
THE MAIN TEA ETA ANTON A TI MATERIAALI US 20170262227A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2017 / 0262227 A1

Bradbury et al . (43) Pub . Date : Sep . 14 , 2017

(54) HARDWARE TRANSACTION TRANSIENT
CONFLICT RESOLUTION

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US)

Publication Classification
(51) Int . CI .

G06F 3 / 06 (2006 . 01)
(52) U . S . CI .

CPC G06F 3 / 0659 (2013 . 01) ; G06F 3 / 061
(2013 . 01) ; G06F 3 / 0673 (2013 . 01)

(57) ABSTRACT

(72) Inventors : Jonathan D . Bradbury , Poughkeepsie ,
NY (US) ; Michael Karl Gschwind ,
Chappaqua , NY (US) ; Maged M .
Michael , Danbury , CT (US) ; Valentina
Salapura , Chappaqua , NY (US) ; Eric
M . Schwarz , Gardiner , NY (US) ;
Chung - Lung K . Shum , Wappingers
Falls , NY (US) ; Timothy J . Slegel ,
Staatsburg , NY (US)

(21) Appl . No . : 15 / 180 , 428
(22) Filed : Jun . 13 , 2016

Related U . S . Application Data
(63) Continuation of application No . 15 / 064 , 029 , filed on

Mar . 8 , 2016 .

In an approach for resolving terminated transactions in a
transactional memory environment , a processor initiates a
hardware transaction in a computing environment , wherein
the hardware transaction accesses a memory location , and
wherein the hardware transaction includes a transaction
begin indicator and a transaction end indicator . A processor
detects a conflicting access of the memory location while
executing the hardware transaction . A processor aborts the
hardware transaction based on the conflicting access of the
memory location . Hardware determines that the conflicting
access of the memory location is a transient condition . A
processor reinitiates the hardware transaction .

112a 1126
CPU 1
114a

CPU 2
1146

Inst .
Cache
1162

Data Cache with
TM Support

118a

Inst
Cache
116b

Data Cache with
TM Support

1186

Interconnect Control 120a Interconnect Control 120b

Interconnect 122

Shared Cache 124

Patent Application Publication Sep . 14 , 2017 Sheet 1 of 8 US 2017 / 0262227 A1

No

- 112a - 112b

CPU 1
114a

CPU 2
1140

Inst ,
Cache
116a

Data Cache with
TM Support

118a

Inst .
Cache
116b

Data Cache with
TM Support

118b

Interconnect Control 120a Interconnect Control 120b

Interconnect 122

Shared Cache 124

FIG . 1

Patent Application Publication Sep . 14 , 2017 Sheet 2 of 8 US 2017 / 0262227 A1

Register Checkpoint
126

CPU
114a

TM Registers
128

MESI
bits 130 132 138

Tags
140

Data
142

FIG . 2

Instruction Cache Instruction Fetching 204

232

234

230

2346 234 TTT

Patent Application Publication

IDU 208

T

Refresh ??? f } {

Z don | don o don ONI

TND 212

circular queue

Dispatch
WNNNNNNNNN

Issue Queue

Send tbegin tend completion events for updating states in
STQ & directory

2x FXU

GRS

Ador Calc 236

2X LSUS
280

Sep . 14 , 2017 Sheet 3 of 8

DX Backup GRS 224

244
????]
248

txead

L1 Cache 240

L1 wnteback

bx - dirty
256

L1 tags

Set tx - dirty

XI forwarded by 12 10 L1 / 8TQ $

? % f?????????

