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In an approach for resolving terminated transactions in a 
transactional memory environment , a processor initiates a 
hardware transaction in a computing environment , wherein 
the hardware transaction accesses a memory location , and 
wherein the hardware transaction includes a transaction 
begin indicator and a transaction end indicator . A processor 
detects a conflicting access of the memory location while 
executing the hardware transaction . A processor aborts the 
hardware transaction based on the conflicting access of the 
memory location . Hardware determines that the conflicting 
access of the memory location is a transient condition . A 
processor reinitiates the hardware transaction . 
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HARDWARE TRANSACTION TRANSIENT 
CONFLICT RESOLUTION 

BACKGROUND 

components such as a memory " nest ” ( or memory hierar 
chy ) , an optional system controller , and optional interrupt 
controller , optional 1 / 0 or peripheral devices , etc . The 
memory nest is attached to a selective pairing facility via a 
switch or a bus . Each selectively paired processor core is 
includes a transactional execution facility , wherein the sys 
tem is configured to enable processor rollback to a previous 
state and reinitialize lockstep execution in order to recover 
from an incorrect execution when an incorrect execution has 
been detected by the selective pairing facility . 

SUMMARY 
[ 0006 ] Aspects of an embodiment of the present invention 
disclose a method , computer program product , and comput 
ing system for resolving terminated transactions in a trans 
actional memory environment . A processor initiates a hard 
ware transaction in a computing environment , wherein the 
hardware transaction accesses a memory location , and 
wherein the hardware transaction includes a transaction 
begin indicator and a transaction end indicator . A processor 
detects a conflicting access of the memory location while 
executing the hardware transaction . A processor aborts the 
hardware transaction based on the conflicting access of the 
memory location . Hardware determines that the conflicting 
access of the memory location is a transient condition . A 
processor reinitiates the hardware transaction . 

[ 0001 ] This disclosure relates generally to transactional 
memory systems and more specifically to a method , com 
puter program and computer system for improving the 
efficiency of transactional instruction processing . 
[ 0002 ] The number of central processing unit ( CPU ) cores 
on a chip and the number of CPU cores connected to a 
shared memory continues to grow significantly to support 
growing workload capacity demand . The increasing number 
of CPUs cooperating to process the same workloads puts a 
significant burden on software scalability , for example , 
shared queues or data structures protected by traditional 
semaphores become hot spots and lead to sub - linear n - way 
scaling curves . Traditionally this has been countered by 
implementing finer - grained locking in software , and with 
lower latency / higher bandwidth interconnects in hardware . 
Implementing fine - grained locking to improve software 
scalability can be very complicated and error - prone , and at 
today ' s CPU frequencies , the latencies of hardware inter 
connects are limited by the physical dimension of the chips 
and systems , and by the speed of light . 
[ 0003 ] Implementations of hardware Transactional 
Memory ( HTM , or in this discussion , simply TM ) have been 
introduced , wherein a group of instructions called a trans 
action - operate in an atomic manner on a data structure in 
memory , as viewed by other central processing units ( CPUs ) 
and the I / O subsystem ( atomic operation is also known as 
“ block concurrent ” or “ serialized ” in other literature ) . The 
transaction executes optimistically without obtaining a lock , 
but may need to abort and retry the transaction execution if 
an operation , of the executing transaction , on a memory 
location conflicts with another operation on the same 
memory location . Previously , software transactional 
memory implementations have been proposed to support 
software Transactional Memory ( TM ) . However , hardware 
TM can provide improved performance aspects and ease of 
use over software TM . 
[ 0004 U . S . Patent Application Publication 
US20080244354 A1 titled “ Apparatus and method for 
redundant multi - threading with recovery ” filed 2007 Mar . 28 
and incorporated by reference herein teaches a method and 
apparatus for reducing the effect of soft errors in a computer 
system is provided . Soft errors are detected by combining 
software redundant threading and instruction duplication . 
Upon detection of a soft error , errors are recovered through 
the use of software check pointing / rollback technology . 
Reliable regions are identified by vulnerability profiling and 
redundant multi - threading is applied to the identified reliable 
regions . 
[ 0005 ] U . S . Patent Application Publication 
US20120210162 A1 titled “ State recovery and lockstep 
execution restart in a system with multiprocessor pairing ” 
filed 2011 Feb . 15 and incorporated by reference herein 
teaches a system , method and computer program product for 
a multiprocessing system to offer selective pairing of pro 
cessor cores for increased processing reliability . A selective 
pairing facility is provided that selectively connects , i . e . , 
pairs , multiple microprocessor or processor cores to provide 
one highly reliable thread ( or thread group ) . Each paired 
microprocessor or processor cores that provide one highly 
reliable thread for high - reliability connect with a system 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0007 ] FIG . 1 depicts an example multicore transactional 
memory environment , in accordance with an illustrative 
embodiment . 
[ 0008 ] FIG . 2 depicts an example multicore transactional 
memory environment , in accordance with an illustrative 
embodiment . 
[ 0009 ] FIG . 3 depicts example components of an example 
CPU , in accordance with an illustrative embodiment . 
[ 0010 ] FIG . 4 is a block diagram of internal and external 
components of a computing device , in accordance with one 
embodiment of the present invention . 
[ 0011 ] FIG . 5 is a flowchart of the steps of an approach for 
processing a hardware transaction and identifying that an 
interference has occurred , in accordance with one embodi 
ment of the present invention . 
[ 0012 ] FIG . 6 is a block diagram of regulation logic 420 
and associated modules , in accordance with one embodi 
ment of the present invention . 
[ 00131 . FIG . 7 depicts a flowchart of the steps of regulation 
logic for detecting whether a transient condition was the 
cause of an aborted hardware transaction and determining 
whether to retry the hardware transaction , in accordance 
with one embodiment of the present invention . 
[ 0014 ] FIG . 8 depicts a flowchart of the steps of regulation 
logic for selecting retry parameters , in accordance with one 
embodiment of the present invention . 

DETAILED DESCRIPTION 
[ 0015 ] A transaction within a computer program or com 
puter application comprises program instructions perform 
ing multiple store operations that appear to run and complete 
as a single , atomic operation . The program instructions 
forming a current transaction comprise a transaction begin 
indicator , a plurality of instructions ( e . g . , arithmetic , load , 
branch or store operations ) , and a transaction end indicator . 
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may be practiced by any or all processors including those 
shown supra , without departing from the teachings herein . 
Wherein the term " thread ” or “ processor thread ” is used 
herein , it is expected that particular advantage of the 
embodiment may be had in a processor thread implemen 
tation . 

A near - end of transaction indicator is triggered based on a 
speculative look ahead operation , and enabling near - end 
transaction processing mode , such that an interfering opera - 
tion may be delayed to allow the current transaction to 
complete . A halt operation , also referred to as an abort 
operation , as used herein refers to an operation responsive to 
a condition where two transactions have been detected to 
interfere where at least one transaction must be aborted and 
the state of the processor is reset to the state at the beginning 
of the aborted transaction by performing a rollback . This 
Detailed Description section is divided into the following 
subsections : ( i ) The Hardware and Software Environment ; 
( ii ) Example Embodiment ; ( iii ) Further Comments and / or 
Embodiments ; and ( iv ) Definitions . 

I . The Hardware and Software Environments 

[ 0016 ] The present invention may be a system , a method , 
and / or a computer program product . The computer program 
product may include a computer readable storage medium 
( or media ) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
present invention . 

A . Transaction Execution Environment 
[ 0017 ] Historically , a computer system or processor had 
only a single processor ( aka processing unit or central 
processing unit ) . The processor included an instruction 
processing unit ( IPU ) , a branch unit , a memory control unit 
and the like . Such processors were capable of executing a 
single thread of a program at a time . Operating systems were 
developed that could time - share a processor by dispatching 
a program to be executed on the processor for a period of 
time , and then dispatching another program to be executed 
on the processor for another period of time . As technology 
evolved , memory subsystem caches were often added to the 
processor as well as complex dynamic address translation 
including translation lookaside buffers ( TLBs ) . The IPU 
itself was often referred to as a processor . As technology 
continued to evolve , an entire processor could be packaged 
on a single semiconductor chip or die , such a processor was 
referred to as a microprocessor . Then processors were devel 
oped that incorporated multiple IPUs , such processors were 
often referred to as multi - processors . Each such processor of 
a multi - processor computer system ( processor ) may include 
individual or shared caches , memory interfaces , system bus , 
address translation mechanism and the like . Virtual machine 
and instruction set architecture ( ISA ) emulators added a 
layer of software to a processor , that provided the virtual 
machine with multiple “ virtual processors ” ( aka processors ) 
by time - slice usage of a single IPU in a single hardware 
processor . As technology further evolved , multi - threaded 
processors were developed , enabling a single hardware 
processor having a single multi - thread IPU to provide a 
capability of simultaneously executing threads of different 
programs , thus each thread of a multi - threaded processor 
appeared to the operating system as a processor . As tech 
nology further evolved , it was possible to put multiple 
processors ( each having an IPU ) on a single semiconductor 
chip or die . These processors were referred to processor 
cores or just cores . Thus the terms such as processor , central 
processing unit , processing unit , microprocessor , core , pro 
cessor core , processor thread , and thread , for example , are 
often used interchangeably . Aspects of embodiments herein 

Transaction Execution in Intel Based Embodiments 
[ 0018 ] In “ Intel Architecture Instruction Set Extensions 
Programming Reference ” 319433 - 012A , February 2012 , 
incorporated herein by reference in its entirety , Chapter 8 
teaches , in part , that multithreaded applications may take 
advantage of increasing numbers of CPU cores to achieve 
higher performance . ( Note : the term " Intel ” may be subject 
to trademark rights in various jurisdictions throughout the 
world and are used here only in reference to the products or 
services properly denominated by the marks to the extent 
that such trademark rights may exist . ) However , the writing 
of multi - threaded applications requires programmers to 
understand and take into account data sharing among the 
multiple threads . Access to shared data typically requires 
synchronization mechanisms . These synchronization 
mechanisms are used to ensure that multiple threads update 
shared data by serializing operations that are applied to the 
shared data , often through the use of a critical section that is 
protected by a lock . Since serialization limits concurrency , 
programmers try to limit the overhead due to synchroniza 
tion . 
[ 0019 ] Intel Transactional Synchronization Extensions 
( Intel TSX ) allow a processor to dynamically determine 
whether threads need to be serialized through lock - protected 
critical sections , and to perform that serialization only when 
required . ( Note : the term ( s ) “ Intel , ” “ TSX , ” and / or " Intel 
TSX ” may be subject to trademark rights in various juris 
dictions throughout the world and are used here only in 
reference to the products or services properly denominated 
by the marks to the extent that such trademark rights may 
exist . ) This allows the processor to expose and exploit 
concurrency that is hidden in an application because of 
dynamically unnecessary synchronization . 
[ 0020 ] With Intel TSX , programmer - specified code 
regions ( also referred to as “ transactional regions ” or just 
“ transactions ” ) are executed transactionally . If the transac 
tional execution completes successfully , then all memory 
operations performed within the transactional region will 
appear to have occurred instantaneously when viewed from 
other processors . A processor makes the memory operations 
of the executed transaction , performed within the transac 
tional region , visible to other processors only when a suc 
cessful commit occurs , i . e . , when the transaction success 
fully completes execution . This process is often referred to 
as an atomic commit . 
[ 0021 ] Intel TSX provides two software interfaces to 
specify regions of code for transactional execution . Hard 
ware Lock Elision ( HLE ) is a legacy compatible instruction 
set extension ( comprising the XACQUIRE and XRELEASE 
prefixes ) to specify transactional regions . Restricted Trans 
actional Memory ( RTM ) is a new instruction set interface 
( comprising the XBEGIN , XEND , and XABORT instruc 
tions ) for programmers to define transactional regions in a 
more flexible manner than that possible with HLE . HLE is 
for programmers who prefer the backward compatibility of 
the conventional mutual exclusion programming model and 
would like to run HLE - enabled software on legacy hardware 
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but would also like to take advantage of the new lock elision 
capabilities on hardware with HLE support . RTM is for 
programmers who prefer a flexible interface to the transac 
tional execution hardware . In addition , Intel TSX also pro 
vides an XTEST instruction . This instruction allows soft 
ware to query whether the logical processor is 
transactionally executing in a transactional region identified 
by either HLE or RTM . 
[ 0022 ] Since a successful transactional execution ensures 
an atomic commit , the processor executes the code region 
optimistically without explicit synchronization . If synchro 
nization was unnecessary for that specific execution , execu 
tion can commit without any cross - thread serialization . If 
the processor cannot commit atomically , then the optimistic 
execution fails . When this happens , the processor will roll 
back the execution , a process referred to as a transactional 
abort . On a transactional abort , the processor will discard all 
updates performed in the memory region used by the trans 
action , restore architectural state to appear as if the optimis 
tic execution never occurred , and resume execution non 
transactionally . 
[ 0023 ] A processor can perform a transactional abort for 
numerous reasons . A primary reason to abort a transaction is 
due to conflicting memory accesses between the transac 
tionally executing logical processor and another logical 
processor . Such conflicting memory accesses may prevent a 
successful transactional execution . Memory addresses read 
from within a transactional region constitute the read - set of 
the transactional region and addresses written to within the 
transactional region constitute the write - set of the transac 
tional region . Intel TSX maintains the read - and write - sets at 
the granularity of a cache line . A conflicting memory access 
occurs if another logical processor either reads a location 
that is part of the transactional region ' s write - set or writes a 
location that is a part of either the read - or write - set of the 
transactional region . A conflicting access typically means 
that serialization is required for this code region . Since Intel 
TSX detects data conflicts at the granularity of a cache line , 
unrelated data locations placed in the same cache line will be 
detected as conflicts that result in transactional aborts . 
Transactional aborts may also occur due to limited transac 
tional resources . For example , the amount of data accessed 
in the region may exceed an implementation - specific capac 
ity . Additionally , some instructions and system events may 
cause transactional aborts . Frequent transactional aborts 
result in wasted cycles and increased inefficiency . 

available afterwards . Since the transactionally executing 
logical processor neither added the address of the lock to its 
write - set nor performed externally visible write operations 
to the lock , other logical processors can read the lock 
without causing a data conflict . This allows other logical 
processors to also enter and concurrently execute the critical 
section protected by the lock . The processor automatically 
detects any data conflicts that occur during the transactional 
execution and will perform a transactional abort if necessary . 
[ 0026 ] Even though the eliding processor did not perform 
any external write operations to the lock , the hardware 
ensures program order of operations on the lock . If the 
eliding processor itself reads the value of the lock in the 
critical section , it will appear as if the processor had 
acquired the lock , i . e . the read will return the non - elided 
value . This behavior allows an HLE execution to be func 
tionally equivalent to an execution without the HLE pre 
fixes . 
10027 ] An XRELEASE prefix can be added in front of an 
instruction that is used to release the lock protecting a 
critical section . Releasing the lock involves a write to the 
lock . If the instruction is to restore the value of the lock to 
the value the lock had prior to the XACQUIRE prefixed lock 
acquire operation on the same lock , then the processor elides 
the external write request associated with the release of the 
lock and does not add the address of the lock to the write - set . 
The processor then attempts to commit the transactional 
execution . 
[ 0028 ] With HLE , if multiple threads execute critical 
sections protected by the same lock but they do not perform 
any conflicting operations on each other ' s data , then the 
threads can execute concurrently and without serialization . 
Even though the software uses lock acquisition operations 
on a common lock , the hardware recognizes this , elides the 
lock , and executes the critical sections on the two threads 
without requiring any communication through the lock — if 
such communication was dynamically unnecessary . 
[ 00291 . If the processor is unable to execute the region 
transactionally , then the processor will execute the region 
non - transactionally and without elision . HLE enabled soft 
ware has the same forward progress guarantees as the 
underlying non - HLE lock - based execution . For successful 
HLE execution , the lock and the critical section code must 
follow certain guidelines . These guidelines only affect per 
formance ; and failure to follow these guidelines will not 
result in a functional failure . Hardware without HLE support 
will ignore the XACQUIRE and XRELEASE prefix hints 
and will not perform any elision since these prefixes corre 
spond to the REPNE / REPE IA - 32 prefixes which are 
ignored on the instructions where XACQUIRE and XRE 
LEASE are valid . Importantly , HLE is compatible with the 
existing lock - based programming model . Improper use of 
hints will not cause functional bugs though it may expose 
latent bugs already in the code . 
[ 0030 ] Restricted Transactional Memory ( RTM ) provides 
a flexible software interface for transactional execution . 
RTM provides three new instructions — XBEGIN , XEND , 
and XABORT — for programmers to start , commit , and abort 
a transactional execution . 
[ 0031 ] The programmer uses the XBEGIN instruction to 
specify the start of a transactional code region and the 
XEND instruction to specify the end of the transactional 
code region . If the RTM region could not be successfully 

