US 20200272707A1

a2y Patent Application Publication o) Pub. No.: US 2020/0272707 A1l

a9y United States

Mallappa (43) Pub. Date: Aug. 27, 2020
(54) SYSTEMS AND METHODS FOR IMPORTING (52) U.S. CL
SOFTWARE LICENSE METRIC DATA INTO CPC ... GO6F 21/105 (2013.01); GO6F 16/2282
A CONFIGURATION MANAGEMENT (2019.01); GO6F 16/285 (2019.01); GO6F
DATABASE (CMDB) 9/54 (2013.01)
(57) ABSTRACT

(71) Applicant: ServiceNow, Inc., Santa Clara, CA
(US)

(72) Inventor: Preetam Mallappa, San Jose, CA (US)

(21) Appl. No.: 16/287,655

(22) Filed: Feb. 27, 2019
Publication Classification
(51) Int. CL
GOGF 21/10 (2006.01)
GOG6F 9/54 (2006.01)
GOGF 16/28 (2006.01)
GOGF 16/22 (2006.01)
250~

The present disclosure relates to importing license data from
a license metric tool server (LMTS) into a configuration
management database (CMDB). License records are
requested and received from the LMTS and are subsequently
imported as into the CMDB of a client instance as configu-
ration item (CI) data. In certain circumstances, a license
record may have an identifier field (ID) value that does not
correspond to a CI of the CMDB, resulting in the license
record failing to import. The disclosed process involves
flagging license records that fail import, and then clustering
the flagged license records into suitable groups. The flagged
license records are then re-pulled from the LMTS in groups,
rather than using individual requests for each flagged license
record. By effectively clustering of the flagged license
records into groups, the disclosed importation process
enables a reduction in processing, memory, and/or commu-
nication overhead, improving operation of the client
instance.

PERFORMING AN INITIAL REQUEST TO A LICENSE METRIC TOOL
SERVER (LMTS) FOR A SERIES OF RECORDS HAVING 1Ds RANGING 252
FROM A FIRST ID VALUE TO A LAST ID VALUE, WHEREIN THE SPAN
OF THE SERIES OF RECORDS, A, 1S DEFINED AS THE DIFFERENCE
BETWEEN THE LAST ID VALUE AND THE FIRST ID VALUE

RECEIVING THE SERIES OF RECORDS FROM THE LMTS AND STORING
THE SERIES OF RECORDS IN AN IMPORT TABLE

!

ATTEMPTING 7O IMPORT INTO A CMDB THE SERIES OF RECORDS | 256
—i FROM THE IMPORT TABLE AS CIDATA AND FLAGGING RECORDS FOR
WHICH A CORRESPONDING CID IS NOT IDENTIFIED IN THE CMDB

260
276

AT
LEAST ONE
FLAGGED RECORD

262

%6

DETERMINING A MINIMUM DIFFERENCE (M) BETWEEN THE iDs OF ALL
OF THE FLAGGED RECORDS IN THE IMPORT TABLE

!

r268

TRAVERSING THE RECORDS IN THE IMPORT TABLE USING A SLIDING
WINDOW HAVING A SIZE THAT IS VARIED BETWEEN M AND A /2 TO
CLUSTER THE FLAGGED RECORDS INTO DIFFERENT GROUPS

f270

DETERMINING THE SLIDING WINDOW SIZE (K), WHICH IS THE SMALLEST
SLIDING WINDOW SIZE THAT GROUPS THE GREATEST NUMBER OF
FLAGGED RECORDS FROM THE SERIES OF RECORDS IN THE IMPORT TABLE

7264

!

f272

PERFORMING ONE OR MORE ADDITIONAL REQUESTS FOR ONE OR MORE
ADDITIONAL SERIES OF RECORDS FROM THE LMTS, WHEREIN EACH OF
THE ONE OR MORE REQUESTS INCLUDES AN OFFSET VALUE THAT IS
AN ID OF A FLAGGED RECORD AND A LIMIT VALUE THAT IS LESS
THAN OR EQUAL TO K

r—274

RECEIVING THE ONE OR MORE ADDITIONAL SERIES OF RECORDS FROM
THE LMTS AND STORING THE ONE OR MORE ADDITIONAL SERIES OF
RECORDS IN THE IMPORT TABLE

Patent Application Publication

O
—

Aug. 27,2020 Sheet 1 of 7

US 2020/0272707 Al

EDGE
DEVICE

CLIENT
DEVICE

20A

CLIENT
DEVICE

208

Aug. 27,2020 Sheet 2 of 7 US 2020/0272707 Al

Patent Application Publication

—— — m

avol J_ _\ V0l .

NEINER < NOILYOINd3d . VETNER "

aa WNLAIA L _1---_Hu-..HHHH_ﬂ aa WNLYIA m

o i

IIIIII e 1 |

A I . m

ase 29¢ 49¢ Y92 m

YINY3S 4IAYIS YINYIS YINYIS m

TYNLYIA TVNLYIA TYNLYIA TVNLYIA m

e e e e e e - . u S —
88T Y¥3IN3D VLVA AYVANOD3S 201 VBT Y3INZD VIVA AMVARd

r(001

Aug. 27,2020 Sheet 3 of 7 US 2020/0272707 Al

Patent Application Publication

€ Ol

\l ¢le \l c0¢

\l 01¢

TOVIILINI 308n0S
WHOMLIN (S)40S53004d 4IMOd
voz—’
TOVAAINI ERE
43S AJOWIN LNdNI

F v1¢ F 90¢
00¢ I\

r 80¢

US 2020/0272707 Al

Aug. 27,2020 Sheet 4 of 7

Patent Application Publication

A

/A

[- - - - . " """ oy

 LLyodni

144 A

dor | >
< > LHOdNI ddno 967

[1 SLIT

o))

22
BsINT| 92 YIAUIS NOLLYOITddY TVNLYIA
osz” ez JONVLSNI Q3LSOH !

Patent Application Publication Aug. 27,2020 Sheet S of 7 US 2020/0272707 A1

PERFORMING AN INITIAL REQUEST TO A LICENSE METRIC TOOL
SERVER (LMTS) FOR A SERIES OF RECORDS HAVING IDs RANGING
FROM A FIRST ID VALUE TO A LAST ID VALUE, WHEREIN THE SPAN
OF THE SERIES OF RECORDS, A, IS DEFINED AS THE DIFFERENCE
BETWEEN THE LAST ID VALUE AND THE FIRST ID VALUE

252

254

RECEIVING THE SERIES OF RECORDS FROM THE LMTS AND STORING
THE SERIES OF RECORDS IN AN IMPORT TABLE

|/

ATTEMPTING TO IMPORT INTO A CMDB THE SERIES OF RECORDS

WHICH A CORRESPONDING CID IS NOT IDENTIFIED IN THE CMDB

260

AT
LEAST ONE

276 FLAGGED RECORD

f266

FROM THE IMPORT TABLE AS CI DATA AND FLAGGING RECORDS FOR |/

256

> FIG. 5

DETERMINING A MINIMUM DIFFERENCE (M) BETWEEN THE IDs OF ALL
QF THE FLAGGED RECORDS IN THE IMPORT TABLE

‘ r268

TRAVERSING THE RECORDS IN THE IMPORT TABLE USING A SLIDING
WINDOW HAVING A SIZE THAT IS VARIED BETWEEN M AND A /2 T0
CLUSTER THE FLAGGED RECORDS INTO DIFFERENT GROUPS

f270

DETERMINING THE SLIDING WINDOW SIZE (K), WHICH IS THE SMALLEST
SLIDING WINDOW SIZE THAT GROUPS THE GREATEST NUMBER OF
FLAGGED RECORDS FROM THE SERIES OF RECORDS IN THE IMPORT TABLE

