoding would be expected to pro-
duce no encoding misses (i.e., all possible sourceblocks of
an operating system file to be encoded would be as source-
blocks in the codebook 4130 or the codepacket 4131 cor-
responding to the operating system file). A miss during
encoding would indicate that the operating system file is
either not one of those used to generate the codebook 4130
or has been changed. A miss during decoding (assuming that
the operating system file encoded without a miss) will be
flagged as an indication the operating system file has been
changed between encoding and decoding. Access to oper-
ating system files would be required to pass through the
encoding/decoding process, thus protecting operating sys-
tem files from tampering.

In this configuration, training data in the form of a set of
operating system files 4110 is fed to a codebook generator
4120, which generates a codebook based on the operating
system files 4110. The codebook may comprise a single
codebook 4130 generated from all of the operating system
files, or a set of smaller codebooks called codepackets 4131,
each codepacket 4131 being generated from one of the
operating system files, or a combination of both. The code-
book 4130 and/or codepackets 4131 are sent to both an
encoder 4141 and a decoder 4150 which may be on the same
computer or on different computers, depending on the con-
figuration. The encoder 4141 receives an operating system
file 41105 from the set of operating system files 4110a-»
used to generate the codebook 4130, encodes it into code-
words using the codebook 4130 or one of the codepackets
4131, and sends encoded operating system file 41105 in the
form of codewords to the decoder 4150. The decoder 4150
receives the encoded operating system file 41105 in the form
of codewords, decodes it using the same codebook 4130
(which may be a different copy of the codebook in some
configurations), and outputs a decoded operating system file
41105 which is identical to the unencoded operating system
file 41105 received by the encoder 4141. Any codebook miss
(a codeword that can’t be found either in the codebook 4130
or the relevant codepacket 4131) that occurs during decod-
ing indicates that the operating system file 41105 has been
changed between encoding and decoding, thus providing the
operating system file-based encoding/decoding with inher-
ent protection against changes.

FIG. 42 shows an exemplary encoding/decoding configu-
ration with data serialization and deserialization. In this
embodiment, training data 4210 is fed to a codebook gen-
erator 4220, which generates a codebook based on the
training data. The codebook 4230 is sent to both an encoder
4240 and a decoder 4250 which may be on the same

30

40

45

30

computer or on different computers, depending on the con-
figuration. Unencoded data is sent to a data serializer 4270,
which serializes the data according to a serialization proto-
col (e.g., BeBop, Google Protocol Buffers, MessagePack) to
create a wrapper or connector for the unencoded data. The
encoder 4240 receives unencoded, serialized data, encodes it
into codewords using the codebook 4230, and sends the
encoded, serialized data to a destination, at which destina-
tion the data is received by a data deserializer 4271 which
deserializes the data using the same serialization protocol as
was used to serialize the data, and the encoded, deserialized
data is then to a decoder 4250, which receives the encoded,
unserialized data in the form of codewords, decodes it using
the same codebook 4230 (which may be a different copy of
the codebook in some configurations), and outputs decoded
data which is identical to the unencoded data received by the
encoder 4240.

The combination of data compaction with data serializa-
tion can be used to maximize compaction and data transfer
with extremely low latency and no loss. For example, a
wrapper or connector may be constructed using certain
serialization protocols (e.g., BeBop, Google Protocol Buf-
fers, MessagePack). The idea is to use known, deterministic
file structure (schemes, grammars, etc.) to reduce data size
first via token abbreviation and serialization, and then to use
the data compaction methods described herein to take
advantage of stochastic/statistical structure by training it on
the output of serialization. The encoding process can be
summarized as: serialization-encode—compact-encode, and
the decoding process would be the reverse: compact-decode-
—sserialization-decode. The deterministic file structure
could be automatically discovered or encoded by the user
manually as a scheme/grammar. Another benefit of serial-
ization in addition to those listed above is deeper obfusca-
tion of data, further hardening the cryptographic benefits of
encoding using codebooks.

FIG. 51 is a block diagram illustrating an exemplary
architecture for a data compaction and intrusion detection
system, according to an embodiment. According to this
embodiment, two separate machines may be used for encod-
ing 5110 and decoding 5120. Much like in FIG. 1, incoming
data 101 to be deconstructed is sent to a data deconstruction
engine 102 residing on encoding machine 5110, which may
attempt to deconstruct the data and turn it into a collection
of codewords using a library manager 103. Codewords may
be transmitted 5140 to a data reconstruction engine 108
residing on decoding machine 5120, which may reconstruct
the original data from the codewords, using a library man-
ager 103. However, according to this embodiment, a code-
book training module 5130 is present on the encoding
machine 5110, communicating in-between a library manager
103 and a deconstruction engine 102. Additionally, an
intrusion detection module 5160 is present on the encoding
machine 5110, communicating in-between a user interface
5180 and a data deconstruction engine 102. According to
other embodiments, codebook training module 5130 may
reside instead on decoding machine 5120 if the machine has
enough computing resources available; which machine the
module 5130 is located on may depend on the system user’s
architecture and network structure. Codebook training mod-
ule 5130 may send requests for data to the data reconstruc-
tion engine 108, which routes incoming data 101 to code-
book training module 5130. Codebook training module 5130
may perform analyses on the requested data in order to
gather information about the distribution of incoming data
101 as well as monitor the encoding/decoding model per-
formance. Additionally, codebook training module 5130

US 12,003,256 B2

31

may also request and receive device data to supervise
network connected devices and their processes and, accord-
ing to some embodiments, to allocate training resources
when requested by devices running the encoding system.
Devices may include, but are not limited to, encoding and
decoding machines, training machines, sensors, mobile
computing devices, and Internet-of-things (“IoT”) devices.
Based on the results of the analyses, the codebook training
module 5130 may create a new training dataset from a subset
of'the requested data in order to counteract the effects of data
drift on the encoding/decoding models, and then publish
updated 5150 codebooks to both the encoding machine 5110
and decoding machine 5120.

According to the embodiment, intrusion detection module
5160 may receive, retrieve, or otherwise obtain a codeword
data stream, such as the data stream associated with code-
word transmission 5140, and to perform analyses on the
codeword data stream in order to determine if an unusual
distribution of codewords has occurred (i.e., anomalous
behavior), and if anomalous behavior is detected to catego-
rize the behavior as data intrusion or from some other cause.
In either case, the anomalous behavior may be recorded for
further analysis and auditing, and an alert may be sent 5170
to user interface 5180 wherein a user can view and interact
and configure system 5100 components. For compaction to
be used for the purpose of detecting intrusions, on-the-fly-
builds of codebooks may be used to ensure that accurate,
stable levels of compaction can be measured for a specific
device(s) on a specific platform. The codebook training
module 5130 can enable a local device or server to build and
provision new dynamic codebooks as needed on the basis of
changing conditions, such as weather, changes to hardware
or software, and other conditions.

Intrusion detection module 5160 is configured for unusual
distribution detection (“UDD”) capability for the detection
of'a potential intrusion. Intrusion detection module 5160 can
detect a UDD in a codeword data stream and identify a likely
reason for a detected unusual compaction ratio such as, for
example, a source other than a likely intrusion such as a
device error, a corrupted codebook, an environment change,
or a likely intrusion. Because intrusion detection depends on
highly localized monitoring of deviation from expected an
expected compaction ratio, dynamic codebooks provide a
useful tool for intrusion detection for a few reasons. First,
the codebook training module 5130 will enable fully auto-
mated local builds and provisioning of codebooks. This
capability will enable new local deployments of the system
5100 for purposes of UDD quickly and with as little human
intervention as possible. Codebook training module 5130
provides a practical approach to deploying the system for
intrusion detection on a large scale with relative ease.
Second, the dynamic codebooks will also enable local users
operating hardware or software with communication capa-
bilities to adapt the system for their use simply and easily.
For example, a squadron of aircraft operating in an arctic
environment may have different equipment than the same
aircraft operating in a tropical environment, or the same
equipment may generate data from certain equipment that is
significantly different, such as ambient temperature. The
same logic applies to situations in which changes in hard-
ware, software, and environmental conditions have affected
the content of machine files generated for transmission,
automating the process of adapting to these changes.