Hardware Lock Elision 
[ 0024 ] Hardware Lock Elision ( HLE ) provides a legacy 
compatible instruction set interface for programmers to use 
transactional execution . HLE provides two new instruction 
prefix hints : XACQUIRE and XRELEASE . 
[ 0025 ] With HLE , a programmer adds the XACQUIRE 
prefix to the front of the instruction that is used to acquire the 
lock that is protecting the critical section . The processor 
treats the prefix as a hint to elide the write associated with 
the lock acquire operation . Even though the lock acquire has 
an associated write operation to the lock , the processor does 
not add the address of the lock to the transactional region ' s 
write - set nor does it issue any write requests to the lock . 
Instead , the address of the lock is added to the read - set . The 
logical processor enters transactional execution . If the lock 
was available before the XACQUIRE prefixed instruction , 
then all other processors will continue to see the lock as 
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executed transactionally , then the XBEGIN instruction takes 
an operand that provides a relative offset to the fallback 
instruction address . 
[ 0032 ] A processor may abort RTM transactional execu 
tion for many reasons . In many instances , the hardware 
automatically detects transactional abort conditions and 
restarts execution from the fallback instruction address with 
the architectural state corresponding to that present at the 
start of the XBEGIN instruction and the EAX register 
updated to describe the abort status . 
[ 0033 ] The XABORT instruction allows programmers to 
abort the execution of an RTM region explicitly . The 
XABORT instruction takes an 8 - bit immediate argument 
that is loaded into the EAX register and will thus be 
available to software following an RTM abort . RTM instruc 
tions do not have any data memory location associated with 
them . While the hardware provides no guarantees as to 
whether an RTM region will ever successfully commit 
transactionally , most transactions that follow the recom 
mended guidelines are expected to successfully commit 
transactionally . However , programmers must always pro 
vide an alternative code sequence in the fallback path to 
guarantee forward progress . This may be as simple as 
acquiring a lock and executing the specified code region 
non - transactionally . Further , a transaction that always aborts 
on a given implementation may complete transactionally on 
a future implementation . Therefore , programmers must 
ensure the code paths for the transactional region and the 
alternative code sequence are functionally tested . 

Requirements for HLE Locks 
[ 0038 ] For HLE execution to successfully commit trans 
actionally , the lock must satisfy certain properties and access 
to the lock must follow certain guidelines . 
[ 0039 ] An XRELEASE prefixed instruction must restore 
the value of the elided lock to the value it had before the lock 
acquisition . This allows hardware to safely elide locks by 
not adding them to the write - set . The data size and data 
address of the lock release ( XRELEASE prefixed ) instruc 
tion must match that of the lock acquire ( XACQUIRE 
prefixed ) and the lock must not cross a cache line boundary . 
[ 0040 ] Software should not write to the elided lock inside 
a transactional HLE region with any instruction other than 
an XRELEASE prefixed instruction , otherwise such a write 
may cause a transactional abort . In addition , recursive locks 
( where a thread acquires the same lock multiple times 
without first releasing the lock ) may also cause a transac 
tional abort . Note that software can observe the result of the 
elided lock acquire inside the critical section . Such a read 
operation will return the value of the write to the lock . 
0041 ] The processor automatically detects violations to 
these guidelines , and safely transitions to a non - transactional 
execution without elision . Since Intel TSX detects conflicts 
at the granularity of a cache line , writes to data collocated on 
the same cache line as the elided lock may be detected as 
data conflicts by other logical processors eliding the same 
lock . 

Detection of HLE Support 
[ 0034 ] A processor supports HLE execution if CPUID . 
07H . EBX . HLE [ bit 41 = 1 . However , an application can use 
the HLE prefixes ( XACQUIRE and XRELEASE ) without 
checking whether the processor supports HLE . Processors 
without HLE support ignore these prefixes and will execute 
the code without entering transactional execution . 

Transactional Nesting 
[ 0042 ] Both HLE and RTM support nested transactional 
regions . However , a transactional abort restores state to the 
operation that started transactional execution : either the 
outermost XACQUIRE prefixed HLE eligible instruction or 
the outermost XBEGIN instruction . The processor treats all 
nested transactions as one transaction . 

Detection of RTM Support 
[ 0035 ] A processor supports RTM execution if CPUID . 
07H . EBX . RTM [ bit 11 ] = 1 . An application must check if the 
processor supports RTM before it uses the RTM instructions 
( XBEGIN , XEND , XABORT ) . These instructions will gen 
erate a # UD exception when used on a processor that does 
not support RTM . 

Detection of XTEST Instruction 
[ 0036 ] A processor supports the XTEST instruction if it 
supports either HLE or RTM . An application must check 
either of these feature flags before using the XTEST instruc 
tion . This instruction will generate a # UD exception when 
used on a processor that does not support either HLE or 
RTM . 

HLE Nesting and Elision 
[ 0043 ] Programmers can nest HLE regions up to an imple 
mentation specific depth of MAX _ HLE _ NEST _ COUNT . 
Each logical processor tracks the nesting count internally but 
this count is not available to software . An XACQUIRE 
prefixed HLE - eligible instruction increments the nesting 
count , and an XRELEASE prefixed HLE - eligible instruction 
decrements it . The logical processor enters transactional 
execution when the nesting count goes from zero to one . The 
logical processor attempts to commit only when the nesting 
count becomes zero . A transactional abort may occur if the 
nesting count exceeds MAX _ HLE _ NEST _ COUNT . 
10044 ] In addition to supporting nested HLE regions , the 
processor can also elide multiple nested locks . The processor 
tracks a lock for elision beginning with the XACQUIRE 
prefixed HLE eligible instruction for that lock and ending 
with the XRELEASE prefixed HLE eligible instruction for 
that same lock . The processor can , at any one time , track up 
to a MAX HLE ELIDED LOCKS number of locks . For 
example , if the implementation supports a MAX _ HLE _ 
ELIDED LOCKS value of two and if the programmer nests 
three HLE identified critical sections ( by performing XAC 
QUIRE prefixed HLE eligible instructions on three distinct 
locks without performing an intervening XRELEASE pre 
fixed HLE eligible instruction on any one of the locks ) , then 
the first two locks will be elided , but the third won ' t be 
elided ( but will be added to the transaction ' s write - set ) . 

Querying Transactional Execution Status 
[ 0037 ] The XTEST instruction can be used to determine 
the transactional status of a transactional region specified by 
HLE or RTM . Note , while the HLE prefixes are ignored on 
processors that do not support HLE , the XTEST instruction 
will generate a # UD exception when used on processors that 
do not support either HLE or RTM . 
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EAX can be O following an RTM abort . For example , a 
CPUID instruction when used inside an RTM region causes 
a transactional abort and may not satisfy the requirements 
for setting any of the EAX bits . This may result in an EAX 
value of 0 . 

However , the execution will still continue transactionally . 
Once an XRELEASE for one of the two elided locks is 
encountered , a subsequent lock acquired through the XAC 
QUIRE prefixed HLE eligible instruction will be elided . 
( 0045 ] The processor attempts to commit the HLE execu 
tion when all elided XACQUIRE and XRELEASE pairs 
have been matched , the nesting count goes to zero , and the 
locks have satisfied requirements . If execution cannot com 
mit atomically , then execution transitions to a non - transac 
tional execution without elision as if the first instruction did 
not have an XACQUIRE prefix . 

RTM Nesting 
[ 0046 ] Programmers can nest RTM regions up to an 
implementation specific MAX _ RTM _ NEST _ COUNT . The 
logical processor tracks the nesting count internally but this 
count is not available to software . An XBEGIN instruction 
increments the nesting count , and an XEND instruction 
decrements the nesting count . The logical processor 
attempts to commit only if the nesting count becomes zero . 
A transactional abort occurs if the nesting count exceeds 
MAX _ RTM _ NEST _ COUNT . 

RTM Memory Ordering 
[ 0050 ] A successful RTM commit causes all memory 
operations in the RTM region to appear to execute atomi 
cally . A successfully committed RTM region consisting of an 
XBEGIN followed by an XEND , even with no memory 
operations in the RTM region , has the same ordering seman 
tics as a LOCK prefixed instruction . 
[ 0051 ] The XBEGIN instruction does not have fencing 
semantics . However , if an RTM execution aborts , then all 
memory updates from within the RTM region are discarded 
and are not made visible to any other logical processor . 

Nesting HLE and RTM 
[ 0047 ] HLE and RTM provide two alternative software 
interfaces to a common transactional execution capability . 
Transactional processing behavior is implementation spe 
cific when HLE and RTM are nested together , e . g . , HLE is 
inside RTM or RTM is inside HLE . However , in all cases , 
the implementation will maintain HLE and RTM semantics . 
An implementation may choose to ignore HLE hints when 
used inside RTM regions , and may cause a transactional 
abort when RTM instructions are used inside HLE regions . 
In the latter case , the transition from transactional to non 
transactional execution occurs seamlessly since the proces 
sor will re - execute the HLE region without actually doing 
elision , and then execute the RTM instructions . 

RTM - Enabled Debugger Support 
[ 0052 ] By default , any debug exception inside an RTM 
region will cause a transactional abort and will redirect 
control flow to the fallback instruction address with archi 
tectural state recovered and bit 4 in EAX set . However , to 
allow software debuggers to intercept execution on debug 
exceptions , the RTM architecture provides additional capa 
bility . 
[ 0053 ] If bit 11 of DR7 and bit 15 of the IA32 _ DE 
BUGCTL _ MSR are both 1 , any RTM abort due to a debug 
exception ( # DB ) or breakpoint exception ( # BP ) causes 
execution to roll back and restart from the XBEGIN instruc 
tion instead of the fallback address . In this scenario , the 
EAX register will also be restored back to the point of the 
XBEGIN instruction . 

Programming Considerations 

Abort Status Definition 
10048 ] RTM uses the EAX register to communicate abort 
status to software . Following an RTM abort the EAX 
register has the following definition . 

TABLE 1 

[ 0054 ] Typical programmer - identified regions are 
expected to transactionally execute and commit success 
fully . However , Intel TSX does not provide any such guar 
antee . A transactional execution may abort for many reasons . 
To take full advantage of the transactional capabilities , 
programmers should follow certain guidelines to increase 
the probability of their transactional execution committing 
successfully . 
[ 0055 ] This section discusses various events that may 
cause transactional aborts . The architecture ensures that 
updates performed within a transaction that subsequently 
aborts execution will never become visible . Only committed 
transactional executions initiate an update to the architec 
tural state . Transactional aborts never cause functional fail 
ures and only affect performance . 

RTM Abort Status Definition 

EAX Register 
Bit Position Meaning 

Instruction Based Considerations uw N 

Set if abort caused by XABORT instruction 
If set , the transaction may succeed on retry , this bit is 
always clear if bit 0 is set 
Set if another logical processor conflicted with a memory 
address that was part of the transaction that aborted 
Set if an internal buffer overflowed 
Set if a debug breakpoint was hit 
Set if an abort occurred during execution of a nested 
transaction 
Reserved 
XABORT argument ( only valid if bit 0 set , otherwise 
reserved ) 

23 : 6 
31 - 24 

[ 0056 ] Programmers can use any instruction safely inside 
a transaction ( HLE or RTM ) and can use transactions at any 
privilege level . However , some instructions will always 
abort the transactional execution and cause execution to 
seamlessly and safely transition to a non - transactional path . 
[ 0057 ] Intel TSX allows for most common instructions to 
be used inside transactions without causing aborts . The 
following operations inside a transaction do not typically 
cause an abort : 

[ 0049 ] The EAX abort status for RTM only provides 
causes for aborts . It does not by itself encode whether an 
abort or commit occurred for the RTM region . The value of 
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[ 0078 ] UD2 , RSM , RDMSR , WRMSR , HLT , MONI 
TOR , MWAIT , XSETBV , VZEROUPPER , MASK 
MOVQ , and V / MASKMOVDQU . 

[ 0058 ] Operations on the instruction pointer register , 
general purpose registers ( GPRS ) and the status flags 
( CF , OF , SF , PF , AF , and ZF ) ; and 

[ 0059 ] Operations on XMM and YMM registers and the 
MXCSR register . 

10060 ] However , programmers must be careful when 
intermixing SSE and AVX operations inside a transactional 
region . Intermixing SSE instructions accessing XMM reg 
isters and AVX instructions accessing YMM registers may 
cause transactions to abort . Programmers may use REP / 
REPNE prefixed string operations inside transactions . How 
ever , long strings may cause aborts . Further , the use of CLD 
and STD instructions may cause aborts if they change the 
value of the DF flag . However , if DF is 1 , the STD 
instruction will not cause an abort . Similarly , if DF is 0 , then 
the CLD instruction will not cause an abort . 
[ 0061 ] Instructions not enumerated here as causing abort 
when used inside a transaction will typically not cause a 
transaction to abort ( examples include but are not limited to 
MFENCE , LFENCE , SFENCE , RDTSC , RDTSCP , etc . ) . 
[ 0062 ] The following instructions will abort transactional 
execution on any implementation : 
[ 0063 ] XABORT 
[ 0064 ] CPUID 
[ 0065 ] PAUSE 
[ 0066 ] In addition , in some implementations , the follow 
ing instructions may always cause transactional aborts . 
These instructions are not expected to be commonly used 
inside typical transactional regions . However , programmers 
must not rely on these instructions to force a transactional 
abort , since whether they cause transactional aborts is imple 
mentation dependent . 

[ 0067 ] Operations on X87 and MMX architecture state . 
This includes all MMX and X87 instructions , including 
the FXRSTOR and FXSAVE instructions . 

[ 0068 ] Update to non - status portion of EFLAGS : CLI , 
STI , POPFD , POPFQ , CLTS . 

[ 0069 ] Instructions that update segment registers , debug 
registers and / or control registers : 

[ 0070 ] MOV to DS / ES / FS / GS / SS , POP DS / ES / FS / GS / 
SS , LDS , LES , LFS , LGS , LSS , SWAPGS , 
WRFSBASE , WRGSBASE , LGDT , SGDT , LIDT , 
SIDT , LLDT , SLDT , LTR , STR , Far CALL , Far JMP , 
Far RET , IRET , MOV to DRX , MOV to CRO / CR2 / 
CR3 / CR4 / CR8 and LMSW . 

[ 0071 ] Ring transitions : SYSENTER , SYSCALL , 
SYSEXIT , and SYSRET . 

