US 20240013802A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2024/0013802 A1l

Federov et al. 43) Pub. Date: Jan. 11, 2024
(54) INFERRING EMOTION FROM SPEECH IN (52) US. CL
AUDIO DATA USING DEEP LEARNING CPCcc..... GI0L 25/63 (2013.01); G10L 25/30
(2013.01)
(71) Applicant: Nvidia Corporation, Santa Clara, CA
(Us) (57) ABSTRACT
(72) Inventors: Ilia Federov, Moscow (RU); Dmitry A deep neural network can be trained to infer emotion data
Aleksandrovich Korobchenko, from input audio. The network can be a transformer-based
Moscow (RU) network that can infer probability values for a set of emo-
tions or emotion classes. The emotion probability values can
(21) Appl. No.: 17/859,660 be modified using one or more heuristics, such as to provide
. for smoothing of emotion determinations over time, or via a
(22) Filed: Jul. 7, 2022 user interface, where a user can modify emotion determi-
.. . . nations as appropriate. A user may also provide prior emo-
Publication Classification tion values to be blended with these emotion determination
(51) Imt. ClL values. Determined emotion values can be provided as input
GI0L 25/63 (2006.01) to an emotion-based operation, such as to provide audio-
GI0L 25730 (2006.01) driven speech animation.
300
Desp Neurat Netwark 366
Analysis Articitation Qutput Vortug Fosiiicns 314
Nehvork 308 Network 318 Network 312
Audio ||
Windaw ’ H[]B[l > oconen 4 gﬂm >
Renderer
316
T
&
N
Emction Inference Emotion Andmation
Network Veotoy Frame 318
320 322

Patent Application Publication Jan. 11,2024 Sheet 1 of 17 US 2024/0013802 A1

100" |

104
106

FIG. 1

Patent Application Publication Jan. 11,2024 Sheet 2 of 17 US 2024/0013802 A1

280

Transformer-Based
Neurat Network

i 204
Emotion Labsi(s} f
FIG. 2A
250 252 254

N SN

W/\ Frame 2 Frame 3

Pags 1
Pass 2
Pass 3
Pags 4
Pass &

Hog size 256 Window 288

Patent Application Publication Jan. 11,2024 Sheet 3 of 17 US 2024/0013802 A1

300

N

Deep Neural Network 388

Analysis Aticidation Output Vertex Posilions 314
Network 308 Network 310 Network 312 N

R

Audio

wg.sgw UBDD 3 SIC20I0n gﬁﬂu 3

&

h

Renderer
i
i
+
N
Emotion Inference Emation Animation
Network Voctos Frame 318
320 az

FIG. 3

Patent Application Publication Jan. 11,2024 Sheet 4 of 17 US 2024/0013802 A1

400
-~ 404 S
Audio Player
NN
EEEE TZTE] 402
Emotion
Neutral ! § '
Anger P 1 [0 J-zwa
Disgust { L O]
Fear i 1 [O]
/ Joy ‘ . ' [60]
412 Prior Emotion 408
. i
| Anger V] f‘/
Prior Emotion Strength [00] /410

FIG. 4A

S 450

404
Audio Player)

402

Neutral i 3)
Anger g 1 [0] 406
Disgust { 1 {01 I
Fear i 1 %
JU}*’ f E Y
Prior Emotion (J/" 408

| - i f-452

Prior Emotion Strength

1 [08] €

FIG. 4B

Patent Application Publication Jan. 11,2024 Sheet 5 of 17 US 2024/0013802 A1

500

3

502 n . .
7, Obtain audio data including speech uftered by at least one speaker (e.g.,

friuman uttering speech)

¥

Divide audio data into segments of speech each uttered by a single
speaker

&

Select audio segment for emotion analysis &

5041

506
U

&
508

Provide segment for input to a fransformer-based neural network

510 ’L .
'[Analyze one or more frames of the segment using the neural network to
infer probability values for a set of emotions

¥

Receive, for each of the one or more frames, an emotion vector indicating
probabilities for the sei of emotions

512
Kl

518
514 o

Yes| Apply heuristic(s} fo
’ smooth emotions

NO \ll .

518 U Frovide emotion vector(s) to application (or other recipient) for use in
performing emotion-based task(s)

520

More
segmenits?

NO»L

522
1 Allow user o review and modify emolion values as appropriate

Yes

FIG. 5

Patent Application Publication

Jan. 11, 2024 Sheet 6 of 17

US 2024/0013802 A1

Display 606 Audio 608

Client Device 602

Control Application 804

Gul Audio to || Emo. App.
610 jEmol 612 614
Other Client Third Party Service
Device Network 860
£50 £40 Content App 662
Server 620
Transmission Manager 622
Conteni Application §24
Content Audio to Emotion
Manager Emotion App.
626 648 630
W
Asset
632

FIG. 6

Patent Application Publication Jan. 11,2024 Sheet 7 of 17 US 2024/0013802 A1

HARDWARE STRUCTURE(S) 715

701 708

ACTIVATION
b e e e e N I JE 3 STORAGE
228

ARITHMETIC LOGIC UNIT(s)
19 N i

FIG. 7A

Patent Application Publication Jan. 11,2024 Sheet 8 of 17 US 2024/0013802 A1

HARDWARE STRUCTURE(s) 715

DATA BTORAGE DATA STORAGE
itk 785
COMPUTATIONAL COMPUTATIONAL
HARDWARE HARDWARE
32 08

~N 7

ACTIVATION BTORAGE
20

FIG. 7B

Patent Application Publication Jan. 11,2024 Sheet 9 of 17 US 2024/0013802 A1

DATA CENTER
800 Tk

APPLICATION LAYER 840

APPLICATION(s} 842

SOFTWARE LAYER 830

SOFTWARE 832

FRAMEWORK LAYER 828

JOB CONFIGURATION
SCHEDULER 822 | MANAGER 824

DISTRIBUTED FILE SYSTEM 828

RESOURCE MANAGER 828

DATA CENTER INFRASTRUCTURE LAYER 810
RESOURCE ORCHESTRATOR 812

GROUPED COMPUTING RESQURCES 814
| 115 |

NODE C.R.
816(1}

NODECR. | *** INODECR.
816{2) o 816(N}

Patent Application Publication Jan. 11, 2024 Sheet 10 of 17 US 2024/0013802 A1

PROCESSOR 804 18 EXECUTION UNIT 208

CACHE REGISTER FILE PACKE%EE@FSQQUCTION
204 906

1

PROCESSOR BUS 910

s

: MEMORY 920
84 MEMORY 918
GRAPHICS/ CONTROLLER INSTRUCTION(S) 819
VIDEO CARD qUB <}é'{> ‘ —
912 916 DATA 821
iE‘ 922 LEGACY I/0
- CONTROLLER 923
| INTERFACE 925 |
lie
WIRELESS CONTROLLER
TRANSCEIVER K== HUB SERIAL EXPANSION
926 930 = PORT 927
FLASHBIOS a....» A AUDIO CONTROLLER
928 928
NETWORK
CONTROLLER
234
800 \,/‘ Fl G . 9

Patent Application Publication Jan. 11, 2024 Sheet 11 of 17 US 2024/0013802 A1

H
1000 LPODR2 1015 J
TN USB 3.0 CAMERA
1054
DI83 PQZLAY UART OR I'C
oon » » ;
" GPS 1085
o
TOUCH : R PROCESSOR UsE 213
SCREEN 1028 ‘j 1010 ’ " WWAN UNIT |
" » {058
TOUCH] SMBUS
— 1045 SIV 1087
ALCELEROWMETER ¥
1041 LR SENSCR | vC R 3 PCIE
"""“’ HUB 3040 [> < vy > [WLAN UNT
ALS e SMBLS) UART f 1
1042 * ggﬁggg‘ﬁé‘ PR Uoh BLUETOOTH || NGFF
N 1046 »| UNIT 1082
e Leepammaseusseeent
COMPASS
1043 > ’ I HDA SATA 550 OR HOD
LPO SR v BN 1020
vy
GYrOscopE |1 1060 SPEAKERS
1044 [M qoes
P82 : AUDIO
» 5o 1ms TPM BIOS, CODEC AND MEADPHONES
THERMAL e » s 1038 B CLASS D 1064
SENSGR 1033 SRARLIS ri ey L ASH AMP 1082 *...L"*
L MIC 1085
FAN KEYBOARD | | 102
FIG. 10 101 1036

Patent Application Publication Jan. 11, 2024 Sheet 12 of 17 US 2024/0013802 A1

MEMORY DEVICE - e '
1120
FROCESSOR CORE(S)
INSTRUCTION - CACHE REEEER 107
21 1104 INSTRUCTION SET
DATA - 1122) | 711 |
MEMORY GRAPHICS
A N| CONTROLLER PROCESSOR(S)
DISPLAY DEVICE 1111 (= Ao o8
I EXTERNAL GRAPHICS | | oz |
1
R S INTERFACE BUS(ES) - 1110

DATA STORAGE
DEVICE 1124 =)

TOUCH SENSORS A N
1125 N

WIRELESS
TRANSCEIVER 1126 &)

PLATFORM CONTROLLER HUB
1130

FIRMWARE A N
INTERFACE 1128 N V

S B 71

P

[

[

m

5]

3

[

P

an]
L A N AN A |
L S 1

]} r 7.1
NETWORK AUDIO : l
CONTROLLER | | CONTROLLER | LEGACY 110 |
1434 1146 CONTROLLER |
— b oqa0
E |
/ e)
USB CONTROLLER(S)
1100 1142

_____ r—-—-—-

-
| KEYBOARD) || CAMERA |
| MOUSE 11431) 1144

FIG. 11

Patent Application Publication Jan. 11, 2024 Sheet 13 of 17 US 2024/0013802 A1

PROCESSOR 1200

CORE 1202A | CORE 1202N | SYSTEM AGENT
! CORE 1210
| Ratadegudoaing ki
b 18 DISPLAY
Pt e (LE BUS
b y | | CONTROLLER
CACHE | {memi| CACHE ¢ 1544 CONTROLLER
¥O UNIT(3) POunmEs) | — UNIT(S)
EMBEDDED 1213 12044 1 1204N - 1212
MEMORY MODULE Plommm] OR
1218 SHARED CACHE UNIT(S] ~ 1206 mmj ;&LLER
— i RING ~ 1212 R Tvssvosid

GRAPHICS PROCESSOR
1208
715

FIG. 12

Patent Application Publication

Jan. 11, 2024 Sheet 14 of 17

US 2024/0013802 A1

1300

1324

MODEL
REMSTRY

DEPLOYMENT
SysTEM 1308

i
[TRANING SYSTEM 130)
l LABELED l
Data
IMAGING Al-ASSISTED QuUTPUT
DaTA ANNOTATION MODEL MOBEL
1308 1310 TRANING 1316

1318

SOFTWARE

HARDWARE

FIG. 13

Patent Application Publication Jan. 11, 2024 Sheet 15 of 17 US 2024/0013802 A1

1400
- a
TRAMNG SvsTeM 1304 DEPLOVMENT SYSTEM 1306
N TRANING PIRELNE(S}]
ALASSISTED 1404 DEPLOYMENT PIEELINE(S)
S| | AsotsTion 1COM 1210
© 1310 Mober TRAINNG /? s
B 1314 DAPTER
g DICOM OUTRUT 14028 P®ELINE MANAGER
L ADAPTER PRE-TRAINE s MODREL(S] 1412
N RE-TRAINED MODELS COREL{S) inls
& 1402a 1 1408 t 1318
| e ARPLCATION ORCHESTRATION SYSTEM 1428 |

% c ey e ; N N
; i OMPLTE : : S : ISUALIZATION ;
- SERVICE(S) Al Sii‘%m[(s} SERWCE(S)
&
@ l PARALLEL COMPUTING PLATEORM 1430

gl
s GPUSIGRAPHICS .Il
3 1422 £
£ _ Cloun
% X165 Al SveTem 1424 1498

FIG. 14

Patent Application Publication Jan. 11, 2024 Sheet 16 of 17 US 2024/0013802 A1

1500
PRE-TRAINED
MODELS 1&,@,@ MoDEL TRANING SysTEm 1304

e

CUSTOMER 1314
DATASET MOUEL TRAINING

INITIAL MODEL< IMPROVED ACCURACY [REFNED MODEL

FIG. 15A

Patent Application Publication Jan. 11, 2024 Sheet 17 of 17 US 2024/0013802 A1

- g Al-ASBISTED TRANING
Raw IMaGES § ANMGTATION TOGL DIATA
1534 1538 1538
N
1544

ASBISTANT SERVER
1540

e,

ANNOTATIOM]

PRE-TRAMED MODELS
1542

prrrrrrrr—

FIG. 15B

US 2024/0013802 Al

INFERRING EMOTION FROM SPEECH IN
AUDIO DATA USING DEEP LEARNING

RELATED APPLICATIONS

[0001] This application relates to PCT application number

filed on Jul. 7, 2022, and entitled “Inferring Emotion
From Speech In Audio Data Using Deep Learning,” which
is hereby incorporated herein in its entirety for all intents and
purposes.

BACKGROUND

[0002] There are various situations where it may be desir-
able to determine a type of emotion exhibited by someone
while uttering speech, such as speech represented by cap-
tured audio data. Certain prior approaches used machine
learning to attempt to infer emotion from input audio, but
these approaches were typically limited to those people or
speakers for which the respective model was trained, and did
not generalize well to other speakers. These networks were
also typically based on spectrograms, which required con-
version of the audio to a spectrogram representation that
would be analyzed using image-based analysis, which did
not produce optimal results. Such an approach also requires
multiple models to be trained for various speakers, which
can be complicated and computationally expensive, or
results in varying levels of inaccuracy in the emotion
inferred for any input speech. Further still, prior approaches
would determine a single emotion for an entire segment of
audio, which does not capture any variations in emotional
state of a speaker during that segment.

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] Various embodiments in accordance with the pres-
ent disclosure will be described with reference to the draw-
ings, in which:

[0004] FIG. 1 illustrates different emotions that can be
exhibited by a person uttering a line of speech, in accordance
with at least one embodiment;

[0005] FIG. 2A illustrates an example pipeline for infer-
ring emotions from input audio, in accordance with at least
one embodiment;

[0006] FIG. 2B illustrates a time window-based approach
to determining emotion at specific points in an audio file or
stream, according to at least one embodiment;

[0007] FIG. 3 illustrates an example character animation
system that can use emotion data inferred from input audio,
according to at least one embodiment;

[0008] FIGS. 4A and 4B illustrate interfaces for allowing
specification of a prior emotion and prior emotion strength,
according to at least one embodiment;

[0009] FIG. 5 illustrates an example process for inferring
emotion from audio data, according to at least one embodi-
ment;

[0010] FIG. 6 illustrates components of a distributed sys-
tem that can be used to infer emotion from audio, according
to at least one embodiment;

[0011] FIG. 7A illustrates inference and/or training logic,
according to at least one embodiment;

[0012] FIG. 7B illustrates inference and/or training logic,
according to at least one embodiment;

[0013] FIG. 8 illustrates an example data center system,
according to at least one embodiment;

Jan. 11, 2024

[0014] FIG. 9 illustrates a computer system, according to
at least one embodiment;

[0015] FIG. 10 illustrates a computer system, according to
at least one embodiment;

[0016] FIG. 11 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0017] FIG. 12 illustrates at least portions of a graphics
processor, according to one or more embodiments;

[0018] FIG. 13 is an example data flow diagram for an
advanced computing pipeline, in accordance with at least
one embodiment;

[0019] FIG. 14 is a system diagram for an example system
for training, adapting, instantiating and deploying machine
learning models in an advanced computing pipeline, in
accordance with at least one embodiment; and

[0020] FIGS. 15A and 15B illustrate a data flow diagram
for a process to train a machine learning model, as well as
client-server architecture to enhance annotation tools with
pre-trained annotation models, in accordance with at least
one embodiment.

DETAILED DESCRIPTION

[0021] In the following description, various embodiments
will be described. For purposes of explanation, specific
configurations and details are set forth in order to provide a
thorough understanding of the embodiments. However, it
will also be apparent to one skilled in the art that the
embodiments may be practiced without the specific details.
Furthermore, well-known features may be omitted or sim-
plified in order not to obscure the embodiment being
described.

[0022] The systems and methods described herein may be
used by, without limitation, non-autonomous vehicles, semi-
autonomous vehicles (e.g., in one or more adaptive driver
assistance systems (ADAS)), piloted and un-piloted robots
or robotic platforms, warehouse vehicles, off-road vehicles,
vehicles coupled to one or more trailers, flying vessels,
boats, shuttles, emergency response vehicles, motorcycles,
electric or motorized bicycles, aircraft, construction
vehicles, underwater craft, drones, and/or other vehicle
types. Further, the systems and methods described herein
may be used for a variety of purposes, by way of example
and without limitation, for machine control, machine loco-
motion, machine driving, synthetic data generation, model
training, perception, augmented reality, virtual reality,
mixed reality, robotics, security and surveillance, simulation
and digital twinning, autonomous or semi-autonomous
machine applications, deep learning, environment simula-
tion, object or actor simulation and/or digital twinning, data
center processing, conversational Al, light transport simu-
lation (e.g., ray-tracing, path tracing, etc.), collaborative
content creation for 3D assets, cloud computing, and/or any
other suitable applications.

[0023] Disclosed embodiments may be comprised in a
variety of different systems such as automotive systems
(e.g., an infotainment or personal digital assistant system of
an autonomous or semi-autonomous machine), systems
implemented using a robot, aerial systems, medial systems,
boating systems, smart area monitoring systems, systems for
performing deep learning operations, systems for perform-
ing simulation operations, systems for performing digital
twin operations, systems implemented using an edge device,
systems incorporating one or more virtual machines (VMs),
systems for performing synthetic data generation operations,

US 2024/0013802 Al

systems implemented at least partially in a data center,
systems for performing conversational Al operations, sys-
tems for performing light transport simulation, systems for
performing collaborative content creation for 3D assets,
systems implemented at least partially using cloud comput-
ing resources, and/or other types of systems.

[0024] Disclosed embodiments can infer emotion from
speech or audio data uttered by a person, or other such
speaker, that may be captured in audio data using, for
example, a microphone and audio capture device that can
convert a captured audio signal into digital audio data. When
speaking, aspects of a person’s speech may change based, at
least in part, upon their emotional state, similar to how the
person’s facial expression may change. For example, FIG. 1
illustrates images of four example emotional states that a
person might exhibit while uttering the same line of speech.
This includes an image 100 showing the person to be in a
happy state, an image 102 showing the person being in an
angry state, an image 104 of the person being in a disgusted
state, and an image 106 showing the person being in a sad
state. Just as the facial expression of the person changes with
emotion, there will be similar changes in vocal expression of
the speech with these changes in emotion. For various
operations, it can be beneficial to be able to accurately and
automatically identify these emotions from captured audio
data. In an example use case where the emotion data is to be
used to generate facial animation, being able to accurately
identify or infer emotional state of a person while uttering
speech can help to ensure that the appropriate facial expres-
sions, such as those illustrated in FIG. 1, are used to render
the animation. Emotional state data may be helpful in other
contexts as well, such as to manage calls in a call center
based, at least in part, upon a detected emotional state, or
change in emotional state, of at least one party to a call. For
example, an automatically generated prompt(s), script, or
outline for a call may be dynamically updated based on
detected emotional states of callers.