Codebook training module 5130 provides a practical
approach to both scale deployments of the system and to
rapidly updating codebooks in existing system deployments,

40

45

32

whether as a response to an intrusion or as an update in
response to a reduction in compaction ratio resulting from
another source.

The user interface 5180 may be configured to display a
variety of information related to, but not necessarily limited
to, device and system compaction levels, intrusion detection
information and alerting, user selected risk sensitivity set-
tings, controls related to the codebook training module 5130
(e.g., user selected threshold levels, test and training dataset
size, etc.) and intrusion detection module 5160 (e.g., risk
sensitivity threshold, divergence quantities, compaction
ratio limits, etc.), and/or the like.

FIG. 52 is a block diagram illustrating an exemplary
architecture for an aspect of a system for data compaction
with intrusion detection, an intrusion detection module.
According to the embodiment, a codeword collector 5210 is
present which may send request for incoming codewords
5205 to a data deconstruction engine 102 where it may be
received by codeword collector 5210. In some implemen-
tations, codeword collector 5210 need not necessarily
request incoming codewords, but may be retrieved or oth-
erwise obtained from data deconstruction engine 102. Data
deconstruction engine 102 may send a codeword data stream
to decoding machine 5120 and codeword collector 5210
may obtain this codeword data stream in real-time and send
each code of the plurality of codewords in the data stream to
statistical analysis engine 5220. Codeword collector 5210
may also send codewords for temporary storage in a cache
5250.

According to the embodiment, statistical analysis engine
5220 is configured to use advanced statistical methods to
establish whether a detected UDD is likely to be a result of
an intrusion or some other cause. Statistical analysis engine
5220 may compute the probability distribution of the code-
word data stream and compare that computed value to a
reference probability distribution (i.e., a reference code-
book) in order to calculate the divergence between the two
sets of probability distributions, and use the calculated
divergence to make a determination on whether an unusual
distribution is due to an intrusion or some other cause. The
reference codebook may be created by codebook training
module 5130 and sent 5225 to intrusion detection module
5200 to be used for comparison tasks. Best-practice prob-
ability distribution algorithms such as Kullback-Leibler
divergence, adaptive windowing, and Jensen-Shannon
divergence may be used to compute the probability distri-
bution of the received codeword data stream. In some
implementations, the basis of intrusion detection module’s
5200 analysis may be Kullback-Leibler divergence (also
called KL divergence, or relative entropy), which is a type
of statistical distance, to determine a measure of how an
observed probability distribution P based on data generated
in the “real-world” is different, or diverges in statistical
terms, from a second reference probability distribution Q. In
an embodiment, a large sample set of approximately inde-
pendent and identically distributed (“iid”) symbols will act
as sourceblocks to be used as a reference probability distri-
bution “training” set to be used by codebook training
module 5130 to build reference codebooks to be used as Q.
The probability distribution of live data in a short window of
time provides P. Data which precisely matches the training
data distribution will have a KL-divergence of 0, which is
observable at a compaction ratio at or close to the expected
ratio as measured during training. Data which deviates
significantly from the training data distribution, i.e., an
anomalous event, is observable as an unusual compaction
ratio, since this ratio is lower-bounded by and closely

US 12,003,256 B2

33

estimates the KL-divergence between P and Q. The com-
paction/encoding techniques disclosed herein are highly
stable and provide a highly stable data stream (of code-
words) for monitoring. A UDD, consequently, can be
detected easily and quickly. UDDs may include, but are not
limited to: an out of tolerance compaction ratio, such as 70%
compaction rising in some specified timeframe to 90%; out
of tolerance compaction ratio, low, such as 70% compaction
falling in some specified timeframe to 50%; and a suspi-
ciously stable compaction ration over a selectable time-
frame. The timeframe in these and other scenarios may be
configured by a system user to suit their individual or
enterprise goals. Likewise, a risk sensitivity threshold may
be configured by a system user to suit their use cases and
personal level of assumed risk.

KL-divergence is a well-established methodology for
determining the expected excess surprise from using the
probability Q, when the actual distribution is P. As imple-
mented by the data compaction and intrusion detection
system 5100, the codebook generated by approximate iid
sample data will be used as a model for Q, and for the live
data the actual distribution is P, the codebook generated from
the live data. A UDD event may be indicated when P exceeds
the expected excess surprise. Although KI.-divergence is a
distance between two probability distributions, it is not a
metric and is not symmetric in comparing probability dis-
tributions. This is a distinct difference of KI.-divergence/
relative entropy compared measurements of variation. It is a
type of divergence, better characterized as a generalization
of'squared distance. It is a consequence of Shannon’s Source
Coding Theorem that the optimal coding (read: compaction)
rate of data is its entropy rate, and that this is achievable
asymptotically. The design of the disclosed compaction/
encoding protocol ensures that the compaction ratio indeed
comes quite close to this theoretical limit when the data
being encoded is identically distributed to the training data.
A deeper consequence of the Source Coding Theorem is
that, if an ideal entropy coding method, trained on data with
distribution Q, is used to encode data that actually has
probability distribution P, the degradation in compaction
will be the KLL-divergence between P and Q. Therefore, the
data whose probability distribution deviates from the train-
ing data will be compacted by the system 5100 at a rate
exceeding the training data’s entropy rate by the same
amount.

Conversely, if data resembles the training data more so
than would be expected for live data with all its natural
variability, this is detectable as an unusually low compaction
ratio, because the actual compaction rate will also have some
natural level of variability resulting from transient devia-
tions from the probability distribution of training data.

As a third tool for detecting anomalies, if data of any
amount of deviation from training data in distribution shows
an unusually stable compaction ratio, this is a possible
indicator of synthetic data being injected to obscure a
possible intrusion/attack.

In various implementations, during codebook training and
testing, statistical analysis engine 5220 can assess the
expected compaction ratio | after verifying that sufficient
data is available to obtain a reliable measurement, and also
to estimate the variance o in the compaction ratio the system
can expect to observe. During live data observation, statis-
tical analysis engine 5220 can produce a data stream of
current compaction ratio, a temporally local measurement of
the ratio between the bit rate of compacted data and the input
raw data, using a windowed moving average, an Exponen-
tially Weighted Moving Average (“EWMA”), or similar,

10

15

20

25

30

35

40

45

50

55

60

65

34

according to various implementations. This numerical
stream X, will then be subtracted from p to obtain a current
deviation from expected ratio, and the number of standard
deviations from the mean, z=(x,—)/o, fed to the alerting
module 5240. In some implementations, as a default setting,
it may be assumed that X, has a normal distribution, so that
a system user can set a risk tolerance level for z, equal to
2®(-1Z1), where @ is the standard normal cumulative dis-
tribution function. For example, a highly risk-averse user
can ask for alerting if a null-hypothesis event occurs at or
above a p-value of 5%, entailing a report when Iz,I=2. This
quantity can easily be adjusted to accommodate multiple
independent data feeds as well.

According to various embodiments, intrusion detection
module 5200 can be configured to analytically compute the
probability distribution of this quantity z, under the assump-
tion that the input data is a true iid symbol stream. Then,
using the resulting parametrized family of distributions {f:
8EQ}, not only will o be calculated during the training and
testing phase, but an empirical distribution function of z, will
be computed, and from it, the most likely parameter choice
0 and corresponding distribution fy will be learned. This can
enable the system to estimate the probability p that an
observed deviation from the mean would be observed under
null-hypothesis conditions (i.e., no intrusion or unusual
state), which will trigger an alert when p exceeds a user-
determined risk tolerance threshold. Since this method
eschews the assumption of normality in the time series X,
it can provide an even more accurate and sensitive UDD
mechanism.