[ 0072 ] TLB and Cacheability control : CLFLUSH , 
INVD , WBINVD , INVLPG , INVPCID , and memory 
instructions with a non - temporal hint ( MOVNTDOA , 
MOVNTDO , MOVNTI , MOVNTPD , MOVNTPS , 
and MOVNTQ ) . 

[ 0073 ] Processor state save : XSAVE , XSAVEOPT , and 
XRSTOR . 

[ 0074 ] Interrupts : INTn , INTO . 
[ 0075 ] IO : IN , INS , REP INS , OUT , OUTS , REP OUTS 
and their variants . 

100761 VMX : VMPTRLD , VMPTRST , VMCLEAR , 
VMREAD , VMWRITE , VMCALL , VMLAUNCH , 
VMRESUME , VMXOFF , VMXON , INVEPT , and 
INVVPID . 

[ 0077 ] SMX : GETSEC . 

Runtime Considerations 
[ 0079 ] In addition to the instruction - based considerations , 
runtime events may cause transactional execution to abort . 
These may be due to data access patterns or micro - archi 
tectural implementation features . The following list is not a 
comprehensive discussion of all abort causes . 
[ 0080 ] Any fault or trap in a transaction that must be 
exposed to software will be suppressed . Transactional 
execution will abort and execution will transition to a 
non - transactional execution , as if the fault or trap had never 
occurred . If an exception is not masked , then that un - masked 
exception will result in a transactional abort and the state 
will appear as if the exception had never occurred . 
10081 ] Synchronous exception events ( # DE , # OF , # NP , 
# SS , # GP , # BR , # UD , # AC , # XF , # PF , # NM , # TS , # MF , 
# DB , # BP / INT3 ) that occur during transactional execution 
may cause an execution not to commit transactionally , and 
require a non - transactional execution . These events are 
suppressed as if they had never occurred . With HLE , since 
the non - transactional code path is identical to the transac 
tional code path , these events will typically reappear when 
the instruction that caused the exception is re - executed 
non - transactionally , causing the associated synchronous 
events to be delivered appropriately in the non - transactional 
execution . Asynchronous events ( NMI , SMI , INTR , IPI , 
PMI , etc . ) occurring during transactional execution may 
cause the transactional execution to abort and transition to a 
non - transactional execution . The asynchronous events will 
be pended and handled after the transactional abort is 
processed . 
[ 0082 ] Transactions only support write - back cacheable 
memory type operations . A transaction may always abort if 
the transaction includes operations on any other memory 
type . This includes instruction fetches to UC memory type . 
10083 ] Memory accesses within a transactional region 
may require the processor to set the Accessed and Dirty flags 
of the referenced page table entry . The behavior of how the 
processor handles this is implementation specific . Some 
implementations may allow the updates to these flags to 
become externally visible even if the transactional region 
subsequently aborts . Some Intel TSX implementations may 
choose to abort the transactional execution if these flags 
need to be updated . Further , a processor ' s page - table walk 
may generate accesses to its own transactionally written but 
uncommitted state . Some Intel TSX implementations may 
choose to abort the execution of a transactional region in 
such situations . Regardless , the architecture ensures that , if 
the transactional region aborts , then the transactionally writ 
ten state will not be made architecturally visible through the 
behavior of structures such as TLBs . 
100841 Executing self - modifying code transactionally may 
also cause transactional aborts . Programmers must continue 
to follow the Intel recommended guidelines for writing 
self - modifying and cross - modifying code even when 
employing HLE and RTM . While an implementation of 
RTM and HLE will typically provide sufficient resources for 
executing common transactional regions , implementation 
constraints and excessive sizes for transactional regions may 
cause a transactional execution to abort and transition to a 
non - transactional execution . The architecture provides no 
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guarantee of the amount of resources available to do trans 
actional execution and does not guarantee that a transac 
tional execution will ever succeed . 
[ 0085 ] Conflicting requests to a cache line accessed within 
a transactional region may prevent the transaction from 
executing successfully . For example , if logical processor PO 
reads line A in a transactional region and another logical 
processor P1 writes line A ( either inside or outside a trans 
actional region ) then logical processor PO may abort if 
logical processor Pl ’ s write interferes with processor PO ' s 
ability to execute transactionally . 
10086 ) Similarly , if PO writes line A in a transactional 
region and P1 reads or writes line A ( either inside or outside 
a transactional region ) , then PO may abort if Pi ' s access to 
line A interferes with PO ' s ability to execute transactionally . 
In addition , other coherence traffic may at times appear as 
conflicting requests and may cause aborts . While these false 
conflicts may happen , they are expected to be uncommon . 
The conflict resolution policy to determine whether PO or P1 
aborts in the above scenarios is implementation specific . 
Generic Transaction Execution embodiments : 
[ 0087 ] According to “ ARCHITECTURES FOR TRANS 
ACTIONAL MEMORY ” , a dissertation submitted to the 
Department of Computer Science and the Committee on 
Graduate Studies of Stanford University in partial fulfill 
ment of the requirements for the Degree of Doctor of 
Philosophy , by Austen McDonald , June 2009 , incorporated 
by reference herein in its entirety , fundamentally , there are 
three mechanisms needed to implement an atomic and 
isolated transactional region : versioning , conflict detection , 
and contention management . 
[ 0088 ] To make a transactional code region appear atomic , 
all the modifications performed by that transactional code 
region must be stored and kept isolated from other transac 
tions until commit time . The system does this by imple 
menting a versioning policy . Two versioning paradigms 
exist : eager and lazy . An eager versioning system stores 
newly generated transactional values in place and stores 
previous memory values on the side , in what is called an 
undo - log . A lazy versioning system stores new values tem 
porarily in what is called a write buffer , copying them to 
memory only on commit . In either system , the cache is used 
to optimize storage of new versions . 
[ 0089 ] To ensure that transactions appear to be performed 
atomically , conflicts must be detected and resolved . The two 
systems , i . e . , the eager and lazy versioning systems , detect 
conflicts by implementing a conflict detection policy , either 
optimistic or pessimistic . An optimistic system executes 
transactions in parallel , checking for conflicts only when a 
transaction commits . A pessimistic system checks for con 
flicts at each load and store . Similar to versioning , conflict 
detection also uses the cache , marking each line as either 
part of the read - set , part of the write - set , or both . The two 
systems resolve conflicts by implementing a contention 
management policy . Many contention management policies 
exist , some are more appropriate for optimistic conflict 
detection and some are more appropriate for pessimistic . 
Described below are some example policies . 
[ 0090 ] Since each transactional memory ( TM ) system 
needs both versioning detection and conflict detection , these 
options give rise to four distinct TM designs : Eager - Pessi 
mistic ( EP ) , Eager - Optimistic ( EO ) , Lazy - Pessimistic ( LP ) , 
and Lazy - Optimistic ( LO ) . Table 2 briefly describes all four 
distinct TM designs . 

[ 0091 ] FIGS . 1 and 2 depict an example of a multicore TM 
environment . FIG . 1 shows many TM - enabled CPUs ( CPU1 
114a , CPU2 114b , and other CPUs not shown ) on one die 
100 , connected with an interconnect 122 , under management 
of an interconnect control 120a , 120b . Each CPU 114a and 
114b ( also known as a Processor ) may have a split cache 
consisting of Instruction Cache 116a and 116b for caching 
instructions from memory to be executed and Data Cache 
with TM support 118a and 118b for caching data ( operands ) 
of memory locations to be operated on by CPU 114a and 
114b ( in FIG . 1 , each CPU 114a , 114b and its associated 
caches are referenced as 112a and 112b ) . In an implemen 
tation , caches of multiple dies 100 are interconnected to 
support cache coherency between the caches of multiple dies 
100 . In an implementation , a single cache , rather than the 
split cache is employed holding both instructions and data . 
In implementations , the CPU caches are one level of caching 
in a hierarchical cache structure . For example each die 100 
may employ shared cache 124 to be shared amongst all the 
CPUs on die 100 . In another implementation , each die may 
have access to shared cache 124 , shared amongst all the 
processors of all dies 100 . 
[ 0092 ] FIG . 2 shows the details of transactional CPU 
environment 112a , having CPU 114a , including additions to 
support TM . Transactional CPU ( processor ) 114a may 
include hardware for supporting Register Checkpoints 126 
and special TM Registers 128 . The transactional CPU cache 
may have MESI bits 130 , Tags 140 and Data 142 of a 
conventional cache but also , for example , R bits 132 show 
ing a line has been read by CPU 114a while executing a 
transaction and W bits 138 showing a line has been written 
to by CPU 114a while executing a transaction . 
[ 0093 ] A key detail for programmers in any TM system is 
how non - transactional accesses interact with transactions . 
By design , transactional accesses are screened from each 
other using the mechanisms above . However , the interaction 
between a regular , non - transactional load with a transaction 
containing a new value for that address must still be con 
sidered . In addition , the interaction between a non - transac 
tional store with a transaction that has read that address must 
also be explored . These are issues of the database concept 
isolation . 
10094 ) ATM system is said to implement strong isolation , 
sometimes called strong atomicity , when every non - trans 
actional load and store acts like an atomic transaction . 
Therefore , non - transactional loads cannot see uncommitted 
data and non - transactional stores cause atomicity violations 
in any transactions that have read that address . A system 
where this is not the case is said to implement weak 
isolation , sometimes called weak atomicity . 
10095 ] . Strong isolation is often more desirable than weak 
isolation due to the relative ease of conceptualization and 
implementation of strong isolation . Additionally , if a pro 
grammer has forgotten to surround some shared memory 
references with transactions , causing bugs , then with strong 
isolation , the programmer will often detect that oversight 
using a simple debug interface because the programmer will 
see a non - transactional region causing atomicity violations . 
Also , programs written in one model may work differently 
on another model . Further , strong isolation is often easier to 
support in hardware TM than weak isolation . With strong 
isolation , since the coherence protocol already manages load 
and store communication between processors , transactions 
can detect non - transactional loads and stores and act appro 
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priately . To implement strong isolation in software Trans - 
actional Memory ( TM ) , non - transactional code must be 
modified to include read - and write - barriers ; potentially 
crippling performance . Although great effort has been 
expended to remove many unneeded barriers , such tech 
niques are often complex and performance is typically far 
lower than that of HTMs . 

needed line . If the other processors have the needed line 
non - speculatively or have the line R 132 ( Read ) , they 
downgrade that line to S , and in certain cases issue a 
cache - to - cache transfer if they have the line in MESI ' s 130 
Mor E state . However , if the cache has the line W 138 , then 
a conflict is detected between the two transactions and 
additional action ( s ) must be taken . 

TABLE 2 
Transactional Memory Design Space 

VERSIONING 

Lazy Eager 

CONFLICT 
DETECTION 

Optimistic Storing updates in a write Not practical : waiting to update 
buffer ; detecting conflicts at memory until commit time but 
commit time . detecting conflicts at access time 

guarantees wasted work and 
provides no advantage . 

Storing updates in a write Updating memory , keeping old 
buffer ; detecting conflicts at values in undo log ; detecting 
access time . conflicts at access time . 

Pessimistic 

[ 0096 ] Table 2 illustrates the fundamental design space of 
transactional memory ( versioning and conflict detection ) . 

Eager - Pessimistic ( EP ) 
[ 0097 ] This first TM design described below is known as 
Eager - Pessimistic . An EP system stores its write - set " in 
place ” ( hence the name " eager ” ) and , to support rollback , 
stores the old values of overwritten lines in an " undo log ” . 
Processors use the W 138 and R 132 cache bits to track read 
and write - sets and detect conflicts when receiving snooped 
load requests . Perhaps the most notable examples of EP 
systems in known literature are LogTM and UTM . 
[ 0098 ] Beginning a transaction in an EP system is much 
like beginning a transaction in other systems : tm _ begin ( ) 
takes a register checkpoint , and initializes any status regis 
ters . An EP system also requires initializing the undo log , the 
details of which are dependent on the log format , but often 
involve initializing a log base pointer to a region of pre 
allocated , thread - private memory , and clearing a log bounds 
register . 
[ 0099 ] Versioning : In EP , due to the way eager versioning 
is designed to function , the MESI 130 state transitions 
( cache line indicators corresponding to Modified , Exclusive , 
Shared , and Invalid code states ) are left mostly unchanged . 
Outside of a transaction , the MESI 130 state transitions are 
left completely unchanged . When reading a line inside a 
transaction , the standard coherence transitions apply ( S 
( Shared ) - > S , I ( Invalid ) - > S , or I > E ( Exclusive ) ) , issuing a 
load miss as needed , but the R 132 bit is also set . Likewise , 
writing a line applies the standard transitions ( S - > M , E - > , 
I - > M ) , issuing a miss as needed , but also sets the W 138 
( Written ) bit . The first time a line is written , the old version 
of the entire line is loaded then written to the undo log to 
preserve it in case the current transaction aborts . The newly 
written data is then stored “ in - place , " over the old data . 
[ 0100 ] Conflict Detection : Pessimistic conflict detection 
uses coherence messages exchanged on misses , or upgrades , 
to look for conflicts between transactions . When a read miss 
occurs within a transaction , other processors receive a load 
request ; but they ignore the request if they do not have the 

[ 0101 ] Similarly , when a transaction seeks to upgrade a 
line from shared to modified ( on a first write ) , the transaction 
issues an exclusive load request , which is also used to detect 
conflicts . If a receiving cache has the line non - speculatively , 
then the line is invalidated , and in certain cases a cache - to 
cache transfer ( M or E states ) is issued . But , if the line is R 
132 or W 138 , a conflict is detected . 
( 0102 ] Validation : Because conflict detection is performed 
on every load , a transaction always has exclusive access to 
its own write - set . Therefore , validation does not require any 
additional work . 
[ 0103 ] Commit : Since eager versioning stores the new 
version of data items in place , the commit process simply 
clears the W 138 and R 132 bits and discards the undo log . 
[ 0104 ] Abort : When a transaction rolls back , the original 
version of each cache line in the undo log must be restored , 
a process called “ unrolling ” or “ applying ” the log . This is 
done during tm _ discard ( and must be atomic with regard 
to other transactions . Specifically , the write - set must still be 
used to detect conflicts : this transaction has the only correct 
version of lines in its undo log , and requesting transactions 
must wait for the correct version to be restored from that log . 
Such a log can be applied using a hardware state machine or 
software abort handler . 
0105 ] Eager - Pessimistic has the characteristics of : Com 
mit is simple and since it is in - place , very fast . Similarly , 
validation is a no - op . Pessimistic conflict detection detects 
conflicts early , thereby reducing the number of doomed ” 
transactions . For example , if two transactions are involved 
in a Write - After - Read dependency , then that dependency is 
detected immediately in pessimistic conflict detection . How 
ever , in optimistic conflict detection such conflicts are not 
detected until the writer commits . 
[ 0106 ] Eager - Pessimistic also has the characteristics of : 
As described above , the first time a cache line is written , the 
old value must be written to the log , incurring extra cache 
accesses . Aborts are expensive as they require undoing the 
log . For each cache line in the log , a load must be issued , 
perhaps going as far as main memory before continuing to 
the next line . Pessimistic conflict detection also prevents 
certain serializable schedules from existing . 
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[ 0107 ] Additionally , because conflicts are handled as they 
occur , there is a potential for livelock and careful contention 
management mechanisms must be employed to guarantee 
forward progress . 

[ 0114 ] Lazy - Optimistic has the characteristics of : Aborts 
are very fast , requiring no additional loads or stores and 
making only local changes . More serializable schedules can 
exist than found in EP , which allows an LO system to more 
aggressively speculate that transactions are independent , 
which can yield higher performance . Finally , the late detec 
tion of conflicts can increase the likelihood of forward 
progress . 
[ 0115 ] Lazy - Optimistic also has the characteristics of : 
Validation takes global communication time proportional to 
size of write set . Doomed transactions can waste work since 
conflicts are detected only at commit time . 

