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TECHNIQUES FOR PREDICTING AND TREATING POST-OPERATIVE OUTCOMES
IN SURGERY PATIENTS

BACKGROUND
[0001] A substantial number of patients are observed to develop post operative complications
after surgery, such as post-operative urinary retention (POUR) after spinal surgery. POUR
outcomes after lower spinal surgery can be as high as 30%. POUR contributes to increased
hospital stays, worse outcomes for patients, and costly bladder interventions.
[0002] A subject includes a human or other animal patient or study participant undergoing
surgery or any portion of the surgical procedure.
Treatment includes any action or action avoidance or change to mediate the post-surgical
outcome. For example, treatment of POUR includes catheterization or urinary function tests, and

medication administration. This can be uncomfortable for the patient and costly for the hospital.

SUMMARY
[0003] Techniques are provided for predicting and treating post-operative outcomes in surgery
patients. Machine learning based on retrospective outcomes is used including one or more of a
multiple regression model and neural network model, which can be stacked together to classify a
subject and treat the subject accordingly.
[0004] In a first set of embodiments, a method for treating a subject undergoing surgery
includes obtaining, on a processor, first data for a subject undergoing surgery. The first data
indicates demographic information for the subject or medical history for the subject or surgery
information about the surgery, the latter optionally indicating any anesthesia administered, or
some combination. The method also includes generating, on the processor, neural network output
data that indicates a first probability for the subject developing a post-operative outcome by
inputting the first data into an input layer of a neural network. The neural network is trained with
training data that indicates, for a retrospective plurality of prior patients of surgery, demographic

information for the retrospective plurality or medical history for the retrospective plurality or
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surgery information about surgeries for the retrospective plurality, or some combination. The
training data, unlike the first data, includes post-operative outcomes for the retrospective
plurality. Still further, the method includes sending from the processor a signal that indicates a
post-operative outcome classification for the subject based at least in part on the neural network
output data. Even further still, the method includes treating the subject based at least in part on
the signal.

[0005] In some embodiments of the first set, the signal indicates that the subject should be
treated for the post-operative outcome when the first probability exceeds a first cutoff value.
[0006] In some embodiments of the first set, the first data includes values for over 200
parameters. In some of these embodiments, inputting the first data into the input layer of the
neural network includes scaling the first data with a scaling factor for each parameter such that
all values of that parameter for the training data lie in a range from 0 to 1 inclusive.

[0007] In some embodiments of the [irst set, the neural network includes two hidden layers,
each hidden layer fully connected to a preceding layer and each hidden layer using a sigmoid
activation function. In some of these embodiments, a first hidden layer of the two hidden layers
is fully connected to the input layer; and the first hidden layer has a first number nodes in a range
from 20 to 80. In some of these embodiments, a second hidden layer of the two hidden layers is
fully connected to the first hidden layer and the second hidden layer comprises a second number
nodes in a range from 10 to 40.

[0008] In some embodiments of the first set, an output layer of the neural network comprises
one output node that indicates the first probability and uses an identity activation function; and
the output layer uses a sum of squares error function during training.

[0009] In some embodiments of the first set, the method also includes generating, on the
processor, binomial regression output data that indicates a second probability for the subject
developing POUR by inputting a small subset of the first data into an input layer of a binomial
regression trained with a corresponding subset of the training data. Here, the POUR
classification for the subject is further based at least in part on the binomial regression output
data. In some of these embodiments, the signal indicates that the subject should be treated for
POUR when the first probability exceeds the first cutoff value OR when the second probability
exceeds the second cutoff value. Alternatively, the signal indicates that the subject should be
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treated for POUR when the first probability exceeds the first cutoff value AND when the second
probability exceeds the second cutoff value.

[0010] In some embodiments of the first set that use the binomial regression, the small subset
includes values for fewer than 50 parameters. For example, in some embodiments,

the small subset includes only subset parameters of the first data, wherein the subset parameters
are correlated with the POUR outcomes for the training set with a p value less than threshold
significance level. In some of these embodiments, the threshold significance level is a p value
less than 0.05.

[0011] In some embodiments of the first set, the surgery is spinal surgery and the outcome is a
post-operative urine retention (POUR) outcome. In some of these embodiments, treating the
subject includes use or avoidance of anesthetic agents, use or avoidance of analgesic
medications, indwelling catheter placement, or surgical choice.

[0012] In other sets of embodiments, a non-transient compulter-readable medium or an
apparatus or a neural network is configured to perform one or more steps of the above methods.
[0013] Still other aspects, features, and advantages are readily apparent from the following
detailed description, simply by illustrating a number of particular embodiments and
implementations, including the best mode contemplated for carrying out the invention. Other
embodiments are also capable of other and different features and advantages, and its several
details can be modified in various obvious respects, all without departing from the spirit and
scope of the invention. Accordingly. the drawings and description are to be regarded as

illustrative in nature, and not as restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS
[0014] Embodiments are illustrated by way of example, and not by way of limitation, in the
figures of the accompanying drawings in which like reference numerals refer to similar elements
and in which:
[0015] FIG. 1 is a block diagram that illustrates an example training set for machine learning of
POUR outcomes, according to an embodiment;
[0016] FIG. 2 is a flow chart that illustrates an example method for machine learning based on

a training set, according to an embodiment;



WO 2024/054646 PCT/US2023/032314

[0017] FIG. 3A is a block diagram that illustrates an example neural network for illustration;
[0018] FIG. 3B is a plot that illustrates example activation functions used to combine inputs at
any node of a feed forward neural network, according to various embodiments;

[0019] FIG. 4 is a flow chart that illustrates an example method to treat a subject undergoing
spinal surgery based on machine learning, according to an embodiment;

[0020] FIG. 5A is a plot that illustrates example classification performance based on a cutoff
applied to model output, according to an embodiment;

[0021] FIG. 5B is a flow chart that illustrates an example method to stack two machine
learning models to classify a particular subject, according to an embodiment;

[0022] FIG. 5C is a plot that illustrates an example performance when stacking two machine
learning models to classify a particular subject, according to an embodiment;

[0023] FIG. 6 is a block diagram that illustrates a computer system upon which an embodiment
of the invention may be implemented;

[0024] FIG. 7 illustrates a chip set upon which an embodiment of the invention may be
implemented; and

[0025] FIG. 8 is a diagram of exemplary components of a mobile terminal (e.g., cell phone
handset) for communications, which is capable of operating in the system, according to one
embodiment.

[0026] FIG. 9 Bar graph of the differences in rates of POUR based on patient demographics
and medication use of the overall cohort (n = 891). Frequencies (N) and p values comparing
those who did and did not develop urinary retention are listed in the label. Red bars = included in
binomial logistic regression and neural network models. Blue bars = only included in neural
network model. Figure is available in color online only.

[0027] FIG. 10 Bar graph of the differences in rates of POUR based on planned surgical
characteristics of the overall cohort (n = 891). Frequencies of the surgery type (N) and p values
comparing those who did and did not develop urinary retention are listed in the label. Red bars =
included in binomial logistic regression and neural network models. Blue bars = only included in
neural network model. Figure is available in color online only.

[0028] FIG. 11A-B Scatterplot for the testing set (N = 235) of the predicted probabilities of the
regression model (y-axis) compared to the neural network model (x-axis) demonstrating (FIG.
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11A) optimal cutoff points of 0.43 and 0.54, respectively, and (FIG. 11B) optimal cutoff points
of 0.23 and 0.24, respectively, for combining the two models. By combining the two models
using an “and” conjunction, the upper right quadrant (red shaded area) represents a positive test
result. Thus, a green diamond in this area represents a true positive, whereas a blue circle in this
area represents a false positive. A green or blue marker in the other quadrants represents a false
negative or a true positive, respectively. Figure is available in color online only.

[0029] FIG. 12 Bar graph of the differences in rates of POUR based on medical comorbidities
(pre-existing ICD 10 codes) of the overall cohort (n = 891). Frequencies of the ICD 10 code (N)
and p-values comparing those who did and did not develop urinary retention are listed in the
label. All codes included here have an association with POUR with p <0.0003. Solid = included
in neural network model only. Dotted = included in regression and neural network models.
[0030] FIG. 13 Bar graph of the differences in rates of POUR based on medical comorbidities
(pre-existing ICD 10 codes) of the overall cohort (n = 891). Frequencies ol the ICD 10 code (N)
and p-values comparing those who did and did not develop urinary retention are listed in the

label. All codes included here have an association with POUR with p > 0.0003.

DETAILED DESCRIPTION
[0031] A method and apparatus are described for predicting and treating post-operative
outcomes such as urinary retention (POUR) in spinal surgery patients. In the following
description, for the purposes of explanation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention. It will be apparent, however, to one
skilled in the art that the present invention may be practiced without these specific details. In
other instances, well-known structures and devices are shown in block diagram form in order to
avoid unnecessarily obscuring the present invention.
[0032] Notwithstanding that the numerical ranges and parameters setting forth the broad scope
are approximations, the numerical values set forth in specific non-limiting examples are reported
as precisely as possible. Any numerical value, however, inherently contains certain errors
necessarily resulting from the standard deviation found in their respective testing measurements
at the time of this writing. Furthermore, unless otherwise clear from the context, a numerical

value presented herein has an implied precision given by the least significant digit. Thus, a value
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1.1 implies a value from 1.05 to 1.15. The term “about” is used to indicate a broader range
centered on the given value, and unless otherwise clear from the context implies a broader range
around the least significant digit, such as “about 1.1” implies a range from 1.0 to 1.2. If the least
significant digit is unclear, then the term “about” implies a factor of two, e.g., “about X” implies
a value in the range from 0.5X to 2X, for example, about 100 implies a value in a range from 50
to 200. Moreover, all ranges disclosed herein are to be understood to encompass any and all sub-
ranges subsumed therein. For example, a range of "less than 10" for a positive only parameter
can include any and all sub-ranges between (and including) the minimum value of zero and the
maximum value of 10, that is, any and all sub-ranges having a minimum value of equal to or
greater than zero and a maximum value of equal to or less than 10, e.g., 1 to 4.

