US 20230037731A1

a2y Patent Application Publication (o) Pub. No.: US 2023/0037731 Al

a9y United States

GUIZILINI et al.

43) Pub. Date: Feb. 9, 2023

(54) SYSTEMS AND METHODS FOR
SELF-SUPERVISED DEPTH ESTIMATION

(71) Applicant: TOYOTA RESEARCH INSTITUTE,
INC., LOS ALTOS, CA (US)

(72) Inventors: VITOR GUIZILINI, Santa Clara, CA
(US); IGOR VASILJEVIC, LOS
ALTOS, CA (US); RARES A.
AMBRUS, San Francisco, CA (US);
ADRIEN GAIDON, LOS ALTOS, CA
(US)

(21) Appl. No.: 17/965,550

(22) Filed:  Oct. 13, 2022

Related U.S. Application Data
(63) Continuation of application No. 17/021,951, filed on
Sep. 15, 2020, now Pat. No. 11,494,927.
Publication Classification

(51) Int. CL
GO6T 7/55
GO6T 3/00

(2006.01)
(2006.01)

(52) US.CL
CPC oo GO6T 7/55 (2017.01); GO6T 3/0093
(2013.01); GO6T 2207/20084 (2013.01); GO6T
2207/20081 (2013.01); GO6T 2207/30252
(2013.01)

(57) ABSTRACT

Systems and methods for self-supervised depth estimation
using image frames captured from cameras, may include:
receiving a first image captured by a first camera while the
camera is mounted at a first location, the first image com-
prising pixels representing a first scene of an environment of
a vehicle; receiving a reference image captured by a second
camera while the second camera is mounted at a second
location, the reference image comprising pixels representing
a second scene of the environment; warping the first image
to a perspective of the second camera at the second location
on the vehicle to arrive at a warped first image; projecting
the warped first image onto the reference image; determin-
ing a loss based on the projection; and updating predicted
depth values for the first image.
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SYSTEMS AND METHODS FOR
SELF-SUPERVISED DEPTH ESTIMATION

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of and claims the
benefit of U.S. patent application Ser. No. 17/021,951 filed
on Sep. 15, 2020, which is hereby incorporated herein by
reference in its entirety for all purposes.

TECHNICAL FIELD

[0002] The present disclosure relates generally to depth
maps, and in particular, some implementations may relate to
systems and methods for self-supervised depth learning.

DESCRIPTION OF RELATED ART

[0003] Autonomous vehicle technology is becoming more
commonplace with the introduction of new vehicles each
model year. While widespread adoption of fully autonomous
vehicles is only now becoming visible on the horizon,
autonomous vehicle technology is gaining increasing popu-
larity for assisted driving and other semi-autonomous
vehicle operation. Developers within organizations such as
major original equipment manufacturers, tier 1 suppliers,
startup companies and others, are racing to develop autono-
mous vehicle and advanced driver assistance systems
(ADAS) technologies. Such technologies are not limited to
autonomous vehicles, but can also be used in robotics and
other like applications.

[0004] Various devices that operate autonomously or that
provide information about a surrounding environment use
sensors that facilitate perceiving obstacles and additional
aspects of the surrounding environment. For example, a
robotic device may use information from the sensors to
develop awareness of the surrounding environment in order
to navigate through the environment and avoid hazards. In
particular, the robotic device may use the perceived infor-
mation to determine a 3-D structure of the environment in
order to identify navigable regions. The ability to perceive
distances through estimation of depth using sensor data may
provide the robotic device with the ability to plan move-
ments through the environment and generally improve situ-
ational awareness about the environment. However, depend-
ing on the available onboard sensors, the robotic device may
acquire a limited perspective of the environment, and, thus,
can encounter difficulties in distinguishing aspects of the
environment.

[0005] In robotics and 3D computer vision, a camera
model that relates image pixels and 3D world points is a
prerequisite for many tasks, including visual odometry,
depth estimation, and 3D object detection. Leveraging
images to perceive depth can suffer from difficulties such as
depth ambiguities, limited resolution, image artifacts, diffi-
culties with training/learning, and so on. The robot may
encounter difficulties when perceiving aspects of the sur-
rounding environment because of such issues and as a result
may not develop a comprehensive or accurate awareness of
the surrounding environment thereby resulting in difficulties
performing various tasks such as navigation.

BRIEF SUMMARY OF THE DISCLOSURE

[0006] Various embodiments of the disclosed technology
relate to improved systems and methods for self-supervised
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depth estimation using image frames captured from a cam-
era mounted on a vehicle. In various embodiments, a method
of self-supervised depth estimation using image frames
captured from a camera mounted on a vehicle in an envi-
ronment, may include: receiving a first image captured by
the camera while the camera is mounted at a first location on
the vehicle, the first image comprising pixels representing a
scene of the environment of the vehicle; receiving a refer-
ence image from the camera while the camera is mounted at
a second location on the vehicle, the reference image com-
prising pixels representing a scene of the environment of the
vehicle; predicting a depth map for the first image, the depth
map comprising predicted depth values for pixels of the first
image; warping the first image to a perspective of the camera
at the second location on the vehicle to arrive at a warped
first image; projecting the warped first image onto the
reference image; determining a loss based on the projection;
and updating the predicted depth values for the first image.
[0007] In further embodiments, a system for self-super-
vised learning depth estimation using image frames captured
from a camera mounted on a vehicle in an environment may
include: a non-transitory memory configured to store
instructions; a processor configured to execute the instruc-
tions to perform the operations of: receiving a first image
captured by the camera while the camera is mounted at a first
location on the vehicle, the first image comprising pixels
representing a scene of the environment of the vehicle;
receiving a reference image captured by the camera while
the camera is mounted at a second location on the vehicle,
the reference image comprising pixels representing a scene
of'the environment of the vehicle; predicting a depth map for
the first image, the depth map comprising predicted depth
values for pixels of the first image; warping the first image
to a perspective of the camera at the second location on the
vehicle to arrive at a warped first image; projecting the
warped first image onto the reference image; determining a
loss based on the projection; and updating the predicted
depth values for the first image.

[0008] Inother embodiments, a system for self-supervised
learning depth estimation may include: a camera mounted
on a vehicle and configured to capture images of an envi-
ronment surrounding the vehicle; wherein the camera is
mounted at a first location on the vehicle to capture a first
image while mounted at the first location, the first image
comprising pixels representing a scene of the environment
of the vehicle; and the camera is mounted at a second
location on the vehicle to capture a reference image while
mounted at the second location, the reference image com-
prising pixels representing a scene of the environment of the
vehicle; a depth encoder configured to receive the first image
and to predict a depth map for the first image, the depth map
comprising predicted depth values for pixels of the first
image; a warping module to warp the first image to a
perspective of the camera mounted at the second location on
the vehicle to arrive at a warped first image; a projection
module to project the warped first image onto the reference
image; and a loss module to determine a loss based on the
projection.

[0009] Various embodiments may further include reiterat-
ing the operations of warping the first image, projecting the
warped first image and determining the loss using updated
predicted depth values for the first image.

[0010] Projecting may be performed using a neural cam-
eral model to model intrinsic parameters of the first camera.
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[0011] Various embodiments may further include predict-
ing a transformation from the first camera mounting location
to the second camera mounting location based on loss
calculations between the warped first image and the refer-
ence image.

[0012] The reference image may be an image captured at
atime, t+/-1, different from a time, t, at which the first image
is captured. A transformation from the first camera position
to the second camera position may include movement of the
vehicle between times t and t+/-1.

[0013] In various embodiments, projecting the warped
first image onto the reference image may include lifting 2D
points of the warped first image to 3D points, determining a
transformation between the first and second cameras and
using the transformation to project the 3D points onto the
reference image in 2D. The transformation may include a
distance in three dimensions between image sensors of the
first and second cameras.

[0014] Other features and aspects of the disclosed tech-
nology will become apparent from the following detailed
description, taken in conjunction with the accompanying
drawings, which illustrate, by way of example, the features
in accordance with embodiments of the disclosed technol-
ogy. The summary is not intended to limit the scope of any
inventions described herein, which are defined solely by the
claims attached hereto.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The present disclosure, in accordance with one or
more various embodiments, is described in detail with
reference to the following figures. The figures are provided
for purposes of illustration only and merely depict typical or
example embodiments.

[0016] FIG. 1 illustrates an example autonomous or semi-
autonomous vehicle with which embodiments of the dis-
closed technology may be implemented.

[0017] FIG. 2 is a diagram illustrating an example system
for performing self-supervised learning in accordance with
various embodiments.

[0018] FIG. 3 illustrates one example of a camera layout
on a passenger vehicle in accordance with various embodi-
ments.

[0019] FIG. 4 is an operational flow diagram illustrating
an example process for self-supervised multi-camera mod-
eling in accordance with various embodiments.

[0020] FIG. 5 is a diagram illustrating an example archi-
tecture for self-supervised multi-camera modeling in accor-
dance with various embodiments.

[0021] FIG. 6 is an operational flow diagram illustrating
an example process for self-supervised camera modeling
using the same camera in different camera positions in
accordance with various embodiments.

[0022] FIG. 7 illustrates an example architecture of a
spatial transformer module in accordance with various
embodiments.

[0023] FIG. 8 illustrates an example of a training archi-
tecture in accordance with various embodiments.