[0025] An emotion determination system in accordance
with at least one embodiment can receive input audio data
200, as illustrated in FIG. 2A. This audio data 200 can
contain speech uttered by at least one person, or other
speaker, as may have been captured using an audio capture
device. The audio data may undergo at least some amount of
pre-processing, such as to reduce background noise, remove
segments of silence or non-speech, or segment the audio into
audio segments that each contain speech uttered by a single
speaker. This audio data can then be passed as input to an
emotion determination module, device, system, or process,
to attempt to determine or infer an emotional state of the
person uttering speech in that audio clip. In this example, the
audio data 200 is passed to an algorithm that can classify the
type of emotion, or emotional state, reflected in the uttered
speech using a trained deep learning model or neural net-
work, at least with respect to those emotional states or
classes for which the model or network was trained. The
neural network 202 can infer one or more emotion labels 204
for the input audio 200, which can then be provided as
output of the emotion determination process. This may
include a single emotion label for individual portions of the
audio data 200, or one or more emotional labels or deter-
minations for an entirety of the input audio data (as may
correspond to a specific section—such as a word or sen-
tence—of the received audio), among other such options.

Jan. 11, 2024

[0026] In at least one embodiment, the neural network 202
can be a transformer-based network. This may include, for
example, a network with a Wav2Vec2.0 or Uni Speech
neural architecture. A transformer neural network can accu-
rately and efficiently solve sequence-to-sequence tasks,
including those with long-range dependencies. Such a net-
work can take the audio data in an audio file format as input,
rather than having to first convert the audio to an image-
based representation or format—such as a spectrogram, or
mel-spectrogram—as was required in prior approaches
(which were also found to lead to less accurate results and
higher instability). For example, the audio data may corre-
spond to an audio file format such as an uncompressed audio
file format (e.g., WAV, AIFF, AU, raw, etc.), a lossless
compression audio file format (FLAC, WavPack, TTA,
ATRAC, MPEG-4, WMA Lossless, SHN, etc.), or a lossy
compression audio file format (e.g., Opus, MP3, Vorbis,
Musepack, AAC, ATRAC, WMA Lossy, etc.). Using an
audio file format as opposed to converting the audio file
format to a non-audio file format (e.g., an image format)
allows for higher accuracy and precision in predictions of
the transformer-based neural network 202, while also allow-
ing the network 202 to be more robust to different speakers.
In addition, as described, the run time of the system is
reduced because post-processing of the audio data to an
image or other non-audio-based format is not required.

[0027] In at least one embodiment, such a network can
output a probability distribution, a confidence(s), and/or
another output type indicating a likelihood of the speech
represented by the input audio data corresponding to one or
more of a number of emotional classes. This may include as
few as two emotional classes (in which case a Boolean
output may be generated by the network), or up to as many
emotional classes (or combinations of classes) as can be
identified and used to train the network without unduly
impacting performance for a given operation, application, or
use case. In at least one embodiment, such a network outputs
a distribution over six emotional classes that are represented
in (e.g., publicly-available) datasets that can be used for
training—including anger, disgust, fear, joy, neutral (or no
detectable emotion), and sadness. If other datasets are used,
the set of emotions can be larger or smaller, or may include
a different selection of emotions, based at least in part upon
the classifications or labels used in those datasets. It can be
desirable to select a variety of datasets where possible to
obtain a variety of examples of expressing different emo-
tions. In at least one embodiment, a transformer-based
neural network 202 will output a vector with a value for each
emotion, where that value corresponds to a probability,
confidence, or other indicator of whether the speech con-
tained in input audio (e.g., extracted from a video clip) was
uttered by a person having a particular emotional state(s), or
attempting to convey that emotion. These values may be
normalized to values between 0 and 1 (or between 0% and
100%), that all sum to an absolute probability value such as
1.0 (or 100%—where the probability values when summed
cannot exceed the maximum probability of any individual
emotion). For speech that is determined to be all of a single
emotion, the probability vector might have values of [1, O,
0, 0, 0, 0], while speech determined to have equal probabili-
ties for two different emotions might have values of [0, 0.5,
0, 0.5, 0, 0]. A typical output may have at least some
probability for most or all emotions, such as may correspond
to values of [0.9, 0.02, 0.01, 0.02, 0.02, 0.03]. Other such

US 2024/0013802 Al

values or outputs indicative of emotional state can be
provided as well within the scope of the various embodi-
ments.

[0028] In instances where more than one emotional state
may be represented, each emotion state having a probability
or confidence over a threshold may be identified as an
emotional class represented by the speech. Where two or
more emotional state classes are determined to be present,
the output values corresponding to each emotion may be
used to weight the prominence of one emotion with respect
to another. For example, when using the emotional states to
animate a virtual actor or subject, and there is a higher
confidence for anger than sadness, the virtual actor or
subject may be generated to show more anger emotion than
sadness emotion, which may be reflected using various
facial and/or body features. Similarly, when the emotional
states are used to indicate emotions of a speaker for purposes
other than animation of a virtual actor or subject, the
strength or confidence of different emotions may be indi-
cated to a user or system—e.g., “The speaker is more angry
than sad,” or “Anger: 70%; Sadness: 30%,” and/or the like.

[0029] In many instances, the emotional state of a person
will not remain exactly the same while uttering more than a
few words of speech, or other vocal sounds. Even if the
emotional class might stay essentially the same, there may
be periods where it is mixed with other emotions, or more
strongly exhibits a particular emotion. In order to account
for these and other such variations, an emotion determina-
tion system can attempt to determine emotional state at
different points or times in input audio, even potentially
within the same speech uttered by a single speaker. These
“points” can correspond to emotional keyframes determined
for different timestamps of the audio track. An emotion
detection algorithm can then output at least one emotion
classification for each emotional keyframe. An operation
receiving this emotional keyframe data can then make
decisions or perform actions based, at least in part, upon
these changes in emotion over time.

[0030] FIG. 2B illustrates one example approach for deter-
mining an emotion classification for a sequence of emotional
keyframes that can be used in accordance with at least one
embodiment. In this example, a fixed hop size 256 and
window size 258 can be used to determine an emotional state
for a sequence of frames 250, 252, 254 represented by input
audio data 260. In embodiments, a hop size (or stride) can
also be thought of as a distance between stride points
determined for an audio track, where stride points may be
determined at regular frequency in order to obtain a desired
overlap and spacing of sliding windows for an individual
frame. In at least one embodiment, a source (e.g., a user,
application, or operation) can specify the hop size (or stride)
256 and size of a sliding window 258 to be used to analyze
the audio data. For a 16,000 Hz sample rate of input audio,
example window size and stride values can be set to around
15,000, or values between 5,000 and 16,000. In this
example, each frame of audio can be analyzed using a
number of passes through the audio data. For each pass, the
audio over a given position of a window 258 can be analyzed
to determine probability values for a set of emotional classes
during that window of time. In various embodiments, a
window length should be long enough to represent enough
audio data to generate an accurate emotional inference,
while not so long as to be likely to include different
emotional states that might then lead to inaccurate probabil-

Jan. 11, 2024

ity determinations over the entire window. For each pass, the
sliding window 258 can be moved forward in time according
to the specified hop size 256. The hop size 256 may be set
to allow for at least some overlap between window posi-
tions, in order to have at least two windows for most points
in the audio to help avoid missing emotional states that
might be relatively brief. The hop size 256 can also be long
enough to avoid undue processing or an excess number of
passes required through the audio. In at least one embodi-
ment, a hop size can be at most half the size of the sliding
window size, and at least one-tenth of the length of the
window size, in order to provide for sufficient, but not
excessive, overlap between window positions. Similarly,
there may be thresholds or ranges set on window sizes, such
as at least one-tenth of a frame size or at most nine-tenths of
a frame size, where a frame can be anywhere from at least
about 0.1 seconds to about 10 seconds in at least one
embodiment. In at least one embodiment, probabilities can
be determined for various emotional classes for each of
these sliding window positions in a given frame, and then an
overall probability determined for the frame by combining
these probabilities. This may then be provided as an emotion
vector for this emotional keyframe, which can be considered
to be positioned at a start point, midpoint, or other location
within an individual frame. In this example, the frames are
all of the same size, such that the keyframes will be
relatively regular in timing, with an emotion vector or
classification output for each of these emotional keyframes.

[0031] In other embodiments, frame size and keyframe
location may vary based, at least in part, on the content of
the audio. In at least one embodiment, the content of the
audio can be analyzed to segment that audio at least by
speaker, such that an audio clip only contains speech, or
primarily contains speech, uttered by a single speaker
(which may include editing the audio to filter out speech
from other actors). In some embodiments, this may be
further broken down by, for example, sentences or words
contained in the audio. Other factors may be used as well,
such as pauses in speech, changes in volume, or changes in
the speed of the uttered speech, among other such options.
In at least some embodiments, thresholds may then be
applied to determine window size and hop size, or an
algorithm may be used to determine these sizes, as may
depend at least in part upon the frame size. In some
embodiments, audio (e.g., 16 kHz audio) may be analyzed
until a change in emotion is detected, or at least a changes
that meets or exceeds a change threshold (e.g., a confidence
for a different emotion that is greater than a threshold
confidence, a confidence for a different emotion that is
greater than a current emotion confidence by more than a
threshold, a confidence of a different emotion being greater
than the current emotion confidence for more than a thresh-
old number of iterations, etc.) or satisfies another selection
criterion, and then a new keyframe can be started. The prior
keyframe can then be analyzed using a number of passes as
discussed previously to determine an emotional vector or
classification for that emotional keyframe.

[0032] Emotional labels or classifications determined for
individual emotional keyframes can be provided as input to
a system, service, process, application, and/or operation that
performs one or more tasks based at least in part upon this
emotion input data. An example of one such system is an
audio-driven facial animation system 300 as illustrated in
FIG. 3. This example system can provide for automated,

US 2024/0013802 Al

audio-driven animation, such as full 3D facial animation,
with variable emotion control. In at least one embodiment,
a collection of speech performances can be captured of one
or more actors uttering speech (e.g., specific sentences) with
different emotions, levels of emotion, combinations of emo-
tion, or styles of presentation, among other such options.
Emotions supported by such a system can include any
appropriate emotion (or similar behavior or state) that is able
to be at least partially represented through character anima-
tion, image synthesis, or rendering, as may include joy,
anger, amazement, sadness, pain, or fear, among others. A
data collection process can include a capture of 4D data,
including multi-view 3D data over at least a period of time
of utterance of the speech. Reconstruction of this captured
facial behavior can be performed not only for the facial skin
(or such surface), but also for other articulable or control-
lable components, elements, or features, as may include the
teeth, eyeballs, head, and tongue. The reconstruction can
provide geometric deformation data in the temporal domain
for each separately (or at least somewhat separately) mod-
eled facial (or other bodily) component or region. Such
reconstruction can provide a full dataset for use in training,
for example, a deep neural network to perform a task such
as 3D facial animation.

[0033] In at least one embodiment, a deep neural network
306 trained can be based on a U-net, generative adversarial
network (GAN), or recurrent neural network (RNN)-based
architecture. A sequence-to-sequence mapping can be used
to obtain a sufficiently long temporal context, which can be
beneficial in generating physically or behaviorally accurate
animation, particularly for upper face motion. In the
example system 300 of FIG. 3, a segment of audio data—
such as frames or a segment of audio within a current audio
window 302—may be provided as input to the deep neural
network 306, which can use an analysis network portion 308
to analyze the audio and encode features representative of
features of the audio in the audio window 302, as may
correspond to a portion of the speech. This analysis network
portion 308 may include a shared audio decoder and encoder
for encoding audio features into an audio feature vector,
which can be provided as input to an articulation network
portion 310 of the deep neural network 306. In this example,
an emotion vector 322 (or emotion label, etc.) can be
provided as input. As discussed in more detail elsewhere
herein, an emotion vector 322 can be generated using an
emotion inference network 320, such as the transformer-
based network 202 of FIG. 2A, which can infer emotion
from input audio for respective audio frames, windows, or
segments. An emotion vector 322 may correspond to an
emotional keyframe to be used in determining how to render
one or more frames of facial animation. An emotion vector
322 may include data (e.g., probabilities, confidences, etc.)
for one or more emotions that apply to speech in audio used
for training, such as an emotion that a voice actor was
instructed to use when uttering the speech that was captured
in the audio data. In some instances, this may include data
for a single emotion label, such as “anger,” or may include
data for multiple emotions, such as “anger” and “sadness,”
as well as potentially relative weightings or probabilities for
those two emotions.

[0034] In at least one embodiment, a style vector may also
be provided as input to this network during training. A style
vector can include data relating to any aspect of the anima-
tion or facial component motion that modifies how one or

Jan. 11, 2024

more points for one or more facial component should move
for a given emotion or emotion vector. This may include
impacting motion of specific features or facial components,
or providing a style of overall animation to be used, such as
“intense” or “professional.” A style vector may also be
viewed as a finer-grained control over emotion, where an
emotion vector provides the label(s) of the emotion(s) to use,
and the style provides finer control over how the emotion(s)
is expressed through the animation. Other approaches to
determining style data can be used as well, such as is
discussed in more detail elsewhere herein. In different
implementations, a single set of emotion and style vectors
may be provided for a given audio clip, a set of vectors can
be provided for each frame of animation to be generated, or
a set of vectors can be provided for specific points or frames
of animation (e.g., emotional keyframes) where at least one
emotion or style value or setting is to be modified relative to
a prior frame.

[0035] In this system 300, and without limitation, the
emotion vector 322 is fed into an articulation portion 310 of
the deep neural network 306 at multiple levels, including at
least a beginning and an end of the network to help condition
the network. The network 306 may use a shared audio
encoder and multiple decoders for various facial compo-
nents (e.g., face skin, jaw, tongue, eyeballs, and head).
During training, an output network portion 312 of the deep
neural network 306 can generate a set of vertex positions
314 and/or motion vectors (or other motions or deforma-
tions) for individual feature points of the facial components,
whether for each such feature point or for only those that
have changed relative to a prior frame, among other such
options. During training, these vertex positions can be
compared against “ground truth” data, such as the original
reconstructed facial data from the 4D image capture, in order
to compute an overall loss value. In at least one embodiment,
a loss, such as an [.2 loss, can be used for both position and
velocity of feature points in an output data representation. A
loss function used to determine the loss value can include
terms for position, motion, and adversarial loss in at least
one embodiment. This loss value can be used during back-
propagation to update network parameters for the deep
neural network 306. Once the network is determined to
converge or another training end criterion is satisfied (e.g.,
processing all training data or performing a target/maximum
number of training iterations), the trained network 306 can
be provided for inferencing. During inferencing, the network
may receive only audio data 302 as input, and may infer a
set of vertex positions 314 for various facial components
(e.g., head, face, eyeballs, jaw, tongue), which can then be
fed to a renderer 316 (e.g., a rendering engine of an
animation or video synthesis system) in order to generate a
frame of animation 318, which may be one of a series of
frames that provide the animation upon presentation or
playback. The original audio data used by the deep neural
network 306 may be the same as the original audio data used
by the transformer-based neural network 202 of FIG. 2A to
determine the emotional state(s) or class(es) corresponding
to the audio data. In various embodiments, the format of the
audio data used by the DNN 306 and the transformer-based
neural network 202 may differ, or may be the same. For
example, both networks 306 and 202 may use the audio
without conversion to an image-based format, or the net-
work 306 may use an image-based format (e.g., a spectro-

US 2024/0013802 Al

gram) and the network 202 may use the audio format
without conversion, as described herein.

[0036] As discussed in more detail elsewhere herein, emo-
tion vector data may also be provided if the generated vertex
positions are to be modified in some way with respect to how
the deep neural network 306 would otherwise infer the
vertex positions based on the audio data, such as to convey
a specific style or facial behavior to be used in inferring the
vertex positions 314. In some embodiments, a deep neural
network 306 may receive emotion vectors, at least when
available, and use these vectors to determine how to animate
a face, or use this vector in combination with its own
emotion determination to attempt to provide smoother and
more accurate animation. The providing of different emo-
tional vectors for different emotional keyframes can help the
emotional expression of the rendered face to change
dynamically over time to correspond to the emotion con-
veyed in the corresponding speech data. An advantage to a
transformer-based neural network 202 as described herein is
that it can generalize to speech audio from many different
speakers, such that an operator does not have to obtain a
different model trained for each speaker, or type of speaker.
[0037] In at least one embodiment, changes in emotion
during a frame or audio segment may be represented in
different ways. For example, if a first emotion is detected
during a first half of a segment and a second emotion is
detected during a second half of that segment, then two
emotion vectors might be provided that indicate the respec-
tive emotion during the respective time frame, or for a
respective emotional keyframe. In another example, a single
keyframe may be generated that indicates probabilities or
values for both emotions over that segment, such as with
substantially equal probabilities. In still other examples, the
system may look at emotional values for adjacent (e.g.,
before and after) segments, and attempt to merge or modify
segments based, at least in part, upon similarities or differ-
ences in emotion determination.

[0038] In some embodiments, all emotional classes can
have a same (or no) weighting, such that determined prob-
abilities can be used directly. In some embodiments, a user
(or other source) can have an ability to specify at least one
emotion label, which can then impact a weighting of at least
one emotional class, or can impact an output emotion vector
or value. For example, a user might specify that a given
audio segment is to be associated with a “sad” emotion.
During analysis, an emotion detection network might detect
other emotional probabilities, such as anger or disgust.
These values can be used to adjust the probabilities in an
emotion vector in at least one embodiment, whether by
adjusting weights applied to the various probabilities to
weight a “sad” emotional state higher, or by blending or
averaging determined probabilities with an overall sadness
probability due to the user input, among other such options.
In some embodiments, a user may also have the option of
adjusting probabilities or values in a given emotion vector,
in order to modify an outcome based, at least in part, on that
vector.

[0039] An ability to determine emotion from speech or
voice data can have various other applications or advantages
in other contexts as well. For example, in a call center
operation, an ability to determine emotion of call center
employees on calls can help to determine whether any
employees tend to exhibit specific emotions outside an
expected or average range, which can help identify employ-

Jan. 11, 2024

ees who might benefit from further training or assistance. An
ability to detect a strong angry or sad emotion might also
trigger a request for that employee to take a break or handle
a different task, or might cause different calls to be routed to
that employee which can help to improve the emotional state
of the employee, or that might better match that emotional
state. Emotional state data for a call can be logged as well,
such that if a customer has a complaint about an employee
being angry or rude on the call, the emotional state data can
be analyzed to determine whether the complaint may be
legitimate.

