a2 United States Patent

Jonik et al.

US011960472B2

ao) Patent No.: US 11,960,472 B2
45) Date of Patent: *Apr. 16, 2024

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SYNCHRONIZING CONTENT WITH
THIRD-PARTY APPLICATION

Applicant: Snap Inc., Santa Monica, CA (US)

Inventors: Daniel Jonik, Seattle, WA (US); Kent
Tam, Beverly Hills, CA (US); Bradley
Baron, Seattle, WA (US); Benjamin
Ralph Hollis, Seattle, WA (US)

Assignee: Snap Inc., Santa Monica, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 17/964,675
Filed: Oct. 12, 2022
Prior Publication Data

US 2023/0033677 Al Feb. 2, 2023

Related U.S. Application Data

Continuation of application No. 16/801,805, filed on
Feb. 26, 2020, now Pat. No. 11,500,850.

Int. CL.
GO6F 16/23 (2019.01)
GO6F 16/27 (2019.01)
U.S. CL

CPC GO6F 16/2365 (2019.01); GOGF 16/2329
(2019.01); GOGF 16/275 (2019.01)

Field of Classification Search

CPC . GO6F 16/2365; GO6F 16/2329; GO6F 16/275

USPC e 707/613

See application file for complete search history.

100\

%W

MESSAGING CLIENT
APPLICATION | L1020

NETWORK (E.G., THE

(56) References Cited
U.S. PATENT DOCUMENTS

8,788,881 B2* 7/2014 Salomon G06Q 20/3224
714/18

2009/0327354 Al 12/2009 Resnick et al.
2015/0169615 Al* 6/2015 Batchu HO04W 4/50
707/624

2017/0359462 Al 12/2017 Harris et al.
(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 16/801,805, filed Feb. 26, 2020, Synchronizing
Content With Third-Party Application.

(Continued)

Primary Examiner — Michael Pham

(74) Attorney, Agent, or Firm — Schwegman Lundberg &
Woessner, P.A.

(57) ABSTRACT

Systems and methods are provided for synchronizing mes-
sages. The systems and methods include operations for:
identifying a difference between a current state of a mes-
saging application and a shared synchronization database,
wherein the shared synchronization database is updated via
a third-party application in response to the third-party appli-
cation receiving, from a server, a notification related to the
messaging application, the messaging application and the
third-party application being implemented on a client
device; retrieving information from the shared synchroniza-
tion database to update the current state of the messaging
application based on the identified difference; and transmit-
ting, to the server by the messaging application, a request for
content based on the update to the current state of the
messaging application.

20 Claims, 7 Drawing Sheets

INTERNET)

105
THIRD-PARTY
APPLICATIONS)

API seRvER [~110
12
APPLICATI()N SERVER T
| MESSAGING SERVER APPLICATION |
16
IMAGE PROCESSING SYSTEM |
22

G

SOCIAL NETWORK SYSTEM |

‘ 24
] VESSHGE SYCHRONZATION

MESSAGING SERVER SYSTEM

20

5
DATABASE
SERVER(S) DATABASE(S)

To8

US 11,960,472 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2018/0341693 Al 112018 Shao
2020/0112606 Al 4/2020 Nanduri et al.

OTHER PUBLICATIONS

“U.S. Appl. No. 16/801,805, Final Office Action dated Apr. 14,
20227, 16 pgs.

“U.S. Appl. No. 16/801,805, Non Final Office Action dated Oct. 6,
20217, 15 pgs.

“U.S. Appl. No. 16/801,805, Notice of Allowance dated Jul. 13,
2022, 9 pgs.

“U.S. Appl. No. 16/801,805, Response filed Jan. 4, 2022 to Non
Final Office Action dated Oct. 6, 20217, 10 pgs.

“U.S. Appl. No. 16/801,805, Response filed Jun. 14, 2022 to Final
Office Action dated Apr. 14, 20227, 10 pgs.

* cited by examiner

U.S. Patent Apr. 16,2024 Sheet 1 of 7 US 11,960,472 B2

106

) NETWORK (E.G., THE

INTERNET)

104
MESSAGING CLIENT
APPLICATION
~105
THIRD-PARTY
APPLICATION(S)

|
I I
| -

| APISERVER [~ 110 !
l 2 112 }
\ 4 Z |
: APPLICATION SERVER 114 |

|
i MESSAGING SERVER APPLICATION E
i Jie |
i IMAGE PROCESSING SYSTEM {
i 122 |
| (I
| SOCIAL NETWORK SYSTEM !
: |
| MESSAGE SYNCHRONIZATION .
! SYSTEM |
| |
! I
: I
l 120 |
i ! T
|

|
118 DATABASE !
i DATHBASE DATABASE(S) | 1
{

|
L MESSAGING SERVERSYSTEM i

708

U.S. Patent Apr. 16,2024 Sheet 2 of 7 US 11,960,472 B2

————— = S e s e e ——
-— S
- — —
-
—~—

\
7N\

ANNOTATION
TABLE

ENTITY GRAPH]
204

SHARED STORY TABLE

SYNCHRONIZATION
DATA

\—————————_______________l/

-

FIG. 2

U.S. Patent Apr. 16,2024 Sheet 3 of 7 US 11,960,472 B2

300
~
208
3021 | IMAGE TABLE
MSG._ID
304 .
MSG_TEXT 210
306 ’
MSG_IMAGE | VIDEO TABLE
308 o
MSG_VID
310 y
MSG_AUD 5
312 ANNOTATION
MSG_ANNOT TABLE
314
MSG_DUR
316 o
MSG_LOCATION /
318 | STORYTABLE
MSG_STRY_ID
320
MSG_TAG 202
322
MSG_SENDER D ENTITY TABLE
324
MSG_RECEIVER ID

FIG. 3

US 11,960,472 B2

Sheet 4 of 7

Apr. 16, 2024

U.S. Patent

IINAON
JINAOW V1Y JINAOW NOISSTS
NOISSINSNYAL e | NGILVZINOYHONAS |e NOILYDINNAINOD
IOVSSIN
\
ale 9Ly Ly

IW3.LSAS NOILVZINOMHONAS 3OVSSIN

U.S. Patent

500\

Apr. 16,2024 Sheet 5 of 7 US 11,960,472 B2

RECEIVE, FROM A SERVER BY A THIRD-PARTY
APPLICATION IMPLEMENTED ON A CLIENT
DEVICE, A NOTIFICATION RELATED TO A
MESSAGING APPLICATION

~501

UPDATE, BY THE THIRD-PARTY APPLICATION, A
SHARED SYNCHRONIZATION DATABASE BASED
ON THE NOTIFICATION

~ 502

IDENTIFY A DIFFERENCE BETWEEN A CURRENT
STATE OF THE MESSAGING APPLICATION AND
THE SHARED SYNCHRONIZATION DATABASE

~503

h 4

RETRIEVE INFORMATION FROM THE SHARED
SYNCHRONIZATION DATABASE TO UPDATE THE
CURRENT STATE OF THE MESSAGING
APPLICATION BASED ON THE IDENTIFIED
DIFFERENCE

~504

\ 4

TRANSMIT, TO THE SERVER BY THE MESSAGING

APPLICATION, A REQUEST FOR CONTENT BASED

ON THE UPDATE TO THE CURRENT STATE OF THE
MESSAGING APPLICATION

~505

FIG. 5

U.S. Patent Apr. 16,2024 Sheet 6 of 7 US 11,960,472 B2

API CALLS MESSAGES
608 6124
SOFTWARE ARCHITECTURE 606

PRESENTATION LAYER 614

APPLICATIONS 61

BUILT-IN 638 THIRD-PARTY 640

FRAMEWORKS / MIDDLEWARE 61

LIBRARIES 620
SYSTEM API OTHER
644 646 648

OPERATING SYSTEM 602

KERNEL SERVICES DRIVERS
622 624 626
PROCESSING UNIT 654 | MEMORY/STORAGE 656 OTHER
INSTRUCTIONS HARDWARE
604 INSTRUCTIONS 658
Y HARDWARE LAYER 652 i

FIG. 6

U.S. Patent Apr. 16,2024 Sheet 7 of 7 US 11,960,472 B2

| PROCESSORS 704 MEMORY/STORAGE 706

| | | :
! ! [|
| | PROCESSOR | ! !
i 708 L MEmRY |
—— 1
- [|NSTRUCTIONS) 3| INSTRUCTIONS i
' 710 ' ! !
: | | m i
I o : : :
| c o |
i PROCESSOR | ! ! STORAGE UNIT 716 !
| 112 : ' '
| | [NSTRUCTIONS] [i INSTRUCTIONS E
: ZJ_Q : | m i
I ———r | T ——]
BUS 702

o /O COMPONENTS 718 |

| | OUTPUT 726 INPUT 728 BIOMETRIC 739 | |

| |[___VISUAL __]||[ALPHANUMERIC] | |[_EXPRESSION]| !

"|C_ACOUSTIC__]||[CPOINT BASED] ||[_BIOSIGNALS]["!

 |(__HAPTIC__]||[C_TACTILE__]|| [IDENTIFICATION]| !

; [_AUDIO | !

i [MOTION 734 ENVIR. 736 POSITION 738 f

| |[ACCELERATION]||[TLCUMINATION]||[__LOCATION]| i

| GRAVITATION]{|[__ACOUSTIC _]||[__ALTITUDE][]

| |_ROTATION _]||[TEMPERATURE]||[_ORIENTATION]| |

: [PRESSURE | :

| I

! COMMUNICATION 740 !

|[L_WRED] [WIRELESS] [CELLULAR]!

| |[[_NEARFIELD | [BLUETOOTH] | WI-FI | !