[0024] FIG. 9 is a diagram illustrating an example com-
parison of lifting and projection operations between the
standard pinhole and various embodiments of the neural
camera model.

[0025] FIG. 10 is an example computing component that
may be used to implement various features of embodiments
described in the present disclosure.
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[0026] The figures are not exhaustive and do not limit the
present disclosure to the precise form disclosed.

DETAILED DESCRIPTION

[0027] The ability to reconstruct a highly accurate 3D map
of a scene, and to localize within the map precisely, is
fundamental to ensuring robust autonomous navigation. By
directly measuring the 3D geometry information of the
scene, LiDAR sensors are more commonly used, making it
easier to accomplish tasks such as mapping and localization.
However, cameras are preferable over the expensive and
bulky LiDAR counterpart, because they are generally cheap
and compact while providing richer semantic information
about the environment. Cameras, however, are not easily
swappable with LiDAR sensors as cameras typically do not
provide the same level of information as LiDAR. Embodi-
ments may be configured to use a set of camera images (e.g.,
RGB images) to iteratively estimate depth for each image,
while taking into account camera motion (e.g., correspond-
ing to ego vehicle motion) from one image to the next.
Embodiments may use these quantities to construct a metric
map of the environment.

[0028] Embodiments may be implemented using a neural
camera model to predict a depth map and ray surfaces
without requiring known, calibrated camera models and
intrinsics to perform 2D-3D lifting to lift the depth from an
image and project onto other images. Additionally, embodi-
ments may be configured to estimate depth across multiple
frames in a video captured from a single camera, which can
avoid inconsistencies or errors that may arise in areas of the
map observed by multiple cameras at different locations on
the vehicle.

[0029] Embodiments may be configured to perform self-
supervised depth predictions using only RGB images to train
neural networks to estimate required quantities such as
depth, ego motion (where used), lifting and projection
functions. This represents a significant improvement over
prior solutions that used only monocular or known stereoptic
configurations or relied on costly and highly complex
LiDAR solutions.

[0030] A great number of learning-based depth and pose
estimation algorithms have been proposed in recent years,
both in self-supervised and supervised settings. However,
these algorithms focus on pinhole camera models, because
they are easier to calibrate and have closed-form solutions
for reconstruction and projection operations. Fisheye and
catadioptric cameras are only used in purely geometric
applications, where there is no learning and their parameters
are obtained from careful calibration. While it may be
possible to learn camera parameters in a self-supervised
fashion, conventional solutions appear to be limited to
pinhole models, mostly due to the difficulty of training other
models.

[0031] Embodiments may be implemented to use a neural
camera model that is capable of learning a pixel-wise ray
surface that enables learning depth and pose estimates in a
self-supervised way from a wider variety of camera geom-
etries (i.e. pinhole, fisheye and catadioptric). Embodiments
extend this to include multi-camera training, with images
from a wide variety of cameras, including cameras at
different vehicles and cameras of different devices (i.e.
mobiles, dash cams, etc.), which may be used as a single
training dataset. Because embodiments may be configured to
decouple camera intrinsics from depth estimation, using a
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flexible neural network representation that produces pixel-
wise ray surface vectors for 3D lifting, embodiments may
learn from different camera geometries in the same way
(e.g., from the standard pinhole to more distorted models
such as fisheye and catadioptric). Furthermore, because
depth may be decoupled from intrinsics, the resulting depth
features can be applied to different camera geometries
transparently, generating much better transfer between dif-
ferent scenarios and conditions.

[0032] Embodiments may be implemented to leverage
different sources of images including leveraging and learn-
ing using multiple camera configurations. The various cam-
eras can include cameras mounted at different mounting
locations of the vehicle and in embodiments these cameras
may include different types of cameras, including cameras
otherwise intended for alternative purposes. In still further
embodiments, cameras mounted on different vehicles may
be used. Because these different cameras may have different
standards or calibration models, embodiments may represent
an improvement over conventional solutions by providing a
system that uses information from these various cameras at
training time to generate single depth model capable of
estimating accurate depth estimates from the various images
received from these cameras.

[0033] Rather than process information from multiple
cameras independently, which creates computational over-
head and limits the amount of training information that can
be used, embodiments represent an improvement in that they
allow simultaneous learning from multiple images from
multiple cameras. Further embodiments may leverage both
temporal contexts for monocular learning and spatial con-
texts for stereo learning based on camera overlaps. Stereo
learning may lead to metrically accurate models and
improved results especially in embodiments where the geo-
metric constraints are well defined and the frames are
captured at roughly the same time. Still further embodiments
may leverage learning from multiple images from a single
camera, using different images captured at different times
using different camera locations.

[0034] Embodiments may be implemented that perform
self-supervised learning from multiple camera positions
using a single neural network representation, including
intrinsic and extrinsic information. Embodiments are able to
model camera intrinsics and extrinsics simultaneously, with-
out the need for explicit supervision. Embodiments may
achieve depth of estimation without requiring curated data
sets composed of rectified, undistorted images, and through
the use of tools like a neural camera model, may use images
without being constrained to a single parametric camera
geometry.

[0035] Embodiments may be implemented using camera
intrinsic information that is either known or that is learned
such as, for example, through a camera model. Camera
extrinsics can be learned or fixed, embodiments may be
configured to model all camera intrinsics and extrinsics
simultaneously, without the need for explicit supervision.
However, prior information such as estimates for camera
intrinsics and extrinsics, if available, can be used.

[0036] The systems and methods disclosed herein may be
implemented with any of a number of different robots or
with different autonomous or semi-autonomous vehicles and
vehicle types. For example, the systems and methods dis-
closed herein may be used with cars, trucks, buses, con-
struction vehicles and other on- and off-road vehicles. These
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can include vehicles for transportation of people/personnel,
materials or other items. In addition, the technology dis-
closed herein may also extend to other vehicle types as well.
An example Autonomous Vehicle (AV) in which embodi-
ments of the disclosed technology may be implemented is
illustrated in FIG. 1.

[0037] Embodiments may be further implemented to
achieve an improved process for providing a dense semantic
and spatial understanding of the scene using cameras, with-
out the need for costly and complex LiDAR solutions, and
may provide a mechanism to self-supervise the task of
image-based depth estimation by bootstrapping geometric
constraints inherent in robots, or via sparse depth labels from
calibrated LiDAR sensors. Embodiments may be imple-
mented to preserve spatial information during the encoding
and decoding stages, thus allowing the generation of more
descriptive features, which leads to improved models.
[0038] FIG. 1 illustrates an example autonomous or semi-
autonomous vehicle with which embodiments of the dis-
closed technology may be implemented. In this example,
vehicle 100 includes a computing system 110, sensors 120,
AV control systems, 130 and vehicle systems 140. Vehicle
100 may include a greater or fewer quantity of systems and
subsystems and each could include multiple elements.
Accordingly, one or more of the functions of the technology
disclosed herein may be divided into additional functional or
physical components, or combined into fewer functional or
physical components. Additionally, although the systems
and subsystems illustrated in FIG. 1 are shown as being
partitioned in a particular way, the functions of vehicle 100
can be partitioned in other ways. For example, various
vehicle systems and subsystems can be combined in differ-
ent ways to share functionality.

[0039] Sensors 120 may include a plurality of different
sensors to gather data regarding vehicle 100, its operator, its
operation and its surrounding environment. In this example,
sensors 120 include lidar 111, radar 112, or other like the
distance measurement sensors, image sensors 113, throttle
and brake sensors 114, 3D accelerometers 115, steering
sensors 116, and a GPS or other vehicle positioning system
117. One or more of the sensors 120 may gather data and
send that data to the vehicle ECU or other processing unit.
Sensors 120 (and other vehicle components) may be dupli-
cated for redundancy.

[0040] Distance measuring sensors such as lidar 111, radar
112, IR sensors and other like sensors can be used to gather
data to measure distances and closing rates to various
external objects such as other vehicles, traffic signs, pedes-
trians, light poles and other objects. Image sensors 113 can
include one or more cameras or other image sensors to
capture images of the environment around the vehicle as
well as internal to the vehicle. Information from image
sensors 113 can be used to determine information about the
environment surrounding the vehicle 100 including, for
example, information regarding other objects surrounding
vehicle 100. For example, image sensors 113 may be able to
recognize landmarks or other features (including, e.g., street
signs, traffic lights, etc.), slope of the road, lines on the road,
curbs, objects to be avoided (e.g., other vehicles, pedestri-
ans, bicyclists, etc.) and other landmarks or features. Infor-
mation from image sensors 113 can be used in conjunction
with other information such as map data or information from
positioning system 117 to determine, refined or verify
vehicle location.
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[0041] Throttle and brake sensors 114 can be used to
gather data regarding throttle and brake application by a
human or autonomous operator. Accelerometers 115 may
include a 3D accelerometer to measure roll, pitch and yaw
of the vehicle. Accelerometers 115 may include any com-
bination of accelerometers and gyroscopes for the vehicle or
any of a number of systems or subsystems within the vehicle
to sense position and orientation changes based on inertia.
[0042] Steering sensors 116 (e.g., such as a steering angle
sensor) can be included to gather data regarding steering
input for the vehicle by a human or autonomous operator. A
steering sensor may include a position encoder monitor the
angle of the steering input in degrees. Analog sensors may
collect voltage differences that can be used to determine
information about the angle and turn direction, while digital
sensors may use an LED or other light source to detect the
angle of the steering input. A steering sensor may also
provide information on how rapidly the steering wheel is
being turned. A steering wheel being turned quickly is
generally normal during low-vehicle-speed operation and
generally unusual at highway speeds. If the driver is turning
the wheel at a fast rate while driving at highway speeds the
vehicle computing system may interpret that as an indication
that the vehicle is out of control. Steering sensor 116 may
also include a steering torque sensor to detect an amount of
force the driver is applying to the steering wheel.