> 264

f272

PERFORMING ONE OR MORE ADDITIONAL REQUESTS FOR ONE OR MORE
ADDITIONAL SERIES OF RECORDS FROM THE LMTS, WHEREIN EACH OF
THE ONE OR MORE REQUESTS INCLUDES AN OFFSET VALUE THAT IS
AN ID OF A FLAGGED RECORD AND A LIMIT VALUE THAT IS LESS
THAN OR EQUAL TO K

f274

RECEIVING THE ONE OR MORE ADDITIONAL SERIES OF RECORDS FROM
— THE LMTS AND STORING THE ONE OR MORE ADDITIONAL SERIES OF
RECORDS IN THE IMPORT TABLE

US 2020/0272707 Al

Aug. 27,2020 Sheet 6 of 7

Patent Application Publication

‘\amm 4\ JeLe \mmm ﬂ vele
T = 1AM 0S = LIANM T = 1AM 09 = LINI
1SN0 HLY | | je3nday qus 1SINDR ANC [SLAT IYNOILIaaY
666 M o o M o—O—0 0 sal QYOOI
008 0zL 049 oGt 09z 0£Z 002 sql QHOJTY QIDOV
862

=

2

S 8 Ol

m 9282 ge8¢ vese

N

= G2e =L1INNN GLT= LI 0c = LIAN S1SINOJY
G/G = 138440 00% = 135440 00¢ = 145440 SLAT T¥YNOILIaay

S 666 1S3NDIY QuE 1S3N03Y ANZ 153N03Y ST 0 sql QOO

= O O O O O O O—0

= 008 02 0/9 G/ 05y 00Y 0¢e 002 sal QHOSIH IOV

=

2 N

S 8G¢

<

[9l

m 4\ 082 ﬂ 808¢ ﬂ«.omm

s

E 0€T = LIAI G/T = LINN 02 = LIAN S1SINOTY

= 0£9 = 135440 00v = 138440 002 = 135440 SLINT TYNoILIaay

~ 1S3NDIY Q¥E 1S3Nd3IY aNZ 183Nd3Y 181

g 2, 0 AT RO S 0 0—0 0 °01 04003

g 008 0z, 0/9 G/§ 0¢5 0OSvr 00F 022 002

2 sal QY003 d3DHY14

> N

= 8G¢

g

=

[~

US 2020/0272707 Al

SYSTEMS AND METHODS FOR IMPORTING
SOFTWARE LICENSE METRIC DATA INTO
A CONFIGURATION MANAGEMENT
DATABASE (CMDB)

BACKGROUND

[0001] The present disclosure relates generally to software
license management and, more specifically, to importing
license data from a license metric tool server (LMTS) into
a configuration management database (CMDB).

[0002] This section is intended to introduce the reader to
various aspects of art that may be related to various aspects
of the present disclosure, which are described and/or
claimed below. This discussion is believed to be helpful in
providing the reader with background information to facili-
tate a better understanding of the various aspects of the
present disclosure. Accordingly, it should be understood that
these statements are to be read in this light, and not as
admissions of prior art.

[0003] Organizations, regardless of size, rely upon access
to information technology (IT) and data and services for
their continued operation and success. A respective organi-
zation’s IT infrastructure may have associated hardware
resources (e.g. computing devices, load balancers, firewalls,
switches, etc.) and software resources (e.g. productivity
software, database applications, custom applications, and so
forth). Over time, more and more organizations have turned
to cloud computing approaches to supplement or enhance
their IT infrastructure solutions.

[0004] Cloud computing relates to the sharing of comput-
ing resources that are generally accessed via the Internet. In
particular, a cloud computing infrastructure allows users,
such as individuals and/or enterprises, to access a shared
pool of computing resources, such as servers, storage
devices, networks, applications, and/or other computing
based services. By doing so, users are able to access com-
puting resources on demand that are located at remote
locations, which resources may be used to perform a variety
of computing functions (e.g., storing and/or processing large
quantities of computing data). For enterprise and other
organization users, cloud computing provides flexibility in
accessing cloud computing resources without accruing large
up-front costs, such as purchasing expensive network equip-
ment or investing large amounts of time in establishing a
private network infrastructure. Instead, by utilizing cloud
computing resources, users are able redirect their resources
to focus on their enterprise’s core functions.

[0005] In certain situations, a client instance hosted by the
cloud computing service may request and receive informa-
tion from other systems or platforms. For example, a server
may store information that pertains to configuration items
(CIs) stored in a configuration management database
(CMDB) hosted by the client instance. As such, it may be
beneficial for the information that is separately stored by the
server to be imported into the CMDB. However, it is
recognized that there is an overhead associated with each
request and receipt of information from the server in terms
of processor usage (e.g., computing time, number of pro-
cessors), storage usage (e.g., primary and/or secondary
storage usage), and communication usage (e.g., network
traffic, bandwidth). As such, it is desirable to design impor-
tation processes that limit this overhead to improve the
efficiency and operation of the client instance, as well as the
cloud computing service.

Aug. 27, 2020

SUMMARY

[0006] A summary of certain embodiments disclosed
herein is set forth below. It should be understood that these
aspects are presented merely to provide the reader with a
brief summary of these certain embodiments and that these
aspects are not intended to limit the scope of this disclosure.
Indeed, this disclosure may encompass a variety of aspects
that may not be set forth below.

[0007] Present embodiments are directed to a process for
importing license records from a license metric tool server
(LMTS) into a configuration management database
(CMDB). These license records are requested and received
from the LMTS and are subsequently imported into the
CMDRB as configuration item (CI) data. However, in certain
circumstances, a license record may have an identifier field
(ID) value that does not correspond to a CI stored within the
CMDRB and, as a result, the license record fails to import.
The present approach involves flagging license records that
fail import. The flagged license records are then clustered
into groups, and batch requests are made to the LMTS to
again request the license records. For example, the LMTS
may include an application programming interface (API)
that defines a function for requesting license records,
wherein the function receives as input an offset parameter
that indicates the ID value of the first license record being
requested and a limit parameter that indicates the number of
license records, beginning at the offset value, that are being
requested.

[0008] To limit overhead when re-pulling the flagged
license records that fail to import, it is recognized that it is
desirable to limit the number of calls to the LMTS API, and
also to limit the number of license records of each request.
With this in mind, present embodiments define A to be the
span or total number of license records pulled by an initial
import operation, and define M to be a minimum difference
between the respective ID values of all flagged license
records. Using a sliding window approach, the license
records received from the initial request are processed with
a sliding window size varying between M and A/2, wherein
the sliding window clusters the flagged license records into
different groups at different sliding window sizes. Based on
the various groupings of the flagged license records at
different sliding window sizes, a value K is determined to be
the smallest sliding window size that effectively groups the
greatest number of failed records. Then, a sliding window of
fixed size K is used to cluster the flagged license records into
groups, wherein each group represents a distinct request to
the LMTS API. For example, for each of these requests, the
offset parameter corresponds to the ID value of the first
flagged license record of a group, and the limit parameter is
less than or equal to K.