US 11,960,472 B2

1
SYNCHRONIZING CONTENT WITH
THIRD-PARTY APPLICATION

CLAIM OF PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 16/801,805, filed Feb. 26, 2020, which is
incorporated herein by reference in its entirety.

TECHNICAL FIELD

The present disclosure generally relates to the technical
field of social networks. In particular, the present embodi-
ments are generally directed to managing message synchro-
nization.

BACKGROUND

As the popularity of social networking grows, social
networks are expanding their capabilities. To improve ease
of use, social networks are integrating more and more
functions such that a user may accomplish many or even
most of their computer-based tasks within the social network
itself. One vision of social networks is that they eventually
become a virtual operating system, from which a user
seldom finds a need to remove themselves.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, which are not necessarily drawn to scale,
like numerals may describe similar components in different
views. To easily identify the discussion of any particular
element or act, the most significant digit or digits in a
reference number refer to the figure number in which that
element is first introduced. Some embodiments are illus-
trated by way of example, and not limitation, in the figures
of the accompanying drawings in which:

FIG. 1 is a block diagram showing an example messaging
system for exchanging data (e.g., messages and associated
content) over a network, according to example embodi-
ments.

FIG. 2 is a schematic diagram illustrating data which may
be stored in the database of a messaging server system,
according to example embodiments.

FIG. 3 is a schematic diagram illustrating a structure of a
message generated by a messaging client application for
communication, according to example embodiments.

FIG. 4 is a block diagram showing an example message
synchronization system, according to example embodi-
ments.

FIG. 5 is a flowchart illustrating example operations of the
message synchronization system, according to example
embodiments.

FIG. 6 is a block diagram illustrating a representative
software architecture, which may be used in conjunction
with various hardware architectures herein described,
according to example embodiments.

FIG. 7 is a block diagram illustrating components of a
machine able to read instructions from a machine-readable
medium (e.g., a machine-readable storage medium) and
perform any one or more of the methodologies discussed
herein, according to example embodiments.

DETAILED DESCRIPTION

The description that follows includes systems, methods,
techniques, instruction sequences, and computing machine

10

15

20

25

30

35

40

45

50

55

60

65

2

program products that embody illustrative embodiments of
the disclosure. In the following description, for the purposes
of explanation, numerous specific details are set forth in
order to provide an understanding of various embodiments.
It will be evident, however, to those skilled in the art, that
embodiments may be practiced without these specific
details. In general, well-known instruction instances, proto-
cols, structures, and techniques are not necessarily shown in
detail.

Often, users consume media content, and specifically
videos, on a user device, such as a mobile device. Such
media content is typically exchanged in chat sessions
between users. Sometimes users log on and log off a server
that maintains the contents of the chat sessions. In order to
ensure that the latest chat messages, that were exchanged in
the chat session while the user device has been disconnected
from the server, are presented to the user, a user device
synchronizes with the server. Typically, the server will send
the content of all the messages that were exchanged while
the user device was disconnected from the server. Some of
these messages are rich in large-sized content, such as
videos and images. Synchronizing such content between a
server and a user device consumes a great deal of processing
resources and network bandwidth which makes synchroni-
zation sessions operate inefficiently. Also, synchronizing
such content can take a long time which further delays
presenting the latest chat messages to the user and can end
up frustrating the users.

In some cases, a dedicated operating system process, such
as a push notification application, receives messages or data
corresponding to a messaging application. For example, a
first user may send a message, via a messaging application
of a first user devices of the first user to a second user. A
messaging application of a second user device of the second
user may be inactive when the first user sends such a
message. In such circumstances, the push notification appli-
cation of the operating system of the second user device may
receive and present the message to the second user. Typi-
cally, the push notification application does not communi-
cate with the messaging application and works indepen-
dently of the messaging application. As such, the messaging
application is not informed about the receipt of the message
from the first user. So when the messaging application
ultimately synchronizes its content with the server, the
messaging application may request content from the server
that may have already been delivered to the second user
device through alternate means, such as by way of the push
notification application. This results in wasted bandwidth
and processing resources in performing duplicative work. In
this case, the duplicative work is the receipt of a message
that has already been provided to the second user device by
other means.

The disclosed embodiments improve the efficiency of
using the electronic device by providing a system that
efficiently synchronizes content between a server and a user
device. According to the disclosed system, only content that
differs between the user device and the server and that has
not already been sent to a third-party application, such as a
push notification application, or a messaging application on
the user device is transmitted to the user device in a
synchronization session. In this way, if one application, such
as a third-party application, on the user device obtained
content while a messaging application is offline, such con-
tent can be shared with the messaging application, and need
not be requested to be provided by the messaging applica-
tion from the server. As such, the server avoids sending
duplicate information to the user device when the messaging

US 11,960,472 B2

3

application of the user device ultimately connects back to
the server. Specifically, the disclosed system receives, from
a server by a third-party application implemented on a client
device, a notification related to a messaging application and
updates, by the third-party application, a shared synchroni-
zation database based on the notification. The disclosed
system identifies a difference between a current state of the
messaging application and the shared synchronization data-
base and retrieves information from the shared synchroni-
zation database to update the current state of the messaging
application based on the identified difference. Then, the
messaging application transmits, to the server, a request for
content based on the update to the current state of the
messaging application and does not request content that was
already obtained from the shared synchronization database
via the third-party application.

Rather than sending the entire contents of the messages
exchanged as part of a communication session after a user
device disconnected from a server, the disclosed system only
sends those messages that the user device did not already
obtain using a different application, such as a push notifi-
cation application. Specifically, a messaging application on
the user device may end a connection with a server and may
receive a first set of messages from a push application. The
push application may update a shared synchronization data-
base with the first set of messages. Later, the messaging
application, prior to connecting back to the server to receive
a set of synchronization data, identifies a set of data the
messaging application is missing that is included in the
shared synchronization database. The messaging application
updates the missing data and requests from the server any
further updates not including the missing data that was
obtained from the synchronization database. This increases
the efficiencies of the electronic device by reducing process-
ing times and network bandwidth needed to accomplish a
task.

FIG. 1 is a block diagram showing an example messaging
system 100 for exchanging data (e.g., messages and asso-
ciated content) over a network 106. The messaging system
100 includes multiple client devices 102, each of which
hosts a number of applications, including a messaging client
application 104 and a third-party application 105. Each
messaging client application 104 is communicatively
coupled to other instances of the messaging client applica-
tion 104, the third-party application 105, and a messaging
server system 108 via a network 106 (e.g., the Internet).

Accordingly, each messaging client application 104 and
third-party application 105 is able to communicate and
exchange data with another messaging client application 104
and third-party application(s) 105 and with the messaging
server system 108 via the network 106. The data exchanged
between messaging client applications 104, third-party
applications 105, and the messaging server system 108
includes functions (e.g., commands to invoke functions) and
payload data (e.g., text, audio, video, or other multimedia
data). Any disclosed communications between the messag-
ing client application 104 and the third-party application(s)
105 can be transmitted directly from the messaging client
application 104 to the third-party application(s) 105 and/or
indirectly (e.g., via one or more servers) from the messaging
client application 104 to the third-party application(s) 105.

The third-party application(s) 105 and the messaging
client application 104 are applications that include a set of
functions that allow the client device 102 to access a
message synchronization system 124. The third-party appli-
cation 105 is an application that is separate and distinct from
the messaging client application 104. The third-party appli-

40

45

4

cation(s) 105 are downloaded and installed by the client
device 102 separately from the messaging client application
104. In some implementations, the third-party application(s)
105 are downloaded and installed by the client device 102
before or after the messaging client application 104 is
downloaded and installed. The third-party application 105 is
an application that is provided by an entity or organization
that is different from the entity or organization that provides
the messaging client application 104. The third-party appli-
cation 105 is an application that can be accessed by a client
device 102 using separate login credentials than the mes-
saging client application 104. Namely, the third-party appli-
cation 105 can maintain a first user account and the mes-
saging client application 104 can maintain a second user
account. For example, the third-party application 105 can be
a social networking application, a dating application, a ride
or car sharing application, a shopping application, a trading
application, a gaming application, or an imaging application.
In some cases, the third-party application 105 is an operating
system process (e.g., a push notification application) that
handles push notifications for various applications installed
on the client device 102. The push notification application is
configured to receive messages from one or more servers
and automatically present the received messages to the user.
The messages may be received out-of-band and without a
synchronization or refresh operation being performed by the
client device 102.

The messaging server system 108 provides server-side
functionality via the network 106 to a particular messaging
client application 104. While certain functions of the mes-
saging system 100 are described herein as being performed
by either a messaging client application 104 or by the
messaging server system 108, it will be appreciated that the
location of certain functionality either within the messaging
client application 104 or the messaging server system 108 is
a design choice. For example, it may be technically prefer-
able to initially deploy certain technology and functionality
within the messaging server system 108, but to later migrate
this technology and functionality to the messaging client
application 104 where a client device 102 has a sufficient
processing capacity.

The messaging server system 108 supports various ser-
vices and operations that are provided to the messaging
client application 104. Such operations include transmitting
data to, receiving data from, and processing data generated
by the messaging client application 104. This data may
include message content, client device information, geolo-
cation information, media annotation and overlays, virtual
objects, message content persistence conditions, social net-
work information, and live event information, as examples.
Data exchanges within the messaging system 100 are
invoked and controlled through functions available via user
interfaces (Uls) of the messaging client application 104.