[0033] Some embodiments of the invention are described below in the context of a particular
regression model and a two-hidden-layer neural network used in combination for dealing with
POUR outcomes alter spinal surgery. However, the invention is not limited to this context. In
other embodiments, either model is used separately, or other regression model classifiers or other
neural networks are used in combination to predict and treat other outcomes of other surgeries.
This can apply broadly to neurosurgical, general, and thoracic surgery procedures where

extended case time is often seen.

1. Overview

[0034] FIG. 1 is a block diagram that illustrates an example training set 110 for machine
learning of procedure outcomes, according to an embodiment. The training set 110 includes
multiple retrospective cases, such as case 111, for which outcomes of interest are known or can
be determined. The cases 111 for the training set 110 are selected to be appropriate for the
population of interest, e.g., for surgeries, such as spinal surgery, or more specifically, lower
spinal surgeries, that can lead to POUR or other outcomes of interest. The training set is in
machine readable form, such as a data structure or signal on a computer readable medium. Each
case 111 includes patient data 112 indicating information 112 about a retrospective patient and
procedure data 114 indicating information about a procedure as well as outcome data 116
indicating information about the outcome of interest. The patient data 112 includes multiple

fields that hold data that indicate demographic (e.g., age, height, weight, allergies) and medical
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history (e.g., heart disease, diabetes, former orthopedic injuries) about the retrospective subject.
Much of this is available as digital medical records and is dominated by HIPPA security
requirements. Thus, in some embodiments identifying information about the retrospective patient
is omitted from the patient data 112. The procedure data 114 includes multiple fields that hold
data that indicate information about the retrospective procedures (e.g., anatomical targets,
locations and sequence of incisions, tools used, prosthetics, implants, medications and anesthesia
administered). In some embodiments, this information is represented in whole or in part by
insurance codes: lumbar discectomy (CPT codes 63030 or 63035), lumbar laminectomy (CPT
codes 63005, 63012, 63017, 63042, 63047, or 64048), single-level lumbar fusion (CPT codes
22633), multi-level lumbar fusion (CPT codes 22534, 22585, 22614, 22632, or 22634), interbody
fusion (CPT code 22851), anterior or lateral interbody fusion (CPT codes 22845-22847),
posterior interbody fusion (CPT codes 22840 or 22842-22844). The outcome data 114 includes
multiple [ields that hold data that indicate information about the outcome (e.g., function
recovered, infections, POUR).

[0035] The models can be developed using codes based on the International Classification of
Disease (ICD) adapted for the Health Insurance Portability and Accountability Act of 1996
(HIPAA), currently at version 10 (https://icd.codes/) and Current Procedural Terminology®
(CPT®), set by the American Medical Association, updated on a rolling basis (www.ama-
assn.org/amaone/cpt-current-procedural-terminology). In some embodiments, the training data,
validation data, test data or comprises inputs directed to at least one international classification of
diseases (ICD) code or CPT® code. These and other variables are provided in Table 1 below:
Table 1

. Inclusion in Inclusion in neural
Variables . .
N=175 Variable type regression model network model
- (N=22) (N=174)
Preoperative (N=12)
Age Continuous X X
BMI Continuous | X X
Any preoperative opioid use Binary (0/1) X
Preoperative oxycodone use Binary (0/1) X
Preoperative fentanyl use Binary (0/1) X
Preoperative morphine use Binary (0/1) X
Preoperative hydromorphone use Binary (0/1) X
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Preoperative methadone use
Preoperative meperidine use
Preoperative tamsulosin use
Preoperative doxazosin use
Sex
Surgical characteristics (N=17)
Number of Levels
Laminectomy
Single Laminectomy
Discectomy
Fusion
Single level Fusion
Multi-level Fusion
Interbody fusion type:
Transforaminal
Lateral
Anterior
Pelvic screw placement
Minimally invasive approach
Multiple Laminectomies
Posterolateral fusion only
Discectomy only
Laminectomy only
Single-level interbody fusion
ICD-10 codes (comorbidities) (N=146)
7981
798890
M4316
R000
1517
E119
701818
1959
R6889
K6389
Z136
R52
K5900
N390
K567
R4182
R339
74789

Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (1/2)

Continuous
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)

Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)

Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
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M48061
110
M4802
R918
M48062
Jo811
R9431
M5126
M5416
G8918
Z09
M5116
D62
G8929
Joo
R509
M47816
M545
Jog4
M7989
7452
E785
M5136
T1490XA
74682
G8911
T148XXA
M47812
D649
M4806
R531
M4804
12510
W19XXXA
75189
R0O79
V892XXA
14891
R140
74659
G9520
Z01810
M960

Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
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M549
M4317
R0689
M5442
D72829
M5441
M5117
79911
R200
M4312
R0902
M961
M5127
E039
(G959
N179
R600
K219
G061
786718
M419
J811
X58XXXA
E878
Z1389
A419
R0602
M542
E871
J189
E46
JO39
M4807
J449
M5410
R937
M4726
E1165
R7881
G9589
R410
E669
R109

Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
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V877XXA
M2578
138

ROOA1
F329
G062
J9601
M4186
M4626
S32009K
RO11
R933
SO0003XA
74889
M9983
S32019A
Z930
S12600A
M79605
R202
M4800
F419
M869
N189
M5137
G9529
E876
G834
1509
M4624
M5124
D696
S32018A
M5417
T84216A
R739
S2242XA
1471
C7951
M8448XA
(G9389
R609

Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
Binary (0/1)
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[0036] In some embodiments, other information about the subject is included for both the
training set and the during operation of the models. For example, one or more biomarkers can be
included in the set of parameters. As used herein, the term *“‘biomarker” (or fragment thereof, or
variant thereof) and their synonyms, which are used interchangeably, refer to molecules that can
be evaluated in a sample and are associated with a physical condition. For example, markers
include expressed genes, their transcripts (e.g. mRNA) or their products (e.g., proteins) or
autoantibodies to those proteins that can be detected from human samples, such as blood, serum,
solid tissue, and the like, that is associated with a physical or disease condition. Such biomarkers
include, but are not limited to, biomolecules comprising nucleotides, amino acids, sugars, fatty
acids, steroids, metabolites, polypeptides, proteins (such as, but not limited to, antigens and
antibodies), carbohydrates, lipids, hormones, antibodies, regions of interest which serve as
surrogates for biological molecules, combinations thereof (e.g., glycoproteins,
ribonucleoproteins, lipoproteins) and any complexes involving any such biomolecules, such as,
but not limited to, a complex formed between an antigen and an autoantibody that binds to an
available epitope on said antigen. In a specific embodiment, the biomarker is an expression
product of a gene.

[0037] The term “biomarker value” refers to a value measured or derived for at least one
corresponding biomarker of the subject and which is typically at least partially indicative of a
concentration of the biomarker in a sample taken from the subject. Thus, the biomarker values
could be measured biomarker values, which are values of biomarkers measured for the subject,
or alternatively could be derived biomarker values, which are values that have been derived from
one or more measured biomarker values, for example by applying a function to the one or more
measured biomarker values. Biomarker values can be of any appropriate form depending on the
manner in which the values are determined. For example, the biomarker values could be
determined using high-throughput technologies such as mass spectrometry, sequencing
platforms, array and hybridization platforms, immunoassays, flow cytometry, or any
combination of such technologies and in one preferred example, the biomarker values relate to a
level of activity or abundance of an expression product or other measurable molecule, quantified
using a technique such as PCR, sequencing or the like. In this case, the biomarker values can be
in the form of amplification amounts, or cycle times, which are a logarithmic representation of
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the concentration of the biomarker within a sample, as will be appreciated by persons skilled in
the art and as will be described in more detail below. The term “expression product” refers to a
polynucleotide expression product (e.g., transcript) or a polypeptide expression product (e.g.,
protein)

[0038] In the illustrated embodiment, spinal surgeries and POUR outcomes are of interest and
an example training set is described in the Appendix. For example, the anonymous fields
specifying retrospective patient data 112, and codes specifying retrospective procedure data 114,
and representations for POUR outcomes are described in more detail in the Appendix.

[0039] FIG. 2 is a flow chart that illustrates an example method for machine learning based on
a training set, according to an embodiment. Many machine methods to fit models using training
sets are well known and are available as commercial software such as MATLAB™ from
MATHWORKS of Natick, Massachusetts. First one sets a function that takes in values for a set
of paramelters and returns a model outpul data set. Second one sets an 'error [unction' that
provides a number representing the difference between the training set data and the model's
output for any given set of values for the model parameters. This is usually either the sums of
squared error (SSE) or maximum likelihood. Third one determines the parameter values that
minimize this difference. The model 210 is the function that takes in a set of parameter values.
There is a practically endless number of model and functions that can be fit to data. In the
illustrated embodiments a binomial classifier is used a one model and a neural network is used as
an independent model. The training data is represented by oval 220 and the model output is
represented by oval 218. The definition of the error function and the process of modifying the
parameter values to reduce the error at each iteration is represented by box 230. And the full
effort to minimize the error occurs by repeating this cycle until the errors are low enough to meet
some criterion.

[0040] TIn some embodiments a validation set is used in which the outcome is known but the
validation set is not used to train the model 210. Instead, the validation set is used to determine
how well the trained model fits new data. This is done to establish confidence and estimate error
rates for the model. If errors are small enough and confidence is high enough, the trained model

or models are used during operations on subjects with unknown outcomes.
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[0041] In an example embodiment, a binomial logistic model—which estimates the probability
that an outcome is present given the values of explanatory variables and is typically used for
classification—was formed with backward elimination based on significant changes in likelihood
ratios, using a 0.10 cutoff. All patient demographics and surgical characteristics were considered
for the model, but only comorbidities that had significant correlations with POUR were included
(p < 0.05 corrected for multiple comparisons). For example, the inputs used in developing the
predictive POUR model may involve at least one ICD code, at least two ICD codes, at least five
ICD codes, at Ieast 10 ICD codes, or between 1 and 10 ICD codes shown to be associated with
higher risk of POUR. Example ICD codes associated with POUR and used for formation of the
predictive model include, but are not limited to, diabetes (ICD code E11.9), abnormal heartbeat
(ICD code R00), other general symptoms and signs (ICD code R68.89), altered mental status
(ICD code R41.82), screening for cardiovascular disorders (ICD code Z13.6) and code for plans
[or only a single-level laminectomy (ICD code M96.1). These comorbidities were derived [rom
associations discovering in the training set. This resulted in fewer than 50 inputs. For example, in
an example embodiment described in the Appendix about 26 inputs are used.