[0009] Various refinements of the features noted above
may exist in relation to various aspects of the present
disclosure. Further features may also be incorporated in
these various aspects as well. These refinements and addi-
tional features may exist individually or in any combination.
For instance, various features discussed below in relation to
one or more of the illustrated embodiments may be incor-
porated into any of the above-described aspects of the
present disclosure alone or in any combination. The brief
summary presented above is intended only to familiarize the
reader with certain aspects and contexts of embodiments of
the present disclosure without limitation to the claimed
subject matter.

US 2020/0272707 Al

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Various aspects of this disclosure may be better
understood upon reading the following detailed description
and upon reference to the drawings in which:

[0011] FIG. 1 is a block diagram of an embodiment of a
cloud architecture in which embodiments of the present
disclosure may operate;

[0012] FIG. 2 is a schematic diagram of an embodiment of
a multi-instance cloud architecture in which embodiments of
the present disclosure may operate;

[0013] FIG. 3 is a block diagram of a computing device
utilized in a computing system that may be present in FIG.
1 or 2, in accordance with aspects of the present disclosure;
[0014] FIG. 4 is a block diagram illustrating an embodi-
ment in which a virtual server supports and enables the client
instance, in accordance with aspects of the present disclo-
sure;

[0015] FIG. 5 is a flow diagram illustrating an embodi-
ment of an importation process whereby the client instance
retrieves and imports license records from a license metric
tool server (LMTS) into a configuration management data-
base (CMDB), in accordance with aspects of the present
disclosure;

[0016] FIG. 6 is a diagram illustrating an example in
which the importation process of FIG. 5 is performed for a
first set of license information, in accordance with aspects of
the present disclosure;

[0017] FIG. 7 is a diagram illustrating another example in
which the importation process of FIG. 5 is performed for a
second set of license information, in accordance with aspects
of the present disclosure; and

[0018] FIG. 8 is a diagram illustrating yet another example
in which the importation process of FIG. 5 is performed for
a third set of license information, in accordance with aspects
of the present disclosure.

DETAILED DESCRIPTION

[0019] One or more specific embodiments will be
described below. In an effort to provide a concise description
of these embodiments, not all features of an actual imple-
mentation are described in the specification. It should be
appreciated that in the development of any such actual
implementation, as in any engineering or design project,
numerous implementation-specific decisions must be made
to achieve the developers’ specific goals, such as compli-
ance with system-related and enterprise-related constraints,
which may vary from one implementation to another. More-
over, it should be appreciated that such a development effort
might be complex and time consuming, but would never-
theless be a routine undertaking of design, fabrication, and
manufacture for those of ordinary skill having the benefit of
this disclosure.

[0020] As used herein, the term “computing system”
refers to an electronic computing device such as, but not
limited to, a single computer, virtual machine, virtual con-
tainer, host, server, laptop, and/or mobile device, or to a
plurality of electronic computing devices working together
to perform the function described as being performed on or
by the computing system. As used herein, the term
“medium” refers to one or more non-transitory, computer-
readable physical media that together store the contents
described as being stored thereon. Embodiments may
include non-volatile secondary storage, read-only memory

Aug. 27, 2020

(ROM), and/or random-access memory (RAM). As used
herein, the term “application” refers to one or more com-
puting modules, programs, processes, workloads, threads
and/or a set of computing instructions executed by a com-
puting system. Example embodiments of an application
include software modules, software objects, software
instances and/or other types of executable code. As used
herein, the term “configuration item” or “CI” refers to a
record for any component (e.g., computer, device, piece of
software, database table, script, webpage, piece of metadata,
and so forth) in an enterprise network, for which relevant
data, such as manufacturer, vendor, location, or similar data,
is stored in a configuration management database (CMDB).

[0021] Present embodiments are directed to an importa-
tion process for importing license records from a license
metric tool server (LMTS) into a CMDB of a client instance.
These license records are requested and received from the
LMTS and are subsequently imported as configuration item
(CI) data that is stored in the CMDB. However, in certain
circumstances, a license record may have an identifier field
(ID) value that does not correspond to a CI stored within the
CMDRB and, as a result, the license record fails to import.
The present approach generally involves flagging license
records that fail import, clustering the flagged license
records into suitable groups, and then requesting the license
records from the LMTS for each group. By effectively
clustering of the flagged license records into groups, present
embodiments enable a reduction in processing, memory,
and/or communication overhead of the importation process,
improving operation of the client instance.

[0022] With the preceding in mind, the following figures
relate to various types of generalized system architectures or
configurations that may be employed to provide services to
an organization in a multi-instance framework and on which
the present approaches may be employed. Correspondingly,
these system and platform examples may also relate to
systems and platforms on which the techniques discussed
herein may be implemented or otherwise utilized. Turning
now to FIG. 1, a schematic diagram of an embodiment of a
cloud computing system 10 where embodiments of the
present disclosure may operate, is illustrated. The cloud
computing system 10 may include a client network 12, a
network 14 (e.g., the Internet), and a cloud-based platform
16. In some implementations, the cloud-based platform 16
may be a configuration management database (CMDB)
platform. In one embodiment, the client network 12 may be
a local private network, such as local area network (LAN)
having a variety of network devices that include, but are not
limited to, switches, servers, and routers. In another embodi-
ment, the client network 12 represents an enterprise network
that could include one or more LANS, virtual networks, data
centers 18, and/or other remote networks. As shown in FIG.
1, the client network 12 is able to connect to one or more
client devices 20A, 20B, and 20C so that the client devices
are able to communicate with each other and/or with the
network hosting the platform 16. The client devices 20 may
be computing systems and/or other types of computing
devices generally referred to as Internet of Things (IoT)
devices that access cloud computing services, for example,
via a web browser application or via an edge device 22 that
may act as a gateway between the client devices 20 and the
platform 16. FIG. 1 also illustrates that the client network 12
includes an administration or managerial device or server,
such as a management, instrumentation, and discovery

US 2020/0272707 Al

(MID) server 24 that facilitates communication of data
between the network hosting the platform 16, other external
applications, data sources, and services, and the client net-
work 12. Although not specifically illustrated in FIG. 1, the
client network 12 may also include a connecting network
device (e.g., a gateway or router) or a combination of
devices that implement a customer firewall or intrusion
protection system.

[0023] For the illustrated embodiment, FIG. 1 illustrates
that client network 12 is coupled to a network 14. The
network 14 may include one or more computing networks,
such as other LANs, wide area networks (WAN), the Inter-
net, and/or other remote networks, to transfer data between
the client devices 20 and the network hosting the platform
16. Each of the computing networks within network 14 may
contain wired and/or wireless programmable devices that
operate in the electrical and/or optical domain. For example,
network 14 may include wireless networks, such as cellular
networks (e.g., Global System for Mobile Communications
(GSM) based cellular network), IEEE 802.11 networks,
and/or other suitable radio-based networks. The network 14
may also employ any number of network communication
protocols, such as Transmission Control Protocol (TCP) and
Internet Protocol (IP). Although not explicitly shown in FIG.
1, network 14 may include a variety of network devices,
such as servers, routers, network switches, and/or other
network hardware devices configured to transport data over
the network 14.