[0040] Such data can also benefit when analyzing speech
of a customer or person from outside the call center. For
example, if it can be determined that a caller is getting angry
during a call, the call center might decide to route that call
to a different employee, such as a manager or person better
trained to deal with specific emotions or emotional states.
Similarly, data stored for a call can help to verify an
emotional state of the caller during the call, which might
help with tasks such as verifying information about a
complaint, or helping to train employees based at least in
part upon an emotional state of a caller during a call. If
emotional state can be determined through an initial menu of
options that the customer navigates through voice com-
mands, then this call can be routed initially based on the
emotional state of the caller, or may provide a call center
employee up front with information about the emotional
state, which can help the employee better prepare for, and
manage, the call. For call centers where the employees read
at least a portion of their responses from a script, the
emotional state might help to select a script that is more
accurate for the current situation, such as to use more gentle
language if a customer is inferred to be angry or more
supportive language if the customer is determined to be sad,
and so forth. The emotional state of a caller may also be
useful where the call center uses virtual bots or assistants—
at least initially—to determine where to route calls. For
example, instead of continuing with a fully automated call,
the call may be transferred to a live agent when the caller is
determined to be upset, angry, frustrated, or the like.

[0041] In at least some embodiments, an ability to change
emotional state with individual keyframes, as well as an
ability to adjust the locations or frequency of those key-
frames, may result in changes in emotion that may not seem
natural when displayed. For example, a speaker might start
a long sentence being more sad than angry, but then tran-
sition to being more angry than sad. There also may be a
determination in the middle of a sentence that, for a given
keyframe, the speaker has a different emotion than for the
rest of the sentence. Rapid changes in emotion, however,
may have jarring transitions or at least not match actual
human behavior, where emotional transitions may be at least
somewhat gradual. Approaches in at least some embodi-
ments can utilize one or more of a number of heuristics, or
post-processing operations, to attempt to smooth inaccurate
predictions of a model, as well as to provide for more natural
transitions between emotional states (e.g., a person rarely
goes from 100% sad to 100% angry instantaneously in the
middle of a sentence). In at least one embodiment, this may
include using a sliding window approach, such as the
approach discussed with respect to the audio data, except
using the sliding windows with respect to keyframes deter-
mined for the audio. This can include performing smoothing
for at least non-neutral emotions over a number of key-

US 2024/0013802 Al

frames, where that number (e.g., 2-10) of keyframes may be
able to be specified by a user or application, or may be
determined based at least in part upon a number or frequency
of'keyframes determined for an audio clip, among other such
options.

[0042] In one embodiment, a system can enable a user,
application, or other such source to specify or adjust an
emotion strength value. For example, a user can select a ratio
from O to 1 that represents an emotion strength. In at least
one embodiment, a larger emotional strength value corre-
sponds to a higher level of expressiveness of the correspond-
ing emotion. If the strength is set to 0, that can indicate that
not expressiveness of that emotion is to be used. For
example, an evil character in a video game may be desired
to show no sadness or happiness, and a user can specify a
value of 0 for the emotion strength for these emotions so that
the character only is determined to express things with, for
example, an angry, disgusted, or neutral emotion. If a
character is to be a very happy character, then a user might
set an emotional strength for a happy emotion to near 1 (e.g.,
0.9) and values for other emotional strengths much lower.
Such approaches can not only provide for a smoothness of
emotion determination, but can also provide emotion deter-
minations that are more appropriate for a given character.

[0043] Available heuristics may also allow for specifica-
tion or adjustment relating to prior emotions. A “prior”
emotion in this context does not refer to a previously
determined or exhibited emotion in an audio file, but instead
refers to an emotion or emotional state that was determined
prior to the dynamic analysis by, for example, a transformer-
based neural network 202. This may include an emotion that
was specified for a given instance of speech in audio data by,
for example, a user, application, or operation. For example,
where the emotion determinations are used to generate facial
animation, a user might specify that the character being
animated should appear sad during this speech. As men-
tioned, however, using only a single emotion throughout an
entire instance of speech may not appear natural. A system
may then allow a user (or other such source) to specify a
prior emotion to use for an instance of speech, for example,
but will also infer changes in emotion for various keyframes
during that speech. The emotion and current emotion values
can then be blended such that the character will demonstrate
the prior emotion, but this emotion may be blended with
different emotions at different times during the speech, such
as to appear more or less sad at different times by being
blended with a neutral value, or somewhat angry over a
portion of the speech, and so forth. In order to allow for
some control over this blending, a prior emotion strength
value can also be supplied. This can function as a type of
weighting to indicate how much this prior emotion value
should be blended with an emotion determined by a neural
network, where a prior emotional strength of 0.9 might
cause the emotion value to reflect primarily the prior emo-
tion, while a prior emotional strength of around 0.3 may
cause the emotion value to at least reflect some of the prior
emotion at all times during the speech, which can provide
for at least some smoothing of the emotion determinations
throughout the speech.

[0044] FIGS. 4A and 4B illustrate example states 400, 450
of a user interface that can be used to indicate emotions for
training data, as well as to provide style or modification data
to emotion determination at inference time, among other
such options. When specifying or modifying emotion data,

Jan. 11, 2024

an animation, rendering, or reconstruction may be displayed
that is representative of one or more determined emotion
probability values 406. A user viewing this interface may
then make any value adjustments that are determined to be
appropriate. For example, an emotion determination may be
primarily angry, but a listener may interpret the speech
utterance as also sounding somewhat sad. In order to more
accurately label the data, a user may adjust the label that is
applied, so the network more accurately learns to interpret
emotion in audio data. As illustrated, a time point 404 (e.g.,
a location of a keyframe) can be indicated in the audio data
402 for which these settings are to be applied. As mentioned,
a single setting might be used for an audio clip or segment,
but in other situations the emotional state may change during
such a clip or segment, such as at various points in time or
for/at specific frames of animation, which can be referred to
herein as emotional keyframes. An emotional keyframe can
indicate when one or more values for an emotion or style is
to change, and corresponding input vectors with these values
can be provided as input to a network during training in
order to learn these changes.

[0045] A user of this interface can also specify a prior
emotion 408 that is to be blended with the emotional
determination. A user can also specify a prior emotion
strength 410 that can be used to determine a blending weight
for that prior emotion with respect to a determined emotion.
As illustrated in FIG. 4 A, the prior emotion value of “angry”
has a corresponding prior emotion strength value of 0.0.
Accordingly, the emotional state illustrated in the rendered
image 412 is primarily joy as determined by the determined
emotion settings 406 or probabilities. As illustrated in FIG.
4B, a user adjusting the prior emotion strength value 452 to
0.6 results in an anger emotion being blended with the joy
(and neutral) emotion determinations, which results in an
emotional state as illustrated in rendered image 454 that is
an equal blend of joy and anger, such as where the user is
happy with a result but upset with the approach that was
used to obtain that result. As mentioned, an emotion strength
may be provided for each individual emotion as well, and
can be used to smooth emotions or modify emotional
determinations, among other such options. An interface such
as that illustrated in FIG. 4A can also allow a user to adjust
values for emotions and/or prior emotions, and related
values, at different keyframes or points 404 in the audio.
Such an interface may also allow a user to select which
heuristics to apply for a given audio clip, as well as any
values that may be used to modify or control a way in which
those heuristics are applied.

[0046] As mentioned, such an interface can be used at
inference time as a type of post process, and can also be used
for continued learning in at least some embodiments. For
example, a user may view generated animation playback
through this interface, where animation of the character is
presented. In FIG. 4B, if the user thinks that the animation
contains too much intensity for the situation, then the user
can adjust the intensity style selector to reduce an intensity
and have the frame(s) of animation re-rendered. If the user
detects a little sadness in the character’s speech that is not
captured in the animation, then the user can adjust that
setting as well. In some embodiments, a user may also be
able to provide, as a type of style input, adjustment to
specific feature points or facial components in the display.
For example, the user can use a pointer to grab and move a
position of the character’s lip, and this information can be

US 2024/0013802 Al

used as style input for re-rendering of the animation. Other
changes can be provided as well, such as head movement,
head tilt, eye movement or focus, or other such changes that
can be conveyed through emotion or style input for re-
rendering (or updated rendering or synthesis) of the anima-
tion. Various other animation control parameters can be
specified through such an interface as well, which can
impact the final rendering.

[0047] In some embodiments, the transformer-based neu-
ral network 202 and the deep neural network 306 may be
trained in an end-to-end fashion, where outputs from the
deep neural network 306 may be used to update parameters
of not only the network 306, but also the network 202. For
example, where the probability or confidence for a particular
segment of audio data is determined to be very high (e.g.,
0.9) for anger, but the animated character that is animated
using for anger as an input to the network 306 appears to
expressive, or less human-like, this feedback may be used to
adjust the parameters of the network 202 to train the network
202 to instead predict lower anger confidences (e.g., 0.7) or
probabilities for similar speech types. In this way, the
emotional states or classes (and the confidences correspond-
ing thereto) may be fine-tuned to aid in the network 306
generating animations that more accurately or precisely
resemble emotion.

[0048] FIG. 5 illustrates an example process 500 for
inferring emotion from an input audio clip that can be used
in accordance with at least one embodiment. It should be
understood that for this and other processes presented herein
that there may be additional, fewer, or alternative steps
performed in similar or alternative orders, or at least par-
tially in parallel, within the scope of the various embodi-
ments unless otherwise specifically stated. In this process,
audio data is obtained 502 that represents speech uttered by
at least one speaker, such as at least one human uttering
speech during a conversation. This speech may have been
captured by an audio capture device, such as at least one
microphone or microphone array, then converted to digital
audio data. This audio data can be divided 504 into segments
of speech (e.g., sentences, paragraphs, words, or utterances
between pauses) each uttered or labeled as corresponding to
(e.g., where there are multiple speakers, but one speaker is
prominent) a single speaker. An audio segment can be
selected 506 for emotion analysis, and provided 508 as input
to a transformer-based neural network, or other such emo-
tion determination network or algorithm. One or more
frames of the segment can be analyzed 510 using the neural
network to infer probability (or other) values for a set of
emotions. These can include a fixed set of emotions for
which the neural network was trained, as well as potentially
additional emotions that the network has learned through
continued learning, among other such options. The number
of frames in the segment can depend upon a number of
factors, such as the length or content of the segment, as well
as the window or stride size for the analysis. For each frame
of the segment, an emotion vector can be received 512 that
indicates probabilities for the set of emotions, or at least a
subset of the emotions. A determination can be made 514 as
to whether any heuristics are to be applied to the emotion
vector(s). If so, one or more of these heuristics can be
applied 516 to the vectors to perform smoothing or emotion
determination adjustment, among other such options. In
some embodiments, this may include adjusting the emotion
probability values based on a prior emotion and/or emotion

Jan. 11, 2024

strength as discussed herein. The emotion vectors, after any
heuristics, can be provided 518 to an application (or other
recipient or destination) for use in performing one or more
emotion-based tasks or analysis. A determination can be
made 520 as to whether there are any more segments to be
analyzed, and if so then this process can continue with a next
segment. In some embodiments, segment analysis may be
performed in parallel for at least some of the segments. After
emotion vectors are provided, a user can be allowed 522 to
review and modify values in these emotion vectors as
appropriate, such as to perform any adjustments deemed to
be appropriate by the user for a given emotion-based task.
[0049] As an example, emotional vectors can be provided
to a facial animation process that attempts to generate
animation with realistic behavior for various emotional
states for a variety of different character types. This can
include, for example, audio-driven full three-dimensional
(3D) {facial animation with emotion control. In such an
approach, realistic animation can be generated without any
manual input or post-processing required—although pos-
sible where desired. Automating such animation can help to
significantly reduce the amount of time, experience, and cost
needed for manual (or at least partially-manual) character
animation. Audio-driven facial animation can provide an
efficient way to generate facial animation compared to
traditional approaches, as only audio data is needed to drive
the animation of a given character.

[0050] Various systems can also support retargeting. In
retargeting, motion of one character can be mapped to
motion of another character, such that similar animation can
be generated for similar emotions and/or style. An interface
such as illustrated in FIGS. 4A and 4B can be further
beneficial in a remapping context where different characters
might express emotion or styles in slightly different ways. A
user may be able to load different characters into this
interface and view how a retargeted rendering would appear
for that character, then can modify one or more aspects or a
style of motion or behavior for that specific character, or
type of character.

[0051] As discussed, aspects of various approaches pre-
sented herein can be lightweight enough to execute on a
device such as a client device, such as a personal computer
or gaming console, in real time or near real time. Such
processing can be performed on content (e.g., a rendered
version of a unique asset) that is generated on, or received
by, that client device or received from an external source,
such as streaming sensor data or other content received over
at least one network. In some instances, the processing
and/or determination of this content may be performed by
one of these other devices, systems, or entities, then pro-
vided to the client device (or another such recipient) for
presentation or another such use.

[0052] As an example, FIG. 6 illustrates an example
network configuration 600 that can be used to provide,
generate, modity, encode, and/or transmit data or other such
content. In at least one embodiment, a client device 602 can
generate or receive data for a session using components of
a content application 604 on client device 602 and data
stored locally on that client device. In at least one embodi-
ment, a content application 624 executing on a server 620
(e.g., a cloud server or edge server) may initiate a session
associated with at least client device 602, as may use a
session manager and user data stored in a user database 634,
and can cause content 632 to be determined by a content

US 2024/0013802 Al

manager 626. A content manager 626 may work with an
audio-to-face module 628 or system to determine facial
animation corresponding to input audio, as well as an
emotion application 630 that can perform one or more tasks
using determined emotion data. This may include, for
example, using the audio data to generate image, video, or
other visual presentation data using an asset (e.g., a character
mesh) from an asset database 632, to an extent allowable as
determined by a rights manager 630 or other such compo-
nent or service. At least a portion of that generated content
(separate and different from the assets themselves) may be
transmitted to client device 602 using an appropriate trans-
mission manager 622 to send by download, streaming, or
another such transmission channel. An encoder may be used
to encode and/or compress at least some of this data before
transmitting to the client device 602. In at least one embodi-
ment, client device 602 receiving such content can provide
this content to a corresponding content application 604,
which may also or alternatively include a graphical user
interface 610, audio-to-face component 612, and emotion
application 614 for use in performing emotion-based tasks.
A decoder may also be used to decode data received over the
network(s) 640 for presentation via client device 602, such
as image or video content through a display 606 and audio,
such as sounds and music, through at least one audio
playback device 608, such as speakers or headphones. In at
least one embodiment, at least some of this content may
already be stored on, rendered on, or accessible to client
device 602 such that transmission over network 640 is not
required for at least that portion of content, such as where
that content may have been previously downloaded or stored
locally on a hard drive or optical disk. In at least one
embodiment, a transmission mechanism such as data
streaming can be used to transfer this content from server
620, or user database 634, to client device 602. In at least
one embodiment, at least a portion of this content can be
obtained or streamed from another source, such as a third
party service 660 or other client device 650, that may also
include a content application 662 for generating or providing
content. In at least one embodiment, portions of this func-
tionality can be performed using multiple computing
devices, or multiple processors within one or more comput-
ing devices, such as may include a combination of CPUs and
GPUs.

[0053] In this example, these client devices can include
any appropriate computing devices, as may include a desk-
top computer, notebook computer, set-top box, streaming
device, gaming console, smartphone, tablet computer,
VR/AR/MR headset, VR/AR/MR goggles, wearable com-
puter, or a smart television. Each client device can submit a
request across at least one wired or wireless network, as may
include the Internet, an Ethernet, a local area network
(LAN), or a cellular network, among other such options. In
this example, these requests can be submitted to an address
associated with a cloud provider, who may operate or control
one or more electronic resources in a cloud provider envi-
ronment, such as may include a data center or server farm.
In at least one embodiment, the request may be received or
processed by at least one edge server, that sits on a network
edge and is outside at least one security layer associated with
the cloud provider environment. In this way, latency can be
reduced by enabling the client devices to interact with
servers that are in closer proximity, while also improving
security of resources in the cloud provider environment.

Jan. 11, 2024

[0054] In at least one embodiment, such a system can be
used for performing graphical rendering operations. In other
embodiments, such a system can be used for other purposes,
such as for providing image or video content to test or
validate autonomous machine applications, or for perform-
ing deep learning operations. In at least one embodiment,
such a system can be implemented using an edge device, or
may incorporate one or more Virtual Machines (VMs). In at
least one embodiment, such a system can be implemented at
least partially in a data center or at least partially using cloud
computing resources.

Inference and Training Logic

[0055] FIG. 7A illustrates inference and/or training logic
715 used to perform inferencing and/or training operations
associated with one or more embodiments. Details regarding
inference and/or training logic 715 are provided below in
conjunction with FIGS. 7A and/or 7B.

[0056] In at least one embodiment, inference and/or train-
ing logic 715 may include, without limitation, code and/or
data storage 701 to store forward and/or output weight
and/or input/output data, and/or other parameters to config-
ure neurons or layers of a neural network trained and/or used
for inferencing in aspects of one or more embodiments. In
at least one embodiment, training logic 715 may include, or
be coupled to code and/or data storage 701 to store graph
code or other software to control timing and/or order, in
which weight and/or other parameter information is to be
loaded to configure, logic, including integer and/or floating
point units (collectively, arithmetic logic units (ALUs). In at
least one embodiment, code, such as graph code, loads
weight or other parameter information into processor AL Us
based on an architecture of a neural network to which the
code corresponds. In at least one embodiment, code and/or
data storage 701 stores weight parameters and/or input/
output data of each layer of a neural network trained or used
in conjunction with one or more embodiments during for-
ward propagation of input/output data and/or weight param-
eters during training and/or inferencing using aspects of one
or more embodiments. In at least one embodiment, any
portion of code and/or data storage 701 may be included
with other on-chip or off-chip data storage, including a
processor’s L1, L2, or L3 cache or system memory.
[0057] In at least one embodiment, any portion of code
and/or data storage 701 may be internal or external to one or
more processors or other hardware logic devices or circuits.
In at least one embodiment, code and/or code and/or data
storage 701 may be cache memory, dynamic randomly
addressable memory (“DRAM?”), static randomly address-
able memory (“SRAM”), non-volatile memory (e.g., Flash
memory), or other storage. In at least one embodiment,
choice of whether code and/or code and/or data storage 701
is internal or external to a processor, for example, or
comprised of DRAM, SRAM, Flash or some other storage
type may depend on available storage on-chip versus off-
chip, latency requirements of training and/or inferencing
functions being performed, batch size of data used in infer-
encing and/or training of a neural network, or some com-
bination of these factors.