When X, exceeds the threshold in the positive direction,
alerting module 5240 can generate an alert to the effect that
an unusual data distribution has been observed can be
recorded/transmitted, indicating a possible intrusion or inter-
ruption. Anomalous event data may be stored in an event
database 5230, the anomalous event data comprising the
computed divergence, the computed probability distribution,
and the codeword. Alerting module 5240 is further config-
ured to send the generated alerts to a user interface 5215 as
well as other information and statistics about the codeword
data stream and the probability distribution and compaction
ratios for devices and systems, and/or the like. When X, falls
below the threshold (i.e., z, is sufficiently negative), an alert
is generated to the effect that a possible “replay attack™ is
observed, wherein training data is injected into the system
whose output data is being compacted instead of the
expected real data feed. Furthermore, the variance in X, will
also be monitored in a recent temporal window, and exces-
sive stability or volatility will be reported as these can also
indicate possible attacks with synthetic data injection.

Gaining access to a network via intrusion, once achieved
by an attacker, provides access to an entire system, or at least
a large part of a system. An attacker who has achieved access
to a codebook by whatever means, however, only has access
to information encoded by that codebook. With access to a
single codebook, the attacker has no access to information
that was encoded by other codebooks. Consequently, the
attacker could not, without access to additional codebooks,
conduct an attack via any other codebook. Moreover, if
malware is encoded in a transmission by a codebook and is
detected by the system, and transmissions encoded by that
codebook are terminated, the attacker will lose their access
immediately to that codebook data stream and will not force
the entire data stream encoded by any other codebooks to be
terminated. Consequently, disruption based on an intrusion
detected by data compaction with intrusion detection system
will be limited only to the data encoded by the compromised

US 12,003,256 B2

35

codebook. Finally, upon determination of an intrusion UDD,
the compromised codebook can be replaced within minutes
by codebook training module 5130 and transmissions
resumed.

Key to determining whether an intrusion has occurred,
once a UDD has been observed, will be to determine if the
UDD was likely an intrusion or the result of some other
event. Other potential causes of a UDD include the follow-
ing: a device error or corrupted codebook, including zero
data; a change in environment; and an intrusion/hack.

With respect to a device error, if a UDD is detected, and
encoded data is decoded and found to be unreadable, the
likely causes are device error or a corrupted codebook. For
devices using multiple codebooks, if significant variance of
a similar character is simultaneously detected in multiple
codebooks in use by that system, the likely cause is a device
error. Individual circumstances need to be taken in account,
however, since a single gateway may encode data from
many sources on a platform, for example, and while one
system, such as pressure monitoring, may be faulty and
cause a UDD to occur even if other systems are functioning
normally. Consequently, in an operational environment, cor-
relation with other systems, such as a fault detection system,
may be integrated as a part of an implementation of the an
intrusion detection system.

With respect to a change in environment, if other devices
on the same platform are monitoring a similar event, such as
outside air temperature, and several record a UDD simulta-
neously, a change in environment is a likely cause. Again,
correlation with a real-world change seen in the data, such
as the temperature readings on multiple devices or systems,
could help avoid a false positive for a potential intrusion.

With respect to an intrusion/hack, when using the com-
paction/encoding methods described herein variance tends
to be very small, typically in the range of +/-2-3% for most
data streams. Significant variance in timeframes of more
than a few seconds, or more than one or two encoded
messages, is rare, unless there is a major change in device
hardware or software. Consequently, if device error/cor-
rupted codebook/environmental change can be eliminated as
a cause, an intrusion is a likely source of a UDD.
Description of Method Aspects

Since the library consists of re-usable building source-
blocks, and the actual data is represented by reference codes
to the library, the total storage space of a single set of data
would be much smaller than conventional methods, wherein
the data is stored in its entirety. The more data sets that are
stored, the larger the library becomes, and the more data can
be stored in reference code form.

As an analogy, imagine each data set as a collection of
printed books that are only occasionally accessed. The
amount of physical shelf space required to store many
collections would be quite large, and is analogous to con-
ventional methods of storing every single bit of data in every
data set. Consider, however, storing all common elements
within and across books in a single library, and storing the
books as references codes to those common elements in that
library. As a single book is added to the library, it will
contain many repetitions of words and phrases. Instead of
storing the whole words and phrases, they are added to a
library, and given a reference code, and stored as reference
codes. At this scale, some space savings may be achieved,
but the reference codes will be on the order of the same size
as the words themselves. As more books are added to the
library, larger phrases, quotations, and other words patterns
will become common among the books. The larger the word
patterns, the smaller the reference codes will be in relation

10

25

40

45

55

36

to them as not all possible word patterns will be used. As
entire collections of books are added to the library, sen-
tences, paragraphs, pages, or even whole books will become
repetitive. There may be many duplicates of books within a
collection and across multiple collections, many references
and quotations from one book to another, and much common
phraseology within books on particular subjects. If each
unique page of a book is stored only once in a common
library and given a reference code, then a book of 1,000
pages or more could be stored on a few printed pages as a
string of codes referencing the proper full-sized pages in the
common library. The physical space taken up by the books
would be dramatically reduced. The more collections that
are added, the greater the likelihood that phrases, para-
graphs, pages, or entire books will already be in the library,
and the more information in each collection of books can be
stored in reference form. Accessing entire collections of
books is then limited not by physical shelf space, but by the
ability to reprint and recycle the books as needed for use.

The projected increase in storage capacity using the
method herein described is primarily dependent on two
factors: 1) the ratio of the number of bits in a block to the
number of bits in the reference code, and 2) the amount of
repetition in data being stored by the system.

With respect to the first factor, the number of bits used in
the reference codes to the sourceblocks must be smaller than
the number of bits in the sourceblocks themselves in order
for any additional data storage capacity to be obtained. As a
simple example, 16-bit sourceblocks would require 2'°, or
65536, unique reference codes to represent all possible
patterns of bits. If all possible 65536 blocks patterns are
utilized, then the reference code itself would also need to
contain sixteen bits in order to refer to all possible 65,536
blocks patterns. In such case, there would be no storage
savings. However, if only 16 of those block patterns are
utilized, the reference code can be reduced to 4 bits in size,
representing an effective compression of 4 times (16 bits/4
bits=4) versus conventional storage. Using a typical block
size of 512 bytes, or 4,096 bits, the number of possible block
patterns is 2*°°5, which for all practical purposes is unlim-
ited. A typical hard drive contains one terabyte (TB) of
physical storage capacity, which represents 1,953,125,000,
or roughly 23!, 512 byte blocks. Assuming that 1 TB of
unique 512-byte sourceblocks were contained in the library,
and that the reference code would thus need to be 31 bits
long, the effective compression ratio for stored data would
be on the order of 132 times (4,096/31=132) that of con-
ventional storage.

With respect to the second factor, in most cases it could
be assumed that there would be sufficient repetition within
a data set such that, when the data set is broken down into
sourceblocks, its size within the library would be smaller
than the original data. However, it is conceivable that the
initial copy of a data set could require somewhat more
storage space than the data stored in a conventional manner,
if all or nearly all sourceblocks in that set were unique. For
example, assuming that the reference codes are Yio™ the size
of a full-sized copy, the first copy stored as sourceblocks in
the library would need to be 1.1 megabytes (MB), (1 MB for
the complete set of full-sized sourceblocks in the library and
0.1 MB for the reference codes). However, since the source-
blocks stored in the library are universal, the more duplicate
copies of something you save, the greater efficiency versus
conventional storage methods. Conventionally, storing 10
copies of the same data requires 10 times the storage space
of a single copy. For example, ten copies of a 1 MB file
would take up 10 MB of storage space. However, using the

US 12,003,256 B2

37

method described herein, only a single full-sized copy is
stored, and subsequent copies are stored as reference codes.
Each additional copy takes up only a fraction of the space of
the full-sized copy. For example, again assuming that the
reference codes are Vio” the size of the full-size copy, ten
copies of a 1 MB file would take up only 2 MB of space (1
MB for the full-sized copy, and 0.1 MB each for ten sets of
reference codes). The larger the library, the more likely that
part or all of incoming data will duplicate sourceblocks
already existing in the library.