[0024] InFIG. 1, the network hosting the platform 16 may
be a remote network (e.g., a cloud network) that is able to
communicate with the client devices 20 via the client
network 12 and network 14. The network hosting the
platform 16 provides additional computing resources to the
client devices 20 and/or the client network 12. For example,
by utilizing the network hosting the platform 16, users of the
client devices 20 are able to build and execute applications
for various enterprise, IT, and/or other organization-related
functions. In one embodiment, the network hosting the
platform 16 is implemented on the one or more data centers
18, where each data center could correspond to a different
geographic location. Each of the data centers 18 includes a
plurality of virtual servers 26 (also referred to herein as
application nodes, application servers, virtual server
instances, application instances, or application server
instances), where each virtual server 26 can be implemented
on a physical computing system, such as a single electronic
computing device (e.g., a single physical hardware server) or
across multiple-computing devices (e.g., multiple physical
hardware servers). Examples of virtual servers 26 include,
but are not limited to a web server (e.g., a unitary Apache
installation), an application server (e.g., unitary JAVA Vir-
tual Machine), and/or a database server (e.g., a unitary
relational database management system (RDBMS) catalog).

[0025] To utilize computing resources within the platform
16, network operators may choose to configure the data
centers 18 using a variety of computing infrastructures. In
one embodiment, one or more of the data centers 18 are
configured using a multi-tenant cloud architecture, such that
one of the server instances 26 handles requests from and
serves multiple customers. Data centers 18 with multi-tenant
cloud architecture commingle and store data from multiple
customers, where multiple customer instances are assigned
to one of the virtual servers 26. In a multi-tenant cloud
architecture, the particular virtual server 26 distinguishes

Aug. 27, 2020

between and segregates data and other information of the
various customers. For example, a multi-tenant cloud archi-
tecture could assign a particular identifier for each customer
in order to identify and segregate the data from each
customer. Generally, implementing a multi-tenant cloud
architecture may suffer from various drawbacks, such as a
failure of a particular one of the server instances 26 causing
outages for all customers allocated to the particular server
instance.

[0026] In another embodiment, one or more of the data
centers 18 are configured using a multi-instance cloud
architecture to provide every customer its own unique
customer instance or instances. For example, a multi-in-
stance cloud architecture could provide each customer
instance with its own dedicated application server and
dedicated database server. In other examples, the multi-
instance cloud architecture could deploy a single physical or
virtual server 26 and/or other combinations of physical
and/or virtual servers 26, such as one or more dedicated web
servers, one or more dedicated application servers, and one
or more database servers, for each customer instance. In a
multi-instance cloud architecture, multiple customer
instances could be installed on one or more respective
hardware servers, where each customer instance is allocated
certain portions of the physical server resources, such as
computing memory, storage, and processing power. By
doing so, each customer instance has its own unique soft-
ware stack that provides the benefit of data isolation, rela-
tively less downtime for customers to access the platform
16, and customer-driven upgrade schedules. An example of
implementing a customer instance within a multi-instance
cloud architecture will be discussed in more detail below
with reference to FIG. 2.

[0027] FIG. 2 is a schematic diagram of an embodiment of
a multi-instance cloud architecture 100 where embodiments
of the present disclosure may operate. FIG. 2 illustrates that
the multi-instance cloud architecture 100 includes the client
network 12 and the network 14 that connect to two (e.g.,
paired) data centers 18A and 18B that may be geographi-
cally separated from one another. Using FIG. 2 as an
example, network environment and service provider cloud
infrastructure client instance 102 (also referred to herein as
a client instance 102) is associated with (e.g., supported and
enabled by) dedicated virtual servers (e.g., virtual servers
26A, 26B, 26C, and 26D) and dedicated database servers
(e.g., virtual database servers 104A and 104B). Stated
another way, the virtual servers 26A-26D and virtual data-
base servers 104A and 104B are not shared with other client
instances and are specific to the respective client instance
102. In the depicted example, to facilitate availability of the
client instance 102, the virtual servers 26A-26D and virtual
database servers 104A and 104B are allocated to two dif-
ferent data centers 18A and 18B so that one of the data
centers 18 acts as a backup data center. Other embodiments
of the multi-instance cloud architecture 100 could include
other types of dedicated virtual servers, such as a web server.
For example, the client instance 102 could be associated
with (e.g., supported and enabled by) the dedicated virtual
servers 26A-26D, dedicated virtual database servers 104A
and 104B, and additional dedicated virtual web servers (not
shown in FIG. 2).

[0028] Although FIGS. 1 and 2 illustrate specific embodi-
ments of a cloud computing system 10 and a multi-instance
cloud architecture 100, respectively, the disclosure is not

US 2020/0272707 Al

limited to the specific embodiments illustrated in FIGS. 1
and 2. For instance, although FIG. 1 illustrates that the
platform 16 is implemented using data centers, other
embodiments of the platform 16 are not limited to data
centers and can utilize other types of remote network
infrastructures. Moreover, other embodiments of the present
disclosure may combine one or more different virtual servers
into a single virtual server or, conversely, perform operations
attributed to a single virtual server using multiple virtual
servers. For instance, using FIG. 2 as an example, the virtual
servers 26A, 26B, 26C, 26D and virtual database servers
104A, 104B may be combined into a single virtual server.
Moreover, the present approaches may be implemented in
other architectures or configurations, including, but not
limited to, multi-tenant architectures, generalized client/
server implementations, and/or even on a single physical
processor-based device configured to perform some or all of
the operations discussed herein. Similarly, though virtual
servers or machines may be referenced to facilitate discus-
sion of an implementation, physical servers may instead be
employed as appropriate. The use and discussion of FIGS. 1
and 2 are only examples to facilitate ease of description and
explanation and are not intended to limit the disclosure to the
specific examples illustrated therein.

[0029] As may be appreciated, the respective architectures
and frameworks discussed with respect to FIGS. 1 and 2
incorporate computing systems of various types (e.g., serv-
ers, workstations, client devices, laptops, tablet computers,
cellular telephones, and so forth) throughout. For the sake of
completeness, a brief, high level overview of components
typically found in such systems is provided. As may be
appreciated, the present overview is intended to merely
provide a high-level, generalized view of components typi-
cal in such computing systems and should not be viewed as
limiting in terms of components discussed or omitted from
discussion.

[0030] By way of background, it may be appreciated that
the present approach may be implemented using one or more
processor-based systems such as shown in FIG. 3. Likewise,
applications and/or databases utilized in the present
approach may be stored, employed, and/or maintained on
such processor-based systems. As may be appreciated, such
systems as shown in FIG. 3 may be present in a distributed
computing environment, a networked environment, or other
multi-computer platform or architecture. Likewise, systems
such as that shown in FIG. 3, may be used in supporting or
communicating with one or more virtual environments or
computational instances on which the present approach may
be implemented.

[0031] With this in mind, an example computer system
may include some or all of the computer components
depicted in FIG. 3. FIG. 3 generally illustrates a block
diagram of example components of a computing system 200
and their potential interconnections or communication paths,
such as along one or more busses. As illustrated, the com-
puting system 200 may include various hardware compo-
nents such as, but not limited to, one or more processors 202,
one or more busses 204, memory 206, input devices 208, a
power source 210, a network interface 212, a user interface
214, and/or other computer components useful in perform-
ing the functions described herein.

[0032] The one or more processors 202 may include one
or more microprocessors capable of performing instructions
stored in the memory 206. Additionally or alternatively, the

Aug. 27, 2020

one or more processors 202 may include application-specific
integrated circuits (ASICs), field-programmable gate arrays
(FPGAs), and/or other devices designed to perform some or
all of the functions discussed herein without calling instruc-
tions from the memory 206.