[0058] In at least one embodiment, inference and/or train-
ing logic 715 may include, without limitation, a code and/or
data storage 705 to store backward and/or output weight
and/or input/output data corresponding to neurons or layers
of a neural network trained and/or used for inferencing in

US 2024/0013802 Al

aspects of one or more embodiments. In at least one embodi-
ment, code and/or data storage 705 stores weight parameters
and/or input/output data of each layer of a neural network
trained or used in conjunction with one or more embodi-
ments during backward propagation of input/output data
and/or weight parameters during training and/or inferencing
using aspects of one or more embodiments. In at least one
embodiment, training logic 715 may include, or be coupled
to code and/or data storage 705 to store graph code or other
software to control timing and/or order, in which weight
and/or other parameter information is to be loaded to con-
figure, logic, including integer and/or floating point units
(collectively, arithmetic logic units (ALUs). In at least one
embodiment, code, such as graph code, loads weight or other
parameter information into processor ALUs based on an
architecture of a neural network to which the code corre-
sponds. In at least one embodiment, any portion of code
and/or data storage 705 may be included with other on-chip
or off-chip data storage, including a processor’s [.1, [.2, or
L3 cache or system memory. In at least one embodiment,
any portion of code and/or data storage 705 may be internal
or external to on one or more processors or other hardware
logic devices or circuits. In at least one embodiment, code
and/or data storage 705 may be cache memory, DRAM,
SRAM, non-volatile memory (e.g., Flash memory), or other
storage. In at least one embodiment, choice of whether code
and/or data storage 705 is internal or external to a processor,
for example, or comprised of DRAM, SRAM, Flash or some
other storage type may depend on available storage on-chip
versus off-chip, latency requirements of training and/or
inferencing functions being performed, batch size of data
used in inferencing and/or training of a neural network, or
some combination of these factors.

[0059] In at least one embodiment, code and/or data
storage 701 and code and/or data storage 705 may be
separate storage structures. In at least one embodiment, code
and/or data storage 701 and code and/or data storage 705
may be same storage structure. In at least one embodiment,
code and/or data storage 701 and code and/or data storage
705 may be partially same storage structure and partially
separate storage structures. In at least one embodiment, any
portion of code and/or data storage 701 and code and/or data
storage 705 may be included with other on-chip or off-chip
data storage, including a processor’s L1, [.2, or L3 cache or
system memory.

[0060] In at least one embodiment, inference and/or train-
ing logic 715 may include, without limitation, one or more
arithmetic logic unit(s) (“ALU(s)”) 710, including integer
and/or floating point units, to perform logical and/or math-
ematical operations based, at least in part on, or indicated by,
training and/or inference code (e.g., graph code), a result of
which may produce activations (e.g., output values from
layers or neurons within a neural network) stored in an
activation storage 720 that are functions of input/output
and/or weight parameter data stored in code and/or data
storage 701 and/or code and/or data storage 705. In at least
one embodiment, activations stored in activation storage 720
are generated according to linear algebraic and or matrix-
based mathematics performed by ALU(s) 710 in response to
performing instructions or other code, wherein weight val-
ues stored in code and/or data storage 705 and/or code
and/or data storage 701 are used as operands along with
other values, such as bias values, gradient information,
momentum values, or other parameters or hyperparameters,

Jan. 11, 2024

any or all of which may be stored in code and/or data storage
705 or code and/or data storage 701 or another storage on or
off-chip.

[0061] In at least one embodiment, ALU(s) 710 are
included within one or more processors or other hardware
logic devices or circuits, whereas in another embodiment,
ALU(s) 710 may be external to a processor or other hard-
ware logic device or circuit that uses them (e.g., a co-
processor). In at least one embodiment, ALUs 710 may be
included within a processor’s execution units or otherwise
within a bank of ALLUs accessible by a processor’s execution
units either within same processor or distributed between
different processors of different types (e.g., central process-
ing units, graphics processing units, fixed function units,
etc.). In at least one embodiment, code and/or data storage
701, code and/or data storage 705, and activation storage
720 may be on same processor or other hardware logic
device or circuit, whereas in another embodiment, they may
be in different processors or other hardware logic devices or
circuits, or some combination of same and different proces-
sors or other hardware logic devices or circuits. In at least
one embodiment, any portion of activation storage 720 may
be included with other on-chip or off-chip data storage,
including a processor’s .1, .2, or L3 cache or system
memory. Furthermore, inferencing and/or training code may
be stored with other code accessible to a processor or other
hardware logic or circuit and fetched and/or processed using
a processor’s fetch, decode, scheduling, execution, retire-
ment and/or other logical circuits.

[0062] In at least one embodiment, activation storage 720
may be cache memory, DRAM, SRAM, non-volatile
memory (e.g., Flash memory), or other storage. In at least
one embodiment, activation storage 720 may be completely
or partially within or external to one or more processors or
other logical circuits. In at least one embodiment, choice of
whether activation storage 720 is internal or external to a
processor, for example, or comprised of DRAM, SRAM,
Flash or some other storage type may depend on available
storage on-chip versus off-chip, latency requirements of
training and/or inferencing functions being performed, batch
size of data used in inferencing and/or training of a neural
network, or some combination of these factors. In at least
one embodiment, inference and/or training logic 715 illus-
trated in FIG. 7a may be used in conjunction with an
application-specific integrated circuit (“ASIC”), such as
Tensorflow® Processing Unit from Google, an inference
processing unit (IPU) from Graphcore™, or a Nervana®
(e.g., “Lake Crest”) processor from Intel Corp. In at least
one embodiment, inference and/or training logic 715 illus-
trated in FIG. 7a may be used in conjunction with central
processing unit (“CPU”) hardware, graphics processing unit
(“GPU”) hardware or other hardware, such as field program-
mable gate arrays (“FPGAs”).

[0063] FIG. 75 illustrates inference and/or training logic
715, according to at least one or more embodiments. In at
least one embodiment, inference and/or training logic 715
may include, without limitation, hardware logic in which
computational resources are dedicated or otherwise exclu-
sively used in conjunction with weight values or other
information corresponding to one or more layers of neurons
within a neural network. In at least one embodiment, infer-
ence and/or training logic 715 illustrated in FIG. 76 may be
used in conjunction with an application-specific integrated
circuit (ASIC), such as Tensorflow® Processing Unit from

US 2024/0013802 Al

Google, an inference processing unit (IPU) from
Graphcore™, or a Nervana® (e.g., “Lake Crest”) processor
from Intel Corp. In at least one embodiment, inference
and/or training logic 715 illustrated in FIG. 75 may be used
in conjunction with central processing unit (CPU) hardware,
graphics processing unit (GPU) hardware or other hardware,
such as field programmable gate arrays (FPGAs). In at least
one embodiment, inference and/or training logic 715
includes, without limitation, code and/or data storage 701
and code and/or data storage 705, which may be used to
store code (e.g., graph code), weight values and/or other
information, including bias values, gradient information,
momentum values, and/or other parameter or hyperparam-
eter information. In at least one embodiment illustrated in
FIG. 7b, each of code and/or data storage 701 and code
and/or data storage 705 is associated with a dedicated
computational resource, such as computational hardware
702 and computational hardware 706, respectively. In at
least one embodiment, each of computational hardware 702
and computational hardware 706 comprises one or more
ALUs that perform mathematical functions, such as linear
algebraic functions, only on information stored in code
and/or data storage 701 and code and/or data storage 705,
respectively, result of which is stored in activation storage
720.

[0064] In at least one embodiment, each of code and/or
data storage 701 and 705 and corresponding computational
hardware 702 and 706, respectively, correspond to different
layers of a neural network, such that resulting activation
from one “storage/computational pair 701/702” of code
and/or data storage 701 and computational hardware 702 is
provided as an input to “storage/computational pair 705/
706” of code and/or data storage 705 and computational
hardware 706, in order to mirror conceptual organization of
a neural network. In at least one embodiment, each of
storage/computational pairs 701/702 and 705/706 may cor-
respond to more than one neural network layer. In at least
one embodiment, additional storage/computation pairs (not
shown) subsequent to or in parallel with storage computa-
tion pairs 701/702 and 705/706 may be included in inference
and/or training logic 715.

Data Center

[0065] FIG. 8 illustrates an example data center 800, in
which at least one embodiment may be used. In at least one
embodiment, data center 800 includes a data center infra-
structure layer 810, a framework layer 820, a software layer
830, and an application layer 840.

[0066] In at least one embodiment, as shown in FIG. 8,
data center infrastructure layer 810 may include a resource
orchestrator 812, grouped computing resources 814, and
node computing resources (“node C.R.s”) 816(1)-816(N),
where “N” represents any whole, positive integer. In at least
one embodiment, node C.R.s 816(1)-816(N) may include,
but are not limited to, any number of central processing units
(“CPUSs”) or other processors (including accelerators, field
programmable gate arrays (FPGAs), graphics processors,
etc.), memory devices (e.g., dynamic read-only memory),
storage devices (e.g., solid state or disk drives), network
input/output (“NW 1/O0”) devices, network switches, virtual
machines (“VMs”), power modules, and cooling modules,
etc. In at least one embodiment, one or more node C.R.s

Jan. 11, 2024

from among node C.R.s 816(1)-816(N) may be a server
having one or more of above-mentioned computing
resources.

[0067] In at least one embodiment, grouped computing
resources 814 may include separate groupings of node C.R.s
housed within one or more racks (not shown), or many racks
housed in data centers at various geographical locations
(also not shown). Separate groupings of node C.R.s within
grouped computing resources 814 may include grouped
compute, network, memory or storage resources that may be
configured or allocated to support one or more workloads. In
at least one embodiment, several node C.R.s including CPUs
or processors may grouped within one or more racks to
provide compute resources to support one or more work-
loads. In at least one embodiment, one or more racks may
also include any number of power modules, cooling mod-
ules, and network switches, in any combination.

[0068] In at least one embodiment, resource orchestrator
812 may configure or otherwise control one or more node
C.R.s 816(1)-816(N) and/or grouped computing resources
814. In at least one embodiment, resource orchestrator 812
may include a software design infrastructure (“SDI”’) man-
agement entity for data center 800. In at least one embodi-
ment, resource orchestrator may include hardware, software
or some combination thereof

[0069] In at least one embodiment, as shown in FIG. 8,
framework layer 820 includes a job scheduler 822, a con-
figuration manager 824, a resource manager 826 and a
distributed file system 828. In at least one embodiment,
framework layer 820 may include a framework to support
software 832 of software layer 830 and/or one or more
application(s) 842 of application layer 840. In at least one
embodiment, software 832 or application(s) 842 may
respectively include web-based service software or applica-
tions, such as those provided by Amazon Web Services,
Google Cloud and Microsoft Azure. In at least one embodi-
ment, framework layer 820 may be, but is not limited to, a
type of free and open-source software web application
framework such as Apache Spark™ (hereinafter “Spark™)
that may use distributed file system 828 for large-scale data
processing (e.g., “big data™). In at least one embodiment, job
scheduler 822 may include a Spark driver to facilitate
scheduling of workloads supported by various layers of data
center 800. In at least one embodiment, configuration man-
ager 824 may be capable of configuring different layers such
as software layer 830 and framework layer 820 including
Spark and distributed file system 828 for supporting large-
scale data processing. In at least one embodiment, resource
manager 826 may be capable of managing clustered or
grouped computing resources mapped to or allocated for
support of distributed file system 828 and job scheduler 822.
In at least one embodiment, clustered or grouped computing
resources may include grouped computing resource 814 at
data center infrastructure layer 810. In at least one embodi-
ment, resource manager 826 may coordinate with resource
orchestrator 812 to manage these mapped or allocated
computing resources.

[0070] In at least one embodiment, software 832 included
in software layer 830 may include software used by at least
portions of node C.R.s 816(1)-816(N), grouped computing
resources 814, and/or distributed file system 828 of frame-
work layer 820. The one or more types of software may
include, but are not limited to, Internet web page search

US 2024/0013802 Al

software, e-mail virus scan software, database software, and
streaming video content software.

[0071] In at least one embodiment, application(s) 842
included in application layer 840 may include one or more
types of applications used by at least portions of node C.R.s
816(1)-816(N), grouped computing resources 814, and/or
distributed file system 828 of framework layer 820. One or
more types of applications may include, but are not limited
to, any number of a genomics application, a cognitive
compute, and a machine learning application, including
training or inferencing software, machine learning frame-
work software (e.g., PyTorch, TensorFlow, Caffe, etc.) or
other machine learning applications used in conjunction
with one or more embodiments.

[0072] In at least one embodiment, any of configuration
manager 824, resource manager 826, and resource orches-
trator 812 may implement any number and type of self-
modifying actions based on any amount and type of data
acquired in any technically feasible fashion. In at least one
embodiment, self-modifying actions may relieve a data
center operator of data center 800 from making possibly bad
configuration decisions and possibly avoiding underused
and/or poor performing portions of a data center.

[0073] In at least one embodiment, data center 800 may
include tools, services, software or other resources to train
one or more machine learning models or predict or infer
information using one or more machine learning models
according to one or more embodiments described herein.
For example, in at least one embodiment, a machine learning
model may be trained by calculating weight parameters
according to a neural network architecture using software
and computing resources described above with respect to
data center 800. In at least one embodiment, trained machine
learning models corresponding to one or more neural net-
works may be used to infer or predict information using
resources described above with respect to data center 800 by
using weight parameters calculated through one or more
training techniques described herein.

[0074] In at least one embodiment, data center may use
CPUs, application-specific integrated circuits (ASICs),
GPUs, FPGAs, or other hardware to perform training and/or
inferencing using above-described resources. Moreover, one
or more software and/or hardware resources described above
may be configured as a service to allow users to train or
performing inferencing of information, such as image rec-
ognition, speech recognition, or other artificial intelligence
services.

[0075] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7A and/or 7B. In at least one embodiment,
inference and/or training logic 715 may be used in system
FIG. 8 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0076] Such components can be used to determine one or
more emotion values from audio data.

Computer Systems

[0077] FIG. 9 is a block diagram illustrating an exemplary
computer system, which may be a system with intercon-

Jan. 11, 2024

nected devices and components, a system-on-a-chip (SOC)
or some combination thereof 900 formed with a processor
that may include execution units to execute an instruction,
according to at least one embodiment. In at least one
embodiment, computer system 900 may include, without
limitation, a component, such as a processor 902 to employ
execution units including logic to perform algorithms for
process data, in accordance with present disclosure, such as
in embodiment described herein. In at least one embodi-
ment, computer system 900 may include processors, such as
PENTIUM® Processor family, Xeon™, Itanium®,
XScale™ and/or StrongARM™, Intel® Core™, or Intel®
Nervana™ microprocessors available from Intel Corpora-
tion of Santa Clara, California, although other systems
(including PCs having other microprocessors, engineering
workstations, set-top boxes and like) may also be used. In at
least one embodiment, computer system 900 may execute a
version of WINDOWS’ operating system available from
Microsoft Corporation of Redmond, Wash., although other
operating systems (UNIX and Linux for example), embed-
ded software, and/or graphical user interfaces, may also be
used.

[0078] Embodiments may be used in other devices such as
handheld devices and embedded applications. Some
examples of handheld devices include cellular phones, Inter-
net Protocol devices, digital cameras, personal digital assis-
tants (“PDAs”), and handheld PCs. In at least one embodi-
ment, embedded applications may include a microcontroller,
a digital signal processor (“DSP”), system on a chip, net-
work computers (“NetPCs”), set-top boxes, network hubs,
wide area network (“WAN”) switches, or any other system
that may perform one or more instructions in accordance
with at least one embodiment.

[0079] In at least one embodiment, computer system 900
may include, without limitation, processor 902 that may
include, without limitation, one or more execution units 908
to perform machine learning model training and/or infer-
encing according to techniques described herein. In at least
one embodiment, computer system 900 is a single processor
desktop or server system, but in another embodiment com-
puter system 900 may be a multiprocessor system. In at least
one embodiment, processor 902 may include, without limi-
tation, a complex instruction set computer (“CISC”) micro-
processor, a reduced instruction set computing (“RISC”)
microprocessor, a very long instruction word (“VLIW”)
microprocessor, a processor implementing a combination of
instruction sets, or any other processor device, such as a
digital signal processor, for example. In at least one embodi-
ment, processor 902 may be coupled to a processor bus 910
that may transmit data signals between processor 902 and
other components in computer system 900.

[0080] In at least one embodiment, processor 902 may
include, without limitation, a Level 1 (“L.1”) internal cache
memory (“cache”) 904. In at least one embodiment, proces-
sor 902 may have a single internal cache or multiple levels
of'internal cache. In at least one embodiment, cache memory
may reside external to processor 902. Other embodiments
may also include a combination of both internal and external
caches depending on particular implementation and needs.
In at least one embodiment, register file 906 may store
different types of data in various registers including, without
limitation, integer registers, floating point registers, status
registers, and instruction pointer register.

US 2024/0013802 Al

[0081] In at least one embodiment, execution unit 908,
including, without limitation, logic to perform integer and
floating point operations, also resides in processor 902. In at
least one embodiment, processor 902 may also include a
microcode (“ucode”) read only memory (“ROM”) that
stores microcode for certain macro instructions. In at least
one embodiment, execution unit 908 may include logic to
handle a packed instruction set 909. In at least one embodi-
ment, by including packed instruction set 909 in an instruc-
tion set of a general-purpose processor 902, along with
associated circuitry to execute instructions, operations used
by many multimedia applications may be performed using
packed data in a general-purpose processor 902. In one or
more embodiments, many multimedia applications may be
accelerated and executed more efficiently by using full width
of a processor’s data bus for performing operations on
packed data, which may eliminate need to transfer smaller
units of data across processor’s data bus to perform one or
more operations one data element at a time.

[0082] In at least one embodiment, execution unit 908
may also be used in microcontrollers, embedded processors,
graphics devices, DSPs, and other types of logic circuits. In
at least one embodiment, computer system 900 may include,
without limitation, a memory 920. In at least one embodi-
ment, memory 920 may be implemented as a Dynamic
Random Access Memory (“DRAM”) device, a Static Ran-
dom Access Memory (“SRAM”) device, flash memory
device, or other memory device. In at least one embodiment,
memory 920 may store instruction(s) 919 and/or data 921
represented by data signals that may be executed by pro-
cessor 902.

[0083] In atleast one embodiment, system logic chip may
be coupled to processor bus 910 and memory 920. In at least
one embodiment, system logic chip may include, without
limitation, a memory controller hub (“MCH”) 916, and
processor 902 may communicate with MCH 916 via pro-
cessor bus 910. In at least one embodiment, MCH 916 may
provide a high bandwidth memory path 918 to memory 920
for instruction and data storage and for storage of graphics
commands, data and textures. In at least one embodiment,
MCH 916 may direct data signals between processor 902,
memory 920, and other components in computer system 900
and to bridge data signals between processor bus 910,
memory 920, and a system [/0 922. In at least one embodi-
ment, system logic chip may provide a graphics port for
coupling to a graphics controller. In at least one embodi-
ment, MCH 916 may be coupled to memory 920 through a
high bandwidth memory path 918 and graphics/video card
912 may be coupled to MCH 916 through an Accelerated
Graphics Port (“AGP”) interconnect 914.