The size of the library could be reduced in a manner
similar to storage of data. Where sourceblocks differ from
each other only by a certain number of bits, instead of
storing a new sourceblock that is very similar to one already
existing in the library, the new sourceblock could be repre-
sented as a reference code to the existing sourceblock, plus
information about which bits in the new block differ from
the existing block. For example, in the case where 512 byte
sourceblocks are being used, if the system receives a new
sourceblock that differs by only one bit from a sourceblock
already existing in the library, instead of storing a new 512
byte sourceblock, the new sourceblock could be stored as a
reference code to the existing sourceblock, plus a reference
to the bit that differs. Storing the new sourceblock as a
reference code plus changes would require only a few bytes
of physical storage space versus the 512 bytes that a full
sourceblock would require. The algorithm could be opti-
mized to store new sourceblocks in this reference code plus
changes form unless the changes portion is large enough that
it is more efficient to store a new, full sourceblock.

It will be understood by one skilled in the art that transfer
and synchronization of data would be increased to the same
extent as for storage. By transferring or synchronizing
reference codes instead of full-sized data, the bandwidth
requirements for both types of operations are dramatically
reduced.

In addition, the method described herein is inherently a
form of encryption. When the data is converted from its full
form to reference codes, none of the original data is con-
tained in the reference codes. Without access to the library
of sourceblocks, it would be impossible to re-construct any
portion of the data from the reference codes. This inherent
property of the method described herein could obviate the
need for traditional encryption algorithms, thereby offsetting
most or all of the computational cost of conversion of data
back and forth to reference codes. In theory, the method
described herein should not utilize any additional computing
power beyond traditional storage using encryption algo-
rithms. Alternatively, the method described herein could be
in addition to other encryption algorithms to increase data
security even further.

In other embodiments, additional security features could
be added, such as: creating a proprietary library of source-
blocks for proprietary networks, physical separation of the
reference codes from the library of sourceblocks, storage of
the library of sourceblocks on a removable device to enable
easy physical separation of the library and reference codes
from any network, and incorporation of proprietary
sequences of how sourceblocks are read and the data reas-
sembled.

FIG. 7 is a diagram showing an example of how data
might be converted into reference codes using an aspect of
an embodiment 700. As data is received 701, it is read by the
processor in sourceblocks of a size dynamically determined
by the previously disclosed sourceblock size optimizer 410.
In this example, each sourceblock is 16 bits in length, and
the library 702 initially contains three sourceblocks with

10

20

25

30

35

40

45

60

38

reference codes 00, 01, and 10. The entry for reference code
11 is initially empty. As each 16 bit sourceblock is received,
it is compared with the library. If that sourceblock is already
contained in the library, it is assigned the corresponding
reference code. So, for example, as the first line of data
(0000 0011 0000 0000) is received, it is assigned the
reference code (01) associated with that sourceblock in the
library. If that sourceblock is not already contained in the
library, as is the case with the third line of data (0000 1111
0000 0000) received in the example, that sourceblock is
added to the library and assigned a reference code, in this
case 11. The data is thus converted 703 to a series of
reference codes to sourceblocks in the library. The data is
stored as a collection of codewords, each of which contains
the reference code to a sourceblock and information about
the location of the sourceblocks in the data set. Reconstruct-
ing the data is performed by reversing the process. Each
stored reference code in a data collection is compared with
the reference codes in the library, the corresponding source-
block is read from the library, and the data is reconstructed
into its original form.

FIG. 8 is a method diagram showing the steps involved in
using an embodiment 800 to store data. As data is received
801, it would be deconstructed into sourceblocks 802, and
passed 803 to the library management module for process-
ing. Reference codes would be received back 804 from the
library management module, and could be combined with
location information to create codewords 805, which would
then be stored 806 as representations of the original data.

FIG. 9 is a method diagram showing the steps involved in
using an embodiment 900 to retrieve data. When a request
for data is received 901, the associated codewords would be
retrieved 902 from the library. The codewords would be
passed 903 to the library management module, and the
associated sourceblocks would be received back 904. Upon
receipt, the sourceblocks would be assembled 905 into the
original data using the location data contained in the code-
words, and the reconstructed data would be sent out 906 to
the requestor.

FIG. 10 is a method diagram showing the steps involved
in using an embodiment 1000 to encode data. As source-
blocks are received 1001 from the deconstruction engine,
they would be compared 1002 with the sourceblocks already
contained in the library. If that sourceblock already exists in
the library, the associated reference code would be returned
1005 to the deconstruction engine. If the sourceblock does
not already exist in the library, a new reference code would
be created 1003 for the sourceblock. The new reference code
and its associated sourceblock would be stored 1004 in the
library, and the reference code would be returned to the
deconstruction engine.

FIG. 11 is a method diagram showing the steps involved
in using an embodiment 1100 to decode data. As reference
codes are received 1101 from the reconstruction engine, the
associated sourceblocks are retrieved 1102 from the library,
and returned 1103 to the reconstruction engine.

FIG. 16 is a method diagram illustrating key system
functionality utilizing an encoder and decoder pair, accord-
ing to a preferred embodiment. In a first step 1601, at least
one incoming data set may be received at a customized
library generator 1300 that then 1602 processes data to
produce a customized word library 1201 comprising key-
value pairs of data words (each comprising a string of bits)
and their corresponding calculated binary Huffman code-
words. A subsequent dataset may be received, and compared
to the word library 1603 to determine the proper codewords
to use in order to encode the dataset. Words in the dataset are

US 12,003,256 B2

39

checked against the word library and appropriate encodings
are appended to a data stream 1604. If a word is mismatched
within the word library and the dataset, meaning that it is
present in the dataset but not the word library, then a
mismatched code is appended, followed by the unencoded
original word. If a word has a match within the word library,
then the appropriate codeword in the word library is
appended to the data stream. Such a data stream may then be
stored or transmitted 1605 to a destination as desired. For the
purposes of decoding, an already-encoded data stream may
be received and compared 1606, and un-encoded words may
be appended to a new data stream 1607 depending on word
matches found between the encoded data stream and the
word library that is present. A matching codeword that is
found in a word library is replaced with the matching word
and appended to a data stream, and a mismatch code found
in a data stream is deleted and the following unencoded
word is re-appended to a new data stream, the inverse of the
process of encoding described earlier. Such a data stream
may then be stored or transmitted 1608 as desired.

FIG. 17 is a method diagram illustrating possible use of
a hybrid encoder/decoder to improve the compression ratio,
according to a preferred aspect. A second Huffman binary
tree may be created 1701, having a shorter maximum length
of codewords than a first Huffman binary tree 1602, allow-
ing a word library to be filled with every combination of
codeword possible in this shorter Huffman binary tree 1702.
A word library may be filled with these Huffman codewords
and words from a dataset 1702, such that a hybrid encoder/
decoder 1304, 1503 may receive any mismatched words
from a dataset for which encoding has been attempted with
a first Huffman binary tree 1703, 1604 and parse previously
mismatched words into new partial codewords (that is,
codewords that are each a substring of an original mis-
matched codeword) using the second Huffman binary tree
1704. In this way, an incomplete word library may be
supplemented by a second word library. New codewords
attained in this way may then be returned to a transmission
encoder 1705, 1500. In the event that an encoded dataset is
received for decoding, and there is a mismatch code indi-
cating that additional coding is needed, a mismatch code
may be removed and the unencoded word used to generate
a new codeword as before 1706, so that a transmission
encoder 1500 may have the word and newly generated
codeword added to its word library 1707, to prevent further
mismatching and errors in encoding and decoding.