Turning now specifically to the messaging server system
108, an API server 110 is coupled to, and provides a
programmatic interface to, an application server 112. The
application server 112 is communicatively coupled to a
database server 118, which facilitates access to a database
120 in which is stored data associated with messages pro-
cessed by the application server 112.

Dealing specifically with the API server 110, this server
110 receives and transmits message data (e.g., commands
and message payloads) between the client device 102 and
the application server 112. Specifically, the API server 110
provides a set of interfaces (e.g., routines and protocols) that
can be called or queried by the messaging client application
104 and the third-party application 105 in order to invoke

US 11,960,472 B2

5

functionality of the application server 112. The API server
110 exposes various functions supported by the application
server 112, including account registration; login functional-
ity; the sending of messages, via the application server 112,
from a particular messaging client application 104 to another
messaging client application 104 or third-party application
105; the sending of media files (e.g., images or video) from
a messaging client application 104 to the messaging server
application 114, and for possible access by another messag-
ing client application 104 or third-party application 105; the
setting of a collection of media data (e.g., story); the
retrieval of such collections; the retrieval of a list of friends
of'a user of a client device 102; the retrieval of messages and
content; the adding and deleting of friends to a social graph;
the location of friends within a social graph; access to user
conversation data; access to avatar information stored on
messaging server system 108; and opening an application
event (e.g., relating to the messaging client application 104).

The application server 112 hosts a number of applications
and subsystems, including a messaging server application
114, an image processing system 116, a social network
system 122, and the message synchronization system 124.
The messaging server application 114 implements a number
of message processing technologies and functions, particu-
larly related to the aggregation and other processing of
content (e.g., textual and multimedia content) included in
messages received from multiple instances of the messaging
client application 104. As will be described in further detail,
the text and media content from multiple sources may be
aggregated into collections of content (e.g., called stories or
galleries). These collections are then made available, by the
messaging server application 114, to the messaging client
application 104. Other processor- and memory-intensive
processing of data may also be performed server-side by the
messaging server application 114, in view of the hardware
requirements for such processing.

The application server 112 also includes an image pro-
cessing system 116 that is dedicated to performing various
image processing operations, typically with respect to
images or video received within the payload of a message at
the messaging server application 114. A portion of the image
processing system 116 may also be implemented by the
message synchronization system 124.

The social network system 122 supports various social
networking functions and services and makes these func-
tions and services available to the messaging server appli-
cation 114. To this end, the social network system 122
maintains and accesses an entity graph within the database
120. Examples of functions and services supported by the
social network system 122 include the identification of other
users of the messaging system 100 with which a particular
user has relationships or is “following” and also the identi-
fication of other entities and interests of a particular user.
Such other users may be referred to as the user’s friends.
Social network system 122 may access location information
associated with each of the user’s friends to determine where
they live or are currently located geographically. Social
network system 122 may maintain a location profile for each
of the user’s friends indicating the geographical location
where the user’s friends live.

The message synchronization system 124 manages syn-
chronization of messages exchanged in a communication
session. For example, the message synchronization system
124 establishes a communication session between a plurality
of'users (e.g., a chat session in which multiple chat messages
are exchanged). The messaging client application 104
implemented on the client device 102 communicates with

10

15

20

25

30

35

40

45

50

55

60

65

6

the message synchronization system 124 to receive mes-
sages transmitted as part of the communication session.
Specifically, messages are sent from one user to another via
the message synchronization system 124. The message
synchronization system 124 keeps track of all the messages
that are exchanged and sends updates to client devices 102
that are connected to the message synchronization system
124.

In some cases, the message synchronization system 124
stores data relating to the messaging client application 104
in a shared synchronization database. The shared synchro-
nization database may be stored locally on the client device
102 and/or on a remote server. The data may include
identifiers of messages that were received by a third-party
application 105. The data may also include identifiers of
messages received by the messaging client application 104.

For example, the messaging client application 104 may go
offline (e.g., because a user closed the application and/or
because of loss of Internet connectivity). Once the same
messaging client application 104 connects back to the mes-
sage synchronization system 124, the message synchroni-
zation system 124 determines whether the shared synchro-
nization database includes additional messages were
exchanged or sent by users in the communication session.
Such additional messages may have been received by the
third-party application 105 and have been stored in the
shared synchronization database. In some cases, the message
synchronization system 124 retrieves the timestamp of the
last time the messaging client application 104 received an
update from the messaging server system 108. The message
synchronization system 124 compares the timestamp to
timestamps of messages stored in the shared synchronization
database to identify a set of messages that were exchanged
after the timestamp of the last time the messaging client
application 104 received the update. Namely, the message
synchronization system 124 identifies timestamps that fol-
low the timestamp of the last time the messaging client
application 104 was synchronized or refreshed.

The message synchronization system 124 obtains the set
of messages from the third-party application 105 and/or
from the shared synchronization database. The message
synchronization system 124 locally updates the current state
of'the messaging client application 104 with the obtained set
of messages.

The message synchronization system 124 then generates
synchronization data based on the current state of the
messaging client application 104. Specifically, the message
synchronization system 124 generates a request to synchro-
nize messages with the server 108 based on the timestamps
of the messages that were stored in the shared synchroni-
zation database rather than the last timestamp of when the
last time the messaging client application 104 refreshed or
synchronized content with the server 108. The server 108
determines whether additional messages or content were
exchanged following the latest timestamp of the messages
obtained from the shared synchronization database. The
server 108 provides to the messaging client application 104
any messages that are missing from the updated state of the
messaging client application 104, such as any additional
messages or content were exchanged following the latest
timestamp of the messages obtained from the shared syn-
chronization database. In some cases, the server 108 does
not find any messages that are missing from the messaging
client application 104. In such cases, no updated information
is provided to the messaging client application 104. In some
cases, after updated content is received by the messaging
client application 104 from the server 108, the shared

US 11,960,472 B2

7

synchronization database is updated with this information
retrieved from the server 108.

In some cases, the synchronization data includes a vector
of sequence numbers of messages that were exchanged. In
some implementations, the vector identifies users who par-
ticipate in the communication session and sequence numbers
of messages sent by such users. In some cases, the vector is
a matrix in which columns of the matrix represent different
participants of the communication session and rows of the
matrix represent sequence numbers of messages sent by the
different participants.

The messaging client application 104 obtains the synchro-
nization data including the vector from the shared synchro-
nization database. The messaging client application 104
generates a vector that represents messages already received
by the messaging client application 104 that were previously
exchanged in the communication session. The messaging
client application 104 identifies differences between the
vector generated by the messaging client application 104
and the synchronization data received from the shared
synchronization database.

As an example, the messaging client application 104
compares the vector of sequence numbers generated by the
messaging client application 104 and the vector of sequence
numbers received from the shared synchronization database.
The messaging client application 104 identifies one or more
sequence numbers that are in the vector of sequence num-
bers received from the shared synchronization database and
that are not in the vector generated by the messaging client
application 104. The messaging client application 104
retrieves messages from the third-party application 105
corresponding to the identified one or more sequence num-
bers. The messaging client application 104 then generates a
new vector of sequence numbers that includes the newly
retrieved messages from the third-party application 105. The
messaging client application 104 transmits a request to the
server 108 to synchronize data based on the new vector of
sequence numbers. The server 108 generates a vector of
sequence numbers corresponding to a communication ses-
sion of the messaging client application 104. The server 108
identifies differences between the vector received from the
messaging client application 104 and the vector generated
by the server 108. The server 108 then sends to the mes-
saging client application 104 any messages that are associ-
ated with sequence numbers that are in the vector generated
by the server 108 and that are not in the vector received from
the messaging client application 104.

In this way, the given client device 102 may employ the
techniques described herein to reduce network bandwidth by
having the messaging client application 104 compare a
vector of sequence numbers of messages exchanged in a
communication session received from by the third-party
application 105 and that are stored in a shared synchroni-
zation database to update the state of the messaging client
application 104 before the messaging client application 104
communicates with the server 108 to obtain updates to a
communication session.

The application server 112 is communicatively coupled to
a database server 118, which facilitates access to a database
120 in which is stored data associated with messages pro-
cessed by the messaging server application 114. Database
120 may be a third-party database. For example, the appli-
cation server 112 may be associated with a first entity, and
the database 120 or a portion of the database 120 may be
associated with and hosted by a second, different entity. In
some implementations, database 120 stores user data that the
first entity collects about various each of the users of a

10

15

20

25

30

35

40

45

50

55

60

65

8

service provided by the first entity. For example, the user
data includes user names, passwords, addresses, friends,
activity information, preferences, videos or content con-
sumed by the user, and so forth.

FIG. 2 is a schematic diagram 200 illustrating data, which
may be stored in the database 120 of the messaging server
system 108, according to certain example embodiments.
While the content of the database 120 is shown to comprise
a number of tables, it will be appreciated that the data could
be stored in other types of data structures (e.g., as an
object-oriented database).

The database 120 includes message data stored within a
message table 214. An entity table 202 stores entity data,
including an entity graph 204. Entities for which records are
maintained within the entity table 202 may include indi-
viduals, corporate entities, organizations, objects, places,
events, and so forth. Regardless of type, any entity regarding
which the messaging server system 108 stores data may be
a recognized entity. Each entity is provided with a unique
identifier, as well as an entity type identifier (not shown).

The entity graph 204 stores information regarding rela-
tionships and associations between entities. Such relation-
ships may be social, professional (e.g., work at a common
corporation or organization), interest-based, or activity-
based, merely for example.