STQ 260

FIG . 3

Gathering Store Cache 264

MB L2 Cache 268

US 2017 / 0262227 A1

400

- - 404

406

morzson PROCESSOR (S)

Patent Application Publication

MEMORY ancer

W

*

* *

*

*

414
CACHE

408) PERSISTENT STORAGE
BRRRRRRRRRRRRRR

Jooooooo

oooooooooodd

Sep . 14 , 2017 Sheet 4 of 8

418

| 412 412

- 410

1 / 0

DISPLAY

7 INTERFACE (S)

Wwwwww

COMMUNICATIONS UNIT

3 , SSSSSSS

*

*

*

G

SSSSSSSSSSSSSSSSSSSS
416

401

*

EXTERNAL DEVICE (S)
* * *

NETWORK

a Londo

US 2017 / 0262227 A1

FIG . 4

Patent Application Publication Sep 14 , 2017 _ Sheet 5 of 8 US 2017 / 0262227 Al

52

BEGIN INSTRUCTION TRANSACTION

504
PERFORM INITIALIZATION
OPERATIONS TO ENABLE
TRANSACTION PROCESSING

506

INITIALIZE FLAG TO NOT - FOUND
.

08 ' ' . . . ' ' . ' .

MONITOR THE INSTRUCTION TRANSACTION
FOR END OF TRANSACTION INDICATOR

.

* } {

SET FLAG TO FOUND
* * * * * * - - - - - - - - - - - - - - - - - - ???????? ? , , , , ,

* ??????? RECEIVE INTERFERENCE
NOTIFICATION

, ' ' , ' ' , , , , , , , , , , , , , , , , , , ,

{ 4

DETERMINE WHICH PROCESS RUNS

FIG . S

Patent Application Publication Sep . 14 , 2017 Sheet 6 of 8 US 2017 / 0262227 A1

REGULATION LOGIC , 420

TRANSACTION
MOD , 602

INITIALIZATION
MOD , 604

FLAG PROCESSING
MOD , 608

MONITOR
MOD , 610

WII UUU

yang

4 4 4 4 4 INTERFERENCE
MOD , 612

DETERMINATION
MOD , 614 2 2 2 2 2 2 2 2 2

MAN

FIG . 6

Patent Application Publication Sep . 14 , 2017 Sheet 7 of 8 US 2017 / 0262227 A1

START
702

DETECT
TRANSACTION
EXECUTION

077 - 0 704 PERFORM TX
INITALIZATION

- 706

EXECUTE
TRANSACTION

1947 . . XX . XXXXXXXXXXX

po 708
710 710

YES DETERMINE IF
TRANSACTION WAS

ABORTED YES
DETERMINE IF THE

CAUSE OF THE ABORT
WAS DUE TO A

TRANSIENT CONDITION . COM
NO

mm 712 NO FIGURE 8
716

COMPLETE
TRANSACTION 7 - - - - - - - SELECT RETRY

PARAMETERS - - - - - -
- - -

. , , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 . 4 , 1 . 4 ,

pe 718
canon 714

PERFORM
PERMITTED ACTION ABORT

OPERATION
720

RESET TO INITIAL
TRANSACTION

STATE
, , . , , . , . , . , . , , , , , , , , , , , , , , , , , ,

END - 02
FIG . 7

Patent Application Publication Sep . 14 , 2017 Sheet 8 of 8 US 2017 / 0262227 A1

802
NO DETERMINE IF

RETRY IS
PERMITTED

PROCEED TO STEP
714

YES

om 804

SET PARAMETERS

R R RRRRRRRRR

806

NO DETERMINE IF
OCCURRENCE
IS RECORDED

YES

808

RECORD
INFORMATION

PROCEED TO STEP
718

FIG . 8

US 2017 / 0262227 A1 Sep . 14 , 2017

HARDWARE TRANSACTION TRANSIENT
CONFLICT RESOLUTION

BACKGROUND

components such as a memory " nest ” (or memory hierar
chy) , an optional system controller , and optional interrupt
controller , optional 1 / 0 or peripheral devices , etc . The
memory nest is attached to a selective pairing facility via a
switch or a bus . Each selectively paired processor core is
includes a transactional execution facility , wherein the sys
tem is configured to enable processor rollback to a previous
state and reinitialize lockstep execution in order to recover
from an incorrect execution when an incorrect execution has
been detected by the selective pairing facility .