[0043] Vehicle positioning system 117 (e.g., GPS or other
positioning system) can be used to gather position informa-
tion about a current location of the vehicle as well as other
positioning or navigation information.

[0044] Although not illustrated, other sensors 120 may be
provided as well. Various sensors 120 may be used to
provide input to computing system 110 and other systems of
vehicle 100 so that the systems have information useful to
operate in an autonomous, semi-autonomous or manual
mode.

[0045] AV control systems 130 may include a plurality of
different systems/subsystems to control operation of vehicle
100. In this example, AV control systems 130 include
steering unit 136, throttle and brake control unit 135, sensor
fusion module 131, computer vision module 134, pathing
module 138, and obstacle avoidance module 139. Sensor
fusion module 131 can be included to evaluate data from a
plurality of sensors, including sensors 120. Sensor fusion
module 131 may use computing system 110 or its own
computing system to execute algorithms to assess inputs
from the various sensors.

[0046] Throttle and brake control unit 135 can be used to
control actuation of throttle and braking mechanisms of the
vehicle to accelerate, slow down, stop or otherwise adjust
the speed of the vehicle. For example, the throttle unit can
control the operating speed of the engine or motor used to
provide motive power for the vehicle. Likewise, the brake
unit can be used to actuate brakes (e.g., disk, drum, etc.) or
engage regenerative braking (e.g., such as in a hybrid or
electric vehicle) to slow or stop the vehicle.

[0047] Steering unit 136 may include any of a number of
different mechanisms to control or alter the heading of the
vehicle. For example, steering unit 136 may include the
appropriate control mechanisms to adjust the orientation of
the front or rear wheels of the vehicle to accomplish changes
in direction of the vehicle during operation. Electronic,
hydraulic, mechanical or other steering mechanisms may be
controlled by steering unit 136.
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[0048] Computer vision module 134 may be included to
process image data (e.g., image data captured from image
sensors 113, or other image data) to evaluate the environ-
ment within or surrounding the vehicle. For example, algo-
rithms operating as part of computer vision module 134 can
evaluate still or moving images to determine features and
landmarks (e.g., road signs, traffic lights, lane markings and
other road boundaries, etc.), obstacles (e.g., pedestrians,
bicyclists, other vehicles, other obstructions in the path of
the subject vehicle) and other objects. The system can
include video tracking and other algorithms to recognize
objects such as the foregoing, estimate their speed, map the
surroundings, and so on.

[0049] Pathing module 138 may be included to compute a
desired path for vehicle 100 based on input from various
other sensors and systems. For example, pathing module 138
can use information from positioning system 117, sensor
fusion module 131, computer vision module 134, obstacle
avoidance module 139 (described below) and other systems
to determine a safe path to navigate the vehicle along a
segment of a desired route. Pathing module 138 may also be
configured to dynamically update the vehicle path as real-
time information is received from sensors 120 and other
control systems 130.

[0050] Obstacle avoidance module 139 can be included to
determine control inputs necessary to avoid obstacles
detected by sensors 120 or AV control systems 130. Obstacle
avoidance module 139 can work in conjunction with pathing
module 138 to determine an appropriate path to avoid a
detected obstacle.

[0051] Vehicle systems 140 may include a plurality of
different systems/subsystems to control operation of vehicle
100. In this example, AV control systems 130 include
steering system 121, throttle system 122, brakes 123, trans-
mission went 24, electronic control unit (ECU) 125 and
propulsion system 126. These vehicle systems 140 may be
controlled by AV control systems 130 in autonomous, semi-
autonomous or manual mode. For example, in autonomous
or semi-autonomous mode, AV control systems 130, alone or
in conjunction with other systems, can control vehicle
systems 140 to operate the vehicle in a fully or semi-
autonomous fashion. This may also include an assist mode
in which the vehicle takes over partial control or activates
ADAS controls to assist the driver with vehicle operation.

[0052] Computing system 110 in the illustrated example
includes a processor 106, and memory 103. Some or all of
the functions of vehicle 100 may be controlled by computing
system 110. Processor 106 can include one or more GPUs,
CPUs, microprocessors or any other suitable processing
system. Processor 106 may include one or more single core
or multicore processors. Processor 106 executes instructions
108 stored in a non-transitory computer readable medium,
such as memory 103.

[0053] Memory 103 may contain instructions (e.g., pro-
gram logic) executable by processor 106 to execute various
functions of vehicle 100, including those of vehicle systems
and subsystems. Memory 103 may contain additional
instructions as well, including instructions to transmit data
to, receive data from, interact with, and/or control one or
more of the sensors 120, AV control systems, 130 and
vehicle systems 140. In addition to the instructions, memory
103 may store data and other information used by the vehicle
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and its systems and subsystems for operation, including
operation of vehicle 100 in the autonomous, semi-autono-
mous or manual modes.

[0054] Although one computing system 110 is illustrated
in FIG. 1, in various embodiments multiple computing
systems 110 can be included. Additionally, one or more
systems and subsystems of vehicle 100 can include its own
dedicated or shared computing system 110, or a variant
thereof. Accordingly, although computing system 110 is
illustrated as a discrete computing system, this is for ease of
illustration only, and computing system 110 can be distrib-
uted among various vehicle systems or components.
[0055] Vehicle 100 may also include a wireless commu-
nication system (not illustrated) to communicate with other
vehicles, infrastructure elements, cloud components and
other external entities using any of a number of communi-
cation protocols including, for example, V2V, V2I and V2X
protocols. Such a wireless communication system may
allow vehicle 100 to receive information from other objects
including, for example, map data, data regarding infrastruc-
ture elements, data regarding operation and intention of
surrounding vehicles, and so on. A wireless communication
system may also allow vehicle 100 to transmit information
to other objects. In some applications, computing functions
for various embodiments disclosed herein may be performed
entirely on computing system 110, distributed among two or
more computing systems 110 of vehicle 100, performed on
a cloud-based platform, performed on an edge-based plat-
form, or performed on a combination of the foregoing.
[0056] The example of FIG. 1 is provided for illustration
purposes only as one example of vehicle systems with which
embodiments of the disclosed technology may be imple-
mented. One of ordinary skill in the art reading this descrip-
tion will understand how the disclosed embodiments can be
implemented with this and other vehicle and robotics plat-
forms.

[0057] FIG. 2 is a diagram illustrating an example system
for performing self-supervised depth and pose learning from
multiple images in accordance with various embodiments.
This example includes a self-supervised learning circuit 210
and one or more cameras 232 mounted to a subject vehicle.
Cameras 232 may include, for example, visible light cam-
eras, infrared cameras, thermal cameras, ultrasound cam-
eras, and other cameras configured to capture still or video
images 234 and producing an array of pixels or other image
elements.

[0058] FIG. 3 illustrates one example of a camera layout
on a passenger vehicle in accordance with various embodi-
ments. This example includes five cameras 232. Two for-
ward facing cameras 232, two side facing cameras 232 and
one rear facing camera 232. Although five cameras are
illustrated in this example, embodiments may be imple-
mented with a fewer or greater quantity of cameras 232. The
fields of view of cameras 232 can be configured to be
non-overlapping or overlapping or a combination thereof to
achieve the desired coverage.

[0059] The images 234 from the cameras 232 encompass
a field-of-view about the vehicle (or robot) of at least a
portion of the surrounding environment. For example, cam-
eras 232 may capture a given field-of-view such as 30°, 60°,
90°, 120° or other FOV span. Accordingly, captured images
may, in one approach, generally limited to a subregion of the
surrounding 360° environment. Depending on camera
mounting, images 234 may be of one or more of a forward-
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facing view (i.e., in the forward direction of travel) a rear
facing view, a side facing view, or some other subregion as
defined by the characteristics and mounting position of the
relevant camera 232. In further aspects, cameras 232 may be
mounted in an array of two or more cameras that capture
multiple images of the surrounding environment and may
include some overlap among the fields of view of the various
cameras. Instructions may cause the processor to stitch the
images 234 together to form a comprehensive 360° view (or
other view) of the surrounding environment.

[0060] Images from camera 232 may generally include
visual data of the FOV that may be encoded according to an
image standard (e.g., codec) associated with the camera 232.
In general, characteristics of the cameras 232 and the image
standard (as applicable) define a format of the captured
images 234. Thus, while the particular characteristics can
vary according to different implementations, in general, the
images 234 may have a specified resolution (i.e., height and
width in pixels) and format. Thus, for example, the images
may include RGB visible light image images, infrared
images, black & white images, or other suitable format as
may be desired.

[0061] Embodiments may be implemented to perform
self-supervised learning using images (e.g. images 234) for
which there is no explicit additional modality indicating
depth of objects within the images. Embodiments may be
configured to use self-supervised learning to learn the depths
of objects from multiple images, whether gathered tempo-
rally from a given camera, spatially from multiple cameras,
or a combination of temporal and spatial collection.