[0042] Effective training of a machine learning system with the characteristics described above
can be achieved using neural networks, widely used in image processing and natural language
processing. FIG. 3A is a block diagram that illustrates an example neural network 300 for
illustration. A neural network 300 is a computational system, implemented on a general-purpose
computer, or field programmable gate array, or some application specific integrated circuit
(ASIC), or some neural network development platform, or specific neural network hardware, or
some combination. The neural network is made up of an input layer 310 of nodes, at least one
hidden layer 320, 330 or 340 of nodes, and an output layer 350 of one or more nodes. Each node
is an element, such as a register or memory location, that holds data that indicates a value. The
value can be code, binary, integer, floating point, or any other means of representing data. Values
in nodes in each successive layer after the input layer in the direction toward the output layer is
based on the values of one or more nodes in the previous layer. The nodes in one layer that
contribute to the next layer are said to be connected to the node in the later layer. Connections
312, 323, 345 are depicted in FIG. 3A as arrows. The values of the connected nodes are
combined at the node in the later layer using some activation function with scale and bias (also
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called weights) that can be different for each connection. Neural networks are so named because
they are modeled after the way neuron cells are connected in biological systems. A fully
connected neural network has every node at each layer connected to every node at any previous
or later layer.

[0043] FIG. 3B is a plot that illustrates example activation functions used to combine inputs at
any node of a neural network. These activation functions are normalized to have a magnitude of
1 and a bias of zero; but when associated with any connection can have a variable magnitude
given by a weight and centered on a different value given by a bias. The values in the output
layer 350 depend on the values in the input layer and the activation functions used at each node
and the weights and biases associated with each connection that terminates on that node. The
sigmoid activation function (dashed trace) has the properties that values much less than the
center value do not contribute to the combination (a so called switch off effect) and large values
do not contribute more than the maximum value (o the combination (a so called saturation
effect), both properties frequently observed in natural neurons. The tanh activation function
(solid trace) has similar properties but allows both positive and negative contributions. The
softsign activation function (short dash-dot trace) is similar to the tanh function but has much
more gradual switch and saturation responses. The rectified linear units (ReLU) activation
function (long dash-dot trace) simply ignores negative contributions from nodes on the previous
layer; but, increases linearly with positive contributions from the nodes on the previous layer;
thus, ReLLU activation exhibits switching but does not exhibit saturation. The identity activation
function applies identity operation on input data so output data is proportional to the input data;
thus, it exhibits neither switching nor saturation effects. In some embodiments, the activation
function operates on individual connections before a subsequent operation, such as summation or
multiplication; in other embodiments, the activation function operates on the sum or product of
the values in the connected nodes. In other embodiments, other activation functions are used,
such as kernel convolution.

[0044] An advantage of neural networks is that they can be trained to produce a desired output
from a given input without knowledge of how the desired output is computed. There are various
algorithms known in the art to train the neural network on example inputs with known outputs.
Typically, the activation function for each node or layer of nodes is predetermined, and the
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training determines the weights and biases for each connection. A trained network that provides
useful results, e.g., with demonstrated good performance for known results, is then used in
operation on new input data not used to train or validate the network.

[0045] In some neural networks, the activation functions, weights and biases are shared for an
entire layer. This provides the networks with shift and rotation invariant responses. The hidden
layers can also consist of convolutional layers, pooling layers, fully connected layers, and
normalization layers. The convolutional layer has parameters made up of a set of learnable filters
(or kernels), which have a small receptive field. In a pooling layer, the activation functions
perform a form of non-linear down-sampling, e.g., producing one node with a single value to
represent four nodes in a previous layer. There are several non-linear functions to implement
pooling among which max pooling is the most common. A normalization layer simply rescales
the values in a layer to lie between a predetermined minimum value and maximum value, e.g., 0
and 1, respectlively.

[0046] In some embodiments, a multilayer perceptron (MLP) neural network architecture, as
depicted in FIG. 3A, was used because such networks demonstrate an advantageous ability to
learn salient features of the data on its own without having to seriously limit the inputs. Thus, all
available information can be used. For example, about 174 input parameter values (see Table 1)
are used as 345 input layer nodes (171 binary variables equates to 342 nodes and 3 standardized
continuous variables which map to one node each), which allows all available patient and
procedure information to be used for lower spinal surgery in the retrospective training data.
Many of these inputs are true or false represented by the binary values 1 and 0, or -1 and 1,
respectively. To keep parameters with inherently large values from dominating the network
weights learned during training, it is advantageous, in some embodiments, to scale all the values
for each parameter so that observed ranges in the training set for that parameter fall with a
limited range, e.g., from O to 1, or from

-1 to 1. In the example embodiment, the neural network consisted of two hidden layers
terminating at an output layer. The number of nodes were found to optimize the predictive power
of the model. A practitioner can determine a number of nodes in each hidden layer by starting
with an initial guess for the number of nodes (e.g., based on a number larger than, e.g., twice as
large as, the number of parameters expected to be important a priori) in the first layer and
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something on the order of half that number in the second hidden layer, and again half in each
successive layer. The number of nodes in each layer can then be adjusted up or down to see the
effect on the performance of the model and stopping when the performance seems to be
sufficient for an intended purpose, e.g. to distinguish between those persons to be treated for the
outcome and those not treated or treated differently.

The first hidden layer consisted of 38 fully connected nodes. In other embodiments, the first
layer is larger to allow other important factors to be discovered or smaller to combine several
factors. Thus, a range of node numbers in the first hidden layer is used in various other
embodiments, to span the number of the expected factors, wherein the number is selected in a
range from about 20 to about 80 nodes. In the example embodiment, the second hidden layer
consisted of 21 fully connected nodes. Thus, a range of node numbers in the second hidden layer
is used in various other embodiments, to span the number of the expected factors, wherein the
number is selected in a range [rom about 10 to about 40 nodes. In the illustrated embodiment,
hidden layers used a sigmoid activation function with no dropout. The output layer used an
identity activation function and a sum of squares error function. The stopping rule for training

was 1 consecutive step with no decrease in error based on the validation set.

2. Method

[0047] FIG. 4 is a flow chart that illustrates an example method to treat a subject undergoing
spinal surgery based on machine learning, according to an embodiment. Although steps are
depicted in FIG. 4, and in subsequent flowchart FIG. 5B, as integral steps in a particular order
for purposes of illustration, in other embodiments, one or more steps, or portions thereof, are
performed in a different order, or overlapping in time, in series or in parallel, or are omitted, or
one or more additional steps are added, or the method is changed in some combination of ways.
[0048] In step 401, training data, indicating retrospective outcomes for hundreds of subjects as
well as corresponding patient information and procedure information, is obtained and stored on
computer readable media. Any method may be used to obtain this information and store it on
media, including receiving manual input unsolicited or in response to prompts, e.g., through a
graphical user interface (GUI), retrieved in whole or in part from an extant file or database, such

as digital medical records and insurance records indicating medical diagnosis and procedure
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codes, received as network packet traffic either unsolicited or in response to a query message, or
some combination. Storing can be accomplished in a local data structure such as a file or
database with fields for various parameters indicating patient information, procedure information
and outcomes, such as POUR outcomes as depicted in FIG. 1. Thus, step 401 includes obtaining
and storing for a retrospective plurality of prior patients of spinal surgery, demographic
information for the retrospective plurality or medical history for the retrospective plurality or
surgery information about spinal surgeries for the retrospective plurality, or some combination,
and POUR outcomes for the retrospective plurality. Training data includes values for most if not
all parameters that are to be used in any model predicting outcomes, such as POUR outcomes.
For example, POUR was defined according to previous literature as reinsertion of a Foley
catheter based on retention urine volume > 400 milliliters (mL, 1 mL = 107 liters). or requiring
straight catheterization for urine volumes > 400 mL. Urine volume was determined per standard
of care with nurse-led bladder scanning. The patient characteristics serving as additional
parameters included all preexisting ICD-10 codes associated with the patient; age; sex; body
mass index (BMI); preoperative opioid use (morphine, methadone, fentanyl, oxycodone,
hydrocodone, meperidine); preoperative urinary retention medication use (tamsulosin,
doxazosin); and planned or actual surgery specifics. In some embodiments, e.g., using all
information available for lower spinal surgery procedures, about 250 parameters are available to
various degrees.

[0049] In step 403, a subset of patient and procedure information is selected, such that the
subset includes demonstrably non-random correlation with the outcome of interest, e.g., the
POUR outcome. Any method may be used to select the subset of parameters with non-random
correlation to the outcome. For example, the selection can be based on parameters identified in
the literature with others added or subtracted based on analysis of all or part of the training data
set. In an example embodiment, all patient demographics and surgical characteristics were
included in the model, but only patient medical records for comorbidities that had significant
correlations with POUR in all or part of the training set were included (p < 0.05 corrected for
multiple comparisons). In some embodiments, the subset of parameters is determined based on
the independently trained neural network described below. For example, of all the input
parameters each at a different node, the parameters associated with nodes that have weights less
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than a threshold weight are considered insignificant contributors and are eliminated from the
parameters used with the regression model to simplify the training of the regression model.
[0050] In step 405, a multiple regression fit is performed on the subset of parameters and the
outcome. For example, a binomial logistic classification model is fit with backward elimination
to produce a refined subset of training data parameters and to produce an output probability of a
POUR outcome, e.g., using a fitting procedure as illustrated in FIG. 2. Some parameters initially
included might be eliminated by backward elimination based on significant changes in likelihood
ratios, using a 0.10 cutoff. If eliminating the parameter changed the likelihood ratio by less than
0.1, the parameter was eliminated. The result is a set of coefficients for the revised subset of
parameters, which cause the errors, when run on the training set data, to cause the minimal
change in the model likelihood ratios.