[0033] With respect to other components, the one or more
busses 204 include suitable electrical channels to provide
data and/or power between the various components of the
computing system 200. The memory 206 may include any
tangible, non-transitory, and computer-readable storage
media. Although shown as a single block in FIG. 1, the
memory 206 can be implemented using multiple physical
units of the same or different types in one or more physical
locations. The input devices 208 correspond to structures to
input data and/or commands to the one or more processors
202. For example, the input devices 208 may include a
mouse, touchpad, touchscreen, keyboard and the like. The
power source 210 can be any suitable source for power of
the various components of the computing device 200, such
as line power and/or a battery source. The network interface
212 includes one or more transceivers capable of commu-
nicating with other devices over one or more networks (e.g.,
a communication channel). The network interface 212 may
provide a wired network interface or a wireless network
interface. A user interface 214 may include a display that is
configured to display text or images transferred to it from the
one or more processors 202. In addition and/or alternative to
the display, the user interface 214 may include other devices
for interfacing with a user, such as lights (e.g., LEDs),
speakers, and the like.

[0034] With the foregoing in mind, FIG. 4 is a block
diagram illustrating an embodiment in which a virtual server
26 supports and enables the client instance 102, according to
one or more disclosed embodiments. More specifically, FIG.
4 illustrates an example of a portion of a service provider
cloud infrastructure, including the cloud-based platform 16
discussed above. The cloud-based platform 16 is connected
to a client device 20 via the network 14 to provide a user
interface to network applications executing within the client
instance 102 (e.g., via a web browser of the client device
20). Client instance 102 is supported by virtual servers 26
similar to those explained with respect to FIG. 2, and is
illustrated here to show support for the disclosed function-
ality described herein within the client instance 102. Cloud
provider infrastructures are generally configured to support
a plurality of end-user devices, such as client device 20,
concurrently, wherein each end-user device is in communi-
cation with the single client instance 102. Also, cloud
provider infrastructures may be configured to support any
number of client instances, such as client instance 102,
concurrently, with each of the instances in communication
with one or more end-user devices. As mentioned above, an
end-user may also interface with client instance 102 using an
application that is executed within a web browser. The client
instance 102 may also be configured to communicate with
other instances, such as the hosted instance 220 shown in
FIG. 4, which may also include a virtual application server
26 and a virtual database server 104.

[0035] For the illustrated embodiment, a virtual server 26
of the client instance 102 or the hosted instance 220 hosts a
license metric tool server (LMTS) 230. In other embodi-
ments, the LMTS 230 may be at least partially hosted by a
device (e.g., client device 20, the MID server 24) that is part
of the client network 12. The LMTS 230 is an application

US 2020/0272707 Al

that includes instructions to scan client devices 20 for
software license information 232 (e.g., software license
assignments, software license usage, and hardware informa-
tion) to determine compliance. In certain embodiments, the
LMTS 230 may be an IBM LICENSE METRIC TOOL
(ILMT) available from IBM (e.g., https://www.ibm.com/
software/passportadvantage/ibmlicensemetrictool.html). As
such, the LMTS 230 stores the license information 232
collected for the client network 12 in a suitable memory
(e.g., a memory of the virtual server 26).

[0036] For the embodiments discussed herein, the license
information 232 collected and stored by the LMTS 230
includes a plurality of license records (e.g., arranged in a
database table). As such, each license record has an identifier
field (ID) value that serves as a primary key value, wherein
the ID values are created or defined in a sequential order. For
example, in an embodiment, the license records of the
license information 232 may include sequential ID values
that range from zero to ten thousand. Additionally, the
LMTS 230 defines an application programming interface
(API) that enables the license information 232 collected by
the LMTS 230 to be retrieved by other applications, such as
an import process or job 234 associated with the client
instance 102.

[0037] Additionally, the client instance 102 includes a
CMDB 236 that stores CI data for the client devices 20 of
the client network 12. As such, it is presently recognized that
it would be advantageous to store the license information
232 collected by the LMTS 230 as CI data within the CMDB
236. As such, the import job 234 of the client instance 102
includes suitable instructions to retrieve the license infor-
mation 232 collected by the LMTS 230, determine which
license records correspond to which CIs stored in the CMDB
236, and add or update information for the corresponding
Cls in the CMDB 236, based on the retrieved license
information 232. In certain embodiments, the import job 234
may utilize an import table 238 of the database 104 as a
staging area to process and/or transform the license infor-
mation 232 for importation into the CMDB 236, as dis-
cussed below.

[0038] The API of the LMTS 230 defines at least one
function call to retrieve a series of license records from the
license information 232 collected by the LMTS 230. For
present embodiments, the API of the LMTS 230 particularly
defines a function that retrieves a specified sequence or
series of license records based on two supplied parameters:
an offset parameter that indicates the ID value of the first
license record of the series to be retrieved, and a limit
parameter that indicates the number of license records to be
retrieved. However, as mentioned, an overhead (e.g., pro-
cessing, storage, and/or communication overheard) that is
associated with each API call to the LMTS 230. As such, it
is presently recognized that it is beneficial from an efficiency
standpoint to reduce or minimize the number of API calls, as
well as the range or span of ID values in each API call, when
retrieving the license information 232 from the LMTS 230
for importation into the CMDB 236.

[0039] FIG. 5 is a flow diagram illustrating an embodi-
ment of an importation process 250 whereby an import job
234 of the client instance 102 retrieves and imports license
records from the LMTS 230 into the CMDB 236. The
illustrated process 250 is merely provided as an example,
and in other embodiments, the process 250 may include
additional steps, repeated steps, and/or omitted steps relative

Aug. 27, 2020

to the embodiment illustrated in FIG. 5, in accordance with
the present disclosure. Additionally, the process 250 may be
stored in any suitable memory (e.g., memory 206) and
executed by suitable processing circuitry (e.g., processor
202), such as at least one memory and at least one processor
of the data center 18. Additionally, the process 250 is
discussed with reference to an importation example dia-
grammatically illustrated in FIG. 6.

[0040] The embodiment of the process 250 illustrated in
FIG. 5 begins with the processor 202 performing (block 252)
an initial request to the LMTS 230 for a series of license
records having ID values ranging from a first ID value to a
last ID value. As such, the process 250 may determine a
span, A, of the series of license records of the initial request
as the difference between the last ID value and the first ID
value. For the example illustrated in FIG. 6, the initial
request to the LMTS 230 includes license records having 1D
values ranging from zero to 999, which has a span, A, of
1000. As such, the processor 202 may perform an initial call
to the API of the LMTS 230 requesting the series of license
records using an offset value of zero and a limit value of
1000. Returning to FIG. 5, once the LMTS 230 has fulfilled
the initial request, the process 250 continues with the
processor 202 receiving (block 254) the requested series of
license records from the LMTS 230 and storing the series of
records in the import table 238 of the database 104.

[0041] The embodiment of the process 250 of FIG. 5 then
proceeds with the processor 202 attempting to import (block
256), into the CMDB 236, the series of records from the
import table 238. For example, the processor 202 may
attempt to identity a CI record of the CMDB 236 having a
configuration item identifier (CID) that corresponds to each
of the license records in the import table 238, and then may
update the CI records based on the corresponding license
records. During the importation of block 256, the processor
202 further flags each license record in the import table 238
that fails to import into the CMDB, for example, because a
CID that corresponds to the license record was not located
in the CMDB. This can result, for example, when the license
data stored by the LMTS 230 is relatively stale to the CMDB
data, or vice versa. In certain embodiments, the import table
238 may include a flag field that stores a binary value that
is set to true to flag a license record. Turning briefly to the
example of FIG. 6, the initially requested series of license
records range from a first ID value of zero to a last ID value
999, such that the span, A, of the initially requested series of
license records is 1000. Additionally, in FIG. 6, a number of
license records in the import table 238 have been flagged due
to a failure to import into the CMDB. For this example, these
include flagged license records 258 having ID values: 200,
250, 300, 450, 670, 720, and 800.