[0062] Self-supervised learning circuit 210 in this
example includes a communication circuit 201, a decision
circuit 203 (including a processor 206 and memory 208 in
this example) and a power supply 212. Components of
self-supervised learning circuit 210 are illustrated as com-
municating with each other via a data bus, although other
communication in interfaces can be included.

[0063] Processor 206 can include one or more GPUs,
CPUs, microprocessors, or any other suitable processing
system. Processor 206 may include a single core or multi-
core processors. The memory 208 may include one or more
various forms of memory or data storage (e.g., flash, RAM,
etc.) that may be used to store the calibration parameters,
images (analysis or historic), point parameters, instructions
and variables for processor 206 as well as any other suitable
information. Memory 208, can be made up of one or more
modules of one or more different types of memory, and may
be configured to store data and other information as well as
operational instructions that may be used by the processor
206 to self-supervised learning circuit 210.

[0064] Although the example of FIG. 2 is illustrated using
processor and memory circuitry, as described below with
reference to circuits disclosed herein, decision circuit 203
can be implemented utilizing any form of circuitry includ-
ing, for example, hardware, software, or a combination
thereof. By way of further example, one or more processors,
controllers, ASICs, PLLAs, PALs, CPLDs, FPGAs, logical
components, software routines or other mechanisms might
be implemented to make up a self-supervised learning
circuit 210.

[0065] Communication circuit 201 either or both a wire-
less transceiver circuit 202 with an associated antenna 214
and a wired /O interface 204 with an associated hardwired
data port (not illustrated). As this example illustrates, com-
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munications with self-supervised learning circuit 210 can
include either or both wired and wireless communications
circuits 201. Wireless transceiver circuit 202 can include a
transmitter and a receiver (not shown) to allow wireless
communications via any of a number of communication
protocols such as, for example, WiFi, Bluetooth, near field
communications (NFC), Zigbee, and any of a number of
other wireless communication protocols whether standard-
ized, proprietary, open, point-to-point, networked or other-
wise. Antenna 214 is coupled to wireless transceiver circuit
202 and is used by wireless transceiver circuit 202 to
transmit radio signals wirelessly to wireless equipment with
which it is connected and to receive radio signals as well.
These RF signals can include information of almost any sort
that is sent or received by self-supervised learning circuit
210 to/from other entities such as one or more cameras 232
and other vehicle sensors and systems as may be appropri-
ate.

[0066] Wired I/O interface 204 can include a transmitter
and a receiver (not shown) for hardwired communications
with other devices. For example, wired I/O interface 204 can
provide a hardwired interface to other components, includ-
ing sensors 152 and vehicle systems 158. Wired I/O inter-
face 204 can communicate with other devices using Ethernet
or any of a number of other wired communication protocols
whether standardized, proprietary, open, point-to-point, net-
worked or otherwise.

[0067] Power supply 212 can include one or more of a
battery or batteries (such as, e.g., Li-ion, Li-Polymer, NiMH,
NiCd, NiZn, and NiH,, to name a few, whether rechargeable
or primary batteries,), a power connector (e.g., to connect to
vehicle supplied power, etc.), an energy harvester (e.g., solar
cells, piezoelectric system, etc.), or it can include any other
suitable power supply.

[0068] As noted above, embodiments may be imple-
mented to train a neural network using multiple images (e.g.,
images 234) from multiple cameras (e.g., cameras 232) in a
self-supervised manner to train the model and to produce
depth maps for the images. In various implementations, the
self-supervised learning can be accomplished using images
from multiple cameras in which all images are treated as a
single entity, and learned simultaneously. This can include
camera intrinsics such as camera geometry as well as camera
extrinsics, which can include how the cameras are mounted
on the vehicle relative to one another. Embodiments may
also extend these solutions to a monocular configuration
using temporal image capture.

[0069] FIG. 4 is an operational flow diagram illustrating
an example process for self-supervised multi-camera mod-
eling in accordance with various embodiments. FIG. 5 is a
diagram illustrating an example architecture for self-super-
vised multi-camera modeling in accordance with various
embodiments. The architecture of FIG. 5 may be imple-
mented using, for example, one or more processors and
memory elements such as, for example, processor 206 and
memory 208.

[0070] Referring now to FIGS. 4 and 5, at operation 242
the self-supervised learning system receives images from
multiple cameras. This may be, for example, images 234
from cameras 232. By way of further example, image A 234
can be from a first camera 232 and image be can be from a
second camera 232. The system may perform one or more
pre-processing adjustments (e.g., brightness, contrast, color,
etc.) on the images prior to beginning the learning process.
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[0071] At operation 244, a depth encoder 271 operates on
image 234 A to predict a depth map 272 for the image. Depth
encoder 271 can be implemented in some applications as a
convolutional neural network (CNN) or other machine
learning algorithm. Depth encoder 271 may include, for
example, convolutional layers, pooling layers, rectified lin-
ear units (Rel.U), and/or other functional blocks that process
image 234 A to obtain depth information for pixels within
the image. In some implementations, encoder 271 can have
an encoder/decoder architecture and include an encoder
portion and a decoder portion. The input image may be
encoded into a feature vector network which is then fed to
successive up sampling layers to construct the final depth
map at the desired resolution. As seen in the example of FI1G.
5, depth encoders 271 can be provided for images from each
camera to produce depth maps 272 for the image frames
from each camera. Although only two images are shown
(each from its respective camera), embodiments may be
implemented with a greater quantity of cameras and thus a
greater quantity of images.

[0072] At operation 246, the image information, compris-
ing image A 234 with its corresponding depth map, is
warped by warping module 275 to be aligned with image B
234. Warping can be performed to warp the image to
reconstruct same viewpoints from another camera’s per-
spective. For example, warping module 275 can be config-
ured to warp image A 234 to reconstruct the image from the
viewpoint of the camera used to capture image B 234. As a
further example, warping module 275 can be configured to
warp image A 234 to reconstruct the image from the view-
points of multiple other cameras in the set of cameras. Each
of these other cameras may be referred to as a reference
camera, and images onto which the warped image is pro-
jected may be referred to as reference images.

[0073] Insome implementations, camera pose information
188 can be used to perform the warping. The pose informa-
tion 188 may include spatial offsets between the first camera
producing image A 234 and reference camera (e.g., in this
example the second camera producing image B 234). Given
the spatial offset between the cameras on the vehicle (e.g.,
image frame center-to-center positional offset) this informa-
tion can be used to warp image A 234 to the perspective of
the reference camera or cameras. In some implementations,
pose information 188 need not be provided, and can instead
be learned in a self-supervised way along with the pixel
depths. This can be useful even in embodiments where pose
information 188 is known, as it can compensate for the
additional changes such as changes based on mechanical
uncertainties or temperature-induced displacement.

[0074] At operation 248, a projection module 277 lifts
points from of the warped image from 2D to 3D and projects
them back to 2D to the image from the reference camera
(e.g., image B 234). The projection is based on the predicted
depth information as well as a camera model 189 for the
camera used to capture the image (in this case image A 234).
In some applications, the camera model for the camera
might not be known. Accordingly, embodiments can imple-
ment a camera model to provide the camera intrinsics used
to perform the lifting and projection. Projecting the warped
image onto the reference image comprises lifting 2D points
of the warped image to 3D points, determining a transfor-
mation between the two cameras and using the transforma-
tion to project the 3D points onto the reference image in 2D.
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The transformation may include a distance in three dimen-
sions between image sensors of the two cameras.

[0075] At operation 250, the 2D projected image can be
overlaid onto the image from the reference camera and the
difference in pixel locations between the warped image and
the reference image (e.g., image B 234) can be used to
determine loss in the depth prediction. If the depth mea-
surements are predicted properly by depth map 272 features
in the projected image should overlay with features in the
reference image with very little or no error. Ideally, the loss
in the depth prediction should go to zero, however various
factors may prevent that. For example, limitations in the
neural network and the presence of dynamic objects may
prevent the loss from reaching zero. Furthermore, too low of
a loss may indicate overfitting, meaning that the network
may perform very well at training time but does not gener-
alize to the test set.

[0076] These steps can be repeated multiple times to refine
the prediction and arrive at refine depth predictions as shown
at 252. At the beginning of the training, the initial depth
estimation may be a guess and therefore initial results are
expected to be random. As the training progresses through
multiple iterations, the depth predictions are refined and the
overlapping features in the projected image should tend to
overlay with those corresponding features in the reference
image or images. When the features overlay identically, or
within an acceptable level of tolerance, the self-supervised
learning he be said to have converged.

[0077] Where the images overlap from among two or
more of the cameras used, multiple images can be used to
cross train the model for depth predictions. Although the
example illustrated in FIG. 5 shows images 234 from two
cameras, this architecture can be extended to a quantity of
cameras greater than two where corresponding image frames
from multiple cameras are captured, a depth network used to
predict their depth maps, and the images (e.g. a subset of all
but one of the images) are warped and the loss computed.
Accordingly, some or all of the cameras in the system may
have corresponding encoders 271, warping modules 275 and
projection modules 277 to predict depth maps 272 for their
respective images, warp them to the perspective of one or
more reference cameras and project them to 3D and back to
a 2D image or images of the one or more reference cameras
and compute the loss or losses to determine convergence.
Accordingly, the example of FIG. 5 illustrates encoding,
warping and projection for image B 234 with the under-
standing that this functionality may be provided for each
camera in the system.