Lazy - Optimistic ( LO ) 
[ 0108 ] Another popular TM design is Lazy - Optimistic 
( LO ) , which stores its write - set in a “ write buffer ” or “ redo 
log ” and detects conflicts at commit time ( still using the R 
132 and W 138 bits ) . 
[ 0109 ] Versioning : Just as in the EP system , the MESI 
protocol of the LO design is enforced outside of the trans 
actions . Once inside a transaction , reading a line incurs the 
standard MESI transitions but also sets the R 132 bit . 
Likewise , writing a line sets the W 138 bit of the line , but 
handling the MESI transitions of the LO design is different 
from that of the EP design . First , with lazy versioning , the 
new versions of written data are stored in the cache hierar 
chy until commit while other transactions have access to old 
versions available in memory or other caches . To make 
available the old versions , dirty lines ( M lines ) must be 
evicted when first written by a transaction . Second , no 
upgrade misses are needed because of the optimistic conflict 
detection feature : if a transaction has a line in the S state , it 
can simply write to it and upgrade that line to an M state 
without communicating the changes with other transactions 
because conflict detection is done at commit time . 
101101 Conflict Detection and Validation : To validate a 
transaction and detect conflicts , LO communicates the 
addresses of speculatively modified lines to other transac 
tions only when it is preparing to commit . On validation , the 
processor sends one , potentially large , network packet con 
taining all the addresses in the write - set . Data is not sent , but 
left in the cache of the committer and marked dirty ( M ) . To 
build this packet without searching the cache for lines 
marked W , a simple bit vector is used , called a " store buffer , " 
with one bit per cache line to track these speculatively 
modified lines . Other transactions use this address packet to 
detect conflicts : if an address is found in the cache and the 
R 132 and / or W 138 bits are set , then a conflict is initiated . 
If the line is found but neither R 132 nor W 138 is set , then 
the line is simply invalidated , which is similar to processing 
an exclusive load . 
[ 0111 ] To support transaction atomicity , these address 
packets must be handled atomically , i . e . , no two address 
packets may exist at once with the same addresses . In an LO 
system , this can be achieved by simply acquiring a global 
commit token before sending the address packet . However , 
a two - phase commit scheme could be employed by first 
sending out the address packet , collecting responses , enforc 
ing an ordering protocol ( perhaps oldest transaction first ) , 
and committing once all responses are satisfactory . 
[ 0112 ] Commit : Once validation has occurred , commit 
needs no special treatment : simply clear W 138 and R 132 
bits and the store buffer . The transaction ' s writes are already 
marked dirty in the cache and other caches ' copies of these 
lines have been invalidated via the address packet . Other 
processors can then access the committed data through the 
regular coherence protocol . 
[ 0113 ] Abort : Rollback is equally easy : because the write 
set is contained within the local caches , these lines can be 
invalidated , then clear W 138 and R 132 bits and the store 
buffer . The store buffer allows W lines to be found to 
invalidate without the need to search the cache . 

Lazy - Pessimistic ( LP ) 
[ 0116 ] Lazy - Pessimistic ( LP ) represents a third TM design 
option , sitting somewhere between EP and LO : storing 
newly written lines in a write buffer but detecting conflicts 
on a per access basis . 
[ 0117 ] Versioning : Versioning is similar but not identical 
to that of LO : reading a line sets its R bit 132 , writing a line 
sets its W bit 138 , and a store buffer is used to track W lines 
in the cache . Also , dirty ( M ) lines must be evicted when first 
written by a transaction , just as in LO . However , since 
conflict detection is pessimistic , load exclusives must be 
performed when upgrading a transactional line from I , 
S - > M , which is unlike LO . 
[ 0118 ] Conflict Detection : LP ' s conflict detection operates 
the same as EP ' s : using coherence messages to look for 
conflicts between transactions . 
[ 0119 ] Validation : Like in EP , pessimistic conflict detec 
tion ensures that at any point , a running transaction has no 
conflicts with any other running transaction , so validation is 
a no - op . 
[ 0120 ] Commit : Commit needs no special treatment : sim 
ply clear W 138 and R 132 bits and the store buffer , like in 
LO . 

[ 0121 ] Abort : Rollback is also like that of LO : simply 
invalidate the write - set using the store buffer and clear the W 
and R bits and the store buffer . 

Eager - Optimistic ( EO ) 
0122 ] The LP has the characteristics of : Like LO , aborts 
are very fast . Like EP , the use of pessimistic conflict 
detection reduces the number of “ doomed ” transactions . 
Like EP , some serializable schedules are not allowed and 
conflict detection must be performed on each cache miss . 
[ 0123 ] The final combination of versioning and conflict 
detection is Eager - Optimistic ( EO ) . EO may be a less than 
optimal choice for HTM systems : since new transactional 
versions are written in - place , other transactions have no 
choice but to notice conflicts as they occur ( i . e . , as cache 
misses occur ) . But since EO waits until commit time to 
detect conflicts , those transactions become " zombies , " con 
tinuing to execute , wasting resources , yet are " doomed ” to 
abort . 
[ 0124 ] EO has proven to be useful in STMs and is imple 
mented by Bartok - STM and McRT . A lazy versioning STM 
needs to check its write buffer on each read to ensure that it 
is reading the most recent value . Since the write buffer is not 
a hardware structure , this is expensive , hence the preference 
for write - in - place eager versioning . Additionally , since 



US 2017 / 0262227 A1 Sep . 14 , 2017 
10 

checking for conflicts is also expensive in an STM , opti 
mistic conflict detection offers the advantage of performing 
this operation in bulk . 

Contention Management 
10125 ] . How a transaction rolls back once the system has 
decided to abort that transaction has been described above , 
but , since a conflict involves two transactions , the topics of 
which transaction should abort , how that abort should be 
initiated , and when should the aborted transaction be retried 
need to be explored . These are topics that are addressed by 
Contention Management ( CM ) , a key component of trans 
actional memory . Described below are policies regarding 
how the systems initiate aborts and the various established 
methods of managing which transactions should abort in a 
conflict . 

Contention Management Policies 
[ 0126 ] A Contention Management ( CM ) Policy is a 
mechanism that determines which transaction involved in a 
conflict should abort and when the aborted transaction 
should be retried . For example , it is often the case that 
retrying an aborted transaction immediately does not lead to 
the best performance . Conversely , employing a back - off 
mechanism , which delays the retrying of an aborted trans 
action , can yield better performance . STMs first grappled 
with finding the best contention management policies and 
many of the policies outlined below were originally devel 
oped for STMs . 
101271 CM Policies draw on a number of measures to 
make decisions , including ages of the transactions , size of 
read - and write - sets , the number of previous aborts , etc . The 
combinations of measures to make such decisions are end 
less , but certain combinations are described below , roughly 
in order of increasing complexity . 
10128 ] To establish some nomenclature , first note that in a 
conflict there are two sides : the attacker and the defender . 
The attacker is the transaction requesting access to a shared 
memory location . In pessimistic conflict detection , the 
attacker is the transaction issuing the load or load exclusive . 
In optimistic , the attacker is the transaction attempting to 
validate . The defender in both cases is the transaction 
receiving the attacker ' s request . 
[ 0129 ] An Aggressive CM Policy immediately and always 
retries either the attacker or the defender . In LO , Aggressive 
means that the attacker always wins , and so Aggressive is 
sometimes called committer wins . Such a policy was used 
for the earliest LO systems . In the case of EP , Aggressive can 
be either defender wins or attacker wins . 
[ 0130 ] Restarting a conflicting transaction that will imme 
diately experience another conflict is bound to waste work — 
namely interconnect bandwidth refilling cache misses . A 
Polite CM Policy employs exponential back - off ( but linear 
could also be used ) before restarting conflicts . To prevent 
starvation , a situation where a process does not have 
resources allocated to it by the scheduler , the exponential 
back - off greatly increases the odds of transaction success 
after some n retries . 
[ 0131 ] Another approach to conflict resolution is to ran 
domly abort the attacker or defender ( a policy called Ran 
domized ) . Such a policy may be combined with a random 
ized back - off scheme to avoid unneeded contention . 

[ 0132 ] However , making random choices , when selecting 
a transaction to abort , can result in aborting transactions that 
have completed “ a lot of work , ” which can waste resources . 
To avoid such waste , the amount of work completed on the 
transaction can be taken into account when determining 
which transaction to abort . One measure of work could be a 
transaction ' s age . Other methods include Oldest , Bulk TM , 
Size Matters , Karma , and Polka . Oldest is a simple time 
stamp method that aborts the younger transaction in a 
conflict . Bulk TM uses this scheme . Size Matters is like 
Oldest but instead of transaction age , the number of read / 
written words is used as the priority , reverting to Oldest after 
a fixed number of aborts . Karma is similar , using the size of 
the write - set as priority . Rollback then proceeds after back 
ing off a fixed amount of time . Aborted transactions keep 
their priorities after being aborted ( hence the name Karma ) . 
Polka works like Karma but instead of backing off a pre 
defined amount of time , it backs off exponentially more each 
time . 
[ 0133 ] Since aborting wastes work , it is logical to argue 
that stalling an attacker until the defender has finished their 
transaction would lead to better performance . Unfortunately , 
such a simple scheme easily leads to deadlock . 
[ 0134 ] Deadlock avoidance techniques can be used to 
solve this problem . Greedy uses two rules to avoid deadlock . 
The first rule is , if a first transaction , T1 , has lower priority 
than a second transaction , TO , or if T1 is waiting for another 
transaction , then T1 aborts when conflicting with TO . The 
second rule is , if T1 has higher priority than T0 and is not 
waiting , then TO waits until T1 commits , aborts , or starts 
waiting ( in which case the first rule is applied ) . Greedy 
provides some guarantees about time bounds for executing 
a set of transactions . One EP design ( LogTM ) uses a CM 
policy similar to Greedy to achieve stalling with conserva 
tive deadlock avoidance . 
[ 0135 ] Example MESI coherency rules provide for four 
possible states in which a cache line of a multiprocessor 
cache system may reside , M , E , S , and I , defined as follows : 
[ 0136 ] Modified ( M ) : The cache line is present only in the 
current cache , and is dirty ; it has been modified from the 
value in main memory . The cache is required to write the 
data back to main memory at some time in the future , before 
permitting any other read of the ( no longer valid ) main 
memory state . The write - back changes the line to the Exclu 
sive state . 
[ 0137 ] Exclusive ( E ) : The cache line is present only in the 
current cache , but is clean ; it matches main memory . It may 
be changed to the Shared state at any time , in response to a 
read request . Alternatively , it may be changed to the Modi 
fied state when writing to it . 
[ 0138 ] Shared ( S ) : Indicates that this cache line may be 
stored in other caches of the machine and is “ clean ” ; it 
matches the main memory . The line may be discarded 
( changed to the Invalid state ) at any time . 
[ 0139 ] Invalid ( I ) : Indicates that this cache line is invalid 
( unused ) . 
10140 ] TM coherency status indicators ( R 132 , W 138 ) 
may be provided for each cache line , in addition to , or 
encoded in the MESI coherency bits . An R 132 indicator 
indicates the current transaction has read from the data of the 
cache line , and a W 138 indicator indicates the current 
transaction has written to the data of the cache line . 
10141 ] In another aspect of TM design , a system is 
designed using transactional store buffers . U . S . Pat . No . 

sta 
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TABLE 3 - continued 
Example Transaction Code 

* branch if lock busy JNZ Ickbzy 
. . . perform operation . . . 
TEND * end transaction 

* Ickbzy 
* 

abort 
* AHI 
* 

PPA 

TABORT * abort if lock busy ; this 
resumes after TBEGIN 

JO fallback * no retry if CC = 3 
R0 , 1 * increment retry count 

CIJNL R0 , 6 , fallback * give up after 6 attempts 
RO , TX * random delay based on retry 

count 
. . . potentially wait for lock to become free . . . . 

loop * jump back to retry fallback 
OBTAIN lock * using Compare & Swap 
. . . perform operation . . . 
RELEASE lock 
. . . . . . . . . . . . 

6 , 349 , 361 titled “ Methods and Apparatus for Reordering and 
Renaming Memory References in a Multiprocessor Com 
puter System , ” filed Mar . 31 , 2000 and incorporated by 
reference herein in its entirety , teaches a method for reor 
dering and renaming memory references in a multiprocessor 
computer system having at least a first and a second pro 
cessor . The first processor has a first private cache and a first 
buffer , and the second processor has a second private cache 
and a second buffer . The method includes the steps of , for 
each of a plurality of gated store requests received by the 
first processor to store a datum , exclusively acquiring a 
cache line that contains the datum by the first private cache , 
and storing the datum in the first buffer . Upon the first buffer 
receiving a load request from the first processor to load a 
particular datum , the particular datum is provided to the first 
processor from among the data stored in the first buffer 
based on an in - order sequence of load and store operations . 
Upon the first cache receiving a load request from the second 
cache for a given datum , an error condition is indicated and 
a current state of at least one of the processors is reset to an 
earlier state when the load request for the given datum 
corresponds to the data stored in the first buffer . 
[ 0142 ] The main implementation components of one such 
transactional memory facility are a transaction - backup reg 
ister file for holding pre - transaction GR ( general register ) 
content , a cache directory to track the cache lines accessed 
during the transaction , a store cache to buffer stores until the 
transaction ends , and firmware routines to perform various 
complex functions . In this section a detailed implementation 
is described . 
IBM ZEnterprise EC12 Enterprise Server Embodiment 
10143 ] The IBM zEnterprise EC12 enterprise server intro 
duces transactional execution ( TX ) in transactional memory , 
and is described in part in a paper , “ Transactional Memory 
Architecture and Implementation for IBM System z ” of 
Proceedings Pages 25 - 36 presented at MICRO - 45 , 1 - 5 Dec . 
2012 , Vancouver , British Columbia , Canada , available from 
IEEE Computer Society Conference Publishing Services 
( CPS ) , which is incorporated by reference herein in its 
entirety . “ IBM , ” “ zEnterprise , " " System z , ” “ EC12 , ” and / or 
" MICRO - 45 ” may be subject to trademark rights in various 
jurisdictions throughout the world and are used here only in 
reference to the products or services properly denominated 
by the marks to the extent that such trademark rights may 
exist . ) . 
[ 0144 ] Table 3 shows an example transaction . Transac 
tions started with TBEGIN are not assured to ever success 
fully complete with TEND , since they can experience an 
aborting condition at every attempted execution , e . g . , due to 
repeating conflicts with other CPUs . This requires that the 
program support a fallback path to perform the same opera 
tion non - transactionally , e . g . , by using traditional locking 
schemes . This puts significant burden on the programming 
and software verification teams , especially where the fall 
back path is not automatically generated by a reliable 
compiler . 