[0042] Returning to FIG. 5, the illustrated embodiment of
the process 250 proceeds with the processor 202 determin-
ing (block 260) whether at least one license record in the
import table 238 was flagged in block 256. When the
processor 202 determines that all of the license records were
properly imported and no license records in the import table
were flagged in block 256, then the process 250 concludes
(block 262). However, when at least one license record in the
import table 238 was flagged in block 256 for failing to
import, then the process 250 continues with the processor
202 performing a series of steps, as generally indicated by
the bracket 264, to determine and use the most efficient

US 2020/0272707 Al

manner to again retrieve, from the LMTS 230, license
records that failed to import in block 256.

[0043] To determine the most efficient manner to re-pull
the license records that failed to import in block 256, the
illustrated embodiment of the process 250 continues with the
processor 202 determining (block 266) a minimum differ-
ence (M) between the ID values of all of the flagged license
records 258 in the import table 238. Returning briefly to the
example of FIG. 6, each of the flagged license records 258
(e.g., ID values 200, 230, 260, 450, 670, 720, and 800) are
processed to determine the smallest numerical distance
between the ID values of any two adjacent flagged license
records in the import table 238. As such, for the example
illustrated in FIG. 6, the minimum difference, M, has a value
ot 30 (e.g., between ID values 200 and 230 and between ID
values 230 and 260).

[0044] For the illustrated embodiment, the process 250
continues with the processor 202 traversing (block 268) the
series of license records in the import table 238 using a
sliding window having a size that is varied between M and
A/2 (e.g., half or 50% of the value of the span, A, of the
initially requested series of license records) to cluster the
flagged license records 258 into groups. Returning to the
example of FIG. 6, the series of license records having ID
values ranging from zero to 999 is traversed using a sliding
window having the smallest window size, 30, and informa-
tion about the groupings of flagged license records 258 (e.g.,
number of groups, size or span of each group) is determined
and collected. In certain embodiments, the sliding window
may traverse the series of license records from the first ID
value to the last ID value and/or from the last ID value to the
first ID value while the grouping information is collected.
Then, the window size is incremented to a value of 31, and
information about the groupings of flagged license records
258 is again determined and collected. This process is
repeated for each window size until after the maximum
window size value of A/2, 500, is reached.

[0045] For the embodiment illustrated in FIG. 5, the
process 250 continues with the processor 202 determining
(block 270) the sliding window size value, K, to be the
smallest sliding window size that groups the greatest number
of flagged license records 258 from the series of records in
the import table 238. Returning again to the example illus-
trated in FIG. 6, the sliding window analysis technique of
block 270 results in the following cluster or grouping
information being collected at different sliding window
sizes. For example, when the sliding window size begins at
a value of 30, the flagged license records 258 form two
groups of two flagged records (e.g., IDs 200 and 230; and
IDs 670 and 720) and three groups with a single flagged
record (e.g., IDs 260, 450, and 800). When the sliding
window size is increased to 60, the flagged license records
258 form one group of three flagged records (e.g., IDs 200,
230, and 260), one group of two flagged records (e.g., IDs
670 and 720), and two groups with a single flagged record
(e.g., IDs 450 and 800). When the sliding window size is
increased to 130, the flagged license records 258 form two
group of three flagged records (e.g., IDs 200, 230, and 260;
and IDs 670, 720, and 800) and one group with a single
flagged record (e.g., IDs 450). When the sliding window size
is increased to 250, the flagged license records 258 form a
single group of four flagged records (e.g., IDs 200, 230, 260
and 450) and a single group with a three flagged record (e.g.,
1Ds 670, 720, and 800). When the sliding window size is

Aug. 27, 2020

increased to 470, the flagged license records 258 form a
single group of five flagged records (e.g., IDs 200, 230, 260,
450, and 670) and a single group with a two flagged record
(e.g., IDs 720, and 800).

[0046] As mentioned, it is presently recognized that it is
beneficial from an efficiency standpoint to reduce or mini-
mize the number of requests to the LMTS 230, as well as the
range or span of ID values in each request, when retrieving
the flagged license records 258. As such, it may be appre-
ciated that the desired sliding window size, K, may be
determined in different manners in different embodiments to
improve or optimize efficiency. For example, in certain
embodiments, the value of K may be determined by com-
puting a respective cluster score for each sliding window
size, wherein the greatest cluster score corresponds to the
desired sliding window size, K. For the example illustrated
in FIG. 6, in an embodiment, the cluster score for a particular
sliding window size may be calculated from a ratio of the
number of flagged license records 258 in the largest group
of flagged license records 258 to the particular sliding
window size. In certain embodiments, this ratio may further
be modified using additional terms that represent how the
flagged license records 258 are being grouped, such as terms
that represent the number of groups and/or the span of each
group.

[0047] For the example of FIG. 6, when the sliding
window has a particular size, the cluster score may be
calculated by first calculating the ratio of the largest number
of flagged license records 258 in a group to the particular
sliding window size. Then, the ratio may be modified (e.g.,
multiplied by, added to) additional terms, based on the
collected grouping information, that capture how the flagged
license records 258 are clustered into groups having more
than one flagged license record (e.g., groups having a span
greater than 1). For example, for the example grouping
information set forth above, when the sliding window size is
30, the cluster score may be calculated as the ratio 2/30
multiplied by 4 (2x2, for two groups having two flagged
records), resulting in a value of 0.13. When the sliding
window size is 60, the cluster score may be calculated as the
ratio 3/60 multiplied by 3 (1x3, for one group having three
flagged records) and multiplied by 2 (1x2, for one group
having two flagged records), resulting in a value of 0.3.
When the sliding window size is 130, the cluster score may
be calculated as the ratio 3/130 multiplied by 6 (2x3, for two
groups having three flagged records), resulting in a value of
0.14. When the sliding window size is 250, the cluster score
may be calculated as the ratio 4/250 multiplied by 4 (1x4, for
one groups having four flagged records) and multiplied by 3
(1x3, for one group having three flagged records), resulting
in a value of 0.19. When the sliding window size is 470, the
cluster score may be calculated as the ratio 5/470 multiplied
by 5 (1x5, for one group having five flagged records) and
multiplied by 2 (1x2, for one group having two flagged
records), resulting in a value of 0.11. For this example, based
on the highest relative calculated cluster score value of 0.3,
the value of K is determined to be 60, as this represents the
smallest window size that groups the greatest number of the
flagged license records 258 in the import table 238. It may
be appreciated that the example above describes one method
of determining K that is not intended to be limiting. Indeed,
in other embodiments, the cluster score or K may be
additionally or alternatively determined using terms that are
representative of other considerations, such as maximizing

US 2020/0272707 Al

or minimizing the total number of groups, minimizing the
number of groups having a single flagged record, maximiz-
ing the number of larger groups of flagged records, maxi-
mizing the distance between the groups of flagged records,
and so forth, in accordance with the present disclosure.