[0078] In addition to or instead of spatial overlap of
images, temporal overlap may also be used. For example,
instead of or in addition to projecting the warped image to
another camera in the same timestamp, the system can be
configured to project the warped image to the same camera
in another timestamp or to another camera in another
timestamp. Temporal overlap can be applied in a monocular
or stereoptic manner (e.g., a hybrid of monocular and
stereoptic) to train depth and pose for the cameras.

[0079] Embodiments may be implemented that rely on
overlap of images to achieve convergence of depth predic-
tions for features common to the overlapping images.
Embodiments may be also implemented to treat the system
of cameras as a single sensor even where there are not
necessarily overlapping fields of view.
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[0080] Embodiments may be implemented to leverage a
neural camera model, which as described in one example
below, may be configured to produce pixel-wise ray surface
vectors that enable the learning of any camera geometry,
going from the standard simple pinhole model to more
complex geometries such as fisheye and catadioptric. Imple-
mentations may combine the depth and intrinsic networks as
the same, with different heads to different outputs. However,
embodiments may be implemented to use two completely
different networks, thus decoupling depth and intrinsics so
they can produce specific features focused at each task.
Furthermore, as described above, embodiments may learn
from a single dataset, with images of the data set having
been produced from any camera model. Images may be
combined from multiple cameras simultaneously, which
enables the intrinsics network to generate features that are
generic enough to accommodate all the different camera
geometries used at training time. Embodiments may further
perform data augmentation in the form of modifications to
camera geometries, artificially changing parameters such as
focal length and distortions to increase the variability of
training data and by extension increasing the genericity of
resulting features.

[0081] However, the standard projective geometry for
cameras depends on a center of projection, and a system of
cameras is decidedly non-central. Embodiments may be
configured to use Pliicker vectors to remove the dependence
on a center of projection. Instead of separate unit vector-
based ray surface for each camera, embodiments may
instead have a collection of rays from all cameras in a
canonical coordinate frame. These rays may be parameter-
ized as Pliicker lines. Pixels in individual cameras on the
multi-camera rig may be replaced by the collection of rays
sampled by the multi-camera system.

[0082] Pliicker coordinates are homogeneous coordinates
for a line€l in 3-space. They have a line direction q and a
“moment vector” m where for any point p on 1, m=pxq. Note
that for ¢ not equal to 0, (q, m) and (¢ g, ¢ m) represent the
same line. Recalling that a line in 3-space has 4 degrees of
freedom, embodiments may set =1 and q m=0. Then the
equation for the set of all points along the line is (qxm)+aq
for all a R. In the case of generalized cameras, o represents
the Euclidean depth.

[0083] Consider the special case of a second camera,
where rotation R and translation t that transforms points
from the second camera’s coordinates to canonical frame
coordinates (e.g., the first camera). Then, for the Pliicker
vector (q,m) there will be a direction vector g=RK(x,y,1)”
and moment vector m=qxt. This can be used to describe a
list of vectors in the same space—for all pixels (x,y) in the
first image there is (K(x,y,1)%, 0)) as the rays, and in the
second camera for all pixels (x,y), (RK(x,y,1)%, RK(x,y,1)
Ixt).

[0084] For a collection of cameras i€{1, 2, 3, . . . },
mounted in arbitrary directions to a fixed frame, camera
extrinsics are known and represented by R,, t,. For ease of
discussion, assume that all of the cameras have the same
intrinsics K.

[0085] Replace each image pixel x,; in camera i with a ray
expressed as a Pliicker line that passes through the camera
center of 1 and the normalized image coordinate f(ij:K"lxij.
In this notation, the direction for the ray is q,=R,X,; and the
moment vector is m;=q,xt,. The Pliicker coordinate may be
referred to as I,=[q,;, m;].
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[0086] Consider the motion of the generalized camera
between time steps t and t+1 (or, alternatively, t—1 and t). In
the projective camera case the epipolar geometry can be
described by point correspondences, but instead of the
correspondence of two points is the intersection of two rays.
[0087] These corresponding rays may be referred to as
rays ;. I; .., and consider the transformation from t to t+1
of the generalized camera as being given by a global R, t.
This leads to the following generalized epipolar constraint:

E R
T
7,i+1 [R 0 ]ly',r =0

where, E is the standard essential matrix E=[t] R. The block
matrix in the middle is referred to as the “generalized
essential matrix.”

[0088] As described above, in conventional depth and
ego-motion settings, multiple all cameras are treated indi-
vidually. Accordingly, for camera i and time step t—t+1 the
depth-image based rendering equation, below, is used to
determine the correspondence between pixels x, and x,,;:

N N -
xt~KTt~>t+lDt+l (pt+ I)K Xer1

[0089] Over time, these pixel correspondences may
become quite good. In situations in which all the cameras are
identical and known and that the extrinsics is known these
known pixel correspondences can be converted into ray
correspondences, and pixels converted to Pliicker lines,
yielding [ &1, ;.

[0090] Embodiments may use the following procedure to
compute a single R, t from a collection of cameras. Perform
self-supervised ego-motion and depth individually for all
cameras, either sharing weights or training separately. Then,
after some warmup period begin to use the known (or
learned camera intrinsics) to lift the known pixel correspon-
dences into ray correspondences I,«I,. ,. Then, use the
generalized epipolar constraint to supervise a network pre-
dicting a generalized camera pose R, t. This network may
then take the set of all images at time t and at time t+1 and
concatenate them to produce a single R, t.

[0091] This network may be supervised by the following
loss term, the generalized epipolar loss (GEL):

E R
lger = l§;f+1[R 0 ]lij,r

which may be added as a term to the loss function of a shared
pose network, or to the loss of the individual pose networks.
[0092] Various above examples describe self-supervised
depth learning (or pose learning or both) using images from
multiple cameras simultaneously. Various above examples
also describe using multiple images captured at different
times instead of or in addition to images captured simulta-
neously from different cameras. The various cameras can
include cameras mounted at different mounting locations of
the vehicle and in embodiments these cameras may include
different types of cameras, including cameras otherwise
intended for alternative purposes. In still further embodi-
ments, cameras mounted on different vehicles may be used.
[0093] A further example can use a single camera that is
repositioned to capture fields of view from different per-
spectives in which at least portions of the captured scene are
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overlapping in the various fields of view. The images from
the different perspectives captured at different times can be
applied in the same manner as multiple images captured
from different cameras simultaneously, similar to that has
described above with reference to FIGS. 4 and 5.

[0094] Embodiments may be implemented to leverage the
neural camera model, which is described above, may be
configured to produce pixel-wise ray surface vectors that
enable the learning of any camera geometry, going from the
standard simple pinhole model to more complex geometries
such as fisheye and catadioptric. [mplementations may com-
bine the depth and intrinsic networks as the same, with
different heads to different outputs. However, embodiments
may be implemented to use two completely different net-
works, thus decoupling depth and intrinsics so they can
produce specific features focused at each task. Furthermore,
as described above, embodiments may learn from a single
dataset, with images of the data set having been produced
from any camera model. Images may be combined from
multiple cameras simultaneously, which enables the intrin-
sics network to generate features that are generic enough to
accommodate all the different camera geometries used at
training time. Embodiments may further perform data aug-
mentation in the form of modifications to camera geom-
etries, artificially changing parameters such as focal length
and distortions to increase the variability of training data and
by extension increasing the genericity of resulting features.
[0095] FIG. 6 is an operational flow diagram illustrating
an example process for self-supervised camera modeling
using the same camera in different camera positions in
accordance with various embodiments. The same or similar
architecture illustrated in FIG. 5 can be used to perform this
process in embodiments. Where a single camera is used and
moved from one mounting position to another to capture
multiple images, a first image can come from a camera at
one mounting position and a second image (e.g., the refer-
ence image) can come from the same camera at a different
mounting position. More than two different mounting posi-
tions can be utilized.

[0096] Referring now to FIG. 6, at operation 322 the
camera is mounted at a first mounting position (e.g., a
mounting position on the vehicle), and images are captured
using the camera. The self-supervised learning system
receives images captured using the camera at this first
mounting position. At operation 324, the camera is mounted
at a second mounting position (e.g., a mounting position on
a vehicle), and images are captured using the camera at the
second mounting position. The self-supervised learning sys-
tem receives images captured using the camera at the second
mounting position. The system may perform one or more
pre-processing adjustments (e.g., brightness, contrast, color,
etc.) on the images prior to beginning the learning process.
[0097] At operation 326, a depth encoder (e.g., depth
encoder 271) operates on the image received from the
camera the first mounting position to predict a depth map
(e.g., depth map 272) for the image. The depth encoder can
be implemented in some applications as a convolutional
neural network (CNN) or other machine learning algorithm.
The depth encoder may include, for example, convolutional
layers, pooling layers, rectified linear units (ReLU), and/or
other functional blocks that process the received image to
obtain depth information for pixels within the image. In
some implementations, the depth encoder can have an
encoder/decoder architecture and include an encoder portion
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and a decoder portion. The input image may be encoded into
a feature vector network which is then fed to successive up
sampling layers to construct the final depth map at the
desired resolution.