[ 0145 ] The requirement of providing a fallback path for 
aborted Transaction Execution ( TX ) transactions can be 
onerous . Many transactions operating on shared data struc 
tures are expected to be short , touch only a few distinct 
memory locations , and use simple instructions only . For 
those transactions , the IBM ZEnterprise EC12 introduces the 
concept of constrained transactions ; under normal condi 
tions , the CPU 114a ( FIG . 2 ) assures that constrained 
transactions eventually end successfully , albeit without giv 
ing a strict limit on the number of necessary retries . A 
constrained transaction starts with a TBEGINC instruction 
and ends with a regular TEND . Implementing a task as a 
constrained or non - constrained transaction typically results 
in very comparable performance , but constrained transac 
tions simplify software development by removing the need 
for a fallback path . IBM ' s Transactional Execution archi 
tecture is further described in z / Architecture , Principles of 
Operation , Tenth Edition , SA22 - 7832 - 09 published Septem 
ber 2012 from IBM , incorporated by reference herein in its 
entirety . 
0146 ] A constrained transaction starts with the TBEGINC 
instruction . A transaction initiated with TBEGINC must 
follow a list of programming constraints ; otherwise the 
program takes a non - filterable constraint - violation interrup 
tion . Exemplary constraints may include , but not be limited 
to : the transaction can execute a maximum of 32 instruc 
tions , all instruction text must be within 256 consecutive 
bytes of memory ; the transaction contains only forward 
pointing relative branches ( i . e . , no loops or subroutine calls ) ; 
the transaction can access a maximum of 4 aligned octo 
words ( an octoword is 32 bytes ) of memory ; and restriction 
of the instruction - set to exclude complex instructions like 
decimal or floating - point operations . The constraints are 
chosen such that many common operations like doubly 
linked list - insert / delete operations can be performed , includ 
ing the very powerful concept of atomic compare - and - swap 
targeting up to 4 aligned octowords . At the same time , the 
constraints were chosen conservatively such that future CPU 
implementations can assure transaction success without 
needing to adjust the constraints , since that would otherwise 
lead to software incompatibility . 
10147 ] TBEGINC mostly behaves like XBEGIN in TSX 
or TBEGIN on IBM ' s zEC12 servers , except that the 
floating - point register ( FPR ) control and the program inter 
ruption filtering fields do not exist and the controls are 
considered to be zero . On a transaction abort , the instruction 

TABLE 3 

Example Transaction Code 
R0 , 0 

loop 
LHI 
TBEGIN 
JNZ 
LT 

* initialize retry count = 0 
* begin transaction 
* go to abort code if CC1 = 0 
* load and test the fallback lock 

abort 
R1 , lock 
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address is set back directly to the TBEGINC instead of to the 
instruction after , reflecting the immediate retry and absence 
of an abort path for constrained transactions . 
[ 0148 ] Nested transactions are not allowed within con 
strained transactions , but if a TBEGINC occurs within a 
non - constrained transaction it is treated as opening a new 
non - constrained nesting level just like TBEGIN would . This 
can occur , e . g . , if a non - constrained transaction calls a 
subroutine that uses a constrained transaction internally . 
[ 0149 ] Since interruption filtering is implicitly off , all 
exceptions during a constrained transaction lead to an inter 
ruption into the operating system ( OS ) . Eventual successful 
finishing of the transaction relies on the capability of the OS 
to page in the at most 4 pages touched by any constrained 
transaction . The OS must also ensure time - slices long 
enough to allow the transaction to complete . 

TABLE 4 

TBEGINC 

Transaction Code Example 
* begin constrained transaction 

. . . perform operation . . . 
* end transaction TEND 

connected to a coherent symmetric multi - processor ( SMP ) 
system with up to 144 cores ( not all cores are available to run 
customer workload ) . 
10154 ) Coherency is managed with a variant of the MESI 
protocol . Cache - lines can be owned read - only ( shared ) or 
exclusive ; the L1 240 and L2 268 are store - through and thus 
do not contain dirty lines . The L3 272 and L4 caches ( not 
shown ) are store - in and track dirty states . Each cache is 
inclusive of all its connected lower level caches . 
10155 ] Coherency requests are called " cross interrogates " 
( XI ) and are sent hierarchically from higher level to lower 
level caches , and between the L4s . When one core misses 
the L1 240 and L2 268 and requests the cache line from its 
local L3 272 , the L3 272 checks whether it owns the line , 
and if necessary sends an XI to the currently owning L2 
268 / L1 240 under that L3 272 to ensure coherency , before 
it returns the cache line to the requestor . If the request also 
misses the L3 272 , the L3 272 sends a request to the L4 ( not 
shown ) , which enforces coherency by sending XIs to all 
necessary L3s under that L4 , and to the neighboring L4s . 
Then the L4 responds to the requesting L3 which forwards 
the response to the L2 268 / L1 240 . 
( 0156 ) Note that due to the inclusivity rule of the cache 
hierarchy , sometimes cache lines are XI ’ ed from lower - level 
caches due to evictions on higher - level caches caused by 
associativity overflows from requests to other cache lines . 
These XIs can be called “ LRU XIs ” , where LRU stands for 
least recently used . 
101571 . Making reference to yet another type of XI 
requests , Demote - XIs transition cache - ownership from 
exclusive into read - only state , and Exclusive - XIs transition 
cache ownership from exclusive into invalid state . Demote 
XIs and Exclusive - XIs need a response back to the XI 
sender . The target cache can " accept ” the XI , or send a 
" reject ” response if it first needs to evict dirty data before 
accepting the XI . The L1 240 / L2 268 caches are store 
through , but may reject demote - XIs and exclusive XIs if 
they have stores in their store queues that need to be sent to 
L3 before downgrading the exclusive state . A rejected XI 
will be repeated by the sender . Read - only - XIs are sent to 
caches that own the line read - only ; no response is needed for 
such XIs since they cannot be rejected . The details of the 
SMP protocol are similar to those described for the IBM z10 
by P . Mak , C . Walters , and G . Strait , in " IBM System z10 
processor cache subsystem microarchitecture ” , IBM Journal 
of Research and Development , Vol 53 : 1 , 2009 , which is 
incorporated by reference herein in its entirety . 

[ 0150 ] Table 4 shows the constrained - transactional imple 
mentation of the code in Table 3 , assuming that the con 
strained transactions do not interact with other locking 
based code . No lock testing is shown therefore , but could be 
added if constrained transactions and lock - based code were 
mixed . 
[ 0151 ] When failure occurs repeatedly , software emula 
tion is performed using millicode as part of system firmware . 
Advantageously , constrained transactions have desirable 
properties because of the burden removed from program 
mers . 
[ 0152 ] With reference to FIG . 3 , the IBM ZEnterprise 
EC12 processor introduced transactional execution facility 
200 . The processor can decode 3 instructions per clock 
cycle ; simple instructions are dispatched as single micro 
ops , and more complex instructions are cracked into mul 
tiple micro - ops . Micro - ops ( Uops 234a , 234b , and 234c ) are 
written into unified issue queue 216 , from where they can be 
issued out - of - order . Up to two fixed - point , one floating 
point , two load / store , and two branch instructions can 
execute every cycle . Global Completion Table ( GCT ) 230 
holds every micro - op 234a , 234b , and 234c and transaction 
nesting depth ( TND ) 232 . The GCT 230 is written in - order 
at decode time , tracks the execution status of each micro - op 
234a , 234b , and 234c , and completes instructions when all 
micro - ops 234a , 234b , and 234c of the oldest instruction 
group have successfully executed . 
[ 0153 ] Level 1 ( L1 ) data cache 240 is a 96 KB ( kilo - byte ) 
6 - way associative cache with 256 byte cache - lines and 4 
cycle use latency , coupled to a private 1 MB ( mega - byte ) 
8 - way associative 2nd - level ( L2 ) data cache 268 with 7 
cycles use - latency penalty for L1 240 misses . The L1 240 
cache is the cache closest to a processor and Ln cache is a 
cache at the nth level of caching . Both L1 240 and L2 268 
caches are store - through . Six cores on each central processor 
( CP ) chip share a 48 MB 3rd - level store - in cache , and six CP 
chips are connected to an off - chip 384 MB 4th - level cache , 
packaged together on a glass ceramic multi - chip module 
( MCM ) . Up to 4 multi - chip modules ( MCMs ) can be 

Transactional Instruction Execution 
f0158 ] FIG . 3 depicts example components of an example 
transactional execution environment , including a CPU and 
caches / components with which it interacts ( such as those 
depicted in FIGS . 1 and 2 ) . The instruction decode unit 208 
( IDU ) keeps track of the current transaction nesting depth 
212 ( TND ) . When the IDU 208 receives a TBEGIN instruc 
tion , the nesting depth 212 is incremented , and conversely 
decremented on TEND instructions . The nesting depth 212 
is written into the GCT 230 for every dispatched instruction . 
When a TBEGIN or TEND is decoded on a speculative path 
that later gets flushed , the IDU ' s 208 nesting depth 212 is 
refreshed from the youngest GCT 230 entry that is not 
flushed . The transactional state is also written into the issue 
queue 216 for consumption by the execution units , mostly 
by the Load / Store Unit ( LSU ) 280 , which also has an 
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effective address calculator 236 is included in the LSU 280 . 
The TBEGIN instruction may specify a transaction diag 
nostic block ( TDB ) for recording status information , should 
the transaction abort before reaching a TEND instruction . 
[ 0159 ) Similar to the nesting depth , the IDU 208 / GCT 230 
collaboratively track the access register / floating - point reg 
ister ( AR / FPR ) modification masks through the transaction 
nest ; the IDU 208 can place an abort request into the GCT 
230 when an AR / FPR - modifying instruction is decoded and 
the modification mask blocks that . When the instruction 
becomes next - to - complete , completion is blocked and the 
transaction aborts . Other restricted instructions are handled 
similarly , including TBEGIN if decoded while in a con 
strained transaction , or exceeding the maximum nesting 
depth . 
[ 0160 ] An outermost TBEGIN is cracked into multiple 
micro - ops depending on the GR - Save - Mask ; each micro - op 
234a , 234b , and 234c ( including , for example uop 0 , uop 1 , 
and uop2 ) will be executed by one of the two fixed point 
units ( FXUS ) 220 to save a pair of GRs 228 into a special 
transaction - backup register file 224 , that is used to later 
restore the GR 228 content in case of a transaction abort . 
Also the TBEGIN spawns micro - ops 234a , 234b , and 234c 
to perform an accessibility test for the TDB if one is 
specified ; the address is saved in a special purpose register 
for later usage in the abort case . At the decoding of an 
outermost TBEGIN , the instruction address and the instruc 
tion text of the TBEGIN are also saved in special purpose 
registers for a potential abort processing later on . 
[ 0161 ] TEND and NTSTG are single micro - op 234a , 
234b , and 234c instructions ; NTSTG ( non - transactional 
store ) is handled like a normal store except that it is marked 
as non - transactional in the issue queue 216 so that the LSU 
280 can treat it appropriately . TEND is a no - op at execution 
time , the ending of the transaction is performed when TEND 
completes . 
[ 0162 ] As mentioned , instructions that are within a trans 
action are marked as such in the issue queue 216 , but 
otherwise execute mostly unchanged ; the LSU 280 performs 
isolation tracking as described in the next section . 
0163 ] Since decoding is in - order , and since the IDU 208 
keeps track of the current transactional state and writes it 
into the issue queue 216 along with every instruction from 
the transaction , execution of TBEGIN , TEND , and instruc 
tions before , within , and after the transaction can be per 
formed out of order . It is even possible ( though unlikely ) that 
TEND is executed first , then the entire transaction , and lastly 
the TBEGIN executes . Program order is restored through the 
GCT 230 at completion time . The length of transactions is 
not limited by the size of the GCT 230 , since general 
purpose registers ( GRs ) 228 can be restored from the backup 
register file 224 . 
10164 ] During execution , the program event recording 
( PER ) events are filtered based on the Event Suppression 
Control , and a PER TEND event is detected if enabled . 
Similarly , while in transactional mode , a pseudo - random 
generator may be causing the random aborts as enabled by 
the Transaction Diagnostics Control . 

demote XI , the LSU 280 rejects the XI back to the L3 272 
in the hope of finishing the transaction before the L3 272 
repeats the XI . This “ stiff - arming ” is very efficient in highly 
contended transactions . In order to prevent hangs when two 
CPUs stiff - arm each other , a XI - reject counter is imple 
mented , which triggers a transaction abort when a threshold 
is met . 
[ 0166 ] The L1 cache directory 240 is traditionally imple 
mented with static random access memories ( SRAMs ) . For 
the transactional memory implementation , the valid bits 244 
( 64 rowsx6 ways ) of the directory have been moved into 
normal logic latches , and are supplemented with two more 
bits per cache line : the TX - read 248 and TX - dirty 252 bits . 
[ 0167 ] The TX - read 248 bits are reset when a new outer 
most TBEGIN is decoded ( which is interlocked against a 
prior still pending transaction ) . The TX - read 248 bit is set at 
execution time by every load instruction that is marked 
“ transactional ” in the issue queue . Note that this can lead to 
over - marking if speculative loads are executed , for example 
on a mispredicted branch path . The alternative of setting the 
TX - read 248 bit at load completion time was too expensive 
for silicon area , since multiple loads can complete at the 
same time , requiring many read - ports on the load - queue . 
[ 0168 ] Stores execute the same way as in non - transac 
tional mode , but a transaction mark is placed in the store 
queue ( STO ) 260 entry of the store instruction . At write 
back time , when the data from the STQ 260 is written into 
the L1 240 , the TX - dirty bit 252 in the L1 - directory 256 is 
set for the written cache line . Store write - back into the L1 
240 occurs only after the store instruction has completed , 
and at most one store is written back per cycle . Before 
completion and write - back , loads can access the data from 
the STQ 260 by means of store - forwarding ; after write - back , 
the CPU 114a ( FIG . 2 ) can access the speculatively updated 
data in the L1 240 . If the transaction ends successfully , the 
TX - dirty bits 252 of all cache - lines are cleared , and also the 
TX - marks of not yet written stores are cleared in the STQ 
260 , effectively turning the pending stores into normal 
stores . 
[ 0169 ] On a transaction abort , all pending transactional 
stores are invalidated from the STQ 260 , even those already 
completed . All cache lines that were modified by the trans 
action in the L1 240 , that is , have the TX - dirty bit 252 on , 
have their valid bits turned off , effectively removing them 
from the L1 240 cache instantaneously . 
[ 0170 ] The architecture requires that before completing a 
new instruction , the isolation of the transaction read - and 
write - set is maintained . This isolation is ensured by stalling 
instruction completion at appropriate times when Xls are 
pending ; speculative out - of order execution is allowed , 
optimistically assuming that the pending XIs are to different 
addresses and not actually cause a transaction conflict . This 
design fits very naturally with the XI - vs - completion inter 
locks that are implemented on prior systems to ensure the 
strong memory ordering that the architecture requires . 
[ 0171 ] When the L1 240 receives an XI , L1 240 accesses 
the directory to check validity of the XI ’ ed address in the L1 
240 , and if the TX - read bit 248 is active on the XI ’ ed line 
and the XI is not rejected , the LSU 280 triggers an abort . 
When a cache line with active TX - read bit 248 is LRU ' ed 
from the L1 240 , a special LRU - extension vector remembers 
for each of the 64 rows of the L1 240 that a TX - read line 
existed on that row . Since no precise address tracking exists 
for the LRU extensions , any non - rejected XI that hits a valid 

Tracking for Transactional Isolation 
[ 0165 ] The Load / Store Unit 280 tracks cache lines that 
were accessed during transactional execution , and triggers 
an abort if an XI from another CPU ( or an LRU - XI ) conflicts 
with the footprint . If the conflicting XI is an exclusive or 
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extension row the LSU 280 triggers an abort . Providing the 
LRU - extension effectively increases the read footprint capa - 
bility from the Ll - size to the L2 - size and associativity , 
provided no conflicts with other CPUs 114a and 114b ( FIGS . 
1 and 2 ) against the non - precise LRU - extension tracking 
causes aborts . 
[ 0172 ] The store footprint is limited by the store cache size 
( the store cache is discussed in more detail below ) and thus 
implicitly by the L2 268 size and associativity . No LRU 
extension action needs to be performed when a TX - dirty 252 
cache line is LRU ' ed from the L1 240 . 