[0084] In at least one embodiment, computer system 900
may use system 1/0 922 that is a proprietary hub interface
bus to couple MCH 916 to I/O controller hub (“ICH”) 930.
In at least one embodiment, ICH 930 may provide direct
connections to some 1/O devices via a local I/O bus. In at
least one embodiment, local I/O bus may include, without
limitation, a high-speed I/O bus for connecting peripherals
to memory 920, chipset, and processor 902. Examples may
include, without limitation, an audio controller 929, a firm-
ware hub (“flash BIOS”) 928, a wireless transceiver 926, a
data storage 924, a legacy 1/0 controller 923 containing user
input and keyboard interfaces 925, a serial expansion port
927, such as Universal Serial Bus (“USB”), and a network
controller 934. Data storage 924 may comprise a hard disk

Jan. 11, 2024

drive, a floppy disk drive, a CD-ROM device, a flash
memory device, or other mass storage device.

[0085] In at least one embodiment, FIG. 9 illustrates a
system, which includes interconnected hardware devices or
“chips”, whereas in other embodiments, FIG. 9 may illus-
trate an exemplary System on a Chip (“SoC”). In at least one
embodiment, devices may be interconnected with propri-
etary interconnects, standardized interconnects (e.g., PCle)
or some combination thereof. In at least one embodiment,
one or more components of computer system 900 are
interconnected using compute express link (CXL) intercon-
nects.

[0086] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7A and/or 7B. In at least one embodiment,
inference and/or training logic 715 may be used in system
FIG. 9 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0087] Such components can be used to determine one or
more emotion values from audio data.

[0088] FIG. 10 is a block diagram illustrating an electronic
device 1000 for using a processor 1010, according to at least
one embodiment. In at least one embodiment, electronic
device 1000 may be, for example and without limitation, a
notebook, a tower server, a rack server, a blade server, a
laptop, a desktop, a tablet, a mobile device, a phone, an
embedded computer, or any other suitable electronic device.
[0089] In at least one embodiment, system 1000 may
include, without limitation, processor 1010 communica-
tively coupled to any suitable number or kind of compo-
nents, peripherals, modules, or devices. In at least one
embodiment, processor 1010 coupled using a bus or inter-
face, such as a 1° C. bus, a System Management Bus
(“SMBus”), a Low Pin Count (LLPC) bus, a Serial Peripheral
Interface (“SPI”), a High Definition Audio (“HDA”) bus, a
Serial Advance Technology Attachment (“SATA”) bus, a
Universal Serial Bus (“USB”) (versions 1, 2, 3), or a
Universal Asynchronous Receiver/Transmitter (“UART”)
bus. In at least one embodiment, FIG. 10 illustrates a system,
which includes interconnected hardware devices or “chips”,
whereas in other embodiments, FIG. 10 may illustrate an
exemplary System on a Chip (“SoC”). In at least one
embodiment, devices illustrated in FIG. 10 may be inter-
connected with proprietary interconnects, standardized
interconnects (e.g., PCle) or some combination thereof. In at
least one embodiment, one or more components of FIG. 10
are interconnected using compute express link (CXL) inter-
connects.

[0090] In at least one embodiment, FIG. 10 may include a
display 1024, a touch screen 1025, a touch pad 1030, a Near
Field Communications unit (“NFC”) 1045, a sensor hub
1040, a thermal sensor 1046, an Express Chipset (“EC”)
1035, a Trusted Platform Module (“TPM”) 1038, BIOS/
firmware/flash memory (“BIOS, FW Flash™) 1022, a DSP
1060, a drive 1020 such as a Solid State Disk (“SSD”) or a
Hard Disk Drive (“HDD”), a wireless local area network
unit (“WLAN”) 1050, a Bluetooth unit 1052, a Wireless
Wide Area Network unit (“WWAN”) 1056, a Global Posi-
tioning System (GPS) 1055, a camera (“USB 3.0 camera”)

US 2024/0013802 Al

1054 such as a USB 3.0 camera, and/or a Low Power Double
Data Rate (“LPDDR”) memory unit (“LPDDR3”) 1015
implemented in, for example, LPDDR3 standard. These
components may each be implemented in any suitable
manner.

[0091] In at least one embodiment, other components may
be communicatively coupled to processor 1010 through
components discussed above. In at least one embodiment, an
accelerometer 1041, Ambient Light Sensor (“ALS”) 1042,
compass 1043, and a gyroscope 1044 may be communica-
tively coupled to sensor hub 1040. In at least one embodi-
ment, thermal sensor 1039, a fan 1037, a keyboard 1046, and
a touch pad 1030 may be communicatively coupled to EC
1035. In at least one embodiment, speaker 1063, headphones
1064, and microphone (“mic”) 1065 may be communica-
tively coupled to an audio unit (“audio codec and class d
amp”’) 1062, which may in turn be communicatively coupled
to DSP 1060. In at least one embodiment, audio unit 1064
may include, for example and without limitation, an audio
coder/decoder (“codec”) and a class D amplifier. In at least
one embodiment, SIM card (“SIM”) 1057 may be commu-
nicatively coupled to WWAN unit 1056. In at least one
embodiment, components such as WLAN unit 1050 and
Bluetooth unit 1052, as well as WWAN unit 1056 may be
implemented in a Next Generation Form Factor (“NGFF”).

[0092] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7a and/or 7b. In at least one embodiment,
inference and/or training logic 715 may be used in system
FIG. 10 for inferencing or predicting operations based, at
least in part, on weight parameters calculated using neural
network training operations, neural network functions and/
or architectures, or neural network use cases described
herein.

[0093] Such components can be used to determine one or
more emotion values from audio data.

[0094] FIG. 11 is a block diagram of a processing system,
according to at least one embodiment. In at least one
embodiment, system 1100 includes one or more processors
1102 and one or more graphics processors 1108, and may be
a single processor desktop system, a multiprocessor work-
station system, or a server system having a large number of
processors 1102 or processor cores 1107. In at least one
embodiment, system 1100 is a processing platform incor-
porated within a system-on-a-chip (SoC) integrated circuit
for use in mobile, handheld, or embedded devices.

[0095] In at least one embodiment, system 1100 can
include, or be incorporated within a server-based gaming
platform, a game console, including a game and media
console, a mobile gaming console, a handheld game con-
sole, or an online game console. In at least one embodiment,
system 1100 is a mobile phone, smart phone, tablet com-
puting device or mobile Internet device. In at least one
embodiment, processing system 1100 can also include,
couple with, or be integrated within a wearable device, such
as a smart watch wearable device, smart eyewear device,
augmented reality device, or virtual reality device. In at least
one embodiment, processing system 1100 is a television or
set top box device having one or more processors 1102 and
a graphical interface generated by one or more graphics
processors 1108.

Jan. 11, 2024

[0096] In atleast one embodiment, one or more processors
1102 each include one or more processor cores 1107 to
process instructions which, when executed, perform opera-
tions for system and user software. In at least one embodi-
ment, each of one or more processor cores 1107 is config-
ured to process a specific instruction set 1109. In at least one
embodiment, instruction set 1109 may facilitate Complex
Instruction Set Computing (CISC), Reduced Instruction Set
Computing (RISC), or computing via a Very Long Instruc-
tion Word (VLIW). In at least one embodiment, processor
cores 1107 may each process a different instruction set 1109,
which may include instructions to facilitate emulation of
other instruction sets. In at least one embodiment, processor
core 1107 may also include other processing devices, such
a Digital Signal Processor (DSP).

[0097] In at least one embodiment, processor 1102
includes cache memory 1104. In at least one embodiment,
processor 1102 can have a single internal cache or multiple
levels of internal cache. In at least one embodiment, cache
memory is shared among various components of processor
1102. In at least one embodiment, processor 1102 also uses
an external cache (e.g., a Level-3 (L3) cache or Last Level
Cache (LLC)) (not shown), which may be shared among
processor cores 1107 using known cache coherency tech-
niques. In at least one embodiment, register file 1106 is
additionally included in processor 1102 which may include
different types of registers for storing different types of data
(e.g., integer registers, floating point registers, status regis-
ters, and an instruction pointer register). In at least one
embodiment, register file 1106 may include general-purpose
registers or other registers.

[0098] In at least one embodiment, one or more processor
(s) 1102 are coupled with one or more interface bus(es) 1110
to transmit communication signals such as address, data, or
control signals between processor 1102 and other compo-
nents in system 1100. In at least one embodiment, interface
bus 1110, in one embodiment, can be a processor bus, such
as a version of a Direct Media Interface (DMI) bus. In at
least one embodiment, interface 1110 is not limited to a DMI
bus, and may include one or more Peripheral Component
Interconnect buses (e.g., PCL, PCI Express), memory busses,
or other types of interface busses. In at least one embodi-
ment processor(s) 1102 include an integrated memory con-
troller 1116 and a platform controller hub 1130. In at least
one embodiment, memory controller 1116 facilitates com-
munication between a memory device and other components
of system 1100, while platform controller hub (PCH) 1130
provides connections to /O devices via a local /O bus.

[0099] In at least one embodiment, memory device 1120
can be a dynamic random access memory (DRAM) device,
a static random access memory (SRAM) device, flash
memory device, phase-change memory device, or some
other memory device having suitable performance to serve
as process memory. In at least one embodiment memory
device 1120 can operate as system memory for system 1100,
to store data 1122 and instructions 1121 for use when one or
more processors 1102 executes an application or process. In
at least one embodiment, memory controller 1116 also
couples with an optional external graphics processor 1112,
which may communicate with one or more graphics pro-
cessors 1108 in processors 1102 to perform graphics and
media operations. In at least one embodiment, a display
device 1111 can connect to processor(s) 1102. In at least one
embodiment display device 1111 can include one or more of

US 2024/0013802 Al

an internal display device, as in a mobile electronic device
or a laptop device or an external display device attached via
a display interface (e.g., DisplayPort, etc.). In at least one
embodiment, display device 1111 can include a head
mounted display (HMD) such as a stereoscopic display
device for use in virtual reality (VR) applications or aug-
mented reality (AR) applications.

[0100] In atleast one embodiment, platform controller hub
1130 enables peripherals to connect to memory device 1120
and processor 1102 via a high-speed 1/O bus. In at least one
embodiment, I/O peripherals include, but are not limited to,
an audio controller 1146, a network controller 1134, a
firmware interface 1128, a wireless transceiver 1126, touch
sensors 1125, a data storage device 1124 (e.g., hard disk
drive, flash memory, etc.). In at least one embodiment, data
storage device 1124 can connect via a storage interface (e.g.,
SATA) or via a peripheral bus, such as a Peripheral Com-
ponent Interconnect bus (e.g., PCI, PCI Express). In at least
one embodiment, touch sensors 1125 can include touch
screen sensors, pressure sensors, or fingerprint sensors. In at
least one embodiment, wireless transceiver 1126 can be a
Wi-Fi transceiver, a Bluetooth transceiver, or a mobile
network transceiver such as a 3G, 4G, or Long Term
Evolution (LTE) transceiver. In at least one embodiment,
firmware interface 1128 enables communication with sys-
tem firmware, and can be, for example, a unified extensible
firmware interface (UEFI). In at least one embodiment,
network controller 1134 can allow a network connection to
a wired network. In at least one embodiment, a high-
performance network controller (not shown) couples with
interface bus 1110. In at least one embodiment, audio
controller 1146 is a multi-channel high definition audio
controller. In at least one embodiment, system 1100 includes
an optional legacy 1/O controller 1140 for coupling legacy
(e.g., Personal System 2 (PS/2)) devices to system. In at least
one embodiment, platform controller hub 1130 can also
connect to one or more Universal Serial Bus (USB) con-
trollers 1142 connect input devices, such as keyboard and
mouse 1143 combinations, a camera 1144, or other USB
input devices.

[0101] In at least one embodiment, an instance of memory
controller 1116 and platform controller hub 1130 may be
integrated into a discreet external graphics processor, such
as external graphics processor 1112. In at least one embodi-
ment, platform controller hub 1130 and/or memory control-
ler 1116 may be external to one or more processor(s) 1102.
For example, in at least one embodiment, system 1100 can
include an external memory controller 1116 and platform
controller hub 1130, which may be configured as a memory
controller hub and peripheral controller hub within a system
chipset that is in communication with processor(s) 1102.

[0102] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7A and/or 7B. In at least one embodiment
portions or all of inference and/or training logic 715 may be
incorporated into graphics processor 1500. For example, in
at least one embodiment, training and/or inferencing tech-
niques described herein may use one or more of ALUs
embodied in a graphics processor. Moreover, in at least one
embodiment, inferencing and/or training operations
described herein may be done using logic other than logic
illustrated in FIGS. 7A or 7B. In at least one embodiment,

Jan. 11, 2024

weight parameters may be stored in on-chip or off-chip
memory and/or registers (shown or not shown) that config-
ure ALUs of a graphics processor to perform one or more
machine learning algorithms, neural network architectures,
use cases, or training techniques described herein.

[0103] Such components can be used to determine one or
more emotion values from audio data.

[0104] FIG. 12 is a block diagram of a processor 1200
having one or more processor cores 1202A-1202N, an
integrated memory controller 1214, and an integrated graph-
ics processor 1208, according to at least one embodiment. In
at least one embodiment, processor 1200 can include addi-
tional cores up to and including additional core 1202N
represented by dashed lined boxes. In at least one embodi-
ment, each of processor cores 1202A-1202N includes one or
more internal cache units 1204A-1204N. In at least one
embodiment, each processor core also has access to one or
more shared cached units 1206.

[0105] In at least one embodiment, internal cache units
1204A-1204N and shared cache units 1206 represent a
cache memory hierarchy within processor 1200. In at least
one embodiment, cache memory units 1204A-1204N may
include at least one level of instruction and data cache within
each processor core and one or more levels of shared
mid-level cache, such as a Level 2 (L.2), Level 3 (L3), Level
4 (L4), or other levels of cache, where a highest level of
cache before external memory is classified as an LL.C. In at
least one embodiment, cache coherency logic maintains
coherency between various cache units 1206 and 1204A-
1204N.

[0106] In at least one embodiment, processor 1200 may
also include a set of one or more bus controller units 1216
and a system agent core 1210. In at least one embodiment,
one or more bus controller units 1216 manage a set of
peripheral buses, such as one or more PCI or PCI express
busses. In at least one embodiment, system agent core 1210
provides management functionality for various processor
components. In at least one embodiment, system agent core
1210 includes one or more integrated memory controllers
1214 to manage access to various external memory devices
(not shown).

[0107] In at least one embodiment, one or more of pro-
cessor cores 1202A-1202N include support for simultaneous
multi-threading. In at least one embodiment, system agent
core 1210 includes components for coordinating and oper-
ating cores 1202A-1202N during multi-threaded processing.
In at least one embodiment, system agent core 1210 may
additionally include a power control unit (PCU), which
includes logic and components to regulate one or more
power states of processor cores 1202A-1202N and graphics
processor 1208.

[0108] In at least one embodiment, processor 1200 addi-
tionally includes graphics processor 1208 to execute graph-
ics processing operations. In at least one embodiment,
graphics processor 1208 couples with shared cache units
1206, and system agent core 1210, including one or more
integrated memory controllers 1214. In at least one embodi-
ment, system agent core 1210 also includes a display con-
troller 1211 to drive graphics processor output to one or
more coupled displays. In at least one embodiment, display
controller 1211 may also be a separate module coupled with
graphics processor 1208 via at least one interconnect, or may
be integrated within graphics processor 1208.

US 2024/0013802 Al

[0109] In at least one embodiment, a ring based intercon-
nect unit 1212 is used to couple internal components of
processor 1200. In at least one embodiment, an alternative
interconnect unit may be used, such as a point-to-point
interconnect, a switched interconnect, or other techniques.
In at least one embodiment, graphics processor 1208 couples
with ring interconnect 1212 via an I/O link 1213.

[0110] In at least one embodiment, I/O link 1213 repre-
sents at least one of multiple varieties of I/O interconnects,
including an on package 1/O interconnect which facilitates
communication between various processor components and
a high-performance embedded memory module 1218, such
as an eDRAM module. In at least one embodiment, each of
processor cores 1202A-1202N and graphics processor 1208
use embedded memory modules 1218 as a shared Last Level
Cache.

[0111] In at least one embodiment, processor cores
1202A-1202N are homogenous cores executing a common
instruction set architecture. In at least one embodiment,
processor cores 1202A-1202N are heterogeneous in terms of
instruction set architecture (ISA), where one or more of
processor cores 1202A-1202N execute a common instruc-
tion set, while one or more other cores of processor cores
1202A-1202N executes a subset of a common instruction set
or a different instruction set. In at least one embodiment,
processor cores 1202A-1202N are heterogeneous in terms of
microarchitecture, where one or more cores having a rela-
tively higher power consumption couple with one or more
power cores having a lower power consumption. In at least
one embodiment, processor 1200 can be implemented on
one or more chips or as an SoC integrated circuit.

[0112] Inference and/or training logic 715 are used to
perform inferencing and/or training operations associated
with one or more embodiments. Details regarding inference
and/or training logic 715 are provided below in conjunction
with FIGS. 7a and/or 7b. In at least one embodiment
portions or all of inference and/or training logic 715 may be
incorporated into processor 1200. For example, in at least
one embodiment, training and/or inferencing techniques
described herein may use one or more of ALLUs embodied in
graphics processor 1512, graphics core(s) 1202A-1202N, or
other components in FIG. 12. Moreover, in at least one
embodiment, inferencing and/or training operations
described herein may be done using logic other than logic
illustrated in FIGS. 7A or 7B. In at least one embodiment,
weight parameters may be stored in on-chip or off-chip
memory and/or registers (shown or not shown) that config-
ure ALUs of graphics processor 1200 to perform one or
more machine learning algorithms, neural network architec-
tures, use cases, or training techniques described herein.
[0113] Such components can be used to determine one or
more emotion values from audio data.

Virtualized Computing Platform

[0114] FIG. 13 is an example data flow diagram for a
process 1300 of generating and deploying an image pro-
cessing and inferencing pipeline, in accordance with at least
one embodiment. In at least one embodiment, process 1300
may be deployed for use with imaging devices, processing
devices, and/or other device types at one or more facilities
1302. Process 1300 may be executed within a training
system 1304 and/or a deployment system 1306. In at least
one embodiment, training system 1304 may be used to
perform ftraining, deployment, and implementation of

Jan. 11, 2024

machine learning models (e.g., neural networks, object
detection algorithms, computer vision algorithms, etc.) for
use in deployment system 1306. In at least one embodiment,
deployment system 1306 may be configured to offload
processing and compute resources among a distributed com-
puting environment to reduce infrastructure requirements at
facility 1302. In at least one embodiment, one or more
applications in a pipeline may use or call upon services (e.g.,
inference, visualization, compute, Al, etc.) of deployment
system 1306 during execution of applications.