[0098] Similar to the example of FIG. 5, depth encoders
can be provided for images from each camera mounting
position to produce depth maps for the image frames from
the camera mounted at each position. Although only two
images are shown (each from its respective camera mount-
ing position), embodiments may be implemented with a
greater quantity of camera mounting positions and thus a
greater quantity of images.

[0099] At operation 328, the image information from the
image captured by the camera the first mounting position, is
warped by a warping module (e.g., warping module 275) to
be aligned with a corresponding image captured by the
camera added second mounting position. Warping can be
performed to warp the image to reconstruct the same view-
points from the camera’s perspective at the different mount-
ing position. For example, the warping module can be
configured to warp the image captured at the first mounting
position to reconstruct the image from the viewpoint of the
camera used to capture images at the second mounting
position. As a further example, the warping module can be
configured to warp received image from the first mounting
position to reconstruct the image from the viewpoints of
multiple other camera mounting positions. Images from
each of these other camera mounting positions may be
referred to as a reference image.

[0100] Insome implementations, camera pose information
can be used to perform the warping. The pose information
may include spatial offsets between the first camera produc-
ing image and camera mounted to capture the reference
image. Given the spatial offset between the camera mount-
ing positions on the vehicle (e.g., image frame center-to-
center positional offset) this information can be used to warp
the image received by the camera the first mounting position
to the perspective of the camera or cameras at another
mounting position. In some implementations, pose informa-
tion need not be provided, and can instead be learned in a
self-supervised way along with the pixel depths. This can be
useful even in embodiments where pose information is
known, as it can compensate for the additional changes such
as changes based on mechanical uncertainties or tempera-
ture-induced displacement. The transformation used for
image warping can consider not only the transformation
required to account for different mounting positions on the
vehicle, but can be augmented to include information to
reflect any distance traveled between the relative times of
image capture. Pose can be trained, for example, using a
pose network (not shown in FIG. 5) that can be configured
to receive image A 234 and image B 235 and to predict the
spatial offset based on differences between the images.
Either or both (or all if more than two) images may be
transformed based on a predicted pose to overlay onto the
other image and the loss computed. The loss can be used to
alter the transformation and update the prediction.

[0101] At operation 330, a projection module (e.g., pro-
jection module 277) lifts points from of the warped image
from 2D to 3D and projects them back to 2D to the image
from the camera at the second mounting position. The
projection is based on the predicted depth information as
well as a camera model for the camera used to capture the
image. In some applications, the camera model for the
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camera might not be known. Accordingly, embodiments can
implement a camera model to provide the camera intrinsics
used to perform the lifting and projection. In various
embodiments, the warped image

[0102] At operation 332, the 2D projected image can be
overlaid onto the image from the camera at the second
mounting location and the difference in pixel locations
between the warped image and the reference image can be
used to determine loss in the depth prediction. If the depth
measurements are predicted properly by depth map features
in the projected image should overlay with features in the
reference image with very little or no error.

[0103] These steps can be repeated multiple times to refine
the prediction and arrive at refine depth predictions as shown
at 334. At the beginning of the training, the initial depth
estimation may be a guess and therefore initial results are
expected to be random. As the training progresses through
multiple iterations, the depth predictions are refined and the
overlapping features in the projected image should tend to
overlay with those corresponding features in the reference
image or images. When the features overlay identically, or
within an acceptable level of tolerance, the self-supervised
learning he be said to have converged.

[0104] As noted above, embodiments may use a camera
model to model camera intrinsics. This can be useful, for
example, in applications in which camera calibration infor-
mation is not known. A camera model may also be used to
allow multiple cameras of different camera types to be used,
again without knowing camera intrinsics for some or all of
the various different camera types.

[0105] In a self-supervised monocular structure-from-mo-
tion setting, a neural camera model may be configured to
learn: (a) a depth model fd:1—D, that predicts a depth value
d"=fd(I(p)) for every pixel p=[u, v]” in the target image I, (up
to a scale factor); and (b) an ego-motion model f:(I,
10)—=X,_, -, that predicts the rigid transformations for all
cEC given by X,_, =%, )ESE(3), between the target image
1, and a set of context images [ €], taken as adjacent frames
in a video sequence.

[0106] Embodiments may be configured to train depth and
pose networks simultaneously in a self-supervised manner.
This may be achieved by projecting pixels from a context
image I onto a target image [, and minimizing the photo-
metric reprojection error between original target image, 1,
and synthesized 1, images.

[0107] The image synthesis operation in various embodi-
ments may be performed using Spatial Transformer Net-
works (STNs) via grid sampling with bilinear interpolation,
and may thus be fully differentiable. FIG. 7 illustrates an
example architecture of a spatial transformer module in
accordance with various embodiments. In this example, an
input feature map 383 is provided to a localization network
384. Localization network 384 may be configured to regress
the transformation parameters 6. The regular spatial grid
may be transformed to a sampling grid 386. Sampling grid
386 may be applied to the input feature map via sampler 388
to produce warped output feature map 389. The combination
of the localization network 384 and sampling mechanism
(e.g., sampler 388) defines the example spatial transformer
depicted in this embodiment.

[0108] In various embodiments, the pixel-wise warping
may take the form of:

DR Dy D) (6]
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where ¢(p, d)=P is responsible for 2D-to-3D conversion by
lifting an image pixel in homogeneous coordinates p=[u, v,
1]” to a 3D point P=[x, y, z]” based on its depth value d.
Conversely, n(P)=p projects a 3D point back onto the image
plane as a pixel. For the standard pinhole camera model,
used in many conventional learning-based monocular depth
estimation algorithms, these functions have a closed-form
solution and can be calculated as:
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with intrinsics matrix K, focal length (f,, f )} and principal
point (c,, c,). These parameters are usually assumed to be
known, obtained using prior independent calibration tech-
niques, or are learned as additional variables during the
training stage.

[0109] The self-supervised objective loss to be minimized
is of the form:

£, Ip=£ (1, 10+hsE D), )

which is the combination of an appearance-based loss -,
and a weighted depth smoothness loss ¢ ,, described below
in more detail. This loss is then averaged per pixel and batch
during training to produce the final value to be minimized.
For simplicity, embodiments may be implemented that do
not explicitly model dynamic objects (which break the static
scene assumption), although these could be easily incorpo-
rated into various embodiments framework to further
improve experimental results.

[0110] A camera model may be defined by two operations:
the lifting of 3D points from 2D image pixels, i.e., ¢(p, d)=P;
and the projection of 3D points onto the image plane, i.e.,
n(P)=p. A standard pinhole perspective model provides
closed-form solutions to these two operations, as matrix-
vector products using the closed-form solution (Equations
2-3, above). Typical camera models include a ray surface
that associates each pixel with a corresponding direction,
offering a generic association between 3D points and image
pixels. However, although lifting is simple and can be
computed in closed form, the projection operation has no
closed-form solution and is non-differentiable, which makes
such models unsuitable for learning-based applications.
[0111] Accordingly, embodiments may use a neural cam-
era model that is differentiable, and thus amenable to end-
to-end learning in a self-supervised monocular setting. FIG.
8 illustrates an example of a training architecture in accor-
dance with various embodiments. This example provides a
self-supervised monocular depth pose and ray surface esti-
mation architecture in accordance with various embodi-
ments. This example operates on multiple images, a target
image 422 and a context image 423. Target image 422 is
provided to a shared encoder 425.

[0112] In various embodiments, for each pixel p=[u, v]7,
a corresponding camera center S(u, v) may be introduced as
a 3D point and a unitary ray surface vector Q(u, v)e R >, with
D(u, v) representing the scene depth along the ray. Note that,
for central cameras, the camera center is the same for all
points, so that S(u, v)=S, V(u, v).
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[0113] The shared encoder 425 may be configured to
accept an image as input, and map it to a feature space that
encodes both high-level image properties such as structure,
as well as artefacts that may be due to the camera configu-
ration, such as various distortions. These features are then
“decoded” in depth decoder 426 and ray surface decoder 428
to yield the per pixel depth and per pixel ray surface.
[0114] Embodiments include a depth decoder 426, which
may be implemented to provide a predicted depth map 442
for the target image. Embodiments may also include a ray
surface decoder 428 that predicts a Q"=f,(I) to produce a
predicted ray surface estimate 444 in the form of, f,:I>Q.
[0115] As shown in the example of FIG. 8, embodiments
may be configured to train the depth and pose networks
simultaneously in a self-supervised manner. Accordingly,
target image 422 and context image 423 are provided to train
a pose network 432. Training the depth and pose networks
simultaneously in a self-supervised manner may be achieved
by projecting pixels from the context image [.. onto the target
image [,, and minimizing the photometric reprojection error
between original I, and synthesized 1, images.

[0116] Embodiments may be implemented to accommo-
date appearance-based loss. the similarity between target It
and warped I, images may be estimated in some embodi-
ments at the pixel level using Structural Similarity (SSIM)
combined with an L1 loss term:

. 1-8smm(n, 1 N )
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[0117] In order to increase robustness against parallax or
the presence of dynamic objects, embodiments may be
implemented to consider only the minimum pixel-wise
photometric loss value for each context image in I .. The
intuition is that the same pixel will not be occluded or
out-of-bounds in all context images, and its association with
minimal photometric loss should be correct. Similarly,
embodiments may mask out static pixels by removing those
with a warped photometric loss ¢z, (I,, f,) higher than their
original photometric loss ¢ , (I, L.).