SUMMARY
[0006] Aspects of an embodiment of the present invention
disclose a method , computer program product , and comput
ing system for resolving terminated transactions in a trans
actional memory environment . A processor initiates a hard
ware transaction in a computing environment , wherein the
hardware transaction accesses a memory location , and
wherein the hardware transaction includes a transaction
begin indicator and a transaction end indicator . A processor
detects a conflicting access of the memory location while
executing the hardware transaction . A processor aborts the
hardware transaction based on the conflicting access of the
memory location . Hardware determines that the conflicting
access of the memory location is a transient condition . A
processor reinitiates the hardware transaction .

[0001] This disclosure relates generally to transactional
memory systems and more specifically to a method , com
puter program and computer system for improving the
efficiency of transactional instruction processing .
[0002] The number of central processing unit (CPU) cores
on a chip and the number of CPU cores connected to a
shared memory continues to grow significantly to support
growing workload capacity demand . The increasing number
of CPUs cooperating to process the same workloads puts a
significant burden on software scalability , for example ,
shared queues or data structures protected by traditional
semaphores become hot spots and lead to sub - linear n - way
scaling curves . Traditionally this has been countered by
implementing finer - grained locking in software , and with
lower latency / higher bandwidth interconnects in hardware .
Implementing fine - grained locking to improve software
scalability can be very complicated and error - prone , and at
today ' s CPU frequencies , the latencies of hardware inter
connects are limited by the physical dimension of the chips
and systems , and by the speed of light .
[0003] Implementations of hardware Transactional
Memory (HTM , or in this discussion , simply TM) have been
introduced , wherein a group of instructions called a trans
action - operate in an atomic manner on a data structure in
memory , as viewed by other central processing units (CPUs)
and the I / O subsystem (atomic operation is also known as
“ block concurrent ” or “ serialized ” in other literature) . The
transaction executes optimistically without obtaining a lock ,
but may need to abort and retry the transaction execution if
an operation , of the executing transaction , on a memory
location conflicts with another operation on the same
memory location . Previously , software transactional
memory implementations have been proposed to support
software Transactional Memory (TM) . However , hardware
TM can provide improved performance aspects and ease of
use over software TM .
[0004 U . S . Patent Application Publication
US20080244354 A1 titled “ Apparatus and method for
redundant multi - threading with recovery ” filed 2007 Mar . 28
and incorporated by reference herein teaches a method and
apparatus for reducing the effect of soft errors in a computer
system is provided . Soft errors are detected by combining
software redundant threading and instruction duplication .
Upon detection of a soft error , errors are recovered through
the use of software check pointing / rollback technology .
Reliable regions are identified by vulnerability profiling and
redundant multi - threading is applied to the identified reliable
regions .
[0005] U . S . Patent Application Publication
US20120210162 A1 titled “ State recovery and lockstep
execution restart in a system with multiprocessor pairing ”
filed 2011 Feb . 15 and incorporated by reference herein
teaches a system , method and computer program product for
a multiprocessing system to offer selective pairing of pro
cessor cores for increased processing reliability . A selective
pairing facility is provided that selectively connects , i . e . ,
pairs , multiple microprocessor or processor cores to provide
one highly reliable thread (or thread group) . Each paired
microprocessor or processor cores that provide one highly
reliable thread for high - reliability connect with a system

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] FIG . 1 depicts an example multicore transactional
memory environment , in accordance with an illustrative
embodiment .
[0008] FIG . 2 depicts an example multicore transactional
memory environment , in accordance with an illustrative
embodiment .
[0009] FIG . 3 depicts example components of an example
CPU , in accordance with an illustrative embodiment .
[0010] FIG . 4 is a block diagram of internal and external
components of a computing device , in accordance with one
embodiment of the present invention .
[0011] FIG . 5 is a flowchart of the steps of an approach for
processing a hardware transaction and identifying that an
interference has occurred , in accordance with one embodi
ment of the present invention .
[0012] FIG . 6 is a block diagram of regulation logic 420
and associated modules , in accordance with one embodi
ment of the present invention .
[00131 . FIG . 7 depicts a flowchart of the steps of regulation
logic for detecting whether a transient condition was the
cause of an aborted hardware transaction and determining
whether to retry the hardware transaction , in accordance
with one embodiment of the present invention .
[0014] FIG . 8 depicts a flowchart of the steps of regulation
logic for selecting retry parameters , in accordance with one
embodiment of the present invention .