[0048] Once the value for sliding window size, K, has
been determined in block 270, the process 250 continues
with the processor 202 performing (block 272) one or more
additional requests for one or more additional series of
records from the LMTS, wherein each of the requests
includes an offset value that is an ID of a flagged license
record and a limit value that is less than or equal to K. In a
logical sense, this corresponds to again traversing the initial
series of license records in the import table using a second
sliding window that has a fixed sliding window size, K, and
clustering the flagged license records into groups for
retrieval. Turning again to the example of FIG. 6, after
determining that the value of K is 60, the flagged license
records 258 are requested from the LMTS in four groups or
batches, each having a span or range of 60 license records.
For the illustrated example, these requests include: a first
request 273A with an offset value of 200 and a limit value
ot 60, a second request 273B with an offset value of 450 and
a limit value of 1, a third request 273C with an offset value
of 670 and a limit value of 50, and a fourth request 273D
with an offset value of 800 and a limit value of 1. It may be
noted that each offset value corresponds to the ID value of
the first flagged license record of each group, and that the
limit values each have a value of K (e.g., 60) or less. As such,
requesting the additional series of license records in this
manner limits the number of requests to the LMTS 230 to
re-pull the flagged license records. Furthermore, requesting
the additional series of license records in this manner also
limits the span or range of ID values in each request, such
that fewer successfully-imported license records are re-
pulled with the flagged license records 258. Additionally, as
discussed above, due to the overhead associated with each
request, requesting the flagged license records 258 in four
batches reduces the overhead associated with retrieving
these records relative to other techniques (e.g., individually
requesting each of the flagged license records 258), improv-
ing the performance of the importation process 250 and the
operation of the client instance 102.

[0049] Returning to FIG. 5, once the LMTS has fulfilled
the additional requests, the illustrated embodiment of the
process 250 continues with the processor 202 receiving
(block 274) the additional series of license records from the
LMTS and storing each additional series of records in the
import table of the database 104. For example, in certain
embodiments, the license records that are received as part of
the one or more additional series of license records from the
LMTS 230 overwrite at least a portion of the license records
data stored in the import table 238 in block 254. After
receiving each the additional series of license records, the
processor 202 returns to block 256, as indicated by the arrow
276, and attempts to import the series of records in the
import table 238 into the CMDB 236. As such, in certain
embodiments, the processor 202 may continue to repeat the
actions of blocks 260, 266, 268, 270, 272, and 274 until no
records are flagged for failing to import, and then the process
concludes at block 262.

[0050] FIG. 7 is a diagram that illustrates another example
of executing the importation process 250 of FIG. 5 with
different license information relative to the example of FIG.

Aug. 27, 2020

6. For the example of FIG. 7, the initial request to the LMTS
230 is for a series of license records having ID values
ranging from a first ID value of zero to a second ID value of
999. The received series of license records is stored in the
import table 238, and the stored license records are then
imported into a CI table of the CMDB 236. The stored
license records that fail to import are flagged. For the
illustrated example, the flagged license records 258 include
ID values: 200, 220, 400, 450, 520, 575, 670, 720, and 800.

[0051] For the example of FIG. 7, the importation process
250 continues with determining the minimum difference, M,
between the 1D values of the flagged license records 258.
For this example, M is determined to have a value of 20,
which occurs between flagged license record ID values 200
and 220. As such, a sliding window is applied to the series
of license records, wherein the size of the sliding window is
varied between M (having a value of 20) and A/2 (having a
value of 500). From the results of this step, the desired
sliding window size, K, is determined to have a value of 175.
As such, the flagged license records 258 are again requested
from the LMTS using a number of batch requests, including
a first request 280A with an offset value of 200 and a limit
value of 20, a second request 280B with an offset value of
400 and a limit value of 175, a third request 280C with an
offset value of 670 and a limit value of 130. As discussed
above, due to the overhead associated with each request,
requesting the flagged license records 258 in three batches
reduces the overhead associated with retrieving these
flagged license records 258 relative to other techniques (e.g.,
individually re-pulling each of the flagged records or re-
pulling the entire initial series of license records), improving
the performance of the importation process 250 and the
operation of the client instance 102.

[0052] FIG. 8 is a diagram that illustrates yet another
example of executing the importation process 250 of FIG. 5
with different license information. For the example of FIG.
8, the initial request to the LMTS 230 is for a series of
license records having ID values ranging from zero to 999.
The received series of license records is stored in the import
table 238, and the stored license records are then imported
into a CI table of the CMDB 236. The stored license records
that fail to import are flagged. For the illustrated example,
the flagged license records 258 include ID values: 200, 220,
400, 450, 575, 670, 720, and 800.

[0053] For the example of FIG. 8, the importation process
250 continues with determining the minimum difference, M,
between the 1D values of the flagged license records 258.
For this example, M is determined to have a value of 20,
which occurs between the flagged license records 258 hav-
ing ID values 200 and 220. As such, a sliding window is
applied to the range of license records from zero to 999,
wherein the size of the sliding window is varied between M
(having a value of 20) and A/2 (having a value of 500). From
the results of this step, the desired sliding window size, K,
is determined to have a value of 225. As such, the flagged
license records 258 are again requested from the LMTS
using a number of batch requests, including a first request
282A with an offset value of 200 and a limit value of 20, a
second request 282B with an offset value of 400 and a limit
value of 50, a third request 282C with an offset value of 575
and a limit value of 225. As discussed above, due to the
overhead associated with each request, requesting the
flagged license records 258 in three batches reduces the
overhead associated with retrieving these flagged license

US 2020/0272707 Al

records 258 relative to other techniques (e.g., individually
re-pulling each of the flagged license records or re-pulling
the initial series of license records), improving the perfor-
mance of the importation process 250 and the operation of
the client instance 102.
[0054] The technical effects of the disclosed technique
include an efficient importation process for importing
license records from a LMTS. The importation process
includes a series of steps that are performed to handle
situations in which license records fail to import, wherein
the process includes: flagging these license records, cluster-
ing the flagged license records into groups, and then request-
ing the license records from the LMTS for each group. By
effectively clustering of the flagged license records into
groups, present embodiments enable a reduction in process-
ing, memory, and/or communication overhead of the impor-
tation process, improving the efficiency of the importation
process and the operation of the client instance.
[0055] The specific embodiments described above have
been shown by way of example, and it should be understood
that these embodiments may be susceptible to various modi-
fications and alternative forms. It should be further under-
stood that the claims are not intended to be limited to the
particular forms disclosed, but rather to cover all modifica-
tions, equivalents, and alternatives falling within the spirit
and scope of this disclosure.
[0056] The techniques presented and claimed herein are
referenced and applied to material objects and concrete
examples of a practical nature that demonstrably improve
the present technical field and, as such, are not abstract,
intangible or purely theoretical. Further, if any claims
appended to the end of this specification contain one or more
elements designated as “means for [perform]ing [a function]
” or “step for [perform]ing [a function] . . . ™, it is
intended that such elements are to be interpreted under 35
U.S.C. 112(f). However, for any claims containing elements
designated in any other manner, it is intended that such
elements are not to be interpreted under 35 U.S.C. 112(%).

1. A cloud-based computing system, comprising:

at least one memory storing a computer management

database (CMDB);

at least one processor configured to execute stored

instructions to perform actions, comprising:

requesting and receiving, from a license management
tool server (LMTS), an initial series of license
records having a span, A, of sequential respective
identifier field (ID) values ranging from a first ID
value to a last ID value;

attempting to import, into the CMDB, the initial series
of license records and flagging the license records of
the initial series having respective ID values that do
not correspond to configuration items (Cls) stored in
the CMDB;

using a sliding window technique to cluster the flagged
license records into groups of flagged license
records; and

requesting and receiving, from the LMTS, a respective
additional series of license records for each of the
groups of flagged license records.