It will be recognized by a person skilled in the art that the
methods described herein can be applied to data in any form.
For example, the method described herein could be used to
store genetic data, which has four data units: C, G, A, and T.
Those four data units can be represented as 2 bit sequences:
00, 01, 10, and 11, which can be processed and stored using
the method described herein.

It will be recognized by a person skilled in the art that
certain embodiments of the methods described herein may
have uses other than data storage. For example, because the
data is stored in reference code form, it cannot be recon-
structed without the availability of the library of source-
blocks. This is effectively a form of encryption, which could
be used for cyber security purposes. As another example, an
embodiment of the method described herein could be used
to store backup copies of data, provide for redundancy in the
event of server failure, or provide additional security against
cyberattacks by distributing multiple partial copies of the
library among computers are various locations, ensuring that
at least two copies of each sourceblock exist in different
locations within the network.

10

15

20

25

30

35

40

45

50

55

60

65

40

FIG. 18 is a flow diagram illustrating the use of a data
encoding system used to recursively encode data to further
reduce data size. Data may be input 1805 into a data
deconstruction engine 102 to be deconstructed into code
references, using a library of code references based on the
input 1810. Such example data is shown in a converted,
encoded format 1815, highly compressed, reducing the
example data from 96 bits of data, to 12 bits of data, before
sending this newly encoded data through the process again
1820, to be encoded by a second library 1825, reducing it
even further. The newly converted data 1830 is shown as
only 6 bits in this example, thus a size of 6.25% of the
original data packet. With recursive encoding, then, it is
possible and implemented in the system to achieve increas-
ing compression ratios, using multi-layered encoding,
through recursively encoding data. Both initial encoding
libraries 1810 and subsequent libraries 1825 may be
achieved through machine learning techniques to find opti-
mal encoding patterns to reduce size, with the libraries being
distributed to recipients prior to transfer of the actual
encoded data, such that only the compressed data 1830 must
be transferred or stored, allowing for smaller data footprints
and bandwidth requirements. This process can be reversed to
reconstruct the data. While this example shows only two
levels of encoding, recursive encoding may be repeated any
number of times. The number of levels of recursive encod-
ing will depend on many factors, a non-exhaustive list of
which includes the type of data being encoded, the size of
the original data, the intended usage of the data, the number
of instances of data being stored, and available storage space
for codebooks and libraries. Additionally, recursive encod-
ing can be applied not only to data to be stored or trans-
mitted, but also to the codebooks and/or libraries, them-
selves. For example, many installations of different libraries
could take up a substantial amount of storage space. Recur-
sively encoding those different libraries to a single, universal
library would dramatically reduce the amount of storage
space required, and each different library could be recon-
structed as necessary to reconstruct incoming streams of
data.

FIG. 20 is a flow diagram of an exemplary method used
to detect anomalies in received encoded data and producing
a warning. A system may have trained encoding libraries
2010, before data is received from some source such as a
network connected device or a locally connected device
including USB connected devices, to be decoded 2020.
Decoding in this context refers to the process of using the
encoding libraries to take the received data and attempt to
use encoded references to decode the data into its original
source 2030, potentially more than once if recursive encod-
ing was used, but not necessarily more than once. An
anomaly detector 1910 may be configured to detect a large
amount of un-encoded data 2040 in the midst of encoded
data, by locating data or references that do not appear in the
encoding libraries, indicating at least an anomaly, and poten-
tially data tampering or faulty encoding libraries. A flag or
warning is set by the system 2050, allowing a user to be
warned at least of the presence of the anomaly and the
characteristics of the anomaly. However, if a large amount of
invalid references or unencoded data are not present in the
encoded data that is attempting to be decoded, the data may
be decoded and output as normal 2060, indicating no
anomaly has been detected.

FIG. 21 is a flow diagram of a method used for Distributed
Denial of Service (DDoS) attack denial. A system may have
trained encoding libraries 2110, before data is received from
some source such as a network connected device or a locally

US 12,003,256 B2

41

connected device including USB connected devices, to be
decoded 2120. Decoding in this context refers to the process
of using the encoding libraries to take the received data and
attempt to use encoded references to decode the data into its
original source 2130, potentially more than once if recursive
encoding was used, but not necessarily more than once. A
DDoS detector 1920 may be configured to detect a large
amount of repeating data 2140 in the encoded data, by
locating data or references that repeat many times over (the
number of which can be configured by a user or adminis-
trator as need be), indicating a possible DDoS attack. A flag
or warning is set by the system 2150, allowing a user to be
warned at least of the presence of a possible DDoS attack,
including characteristics about the data and source that
initiated the flag, allowing a user to then block incoming
data from that source. However, if a large amount of repeat
data in a short span of time is not detected, the data may be
decoded and output as normal 2160, indicating no DDoS
attack has been detected.

FIG. 23 is a flow diagram of an exemplary method used
to enable high-speed data mining of repetitive data. A system
may have trained encoding libraries 2310, before data is
received from some source such as a network connected
device or a locally connected device including USB con-
nected devices, to be analyzed 2320 and decoded 2330.
When determining data for analysis, users may select spe-
cific data to designate for decoding 2330, before running any
data mining or analytics functions or software on the
decoded data 2340. Rather than having traditional decryp-
tion and decompression operate over distributed drives, data
can be regenerated immediately using the encoding libraries
disclosed herein, as it is being searched. Using methods
described in FIG. 9 and FIG. 11, data can be stored,
retrieved, and decoded swiftly for searching, even across
multiple devices, because the encoding library may be on
each device. For example, if a group of servers host code-
words relevant for data mining purposes, a single computer
can request these codewords, and the codewords can be sent
to the recipient swiftly over the bandwidth of their connec-
tion, allowing the recipient to locally decode the data for
immediate evaluation and searching, rather than running
slow, traditional decompression algorithms on data stored
across multiple devices or transfer larger sums of data across
limited bandwidth.

FIG. 25 is a flow diagram of an exemplary method used
to encode and transfer software and firmware updates to a
device for installation, for the purposes of reduced band-
width consumption. A first system may have trained code
libraries or “codebooks” present 2510, allowing for a soft-
ware update of some manner to be encoded 2520. Such a
software update may be a firmware update, operating system
update, security patch, application patch or upgrade, or any
other type of software update, patch, modification, or
upgrade, affecting any computer system. A codebook for the
patch must be distributed to a recipient 2530, which may be
done beforehand and either over a network or through a local
or physical connection, but must be accomplished at some
point in the process before the update may be installed on the
recipient device 2560. An update may then be distributed to
a recipient device 2540, allowing a recipient with a code-
book distributed to them 2530 to decode the update 2550
before installation 2560. In this way, an encoded and thus
heavily compressed update may be sent to a recipient far
quicker and with less bandwidth usage than traditional
lossless compression methods for data, or when sending data
in uncompressed formats. This especially may benefit large

10

15

20

25

30

35

40

45

50

55

60

65

42

distributions of software and software updates, as with
enterprises updating large numbers of devices at once.

FIG. 27 is a flow diagram of an exemplary method used
to encode new software and operating system installations
for reduced bandwidth required for transference. A first
system may have trained code libraries or “codebooks”
present 2710, allowing for a software installation of some
manner to be encoded 2720. Such a software installation
may be a software update, operating system, security sys-
tem, application, or any other type of software installation,
execution, or acquisition, affecting a computer system. An
encoding library or “codebook™ for the installation must be
distributed to a recipient 2730, which may be done before-
hand and either over a network or through a local or physical
connection, but must be accomplished at some point in the
process before the installation can begin on the recipient
device 2760. An installation may then be distributed to a
recipient device 2740, allowing a recipient with a codebook
distributed to them 2730 to decode the installation 2750
before executing the installation 2760. In this way, an
encoded and thus heavily compressed software installation
may be sent to a recipient far quicker and with less band-
width usage than traditional lossless compression methods
for data, or when sending data in uncompressed formats.
This especially may benefit large distributions of software
and software updates, as with enterprises updating large
numbers of devices at once.