[0051] In step 407, the regression model is used in a binomial logistic classification model by
selecting a cutoff that gives good performance in terms ol true positive rates and (rue negative
rates. FIG. 5A is a plot that illustrates example classification performance based on a cutoff
applied to model output, according to an embodiment. The development of the target outcome,
such as POUR, is viewed as a stochastic process in which even though all known inputs are the
same the result can be different, but the deviations follow certain probabilities represented by
probability density functions. In FIG. 5 the horizontal axis 502 indicates model output X. For a
given model output the probability of the subject being in a first class Y=0 (e.g., the non-POUR
outcome class) is given by trace 507 and the probability of being in a second class Y=1 (e.g., the
POUR outcome class) is given by trace 508. The total probability of a certain model result x is
given by the sum of the two curves given by trace 506. In binomial classification, model results
below a cutoff 506 are considered to be in class Y=0, while model results above the cutoff 506
are considered to be in the other class Y=1. For any such cutoff there will be a certain probability
of true negative result given by the area labeled TN, a false negative result given by the area FN,
a true positive result given by the area TP, and a false positive result given by the area FP. By
changing the cutoff all these areas and the corresponding rates change. Using the available data,
the cutoff is varied until the TN and TP results, or some other measure, are acceptable for some

practical application.
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[0052] A good measure often used in balancing TP and TN rates with FP and FN rates are the
receiver operating characteristic curve, or ROC curve, also sometimes called a relative operating
characteristic curve. A ROC curve is a graphical plot that illustrates the diagnostic ability of a
binary classifier system as its discrimination threshold is varied. The method was originally
developed for operators of military radar receivers starting in 1941, which led to its name. The
ROC curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR)
at various threshold settings (e.g., cutoffs). The true-positive rate is also known as sensitivity,
recall or probability of detection. The false-positive rate is also known as probability of false
alarm and can be calculated as (1 — specificity). When the performance is calculated from just a
sample of the population, it can be thought of as estimators of these quantities. In general, if the
probability distributions for both detection and false alarm are known, the ROC curve can be
generated by plotting the cumulative distribution function (area under the probability distribution
as depicted in FIG. 5A.

[0053] Selecting a cutoff that provides a favorable point on the ROC curve is what occurs in
step 407 for the output of the multiple regression model. In some embodiments step 407 is
delayed until after there is also a neural network model and the cutoffs for both model outputs
are determined in concert in step 415, described below.

[0054] Instep 411, the values of every training data parameter is scaled (e.g., by an additive or
multiplicative factor or both) so that all the values for that parameter in the training set lie in a
limited range, such as O to 1 inclusive, or -1 to 1 inclusive. In such a scaling, parameters that are
either yes or no (e.g., the subject has diabetes or not) can be represented by the extremes (either 1
and 0, or 1 and -1) and still compete for significant weights during training of the neural network
with parameters that have larger ranges, e.g., patient temperatures near 100 degrees Fahrenheit.
[0055] In step 413 a neural network is trained on the training set data scaled parameter values.
In various embodiments, the input layer of the neural network has a node for each parameter in
the training set and an output layer that has one node that expresses the probability of the
outcome of interest, €.g., the probability of a POUR outcome. For example, during training a
retrospective subject who develops POUR has a 1 placed in the output node and a retrospective
subject who does not develop POUR has a 0 placed in the output node. Any neural network may
be used; but, having too many layers with too many nodes taxes the solution and demands larger
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training sets. In the example embodiment presented in the Appendix it was found that a neural
network with two hidden layers fully connected to the preceding layers with 38 nodes and 21
nodes, respectively, a sigmoid activation function at each node, and an identity output activation
function, performed well. It is expected that other neural networks with a similar number of
hidden layers and nodes per hidden layer would also perform well. For example, a range of two
to three hidden layers each with 10 to 80 nodes and use of different activation functions are
expected to perform as well as the neural network described herein. A practitioner can determine
a number of nodes in each hidden layer by starting with an initial guess for the number of nodes
(e.g., based on a number larger than, e.g., twice as large as, the number of parameters expected to
be important a priori) in the first layer and something on the order of half that number in the
second hidden layer, and again half in each successive layer. The number of nodes in each layer
can then be adjusted up or down to see the effect on the performance of the model and stopping
when the performance seems (o be suflicient [or an intended purpose, €.g. to distinguish between

those persons to be treated for the outcome and those not treated or treated differently.

[0056] In step 415, the classification cutoff for the output of the neural network is determined,
e.g., using an approach as described above in step 407 for the multiple regression model. In some
embodiments, all combinations of cutoff points to the nearest 0.01 (1% chance) for each model
were used, and the statistical outcomes for that combination of cutoff points was tested.
According to a strict test, the prediction estimate from each model exceeds its respective cutoff
point to designate the patient as predicted to get the particular outcome (e.g., POUR). According
to a loose test, the prediction estimate from either model exceeds its respective cutoff point to
designate the patient as predicted to get the particular outcome (e.g., POUR).

[0057] By the end of step 415, a processor is configured to process a new subject (called a
patient or current subject in the following) whose outcome is not yet known. The treatment of
that patient is based at least in part on predicting the outcome for that patient using the values of
the input parameters for that patient and the models configured above. For example,
catheterization or medicament administration or some combination for that patient is prescribed
based at least in part on predicting a POUR outcome using the values of the input parameters for
that patient and the models configured for POUR outcomes
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[0058] In step 421, patient and procedure information is obtained for a current subject with
unknown outcome. Any method may be used to obtain this information, such as described above
for the training set data in step 401. For example, values for 250 parameters describing patient
and lower spine surgery information are obtained for a patient before or during surgery, before
there is a POUR outcome.

[0059] In step 423, the regression model or neural network or both are operated using as input
all or a revised subset, respectively, of the information obtained in step 421 for the current
subject. In step 426 the strict or loose test is applied to determine whether the current subject is
predicted to have the outcome of interest, e.g., POUR. Step 426 includes sending any signal to a
human or automated caregiver to indicate the outcome classification for the current subject. For
example, a signal that indicates a POUR classification (yes or no) for the subject is sent based at
least in part on the neural network output data. In some embodiments, the POUR classification
[or the subject is [urther based at least in part on the binomial regression output dalta.

[0060] If the signal indicates a yes classification for the outcome, control passes to step 431 to
treat the current subject based on predicting the outcome of interest. For example, when POUR is
predicted, a POUR intervention therapy can be administered to the patient. A “POUR
intervention therapy” refers to administration of an agent and/or application of a clinical
procedure to a patient determined to be a risk of POUR, and is one that reduces or ameliorates
the severity, duration, or progression of the disorder being treated (e.g., POUR), prevent the
advancement of the disorder being treated (e.g., POUR), cause the regression of the disorder
being treated (e.g., POUR. Examples of a POUR intervention therapy include intraoperative
bladder catheter placement, immediate postoperative bladder catheterization if bladder volume is
> 450 mL, administration of opioid-sparing postoperative analgesia (e.g., gabapentin), and/or
administration of a detrusor relaxant, such as alpha-1 antagonists.

[0061] If the signal indicates a no classification for the outcome, control passes to step 433 to
treat the current subject as not having the outcome of interest. For example, when no POUR 1is
predicted the patient is given different or enhanced anesthesia during the remainder of the
surgery, or is not given medication to mediate POUR, or is not catheterized during or after

surgery. After either step 431 or step 433, control passes to step 435.

-22



WO 2024/054646 PCT/US2023/032314

[0062] In step 435, the actual outcome for the patient is observed. In some embodiments, after
the actual outcome is observed, the information for the patient and the patient’s outcome is added
to a validation or training set data structures for updating the models or the cutoffs for the models
or both.

[0063] In step 441, it is determined whether the models or cutoffs should be updates. If so,
control passes back to step 405 and following to again fit the models or cutoffs to the new
updated training or validation data. If not, control passes to step 443.

[0064] In step 443, it is determined whether there is another new subject (patient) for whom to
predict the outcome and treatment. If so, control passes back to step 421 and following to apply
the classification models to the new patient. If not, the process ends.

[0065] FIG. 5B is a flow chart that illustrates an example method to stack two machine
learning models to classify a particular subject, according to an embodiment of step 415 of the
method of FIG. 4. As stated above, each model outputs a prediction of the patient experiencing
the outcome of interest from 0 to 1, whereas 1 represents a 100% chance. In the method of FIG.
5B, one filters through all combinations of cutoff points to the nearest 0.01 (1% chance) for each
model, and to test the statistical outcomes for that combination of cutoff points. This is done in 2
ways: 1) a strict test such that the prediction estimate needed to each both respective cutoff
points to designate the patient as predicted to get POUR need to be met and 2) a loose test such
that only one cutoff point needed to be exceeded. For each combination of cutoff points, and for
each type of test (strict and loose), a testing or validation set can be used to measure the
predictive outcomes of combining the models: sensitivity; specificity; negative predictive power
(NPV); positive predictive power (PPV); average sensitivity and PPV; average specificity and
NPV average sensitivity and specificity; average NPV and PPV; average sensitivity, specificity,
NPV, and PPV; and accuracy. In the strict test, for example, if the logistic regression model was
greater than the logistic regression cutoff and the neural network model was greater than the
neural network cutoff, the final prediction was that the patient would develop the outcome. If
instead, the logistic regression model was less than the logistic regression cutoff or the neural
network model was less than the neural network cutoff, the final prediction was that the patient
would not develop the outcome. This is different in other stacking methods as this is not
regression or ensemble; but is, rather, a logical ensemble.
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[0066] FIG. 5C is a plot of relative operating character (ROC) curves that illustrates an
example performance when stacking two machine learning models to classify a particular
subject, according to an embodiment. Each point along the curve represents a different cutoff
point for the model. In a ROC curve, a model with no skill is represented by the diagonal line.
No matter the cutoff, both the true positive rate and the false positive rate increase together. The
best skill is represented by a point furthest from this line, provided by the cutoff value associated
with that point. Traces on this plot show the performance for the regression model (short dashed
trace) , the neural network (wide spaced dashed trace) and combined using the strict test (soldi
trace). Code was written to test combinations of each point along these curves to find the optimal
combination of cutoff points that maximizes the prediction of a combination of the models. The

strict test selects follows the best performance of the two models.