[0118] Embodiments may compute a depth smoothness
loss 462 operating on the predicted depth map 442 and the
target image 422. To regularize the depth in textureless
image regions, embodiments may incorporate an edge-
aware term that penalizes high depth gradients in areas with
low color gradients:

L'S(Dt):lSXDtIe"a””‘*‘a}ﬁtle"ay”‘, 6)

[0119] Given the above definitions, for any pixel p its
corresponding 3D point P can be obtained as follows:

P(u, v)=S(u, v)+D(@u, v)O(u, v) (©)

[0120] In other words, embodiments may scale the pre-
dicted ray vector “Q(u, v) by the predicted depth "D(u, v) and
offset it by the camera center S(u, v), which is the same for
all pixels in a central camera. However, because embodi-
ments may operate in a purely self-supervised monocular
learning-based setting, the resulting depth and pose esti-
mates are in some embodiments generated only up to a scale
factor. This means that, for simplicity and without loss of
generality, the system can assume that the camera center
coincidences with the origin of the reference coordinate
system and set S(u, v)=[0, 0, O]TVu, vel.
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[0121] Consider P={P,;}Hj=1W, produced by lifting pix-
els from I, as 3D points. In the standard pinhole camera
model, projection is a simple matrix-vector product (Equa-
tion 3). For embodiments of the neural camera model,
however, for each 3D point P; the process identifies the
corresponding pixel p,el. with ray surface vector "Q="Q,
(p;) that most closely matches the direction of Pj to the
camera center S_. Call this direction r,—j=P~S.. Thus, the
process finds p*; such that:

P} =arg ;ng(@c(pf), Fenrs) @
[0122] Solving this problem may include searching over

the entire ray surface “Q. and can be computationally expen-
sive: a camera producing images of resolution HXW would
require a total of (HW)? evaluations, as each 3D point from
Pt can be associated with any pixel from the context image,
I.. Additionally, the argmax (the elements of the domain of
the function at which the function values are maximized)
operation is non-differentiable, which precludes its use in an
end-to-end learning-based setting. Example solutions to
each of these issues are presented below, which in conjunc-
tion enable the simultaneous learning of depth, pose and our
proposed neural camera model in a fully self-supervised
monocular setting.

[0123] To project the 3D points Pt onto context image I,
embodiments may find for each Pje Pt the corresponding
pixel piel. with surface ray "Qi closest to the direction
rc,j=Pj—S_. Taking the dot product of each direction rc—.j
with each ray vector "Qi, we obtain a (HXW)? tensor M
where each coefficient Mij=("Qi , ,._, =M(pi, Pj) represents
the similarity between "Qi and rc—.j. With this notation,
projection for a neural camera model may be given by
selecting the i* index for each Pj with:

i* = arg max M(p;, P;) €))

[0124] To make this projection operation differentiable,
embodiments may substitute argmax with a softmax with
temperature T, thus obtaining a new tensor M defined as:

o Py = exp(M(ps:, Py)/r) (10)
TS exolot e 1)
[0125] Softmax is a function that takes an vector of N real

numbers, and normalizes it into a probability distribution of
N probabilities proportional to the exponentials of the input
numbers.

[0126] Embodiments may anneal the temperature over
time so that the tensor becomes approximately one-hot for
each pixel. The 2D-3D association used for projection may
be obtained by multiplying with a vector of pixel indices.
Thus, projection can now be implemented in a fully differ-
entiable way using STNs.

[0127] FIG. 9 is a diagram illustrating an example com-
parison of lifting and projection operations between the
standard pinhole and various embodiments of the neural
camera model. The standard pinhole model is shown at 520
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and shows the rigid transformation Xt—c. The example at
540 shows embodiments of the neural camera model, for a
single pixel p; considering target I, and context I. images.
Straight arrows in the example at 540 represent unitary ray
surface vectors Q(p), drawn out of scale to facilitate visu-
alization. In this example, pl is associated to pj, because it
satisfies Equation 9.

[0128] In the structure-from-motion setting, learning a
randomly initialized ray surface is similar to learning 3D
scene flow, which is typically a challenging problem when
no calibration is available, particularly when considering
self-supervision. To avoid this random initialization,
embodiments may be configured to learn instead a residual
ray surface “Q,, that is added to a fixed ray surface template
Q, to produce Q"=Qu+A,"Q,. The introduction of such tem-
plate allows the injection of geometric priors into the
learning framework, because if some form of camera cali-
bration is known—even if only an approximation—the
system can generate its corresponding ray surface, and use
this as a starting point for further refinement using the
learned ray surface residual.

[0129] If no such information is available, embodiments
may be configured to initialize a “dummy” template based
on a pinhole camera model, obtained by lifting a plane at a
fixed distance (Equation 2) and normalizing its surface. For
stability, embodiments may be configured to start training
only with the template Q, and gradually introducing the
residual "Q,, by increasing the value of A,. Interestingly, this
pinhole prior significantly improves training stability and
convergence speed even in a decidedly non-pinhole setting
(i.e., catadioptric cameras).

[0130] In a generalized version of the neural camera
model, rays at each pixel are independent and can point in
completely different directions. Because of that, Equation 9
requires searching over the entire image. This may quickly
become computationally infeasible at training time even for
lower resolution images, both in terms of speed and memory
footprint. To alleviate such heavy requirements, embodi-
ments may be configured to restrict the optimal projection
search (Equation 10) to a small hxw grid in the context
image I surrounding the (u, v) coordinates of the target pixel
p,- The motivation is that, in most cases, camera motion will
be small enough to produce correct associations within this
neighborhood, especially when using the residual ray sur-
face template described above. To further reduce memory
requirements, the search may be performed on the predicted
ray surface at half-resolution, which is then upsampled using
bilinear interpolation to produce pixel-wise estimates. At
test-time none of these approximations are necessary, and
we can predict a full-resolution ray surface directly from the
input image.

[0131] As used herein, the term module may be used
describe a given unit of functionality that can be performed
in accordance with one or more embodiments of the present
application. As used herein, a module might be implemented
utilizing any form of hardware, software, or a combination
thereof. For example, one or more processors, controllers,
ASICs, PLAs, PALs, CPLDs, FPGAs, logical components,
software routines or other mechanisms might be imple-
mented to make up a module. Various components described
herein may be implemented as discrete module or described
functions and features can be shared in part or in total among
one or more modules. In other words, as would be apparent
to one of ordinary skill in the art after reading this descrip-
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tion, the various features and functionality described herein
may be implemented in any given application. They can be
implemented in one or more separate or shared modules in
various combinations and permutations. Although various
features or functional elements may be individually
described or claimed as separate components, it should be
understood that these features/functionality can be shared
among one or more common software and hardware ele-
ments. Such a description shall not require or imply that
separate hardware or software components are used to
implement such features or functionality.

[0132] Where modules are implemented in whole or in
part using software, these software elements can be imple-
mented to operate with a computing or processing compo-
nent capable of carrying out the functionality described with
respect thereto. One such example computing component is
shown in FIG. 10. Various embodiments are described in
terms of this example-computing component 700. After
reading this description, it will become apparent to a person
skilled in the relevant art how to implement the application
using other computing components or architectures.

[0133] Referring now to FIG. 10, computing component
700 may represent, for example, computing or processing
capabilities found within a self-adjusting display, desktop,
laptop, notebook, and tablet computers. They may be found
in hand-held computing devices (tablets, PDA’s, smart
phones, cell phones, palmtops, etc.). They may be found in
workstations or other devices with displays, servers, or any
other type of special-purpose or general-purpose computing
devices as may be desirable or appropriate for a given
application or environment. Computing component 700
might also represent computing capabilities embedded
within or otherwise available to a given device. For
example, a computing component might be found in other
electronic devices such as, for example, portable computing
devices, and other electronic devices that might include
some form of processing capability.

[0134] Computing component 700 might include, for
example, one or more processors, controllers, control com-
ponents, or other processing devices. Processor 704 might
be implemented using a general-purpose or special-purpose
processing engine such as, for example, a microprocessor,
controller, or other control logic. Processor 704 may be
connected to a bus 702. However, any communication
medium can be used to facilitate interaction with other
components of computing component 700 or to communi-
cate externally.

[0135] Computing component 700 might also include one
or more memory components, simply referred to herein as
main memory 708. For example, random access memory
(RAM) or other dynamic memory, might be used for storing
information and instructions to be executed by processor
704. Main memory 708 might also be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
704. Computing component 700 might likewise include a
read only memory (“ROM?”) or other static storage device
coupled to bus 702 for storing static information and instruc-
tions for processor 704.

[0136] The computing component 700 might also include
one or more various forms of information storage mecha-
nism 710, which might include, for example, a media drive
712 and a storage unit interface 720. The media drive 712
might include a drive or other mechanism to support fixed or
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removable storage media 714. For example, a hard disk
drive, a solid-state drive, a magnetic tape drive, an optical
drive, a compact disc (CD) or digital video disc (DVD) drive
(R or RW), or other removable or fixed media drive might
be provided. Storage media 714 might include, for example,
a hard disk, an integrated circuit assembly, magnetic tape,
cartridge, optical disk, a CD or DVD. Storage media 714
may be any other fixed or removable medium that is read by,
written to or accessed by media drive 712. As these
examples illustrate, the storage media 714 can include a
computer usable storage medium having stored therein
computer software or data.