FIG. 31 is a method diagram illustrating the steps 3100
involved in using an embodiment of the codebook training
system to update a codebook. The process begins when
requested data is received 3101 by a codebook training
module. The requested data may comprise a plurality of
sourceblocks. Next, the received data may be stored in a
cache and formatted into a test dataset 3102. The next step
is to retrieve the previously computed probability distribu-
tion associated with the previous (most recent) training
dataset from a storage device 3103. Using one or more
algorithms, measure and record the probability distribution
of' the test dataset 3104. The step after that is to compare the
measured probability distributions of the test dataset and the
previous training dataset to compute the difference in dis-
tribution statistics between the two datasets 3105. If the test
dataset probability distribution exceeds a pre-determined
difference threshold, then the test dataset will be used to
retrain the encoding/decoding algorithms 3106 to reflect the
new distribution of the incoming data to the encoder/decoder
system. The retrained algorithms may then be used to create
new data sourceblocks 3107 that better capture the nature of
the data being received. These newly created data source-
blocks may then be used to create new codewords and
update a codebook 3108 with each new data sourceblock
and its associated new codeword. Last, the updated code-
books may be sent to encoding and decoding machines 3109
in order to ensure the encoding/decoding system function
properly.

FIG. 53 is a flow diagram illustrating an exemplary
method 5300 for data compaction with intrusion detection,
according to an embodiment. This exemplary method may
be implemented as a set of machine readable instructions
stored in a non-volatile data storage device (e.g., hard drive,
disk drive, solid state drive, etc.) or in the memory of a
computing device, and executed by one or more processors
of the computing device. According to the embodiment, an
initial step 5302 comprises create one or more reference
codebooks to be used as a baseline reference probability
distribution. A codebook training module 5130 can obtain a
plurality of data to form a training dataset which can be used

US 12,003,256 B2

43

to create a reference codebook which represents a reference
probability distribution. In some implementations, the train-
ing dataset may comprise iid data. Upon successful creation
of the reference probability distribution, codebook training
module 5130 may send the reference codebook to an intru-
sion detection module 5160 where it may be stored in a
database and retrieved during operation. At intrusion detec-
tion module 5160 a codeword data stream is received,
retrieved, or otherwise obtained and analyzed to measure the
probability distribution of the live data (transmitted code-
words) within a given window of time at step 5304. Once the
probability distribution of the live data has been measured,
the next step 5306 is to compare the reference probability
distribution to the probability distribution of the live data to
compute the divergence between the two probability distri-
butions. The divergence may be computed using one or
more algorithms. In some implementations, Kullback-
Leibler divergence is utilized to measure how the observed
probability distribution (of the live data) diverges from the
expected probability distribution (reference codebook). At
step 5308, intrusion detection module 5160 determines if an
intrusion has occurred based on the computed divergence. If,
at step 5310 no intrusion has been detected, the process
continues to step 5304 and the process repeats itself on the
codeword data stream. If instead, at step 5310 an intrusion
is detected then an intrusion event and/or anomalous data
may be recorded and stored in a database and an alerting
module 5240 can generate an intrusion alert at step 5312. In
some embodiments, the intrusion alert and/or anomalous
data may comprise a user configured risk threshold tolerance
level, real-time compaction ratio and probability distribution
information, a timestamp of when the intrusion was
detected, the data stream associated with the intrusion, and
a potential cause of the unusual distribution. As a last step
5314, then alerting module 5240 can send the intrusion alert
to a user interface for display to a user.
Hardware Architecture

Generally, the techniques disclosed herein may be imple-
mented on hardware or a combination of software and
hardware. For example, they may be implemented in an
operating system kernel, in a separate user process, in a
library package bound into network applications, on a spe-
cially constructed machine, on an application-specific inte-
grated circuit (ASIC), or on a network interface card.

Software/hardware hybrid implementations of at least
some of the aspects disclosed herein may be implemented on
a programmable network-resident machine (which should
be understood to include intermittently connected network-
aware machines) selectively activated or reconfigured by a
computer program stored in memory. Such network devices
may have multiple network interfaces that may be config-
ured or designed to utilize different types of network com-
munication protocols. A general architecture for some of
these machines may be described herein in order to illustrate
one or more exemplary means by which a given unit of
functionality may be implemented. According to specific
aspects, at least some of the features or functionalities of the
various aspects disclosed herein may be implemented on one
or more general-purpose computers associated with one or
more networks, such as for example an end-user computer
system, a client computer, a network server or other server
system, a mobile computing device (e.g., tablet computing
device, mobile phone, smartphone, laptop, or other appro-
priate computing device), a consumer electronic device, a
music player, or any other suitable electronic device, router,
switch, or other suitable device, or any combination thereof.
In at least some aspects, at least some of the features or

25

30

40

45

55

44

functionalities of the various aspects disclosed herein may
be implemented in one or more virtualized computing
environments (e.g., network computing clouds, virtual
machines hosted on one or more physical computing
machines, or other appropriate virtual environments).

Referring now to FIG. 43, there is shown a block diagram
depicting an exemplary computing device 10 suitable for
implementing at least a portion of the features or function-
alities disclosed herein. Computing device 10 may be, for
example, any one of the computing machines listed in the
previous paragraph, or indeed any other electronic device
capable of executing software- or hardware-based instruc-
tions according to one or more programs stored in memory.
Computing device 10 may be configured to communicate
with a plurality of other computing devices, such as clients
or servers, over communications networks such as a wide
area network a metropolitan area network, a local area
network, a wireless network, the Internet, or any other
network, using known protocols for such communication,
whether wireless or wired.

In one aspect, computing device 10 includes one or more
central processing units (CPU) 12, one or more interfaces
15, and one or more busses 14 (such as a peripheral
component interconnect (PCI) bus). When acting under the
control of appropriate software or firmware, CPU 12 may be
responsible for implementing specific functions associated
with the functions of a specifically configured computing
device or machine. For example, in at least one aspect, a
computing device 10 may be configured or designed to
function as a server system utilizing CPU 12, local memory
11 and/or remote memory 16, and interface(s) 15. In at least
one aspect, CPU 12 may be caused to perform one or more
of the different types of functions and/or operations under
the control of software modules or components, which for
example, may include an operating system and any appro-
priate applications software, drivers, and the like.

CPU 12 may include one or more processors 13 such as,
for example, a processor from one of the Intel, ARM,
Qualcomm, and AMD families of microprocessors. In some
aspects, processors 13 may include specially designed hard-
ware such as application-specific integrated circuits
(ASICs), electrically erasable programmable read-only
memories (EEPROMs), field-programmable gate arrays
(FPGAs), and so forth, for controlling operations of com-
puting device 10. In a particular aspect, a local memory 11
(such as non-volatile random access memory (RAM) and/or
read-only memory (ROM), including for example one or
more levels of cached memory) may also form part of CPU
12. However, there are many different ways in which
memory may be coupled to system 10. Memory 11 may be
used for a variety of purposes such as, for example, caching
and/or storing data, programming instructions, and the like.
It should be further appreciated that CPU 12 may be one of
a variety of system-on-a-chip (SOC) type hardware that may
include additional hardware such as memory or graphics
processing chips, such as a QUALCOMM SNAP-
DRAGON™ or SAMSUNG EXYNOS™ CPU as are
becoming increasingly common in the art, such as for use in
mobile devices or integrated devices.

As used herein, the term “processor” is not limited merely
to those integrated circuits referred to in the art as a
processor, a mobile processor, or a microprocessor, but
broadly refers to a microcontroller, a microcomputer, a
programmable logic controller, an application-specific inte-
grated circuit, and any other programmable circuit.