3. Example Embodiments
[0067] in more detail in the Appendix. Statements made in the Appendix apply only to the

embodiments in the Appendix.

4. Computational Hardware Overview

[0068] FIG. 6 is a block diagram that illustrates a computer system 600 upon which an
embodiment of the invention may be implemented. Computer system 600 includes a
communication mechanism such as a bus 610 for passing information between other internal and
external components of the computer system 600. Information is represented as physical signals
of a measurable phenomenon, typically electric voltages, but including, in other embodiments,
such phenomena as magnetic, electromagnetic, pressure, chemical, molecular atomic and
quantum interactions. For example, north and south magnetic fields, or a zero and non-zero
electric voltage, represent two states (0, 1) of a binary digit (bit). Other phenomena can
represent digits of a higher base. A superposition of multiple simultaneous quantum states
before measurement represents a quantum bit (qubit). A sequence of one or more digits
constitutes digital data that is used to represent a number or code for a character. In some
embodiments, information called analog data is represented by a near continuum of measurable
values within a particular range. Computer system 600, or a portion thereof, constitutes a means

for performing one or more steps of one or more methods described herein.
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[0069] A sequence of binary digits constitutes digital data that is used to represent a number or
code for a character. A bus 610 includes many parallel conductors of information so that
information is transferred quickly among devices coupled to the bus 610. One or more
processors 602 for processing information are coupled with the bus 610. A processor 602
performs a set of operations on information. The set of operations include bringing information
in from the bus 610 and placing information on the bus 610. The set of operations also typically
include comparing two or more units of information, shifting positions of units of information,
and combining two or more units of information, such as by addition or multiplication. A
sequence of operations to be executed by the processor 602 constitutes computer instructions.
[0070] Computer system 600 also includes a memory 604 coupled to bus 610. The memory
604, such as a random access memory (RAM) or other dynamic storage device, stores
information including computer instructions. Dynamic memory allows information stored
therein Lo be changed by the computer system 600. RAM allows a unit of information stored at a
location called a memory address to be stored and retrieved independently of information at
neighboring addresses. The memory 604 is also used by the processor 602 to store temporary
values during execution of computer instructions. The computer system 600 also includes a read
only memory (ROM) 606 or other static storage device coupled to the bus 610 for storing static
information, including instructions, that is not changed by the computer system 600. Also
coupled to bus 610 is a non-volatile (persistent) storage device 608, such as a magnetic disk or
optical disk, for storing information, including instructions, that persists even when the computer
system 600 is turned off or otherwise loses power.

[0071] Information, including instructions, is provided to the bus 610 for use by the processor
from an external input device 612, such as a keyboard containing alphanumeric keys operated by
a human user, or a sensor. A sensor detects conditions in its vicinity and transforms those
detections into signals compatible with the signals used to represent information in computer
system 600. Other external devices coupled to bus 610, used primarily for interacting with
humans, include a display device 614, such as a cathode ray tube (CRT) or a liquid crystal
display (LCD), for presenting images, and a pointing device 616, such as a mouse or a trackball

or cursor direction keys, for controlling a position of a small cursor image presented on the
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display 614 and issuing commands associated with graphical elements presented on the display
614.

[0072] In the illustrated embodiment, special purpose hardware, such as an application specific
integrated circuit (IC) 620, is coupled to bus 610. The special purpose hardware is configured to
perform operations not performed by processor 602 quickly enough for special purposes.
Examples of application specific ICs include graphics accelerator cards for generating images for
display 614, cryptographic boards for encrypting and decrypting messages sent over a network,
speech recognition, and interfaces to special external devices, such as robotic arms and medical
scanning equipment that repeatedly perform some complex sequence of operations that are more
efficiently implemented in hardware.

[0073] Computer system 600 also includes one or more instances of a communications
interface 670 coupled to bus 610. Communication interface 670 provides a two-way
communication coupling to a variely ol external devices that operate with their own processors,
such as printers, scanners and external disks. In general the coupling is with a network link 678
that is connected to a local network 680 to which a variety of external devices with their own
processors are connected. For example, communication interface 670 may be a parallel port or a
serial port or a universal serial bus (USB) port on a personal computer. In some embodiments,
communications interface 670 is an integrated services digital network (ISDN) card or a digital
subscriber line (DSL) card or a telephone modem that provides an information communication
connection to a corresponding type of telephone line. In some embodiments, a communication
interface 670 is a cable modem that converts signals on bus 610 into signals for a communication
connection over a coaxial cable or into optical signals for a communication connection over a
fiber optic cable. As another example, communications interface 670 may be a local area
network (LAN) card to provide a data communication connection to a compatible LAN, such as
Ethernet. Wireless links may also be implemented. Carrier waves, such as acoustic waves and
electromagnetic waves, including radio, optical and infrared waves travel through space without
wires or cables. Signals include man-made variations in amplitude, frequency, phase,
polarization or other physical properties of carrier waves. For wireless links, the communications
interface 670 sends and receives electrical, acoustic or electromagnetic signals, including
infrared and optical signals, that carry information streams, such as digital data.
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[0074] The term computer-readable medium is used herein to refer to any medium that
participates in providing information to processor 602, including instructions for execution.
Such a medium may take many forms, including, but not limited to, non-volatile media, volatile
media and transmission media. Non-volatile media include, for example, optical or magnetic
disks, such as storage device 608. Volatile media include, for example, dynamic memory 604.
Transmission media include, for example, coaxial cables, copper wire, fiber optic cables, and
waves that travel through space without wires or cables, such as acoustic waves and
electromagnetic waves, including radio, optical and infrared waves. The term computer-readable
storage medium is used herein to refer to any medium that participates in providing information
to processor 602, except for transmission media.
[0075] Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, a hard disk, a magnetic tape, or any other magnetic medium, a compact disk ROM
(CD-ROM), a digital video disk (DVD) or any other optical medium, punch cards, paper lape, or
any other physical medium with patterns of holes, a RAM, a programmable ROM (PROM), an
erasable PROM (EPROM), a FLASH-EPROM, or any other memory chip or cartridge, a carrier
wave, or any other medium from which a computer can read. The term non-transitory computer-
readable storage medium is used herein to refer to any medium that participates in providing
information to processor 602, except for carrier waves and other signals.
[0076] Logic encoded in one or more tangible media includes one or both of processor
instructions on a computer-readable storage media and special purpose hardware, such as ASIC
620.
[0077] Network link 678 typically provides information communication through one or more
networks to other devices that use or process the information. For example, network link 678
may provide a connection through local network 680 to a host computer 682 or to equipment 684
operated by an Internet Service Provider (ISP). ISP equipment 684 in turn provides data
communication services through the public, world-wide packet-switching communication
network of networks now commonly referred to as the Internet 690. A computer called a server
692 connected to the Internet provides a service in response to information received over the
Internet. For example, server 692 provides information representing video data for presentation
at display 614.
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[0078] The invention is related to the use of computer system 600 for implementing the
techniques described herein. According to one embodiment of the invention, those techniques
are performed by computer system 600 in response to processor 602 executing one or more
sequences of one or more instructions contained in memory 604. Such instructions, also called
software and program code, may be read into memory 604 from another computer-readable
medium such as storage device 608. Execution of the sequences of instructions contained in
memory 604 causes processor 602 to perform the method steps described herein. In alternative
embodiments, hardware, such as application specific integrated circuit 620, may be used in place
of or in combination with software to implement the invention. Thus, embodiments of the
invention are not limited to any specific combination of hardware and software.

[0079] The signals transmitted over network link 678 and other networks through
communications interface 670, carry information to and from computer system 600. Computer
system 600 can send and receive information, including program code, through the networks
680, 690 among others, through network link 678 and communications interface 670. In an
example using the Internet 690, a server 692 transmits program code for a particular application,
requested by a message sent from computer 600, through Internet 690, ISP equipment 684, local
network 680 and communications interface 670. The received code may be executed by
processor 602 as it is received, or may be stored in storage device 608 or other non-volatile
storage for later execution, or both. In this manner, computer system 600 may obtain application
program code in the form of a signal on a carrier wave.

[0080] Various forms of computer readable media may be involved in carrying one or more
sequence of instructions or data or both to processor 602 for execution. For example,
instructions and data may initially be carried on a magnetic disk of a remote computer such as
host 682. The remote computer loads the instructions and data into its dynamic memory and
sends the instructions and data over a telephone line using a modem. A modem local to the
computer system 600 receives the instructions and data on a telephone line and uses an infra-red
transmitter to convert the instructions and data to a signal on an infra-red a carrier wave serving
as the network link 678. An infrared detector serving as communications interface 670 receives
the instructions and data carried in the infrared signal and places information representing the
instructions and data onto bus 610. Bus 610 carries the information to memory 604 from which
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processor 602 retrieves and executes the instructions using some of the data sent with the
instructions. The instructions and data received in memory 604 may optionally be stored on
storage device 608, either before or after execution by the processor 602.

[0081] FIG. 7 illustrates a chip set 700 upon which an embodiment of the invention may be
implemented. Chip set 700 is programmed to perform one or more steps of a method described
herein and includes, for instance, the processor and memory components described with respect
to FIG. 6 incorporated in one or more physical packages (e.g., chips). By way of example, a
physical package includes an arrangement of one or more materials, components, and/or wires
on a structural assembly (e.g., a baseboard) to provide one or more characteristics such as
physical strength, conservation of size, and/or limitation of electrical interaction. It is
contemplated that in certain embodiments the chip set can be implemented in a single chip. Chip
set 700, or a portion thereof, constitutes a means for performing one or more steps of a method
described herein.