2. The system of claim 1, wherein, to request the initial
series of license records, the at least one processor is
configured to execute the stored instructions to perform
actions, comprising:

Aug. 27, 2020

requesting, from an application programming interface
(API) of the LMTS, the initial series of license records,
wherein the initial series is requested using an offset
value that is the first ID value and a limit value of that
is a difference between the last ID value and the first ID
value.

3. The system of claim 1, wherein, to use the sliding
window technique to cluster the flagged license records, the
at least one processor is configured to execute the stored
instructions to perform actions, comprising:

determining a minimum difference, M, between the

respective ID values of the flagged license records of
the initial series;

traversing the initial series of license records using a

sliding window, wherein a sliding window size is
varied between M and A/2 to determine the sliding
window size, K, that suitably clusters the flagged
license records; and

clustering the flagged license records into the groups of

flagged license records, wherein a respective span of
each of the groups of flagged license records is less than
or equal to K.

4. The system of claim 3, wherein, to determine the
sliding window size, K, that suitably clusters the flagged
license records, the at least one processor is configured to
execute the stored instructions to perform actions, compris-
ing:

calculating a respective cluster score for each respective

sliding window size; and

determining the sliding window size, K, to be the respec-

tive sliding window size with a highest respective
cluster score.

5. The system of claim 4, wherein the cluster score is
calculated based on a ratio of a number of the flagged license
records in a largest group of flagged license records to the
respective sliding window size, a number of the groups of
the flagged license records, a respective number of flagged
license records in each of the groups of flagged license
records, or a combination thereof.

6. The system of claim 3, wherein, to request, from the
LMTS, the additional series of license records, the at least
one processor is configured to execute the stored instructions
to perform actions, comprising:

requesting, from an API of the LMTS, the additional

series of license records for each of the groups of
flagged license records, wherein each additional series
is requested using a respective offset value that is the
respective ID value of one of the flagged license
records and a respective limit value that is less than or
equal to K.

7. The system of claim 1, wherein the at least one
processor is configured to execute the stored instructions to
perform actions, comprising:

attempting to import, into the CMDB, each respective

additional series of license records and flagging license
records of each respective additional series of license
records having respective ID values that do not corre-
spond to the CIs stored in the CMDB.

8. A method, comprising:

receiving, from a license management tool server

(LMTS), an initial series of license records, wherein the
initial series of license records has a span, A, of
sequential respective identified field (ID) values rang-
ing from a first ID value to a last ID value;

US 2020/0272707 Al

storing the initial series of license records in an import

table;

attempting to import the initial series of records from the

import table into a CMDB and flagging license records
in the import table having respective 1D values that do
not correspond to configuration items (Cls) stored in
the CMDB;

determining a minimum difference, M, between the

respective ID values of the flagged license records of
the import table;

traversing the initial series of license records of the import

table using a sliding window having a sliding window
size that is varied between M and A/2 to determine the
sliding window size, K, that suitably groups the flagged
license records of the import table; and

requesting an additional series of records from the LMTS

for each group of flagged license records of the import
table.

9. The method of claim 8, comprising:

receiving, from the LMTS, the additional series of records

for each group of flagged license records of the import
table, in response to the one or more additional
requests;

storing the additional series of records in the import table;

and

attempting to import the additional series of records from

the import table into the CMDB.

10. The method of claim 8, comprising:

requesting the initial series of license records from an

application programming interface (API) of the LMTS
using an offset value that is the first ID value and a limit
value that is the span, A, of the initial series of records.

11. The method of claim 8, wherein traversing the initial
series of license records of the import table using the sliding
window comprises:

clustering the flagged license records into the groups of

flagged license records, wherein a respective span of
each of the groups of flagged license records is less than
or equal to K.

12. The method of claim 8, wherein determining the
sliding window size, K, that suitably clusters the flagged
license records comprises:

calculating a respective cluster score for each respective

sliding window size; and

determining the sliding window size, K, to be the respec-

tive sliding window size having a highest respective
cluster score.

13. The method of claim 12, wherein calculating the
respective cluster score for each respective sliding window
size comprises:

for each respective sliding window size between M and

A/2:

calculating a ratio of a number of flagged license
records in a largest group of the flagged license
records to the respective sliding window size; and

modifying the ratio with one or more terms represent-
ing a number of the groups of flagged license
records, a respective number of flagged license
records in each of the groups of the flagged license
records, or a combination thereof, to calculate the
respective cluster score at the respective sliding
window size.

14. The method of claim 8, wherein requesting the addi-
tional series of records from the LMTS comprises:

Aug. 27, 2020

requesting, from an API of the LMTS, the additional
series of license records for each of the groups of
flagged license records using a respective offset value
that is the respective ID value of one of the flagged
license records and a respective limit value that is less
than or equal to K.

15. A non-transitory, computer-readable medium storing
instructions executable by a processor of a computing device
to import data from a license management tool server
(LMTS) into configuration items (Cls) stored in a configu-
ration management database (CMDB), the instructions com-
prising instructions to:

perform an initial request to the LMTS for an initial series

of license records having a span, A, of sequential
respective ID values ranging from a first ID value to a
last 1D value;

receive, from the LMTS, the initial series of license

records from the LMTS in response to the initial
request and storing the initial series of license records
in an import table;
attempt to import the initial series of records from the
import table into the CMDB and flag license records in
the import table that fail to import into the CMDB;

determine a minimum difference, M, between the respec-
tive ID values of the flagged license records of the
import table;

traverse the license records of the import table using a

sliding window having a sliding window size that is
varied between M and A/2 to determine the sliding
window size, K, that suitably groups the flagged license
records of the import table; and

perform additional requests for additional series of

records from the LMTS for each group of flagged
license records, wherein each of the additional requests
include a respective offset value that is the respective
ID value of one of the flagged license records and a
respective limit value that is less than or equal to K.

16. The medium of claim 15, wherein the instructions
comprise instructions to:

receive the additional series of records from the LMTS in

response to the additional requests;

store the additional series of records in the import table;

and

attempt to import the additional series of records from the

import table into the CMDB.

17. The medium of claim 15, wherein the instructions to
perform the initial request comprise instructions to:

request the initial series of license records from an appli-

cation programming interface (API) of the LMTS using
an offset value that is the first ID value and a limit value
of that is the difference between the last ID value and
the first ID value.

18. The medium of claim 15, wherein the instructions to
determine the sliding window size, K, that suitably clusters
the flagged license records comprise instructions to:

calculate a respective cluster score for each sliding win-

dow size between M and A/2; and

determining the sliding window size, K, to be the respec-

tive sliding window size having a highest calculated
cluster score.

19. The medium of claim 18, wherein the instructions to
calculate the respective cluster score for each respective
sliding window size comprise instructions to:

US 2020/0272707 Al Aug. 27,2020
10

for each respective sliding window size from M to A/2:
calculate a ratio of a number of the flagged license
records in a largest group of the flagged license
records to the respective sliding window size; and
modify the ratio with one or more terms representing
grouping information of the groups of flagged
license records to calculate the respective cluster
score at the respective sliding window size.
20. The medium of claim 19, wherein the instructions
modify the ratio comprise instructions to:
multiply the ratio by a count of the groups of the flagged
license records having a respective span greater than
one and by a number of flagged license records in each
of the groups of flagged license records having the
respective span greater than one.

#* #* #* #* #*