Message table 214 may store a collection of conversations
between a user and one or more friends or entities. Message
table 214 may include various attributes of each conversa-
tion, such as the list of participants, the size of the conver-
sation (e.g., number of users and/or number of messages),
the chat color of the conversation, a unique identifier for the
conversation, and any other conversation related feature(s).

The database 120 also stores annotation data, in the
example form of filters, in an annotation table 212. Database
120 also stores annotated content received in the annotation
table 212. Filters for which data is stored within the anno-
tation table 212 are associated with and applied to videos
(for which data is stored in a video table 210) and/or images
(for which data is stored in an image table 208). Filters, in
one example, are overlays that are displayed as overlaid on
an image or video during presentation to a recipient user.
Filters may be of various types, including user-selected
filters from a gallery of filters presented to a sending user by
the messaging client application 104 when the sending user
is composing a message. Other types of filters include
geolocation filters (also known as geo-filters), which may be
presented to a sending user based on geographic location.
For example, geolocation filters specific to a neighborhood
or special location may be presented within a Ul by the
messaging client application 104, based on geolocation
information determined by a Global Positioning System
(GPS) unit of the client device 102. Another type of filter is
a data filter, which may be selectively presented to a sending
user by the messaging client application 104, based on other
inputs or information gathered by the client device 102
during the message creation process. Examples of data
filters include current temperature at a specific location, a
current speed at which a sending user is traveling, battery
life for a client device 102, or the current time.

Other annotation data that may be stored within the image
table 208 is so-called “lens” data. A “lens” may be a
real-time special effect and sound that may be added to an
image or a video.

As mentioned above, the video table 210 stores video data
which, in one embodiment, is associated with messages for
which records are maintained within the message table 214.
Similarly, the image table 208 stores image data associated

US 11,960,472 B2

9

with messages for which message data is stored in the entity
table 202. The entity table 202 may associate various
annotations from the annotation table 212 with various
images and videos stored in the image table 208 and the
video table 210.

Shared synchronization data 207 stores various informa-
tion about messages exchanged in a communication session.
Shared synchronization data 207 is a shared data storage that
is accessible to the messaging client application 104 and to
the third-party application 105. In some cases, the third-
party application 105 receives a notification containing a
message associated with the messaging client application
104. The messaging client application 104 not be informed
about this message but the message may still be presented to
the user. In response to receiving the message, the third-
party application 105 stores an identifier of the message or
notification (e.g., one or more sequence numbers or a vector
of sequence numbers associated with the message) in the
shared synchronization data 207.

The messaging client application 104 may access the
shared synchronization data 207 to determine whether any
notifications have been received by the third-party applica-
tion 105 and which have not been updated or received by the
messaging client application 104 (e.g., when the messaging
client application 104 was offline, messages may have been
received by the third-party application 105). The messaging
client application 104 may update the local state of the
communication session of the messaging client application
104 based on the updated information included in the shared
synchronization data 207 before the messaging client appli-
cation 104 requests to synchronize content with a remote
source, such as server 108. After the messaging client
application 104 updates its current state, the messaging
client application 104 communicates with the server 108 to
obtain further updates based on the updated current state of
the messaging client application 104.

In some embodiments, the information stored in the
shared synchronization data 207 includes a vector or matrix
representing participants to a communication session and/or
sequence numbers of messages sent by the respective par-
ticipants associated with the messaging client application
104. Such messages may be received by the third-party
application 105 but may not be received by the messaging
client application 104 (e.g., because the messaging client
application 104 is offline). The sequence numbers are asso-
ciated with the messages and can be used to uniquely
identify each respective message that is exchanged in the
communication session. As an example, a client device 102
or messaging client application 104 may send a sequence
number to the message synchronization system 124 and/or
to the shared synchronization data 207 and request content
or messages associated with the sequence number. The
message synchronization system 124 and/or the shared
synchronization data 207 identifies the contents or message
associated with the received sequence number and sends the
contents or message associated with the sequence number to
the client device 102 or messaging client application 104. In
some cases, the message synchronization system 124 uses
the shared synchronization data 207 information to identify
a set of synchronization data (e.g., a vector of sequence
numbers) that includes identifiers of messages with time-
stamps that were received by the third-party application 105
after the last time the messaging client application 104
received a last message, was last updated, and/or was last
connected to the message synchronization system 124.

A story table 206 stores data regarding collections of
messages and associated image, video, or audio data, which

20

40

45

65

10

are compiled into a collection (e.g., a story or a gallery). The
creation of a particular collection may be initiated by a
particular user (e.g., each user for which a record is main-
tained in the entity table 202). A user may create a “personal
story” in the form of a collection of content that has been
created and sent/broadcast by that user. To this end, the Ul
of the messaging client application 104 may include an icon
that is user-selectable to enable a sending user to add specific
content to his or her personal story.

A collection may also constitute a “live story,” which is a
collection of content from multiple users that is created
manually, automatically, or using a combination of manual
and automatic techniques. For example, a “live story” may
constitute a curated stream of user-submitted content from
various locations and events. Users whose client devices 102
have location services enabled and are at a common location
event at a particular time may, for example, be presented
with an option, via a Ul of the messaging client application
104, to contribute content to a particular live story. The live
story may be identified to the user by the messaging client
application 104 based on his or her location. The end result
is a “live story” told from a community perspective.

A further type of content collection is known as a “loca-
tion story,” which enables a user whose client device 102 is
located within a specific geographic location (e.g., on a
college or university campus) to contribute to a particular
collection. In some embodiments, a contribution to a loca-
tion story may require a second degree of authentication to
verify that the end user belongs to a specific organization or
other entity (e.g., is a student on the university campus).

FIG. 3 is a schematic diagram illustrating a structure of a
message 300, according to some embodiments, generated by
a messaging client application 104 for communication to a
further messaging client application 104 or the messaging
server application 114. The content of a particular message
300 is used to populate the message table 214 stored within
the database 120, accessible by the messaging server appli-
cation 114. Similarly, the content of a message 300 is stored
in memory as “in-transit” or “in-flight” data of the client
device 102 or the application server 112. The message 300
is shown to include the following components:

A message identifier 302: a unique identifier that identifies

the message 300.

A message text payload 304: text, to be generated by a
user via a Ul of the client device 102 and that is
included in the message 300.

A message image payload 306: image data, captured by a
camera component of a client device 102 or retrieved
from memory of a client device 102, and that is
included in the message 300.

A message video payload 308: video data, captured by a
camera component or retrieved from a memory com-
ponent of the client device 102 and that is included in
the message 300.

A message audio payload 310: audio data, captured by a
microphone or retrieved from the memory component
of the client device 102, and that is included in the
message 300.

Message annotations 312: annotation data (e.g., filters,
stickers, or other enhancements) that represents anno-
tations to be applied to message image payload 306,
message video payload 308, or message audio payload
310 of the message 300.

A message duration parameter 314: parameter value indi-
cating, in seconds, the amount of time for which
content of the message (e.g., the message image pay-
load 306, message video payload 308, message audio

US 11,960,472 B2

11

payload 310) is to be presented or made accessible to
a user via the messaging client application 104.

A message geolocation parameter 316: geolocation data
(e.g., latitudinal and longitudinal coordinates) associ-
ated with the content payload of the message. Multiple
message geolocation parameter 316 values may be
included in the payload, with each of these parameter
values being associated with respect to content items
included in the content (e.g., a specific image within the
message image payload 306, or a specific video in the
message video payload 308).

A message story identifier 318: identifier value identifying
one or more content collections (e.g., “stories”) with
which a particular content item in the message image
payload 306 of the message 300 is associated. For
example, multiple images within the message image
payload 306 may each be associated with multiple
content collections using identifier values.

A message tag 320: each message 300 may be tagged with
multiple tags, each of which is indicative of the subject
matter of content included in the message payload. For
example, where a particular image included in the
message image payload 306 depicts an animal (e.g., a
lion), a tag value may be included within the message
tag 320 that is indicative of the relevant animal. Tag
values may be generated manually, based on user input,
or may be automatically generated using, for example,
image recognition.

A message sender identifier 322: an identifier (e.g., a
messaging system identifier, email address, or device
identifier) indicative of a user of the client device 102
on which the message 300 was generated and from
which the message 300 was sent.

A message receiver identifier 324: an identifier (e.g., a
messaging system identifier, email address, or device
identifier) indicative of user(s) of the client device 102
to which the message 300 is addressed. In the case of
a conversation between multiple users, the identifier
may indicate each user involved in the conversation.

The contents (e.g., values) of the various components of
message 300 may be pointers to locations in tables within
which content data values are stored. For example, an image
value in the message image payload 306 may be a pointer to
(or address of) a location within an image table 208.
Similarly, values within the message video payload 308 may
point to data stored within a video table 210, values stored
within the message annotations 312 may point to data stored
in an annotation table 212, values stored within the message
story identifier 318 may point to data stored in a story table
206, and values stored within the message sender identifier
322 and the message receiver identifier 324 may point to
user records stored within an entity table 202.

FIG. 4 is a block diagram showing an example message
synchronization system 124, according to example embodi-
ments. Message synchronization system 124 includes a
communication session module 414, a synchronization mod-
ule 416, and a message transmission module 418. The
communication session module 414 enables users to engage
in a communication session to exchange messages with each
other. In some cases, the communication session includes a
group of three or more users in which case any message sent
by one user is viewable by the other two users in the group.
In some cases, the communication session includes only two
users where one user sends messages to another user and
vice versa.