[0115] In at least one embodiment, some of applications
used in advanced processing and inferencing pipelines may
use machine learning models or other Al to perform one or
more processing steps. In at least one embodiment, machine
learning models may be trained at facility 1302 using data
1308 (such as imaging data) generated at facility 1302 (and
stored on one or more picture archiving and communication
system (PACS) servers at facility 1302), may be trained
using imaging or sequencing data 1308 from another facility
(ies), or a combination thereof. In at least one embodiment,
training system 1304 may be used to provide applications,
services, and/or other resources for generating working,
deployable machine learning models for deployment system
1306.

[0116] In at least one embodiment, model registry 1324
may be backed by object storage that may support version-
ing and object metadata. In at least one embodiment, object
storage may be accessible through, for example, a cloud
storage (e.g., cloud 1426 of FIG. 14) compatible application
programming interface (API) from within a cloud platform.
In at least one embodiment, machine learning models within
model registry 1324 may uploaded, listed, modified, or
deleted by developers or partners of a system interacting
with an APIL. In at least one embodiment, an API may
provide access to methods that allow users with appropriate
credentials to associate models with applications, such that
models may be executed as part of execution of container-
ized instantiations of applications.

[0117] In at least one embodiment, training pipeline 1404
(FIG. 14) may include a scenario where facility 1302 is
training their own machine learning model, or has an exist-
ing machine learning model that needs to be optimized or
updated. In at least one embodiment, imaging data 1308
generated by imaging device(s), sequencing devices, and/or
other device types may be received. In at least one embodi-
ment, once imaging data 1308 is received, Al-assisted
annotation 1310 may be used to aid in generating annota-
tions corresponding to imaging data 1308 to be used as
ground truth data for a machine learning model. In at least
one embodiment, Al-assisted annotation 1310 may include
one or more machine learning models (e.g., convolutional
neural networks (CNNs)) that may be trained to generate
annotations corresponding to certain types of imaging data
1308 (e.g., from certain devices). In at least one embodi-
ment, Al-assisted annotations 1310 may then be used
directly, or may be adjusted or fine-tuned using an annota-
tion tool to generate ground truth data. In at least one
embodiment, Al-assisted annotations 1310, labeled clinic
data 1312, or a combination thereof may be used as ground
truth data for training a machine learning model. In at least
one embodiment, a trained machine learning model may be
referred to as output model 1316, and may be used by
deployment system 1306, as described herein.

US 2024/0013802 Al

[0118] In at least one embodiment, training pipeline 1404
(FIG. 14) may include a scenario where facility 1302 needs
a machine learning model for use in performing one or more
processing tasks for one or more applications in deployment
system 1306, but facility 1302 may not currently have such
a machine learning model (or may not have a model that is
optimized, efficient, or effective for such purposes). In at
least one embodiment, an existing machine learning model
may be selected from a model registry 1324. In at least one
embodiment, model registry 1324 may include machine
learning models trained to perform a variety of different
inference tasks on imaging data. In at least one embodiment,
machine learning models in model registry 1324 may have
been trained on imaging data from different facilities than
facility 1302 (e.g., facilities remotely located). In at least one
embodiment, machine learning models may have been
trained on imaging data from one location, two locations, or
any number of locations. In at least one embodiment, when
being trained on imaging data from a specific location,
training may take place at that location, or at least in a
manner that protects confidentiality of imaging data or
restricts imaging data from being transferred off-premises.
In at least one embodiment, once a model is trained—or
partially trained—at one location, a machine learning model
may be added to model registry 1324. In at least one
embodiment, a machine learning model may then be
retrained, or updated, at any number of other facilities, and
a retrained or updated model may be made available in
model registry 1324. In at least one embodiment, a machine
learning model may then be selected from model registry
1324—and referred to as output model 1316—and may be
used in deployment system 1306 to perform one or more
processing tasks for one or more applications of a deploy-
ment system.

[0119] In at least one embodiment, training pipeline 1404
(FIG. 14), a scenario may include facility 1302 requiring a
machine learning model for use in performing one or more
processing tasks for one or more applications in deployment
system 1306, but facility 1302 may not currently have such
a machine learning model (or may not have a model that is
optimized, efficient, or effective for such purposes). In at
least one embodiment, a machine learning model selected
from model registry 1324 may not be fine-tuned or opti-
mized for imaging data 1308 generated at facility 1302
because of differences in populations, robustness of training
data used to train a machine learning model, diversity in
anomalies of training data, and/or other issues with training
data. In at least one embodiment, Al-assisted annotation
1310 may be used to aid in generating annotations corre-
sponding to imaging data 1308 to be used as ground truth
data for retraining or updating a machine learning model. In
at least one embodiment, labeled data 1312 may be used as
ground truth data for training a machine learning model. In
at least one embodiment, retraining or updating a machine
learning model may be referred to as model training 1314.
In at least one embodiment, model training 1314—e.g.,
Al-assisted annotations 1310, labeled clinic data 1312, or a
combination thereof—may be used as ground truth data for
retraining or updating a machine learning model. In at least
one embodiment, a trained machine learning model may be
referred to as output model 1316, and may be used by
deployment system 1306, as described herein.

[0120] In at least one embodiment, deployment system
1306 may include software 1318, services 1320, hardware

Jan. 11, 2024

1322, and/or other components, features, and functionality.
In at least one embodiment, deployment system 1306 may
include a software “stack,” such that software 1318 may be
built on top of services 1320 and may use services 1320 to
perform some or all of processing tasks, and services 1320
and software 1318 may be built on top of hardware 1322 and
use hardware 1322 to execute processing, storage, and/or
other compute tasks of deployment system 1306. In at least
one embodiment, software 1318 may include any number of
different containers, where each container may execute an
instantiation of an application. In at least one embodiment,
each application may perform one or more processing tasks
in an advanced processing and inferencing pipeline (e.g.,
inferencing, object detection, feature detection, segmenta-
tion, image enhancement, calibration, etc.). In at least one
embodiment, an advanced processing and inferencing pipe-
line may be defined based on selections of different con-
tainers that are desired or required for processing imaging
data 1308, in addition to containers that receive and con-
figure imaging data for use by each container and/or for use
by facility 1302 after processing through a pipeline (e.g., to
convert outputs back to a usable data type). In at least one
embodiment, a combination of containers within software
1318 (e.g., that make up a pipeline) may be referred to as a
virtual instrument (as described in more detail herein), and
a virtual instrument may leverage services 1320 and hard-
ware 1322 to execute some or all processing tasks of
applications instantiated in containers.

[0121] In at least one embodiment, a data processing
pipeline may receive input data (e.g., imaging data 1308) in
a specific format in response to an inference request (e.g., a
request from a user of deployment system 1306). In at least
one embodiment, input data may be representative of one or
more images, video, and/or other data representations gen-
erated by one or more imaging devices. In at least one
embodiment, data may undergo pre-processing as part of
data processing pipeline to prepare data for processing by
one or more applications. In at least one embodiment,
post-processing may be performed on an output of one or
more inferencing tasks or other processing tasks of a pipe-
line to prepare an output data for a next application and/or
to prepare output data for transmission and/or use by a user
(e.g., as a response to an inference request). In at least one
embodiment, inferencing tasks may be performed by one or
more machine learning models, such as trained or deployed
neural networks, which may include output models 1316 of
training system 1304.

[0122] In at least one embodiment, tasks of data process-
ing pipeline may be encapsulated in a container(s) that each
represents a discrete, fully functional instantiation of an
application and virtualized computing environment that is
able to reference machine learning models. In at least one
embodiment, containers or applications may be published
into a private (e.g., limited access) arca of a container
registry (described in more detail herein), and trained or
deployed models may be stored in model registry 1324 and
associated with one or more applications. In at least one
embodiment, images of applications (e.g., container images)
may be available in a container registry, and once selected
by a user from a container registry for deployment in a
pipeline, an image may be used to generate a container for
an instantiation of an application for use by a user’s system.

[0123] In at least one embodiment, developers (e.g., soft-
ware developers, clinicians, doctors, etc.) may develop,

US 2024/0013802 Al

publish, and store applications (e.g., as containers) for
performing image processing and/or inferencing on supplied
data. In at least one embodiment, development, publishing,
and/or storing may be performed using a software develop-
ment kit (SDK) associated with a system (e.g., to ensure that
an application and/or container developed is compliant with
or compatible with a system). In at least one embodiment, an
application that is developed may be tested locally (e.g., at
a first facility, on data from a first facility) with an SDK
which may support at least some of services 1320 as a
system (e.g., system 1400 of FIG. 14). In at least one
embodiment, because DICOM objects may contain any-
where from one to hundreds of images or other data types,
and due to a variation in data, a developer may be respon-
sible for managing (e.g., setting constructs for, building
pre-processing into an application, etc.) extraction and
preparation of incoming data. In at least one embodiment,
once validated by system 1400 (e.g., for accuracy), an
application may be available in a container registry for
selection and/or implementation by a user to perform one or
more processing tasks with respect to data at a facility (e.g.,
a second facility) of a user.

[0124] In at least one embodiment, developers may then
share applications or containers through a network for
access and use by users of a system (e.g., system 1400 of
FIG. 14). In at least one embodiment, completed and vali-
dated applications or containers may be stored in a container
registry and associated machine learning models may be
stored in model registry 1324. In at least one embodiment,
a requesting entity—who provides an inference or image
processing request—may browse a container registry and/or
model registry 1324 for an application, container, dataset,
machine learning model, etc., select a desired combination
of elements for inclusion in data processing pipeline, and
submit an imaging processing request. In at least one
embodiment, a request may include input data (and associ-
ated patient data, in some examples) that is necessary to
perform a request, and/or may include a selection of appli-
cation(s) and/or machine learning models to be executed in
processing a request. In at least one embodiment, a request
may then be passed to one or more components of deploy-
ment system 1306 (e.g., a cloud) to perform processing of
data processing pipeline. In at least one embodiment, pro-
cessing by deployment system 1306 may include referenc-
ing selected elements (e.g., applications, containers, models,
etc.) from a container registry and/or model registry 1324. In
at least one embodiment, once results are generated by a
pipeline, results may be returned to a user for reference (e.g.,
for viewing in a viewing application suite executing on a
local, on-premises workstation or terminal).

[0125] In at least one embodiment, to aid in processing or
execution of applications or containers in pipelines, services
1320 may be leveraged. In at least one embodiment, services
1320 may include compute services, artificial intelligence
(AD) services, visualization services, and/or other service
types. In at least one embodiment, services 1320 may
provide functionality that is common to one or more appli-
cations in software 1318, so functionality may be abstracted
to a service that may be called upon or leveraged by
applications. In at least one embodiment, functionality pro-
vided by services 1320 may run dynamically and more
efficiently, while also scaling well by allowing applications
to process data in parallel (e.g., using a parallel computing
platform 1430 (FIG. 14)). In at least one embodiment, rather

Jan. 11, 2024

than each application that shares a same functionality
offered by a service 1320 being required to have a respective
instance of service 1320, service 1320 may be shared
between and among various applications. In at least one
embodiment, services may include an inference server or
engine that may be used for executing detection or segmen-
tation tasks, as non-limiting examples. In at least one
embodiment, a model training service may be included that
may provide machine learning model training and/or retrain-
ing capabilities. In at least one embodiment, a data augmen-
tation service may further be included that may provide
GPU accelerated data (e.g., DICOM, RIS, CIS, REST
compliant, RPC, raw, etc.) extraction, resizing, scaling,
and/or other augmentation. In at least one embodiment, a
visualization service may be used that may add image
rendering effects—such as ray-tracing, rasterization, denois-
ing, sharpening, etc.—to add realism to two-dimensional
(2D) and/or three-dimensional (3D) models. In at least one
embodiment, virtual instrument services may be included
that provide for beam-forming, segmentation, inferencing,
imaging, and/or support for other applications within pipe-
lines of virtual instruments.

[0126] In at least one embodiment, where a service 1320
includes an Al service (e.g., an inference service), one or
more machine learning models may be executed by calling
upon (e.g., as an API call) an inference service (e.g., an
inference server) to execute machine learning model(s), or
processing thereof, as part of application execution. In at
least one embodiment, where another application includes
one or more machine learning models for segmentation
tasks, an application may call upon an inference service to
execute machine learning models for performing one or
more of processing operations associated with segmentation
tasks. In at least one embodiment, software 1318 imple-
menting advanced processing and inferencing pipeline that
includes segmentation application and anomaly detection
application may be streamlined because each application
may call upon a same inference service to perform one or
more inferencing tasks.

[0127] In at least one embodiment, hardware 1322 may
include GPUs, CPUs, graphics cards, an Al/deep learning
system (e.g., an Al supercomputer, such as NVIDIA’s
DGX), a cloud platform, or a combination thereof In at least
one embodiment, different types of hardware 1322 may be
used to provide efficient, purpose-built support for software
1318 and services 1320 in deployment system 1306. In at
least one embodiment, use of GPU processing may be
implemented for processing locally (e.g., at facility 1302),
within an Al/deep learning system, in a cloud system, and/or
in other processing components of deployment system 1306
to improve efficiency, accuracy, and efficacy of image pro-
cessing and generation. In at least one embodiment, software
1318 and/or services 1320 may be optimized for GPU
processing with respect to deep learning, machine learning,
and/or high-performance computing, as non-limiting
examples. In at least one embodiment, at least some of
computing environment of deployment system 1306 and/or
training system 1304 may be executed in a datacenter one or
more supercomputers or high performance computing sys-
tems, with GPU optimized software (e.g., hardware and
software combination of NVIDIA’s DGX System). In at
least one embodiment, hardware 1322 may include any
number of GPUs that may be called upon to perform
processing of data in parallel, as described herein. In at least

US 2024/0013802 Al

one embodiment, cloud platform may further include GPU
processing for GPU-optimized execution of deep learning
tasks, machine learning tasks, or other computing tasks. In
at least one embodiment, cloud platform (e.g., NVIDIA’s
NGC) may be executed using an Al/deep learning super-
computer(s) and/or GPU-optimized software (e.g., as pro-
vided on NVIDIA’s DGX Systems) as a hardware abstrac-
tion and scaling platform. In at least one embodiment, cloud
platform may integrate an application container clustering
system or orchestration system (e.g., KUBERNETES) on
multiple GPUs to allowseamless scaling and load balancing.
[0128] FIG. 14 is a system diagram for an example system
1400 for generating and deploying an imaging deployment
pipeline, in accordance with at least one embodiment. In at
least one embodiment, system 1400 may be used to imple-
ment process 1300 of FIG. 13 and/or other processes includ-
ing advanced processing and inferencing pipelines. In at
least one embodiment, system 1400 may include training
system 1304 and deployment system 1306. In at least one
embodiment, training system 1304 and deployment system
1306 may be implemented using software 1318, services
1320, and/or hardware 1322, as described herein.

[0129] In at least one embodiment, system 1400 (e.g.,
training system 1304 and/or deployment system 1306) may
implemented in a cloud computing environment (e.g., using
cloud 1426). In at least one embodiment, system 1400 may
be implemented locally with respect to a healthcare services
facility, or as a combination of both cloud and local com-
puting resources. In at least one embodiment, access to APIs
in cloud 1426 may be restricted to authorized users through
enacted security measures or protocols. In at least one
embodiment, a security protocol may include web tokens
that may be signed by an authentication (e.g., AuthN, AuthZ,
Gluecon, etc.) service and may carry appropriate authoriza-
tion. In at least one embodiment, APIs of virtual instruments
(described herein), or other instantiations of system 1400,
may be restricted to a set of public IPs that have been vetted
or authorized for interaction.

[0130] In at least one embodiment, various components of
system 1400 may communicate between and among one
another using any of a variety of different network types,
including but not limited to local area networks (LANs)
and/or wide area networks (WANs) via wired and/or wire-
less communication protocols. In at least one embodiment,
communication between facilities and components of sys-
tem 1400 (e.g., for transmitting inference requests, for
receiving results of inference requests, etc.) may be com-
municated over data bus(ses), wireless data protocols (Wi-
Fi), wired data protocols (e.g., Ethernet), etc.

[0131] In at least one embodiment, training system 1304
may execute training pipelines 1404, similar to those
described herein with respect to FIG. 13. In at least one
embodiment, where one or more machine learning models
are to be used in deployment pipelines 1410 by deployment
system 1306, training pipelines 1404 may be used to train or
retrain one or more (e.g. pre-trained) models, and/or imple-
ment one or more of pre-trained models 1406 (e.g., without
a need for retraining or updating). In at least one embodi-
ment, as a result of training pipelines 1404, output model(s)
1316 may be generated. In at least one embodiment, training
pipelines 1404 may include any number of processing steps,
such as but not limited to imaging data (or other input data)
conversion or adaption In at least one embodiment, for
different machine learning models used by deployment

Jan. 11, 2024

system 1306, different training pipelines 1404 may be used.
In at least one embodiment, training pipeline 1404 similar to
a first example described with respect to FIG. 13 may be
used for a first machine learning model, training pipeline
1404 similar to a second example described with respect to
FIG. 13 may be used for a second machine learning model,
and training pipeline 1404 similar to a third example
described with respect to FIG. 13 may be used for a third
machine learning model. In at least one embodiment, any
combination of tasks within training system 1304 may be
used depending on what is required for each respective
machine learning model. In at least one embodiment, one or
more of machine learning models may already be trained
and ready for deployment so machine learning models may
not undergo any processing by training system 1304, and
may be implemented by deployment system 1306.

[0132] In at least one embodiment, output model(s) 1316
and/or pre-trained model(s) 1406 may include any types of
machine learning models depending on implementation or
embodiment. In at least one embodiment, and without
limitation, machine learning models used by system 1400
may include machine learning model(s) using linear regres-
sion, logistic regression, decision trees, support vector
machines (SVM), Naive Bayes, k-nearest neighbor (Knn), K
means clustering, random forest, dimensionality reduction
algorithms, gradient boosting algorithms, neural networks
(e.g., auto-encoders, convolutional, recurrent, perceptrons,
Long/Short Term Memory (LSTM), Hopfield, Boltzmann,
deep belief, deconvolutional, generative adversarial, liquid
state machine, etc.), and/or other types of machine learning
models.