[0082] In one embodiment, the chip set 700 includes a communication mechanism such as a
bus 701 for passing information among the components of the chip set 700. A processor 703 has
connectivity to the bus 701 to execute instructions and process information stored in, for
example, a memory 705. The processor 703 may include one or more processing cores with
each core configured to perform independently. A multi-core processor enables multiprocessing
within a single physical package. Examples of a multi-core processor include two, four, eight, or
greater numbers of processing cores. Alternatively or in addition, the processor 703 may include
one or more microprocessors configured in tandem via the bus 701 to enable independent
execution of instructions, pipelining, and multithreading. The processor 703 may also be
accompanied with one or more specialized components to perform certain processing functions
and tasks such as one or more digital signal processors (DSP) 707, or one or more application-
specific integrated circuits (ASIC) 709. A DSP 707 typically is configured to process real-world
signals (e.g., sound) in real time independently of the processor 703. Similarly, an ASIC 709 can
be configured to performed specialized functions not easily performed by a general purposed
processor. Other specialized components to aid in performing the inventive functions described
herein include one or more field programmable gate arrays (FPGA) (not shown), one or more
controllers (not shown), or one or more other special-purpose computer chips.
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[0083] The processor 703 and accompanying components have connectivity to the memory
705 via the bus 701. The memory 705 includes both dynamic memory (e.g., RAM, magnetic
disk, writable optical disk, etc.) and static memory (e.g., ROM, CD-ROM, etc.) for storing
executable instructions that when executed perform one or more steps of a method described
herein. The memory 705 also stores the data associated with or generated by the execution of
one or more steps of the methods described herein.
[0084] FIG. 8 is a diagram of exemplary components of a mobile terminal 800 (e.g., cell phone
handset) for communications, which is capable of operating in the system of FIG. 2B, according
to one embodiment. In some embodiments, mobile terminal 801, or a portion thereof, constitutes
a means for performing one or more steps described herein. Generally, a radio receiver is often
defined in terms of front-end and back-end characteristics. The front-end of the receiver
encompasses all of the Radio Frequency (RF) circuitry whereas the back-end encompasses all of
the base-band processing circuitry. As used in this application, the term “circuitry” refers Lo
both: (1) hardware-only implementations (such as implementations in only analog and/or digital
circuitry), and (2) to combinations of circuitry and software (and/or firmware) (such as, if
applicable to the particular context, to a combination of processor(s), including digital signal
processor(s), software, and memory(ies) that work together to cause an apparatus, such as a
mobile phone or server, to perform various functions). This definition of “circuitry” applies to
all uses of this term in this application, including in any claims. As a further example, as used in
this application and if applicable to the particular context, the term “circuitry” would also cover
an implementation of merely a processor (or multiple processors) and its (or their) accompanying
software/or firmware. The term “circuitry” would also cover if applicable to the particular
context, for example, a baseband integrated circuit or applications processor integrated circuit in
a mobile phone or a similar integrated circuit in a cellular network device or other network
devices.
[0085] Pertinent internal components of the telephone include a Main Control Unit (MCU)
803, a Digital Signal Processor (DSP) 805, and a receiver/transmitter unit including a
microphone gain control unit and a speaker gain control unit. A main display unit 807 provides a
display to the user in support of various applications and mobile terminal functions that perform
or support the steps as described herein. The display 807 includes display circuitry configured to
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display at least a portion of a user interface of the mobile terminal (e.g., mobile telephone).
Additionally, the display 807 and display circuitry are configured to facilitate user control of at
least some functions of the mobile terminal. An audio function circuitry 809 includes a
microphone 8§11 and microphone amplifier that amplifies the speech signal output from the
microphone 811. The amplified speech signal output from the microphone 811 is fed to a
coder/decoder (CODEC) 813.

[0086] A radio section 815 amplifies power and converts frequency in order to communicate
with a base station, which is included in a mobile communication system, via antenna 817. The
power amplifier (PA) 819 and the transmitter/modulation circuitry are operationally responsive to
the MCU 803, with an output from the PA 819 coupled to the duplexer 821 or circulator or antenna
switch, as known in the art. The PA 819 also couples to a battery interface and power control unit
820.

[0087] In use, a user ol mobile terminal 801 speaks into the microphone 811 and his or her
voice along with any detected background noise is converted into an analog voltage. The analog
voltage is then converted into a digital signal through the Analog to Digital Converter (ADC)
823. The control unit 803 routes the digital signal into the DSP 805 for processing therein, such
as speech encoding, channel encoding, encrypting, and interleaving. In one embodiment, the
processed voice signals are encoded, by units not separately shown, using a cellular transmission
protocol such as enhanced data rates for global evolution (EDGE), general packet radio service
(GPRS), global system for mobile communications (GSM), Internet protocol multimedia
subsystem (IMS), universal mobile telecommunications system (UMTS), etc., as well as any
other suitable wireless medium, e.g., microwave access (WiMAX), Long Term Evolution (L'TE)
networks, code division multiple access (CDMA), wideband code division multiple access
(WCDMA), wireless fidelity (WiFi), satellite, and the like, or any combination thereof.

[0088] The encoded signals are then routed to an equalizer 825 for compensation of any
frequency-dependent impairments that occur during transmission though the air such as phase
and amplitude distortion. After equalizing the bit stream, the modulator 827 combines the signal
with a RF signal generated in the RF interface 829. The modulator 827 generates a sine wave by
way of frequency or phase modulation. In order to prepare the signal for transmission, an up-
converter 831 combines the sine wave output from the modulator 827 with another sine wave
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generated by a synthesizer 833 to achieve the desired frequency of transmission. The signal is
then sent through a PA 819 to increase the signal to an appropriate power level. In practical
systems, the PA 819 acts as a variable gain amplifier whose gain is controlled by the DSP 805
from information received from a network base station. The signal is then filtered within the
duplexer 821 and optionally sent to an antenna coupler 835 to match impedances to provide
maximum power transfer. Finally, the signal is transmitted via antenna 817 to a local base
station. An automatic gain control (AGC) can be supplied to control the gain of the final stages
of the receiver. The signals may be forwarded from there to a remote telephone which may be
another cellular telephone, any other mobile phone or a land-line connected to a Public Switched
Telephone Network (PSTN), or other telephony networks.

[0089] Voice signals transmitted to the mobile terminal 801 are received via antenna §17 and
immediately amplified by a low noise amplifier (LNA) 837. A down-converter 839 lowers the
carrier [requency while the demodulator 841 strips away the RF leaving only a digital bit stream.
The signal then goes through the equalizer 825 and is processed by the DSP 805. A Digital to
Analog Converter (DAC) 843 converts the signal and the resulting output is transmitted to the
user through the speaker 845, all under control of a Main Control Unit (MCU) 803 which can be
implemented as a Central Processing Unit (CPU) (not shown).

[0090] The MCU 803 receives various signals including input signals from the keyboard 847.
The keyboard 847 and/or the MCU 803 in combination with other user input components (e.g.,
the microphone 811) comprise a user interface circuitry for managing user input. The MCU 803
runs a user interface software to facilitate user control of at least some functions of the mobile
terminal 801 as described herein. The MCU 803 also delivers a display command and a switch
command to the display 807 and to the speech output switching controller, respectively. Further,
the MCU 803 exchanges information with the DSP 805 and can access an optionally
incorporated STM card 849 and a memory 851. In addition, the MCU 803 executes various
control functions required of the terminal. The DSP 805 may, depending upon the
implementation, perform any of a variety of conventional digital processing functions on the
voice signals. Additionally, DSP 805 determines the background noise level of the local
environment from the signals detected by microphone 811 and sets the gain of microphone 811
to a level selected to compensate for the natural tendency of the user of the mobile terminal 801.
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[0091] The CODEC 813 includes the ADC 823 and DAC 843. The memory 851 stores various
data including call incoming tone data and is capable of storing other data including music data
received via, e.g., the global Internet. The software module could reside in RAM memory, flash
memory, registers, or any other form of writable storage medium known in the art. The memory
device 851 may be, but not limited to, a single memory, CD, DVD, ROM, RAM, EEPROM,
optical storage, magnetic disk storage, flash memory storage, or any other non-volatile storage
medium capable of storing digital data.

[0092] An optionally incorporated SIM card 849 carries, for instance, important information,
such as the cellular phone number, the carrier supplying service, subscription details, and
security information. The SIM card 849 serves primarily to identify the mobile terminal 801 on
aradio network. The card 849 also contains a memory for storing a personal telephone number
registry, text messages, and user specific mobile terminal settings.

[0093] In some embodiments, the mobile terminal 801 includes a digital camera comprising an
array of optical detectors, such as charge coupled device (CCD) array 865. The output of the
array is image data that is transferred to the MCU for further processing or storage in the
memory 851 or both. In the illustrated embodiment, the light impinges on the optical array
through a lens 863, such as a pin-hole lens or a material lens made of an optical grade glass or
plastic material. In the illustrated embodiment, the mobile terminal 801 includes a light source
861, such as a LED to illuminate a subject for capture by the optical array, e.g., CCD 865. The
light source is powered by the battery interface and power control module 820 and controlled by
the MCU 803 based on instructions stored or loaded into the MCU 803.

4: Examples

Preoperative prediction of postoperative urinary retention in lumbar surgery: a comparison of

regression to multilayer neural network

[0094] An example embodiment using a particular neural network and multiple regression
model in concert with corresponding cutoffs for POUR outcomes of lower spinal surgeries is

described below:

Methods
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Part 1: Study Design and Setting

[0095] This was a retrospective review approved by the local IRB and was aimed at developing
an optimal model to predict POUR. The first part comprised a retrospective review of
consecutive adult patients who underwent lumbar spine surgery between June 1, 2017, and June
1, 2019, at the University of Florida. Patients were excluded if they required emergency surgery,
were < 18 years old, or had surgery in a nonlumbar region (thoracic or cervical). The second part
comprised development of two machine learning techniques: a binomial logistic regression and
an artificial neural network classification. These models were furthermore combined to optimize

prediction strength.
Case Ascertainment

[0096] POUR was delined according (o previous literature as reinsertion of a Foley catheter
based on retention urine volume > 400 mL, or requiring straight catheterization for urine
volumes > 400 mL.*?>?” Urine volume was determined per standard of care with nurse-led

bladder scanning.
Clinical Variables

[0097] The patient characteristics, including all preexisting ICD-10 codes associated with the
patient; age; sex; body mass index (BMI); preoperative opioid use (morphine, methadone,
fentanyl, oxycodone, hydrocodone, meperidine); preoperative urinary retention medication use
(tamsulosin, doxazosin), planned surgery specifics; and POUR, were collected and assessed.