After initiating a communication session using the com-
munication session module 414, messages are transferred

20

25

30

40

45

55

65

12

between users of the communication session using the
communication session module 414. For example, the com-
munication session module 414 receives a message from a
first user in the communication session and marks the
message for transmission to a second user in the communi-
cation session. The communication session module 414
stores the message along with various information indicating
the recipient, the communication session identifier, a
sequence number, an identifier of the sender, and a time-
stamp representing when the message was received. In some
cases, in response to receiving a given message from a
participant or sender, the communication session module
414 identifies a vector associated with the participant or
sender and the value of the last sequence number that is
stored in the vector. The communication session module 414
increments the value of the last sequence number that is
stored to generate a new sequence number for the given
message, associates the new sequence number with the
given message, and adds the new sequence number to the
vector stored for the sender or participant. In this way, each
participant of the communication session is assigned a
vector with sequence numbers representing messages sent
by the respective participants.

When the second user logs into the message application,
the communication session module 414 receives an identi-
fier of the second user and determines whether any messages
that have not been delivered yet to the second user and that
are intended for the second user to receive. In some cases,
the communication session module 414 receives a last
update timestamp from the second user. The communication
session module 414 searches the receive time of all the
messages that are intended for receipt by the second user.
The communication session module 414 selects those mes-
sages that have a receive time that is later than the last update
timestamp. The communication session module 414 then
sends all of the selected messages to the user device of the
second user for presentation in the communication session
of the message client application 104.

In some embodiments, after a given user of the commu-
nication session logs off, the communication session module
414 stores a timestamp indicating the last time an update was
sent to the client device 102 of the user. In some embodi-
ments, the communication session module 414 continuously
updates the timestamp for a given client device 102 each
time an update including new messages of the communica-
tion session is sent to the given client device 102. This way,
the timestamp always represents the last time the given
client device 102 was connected to and received a message
from the communication session module 414.

In some embodiments, after the messaging client appli-
cation 104 logs off, the given client device 102 of the given
user may receive messages that are part of the communica-
tion session using a third-party application 105. For
example, the third-party application 105 may be a push
notifications application that is configured to receive mes-
sages out-of-band. Such an application may receive a mes-
sage and present the message to the user while the messag-
ing client application 104 is logged off. The third-party
application 105 may store an indication of the received
message in the shared synchronization data 207. For
example, the third-party application 105 may store a par-
ticipant identifier and one or more sequence numbers of the
message received from the participant.

At a later time, the messaging client application 104 may
determine a need to synchronize its content (e.g., when a
polling period is reached or when a user requests to refresh
the data of the messaging client application 104). At that

US 11,960,472 B2

13

time, the communication session module 414 instructs the
synchronization module 416 to send the shared synchroni-
zation data 207 to the messaging client application 104
verify whether the messaging client application 104 has all
of the messages that are part of the communication session
before the messaging client application 104 communicates
with the remote server to obtain updated messages.

In some embodiments, the synchronization module 416
generates a vector of sequence numbers and participant
identifiers using the set of messages stored in the shared
synchronization data 207. Namely, the synchronization
module 416 generates a vector that includes sequence num-
bers or identifiers of messages that the synchronization
module 416 identifies were exchanged during the period of
time following the last time the messaging client application
104 last received an update or was last connected to the
communication session module 414. The synchronization
module 416 sends the synchronization data (e.g., the vector
of sequence numbers) to the messaging client application
104.

The messaging client application 104 generates a local
data set representing messages exchanged in the communi-
cation session that are locally stored. In some cases, the
messaging client application 104 generates a vector that
represents participants to the communication session and the
sequence numbers of the messages sent by the participants
that are stored on the messaging client application 104. The
messaging client application 104 compares the received
synchronization data with the current state of (e.g., a vector
of sequence numbers of the communication session cur-
rently stored by) the messaging client application 104 to
identify differences. For example, the messaging client
application 104 compares the vector of sequence numbers
received from the synchronization module 416 that are in the
shared synchronization data 207 (including messages
received by the third-party application 105) to the locally
generated vector of sequence numbers of messages currently
stored in the messaging client application 104. The synchro-
nization module 416 compares the vector of sequence num-
bers received from the shared synchronization data 207 with
a vector of sequence numbers generated by the messaging
client application 104. The synchronization module 416
identifies any differences and automatically sends content or
messages corresponding to the differences (e.g., sends mes-
sages corresponding to sequence numbers that are in the
vector obtained from the shared synchronization data 207
that are not also in the vector received from the messaging
client application 104). Namely, the messaging client appli-
cation 104 updates the current state of the communication
session with the updated content or messages corresponding
to the differences.

The messaging client application 104 sends a request to
the synchronization module 416 to obtain content from a
remote server, such as server 108, for content associated
with differences between the updated state of the messaging
client application 104 and the current state maintained by the
server 108. Specifically, the messaging client application
104 generates a new vector of sequence numbers represent-
ing the updated state of the messaging client application 104.
The messaging client application 104 sends to the server 108
a request for messages associated with a set of sequence
numbers that are not already included in the new vector of
sequence numbers. Namely, the messaging client applica-
tion 104 requests that the server 108 provide any messages
exchanged in the communication session that were not

20

25

40

45

55

14

previously stored by the messaging client application 104
and that were not previously received by the third-party
application 105.

In response to receiving the request from the messaging
client application 104, the server 108 sends via the message
transmission module 418 one or more messages correspond-
ing to the received request. For example, the synchroniza-
tion module 416 instructs the message transmission module
418 to retrieve messages associated with the sequence
numbers that are stored by the server 108 in connection with
the communication session and that are not in the new vector
of sequence numbers received from the messaging client
application 104. The message transmission module 418
obtains the messages and updates the communication ses-
sion that is stored and maintained locally and displayed to
the user with the messages obtained from the message
transmission module 418.

FIG. 5 is a flowchart illustrating example operations of the
message synchronization system 124 in performing process
500, according to example embodiments. The process 500
may be embodied in computer-readable instructions for
execution by one or more processors such that the operations
of the process 500 may be performed in part or in whole by
the functional components of the messaging server system
108, client device 102, and/or third-party application 105;
accordingly, the process 500 is described below by way of
example with reference thereto. However, in other embodi-
ments, at least some of the operations of the process 500 may
be deployed on various other hardware configurations. The
process 500 is therefore not intended to be limited to the
messaging server system 108 and can be implemented in
whole, or in part, by any other component. Some or all of the
operations of process 500 can be in parallel, out of order, or
entirely omitted.

At operation 501, the computing system (e.g., client
device 102) receives, from a server, by a third-party appli-
cation implemented on the computing system a notification
related to a messaging application. For example, the third-
party application 105 receives a message from a server that
includes a participant identifier of a user involved in a
communication session and a sequence number of the mes-
sage.

At operation 502, the computing system updates, via the
third-party application, a shared synchronization database
based on the notification. For example, the third-party
application 105, such as the push notification application or
process of the operating system of the computing system,
presents a notification to the user of the computing system
with the received message and updates the shared synchro-
nization data 207 with information, such as the participant
identifier and the sequence number of the message.

At operation 503, the computing system identifies a
difference between a current state of the messaging appli-
cation and the shared synchronization database. For
example, the messaging client application 104 retrieves
notification information from the shared synchronization
data 207 (that was provided by the third-party application
105) and generates a vector of sequence numbers of mes-
sages currently stored in the messaging client application
104. The messaging client application 104 determines
whether the sequence numbers in the shared synchronization
data 207 are different (and are earlier or later) than the
sequence numbers in the vector previously generated by the
messaging client application 104.

At operation 504, the computing system, such as the client
device 102, retrieves information from the shared synchro-
nization database to update the current state of the messag-

US 11,960,472 B2

15

ing application based on the identified difference. For
example, the messaging client application 104 on the client
device 102 retrieves one or more messages corresponding to
sequence numbers that are stored in the shared synchroni-
zation data 207 (as provided by the third-party application
105) but that are not in the vector of sequence numbers
generated by the messaging client application 104.

At operation 505, the computing system transmits via the
messaging application to the server, a request for content
based on the update to the current state of the messaging
application. For example, the messaging client application
104 requests that the server provide messages with sequence
numbers that are not in the updated messaging client appli-
cation 104. Specifically, the messaging client application
104 requests that the server provide updates or synchronize
content of the messaging client application 104 that has not
been provided already to the client device 102 by other
means, such as via the third-party application 105. Namely,
if the third-party application 105 received third and fourth
messages in a communication session that have not been
received by the messaging client application 104, the mes-
saging client application 104 can retrieve such third and
fourth messages from the local shared synchronization data
207. Then, the messaging client application 104, when
performing a synchronization operation with the server,
need not request that the third and fourth messages be
provided. Instead, the messaging client application 104
requests that the server provide any messages that came after
the third and fourth messages. In short, the messaging client
application 104 performs two synchronization operations.
First, the messaging client application 104 updates its state
by synchronizing its content based on a local synchroniza-
tion operation using content stored in the shared synchro-
nization data 207. Second, the messaging client application
104 synchronizes its state (as updated by the first synchro-
nization operation) by performing a remote synchronization
operation with the server, such as the messaging server
system 108, to synchronize content with content stored on
the server.