dirty lines can be evicted from the L1 240 , they have to stay 
resident in the L2 268 throughout the transaction . The 
maximum store footprint is thus limited to the store cache 
size of 64x128 bytes , and it is also limited by the associa 
tivity of the L2 268 . Since the L2 268 is 8 - way associative 
and has 512 rows , it is typically large enough to not cause 
transaction aborts . 
[ 0179 ] If a transaction aborts , the store cache 264 is 
notified and all entries holding transactional data are invali 
dated . The store cache 264 also has a mark per doubleword 
( 8 bytes ) whether the entry was written by a NTSTG 
instruction — those doublewords stay valid across transac 
tion aborts . Store Cache 

[ 0173 ] In prior systems , since the L1 240 and L2 268 are 
store - through caches , every store instruction causes an L3 
272 store access ; with now 6 cores per L3 272 and further 
improved performance of each core , the store rate for the L3 
272 ( and to a lesser extent for the L2 268 ) becomes 
problematic for certain workloads . In order to avoid store 
queuing delays , a gathering store cache 264 had to be added , 
that combines stores to neighboring addresses before send 
ing them to the L3 272 . 
[ 0174 ] For transactional memory performance , it is 
acceptable to invalidate every TX - dirty 252 cache line from 
the L1 240 on transaction aborts , because the L2 268 cache 
is very close ( 7 cycles L1 240 miss penalty ) to bring back the 
clean lines . However , it would be unacceptable for perfor 
mance ( and silicon area for tracking ) to have transactional 
stores write the L2 268 before the transaction ends and then 
invalidate all dirty L2 268 cache lines on abort ( or even 
worse on the shared L3 272 ) . 
101751 . The two problems of store bandwidth and transac 
tional memory store handling can both be addressed with the 
gathering store cache 264 . The cache 264 is a circular queue 
of 64 entries , each entry holding 128 bytes of data with 
byte - precise valid bits . In non - transactional operation , when 
a store is received from the LSU 280 , the store cache 264 
checks whether an entry exists for the same address , and if 
so gathers the new store into the existing entry . If no entry 
exists , a new entry is written into the queue , and if the 
number of free entries falls under a threshold , the oldest 
entries are written back to the L2 268 and L3 272 caches . 
[ 0176 ] When a new outermost transaction begins , all 
existing entries in the store cache are marked closed so that 
no new stores can be gathered into them , and eviction of 
those entries to L2 268 and L3 272 is started . From that point 
on , the transactional stores coming out of the LSU 280 STQ 
260 allocate new entries , or gather into existing transactional 
entries . The write - back of those stores into L2 268 and L3 
272 is blocked , until the transaction ends successfully ; at 
that point subsequent ( post - transaction ) stores can continue 
to gather into existing entries , until the next transaction 
closes those entries again . 
0177 ] The store cache 264 is queried on every exclusive 
or demote XI , and causes an XI reject if the XI compares to 
any active entry . If the core is not completing further 
instructions while continuously rejecting XIs , the transac 
tion is aborted at a certain threshold to avoid hangs . 
10178 ] The LSU 280 requests a transaction abort when the 
store cache 264 overflows . The LSU 280 detects this con 
dition when it tries to send a new store that cannot merge 
into an existing entry , and the entire store cache 264 is filled 
with stores from the current transaction . The store cache 264 
is managed as a subset of the L2 268 : while transactionally 

Millicode - Implemented Functions 
[ 0180 ] Traditionally , IBM mainframe server processors 
contain a layer of firmware called millicode which performs 
complex functions like certain CISC instruction executions , 
interruption handling , system synchronization , and RAS . 
Millicode includes machine dependent instructions as well 
as instructions of the instruction set architecture ( ISA ) that 
are fetched and executed from memory similarly to instruc 
tions of application programs and the operating system 
( OS ) . Firmware resides in a restricted area of main memory 
that customer programs cannot access . When hardware 
detects a situation that needs to invoke millicode , the 
instruction fetching unit 204 switches into “ millicode mode ” 
and starts fetching at the appropriate location in the milli 
code memory area . Millicode may be fetched and executed 
in the same way as instructions of the instruction set 
architecture ( ISA ) , and may include ISA instructions . 
[ 0181 ] For transactional memory , millicode is involved in 
various complex situations . Every transaction abort invokes 
a dedicated millicode subroutine to perform the necessary 
abort steps . The transaction - abort millicode starts by reading 
special - purpose registers ( SPRs ) holding the hardware inter 
nal abort reason , potential exception reasons , and the 
aborted instruction address , which millicode then uses to 
store a TDB if one is specified . The TBEGIN instruction text 
is loaded from an SPR to obtain the GR - save - mask , which 
is needed for millicode to know which GRs 238 to restore . 
[ 0182 ] The CPU 114a ( FIG . 2 ) supports a special milli 
code - only instruction to read out the backup - GRs 224 and 
copy them into the main GRs 228 . The TBEGIN instruction 
address is also loaded from an SPR to set the new instruction 
address in the PSW to continue execution after the TBEGIN 
once the millicode abort subroutine finishes . That PSW may 
later be saved as program - old PSW in case the abort is 
caused by a non - filtered program interruption . 
[ 0183 ] The TABORT instruction may be millicode imple 
mented ; when the IDU 208 decodes TABORT , it instructs 
the instruction fetch unit to branch into TABORT ' s milli 
code , from which millicode branches into the common abort 
subroutine . 
[ 0184 ] The Extract Transaction Nesting Depth ( ETND ) 
instruction may also be millicoded , since it is not perfor 
mance critical ; millicode loads the current nesting depth out 
of a special hardware register and places it into a GR 228 . 
The PPA instruction is millicoded ; it performs the optimal 
delay based on the current abort count provided by software 
as an operand to PPA , and also based on other hardware 
internal state . 
[ 0185 ] For constrained transactions , millicode may keep 
track of the number of aborts . The counter is reset to 0 on 
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successful TEND completion , or if an interruption into the 
OS occurs ( since it is not known if or when the OS will 
return to the program ) . Depending on the current abort 
count , millicode can invoke certain mechanisms to improve 
the chance of success for the subsequent transaction retry . 
The mechanisms involve , for example , successively increas 
ing random delays between retries , and reducing the amount 
of speculative execution to avoid encountering aborts caused 
by speculative accesses to data that the transaction is not 
actually using . As a last resort , millicode can broadcast to 
other CPUs other than 114a which is processing the local 
transaction , to stop all conflicting work and retry the local 
transaction before releasing the other CPUs to continue 
normal processing . Where multiple CPUs are enabled , their nd 

activity must be coordinated to not cause deadlocks , so some 
serialization between millicode instances on different CPUs 
114 is required . 

B . Computer Program Product Claim Support 
[ 0186 ] A computer readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device . The computer readable 
storage medium may be , for example , but is not limited to , 
an electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 
semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
random access memory ( RAM ) , a read - only memory 
( ROM ) , an erasable programmable read - only memory 
( EPROM or Flash memory ) , a static random access memory 
( SRAM ) , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e . g . , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0187 ] Computer readable program instructions described 
herein can be downloaded to respective computing / process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net 
work , for example , the Internet , a local area network , a wide 
ar area network and / or a wireless network . The network may 
comprise copper transmission cables , optical transmission 
fibers , wireless transmission , routers , firewalls , switches , 
gateway computers and / or edge servers . A network adapter 
card or network interface in each computing / processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing / processing 
device . 
[ 0188 ] Computer readable program instructions for carry 
ing out operations of the present invention may be assembler 
instructions , instruction - set - architecture ( ISA ) instructions , 
machine instructions , machine dependent instructions , 
microcode , firmware instructions , state - setting data , or 

either source code or object code written in any combination 
of one or more programming languages , including an object 
oriented programming language such as Smalltalk , C + + or 
the like , and conventional procedural programming lan 
guages , such as the “ C ” programming language or similar 
programming languages . The computer readable program 
instructions may execute entirely on the user ' s computer , 
partly on the user ' s computer , as a stand - alone software 
package , partly on the user ' s computer and partly on a 
remote computer or entirely on the remote computer or 
server . In the latter scenario , the remote computer may be 
connected to the user ' s computer through any type of 
network , including a local area network ( LAN ) or a wide 
area network ( WAN ) , or the connection may be made to an 
external computer ( for example , through the Internet using 
an Internet Service Provider ) . In some embodiments , elec 
tronic circuitry including , for example , programmable logic 
circuitry , field - programmable gate arrays ( FPGA ) , or pro 
grammable logic arrays ( PLA ) may execute the computer 
readable program instructions by utilizing state information 
of the computer readable program instructions to personalize 
the electronic circuitry , in order to perform aspects of the 
present invention . 
[ 0189 ] Aspects of the present invention are described 
herein with reference to flowchart illustrations and / or block 
diagrams of methods , apparatus ( systems ) , and computer 
program products according to embodiments of the inven 
tion . It will be understood that each block of the flowchart 
illustrations and / or block diagrams , and combinations of 
blocks in the flowchart illustrations and / or block diagrams , 
can be implemented by computer readable program instruc 
tions . 
f0190 ] These computer readable program instructions may 
be provided to a processor of a general purpose computer , 
special purpose computer , or other programmable data pro 
cessing apparatus to produce a machine , such that the 
instructions , which execute via the processor of the com 
puter or other programmable data processing apparatus , 
create means for implementing the functions / acts specified 
in the flowchart and / or block diagram block or blocks . These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer , a programmable data processing apparatus , and / 
or other devices to function in a particular manner , such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function / act 
specified in the flowchart and / or block diagram block or 
blocks . 
[ 0191 ] The computer readable program instructions may 
also be loaded onto a computer , other programmable data 
processing apparatus , or other device to cause a series of 
operational steps to be performed on the computer , other 
programmable apparatus or other device to produce a com 
puter implemented process , such that the instructions which 
execute on the computer , other programmable apparatus , or 
other device implement the functions / acts specified in the 
flowchart and / or block diagram block or blocks . 
10192 ] . The flowchart and block diagrams in the Figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods , and com 
puter program products according to various embodiments 
of the present invention . In this regard , each block in the 
flowchart or block diagrams may represent a module , seg 
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ment , or portion of instructions , which comprises one or 
more executable instructions for implementing the specified 
logical function ( s ) . In some alternative implementations , the 
functions noted in the block may occur out of the order noted 
in the figures . For example , two blocks shown in succession 
may , in fact , be executed substantially concurrently , or the 
blocks may sometimes be executed in the reverse order , 
depending upon the functionality involved . It will also be 
noted that each block of the block diagrams and / or flowchart 
illustration , and combinations of blocks in the block dia 
grams and / or flowchart illustration , can be implemented by 
special purpose hardware - based systems that perform the 
specified functions or acts or carry out combinations of 
special purpose hardware and computer instructions . 

C . Computer Program Product Claim Support 
[ 0193 ] An embodiment of a possible hardware and soft 
ware environment for software and / or methods according to 
the present invention will now be described in detail with 
reference to the Figures . FIG . 4 depicts a block diagram of 
components of a computing device 400 , in accordance with 
an illustrative embodiment of the present invention . It 
should be appreciated that FIG . 4 provides only an illustra 
tion of one implementation and does not imply any limita 
tions with regard to the environments in which different 
embodiments may be implemented . Many modifications to 
the depicted environment may be made . It should be appre 
ciated FIG . 4 provides only an illustration of one implemen 
tation and does not imply any limitations with regard to the 
environments in which different embodiments may be 
implemented 
[ 0194 ] The computing environment of FIG . 4 is , in many 
respects , representative of the various computer subsystem 
( s ) in the present invention . Accordingly , several portions of 
the computing environment will now be discussed in the 
following paragraphs . 
[ 0195 ] Computing device 400 includes communications 
fabric 402 , which provides communications between com 
puter processor ( s ) 404 , memory 406 , persistent storage 408 , 
communications unit 410 , and input / output ( I / O ) interface ( s ) 
412 . Communications fabric 402 can be implemented with 
any architecture designed for passing data and / or control 
information between processors ( such as microprocessors , 
communications and network processors , etc . ) , system 
memory , peripheral devices , and any additional hardware 
components within a system . For example , communications 
fabric 402 can be implemented with one or more buses . 
[ 0196 ] Computing device 400 is capable of communicat 
ing with other computer subsystems via network 401 . Net 
work 401 can be , for example , a local area network ( LAN ) , 
a wide area network ( WAN ) such as the Internet , or a 
combination of the two , and can include wired , wireless , or 
fiber optic connections . In general , network 401 can be any 
combination of connections and protocols that will support 
communications between computing device 400 and other 
computing devices . 
[ 0197 ] Memory 406 and persistent storage 408 are com 
puter - readable storage media . In one embodiment , memory 
406 includes random access memory ( RAM ) and cache 
memory 414 . In general , memory 406 can include any 
suitable volatile or non - volatile computer - readable storage 
media . 
[ 0198 ] In some embodiments , regulation logic 420 may be 
stored for execution by one or more of the respective 

computer processors 404 of computing device 400 via one 
or more memories of memory 406 of computing device 400 . 
In the depicted embodiment , persistent storage 408 includes 
a magnetic hard disk drive . Alternatively , or in addition to a 
magnetic hard disk drive , persistent storage 408 can include 
a solid state hard drive , a semiconductor storage device , 
read - only memory ( ROM ) , erasable programmable read 
only memory ( EPROM ) , flash memory , or any other com 
puter - readable storage media that is capable of storing 
program instructions or digital information . In some 
embodiments , regulation logic 420 may be implemented 
using logic gates . 
[ 0199 ) . The media used by persistent storage 408 may also 
be removable . For example , a removable hard drive may be 
used for persistent storage 408 . Other examples include 
optical and magnetic disks , thumb drives , and smart cards 
that are inserted into a drive for transfer onto another 
computer - readable storage medium that is also part of per 
sistent storage 408 . 
[ 0200 ] Communications unit 410 , in the examples , pro 
vides for communications with other data processing sys 
tems or devices , including computing device 400 . In the 
examples , communications unit 410 includes one or more 
network interface cards . Communications unit 410 may 
provide communications through the use of either or both 
physical and wireless communications links . 
10201 ] I / O interface ( s ) 412 allows for input and output of 
data with other devices that may be connected to computing 
device 400 . For example , I / O interface 412 may provide a 
connection to external devices 416 such as a keyboard , 
keypad , camera , a touch screen , and / or some other suitable 
input device . External devices 416 can also include portable 
computer - readable storage media such as , for example , 
thumb drives , portable optical or magnetic disks , and 
memory cards . Software and data used to practice embodi 
ments of the present invention , e . g . , regulation logic 420 can 
be stored on such portable computer - readable storage media 
and can be loaded onto persistent storage 408 of computing 
device 400 via I / O interface ( s ) 412 of computing device 400 . 
It should be noted that , in some embodiments , regulation 
logic 420 is implemented as a hardware module . 
[ 0202 ] Display 418 provides a mechanism to display data 
to a user and may be , for example , a computer monitor . 
10203 ] . The logic described herein is identified based upon 
the application for which it is implemented in a specific 
embodiment of the invention . However , it should be appre 
ciated that any particular logic nomenclature herein is used 
merely for convenience , and thus the invention should not be 
limited to use solely in any specific application identified 
and / or implied by such nomenclature . 
[ 0204 ] Regulation logic 420 detects the cause of the 
termination of the transaction and selects the parameters for 
the retrying of the operation . A transaction is a group of 
instructions that operate in an atomic manner on a data 
structure in memory , as viewed by other CPUs and the I / O 
subsystem . For a transaction to be complete the changes 
need to be finalized and made permanent in their entirety . 
The processing of a transaction can either be successful or 
fail , it cannot be partially completed . In additional embodi 
ments , a transaction is an individual , or indivisible , opera 
tion which is part of a larger operation . One event which can 
cause the termination of the transaction before completion is 
a transient condition . A transient condition , or transient 
property of an element of the system , is one which is 
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temporary . Transient conditions may be , for example asyn 
chronous interruptions , another CPU trying to access 
memory used within the transaction , or another thread on the 
same CPU causing a cache line to be evicted using an 
algorithm of least recently used ( LRU ) . Regulation logic 
420 detects the transient condition or element , or another 
cause of the transaction being terminated . In additional 
embodiments , regulation logic 420 records the cause of the 
transaction being terminated in a repository , such as , for 
example , memory 406 , persistent storage 408 , or as an 
internal hardware logic state . 
[ 0205 ] Regulation logic 420 also controls the procedure 
performed by computing device 400 once regulation logic 
420 determines the cause of the premature termination of the 
transaction . Regulation logic 420 decides if the cause of the 
premature termination of the transaction can be fixed with a 
series of retries of the transaction , or other methods of 
allowing the transaction more attempts to be completed . In 
one embodiment , regulation logic 420 permits the transac 
tion a predetermined number of retries to be completed . The 
predetermined number of retries does not guarantee a suc 
cessful transaction , but can be used for assistance in future 
transactions to increase the speed of the transaction or to 
anticipate failures . 
[ 0206 ] In additional embodiments , regulation logic 420 
can permit the transaction to retry until the transaction is 
successful . In a portion of the additional embodiments , 
regulation logic 420 may record information related to the 
transaction , this information can be , for example , the cause 
of the premature termination , the number of retries , and the 
successful transaction . This information can potentially be 
used in future transactions which fail to find a known 
solution and decrease the time for future transaction to be 
successful . The programs described herein are identified 
based upon the application for which they are implemented 
in a specific embodiment of the invention . However , it 
should be appreciated that any particular logic nomenclature 
herein is used merely for convenience , and thus the inven 
tion should not be limited to use solely in any specific 
application identified and / or implied by such nomenclature . 