Hospital LOS was also recorded.
Part 2: Statistical Analysis
Identification of Predictors

[0098] Univariate tests were used on the entire set to discover [actors to include in multivariate
analyses, and a Bonferroni correction was used to correct for multiple analyses. Mann-Whitney
U-tests were used for continuous and nominal variables, whereas chi-square tests were used for
categorical variables. Kruskal-Wallis tests were used to compare training, validation, and testing

sets. Hospital LOS was not included in the final models because this was an outcome measure.
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Model Derivation

[0099] The data were split into training, validation, and testing sets using an approximately
65:10:25 ratio.?®* A binomial logistic model—which estimates the probability that an outcome
is present given the values of explanatory variables and is typically used for classification—was
formed with backward elimination based on significant changes in likelihood ratios, using a 0.10
cutoff.3*3! All patient demographics and surgical characteristics were included in the model, but
only comorbidities that had significant correlations with POUR were included (p < 0.05

corrected for multiple comparisons).

[0100] We used a multilayer perceptron (MLP) neural network architecture—attractive because
it demonstrates an ability to learn salient features of the data on its own—which consisted of two
hidden layers terminating at an output layer.'® The first hidden layer consisted of 38 fully
connected nodes, whereas the second layer consisted of 21 fully connected nodes. Hidden layers
uscd a sigmoid activation function with no dropout. The output laycr uscd an identity activation
function and a sum of squares error function. The stopping rule was 1 consecutive step with no

decrease in error based on the validation set.

[0101] Three additional regression models were developed from previously published models
adjusted to include only relevant factors, to derive a pragmatic preoperative risk assessment tool

(i.e., factors known preoperatively and applied to the lumbar spine).
Model Validation

[0102] Using the same training/validation/testing split on both the regression and neural
network models, optimal models were selected by maximizing both adjusted R? and validation
set accuracy. Performance of the chosen model was then evaluated on the testing set.
Performance was measured on validation and testing sets combined because there was no need

for a validation step.
Model Stacking

[0103] The models were combined such that if a threshold cutoff point (different for each

model) was exceeded by either model, the classification was declared to be positive (i.e., the
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patient is predicted to develop POUR).*?

Outcomes from all cutoff points from 0.01 to 0.99 for
each model were compared to maximize each individual outcome measure and combinations of
outcome measures (i.e., average sensitivity and positive predictive value |[PPV], average
specificity and negative predictive value [NPV], average sensitivity and specificity, average NPV

and PPV, and the average of all outcome measures).

[0104] All statistical analyses were performed with SPSS version 23 (IBM Corp.). Cutoff

points were discovered using code developed with Strawberry Perl 5.30.2.1.
Results
Clinical Characteristics

[0105] There were a total of 1311 patients who underwent elective spine surgery in the study
period. Of those, 891 were included in the analysis, with 369 excluded because they were
cervical or thoracic surgeries and 51 excluded due to missing data. POUR rates were found to be
25.9% in the entire cohort. Differences in patient demographics among the
training/validation/testing split are shown in Table 2. The mean age was 59.6 + 15.5 years,
52.7% were male, the mean BMI was 30.4 £ 6.4, the mean American Society of
Anesthesiologists (ASA) class was 2.8 + 0.6, and there was a mean of 5.6 + 5.7 comorbidities.
The training, validation, and testing sets did not differ significantly among age, sex, or BMI. The
validation set had significantly higher ASA class and fewer comorbidities. Conversely, the
training and testing sets did not vary significantly between these factors. Patient demographics
and their designated univariate analyses are demonstrated in FIG. 9. Patients who developed
POUR were significantly older than those who did not (62.5 = 15.1 years vs 58.6 £ 15.5 years; p
=0.0003) and were more likely to use preoperative opioids (36.8% vs 25.6%; p =0.001) or
preoperative urinary retention medications (5.2% vs 2.4%; p = 0.048). Male sex (53.7% vs
52.4%; p=10.760) and BMI (30.2 + 5.9 v§ 30.5 £ 6.6; p = 0.682) were not found to be
significantly different between groups. Additionally, rates of POUR were found to be
significantly higher in cases associated with 65 separate preoperative ICD-10 codes or groups of
ICD-10 codes, including history of urinary retention or UTIs. The differences in POUR ratesfor

these traits are demonstrated in FIG. 12. The differences in POUR rates for all nonsignificant
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ICD codes are demonstrated in FIG. 13. Hospital LOS for patients with POUR was significantly
longer than for those without POUR (6.9 + 9.5 days vs 2.7 + 3.0 days; p < 0.0001).

Table Z: Patient Demographics of Overall and Train-Validation-Test Splits

““““““““““““““““““““““““““““““““““““““““““““ Overall  Training | Validation  Testing  p-
: Set Set Set value
Frequency 31 150 » 59 -
'POUR Rate (%) | 259 267 234 251 0754
Age (Mean + SD) 59.6+15.5  58.7+15.5 | 57.6+151 | 60.2+157 0282
Male Sex (%) 507 1 553 45.7 494 0109
BMI (Mean + SD) 304264 | 303263 | 307475 | 307462 | 0.684
ASA Class (Mean + SD) 28+0.6 = 2.7%0.5 3.740.6 27+40.6  <0.001
Number of Comorbidities 56£5.7 | 6.116.1 2.7+4.1 57449 | <0.001
(Mean %= SD) 5 : 1

Surgical Characteristics

[0106] The difference in POUR rates for individual surgical characteristics, as demonstrated

in FIG. 10, revealed multiple surgical predictors of POUR. Rates of POUR were significantly
lower in discectomies compared to patients whose spine surgery did not include discectomies
(11.7% vs 30.7%; p <0.0001) even as part of the operation. Rates of POUR were found to be
higher overall in patients getting laminectomies (31.5% vs 17.4%; p < 0.0001) but not when only
a laminectomy was performed (21.3% vs 27.6%; p = 0.070). Furthermore, rates were [ound (o be
significantly higher in multilevel laminectomies (34.5% vs 11.6%; p < 0.0001) and significantly
lower in single-level laminectomies (11.6% vs 34.5%; p < 0.0001). Similarly, rates of POUR
were found to be higher in surgeries with a fusion component (35.7% vs 16.7%; p < 0.0001),
except for single-level fusions (24.6% vs 26.3%; p = 0.705). Within the scope of fusion
surgeries, posterolateral fusions showed significantly higher rates of POUR (involvement: 39.3%
vs 21.2%; alone: 41.2% vs 23.3%; p <0.0001 for both), as did interbody fusions (32.9% vs
22.7%; p =0.001) and pelvic screw placement (41.2% vs 25.0%; p = 0.014). Minimally invasive
techniques demonstrated a significantly lower rate of POUR (16.1% vs 27.4%; p = 0.009). The
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average number of vertebral levels operated on was found to be 1.8 + 1.8 in those who did not

develop POUR and 2.9 + 2.8 in those who did (p < 0.0001).
Qutcomes

[0107] Binomial logistic multivariate model results are demonstrated in Table 3. Of the factors
included in the model, only ICD-10 codes for diabetes (E11.9), abnormal heartbeat (R0O0), other
general symptoms and signs (R68.89), altered mental status (R41.82), and screening for
cardiovascular disorders (Z13.6) in addition to plans for a single laminectomy were found to be
significant predictors of change in POUR. The ICD code for “other general symptoms and signs”
and plans for only a single-level laminectomy were found to be significantly protective against

POUR. For brevity, specific results of the neural network model were not included.

""""""""""""""""""""""""""""""""""""""""""""""" Odds | 95% CI for OR
Effect SE P ! Ratio
value (OR) Lower ; Upper
Age (years) 002 008 | 780 . 1002 | 986 i 1019
Pre-operative opioid use -121 | 273 | .658 .886 520 1.512
Body Mass Index (kg/m?2) -.006 | .019 { .759 994 958 1.032
Diabetes B119) | 953 485 | .050 = 2593 | 1001 | 6713
Cardiomegaly (I151.7) 1.070 | .571 { .061 2916 952 8.933
Hypotension (195.9) 842 |+ 535 ¢ 115 2.322 813 6.629
Teus (K56.7) 1.240 | 844 { 142 3.455 660 1 18.077
Constipation (K59.00) 1.192 | .657 { .070 3.293 909 | 11.926
Other Intestinal Disease (K63.89) 725 653 | 267 2.064 574 7420
Spondylolisthesis (M43.16) | | 408 312 | 191 . 1504 @ 815 @ 2772
UTI (N39.0) 1.405 | 1.001{ .161 4.075 S73 1 28.996
Abnormalities of heart beat (R00) 982 446 | .028 2.670 1.114 | 6.395 |
Other general symptoms and signs -1.605 = .705 | .023 201 .050 .800
SR T HONNE SN ST SRR U S—
Altered Mental Status (R41.82) 3013 1.186: .011 : 20.356 | 1.990 :208.226
Urinary Retention (R33.9) 1.103 | 759 { .146 3.013 681§ 13.330
Pain (R52) 1.204 | 729 { .099 3.334 798 1 13.925
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Odds | 95% CI for OR

Effect SE | P° ! Ratio
value (OR) Lower ;| Upper

Encounter for other preprocedural 464 1 494 ¢+ 348 1.591 .604 4.190
examination (Z01.818) 3
Encounter for screening for 1.587 @ .599 | .008 4.889 1.512 : 15.807
cardiovascular disorders (Z13.6) |
Pcrsons with potential hecalth hazards 285 1 .287 | 321 1.329 157 2.334

related to family and personal history

and certain conditions influencing
health status (Z77-299)