FIG. 6 is a block diagram illustrating an example software
architecture 606, which may be used in conjunction with
various hardware architectures herein described. FIG. 6 is a
non-limiting example of a software architecture and it will
be appreciated that many other architectures may be imple-
mented to facilitate the functionality described herein. The
software architecture 606 may execute on hardware such as
machine 700 of FIG. 7 that includes, among other things,
processors 704, memory 714, and input/output (I/O) com-
ponents 718. A representative hardware layer 652 is illus-
trated and can represent, for example, the machine 700 of
FIG. 7. The representative hardware layer 652 includes a
processing unit 654 having associated executable instruc-
tions 604. Executable instructions 604 represent the execut-
able instructions of the software architecture 606, including
implementation of the methods, components, and so forth
described herein. The hardware layer 652 also includes
memory and/or storage modules memory/storage 656,
which also have executable instructions 604. The hardware
layer 652 may also comprise other hardware 658.

In the example architecture of FIG. 6, the software
architecture 606 may be conceptualized as a stack of layers
where each layer provides particular functionality. For
example, the software architecture 606 may include layers
such as an operating system 602, libraries 620, frameworks/
middleware 618, applications 616, and a presentation layer
614. Operationally, the applications 616 and/or other com-
ponents within the layers may invoke API calls 608 through

10

15

20

25

30

35

40

45

50

55

60

65

16

the software stack and receive messages 612 in response to
the API calls 608. The layers illustrated are representative in
nature and not all software architectures have all layers. For
example, some mobile or special purpose operating systems
may not provide a frameworks/middleware 618, while oth-
ers may provide such a layer. Other software architectures
may include additional or different layers.

The operating system 602 may manage hardware
resources and provide common services. The operating
system 602 may include, for example, a kernel 622, services
624, and drivers 626. The kernel 622 may act as an abstrac-
tion layer between the hardware and the other software
layers. For example, the kernel 622 may be responsible for
memory management, processor management (e.g., sched-
uling), component management, networking, security set-
tings, and so on. The services 624 may provide other
common services for the other software layers. The drivers
626 are responsible for controlling or interfacing with the
underlying hardware. For instance, the drivers 626 include
display drivers, camera drivers, Bluetooth® drivers, flash
memory drivers, serial communication drivers (e.g., Uni-
versal Serial Bus (USB) drivers), Wi-Fi® drivers, audio
drivers, power management drivers, and so forth depending
on the hardware configuration.

The libraries 620 provide a common infrastructure that is
used by the applications 616 and/or other components and/or
layers. The libraries 620 provide functionality that allows
other software components to perform tasks in an easier
fashion than to interface directly with the underlying oper-
ating system 602 functionality (e.g., kernel 622, services 624
and/or drivers 626). The libraries 620 may include system
libraries 644 (e.g., C standard library) that may provide
functions such as memory allocation functions, string
manipulation functions, mathematical functions, and the
like. In addition, the libraries 620 may include API libraries
646 such as media libraries (e.g., libraries to support pre-
sentation and manipulation of various media format such as
MPEG4, H.264, MP3, AAC, AMR, JPG, PNG), graphics
libraries (e.g., an OpenGL framework that may be used to
render two-dimensional and three-dimensional in a graphic
content on a display), database libraries (e.g., SQLite that
may provide various relational database functions), web
libraries (e.g., WebKit that may provide web browsing
functionality), and the like. The libraries 620 may also
include a wide variety of other libraries 648 to provide many
other APIs to the applications 616 and other software
components/modules.

The {frameworks/middleware 618 (also sometimes
referred to as middleware) provide a higher-level common
infrastructure that may be used by the applications 616
and/or other software components/modules. For example,
the frameworks/middleware 618 may provide various
graphical user interface functions, high-level resource man-
agement, high-level location services, and so forth. The
frameworks/middleware 618 may provide a broad spectrum
of other APIs that may be utilized by the applications 616
and/or other software components/modules, some of which
may be specific to a particular operating system 602 or
platform.

The applications 616 include built-in applications 638
and/or third-party applications 640. Examples of represen-
tative built-in applications 638 may include, but are not
limited to, a contacts application, a browser application, a
book reader application, a location application, a media
application, a messaging application, and/or a game appli-
cation. Third-party applications 640 may include an appli-
cation developed using the ANDROID™ or [OS™ software

US 11,960,472 B2

17

development kit (SDK) by an entity other than the vendor of
the particular platform, and may be mobile software running
on a mobile operating system such as [OS™, ANDROID™,
WINDOWS® Phone, or other mobile operating systems.
The third-party applications 640 may invoke the API calls
608 provided by the mobile operating system (such as
operating system 602) to facilitate functionality described
herein.

The applications 616 may use built-in operating system
functions (e.g., kernel 622, services 624, and/or drivers 626),
libraries 620, and frameworks/middleware 618 to create Uls
to interact with users of the system. Alternatively, or addi-
tionally, in some systems, interactions with a user may occur
through a presentation layer, such as presentation layer 614.
In these systems, the application/component “logic” can be
separated from the aspects of the application/component that
interact with a user.

FIG. 7 is a block diagram illustrating components of a
machine 700, according to some example embodiments,
able to read instructions from a machine-readable medium
(e.g., a machine-readable storage medium) and perform any
one or more of the methodologies discussed herein. Spe-
cifically, FIG. 7 shows a diagrammatic representation of the
machine 700 in the example form of a computer system,
within which instructions 710 (e.g., software, a program, an
application, an applet, an app, or other executable code) for
causing the machine 700 to perform any one or more of the
methodologies discussed herein may be executed. As such,
the instructions 710 may be used to implement modules or
components described herein. The instructions 710 trans-
form the general, non-programmed machine 700 into a
particular machine 700 programmed to carry out the
described and illustrated functions in the manner described.
In alternative embodiments, the machine 700 operates as a
standalone device or may be coupled (e.g., networked) to
other machines. In a networked deployment, the machine
700 may operate in the capacity of a server machine or a
client machine in a server-client network environment, or as
a peer machine in a peer-to-peer (or distributed) network
environment. The machine 700 may comprise, but not be
limited to, a server computer, a client computer, a personal
computer (PC), a tablet computer, a laptop computer, a
netbook, a set-top box (STB), a personal digital assistant
(PDA), an entertainment media system, a cellular telephone,
a smart phone, a mobile device, a wearable device (e.g., a
smart watch), a smart home device (e.g., a smart appliance),
other smart devices, a web appliance, a network router, a
network switch, a network bridge, or any machine capable
of executing the instructions 710, sequentially or otherwise,
that specify actions to be taken by machine 700. Further,
while only a single machine 700 is illustrated, the term
“machine” shall also be taken to include a collection of
machines that individually or jointly execute the instructions
710 to perform any one or more of the methodologies
discussed herein.

The machine 700 may include processors 704, memory/
storage 706, and 1/O components 718, which may be con-
figured to communicate with each other such as via a bus
702. In an example embodiment, the processors 704 (e.g., a
central processing unit (CPU), a reduced instruction set
computing (RISC) processor, a complex instruction set
computing (CISC) processor, a graphics processing unit
(GPU), a digital signal processor (DSP), an application-
specific integrated circuit (ASIC), a radio-frequency inte-
grated circuit (RFIC), another processor, or any suitable
combination thereof) may include, for example, a processor
708 and a processor 712 that may execute the instructions

10

15

20

25

30

35

40

45

50

55

60

65

18

710. The term “processor” is intended to include multi-core
processors 704 that may comprise two or more independent
processors (sometimes referred to as “cores”) that may
execute instructions 710 contemporaneously. Although FIG.
7 shows multiple processors 704, the machine 700 may
include a single processor 708 with a single core, a single
processor 708 with multiple cores (e.g., a multi-core pro-
cessor), multiple processors 708, 712 with a single core,
multiple processors 708, 712 with multiple cores, or any
combination thereof.

The memory/storage 706 may include a memory 714,
such as a main memory, or other memory storage, and a
storage unit 716, both accessible to the processors 704 such
as via the bus 702. The storage unit 716 and memory 714
store the instructions 710 embodying any one or more of the
methodologies or functions described herein. The instruc-
tions 710 may also reside, completely or partially, within the
memory 714, within the storage unit 716, within at least one
of the processors 704 (e.g., within the processor’s cache
memory), or any suitable combination thereof, during
execution thereof by the machine 700. Accordingly, the
memory 714, the storage unit 716, and the memory of
processors 704 are examples of machine-readable media.

The I/O components 718 may include a wide variety of
components to receive input, provide output, produce out-
put, transmit information, exchange information, capture
measurements, and so on. The specific /O components 718
that are included in a particular machine 700 will depend on
the type of machine. For example, portable machines such as
mobile phones will likely include a touch input device or
other such input mechanisms, while a headless server
machine will likely not include such a touch input device. It
will be appreciated that the [/O components 718 may include
many other components that are not shown in FIG. 7. The
1/O components 718 are grouped according to functionality
merely for simplifying the following discussion and the
grouping is in no way limiting. In various example embodi-
ments, the I/O components 718 may include output compo-
nents 726 and input components 728. The output compo-
nents 726 may include visual components (e.g., a display
such as a plasma display panel (PDP), a light emitting diode
(LED) display, a liquid crystal display (LCD), a projector, or
a cathode ray tube (CRT)), acoustic components (e.g.,
speakers), haptic components (e.g., a vibratory motor, resis-
tance mechanisms), other signal generators, and so forth.
The input components 728 may include alphanumeric input
components (e.g., a keyboard, a touch screen configured to
receive alphanumeric input, a photo-optical keyboard, or
other alphanumeric input components), point-based input
components (e.g., a mouse, a touchpad, a trackball, a joy-
stick, a motion sensor, or other pointing instrument), tactile
input components (e.g., a physical button, a touch screen
that provides location and/or force of touches or touch
gestures, or other tactile input components), audio input
components (e.g., a microphone), and the like.