[0133] Inatleast one embodiment, training pipelines 1404
may include Al-assisted annotation, as described in more
detail herein with respect to at least FIG. 15B. In at least one
embodiment, labeled data 1312 (e.g., traditional annotation)
may be generated by any number of techniques. In at least
one embodiment, labels or other annotations may be gen-
erated within a drawing program (e.g., an annotation pro-
gram), a computer aided design (CAD) program, a labeling
program, another type of program suitable for generating
annotations or labels for ground truth, and/or may be hand
drawn, in some examples. In at least one embodiment,
ground truth data may be synthetically produced (e.g.,
generated from computer models or renderings), real pro-
duced (e.g., designed and produced from real-world data),
machine-automated (e.g., using feature analysis and learning
to extract features from data and then generate labels),
human annotated (e.g., labeler, or annotation expert, defines
location of labels), and/or a combination thereof. In at least
one embodiment, for each instance of imaging data 1308 (or
other data type used by machine learning models), there may
be corresponding ground truth data generated by training
system 1304. In at least one embodiment, Al-assisted anno-
tation may be performed as part of deployment pipelines
1410; either in addition to, or in lieu of Al-assisted annota-
tion included in training pipelines 1404. In at least one
embodiment, system 1400 may include a multi-layer plat-
form that may include a software layer (e.g., software 1318)
of diagnostic applications (or other application types) that
may perform one or more medical imaging and diagnostic
functions. In at least one embodiment, system 1400 may be
communicatively coupled to (e.g., via encrypted links)
PACS server networks of one or more facilities. In at least
one embodiment, system 1400 may be configured to access

US 2024/0013802 Al

and referenced data from PACS servers to perform opera-
tions, such as training machine learning models, deploying
machine learning models, image processing, inferencing,
and/or other operations.

[0134] In at least one embodiment, a software layer may
be implemented as a secure, encrypted, and/or authenticated
API through which applications or containers may be
invoked (e.g., called) from an external environment(s) (e.g.,
facility 1302). In at least one embodiment, applications may
then call or execute one or more services 1320 for perform-
ing compute, Al, or visualization tasks associated with
respective applications, and software 1318 and/or services
1320 may leverage hardware 1322 to perform processing
tasks in an effective and efficient manner.

[0135] In at least one embodiment, deployment system
1306 may execute deployment pipelines 1410. In at least one
embodiment, deployment pipelines 1410 may include any
number of applications that may be sequentially, non-se-
quentially, or otherwise applied to imaging data (and/or
other data types) generated by imaging devices, sequencing
devices, genomics devices, etc.—including Al-assisted
annotation, as described above. In at least one embodiment,
as described herein, a deployment pipeline 1410 for an
individual device may be referred to as a virtual instrument
for a device (e.g., a virtual ultrasound instrument, a virtual
CT scan instrument, a virtual sequencing instrument, etc.).
In at least one embodiment, for a single device, there may be
more than one deployment pipeline 1410 depending on
information desired from data generated by a device. In at
least one embodiment, where detections of anomalies are
desired from an Mill machine, there may be a first deploy-
ment pipeline 1410, and where image enhancement is
desired from output of an Mill machine, there may be a
second deployment pipeline 1410.

[0136] In at least one embodiment, an image generation
application may include a processing task that includes use
of' a machine learning model. In at least one embodiment, a
user may desire to use their own machine learning model, or
to select a machine learning model from model registry
1324. In at least one embodiment, a user may implement
their own machine learning model or select a machine
learning model for inclusion in an application for perform-
ing a processing task. In at least one embodiment, applica-
tions may be selectable and customizable, and by defining
constructs of applications, deployment and implementation
of applications for a particular user are presented as a more
seamless user experience. In at least one embodiment, by
leveraging other features of system 1400—such as services
1320 and hardware 1322—deployment pipelines 1410 may
be even more user friendly, provide for easier integration,
and produce more accurate, efficient, and timely results.

[0137] In at least one embodiment, deployment system
1306 may include a user interface 1414 (e.g., a graphical
user interface, a web interface, etc.) that may be used to
select applications for inclusion in deployment pipeline(s)
1410, arrange applications, modify or change applications or
parameters or constructs thereof, use and interact with
deployment pipeline(s) 1410 during set-up and/or deploy-
ment, and/or to otherwise interact with deployment system
1306. In at least one embodiment, although not illustrated
with respect to training system 1304, user interface 1414 (or
a different user interface) may be used for selecting models
for use in deployment system 1306, for selecting models for

Jan. 11, 2024

training, or retraining, in training system 1304, and/or for
otherwise interacting with training system 1304.

[0138] In at least one embodiment, pipeline manager 1412
may be used, in addition to an application orchestration
system 1428, to manage interaction between applications or
containers of deployment pipeline(s) 1410 and services 1320
and/or hardware 1322. In at least one embodiment, pipeline
manager 1412 may be configured to facilitate interactions
from application to application, from application to service
1320, and/or from application or service to hardware 1322.
In at least one embodiment, although illustrated as included
in software 1318, this is not intended to be limiting, and in
some examples (e.g., as illustrated in FIG. 12¢c) pipeline
manager 1412 may be included in services 1320. In at least
one embodiment, application orchestration system 1428
(e.g., Kubernetes, DOCKER, etc.) may include a container
orchestration system that may group applications into con-
tainers as logical units for coordination, management, scal-
ing, and deployment. In at least one embodiment, by asso-
ciating applications from deployment pipeline(s) 1410 (e.g.,
a reconstruction application, a segmentation application,
etc.) with individual containers, each application may
execute in a self-contained environment (e.g., at a kernel
level) to increase speed and efficiency.

[0139] In atleast one embodiment, each application and/or
container (or image thereof) may be individually developed,
modified, and deployed (e.g., a first user or developer may
develop, modify, and deploy a first application and a second
user or developer may develop, modify, and deploy a second
application separate from a first user or developer), which
may allow for focus on, and attention to, a task of a single
application and/or container(s) without being hindered by
tasks of another application(s) or container(s). In at least one
embodiment, communication, and cooperation between dif-
ferent containers or applications may be aided by pipeline
manager 1412 and application orchestration system 1428. In
at least one embodiment, so long as an expected input and/or
output of each container or application is known by a system
(e.g., based on constructs of applications or containers),
application orchestration system 1428 and/or pipeline man-
ager 1412 may facilitate communication among and
between, and sharing of resources among and between, each
of applications or containers. In at least one embodiment,
because one or more of applications or containers in deploy-
ment pipeline(s) 1410 may share same services and
resources, application orchestration system 1428 may
orchestrate, load balance, and determine sharing of services
or resources between and among various applications or
containers. In at least one embodiment, a scheduler may be
used to track resource requirements of applications or con-
tainers, current usage or planned usage of these resources,
and resource availability. In at least one embodiment, a
scheduler may thus allocate resources to different applica-
tions and distribute resources between and among applica-
tions in view of requirements and availability of a system. In
some examples, a scheduler (and/or other component of
application orchestration system 1428) may determine
resource availability and distribution based on constraints
imposed on a system (e.g., user constraints), such as quality
of service (QoS), urgency of need for data outputs (e.g., to
determine whether to execute real-time processing or
delayed processing), etc.

[0140] In at least one embodiment, services 1320 lever-
aged by and shared by applications or containers in deploy-

US 2024/0013802 Al

ment system 1306 may include compute services 1416, Al
services 1418, visualization services 1420, and/or other
service types. In at least one embodiment, applications may
call (e.g., execute) one or more of services 1320 to perform
processing operations for an application. In at least one
embodiment, compute services 1416 may be leveraged by
applications to perform super-computing or other high-
performance computing (HPC) tasks. In at least one embodi-
ment, compute service(s) 1416 may be leveraged to perform
parallel processing (e.g., using a parallel computing plat-
form 1430) for processing data through one or more of
applications and/or one or more tasks of a single application,
substantially simultaneously. In at least one embodiment,
parallel computing platform 1430 (e.g., NVIDIA’s CUDA)
may allow general purpose computing on GPUs (GPGPU)
(e.g., GPUs 1422). In at least one embodiment, a software
layer of parallel computing platform 1430 may provide
access to virtual instruction sets and parallel computational
elements of GPUs, for execution of compute kernels. In at
least one embodiment, parallel computing platform 1430
may include memory and, in some embodiments, a memory
may be shared between and among multiple containers,
and/or between and among different processing tasks within
a single container. In at least one embodiment, inter-process
communication (IPC) calls may be generated for multiple
containers and/or for multiple processes within a container
to use same data from a shared segment of memory of
parallel computing platform 1430 (e.g., where multiple
different stages of an application or multiple applications are
processing same information). In at least one embodiment,
rather than making a copy of data and moving data to
different locations in memory (e.g., a read/write operation),
same data in same location of a memory may be used for any
number of processing tasks (e.g., at a same time, at different
times, etc.). In at least one embodiment, as data is used to
generate new data as a result of processing, this information
of'a new location of data may be stored and shared between
various applications. In at least one embodiment, location of
data and a location of updated or modified data may be part
of a definition of how a payload is understood within
containers.

[0141] In at least one embodiment, Al services 1418 may
be leveraged to perform inferencing services for executing
machine learning model(s) associated with applications
(e.g., tasked with performing one or more processing tasks
of an application). In at least one embodiment, Al services
1418 may leverage Al system 1424 to execute machine
learning model(s) (e.g., neural networks, such as CNNs) for
segmentation, reconstruction, object detection, feature
detection, classification, and/or other inferencing tasks. In at
least one embodiment, applications of deployment pipeline
(s) 1410 may use one or more of output models 1316 from
training system 1304 and/or other models of applications to
perform inference on imaging data. In at least one embodi-
ment, two or more examples of inferencing using applica-
tion orchestration system 1428 (e.g., a scheduler) may be
available. In at least one embodiment, a first category may
include a high priority/low latency path that may achieve
higher service level agreements, such as for performing
inference on urgent requests during an emergency, or for a
radiologist during diagnosis. In at least one embodiment, a
second category may include a standard priority path that
may be used for requests that may be non-urgent or where
analysis may be performed at a later time. In at least one

Jan. 11, 2024

embodiment, application orchestration system 1428 may
distribute resources (e.g., services 1320 and/or hardware
1322) based on priority paths for different inferencing tasks
of Al services 1418.

[0142] In at least one embodiment, shared storage may be
mounted to Al services 1418 within system 1400. In at least
one embodiment, shared storage may operate as a cache (or
other storage device type) and may be used to process
inference requests from applications. In at least one embodi-
ment, when an inference request is submitted, a request may
be received by a set of API instances of deployment system
1306, and one or more instances may be selected (e.g., for
best fit, for load balancing, etc.) to process a request. In at
least one embodiment, to process a request, a request may be
entered into a database, a machine learning model may be
located from model registry 1324 if not already in a cache,
a validation step may ensure appropriate machine learning
model is loaded into a cache (e.g., shared storage), and/or a
copy of a model may be saved to a cache. In at least one
embodiment, a scheduler (e.g., of pipeline manager 1412)
may be used to launch an application that is referenced in a
request if an application is not already running or if there are
not enough instances of an application. In at least one
embodiment, if an inference server is not already launched
to execute a model, an inference server may be launched.
Any number of inference servers may be launched per
model. In at least one embodiment, in a pull model, in which
inference servers are clustered, models may be cached
whenever load balancing is advantageous. In at least one
embodiment, inference servers may be statically loaded in
corresponding, distributed servers.

[0143] In at least one embodiment, inferencing may be
performed using an inference server that runs in a container.
In at least one embodiment, an instance of an inference
server may be associated with a model (and optionally a
plurality of versions of a model). In at least one embodiment,
if an instance of an inference server does not exist when a
request to perform inference on a model is received, a new
instance may be loaded. In at least one embodiment, when
starting an inference server, a model may be passed to an
inference server such that a same container may be used to
serve different models so long as inference server is running
as a different instance.

[0144] In at least one embodiment, during application
execution, an inference request for a given application may
be received, and a container (e.g., hosting an instance of an
inference server) may be loaded (if not already), and a start
procedure may be called. In at least one embodiment,
pre-processing logic in a container may load, decode, and/or
perform any additional pre-processing on incoming data
(e.g., using a CPU(s) and/or GPU(s)). In at least one
embodiment, once data is prepared for inference, a container
may perform inference as necessary on data. In at least one
embodiment, this may include a single inference call on one
image (e.g., a hand X-ray), or may require inference on
hundreds of images (e.g., a chest CT). In at least one
embodiment, an application may summarize results before
completing, which may include, without limitation, a single
confidence score, pixel level-segmentation, voxel-level seg-
mentation, generating a visualization, or generating text to
summarize findings. In at least one embodiment, different
models or applications may be assigned different priorities.
For example, some models may have a real-time (TAT<1
min) priority while others may have lower priority (e.g.,

US 2024/0013802 Al

TAT<10 min). In at least one embodiment, model execution
times may be measured from requesting institution or entity
and may include partner network traversal time, as well as
execution on an inference service.

[0145] In at least one embodiment, transfer of requests
between services 1320 and inference applications may be
hidden behind a software development kit (SDK), and
robust transport may be provide through a queue. In at least
one embodiment, a request will be placed in a queue via an
API for an individual application/tenant ID combination and
an SDK will pull a request from a queue and give a request
to an application. In at least one embodiment, a name of a
queue may be provided in an environment from where an
SDK will pick it up. In at least one embodiment, asynchro-
nous communication through a queue may be useful as it
may allow any instance of an application to pick up work as
it becomes available. Results may be transferred back
through a queue, to ensure no data is lost. In at least one
embodiment, queues may also provide an ability to segment
work, as highest priority work may go to a queue with most
instances of an application connected to it, while lowest
priority work may go to a queue with a single instance
connected to it that processes tasks in an order received. In
at least one embodiment, an application may run on a
GPU-accelerated instance generated in cloud 1426, and an
inference service may perform inferencing on a GPU.

[0146] In at least one embodiment, visualization services
1420 may be leveraged to generate visualizations for view-
ing outputs of applications and/or deployment pipeline(s)
1410. In at least one embodiment, GPUs 1422 may be
leveraged by visualization services 1420 to generate visu-
alizations. In at least one embodiment, rendering effects,
such as ray-tracing, may be implemented by visualization
services 1420 to generate higher quality visualizations. In at
least one embodiment, visualizations may include, without
limitation, 2D image renderings, 3D volume renderings, 3D
volume reconstruction, 2D tomographic slices, virtual real-
ity displays, augmented reality displays, etc. In at least one
embodiment, virtualized environments may be used to gen-
erate a virtual interactive display or environment (e.g., a
virtual environment) for interaction by users of a system
(e.g., doctors, nurses, radiologists, etc.). In at least one
embodiment, visualization services 1420 may include an
internal visualizer, cinematics, and/or other rendering or
image processing capabilities or functionality (e.g., ray
tracing, rasterization, internal optics, etc.).

[0147] In at least one embodiment, hardware 1322 may
include GPUs 1422, Al system 1424, cloud 1426, and/or any
other hardware used for executing training system 1304
and/or deployment system 1306. In at least one embodiment,
GPUs 1422 (e.g., NVIDIA’s TESLA and/or QUADRO
GPUs) may include any number of GPUs that may be used
for executing processing tasks of compute services 1416, Al
services 1418, visualization services 1420, other services,
and/or any of features or functionality of software 1318. For
example, with respect to Al services 1418, GPUs 1422 may
be used to perform pre-processing on imaging data (or other
data types used by machine learning models), post-process-
ing on outputs of machine learning models, and/or to per-
form inferencing (e.g., to execute machine learning models).
In at least one embodiment, cloud 1426, Al system 1424,
and/or other components of system 1400 may use GPUs
1422. In at least one embodiment, cloud 1426 may include
a GPU-optimized platform for deep learning tasks. In at least

Jan. 11, 2024

one embodiment, Al system 1424 may use GPUs, and cloud
1426 — or at least a portion tasked with deep learning or
inferencing — may be executed using one or more Al
systems 1424. As such, although hardware 1322 is illus-
trated as discrete components, this is not intended to be
limiting, and any components of hardware 1322 may be
combined with, or leveraged by, any other components of
hardware 1322.

[0148] In at least one embodiment, Al system 1424 may
include a purpose-built computing system (e.g., a super-
computer or an HPC) configured for inferencing, deep
learning, machine learning, and/or other artificial intelli-
gence tasks. In at least one embodiment, Al system 1424
(e.g., NVIDIA’s DGX) may include GPU-optimized soft-
ware (e.g., a software stack) that may be executed using a
plurality of GPUs 1422, in addition to CPUs, RAM, storage,
and/or other components, features, or functionality. In at
least one embodiment, one or more Al systems 1424 may be
implemented in cloud 1426 (e.g., in a data center) for
performing some or all of Al-based processing tasks of
system 1400.

[0149] In at least one embodiment, cloud 1426 may
include a GPU-accelerated infrastructure (e.g., NVIDIA’s
NGC) that may provide a GPU-optimized platform for
executing processing tasks of system 1400. In at least one
embodiment, cloud 1426 may include an Al system(s) 1424
for performing one or more of Al-based tasks of system
1400 (e.g., as a hardware abstraction and scaling platform).
In at least one embodiment, cloud 1426 may integrate with
application orchestration system 1428 leveraging multiple
GPUs to allowseamless scaling and load balancing between
and among applications and services 1320. In at least one
embodiment, cloud 1426 may tasked with executing at least
some of services 1320 of system 1400, including compute
services 1416, Al services 1418, and/or visualization ser-
vices 1420, as described herein. In at least one embodiment,
cloud 1426 may perform small and large batch inference
(e.g., executing NVIDIA’s TENSOR RT), provide an accel-
erated parallel computing API and platform 1430 (e.g.,
NVIDIA’s CUDA), execute application orchestration sys-
tem 1428 (e.g., KUBERNETES), provide a graphics ren-
dering API and platform (e.g., for ray-tracing, 2D graphics,
3D graphics, and/or other rendering techniques to produce
higher quality cinematics), and/or may provide other func-
tionality for system 1400.

[0150] FIG. 15A illustrates a data flow diagram for a
process 1500 to train, retrain, or update a machine learning
model, in accordance with at least one embodiment. In at
least one embodiment, process 1500 may be executed using,
as a non-limiting example, system 1400 of FIG. 14. In at
least one embodiment, process 1500 may leverage services
1320 and/or hardware 1322 of system 1400, as described
herein. In at least one embodiment, refined models 1512
generated by process 1500 may be executed by deployment
system 1306 for one or more containerized applications in
deployment pipelines 1410.

[0151] In at least one embodiment, model training 1314
may include retraining or updating an initial model 1504
(e.g., a pre-trained model) using new training data (e.g., new
input data, such as customer dataset 1506, and/or new
ground truth data associated with input data). In at least one
embodiment, to retrain, or update, initial model 1504, output
or loss layer(s) of initial model 1504 may be reset, or
deleted, and/or replaced with an updated or new output or

US 2024/0013802 Al

loss layer(s). In at least one embodiment, initial model 1504
may have previously fine-tuned parameters (e.g., weights
and/or biases) that remain from prior training, so training or
retraining 1314 may not take as long or require as much
processing as training a model from scratch. In at least one
embodiment, during model training 1314, by having reset or
replaced output or loss layer(s) of initial model 1504,
parameters may be updated and re-tuned for a new data set
based on loss calculations associated with accuracy of
output or loss layer(s) at generating predictions on new,
customer dataset 1506 (e.g., image data 1308 of FIG. 13).