Planned Laminectomy 479 265 ¢ 071 1.614 960 2.714
Planned Single Fusion =221 | 474 | .642 .802 317 2.031
Planned Pelvic Screw =540 |« 467 | 247 583 233 1.454
Planned Single Laminectomy -975 | 322 { 003 377 201 710
Planned Single Interbody Fusion ~439 506 | 386 . 645 | 239 | 1738
(Gemstant 7583 B89 L 075 205

[0108] Comparison of the predictive outcomes of the two models and their combination is
illustrated in receiver operating characteristic curves in FIG. 5C. Table 4 reports the performance
of the models on the training set, which can be viewed as the expected ceiling performance of the
models.** The regression model, individually, achieved an area under the curve (AUC—an
aggregate measure of performance across all possible classification thresholds) of 0.737 (training
set AUC 0.808); a probability cutoff of 0.34 maximized the average outcome parameters
(specificity 85.2%, sensitivity 49.2%, NPV 83.3%, and PPV 52.7%). The neural network
achieved an AUC of 0.735 (training set AUC 0.753); a probability cutoff of 0.21 maximized the
average outcome parameters (specificity 54.5%, sensitivity 84.7%, NPV 91.4%, and PPV
38.5%). At the same cutoff point of 0.5, no significant differences between the models were
noted in sensitivity, specificity, NPV, or PPV for the testing set, as shown in Table 4. When
applying four previously published models to our data set, each provided high specificities
(94.4%-98.8%) but low sensitivities (6.2%—7.4%); see Table 4 for detailed results. The AUC

was lower than in our models, with a range of 0.516-0.645.
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Table 4 Prediction Outcomes

Training Set (probability cutoff = 0.5)

Models AUC { Specificity | Sensitivity | NPV | PPV
Neural Network 753 94.4 260 77.8 ¢ 62.9
Testing Set (probability cutoff = 0.5)
Models AUC | Specificity | Sensitivity | NPV | PPV
Regression 737 94.3 2541 790 60.0
Neural Network 735 94.9 20.3% 78.01 57.1
Aiyer et al 2018 645 95.6 6.2 75.7; 31.3
‘Mormoletal 2020 | 638 044 74757 300
Nickerson et al 2016 1 .559 98.8 6.2 7631 62.5
Altschul et al 2017 516 95.6 7.4 76.0 35.3

[0109] The stacking of the two models outperformed the individual models, with an AUC of
0.753. Optimal cutoff points for each model are demonstrated in Table 5. With the neural
network alone and a cutoff of 0.14, sensitivity (96.6%) and NPV (96.1%) were simultaneously
maximized, but with sacrifices in specificity (27.8%) and PPV (31.0%). With a regression model
probability cutoff of 0.24 and a neural network cutoff of (.23, sensitivity (72.9%) and specificity
(68.2%) were simultaneously maximized, but with milder sacrifices in PPV (43.4%). With a
regression model probability cutoff of 0.54 and a neural network cutoff of 0.43, all outcome
parameters were simultaneously maximized (specificity 99.4%, sensitivity 15.3%, NPV 77.8%,
and PPV 90.0%), however, sensitivity was severely sacrificed. FIG. 11 demonstrates graphically
how the cutoff points are used to conjoin the models such that a positive prediction is derived
when both the regression model predicted probability is greater than (.54 and the neural network
model predicted probability is greater than 0.43 as in FIG. 11A, or greater than 0.24 and 0.23,
respectively, as in FIG. 11B. A spreadsheet (POUR Prediction Tool) is available in

the Supplementary Materials J. Neurosurg Spine 36:32-41, 2021 (incorporated herein by
reference), which assists in calculating the probability of developing POUR for each individual

model and for the combined models.
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Table 5: Mode! Cutoft Points to Maximize Prediction Outcomes for Stacked (Combined) Model

{(ALUC = .753;

Regression Neural Network Specificity Sensitivity NPV PPV
Cutoff Cutoff (%) (%) (%) (%)
- ~ 014 218 . 9%6 9.1 | 310
0.54 0.43 99.4 15.3 77.8 90.0
0.24 0.23 72.9 68.2 88.2 43.4
"""""""""" 054 043 . 994 153 . 718 | 900
0.54 0.43 99.4 15.3 77.8 90.0

5. Alternatives, Deviations and modifications

[0110]

In the foregoing specification, the invention has been described with reference to

specific embodiments thereol. It will, however, be evident that various modilications and

changes may be made thereto without departing from the broader spirit and scope of the

invention. The specification and drawings are, accordingly, to be regarded in an illustrative

rather than a restrictive sense. Throughout this specification and the claims, unless the context

requires otherwise, the word “comprise” and its variations, such as “comprises” and

“comprising,” will be understood to imply the inclusion of a stated item, element or step or group

of items, elements or steps but not the exclusion of any other item, element or step or group of

items, elements or steps. Furthermore, the indefinite article “a” or “an” is meant to indicate one

or more of the item, element or step modified by the article.
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CLAIMS

What is claimed is:

1. A method for treating a subject undergoing surgery, the method comprising:

obtaining, on a processor, first data for a subject undergoing surgery, wherein the first data
indicates demographic information for the subject or medical history for the subject or
surgery information about the spinal surgery, or some combination;

generating, on the processor, neural network output data that indicates a first probability for
the subject developing post-operative outcome by inputting the first data into an input
layer of a neural network trained with training data that indicates, for a retrospective
plurality of prior patients of spinal surgery, demographic information for the retrospective
plurality or medical history for the retrospective plurality or surgery information about
spinal surgeries [or the retrospective pluralily, or some combination, and post-operative
outcomes for the retrospective plurality;

sending from the processor a signal that indicates a post-operative outcome classification for
the subject based at least in part on the neural network output data; and

treating the subject based at least in part on the signal.

2. The method as recited in claim 1, wherein the signal indicates that the subject should be

treated for the post-operative outcome when the first probability exceeds a first cutoff value.

3. The method as recited in claim 1, wherein the first data includes values for over 200
parameters.
4. The method as recited in claim 3, wherein said inputting the first data into the input layer

of the ncural nctwork further comprises scaling the first data with a scaling factor for cach
parameter such that all values of that parameter for the training data lie in a range from -1 to 1

inclusive.

5. The method as recited in claim 1, wherein the neural network comprises two hidden
layers, each hidden layer fully connected to a preceding layer and each hidden layer using a

sigmoid activation [unction.
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6 The method as recited in claim 5, wherein a first hidden layer of the two hidden layers is
fully connected to the input layer and the first hidden layer comprises a first number nodes in a

range from 20 to 80.

7 The method as recited in claim 6, wherein a second hidden layer of the two hidden layers
is fully connected to the first hidden layer and the second hidden layer comprises a second

numbecr nodcs in a range from 10 to 40.

8. The method as recited in claim 1, wherein an output layer of the neural network
comprises one output node that indicates the first probability and uses an identity activation

function and wherein the output layer uses a sum of squares error function during training.

9. The method as recited in claim 1, wherein:
the method further comprises generating, on the processor, multiple regression output data
that indicates a second probability for the subject developing the post-operative outcome
by inputting a small subset of the first data into an input layer of a multiple regression
trained with a corresponding subset of the training data; and
the post-operative outcome classification for the subject is further based at least in part on

the multiple regression output data.

10. The method as recited in claim 9, wherein the signal indicates that the subject should be
treated for the post-operative outcome when the first probability exceeds a first cutoff value or

when the second probability exceeds a second cutoff value.

11. The method as recited in claim 9, wherein the signal indicates that the subject should be
trcated for the post-opcerative outcome when the first probability cxceeds a first cutoff valuc and

when the second probability exceeds a second cutoff value.

12. The method as recited in claim 9, wherein the small subset includes values for fewer than

50 parameters.
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13. The method as recited in claim 9, wherein the small subset includes only subset
parameters of the first data, wherein the subset parameters are correlated with the post-operative

outcomes for the training set with a p value less than threshold significance level.

14. The method as recited in claim 13, wherein the threshold significance level is a p value

less than 0.05.

15. The method as recited in claim 1, wherein said treating the subject comprises

administering a the post-operative outcome intervention therapy.

16. The method as recited in claim 1, wherein the post-operative outcome is post-operative

urinary retention (POUR) outcome and the surgery is spinal surgery.
17. The method as recited in claim 16, wherein the surgery is lower spinal surgery.

18. A non-transitory computer-readable medium carrying one or more sequences of
instructions, wherein execution of the one or more sequences of instructions by one or more
processors causes the one or more processors to perform at least:
obtaining, on a processor, first data for a subject undergoing surgery, wherein the first data
indicates demographic information for the subject or medical history for the subject or
surgery information about the surgery, or some combination;
generating, on the processor, neural network output data that indicates a first probability for
the subject developing post-operative outcome by inputting the first data into an input
layer of a neural network trained with training data that indicates, for a retrospective
plurality of prior patients of spinal surgery, demographic information for the retrospective
plurality or medical history for the retrospective plurality or surgery information about
spinal surgeries for the retrospective plurality, or some combination, and post-operative
outcomes for the retrospective plurality; and
sending from the processor a signal that indicates a post-operative outcome classification for
the subject based at least in part on the neural network output data, wherein treatment of

the subject is based at least in part on the signal.
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19. An apparatus comprising:
at least one processor; and
at least one memory including one or more sequences of instructions,
the at least one memory and the one or more sequences of instructions configured to, with the
at least one processor, cause the apparatus to perform at least the following,
obtain, on a processor, first data for a subject undergoing surgery, wherein the first data
indicates demographic information for the subject or medical history for the subject
or surgery information about the surgery, or some combination;
generate, on the processor, neural network output data that indicates a first probability for
the subject developing post-operative outcome by inputting the first data into an input
layer of a neural network trained with training data that indicates, for a retrospective
plurality of prior patients of spinal surgery, demographic information for the
retrospective plurality or medical history for the retrospective plurality or surgery
information about spinal surgeries for the retrospective plurality, or some
combination, and post-operative outcomes for the retrospective plurality; and
send from the processor a signal that indicates a post-operative outcome classification for
the subject based at least in part on the neural network output data, wherein treatment

of the subject is based at least in part on the signal.
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