In further example embodiments, the I/O components 718
may include biometric components 739, motion components
734, environmental components 736, or position compo-
nents 738 among a wide array of other components. For
example, the biometric components 739 may include com-
ponents to detect expressions (e.g., hand expressions, facial
expressions, vocal expressions, body gestures, or eye track-
ing), measure biosignals (e.g., blood pressure, heart rate,
body temperature, perspiration, or brain waves), identify a
person (e.g., voice identification, retinal identification, facial
identification, fingerprint identification, or electroencepha-
logram based identification), and the like. The motion com-

US 11,960,472 B2

19

ponents 734 may include acceleration sensor components
(e.g., accelerometer), gravitation sensor components, rota-
tion sensor components (e.g., gyroscope), and so forth. The
environmental components 736 may include, for example,
illumination sensor components (e.g., photometer), tempera-
ture sensor components (e.g., one or more thermometer that
detect ambient temperature), humidity sensor components,
pressure sensor components (e.g., barometer), acoustic sen-
sor components (e.g., one or more microphones that detect
background noise), proximity sensor components (e.g.,
infrared sensors that detect nearby objects), gas sensors
(e.g., gas detection sensors to detection concentrations of
hazardous gases for safety or to measure pollutants in the
atmosphere), or other components that may provide indica-
tions, measurements, or signals corresponding to a surround-
ing physical environment. The position components 738
may include location sensor components (e.g., a GPS
receiver component), altitude sensor components (e.g.,
altimeters or barometers that detect air pressure from which
altitude may be derived), orientation sensor components
(e.g., magnetometers), and the like.

Communication may be implemented using a wide vari-
ety of technologies. The 1/O components 718 may include
communication components 740 operable to couple the
machine 700 to a network 737 or devices 729 via coupling
724 and coupling 722, respectively. For example, the com-
munication components 740 may include a network inter-
face component or other suitable device to interface with the
network 737. In further examples, communication compo-
nents 740 may include wired communication components,
wireless communication components, cellular communica-
tion components, near field communication (NFC) compo-
nents, Bluetooth® components (e.g., Bluetooth® Low
Energy), Wi-Fi® components, and other communication
components to provide communication via other modalities.
The devices 729 may be another machine 700 or any of a
wide variety of peripheral devices (e.g., a peripheral device
coupled via a USB).

Moreover, the communication components 740 may
detect identifiers or include components operable to detect
identifiers. For example, the communication components
740 may include radio frequency identification (RFID) tag
reader components, NFC smart tag detection components,
optical reader components (e.g., an optical sensor to detect
one-dimensional bar codes such as Universal Product Code
(UPC) bar code, multi-dimensional bar codes such as Quick
Response (QR) code, Aztec code, Data Matrix, Dataglyph,
MaxiCode, PDF417, Ultra Code, UCC RSS-2D bar code,
and other optical codes), or acoustic detection components
(e.g., microphones to identify tagged audio signals). In
addition, a variety of information may be derived via the
communication components 740, such as location via Inter-
net Protocol (IP) geolocation, location via Wi-Fi® signal
triangulation, location via detecting a NFC beacon signal
that may indicate a particular location, and so forth.
Glossary:

“CARRIER SIGNAL,” in this context, refers to any
intangible medium that is capable of storing, encoding, or
carrying transitory or non-transitory instructions 710 for
execution by the machine 700, and includes digital or analog
communications signals or other intangible medium to
facilitate communication of such instructions 710. Instruc-
tions 710 may be transmitted or received over the network
106 using a transitory or non-transitory transmission
medium via a network interface device and using any one of
a number of well-known transfer protocols.

20

25

30

40

45

55

20

“CLIENT DEVICE,” in this context, refers to any
machine 700 that interfaces to a communications network
106 to obtain resources from one or more server systems or
other client devices 102. A client device 102 may be, but is
not limited to, a mobile phone, desktop computer, laptop,
PDAs, smart phones, tablets, ultra books, netbooks, laptops,
multi-processor systems, microprocessor-based or program-
mable consumer electronics, game consoles, set-top boxes,
or any other communication device that a user may use to
access a network 106.

“COMMUNICATIONS NETWORK,” in this context,
refers to one or more portions of a network 106 that may be
an ad hoc network, an intranet, an extranet, a virtual private
network (VPN), a local area network (LAN), a wireless
LAN (WLAN), a wide area network (WAN), a wireless
WAN (WWAN), a metropolitan area network (MAN), the
Internet, a portion of the Internet, a portion of the Public
Switched Telephone Network (PSTN), a plain old telephone
service (POTS) network, a cellular telephone network, a
wireless network, a Wi-Fi® network, another type of net-
work, or a combination of two or more such networks. For
example, a network 106 or a portion of a network may
include a wireless or cellular network and the coupling may
be a Code Division Multiple Access (CDMA) connection, a
Global System for Mobile communications (GSM) connec-
tion, or other type of cellular or wireless coupling. In this
example, the coupling may implement any of a variety of
types of data transfer technology, such as Single Carrier
Radio Transmission Technology (1xRTT), Evolution-Data
Optimized (EVDO) technology, General Packet Radio Ser-
vice (GPRS) technology, Enhanced Data rates for GSM
Evolution (EDGE) technology, third Generation Partnership
Project (3GPP) including 3G, fourth generation wireless
(4G) networks, Universal Mobile Telecommunications Sys-
tem (UMTS), High Speed Packet Access (HSPA), World-
wide Interoperability for Microwave Access (WiMAX),
Long Term Evolution (LTE) standard, others defined by
various standard setting organizations, other long range
protocols, or other data transfer technology.

“EPHEMERAL MESSAGE,” in this context, refers to a
message 300 that is accessible for a time-limited duration.
An ephemeral message may be a text, an image, a video, and
the like. The access time for the ephemeral message may be
set by the message sender. Alternatively, the access time may
be a default setting or a setting specified by the recipient.
Regardless of the setting technique, the message 300 is
transitory.

“MACHINE-READABLE MEDIUM,” in this context,
refers to a component, device, or other tangible media able
to store instructions 710 and data temporarily or perma-
nently and may include, but is not limited to, random-access
memory (RAM), read-only memory (ROM), buffer memory,
flash memory, optical media, magnetic media, cache
memory, other types of storage (e.g., erasable programmable
read-only memory (EEPROM)) and/or any suitable combi-
nation thereof. The term “machine-readable medium”
should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database, or asso-
ciated caches and servers) able to store instructions 710. The
term “machine-readable medium” shall also be taken to
include any medium, or combination of multiple media, that
is capable of storing instructions 710 (e.g., code) for execu-
tion by a machine 700, such that the instructions 710, when
executed by one or more processors 704 of the machine 700,
cause the machine 700 to perform any one or more of the
methodologies described herein. Accordingly, a “machine-
readable medium” refers to a single storage apparatus or

US 11,960,472 B2

21

device, as well as “cloud-based” storage systems or storage
networks that include multiple storage apparatus or devices.
The term “machine-readable medium” excludes signals per
se.

“COMPONENT,” in this context, refers to a device,
physical entity, or logic having boundaries defined by func-
tion or subroutine calls, branch points, APIs, or other tech-
nologies that provide for the partitioning or modularization
of particular processing or control functions. Components
may be combined via their interfaces with other components
to carry out a machine process. A component may be a
packaged functional hardware unit designed for use with
other components and a part of a program that usually
performs a particular function of related functions. Compo-
nents may constitute either software components (e.g., code
embodied on a machine-readable medium) or hardware
components. A “hardware component” is a tangible unit
capable of performing certain operations and may be con-
figured or arranged in a certain physical manner. In various
example embodiments, one or more computer systems (e.g.,
a standalone computer system, a client computer system, or
a server computer system) or one or more hardware com-
ponents of a computer system (e.g., a processor or a group
of processors) may be configured by software (e.g., an
application or application portion) as a hardware component
that operates to perform certain operations as described
herein.

A hardware component may also be implemented
mechanically, electronically, or any suitable combination
thereof. For example, a hardware component may include
dedicated circuitry or logic that is permanently configured to
perform certain operations. A hardware component may be
a special-purpose processor, such as a field-programmable
gate array (FPGA) or an ASIC. A hardware component may
also include programmable logic or circuitry that is tempo-
rarily configured by software to perform certain operations.
For example, a hardware component may include software
executed by a general-purpose processor 708 or other pro-
grammable processor. Once configured by such software,
hardware components become specific machines (or specific
components of a machine 700) uniquely tailored to perform
the configured functions and are no longer general-purpose
processors 708. It will be appreciated that the decision to
implement a hardware component mechanically, in dedi-
cated and permanently configured circuitry, or in temporar-
ily configured circuitry (e.g., configured by software) may
be driven by cost and time considerations. Accordingly, the
phrase “hardware component” (or “hardware-implemented
component”) should be understood to encompass a tangible
entity, be that an entity that is physically constructed,
permanently configured (e.g., hardwired), or temporarily
configured (e.g., programmed) to operate in a certain manner
or to perform certain operations described herein. Consid-
ering embodiments in which hardware components are
temporarily configured (e.g., programmed), each of the
hardware components need not be configured or instantiated
at any one instance in time. For example, where a hardware
component comprises a general-purpose processor 708 con-
figured by software to become a special-purpose processor,
the general-purpose processor 708 may be configured as
respectively different special-purpose processors (e.g., com-
prising different hardware components) at different times.
Software accordingly configures a particular processor 708
or processors 704, for example, to constitute a particular
hardware component at one instance of time and to consti-
tute a different hardware component at a different instance of
time.