In one aspect, interfaces 15 are provided as network
interface cards (NICs). Generally, NICs control the sending

US 12,003,256 B2

45

and receiving of data packets over a computer network;
other types of interfaces may for example support other
peripherals used with computing device 10. Among the
interfaces that may be provided are Ethernet interfaces,
frame relay interfaces, cable interfaces, DSL interfaces,
token ring interfaces, graphics interfaces, and the like. In
addition, various types of interfaces may be provided such
as, for example, universal serial bus (USB), Serial, Ethernet,
FIREWIRE™ THUNDERBOLT™, PCI, parallel, radio fre-
quency (RF), BLUETOOTH™, near-field communications
(e.g., using near-field magnetics), 802.11 (WiFi), frame
relay, TCP/IP, ISDN, fast Ethernet interfaces, Gigabit Eth-
ernet interfaces, Serial ATA (SATA) or external SATA
(ESATA) interfaces, high-definition multimedia interface
(HDMI), digital visual interface (DVI), analog or digital
audio interfaces, asynchronous transfer mode (ATM) inter-
faces, high-speed serial interface (HSSI) interfaces, Point of
Sale (POS) interfaces, fiber data distributed interfaces (FD-
DlIs), and the like. Generally, such interfaces 15 may include
physical ports appropriate for communication with appro-
priate media. In some cases, they may also include an
independent processor (such as a dedicated audio or video
processor, as is common in the art for high-fidelity A/V
hardware interfaces) and, in some instances, volatile and/or
non-volatile memory (e.g., RAM).

Although the system shown in FIG. 43 illustrates one
specific architecture for a computing device 10 for imple-
menting one or more of the aspects described herein, it is by
no means the only device architecture on which at least a
portion of the features and techniques described herein may
be implemented. For example, architectures having one or
any number of processors 13 may be used, and such pro-
cessors 13 may be present in a single device or distributed
among any number of devices. In one aspect, a single
processor 13 handles communications as well as routing
computations, while in other aspects a separate dedicated
communications processor may be provided. In various
aspects, different types of features or functionalities may be
implemented in a system according to the aspect that
includes a client device (such as a tablet device or smart-
phone running client software) and server systems (such as
a server system described in more detail below).

Regardless of network device configuration, the system of
an aspect may employ one or more memories or memory
modules (such as, for example, remote memory block 16
and local memory 11) configured to store data, program
instructions for the general-purpose network operations, or
other information relating to the functionality of the aspects
described herein (or any combinations of the above). Pro-
gram instructions may control execution of or comprise an
operating system and/or one or more applications, for
example. Memory 16 or memories 11, 16 may also be
configured to store data structures, configuration data,
encryption data, historical system operations information, or
any other specific or generic non-program information
described herein.

Because such information and program instructions may
be employed to implement one or more systems or methods
described herein, at least some network device aspects may
include nontransitory machine-readable storage media,
which, for example, may be configured or designed to store
program instructions, state information, and the like for
performing various operations described herein. Examples
of such nontransitory machine-readable storage media
include, but are not limited to, magnetic media such as hard
disks, floppy disks, and magnetic tape; optical media such as
CD-ROM disks; magneto-optical media such as optical

25

40

45

50

55

46

disks, and hardware devices that are specially configured to
store and perform program instructions, such as read-only
memory devices (ROM), flash memory (as is common in
mobile devices and integrated systems), solid state drives
(SSD) and “hybrid SSD” storage drives that may combine
physical components of solid state and hard disk drives in a
single hardware device (as are becoming increasingly com-
mon in the art with regard to personal computers), memristor
memory, random access memory (RAM), and the like. It
should be appreciated that such storage means may be
integral and non-removable (such as RAM hardware mod-
ules that may be soldered onto a motherboard or otherwise
integrated into an electronic device), or they may be remov-
able such as swappable flash memory modules (such as
“thumb drives” or other removable media designed for
rapidly exchanging physical storage devices), “hot-swap-
pable” hard disk drives or solid state drives, removable
optical storage discs, or other such removable media, and
that such integral and removable storage media may be
utilized interchangeably. Examples of program instructions
include both object code, such as may be produced by a
compiler, machine code, such as may be produced by an
assembler or a linker, byte code, such as may be generated
by for example a JAVA™ compiler and may be executed
using a Java virtual machine or equivalent, or files contain-
ing higher level code that may be executed by the computer
using an interpreter (for example, scripts written in Python,
Perl, Ruby, Groovy, or any other scripting language).

In some aspects, systems may be implemented on a
standalone computing system. Referring now to FIG. 44,
there is shown a block diagram depicting a typical exem-
plary architecture of one or more aspects or components
thereof on a standalone computing system. Computing
device 20 includes processors 21 that may run software that
carry out one or more functions or applications of aspects,
such as for example a client application 24. Processors 21
may carry out computing instructions under control of an
operating system 22 such as, for example, a version of
MICROSOFT WINDOWS™ operating system, APPLE
macOS™ or iOS™ operating systems, some variety of the
Linux operating system, ANDROID™ operating system, or
the like. In many cases, one or more shared services 23 may
be operable in system 20, and may be useful for providing
common services to client applications 24. Services 23 may
for example be WINDOWS™ services, user-space common
services in a Linux environment, or any other type of
common service architecture used with operating system 21.
Input devices 28 may be of any type suitable for receiving
user input, including for example a keyboard, touchscreen,
microphone (for example, for voice input), mouse, touch-
pad, trackball, or any combination thereof. Output devices
27 may be of any type suitable for providing output to one
or more users, whether remote or local to system 20, and
may include for example one or more screens for visual
output, speakers, printers, or any combination thereof.
Memory 25 may be random-access memory having any
structure and architecture known in the art, for use by
processors 21, for example to run software. Storage devices
26 may be any magnetic, optical, mechanical, memristor, or
electrical storage device for storage of data in digital form
(such as those described above, referring to FIG. 43).
Examples of storage devices 26 include flash memory,
magnetic hard drive, CD-ROM, and/or the like.

In some aspects, systems may be implemented on a
distributed computing network, such as one having any
number of clients and/or servers. Referring now to FIG. 45,
there is shown a block diagram depicting an exemplary

US 12,003,256 B2

47

architecture 30 for implementing at least a portion of a
system according to one aspect on a distributed computing
network. According to the aspect, any number of clients 33
may be provided. Each client 33 may run software for
implementing client-side portions of a system; clients may
comprise a system 20 such as that illustrated in FIG. 44. In
addition, any number of servers 32 may be provided for
handling requests received from one or more clients 33.
Clients 33 and servers 32 may communicate with one
another via one or more electronic networks 31, which may
be in various aspects any of the Internet, a wide area
network, a mobile telephony network (such as CDMA or
GSM cellular networks), a wireless network (such as WiF1i,
WiMAX, LTE, and so forth), or a local area network (or
indeed any network topology known in the art; the aspect
does not prefer any one network topology over any other).
Networks 31 may be implemented using any known network
protocols, including for example wired and/or wireless pro-
tocols.

In addition, in some aspects, servers 32 may call external
services 37 when needed to obtain additional information, or
to refer to additional data concerning a particular call.
Communications with external services 37 may take place,
for example, via one or more networks 31. In various
aspects, external services 37 may comprise web-enabled
services or functionality related to or installed on the hard-
ware device itself. For example, in one aspect where client
applications 24 are implemented on a smartphone or other
electronic device, client applications 24 may obtain infor-
mation stored in a server system 32 in the cloud or on an
external service 37 deployed on one or more of a particular
enterprise’s or user’s premises. In addition to local storage
on servers 32, remote storage 38 may be accessible through
the network(s) 31.