of the processor state at the beginning of transaction pro 
cessing ; and / or ( iv ) invoking flag processing mod 608 to 
indicate the end - of - transaction has not been detected . 
10210 ) A transaction indicator may be implemented in 
software , hardware , or a combination of the two . In some 
embodiments of the present invention , the transaction indi 
cator is a software implementation using a Boolean flag , 
wherein a zero value indicates that no transaction is being 
processed , and a one value indicates that a transaction is 
being processed . Additionally , in some embodiments of the 
present invention , the transaction indicator is a hardware 
implementation and a status register is used to indicate 
whether or not a transaction is being processed . Further , in 
some embodiments of the present invention , nested trans 
actions are supported , and the transaction indicator is a 
counter that is incremented each time a begin - transaction is 
encountered , and decremented each time an end - transaction 
is encountered , thus , indicating all nested transactions are 
complete when the value in the transaction indicator reaches 
zero . 
10211 ] A metric counter may be used by the instruction 
processor to determine how far the current instruction is 
from the end of the transaction ( e . g . , how many instructions 
remain in the transaction ) . When a begin - transaction instruc 
tion is encountered , a metric counter corresponding to the 
current transaction is initialized to zero . In some embodi 
ments of the present invention , the metric counter is incre 
mented once for each instruction identified during a specu 
lative look ahead operation , and the metric counter is frozen 
when an end - transaction instruction is encountered during 
the speculative look ahead operation ( i . e . , the metric counter 
will contain the total number of instructions included in the 
transaction corresponding to the metric counter ) . In some 
embodiments , the metric counter is decremented for each 
completed instruction within the transaction . 
[ 0212 ] . In the event that a transaction is unable to success 
fully complete , the processor shall be able to perform a 
rollback ( e . g . , restore ) of the environment ( e . g . , transaction 
memory , registers , variables , and the like ) to a state corre 
sponding to the environment at the beginning of the trans 
action operation . In some embodiments of the present inven 
tion , a rollback is necessary when another process causes 
interference by attempting to access the transactional 
memory corresponding to the transaction . If the interference 
causes the transaction to halt ( also referred to herein as an 
abort of the transaction ) without reaching the end - transac 
tion instruction , all processing performed during the trans 
action is discarded and a rollback operation is performed to 
restore the environment to the state equivalent to that at the 
start of the transaction . 
[ 0213 ] When an environment utilizes speculative look 
ahead ( i . e . , when the environment fetches and decodes 
program instructions prior to execution ) , an indicator ( e . g . , 
TXEND _ INSIGHT ) may be maintained to determine 
whether an end - of - transaction has been detected during the 
speculative look ahead operation . When a begin - transaction 
instruction is processed , the indicator ( e . g . , TXEND _ IN 
SIGHT ) may be initialized to indicate that no end - transac 
tion has been detected . 
[ 0214 ] Processing proceeds to step 506 , where flag pro 
cessing mod 608 receives a request to update an indicator 
( e . g . , a flag ) to contain a specified value . The received 
request may identify a flag and the operation that is to be 
performed on the flag . In some embodiments of the present 

II . Example Embodiment 
[ 0207 ] FIG . 5 shows flowchart 500 depicting an approach 
according to the present invention . FIG . 6 shows regulation 
logic 420 for performing at least some of the steps of 
flowchart 500 . This approach will now be discussed , over 
the course of the following paragraphs , with extensive 
reference to FIG . 5 and FIG . 6 . 
[ 0208 ] Processing begins at step 502 , where transaction 
module ( “ mod ” ) 602 receives a begin - transaction instruction 
( e . g . , T _ BEGIN , TXBEGIN , or XBEGIN among others ) 
indicating the beginning of a transaction . The transaction 
comprises the begin - transaction instruction and all the 
instructions immediately following the begin - transaction 
program instruction up to , and including an end - transaction 
instruction ( e . g . , T _ END , TXEND , or XEND among others ) 
that corresponds to the begin - transaction instruction . 
[ 0209 ] Processing proceeds to step 504 , where initializa 
tion mod 604 carries out initialization operations necessary 
to enable processing of the transaction to begin . Initializa 
tion operations may include , but are not limited to : ( i ) setting 
a transaction indicator to indicate a transaction is currently 
being processed ; ( ii ) setting a metric counter to zero ; ( iii ) 
preparing for a rollback situation by keeping a backup copy 
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invention , the flag is TXEND _ INSIGHT , and the operation 
is indicating no end - transaction instruction has been 
detected . Additionally , in some embodiments of the present 
invention , additional operations are carried out , such as , 
when TXEND INSIGHT is changed to indicate that no 
end - transaction instruction has been detected , the metric 
counter is unfrozen to enable the metric counter to be 
incremented while the speculative look ahead operation 
proceeds . 
[ 0215 ] Processing proceeds to step 508 , where monitor 
mod 610 monitors the speculative look ahead operation and 
detect when an end - transaction instruction is encountered . 
Speculative look ahead is an operation that predicts an 
execution path that is likely to be followed in the future , 
however , it is possible that the prediction is incorrect and the 
predicted execution path is not actually followed . Predicting 
an execution path that is not actually followed may occur 
when the speculative look ahead operation encounters a 
branch instruction in the instruction stream . Since the infor 
mation that determines the actual behavior of the branch 
instruction may not yet be available , the speculative look 
ahead operation may predict the behavior of the branch 
instruction based on previous behavior ( e . g . , including but 
not limited to local and global branch history , branch address 
history , branch history vectors and / or a return address stack ) , 
static branch prediction information encoded in the instruc 
tion , branch policies tangibly incorporated into the processor 
( e . g . , backward branches , i . e . , branches to lower addresses 
than the address of a branch instruction may be predicted as 
“ taken ” ) , meta data , or the like . 
[ 0216 ] Instead of waiting for the information that deter 
mines the actual behavior of the branch instruction to 
become available , the speculative look ahead operation 
proceeds on a predicted execution path . In some embodi 
ments of the present invention , a backup copy of the metric 
counter is maintained each time a branch instruction is 
encountered . If it is later determined that an incorrect 
execution path was predicted for the branch , the metric 
counter can be restored to the value it was when the branch 
instruction was being speculatively looked at , and the specu 
lative look ahead operation can resume following a different 
execution path . In some embodiments of the present inven 
tion , instruction decode is also performed speculatively 
ahead of instruction execution and at least one decoupling 
queue ( e . g . , dispatch queue , issue queue , reorder queue , and 
the like ) is available to store speculatively decoded instruc 
tions after the instruction decode operation and prior to 
instruction execution . 
[ 0217 ] If the speculative look ahead operation encounters 
an end - transaction instruction , monitor mod 610 performs 
tasks to indicate that an end - transaction has been encoun 
tered ( i . e . , an end - transaction has been detected ) . Tasks to be 
performed include , but are not limited to : ( i ) freezing the 
metric counter ; and / or ( ii ) notifying flag processing mod 608 
that that an indicator ( e . g . , a flag ) such as TXEND IN 
SIGHT is to be set to indicate an end - transaction instruction 
has been encountered . 
[ 0218 ] If an end - transaction instruction has been identi 
fied , and it turns out that the predicted execution path is 
incorrect , then the effects of detecting the end - transaction 
instruction shall be rolled back to the point at which the 
incorrect branch prediction was determined . The rollback 
operation may include restoring the speculative look ahead 
operation to the point at which the incorrect branch predic 

tion was determined . The tasks included in the rollback 
operation may include , but are not limited to : ( i ) unfreezing 
the metric counter ; ( ii ) restoring ( e . g . , rolling back ) the 
metric counter to the state ( i . e . , value ) of the metric counter 
when the speculative look ahead operation was looking at 
the branch instruction ; and / or ( iii ) notifying flag processing 
mod 608 that that an indicator ( e . g . , a flag ) such as TXEND _ 
INSIGHT is to be set to indicate that no end - transaction 
instruction has been encountered . 
[ 0219 ] Processing proceeds to step 510 , where flag pro 
cessing mod 608 receives a request to update an indicator 
( e . g . , a flag ) to contain a specified value . The received 
request may identify a flag and an operation that is to be 
performed on the flag . In some embodiments of the present 
invention , the flag is TXEND _ INSIGHT , and the operation 
is indicating that an end - transaction instruction has been 
detected . Additionally , in some embodiments of the present 
invention , additional operations are carried out , such as 
when TXEND INSIGHT is altered to indicate that an end 
transaction instruction has been detected , the metric counter 
is frozen to allow calculations to determine how close the 
current instruction is to the end - transaction instruction . 
[ 0220 ] Processing proceeds to step 512 , where interfer 
ence mod 612 receives a notification identifying another 
process that is attempting to access transactional memory 
corresponding to an active transaction . In accordance with 
one embodiment of the present invention , interference is 
detected in conjunction with the tracking of read and write 
sets of memory that has been the subject of accesses of the 
present transaction , and further explained with reference to 
FIGS . 1 , 2 , and 3 herein . Interference mod 612 may analyze 
the circumstances corresponding to the interference . The 
analysis may include , but is not limited to : ( i ) determining 
if delaying the requested halt of the transaction is an option 
( it should be noted that the terms “ halt ” and “ abort ” are used 
interchangeably herein and have the same meaning ) ; ( ii ) 
determining if the transaction is near the end ( i . e . , an 
end - transaction instruction has been encountered by the 
speculative look ahead operation ) ; and / or ( iii ) if both pro 
cesses are transactions , determining which transaction is 
closer to completion . 
[ 0221 ] Processing ends with step 514 , where determina 
tion mod 614 determines an appropriate action to take with 
regard to the current transaction . Possible actions may 
include , but are not limited to : ( i ) delay the halt request , and 
continue processing the transaction ; ( ii ) halt the transaction 
and perform a rollback operation , and / or ( iii ) request that the 
interfering transaction halt execution . 
[ 0222 ] Delaying the halt request may include the interfer 
ing process waiting for the transaction to complete before 
the interfering process can obtain the requested data . In this 
example embodiment of the present invention : ( i ) a trans 
action is being processed ; ( ii ) an interference occurs ; and 
( iii ) the speculative look ahead operation has encountered an 
end - transaction instruction . Determination mod 614 deter 
mines that the transaction will continue to be executed , 
however , it is later determined that the encountered end 
transaction instruction was in an incorrect execution path , 
and therefore no end - transaction instruction has been 
encountered , resulting in the transaction being halted . 
[ 0223 ] When a transaction halts , no additional instructions 
corresponding to the transaction are run , and a rollback 
operation may be performed so the processing environment 
appears as if the transaction had never begun processing . In 
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some embodiments of the present invention , whenever a 
transaction ends ( e . g . , halts or runs to completion ) , a trans 
action indicator is updated to indicate the transaction is no 
longer being processed , freeing the processor from any 
limitations in place during transaction processing . 
[ 0224 ] In some embodiments of the current invention , the 
interfering transaction is of a lower priority , and the inter 
fering transaction halts , allowing the current transaction to 
continue processing . In some embodiments of the present 
invention , the interfering transaction is operating with a 
higher priority , and therefore the current transaction halts . 
Additionally , in some embodiments of the present invention , 
no end - transaction instruction has been encountered by the 
speculative look ahead operation , and therefore the current 
transaction halts . 
[ 0225 ] As noted above , interference mod 612 receives 
access requests from remote processes and determines inter 
ference . When no interference is detected , and a local 
processor includes the requested data , a response with the 
requested data is provided . In some embodiments of the 
present invention , the interference module provides the 
requested data as well as an indication that a present 
transaction of the present processor is to be aborted ( action 
( ii ) , discussed above ) . 
[ 0226 ] In some embodiments of the present invention , a 
decision is made as to whether to provide the data imme 
diately ( and cause a transaction abort responsive to such 
determination ) , or to defer a response ( action ( i ) , above ) . 
When a response is deferred , at a later time , responsive to 
completing the present transaction interference mod 612 
provides the data corresponding to a deferred response . 
Further , when the possibility of a deadlock has been 
detected , and a present transaction is to be aborted , inter 
ference module is notified to provide the data in conjunction 
with the initiation of a transaction abort . 
02271 . It should be noted as described above that when an 
abort operation is delayed , or held , both the instruction to 
abort as well as the data of the interfering transaction are 
withheld from processing . 

limitations with regard to the environments in which differ 
ent embodiments may be implemented . Many modifications 
to the depicted environment may be made . 
[ 0230 ] In step 702 , regulation logic 420 detects transaction 
execution . This step is carried out in the process described 
above in FIG . 5 . 
10231 ] In step 704 , regulation logic 420 performs TX 
initialization . This step is described above in reference to 
FIG . 2 and FIG . 5 . 
[ 0232 ] In step 706 , regulation logic 420 executes the 
transaction . This step is carried out in the process described 
above in FIG . 5 . 
[ 0233 ] In decision 708 , regulation logic 420 determines if 
the transaction was aborted . Regulation logic 420 detects the 
transaction has aborted as described above . An abort may be 
caused by , for example , a halt operation , also referred to as 
an abort operation , which , as used herein , refers to an 
operation responsive to a condition where two transactions 
have been detected to interfere and where at least one 
transaction must be aborted and the state of the processor is 
reset to the state at the beginning of the aborted transaction 
by performing a rollback . If regulation logic 420 determines 
the transaction was aborted ( yes branch , proceed to decision 
710 ) , regulation logic , 420 determines if the cause of the 
abort was due to a transient condition . If regulation logic 420 
determines the transaction was not aborted ( no branch , 
proceed to step 712 ) , regulation logic 420 completes the 
transaction . 
[ 0234 ] In decision 710 , regulation logic 420 determines if 
the cause of the abort was due to a transient condition . A 
transient condition is a condition which may show up during 
one invocation of a transaction but not in a following 
transaction . Such conditions may be , for example , interfer 
ence from another CPU , an asynchronous interruption , 
another thread LRUing an entry out of the L1 cache with 
TX _ read or TX _ dirty bits set . Non - transient conditions that 
may cause an abortion may include , for example , issuing an 
illegal instruction or , when running single threaded , exceed 
ing a transaction footprint . If regulation logic 420 deter 
mines the cause of the termination is due to a transient 
condition ( yes branch , proceed to step 716 ) , regulation logic 
420 selects the retry parameters . If regulation logic 420 
determines the cause of the termination is not due to a 
transient condition ( no branch , proceed to step 714 ) , regu 
lation logic 420 aborts the operation . 
[ 0235 ] In step 712 , regulation logic 420 completes the 
transaction . Regulation logic 420 completes the execution of 
the transaction till the transaction has been completed . 
[ 0236 ] In step 714 , regulation logic 420 aborts the opera 
tion . Regulation logic 420 aborts the operation because the 
cause of the error is beyond a transient condition or element , 
or the transaction cannot be completed for other reasons . 
This can be due to , for example , a loss of information 
necessary for the transaction , an invalid instruction , a foot 
print overflow , a transaction taking too long to execute , a 
hardware failure , or other mechanical or technical issues 
which can arise which would not be related to a transient 
condition or element . 
[ 0237 ] In step 716 , regulation logic 420 selects the retry 
parameters . This step selects what actions regulation logic 
420 permits the hardware of FIG . 4 to perform to attempt to 
resolve the transient condition . FIG . 8 explains the step of 
selecting the retry parameters in greater detail . 