25

40

45

55

22

Hardware components can provide information to, and
receive information from, other hardware components.
Accordingly, the described hardware components may be
regarded as being communicatively coupled. Where mul-
tiple hardware components exist contemporaneously, com-
munications may be achieved through signal transmission
(e.g., over appropriate circuits and buses) between or among
two or more of the hardware components. In embodiments
in which multiple hardware components are configured or
instantiated at different times, communications between
such hardware components may be achieved, for example,
through the storage and retrieval of information in memory
structures to which the multiple hardware components have
access. For example, one hardware component may perform
an operation and store the output of that operation in a
memory device to which it is communicatively coupled. A
further hardware component may then, at a later time, access
the memory device to retrieve and process the stored output.

Hardware components may also initiate communications
with input or output devices, and can operate on a resource
(e.g., a collection of information). The various operations of
example methods described herein may be performed, at
least partially, by one or more processors 704 that are
temporarily configured (e.g., by software) or permanently
configured to perform the relevant operations. Whether
temporarily or permanently configured, such processors 704
may constitute processor-implemented components that
operate to perform one or more operations or functions
described herein. As used herein, “processor-implemented
component” refers to a hardware component implemented
using one or more processors 704. Similarly, the methods
described herein may be at least partially processor-imple-
mented, with a particular processor 708 or processors 704
being an example of hardware. For example, at least some
of the operations of a method may be performed by one or
more processors 704 or processor-implemented compo-
nents. Moreover, the one or more processors 704 may also
operate to support performance of the relevant operations in
a “cloud computing” environment or as a “software as a
service” (SaaS). For example, at least some of the operations
may be performed by a group of computers (as examples of
machines 700 including processors 704), with these opera-
tions being accessible via a network 106 (e.g., the Internet)
and via one or more appropriate interfaces (e.g., an API).
The performance of certain of the operations may be dis-
tributed among the processors, not only residing within a
single machine 700, but deployed across a number of
machines. In some example embodiments, the processors
704 or processor-implemented components may be located
in a single geographic location (e.g., within a home envi-
ronment, an office environment, or a server farm). In other
example embodiments, the processors 704 or processor-
implemented components may be distributed across a num-
ber of geographic locations.

“PROCESSOR,” in this context, refers to any circuit or
virtual circuit (a physical circuit emulated by logic executing
on an actual processor 708) that manipulates data values
according to control signals (e.g., “commands,” “op codes,”
“machine code,” etc.) and which produces corresponding
output signals that are applied to operate a machine 700. A
processor 708 may, for example, be a CPU, a RISC proces-
sor, a CISC processor, a GPU, a DSP, an ASIC, a RFIC or
any combination thereof. A processor 708 may further be a
multi-core processor having two or more independent pro-
cessors 704 (sometimes referred to as “cores”) that may
execute instructions 710 contemporaneously.

US 11,960,472 B2

23
“TIMESTAMP,” in this context, refers to a sequence of
characters or encoded information identifying when a cer-
tain event occurred, for example giving date and time of day,
sometimes accurate to a small fraction of a second.
Changes and modifications may be made to the disclosed
embodiments without departing from the scope of the pres-
ent disclosure. These and other changes or modifications are
intended to be included within the scope of the present
disclosure, as expressed in the following claims.
What is claimed is:
1. A method comprising:
establishing a communication session between a plurality
of user devices; and
identifying a difference between a current state of an
application and a shared synchronization database, the
shared synchronization database storing identifiers of
one or more content items exchanged in the commu-
nication session, the shared synchronization database
storing a matrix comprising a plurality of vectors, a first
vector of the plurality of vectors being associated with
a first user device of the plurality of user devices, the
first vector storing a first set of sequence numbers of
content items sent by the first user device, a second
vector of the plurality of vectors being associated with
a second user device of the plurality of user devices, the
second vector storing a second set of sequence numbers
of content items sent by the second user device.
2. The method of claim 1, further comprising:
receiving, by an external application from a server, as a
notification, a content item corresponding to the com-
munication session of the application implemented on
the first user device; and
presenting, by the external application, the content item
on the first user device while the application is inactive,
the application not being informed about the content
item that has been presented on the first user device.
3. The method of claim 1, further comprising:
retrieving information from the shared synchronization
database to update the current state of the application
based on the identified difference; and
transmitting, to a server by the application, a request for
content based on the update to the current state of the
application.
4. The method of claim 1, wherein the shared synchro-
nization database is stored locally on the first user device.
5. The method of claim 1, wherein a first dimension of the
matrix represents the plurality of user devices, and wherein
a second dimension of the matrix represents sequence num-
bers of the content items sent by the plurality of user devices,
respectively.
6. The method of claim 1, wherein the difference identifies
a given content item exchanged in the communication
session, further comprising:
obtaining the given content item from the shared synchro-
nization database; and
adding the given content item to the communication
session of the application.
7. The method of claim 1, further comprising:
transmitting, to a server, a synchronization request from
the application;
causing the server to identify version information repre-
senting an update to the current state of the application;
causing the server to retrieve current version information
of content stored by the server;
causing the server to identify a set of versions that are
later than the version information representing the
update to the current state of the application; and

10

15

20

25

30

35

40

45

50

60

65

24

receiving, from the server, the content corresponding to

the set of versions.

8. The method of claim 7, further comprising updating the
shared synchronization database based on the received con-
tent by updating version information stored in the shared
synchronization database.

9. The method of claim 1, wherein identifying the differ-
ence comprises:

generating, by the application, a first vector of sequence

numbers;

retrieving, by the application from the shared synchroni-

zation database, a second vector of sequence numbers;
and

identifying one or more sequence numbers that differ

between the first and second vectors.

10. The method of claim 9, further comprising accessing
an external application to retrieve one or more content items
corresponding to the one or more sequence numbers that
differ between the first and second vectors.

11. The method of claim 9, wherein each sequence
number represents a respective content item sent by a
participant in the communication session, and wherein each
sequence number is associated with a participant identifier
of the participant that sent the respective content item.

12. The method of claim 1, further comprising:

establishing, at a previous time, the communication ses-

sion on the first user device comprising a first set of
content items received from a server;

ending a synchronization session with the server after

establishing the communication session at the previous
time;

receiving, by the first user device, as a notification, a

second set of content items in the communication
session by an external application;

identifying, as the difference, identifiers of a third set of

content items exchanged in the communication session
after the previous time, the third set of content items
corresponding to a subset of the second set of content
items that is different from the first set of content items;
and

updating the current state of the application using the

identifiers of the third set of content items.

13. The method of claim 12, further comprising:

causing the server to identify a fourth set of content items

that differ from the first set of content items and the
second set of content items; and

receiving, from the server, the fourth set of content items.

14. The method of claim 1, wherein an external applica-
tion comprises a dedicated application on an operating
system of the first user device configured to receive push
notifications for a plurality of applications implemented on
the first user device, the plurality of applications including
the application.

15. The method of claim 1, further comprising:

receiving a new content item from a given user;

identifying a given vector of the plurality of vectors
associated with the given user;

generating a new sequence number for the new content

item by incrementing a value of a last sequence number
stored in the given vector; and

storing the new sequence number in the given vector for

the given user.

16. A system comprising:

at least one processor configured to perform operations

comprising:

establishing a communication session between a plurality

of user devices; and

US 11,960,472 B2

25

identifying a difference between a current state of an
application and a shared synchronization database, the
shared synchronization database storing identifiers of
one or more content items exchanged in the commu-
nication session, the shared synchronization database
storing a matrix comprising a plurality of vectors, a first
vector of the plurality of vectors being associated with
a first user device of the plurality of user devices, the
first vector storing a first set of sequence numbers of
content items sent by the first user device, a second
vector of the plurality of vectors being associated with
a second user device of the plurality of user devices, the
second vector storing a second set of sequence numbers
of content items sent by the second user device.

17. The system of claim 16, the operations comprising:

receiving, by an external application from a server, as a
notification, a content item corresponding to the com-
munication session of the application implemented on
the first user device; and

presenting, by the external application, the content item
on the first user device while the application is inactive,
the application not being informed about the content
item that has been presented on the first user device.

18. The system of claim 16, further comprising operations

for:

retrieving information from the shared synchronization
database to update the current state of the application
based on the identified difference; and

transmitting, to a server by the application, a request for
content based on the update to the current state of the
application.

10

20

25

26

19. The system of claim 16, wherein the difference
identifies a given content item exchanged in the communi-
cation session, and the operations comprise:

obtaining the given content item from the shared synchro-
nization database; and

adding the given content item to the communication
session of the application.

20. A non-transitory machine-readable storage medium
that includes instructions that, when executed by one or
more processors of a machine, cause the machine to perform
operations comprising:

establishing a communication session between a plurality

of user devices; and

identifying a difference between a current state of an
application and a shared synchronization database, the
shared synchronization database storing identifiers of
one or more content items exchanged in the commu-
nication session, the shared synchronization database
storing a matrix comprising a plurality of vectors, a first
vector of the plurality of vectors being associated with
a first user device of the plurality of user devices, the
first vector storing a first set of sequence numbers of
content items sent by the first user device, a second
vector of the plurality of vectors being associated with
a second user device of the plurality of user devices, the
second vector storing a second set of sequence numbers
of content items sent by the second user device.

#* #* #* #* #*