In some aspects, clients 33 or servers 32 (or both) may
make use of one or more specialized services or appliances
that may be deployed locally or remotely across one or more
networks 31. For example, one or more databases 34 in
either local or remote storage 38 may be used or referred to
by one or more aspects. It should be understood by one
having ordinary skill in the art that databases in storage 34
may be arranged in a wide variety of architectures and using
a wide variety of data access and manipulation means. For
example, in various aspects one or more databases in storage
34 may comprise a relational database system using a
structured query language (SQL), while others may com-
prise an alternative data storage technology such as those
referred to in the art as “NoSQL” (for example, HADOOP
CASSANDRA™, GOOGLE BIGTABLE™, and so forth).
In some aspects, variant database architectures such as
column-oriented databases, in-memory databases, clustered
databases, distributed databases, or even flat file data reposi-
tories may be used according to the aspect. It will be
appreciated by one having ordinary skill in the art that any
combination of known or future database technologies may
be used as appropriate, unless a specific database technology
or a specific arrangement of components is specified for a
particular aspect described herein. Moreover, it should be
appreciated that the term “database” as used herein may
refer to a physical database machine, a cluster of machines
acting as a single database system, or a logical database
within an overall database management system. Unless a
specific meaning is specified for a given use of the term
“database”, it should be construed to mean any of these
senses of the word, all of which are understood as a plain
meaning of the term “database” by those having ordinary
skill in the art.

10

15

20

25

30

35

40

45

50

55

60

48

Similarly, some aspects may make use of one or more
security systems 36 and configuration systems 35. Security
and configuration management are common information
technology (IT) and web functions, and some amount of
each are generally associated with any IT or web systems. It
should be understood by one having ordinary skill in the art
that any configuration or security subsystems known in the
art now or in the future may be used in conjunction with
aspects without limitation, unless a specific security 36 or
configuration system 35 or approach is specifically required
by the description of any specific aspect.

FIG. 46 shows an exemplary overview of a computer
system 40 as may be used in any of the various locations
throughout the system. It is exemplary of any computer that
may execute code to process data. Various modifications and
changes may be made to computer system 40 without
departing from the broader scope of the system and method
disclosed herein. Central processor unit (CPU) 41 is con-
nected to bus 42, to which bus is also connected memory 43,
nonvolatile memory 44, display 47, input/output (I/0) unit
48, and network interface card (NIC) 53. I/O unit 48 may,
typically, be connected to peripherals such as a keyboard 49,
pointing device 50, hard disk 52, real-time clock 51, a
camera 57, and other peripheral devices. NIC 53 connects to
network 54, which may be the Internet or a local network,
which local network may or may not have connections to the
Internet. The system may be connected to other computing
devices through the network via a router wireless local area
network 56, or any other network connection. Also shown as
part of system is power supply unit 45 connected, in this
example, to a main alternating current (AC) supply 46. Not
shown are batteries that could be present, and many other
devices and modifications that are well known but are not
applicable to the specific novel functions of the current
system and method disclosed herein. It should be appreci-
ated that some or all components illustrated may be com-
bined, such as in various integrated applications, for
example Qualcomm or Samsung system-on-a-chip (SOC)
devices, or whenever it may be appropriate to combine
multiple capabilities or functions into a single hardware
device (for instance, in mobile devices such as smartphones,
video game consoles, in-vehicle computer systems such as
navigation or multimedia systems in automobiles, or other
integrated hardware devices).

In various aspects, functionality for implementing sys-
tems or methods of various aspects may be distributed
among any number of client and/or server components. For
example, various software modules may be implemented for
performing various functions in connection with the system
of any particular aspect, and such modules may be variously
implemented to run on server and/or client components.

The skilled person will be aware of a range of possible
modifications of the various aspects described above.
Accordingly, the present invention is defined by the claims
and their equivalents.

What is claimed is:
1. A system for data compaction with intrusion detection,
comprising:

a computing device comprising a processor and a
memory;

an intrusion detection module comprising a first plurality
of programming instructions stored in the memory
which, when operating on the processor, causes the
computing device to:

US 12,003,256 B2

49

receive a codeword data stream;
use one or more algorithms to compute a probability
distribution of a plurality of codewords within the
codeword data stream;
compare the computed probability distribution with a
reference probability distribution to compute an
amount of divergence between the computed prob-
ability distribution and the reference probability dis-
tribution; and
when the computed amount of divergence exceeds a
configured risk sensitivity threshold:
store the computed divergence, the computed prob-
ability distribution, and the codeword as anoma-
lous event data in a database;
generate an intrusion alert, the intrusion alert com-
prising the anomalous event data; and
send the intrusion alert to a user interface to be
viewed by a user; and
a codebook training module comprising a second plurality
of programming instructions stored in the memory
which, when operating on the processor, causes the
computing device to:
receive a training dataset;
use the training dataset to create the reference prob-
ability distribution;
send the reference probability distribution to the intru-
sion detection module;
receive data;
format the received data into a test dataset;
retrieve a first measured probability distribution asso-
ciated with the previous training dataset from a
monitor database;
use one or more algorithms to measure a second
probability distribution of the test dataset;
compare the first and second measured probability
distributions to compute the difference in distribu-
tion statistics between the test dataset and the pre-
vious training dataset;
in response to the difference in distribution statistics’
exceeding a pre-determined difference threshold:
use the test dataset to retrain encoding and decoding
algorithms;
utilize the retrained algorithms to create new data
sourceblocks;
create new codeword for each new data sourceblock;
store each new data sourceblock and its associated
new codeword in an updated codebook; and
send the updated codebook to a plurality of encoding
and decoding machines.

2. The system of claim 1, wherein the monitor database is
stored in the memory of the computing device, wherein the
monitor database comprises a previous training dataset, the
first-measured probability distribution associated with the
previous training dataset, performance metrics, and model
predictions.

3. The system of claim 1, further comprising a data
deconstruction engine comprising a third plurality of pro-
gramming instructions stored in the memory which, when
operating on the processor, causes the computing device to:

receive a plurality of codewords from a codeword storage;

and

10

15

20

25

30

35

40

45

50

55

60

50

send the plurality of codewords as a codeword data stream

to the intrusion detection module.

4. A method for data compaction with intrusion detection,
comprising the steps of:

receiving a codeword data stream;

using one or more algorithms to compute a probability

distribution of a plurality of codewords within the
codeword data stream;

comparing the computed probability distribution with a

reference probability distribution to compute an
amount of divergence between the computed probabil-
ity distribution and the reference probability distribu-
tion; and

when the computed amount of divergence exceeds a

configured risk sensitivity threshold:

storing the computed divergence, the computed prob-
ability distribution, and the codeword as anomalous
event data in a database;

generating an intrusion alert, the intrusion alert com-
prising the anomalous event data; and

sending the intrusion alert to a user interface to be
viewed by a user;

receiving a training dataset;

using the training dataset to create the reference probabil-

ity distribution;

sending the reference probability distribution to the intru-

sion detection module;

receiving data;

formatting the received data into a test dataset;

retrieving a first measured probability distribution asso-

ciated with the previous training dataset from a monitor
database;

using one or more algorithms to measure a second prob-

ability distribution of the test dataset;

comparing the first and second measured probability

distributions to compute the difference in distribution
statistics between the test dataset and the previous
training dataset;

in response to the difference in distribution statistics’

exceeding a pre-determined difference threshold:

using the test dataset to retrain encoding and decoding
algorithms;

utilizing the retrained algorithms to create new data
sourceblocks;

creating new codeword for each new data sourceblock;

storing each new data sourceblock and its associated
new codeword in an updated codebook; and

sending the updated codebook to a plurality of encod-
ing and decoding machines.

5. The method of claim 4, wherein the monitor database
is stored in the memory of the computing device, wherein
the monitor database comprises a previous training dataset,
the first-measured probability distribution associated with
the previous training dataset, performance metrics, and
model predictions.

6. The method of claim 4, further the steps of:

receiving a plurality of codewords from a codeword

storage; and

sending the plurality of codewords as a codeword data

stream to the intrusion detection module.

#* #* #* #* #*