III . Further Comments and / or Embodiments 
[ 0228 ] Some embodiments of the present invention rec 
ognize the following facts , potential problems , and / or poten 
tial areas for improvement with respect to the current state 
of the art : ( i ) when deciding to make decisions about 
interference between at least two transactions , and deciding 
which instruction to abort , it is desirable to know which 
transaction will be ending shortly ( e . g . , whether holding off 
on responding to a transaction may prevent an interference ) ; 
( ii ) when an interference must cause one transaction to abort , 
it may be desirable to halt the transaction that is not close to 
completing ( e . g . , do not sacrifice a transaction that would 
only require a few instruction to be successfully completed ) ; 
and / or ( iii ) it is desirable to offer a compatible way of 
indicating the impending end of a transaction that allows 
computer code and computer architecture to remain back 
wardly compatible . 
[ 0229 ] FIG . 7 depicts a flowchart of the operational steps 
of regulation logic 420 , within the computing environment 
of FIG . 4 , in accordance with one embodiment of the present 
invention . Flowchart 700 depicts the steps taken by regula - 
tion logic 420 to control the steps taken by the hardware or 
software . It should be appreciated that FIG . 7 provides only 
an illustration of one implementation and does not imply any 
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[ 0238 ] In step 718 , regulation logic 420 performs the 
permitted action . Regulation logic 420 performs the actions 
approved , and selected in the process performed in FIG . 7 . 
Regulation logic 420 may , for example , automatically per 
form these actions once the permitted actions are selected , or 
regulation logic 420 may wait a predetermined time before 
starting the permitted action . In additional embodiments , 
regulation logic 420 may permit numerous permitted 
actions . 
[ 0239 ] In step 720 , regulation logic 420 resets to initial 
transaction state . In some embodiments , regulation logic 420 
determines if the permitted action allowed the transaction to 
succeed . Regulation logic 420 determines if the transaction 
succeeded by detecting if the transaction was able to be 
performed fully to completion , without interruption or 
issues . If regulation logic 420 determines the permitted 
action allowed the transaction to succeed ( yes branch , pro 
ceed to END ) , regulation logic 420 concludes the operation . 
If regulation logic 420 determines the permitted action 
causes the transaction to fail ( no branch , proceed to 204 ) , 
regulation logic 420 reselects the retry parameters . In an 
attempt to retry the transaction with a new set of parameters 
to attempt to allow the transaction to succeed . 
[ 0240 ] FIG . 8 depicts a flowchart of the operational steps 
of regulation logic 420 operating within the computing 
environment of FIG . 1 , in accordance with one embodiment 
of the present invention . Flowchart 800 depicts the steps 
taken by regulation logic 420 to structure the limitations of 
the actions performed by the computing device . It should be 
appreciated that FIG . 8 provides only an illustration of one 
implementation and does not imply any limitations with 
regard to the environments in which different embodiments 
may be implemented . 
[ 0241 ] In decision 802 , regulation logic 420 determines if 
retry is permitted . Regulation logic 420 may , in some 
instances , retry the transaction in order to resolve the con 
flict . The retry of the transaction can be , for example , 
because regulation logic 420 has solved the conflict before , 
the transient condition is down to regulation logic 420 , or 
retrying the transaction can potentially fix the transient 
condition . If regulation logic 420 determines that the retry is 
permitted ( yes branch , proceed to step 804 ) , regulation logic 
420 sets the parameters for the retry . If regulation logic 420 
determines the retry is not permitted ( no branch , proceed to 
step 714 ) , regulation logic 420 aborts the operation . 
[ 0242 ] In step 804 , regulation logic 420 sets parameter . 
Regulation logic 420 sets the parameter which computing 
device 400 performs in an attempt to have the transaction 
succeed . These parameters can be , for example , number of 
retries which computing device 400 performs in an attempt 
to allow the transaction to succeed , time limit which com 
puting device 400 is allowed to perform retries , or the action 
which is performed by each retry . In additional embodiments 
there is a predetermined delay in responding to coherency 
requests . In additional embodiments , regulation logic 420 
retries the transaction in the same manner as the first 
instance which failed , or regulation logic 420 retries the 
transaction in a different manner than the first instance which 
failed . In additional embodiments , regulation logic 420 may 
set the parameters to record each retry , the actions performed 
by computing device 400 , or if the retry was successful or 
a failure . 
0243 ] In decision 806 , regulation logic 420 determines if 
occurrence is recorded . In certain instances where a trans 

action is terminated and it is known that the termination is 
caused by a transient condition , regulation logic 420 records 
information regarding the instance , which can be , for 
example , the number of retries , the transient condition , if the 
retries solved the transient condition , or the solution to the 
transient condition for future use . If regulation logic 420 
determines the information regarding the occurrence is to be 
recorded ( yes branch , proceed to step 718 ) , regulation logic 
420 records the information regarding the occurrence ( see 
step 808 ) . If regulation logic 420 determines the information 
regarding the occurrence is to not be recorded ( no branch , 
proceed to step 714 ) , regulation logic 420 proceeds to step 
718 ( see FIG . 7 ) . 
[ 0244 ] The present invention may be a system , a method , 
and / or a computer program product . The computer program 
product may include a computer readable storage medium 
( or media ) having computer readable program instructions 
thereon for causing a processor to carry out aspects of the 
present invention . 
[ 0245 ] The computer readable storage medium can be a 
tangible device that can retain and store instructions for use 
by an instruction execution device . The computer readable 
storage medium may be , for example , but is not limited to , 
an electronic storage device , a magnetic storage device , an 
optical storage device , an electromagnetic storage device , a 
semiconductor storage device , or any suitable combination 
of the foregoing . A non - exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following : a portable computer diskette , a hard disk , a 
random access memory ( RAM ) , a read - only memory 
( ROM ) , an erasable programmable read - only memory 
( EPROM or Flash memory ) , a static random access memory 
( SRAM ) , a portable compact disc read - only memory ( CD 
ROM ) , a digital versatile disk ( DVD ) , a memory stick , a 
floppy disk , a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon , and any suitable combination of the fore 
going . A computer readable storage medium , as used herein , 
is not to be construed as being transitory signals per se , such 
as radio waves or other freely propagating electromagnetic 
waves , electromagnetic waves propagating through a wave 
guide or other transmission media ( e . g . , light pulses passing 
through a fiber - optic cable ) , or electrical signals transmitted 
through a wire . 
[ 0246 ] Computer readable program instructions described 
herein can be downloaded to respective computing / process 
ing devices from a computer readable storage medium or to 
an external computer or external storage device via a net 
work , for example , the Internet , a local area network , a wide 
area network and / or a wireless network . The network may 
comprise copper transmission cables , optical transmission 
fibers , wireless transmission , routers , firewalls , switches , 
gateway computers and / or edge servers . A network adapter 
card or network interface in each computing / processing 
device receives computer readable program instructions 
from the network and forwards the computer readable 
program instructions for storage in a computer readable 
storage medium within the respective computing / processing 
device . 
[ 0247 ] Computer readable program instructions for carry 
ing out operations of the present invention may be assembler 
instructions , instruction - set - architecture ( ISA ) instructions , 
machine instructions , machine dependent instructions , 
microcode , firmware instructions , state - setting data , or wans 
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ment , or portion of instructions , which comprises one or 
more executable instructions for implementing the specified 
logical function ( s ) . In some alternative implementations , the 
functions noted in the block may occur out of the order noted 
in the figures . For example , two blocks shown in succession 
may , in fact , be executed substantially concurrently , or the 
blocks may sometimes be executed in the reverse order , 
depending upon the functionality involved . It will also be 
noted that each block of the block diagrams and / or flowchart 
illustration , and combinations of blocks in the block dia 
grams and / or flowchart illustration , can be implemented by 
special purpose hardware - based systems that perform the 
specified functions or acts or carry out combinations of 
special purpose hardware and computer instructions . 

either source code or object code written in any combination 
of one or more programming languages , including an object 
oriented programming language such as Smalltalk , C + + or 
the like , and conventional procedural programming lan - 
guages , such as the “ C ” programming language or similar 
programming languages . The computer readable program 
instructions may execute entirely on the user ' s computer , 
partly on the user ' s computer , as a stand - alone software 
package , partly on the user ' s computer and partly on a 
remote computer or entirely on the remote computer or 
server . In the latter scenario , the remote computer may be 
connected to the user ' s computer through any type of 
network , including a local area network ( LAN ) or a wide 
area network ( WAN ) , or the connection may be made to an 
external computer ( for example , through the Internet using 
an Internet Service Provider ) . In some embodiments , elec 
tronic circuitry including , for example , programmable logic 
circuitry , field - programmable gate arrays ( FPGA ) , or pro 
grammable logic arrays ( PLA ) may execute the computer 
readable program instructions by utilizing state information 
of the computer readable program instructions to personalize 
the electronic circuitry , to perform aspects of the present 
invention . 
[ 0248 ] Aspects of the present invention are described 
herein with reference to flowchart illustrations and / or block 
diagrams of methods , apparatus ( systems ) , and computer 
program products according to embodiments of the inven 
tion . It will be understood that each block of the flowchart 
illustrations and / or block diagrams , and combinations of 
blocks in the flowchart illustrations and / or block diagrams , 
can be implemented by computer readable program instruc 
tions . 
10249 ] These computer readable program instructions may 
be provided to a processor of a general purpose computer , 
special purpose computer , or other programmable data pro 
cessing apparatus to produce a machine , such that the 
instructions , which execute via the processor of the com 
puter or other programmable data processing apparatus , 
create means for implementing the functions / acts specified 
in the flowchart and / or block diagram block or blocks . These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer , a programmable data processing apparatus , and / 
or other devices to function in a particular manner , such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
instructions which implement aspects of the function / act 
specified in the flowchart and / or block diagram block or 
blocks . 
[ 0250 ] The computer readable program instructions may 
also be loaded onto a computer , other programmable data 
processing apparatus , or other device to cause a series of 
operational steps to be performed on the computer , other 
programmable apparatus or other device to produce a com 
puter implemented process , such that the instructions which 
execute on the computer , other programmable apparatus , or 
other device implement the functions / acts specified in the 
flowchart and / or block diagram block or blocks . 
[ 0251 ] The flowchart and block diagrams in the Figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods , and com 
puter program products according to various embodiments 
of the present invention . In this regard , each block in the 
flowchart or block diagrams may represent a module , seg 

IV . Definitions 
[ 0252 ] Present invention : should not be taken as an abso 
lute indication that the subject matter described by the term 
“ present invention ” is covered by either the claims as they 
are filed , or by the claims that may eventually issue after 
patent prosecution ; while the term “ present invention ” is 
used to help the reader to get a general feel for which 
disclosures herein that are believed as maybe being new , this 
understanding , as indicated by use of the term “ present 
invention , " is tentative and provisional and subject to 
change over the course of patent prosecution as relevant 
information is developed and as the claims are potentially 
amended . 
[ 0253 ] Embodiment : see definition of “ present invention ” 
above similar cautions apply to the term " embodiment . ” 
[ 0254 ] and / or : inclusive or ; for example , A , B " and / or ” C 
means that at least one of A or B or C is true and applicable . 
[ 02551 User / subscriber : includes , but is not necessarily 
limited to , the following : ( i ) a single individual human ; ( ii ) 
an artificial intelligence entity with sufficient intelligence to 
act as a user or subscriber ; and / or ( iii ) a group of related 
users or subscribers . 
( 0256 ) Module / Sub - Module : any set of hardware , firm 
ware and / or software that operatively works to do some kind 
of function , without regard to whether the module is : ( i ) in 
a single local proximity ; ( 11 ) distributed over a wide area ; 
( iii ) in a single proximity within a larger piece of software 
code ; ( iv ) located within a single piece of software code ; ( v ) 
located in a single storage device , memory or medium ; ( vi ) 
mechanically connected ; ( vii ) electrically connected ; and / or 
( viii ) connected in data communication . 
[ 0257 ] Computer : any device with significant data pro 
cessing and / or machine readable instruction reading capa 
bilities including , but not limited to : desktop computers , 
mainframe computers , laptop computers , field - program 
mable gate array ( FPGA ) based devices , smart phones , 
personal digital assistants ( PDAs ) , body - mounted or 
inserted computers , embedded device style computers , 
application - specific integrated circuit ( ASIC ) based devices . 
What is claimed is : 
1 . A method for resolving terminated transactions in a 

transactional memory environment , the method comprising : 
initiating a hardware transaction in a computing environ 
ment , wherein the hardware transaction accesses a 
memory location , and wherein the hardware transaction 
includes a transaction begin indicator and a transaction 
end indicator ; 

detecting a conflicting access of the memory location 
while executing the hardware transaction ; 
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aborting the hardware transaction based on the conflicting 
access of the memory location ; 

determining , by hardware , that the conflicting access of 
the memory location is a transient condition , and 

reinitiating the hardware transaction . 
2 . The method of claim 1 , further comprising : 
generating , by software , a retry parameter based on , at 

least , the conflicting access of the memory , wherein the 
retry parameter indicates , to hardware , a maximum 
number of attempts to reinitiate the hardware transac 
tion prior to aborting the hardware transaction . 

3 . The method of claim 2 , further comprising : 
determining , by hardware , that the retry parameter has not 
been met ; and 

wherein reinitiating the hardware transaction is based on 
the determination that the retry parameter has not been 
met . 

4 . The method of claim 1 , wherein the transient condition 
is a condition which may cause conflicting access of the 
memory location during a first invocation of the hardware 
transaction , but which may not result in conflicting access of 
the memory location during a subsequent invocation of the 
hardware transaction . 

5 . The method of claim 1 , wherein : 
the conflicting access of the memory location is an 

intervening store to the memory location in a near - end 
transaction processing mode , wherein the near - end 
transaction processing mode indicates that the conflict 
ing access is near end of completion based on , at least , 
the transaction end indicator ; and 

aborting the hardware transaction is further based on the 
near - end transaction processing mode of the conflicting 
access of the memory location . 

6 . The method of claim 1 , wherein : 
the step of initiating the hardware transaction in the 

computing environment is performed by a first proces 
sor ; and 

the conflicting access of the memory location is an 
intervening store to the memory location by a second 
processor . 

7 . The method of claim 1 , further comprising : 
logging , by hardware , information about the reinitiated 

hardware transaction including , at least , the initiated 
hardware transaction attempt number and information 
about the conflicting access . 

* * * * 