[0137] In alternative embodiments, information storage
mechanism 710 might include other similar instrumentali-
ties for allowing computer programs or other instructions or
data to be loaded into computing component 700. Such
instrumentalities might include, for example, a fixed or
removable storage unit 722 and an interface 720. Examples
of such storage units 722 and interfaces 720 can include a
program cartridge and cartridge interface, a removable
memory (for example, a flash memory or other removable
memory component) and memory slot. Other examples may
include a PCMCIA slot and card, and other fixed or remov-
able storage units 722 and interfaces 720 that allow software
and data to be transferred from storage unit 722 to comput-
ing component 700.

[0138] Computing component 700 might also include a
communications interface 724. Communications interface
724 might be used to allow software and data to be trans-
ferred between computing component 700 and external
devices. Examples of communications interface 724 might
include a modem or softmodem, a network interface (such
as Ethernet, network interface card, IEEE 802 XX or other
interface). Other examples include a communications port
(such as for example, a USB port, IR port, RS232 port
Bluetooth® interface, or other port), or other communica-
tions interface. Software/data transferred via communica-
tions interface 724 may be carried on signals, which can be
electronic, electromagnetic (which includes optical) or other
signals capable of being exchanged by a given communi-
cations interface 724. These signals might be provided to
communications interface 724 via a channel 728. Channel
728 might carry signals and might be implemented using a
wired or wireless communication medium. Some examples
of a channel might include a phone line, a cellular link, an
RF link, an optical link, a network interface, a local or wide
area network, and other wired or wireless communications
channels.

[0139] In this document, the terms “computer program
medium” and “computer usable medium” are used to gen-
erally refer to transitory or non-transitory media. Such media
may be, e.g., memory 708, storage unit 720, media 714, and
channel 728. These and other various forms of computer
program media or computer usable media may be involved
in carrying one or more sequences of one or more instruc-
tions to a processing device for execution. Such instructions
embodied on the medium, are generally referred to as
“computer program code” or a “computer program product”
(which may be grouped in the form of computer programs
or other groupings). When executed, such instructions might
enable the computing component 700 to perform features or
functions of the present application as discussed herein.

[0140] It should be understood that the various features,
aspects and functionality described in one or more of the
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individual embodiments are not limited in their applicability
to the particular embodiment with which they are described.
Instead, they can be applied, alone or in various combina-
tions, to one or more other embodiments, whether or not
such embodiments are described and whether or not such
features are presented as being a part of a described embodi-
ment. Thus, the breadth and scope of the present application
should not be limited by any of the above-described exem-
plary embodiments.

[0141] Terms and phrases used in this document, and
variations thereof, unless otherwise expressly stated, should
be construed as open ended as opposed to limiting. As
examples of the foregoing, the term “including” should be
read as meaning “including, without limitation” or the like.
The term “example” is used to provide exemplary instances
of the item in discussion, not an exhaustive or limiting list
thereof. The terms “a” or “an” should be read as meaning “at
least one,” “one or more” or the like; and adjectives such as
“conventional,”  “traditional,”  “‘normal,” “standard,”
“known.” Terms of similar meaning should not be construed
as limiting the item described to a given time period or to an
item available as of a given time. Instead, they should be
read to encompass conventional, traditional, normal, or
standard technologies that may be available or known now
or at any time in the future. Where this document refers to
technologies that would be apparent or known to one of
ordinary skill in the art, such technologies encompass those
apparent or known to the skilled artisan now or at any time
in the future.

[0142] The presence of broadening words and phrases
such as “one or more,” “at least,” “but not limited to” or
other like phrases in some instances shall not be read to
mean that the narrower case is intended or required in
instances where such broadening phrases may be absent.
The use of the term “component” does not imply that the
aspects or functionality described or claimed as part of the
component are all configured in a common package. Indeed,
any or all of the various aspects of a component, whether
control logic or other components, can be combined in a
single package or separately maintained and can further be
distributed in multiple groupings or packages or across
multiple locations.

[0143] Additionally, the various embodiments set forth
herein are described in terms of exemplary block diagrams,
flow charts and other illustrations. As will become apparent
to one of ordinary skill in the art after reading this document,
the illustrated embodiments and their various alternatives
can be implemented without confinement to the illustrated
examples. For example, block diagrams and their accompa-
nying description should not be construed as mandating a
particular architecture or configuration.

What is claimed is:

1. A method of self-supervised depth estimation using
image frames captured from cameras, comprising:

receiving a first image captured by a first camera mounted
at a first camera mounting location, the first image
comprising pixels representing a first scene of an
environment of a vehicle;

receiving a reference image from a second camera
mounted at a second camera mounting location, the
reference image comprising pixels representing a sec-
ond scene of the environment of the vehicle;
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predicting a depth map for the first image, the depth map
comprising predicted depth values for pixels of the first
image;

warping the first image to a perspective of the second

camera at the second camera mounting location to
arrive at a warped first image;

projecting the warped first image onto the reference

image; and

determining a loss in the predicted depth values based on

the projection.

2. The method of claim 1, wherein the first camera
mounting location is a first location on the vehicle and the
second camera mounting location is a second location on the
vehicle.

3. The method of claim 1, further comprising:

updating the predicted depth values for the first image

based on the loss; and

reiterating the operations of warping the first image,

projecting the warped first image and determining a
loss using the updated predicted depth values for the
first image.

4. The method of claim 1, wherein projecting is performed
using a neural camera model to model intrinsic parameters
of the first camera.

5. The method of claim 1, further comprising predicting
a transformation from the first camera mounting location to
the second camera mounting location based on loss calcu-
lations between the warped first image and the reference
image.

6. The method of claim 1, wherein projecting the warped
first image onto the reference image comprises lifting 2D
points of the warped first image to 3D points, determining a
transformation between the first camera mounting location
and the second camera mounting location, and using the
transformation to project the 3D points onto the reference
image in 2D.

7. The method of claim 6, wherein the transformation
comprises a distance in three dimensions between image
sensors of the first and second cameras.

8. A system for self-supervised learning depth estimation
using image frames captured by cameras, the system com-
prising:

a non-transitory memory configured to store instructions;

a processor configured to execute the instructions to

perform the operations of:

receiving a first image captured by a first camera
mounted at a first camera mounting location, the first
image comprising pixels representing a first scene of
an environment of a vehicle;

receiving a reference image captured by a second
camera mounted at a second camera mounting loca-
tion, the reference image comprising pixels repre-
senting a second scene of the environment of the
vehicle;

predicting a depth map for the first image, the depth
map comprising predicted depth values for pixels of
the first image;

warping the first image to a perspective of the second
camera at the second camera mounting location to
arrive at a warped first image;

projecting the warped first image onto the reference
image; and

determining a loss in the predicted depth values based
on the projection.
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9. The system of claim 8, wherein the first camera
mounting location is a first location on the vehicle and the
second camera mounting location is a second location on the
vehicle.

10. The system of claim 8, wherein the operations further
comprise:

updating the predicted depth values for the first image
based on the loss; and

reiterating the operations of warping the first image,
projecting the warped first image and determining a
loss using the updated predicted depth values for the
first image.

11. The system of claim 8, wherein projecting is per-
formed using a neural camera model to model intrinsic
parameters of the first camera.

12. The system of claim 8, wherein the operations further
comprise predicting a transformation from the first camera
mounting location to the second camera mounting location
based on loss calculations between the warped first image
and the reference image.

13. The system of claim 8, wherein projecting the warped
first image onto the reference image comprises lifting 2D
points of the warped first image to 3D points, determining a
transformation between the first camera mounting location
and the second camera mounting location and using the
transformation to project the 3D points onto the reference
image in 2D.

14. The system of claim 13, wherein the transformation
comprises a distance in three dimensions between image
sensors of the first and second cameras.

15. A system for self-supervised learning depth estima-
tion, the system comprising:

a first camera mounted at a first camera mounting loca-
tion, wherein the first camera captures a first image, the
first image comprising pixels representing a first scene
of an environment of a vehicle;

a second camera mounted at a second camera mounting
location, wherein the second camera captures a refer-
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ence image, the reference image comprising pixels
representing a second scene of the environment of the
vehicle;

an ECU including machine executable instructions in

non-transitory memory to perform a method compris-

ing:

predicting a depth map for the first image, the depth
map comprising predicted depth values for pixels of
the first image;

warping the first image to a perspective of the second
camera at the second camera mounting location to
arrive at a warped first image;

projecting the warped first image onto the reference
image; and

determining a loss in the predicted depth values based
on the projection.

16. The system of claim 15, wherein the first camera
mounting location is a first location on the vehicle and the
second camera mounting location is a second location on the
vehicle.

17. The system of claim 15, further comprising a neural
camera model configured to model intrinsic parameters of
the first camera.

18. The system of claim 15, wherein the operations further
comprise predicting a transformation from the first camera
mounting location to the second camera mounting location
based on loss calculations between the warped first image
and the reference image.

19. The system of claim 15, wherein projecting the
warped first image onto the reference image comprises
lifting 2D points of the warped first image to 3D points,
determining a transformation between the first camera
mounting location and the second camera mounting location
and using the transformation to project the 3D points onto
the reference image in 2D.

20. The system of claim 15, wherein the transformation
comprises a distance in three dimensions between image
sensors of the first and second cameras.
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