[0152] In at least one embodiment, pre-trained models
1406 may be stored in a data store, or registry (e.g., model
registry 1324 of FIG. 13). In at least one embodiment,
pre-trained models 1406 may have been trained, at least in
part, at one or more facilities other than a facility executing
process 1500. In at least one embodiment, to protect privacy
and rights of patients, subjects, or clients of different facili-
ties, pre-trained models 1406 may have been trained, on-
premise, using customer or patient data generated on-prem-
ise. In at least one embodiment, pre-trained models 1406
may be trained using cloud 1426 and/or other hardware
1322, but confidential, privacy protected patient data may
not be transferred to, used by, or accessible to any compo-
nents of cloud 1426 (or other off premise hardware). In at
least one embodiment, where a pre-trained model 1406 is
trained at using patient data from more than one facility,
pre-trained model 1406 may have been individually trained
for each facility prior to being trained on patient or customer
data from another facility. In at least one embodiment, such
as where a customer or patient data has been released of
privacy concerns (e.g., by waiver, for experimental use,
etc.), or where a customer or patient data is included in a
public data set, a customer or patient data from any number
of facilities may be used to train pre-trained model 1406
on-premise and/or off premise, such as in a datacenter or
other cloud computing infrastructure.

[0153] In at least one embodiment, when selecting appli-
cations for use in deployment pipelines 1410, a user may
also select machine learning models to be used for specific
applications. In at least one embodiment, a user may not
have a model for use, so a user may select a pre-trained
model 1406 to use with an application. In at least one
embodiment, pre-trained model 1406 may not be optimized
for generating accurate results on customer dataset 1506 of
a facility of a user (e.g., based on patient diversity, demo-
graphics, types of medical imaging devices used, etc.). In at
least one embodiment, prior to deploying pre-trained model
1406 into deployment pipeline 1410 for use with an appli-
cation(s), pre-trained model 1406 may be updated, retrained,
and/or fine-tuned for use at a respective facility.

[0154] In at least one embodiment, a user may select
pre-trained model 1406 that is to be updated, retrained,
and/or fine-tuned, and pre-trained model 1406 may be
referred to as initial model 1504 for training system 1304
within process 1500. In at least one embodiment, customer
dataset 1506 (e.g., imaging data, genomics data, sequencing
data, or other data types generated by devices at a facility)
may be used to perform model training 1314 (which may
include, without limitation, transfer learning) on initial
model 1504 to generate refined model 1512. In at least one
embodiment, ground truth data corresponding to customer
dataset 1506 may be generated by training system 1304. In
at least one embodiment, ground truth data may be gener-

Jan. 11, 2024

ated, at least in part, by clinicians, scientists, doctors,
practitioners, at a facility (e.g., as labeled clinic data 1312 of
FIG. 13).

[0155] In at least one embodiment, Al-assisted annotation
1310 may be used in some examples to generate ground
truth data. In at least one embodiment, Al-assisted annota-
tion 1310 (e.g., implemented using an Al-assisted annotation
SDK) may leverage machine learning models (e.g., neural
networks) to generate suggested or predicted ground truth
data for a customer dataset. In at least one embodiment, user
1510 may use annotation tools within a user interface (a
graphical user interface (GUI)) on computing device 1508.
[0156] In at least one embodiment, user 1510 may interact
with a GUI via computing device 1508 to edit or fine-tune
(auto)annotations. In at least one embodiment, a polygon
editing feature may be used to move vertices of a polygon
to more accurate or fine-tuned locations.

[0157] In at least one embodiment, once customer dataset
1506 has associated ground truth data, ground truth data
(e.g., from Al-assisted annotation, manual labeling, etc.)
may be used by during model training 1314 to generate
refined model 1512. In at least one embodiment, customer
dataset 1506 may be applied to initial model 1504 any
number of times, and ground truth data may be used to
update parameters of initial model 1504 until an acceptable
level of accuracy is attained for refined model 1512. In at
least one embodiment, once refined model 1512 is gener-
ated, refined model 1512 may be deployed within one or
more deployment pipelines 1410 at a facility for performing
one or more processing tasks with respect to medical imag-
ing data.

[0158] In at least one embodiment, refined model 1512
may be uploaded to pre-trained models 1406 in model
registry 1324 to be selected by another facility. In at least
one embodiment, his process may be completed at any
number of facilities such that refined model 1512 may be
further refined on new datasets any number of times to
generate a more universal model.

[0159] FIG. 15B is an example illustration of a client-
server architecture 1532 to enhance annotation tools with
pre-trained annotation models, in accordance with at least
one embodiment. In at least one embodiment, Al-assisted
annotation tools 1536 may be instantiated based on a client-
server architecture 1532. In at least one embodiment, anno-
tation tools 1536 in imaging applications may aid radiolo-
gists, for example, identify organs and abnormalities. In at
least one embodiment, imaging applications may include
software tools that help user 1510 to identify, as a non-
limiting example, a few extreme points on a particular organ
of interest in raw images 1534 (e.g., in a 3D MRI or CT
scan) and receive auto-annotated results for all 2D slices of
a particular organ. In at least one embodiment, results may
be stored in a data store as training data 1538 and used as
(for example and without limitation) ground truth data for
training. In at least one embodiment, when computing
device 1508 sends extreme points for Al-assisted annotation
1310, a deep learning model, for example, may receive this
data as input and return inference results of a segmented
organ or abnormality. In at least one embodiment, pre-
instantiated annotation tools, such as Al-Assisted Annota-
tion Tool 1536B in FIG. 15B, may be enhanced by making
API calls (e.g., API Call 1544) to a server, such as an
Annotation Assistant Server 1540 that may include a set of
pre-trained models 1542 stored in an annotation model

US 2024/0013802 Al

registry, for example. In at least one embodiment, an anno-
tation model registry may store pre-trained models 1542
(e.g., machine learning models, such as deep learning mod-
els) that are pre-trained to perform Al-assisted annotation on
a particular organ or abnormality. These models may be
further updated by using training pipelines 1404. In at least
one embodiment, pre-installed annotation tools may be
improved over time as new labeled clinic data 1312 is added.

[0160] Such components can be used to determine one or
more emotion values from audio data.

[0161] Other variations are within spirit of present disclo-
sure. Thus, while disclosed techniques are susceptible to
various modifications and alternative constructions, certain
illustrated embodiments thereof are shown in drawings and
have been described above in detail. It should be understood,
however, that there is no intention to limit disclosure to
specific form or forms disclosed, but on contrary, intention
is to cover all modifications, alternative constructions, and
equivalents falling within spirit and scope of disclosure, as
defined in appended claims.

[0162] Use of terms “a” and “an” and “the” and similar
referents in context of describing disclosed embodiments
(especially in context of following claims) are to be con-
strued to cover both singular and plural, unless otherwise
indicated herein or clearly contradicted by context, and not
as a definition of a term. Terms “comprising,” “having,”
“including,” and “containing” are to be construed as open-
ended terms (meaning “including, but not limited to,”)
unless otherwise noted. Term “connected,” when unmodi-
fied and referring to physical connections, is to be construed
as partly or wholly contained within, attached to, or joined
together, even if there is something intervening. Recitation
of ranges of values herein are merely intended to serve as a
shorthand method of referring individually to each separate
value falling within range, unless otherwise indicated herein
and each separate value is incorporated into specification as
if it were individually recited herein. Use of term “set” (e.g.,
“a set of items™) or “subset,” unless otherwise noted or
contradicted by context, is to be construed as a nonempty
collection comprising one or more members. Further, unless
otherwise noted or contradicted by context, term “subset” of
a corresponding set does not necessarily denote a proper
subset of corresponding set, but subset and corresponding
set may be equal.

[0163] Conjunctive language, such as phrases of form “at
least one of A, B, and C,” or “at least one of A, B and C,”
unless specifically stated otherwise or otherwise clearly
contradicted by context, is otherwise understood with con-
text as used in general to present that an item, term, etc., may
be either A or B or C, or any nonempty subset of set of A and
B and C. For instance, in illustrative example of a set having
three members, conjunctive phrases “at least one of A, B,
and C” and “at least one of A, B and C” refer to any of
following sets: {A}, {B}, {C}, {A, B}, {A, C}, {B, C}, {A,
B, C}. Thus, such conjunctive language is not generally
intended to imply that certain embodiments require at least
one of A, at least one of B, and at least one of C each to be
present. In addition, unless otherwise noted or contradicted
by context, term “plurality” indicates a state of being plural
(e.g., “a plurality of items” indicates multiple items). A
plurality is at least two items, but can be more when so
indicated either explicitly or by context. Further, unless

Jan. 11, 2024

stated otherwise or otherwise clear from context, phrase
“based on” means “based at least in part on” and not “based
solely on.”

[0164] Operations of processes described herein can be
performed in any suitable order unless otherwise indicated
herein or otherwise clearly contradicted by context. In at
least one embodiment, a process such as those processes
described herein (or variations and/or combinations thereof)
is performed under control of one or more computer systems
configured with executable instructions and is implemented
as code (e.g., executable instructions, one or more computer
programs or one or more applications) executing collec-
tively on one or more processors, by hardware or combina-
tions thereof In at least one embodiment, code is stored on
a computer-readable storage medium, for example, in form
of'a computer program comprising a plurality of instructions
executable by one or more processors. In at least one
embodiment, a computer-readable storage medium is a
non-transitory computer-readable storage medium that
excludes transitory signals (e.g., a propagating transient
electric or electromagnetic transmission) but includes non-
transitory data storage circuitry (e.g., buffers, cache, and
queues) within transceivers of transitory signals. In at least
one embodiment, code (e.g., executable code or source
code) is stored on a set of one or more non-transitory
computer-readable storage media having stored thereon
executable instructions (or other memory to store executable
instructions) that, when executed (i.e., as a result of being
executed) by one or more processors of a computer system,
cause computer system to perform operations described
herein. A set of non-transitory computer-readable storage
media, in at least one embodiment, comprises multiple
non-transitory computer-readable storage media and one or
more of individual non-transitory storage media of multiple
non-transitory computer-readable storage media lack all of
code while multiple non-transitory computer-readable stor-
age media collectively store all of code. In at least one
embodiment, executable instructions are executed such that
different instructions are executed by different processors—
for example, a non-transitory computer-readable storage
medium store instructions and a main central processing unit
(“CPU”) executes some of instructions while a graphics
processing unit (“GPU”) executes other instructions. In at
least one embodiment, different components of a computer
system have separate processors and different processors
execute different subsets of instructions.

[0165] Accordingly, in at least one embodiment, computer
systems are configured to implement one or more services
that singly or collectively perform operations of processes
described herein and such computer systems are configured
with applicable hardware and/or software that allow perfor-
mance of operations. Further, a computer system that imple-
ments at least one embodiment of present disclosure is a
single device and, in another embodiment, is a distributed
computer system comprising multiple devices that operate
differently such that distributed computer system performs
operations described herein and such that a single device
does not perform all operations.

[0166] Use of any and all examples, or exemplary lan-
guage (e.g., “such as”) provided herein, is intended merely
to better illuminate embodiments of disclosure and does not
pose a limitation on scope of disclosure unless otherwise

US 2024/0013802 Al

claimed. No language in specification should be construed
as indicating any non-claimed element as essential to prac-
tice of disclosure.

[0167] All references, including publications, patent appli-
cations, and patents, cited herein are hereby incorporated by
reference to same extent as if each reference were individu-
ally and specifically indicated to be incorporated by refer-
ence and were set forth in its entirety herein.

[0168] In description and claims, terms “coupled” and
“connected,” along with their derivatives, may be used. It
should be understood that these terms may be not intended
as synonyms for each other. Rather, in particular examples,
“connected” or “coupled” may be used to indicate that two
or more elements are in direct or indirect physical or
electrical contact with each other. “Coupled” may also mean
that two or more elements are not in direct contact with each
other, but yet still co-operate or interact with each other.
[0169] Unless specifically stated otherwise, it may be
appreciated that throughout specification terms such as
“processing,” “computing,” “calculating,” “determining,” or
like, refer to action and/or processes of a computer or
computing system, or similar electronic computing device,
that manipulate and/or transform data represented as physi-
cal, such as electronic, quantities within computing system’s
registers and/or memories into other data similarly repre-
sented as physical quantities within computing system’s
memories, registers or other such information storage, trans-
mission or display devices.

[0170] In a similar manner, term “processor” may refer to
any device or portion of a device that processes electronic
data from registers and/or memory and transform that elec-
tronic data into other electronic data that may be stored in
registers and/or memory. As non-limiting examples, “pro-
cessor” may be a CPU or a GPU. A “computing platform”
may comprise one or more processors. As used herein,
“software” processes may include, for example, software
and/or hardware entities that perform work over time, such
as tasks, threads, and intelligent agents. Also, each process
may refer to multiple processes, for carrying out instructions
in sequence or in parallel, continuously or intermittently.
Terms “system” and “method” are used herein interchange-
ably insofar as system may embody one or more methods
and methods may be considered a system.

[0171] In present document, references may be made to
obtaining, acquiring, receiving, or inputting analog or digital
data into a subsystem, computer system, or computer-imple-
mented machine. Obtaining, acquiring, receiving, or input-
ting analog and digital data can be accomplished in a variety
of ways such as by receiving data as a parameter of a
function call or a call to an application programming inter-
face. In some implementations, process of obtaining, acquir-
ing, receiving, or inputting analog or digital data can be
accomplished by transferring data via a serial or parallel
interface. In another implementation, process of obtaining,
acquiring, receiving, or inputting analog or digital data can
be accomplished by transferring data via a computer net-
work from providing entity to acquiring entity. References
may also be made to providing, outputting, transmitting,
sending, or presenting analog or digital data. In various
examples, process of providing, outputting, transmitting,
sending, or presenting analog or digital data can be accom-
plished by transferring data as an input or output parameter
of a function call, a parameter of an application program-
ming interface or interprocess communication mechanism.

29 <

Jan. 11, 2024

[0172] Although discussion above sets forth example
implementations of described techniques, other architec-
tures may be used to implement described functionality, and
are intended to be within scope of this disclosure. Further-
more, although specific distributions of responsibilities are
defined above for purposes of discussion, various functions
and responsibilities might be distributed and divided in
different ways, depending on circumstances.

[0173] Furthermore, although subject matter has been
described in language specific to structural features and/or
methodological acts, it is to be understood that subject
matter claimed in appended claims is not necessarily limited
to specific features or acts described. Rather, specific fea-
tures and acts are disclosed as exemplary forms of imple-
menting the claims.

What is claimed is:

1. A computer-implemented method, comprising:

computing, using a transformer-based neural network and

based at least in part on audio data representative of
speech, one or more values indicative of one or more
emotions;

determining, based at least in part on the one or more

values, that at least one emotion of the one or more
emotions corresponds to the speech; and

performing one or more operations based at least in part

on the at least one emotion.

2. The computer-implemented method of claim 1,
wherein the one or more values include a respective one or
more probability values for each emotion of the one or more
emotions, and the one or more values are normalized and
summed to an absolute value.

3. The computer-implemented method of claim 1,
wherein the one or more emotions include at least one of
anger, disgust, fear, joy, sadness, or a neutral emotion.

4. The computer-implemented method of claim 1, further
comprising:

providing an interface to receive user input corresponding

to one or more adjustments of the one or more values.

5. The computer-implemented method of claim 4, further
comprising:

receiving, via the interface, one or more emotion strength

values for use in weighting the at least one emotion
with respect to at least one other emotion of the one or
more emotions determined to correspond to the speech.

6. The computer-implemented method of claim 4, further
comprising:

receiving, through the interface, one or more prior values

corresponding to the one or more emotions; and
blending the one or more prior values with the one or
more values to generate one or more blended values,
wherein the determining that the at least one emotion of
the one or more emotions corresponds to the speech is
based at least in part on the one or more blended values.

7. The computer-implemented method of claim 6, further
comprising:

receiving one or more prior emotion strength values

corresponding to the one or more emotions, the one or
more prior emotion strength values indicating one or
more weights to be used in the blending of the one or
more prior values with the one or more values.

8. The computer-implemented method of claim 1, further
comprising:

determining one or more probability values for the one or

more emotions for each keyframe of a set of keyframes

US 2024/0013802 Al

in the audio data, the one or more probability values
being determined using a sliding window of audio data
for a given audio segment.
9. The computer-implemented method of claim 8, further
comprising:
smoothing the one or more values corresponding to the
one or more emotions across a plurality of iterations.
10. The computer-implemented method of claim 1,
wherein the audio data is represented using an audio file
format.
11. A processor comprising:
one or more processing units to:
provide audio data in an audio file format as input to a
transformer neural network;
compute, using the transformer neural network and
based at least in part on the audio data, one or more
values indicative of one or more emotions corre-
sponding to the audio data; and
perform one or more operations based at least in part on
a determination that at least one emotion of the one
or more emotions corresponds to the audio data.
12. The processor of claim 11, wherein the one or more
emotions include a predetermined set of emotions, wherein
the predetermined set of emotions includes at least anger,
disgust, fear, joy, sadness, or neutral.
13. The processor of claim 11, wherein the one or more
processing units are further to:
weight the one or more values based at least in part on one
or more emotion strength values corresponding to
respective emotions of the one or more emotions,
wherein the one or more operations are performed based
at least in part on the one or more weighted values.
14. The processor of claim 11, wherein the one or more
processing units are further to:
receive one or more prior values corresponding to the one
or more emotions; and
blend the one or more prior values with the one or more
values to generate one or more blended values,
wherein the determination that the at least one emotion of
the one or more emotions corresponds to the audio data is
based at least in part on the one or more blended values.
15. The processor of claim 11, wherein the audio file
format includes at least one of an uncompressed audio file

Jan. 11, 2024

format, a lossless compression audio file format, or a lossy
compression audio file format.

16. A system comprising:

one or more processing units to:

compute, using a transformer neural network and based
at least in part on audio data representative of speech,
one or more first values indicating a probability that
one or more emotions correspond to the speech;

compute, using a neural network and based at least in
part the one or more first values and the audio data,
one or more second values indicating one or more
positions of one or more feature points correspond-
ing to a virtual object; and

render the virtual object based at least in part on the one
or more second values.

17. The system of claim 16, wherein the audio data
corresponds to an audio file format.

18. The system of claim 16, wherein the audio data is
processed using the transformer neural network in an audio
file format and the audio data is processed using the neural
network in an image file format.

19. The system of claim 16, wherein the one or more
feature points correspond to one or more facial features or
one or more body features of the virtual object.

20. The system of claim 16, wherein the system comprises
at least one of:

a system for performing simulation operations;

a system for performing digital twin operations;

a system for performing light transport simulation;

a system for performing collaborative content creation for

3D assets;

a system for performing deep learning operations;

a system implemented using an edge device;

a system implemented using a robot;

a system for performing conversational Al operations;

a system for generating synthetic data;

a system incorporating one or more virtual machines

(VMs);

a system implemented at least partially in a data center; or

a system implemented at least partially using cloud com-

puting resources.

#* #* #* #* #*