DETAILED DESCRIPTION
[0015] A transaction within a computer program or com
puter application comprises program instructions perform
ing multiple store operations that appear to run and complete
as a single , atomic operation . The program instructions
forming a current transaction comprise a transaction begin
indicator , a plurality of instructions (e . g . , arithmetic , load ,
branch or store operations) , and a transaction end indicator .

US 2017 / 0262227 A1 Sep . 14 , 2017

may be practiced by any or all processors including those
shown supra , without departing from the teachings herein .
Wherein the term " thread ” or “ processor thread ” is used
herein , it is expected that particular advantage of the
embodiment may be had in a processor thread implemen
tation .

A near - end of transaction indicator is triggered based on a
speculative look ahead operation , and enabling near - end
transaction processing mode , such that an interfering opera -
tion may be delayed to allow the current transaction to
complete . A halt operation , also referred to as an abort
operation , as used herein refers to an operation responsive to
a condition where two transactions have been detected to
interfere where at least one transaction must be aborted and
the state of the processor is reset to the state at the beginning
of the aborted transaction by performing a rollback . This
Detailed Description section is divided into the following
subsections : (i) The Hardware and Software Environment ;
(ii) Example Embodiment ; (iii) Further Comments and / or
Embodiments ; and (iv) Definitions .

I . The Hardware and Software Environments

[0016] The present invention may be a system , a method ,
and / or a computer program product . The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention .

A . Transaction Execution Environment
[0017] Historically , a computer system or processor had
only a single processor (aka processing unit or central
processing unit) . The processor included an instruction
processing unit (IPU) , a branch unit , a memory control unit
and the like . Such processors were capable of executing a
single thread of a program at a time . Operating systems were
developed that could time - share a processor by dispatching
a program to be executed on the processor for a period of
time , and then dispatching another program to be executed
on the processor for another period of time . As technology
evolved , memory subsystem caches were often added to the
processor as well as complex dynamic address translation
including translation lookaside buffers (TLBs) . The IPU
itself was often referred to as a processor . As technology
continued to evolve , an entire processor could be packaged
on a single semiconductor chip or die , such a processor was
referred to as a microprocessor . Then processors were devel
oped that incorporated multiple IPUs , such processors were
often referred to as multi - processors . Each such processor of
a multi - processor computer system (processor) may include
individual or shared caches , memory interfaces , system bus ,
address translation mechanism and the like . Virtual machine
and instruction set architecture (ISA) emulators added a
layer of software to a processor , that provided the virtual
machine with multiple “ virtual processors ” (aka processors)
by time - slice usage of a single IPU in a single hardware
processor . As technology further evolved , multi - threaded
processors were developed , enabling a single hardware
processor having a single multi - thread IPU to provide a
capability of simultaneously executing threads of different
programs , thus each thread of a multi - threaded processor
appeared to the operating system as a processor . As tech
nology further evolved , it was possible to put multiple
processors (each having an IPU) on a single semiconductor
chip or die . These processors were referred to processor
cores or just cores . Thus the terms such as processor , central
processing unit , processing unit , microprocessor , core , pro
cessor core , processor thread , and thread , for example , are
often used interchangeably . Aspects of embodiments herein

Transaction Execution in Intel Based Embodiments
[0018] In “ Intel Architecture Instruction Set Extensions
Programming Reference ” 319433 - 012A , February 2012 ,
incorporated herein by reference in its entirety , Chapter 8
teaches , in part , that multithreaded applications may take
advantage of increasing numbers of CPU cores to achieve
higher performance . (Note : the term " Intel ” may be subject
to trademark rights in various jurisdictions throughout the
world and are used here only in reference to the products or
services properly denominated by the marks to the extent
that such trademark rights may exist .) However , the writing
of multi - threaded applications requires programmers to
understand and take into account data sharing among the
multiple threads . Access to shared data typically requires
synchronization mechanisms . These synchronization
mechanisms are used to ensure that multiple threads update
shared data by serializing operations that are applied to the
shared data , often through the use of a critical section that is
protected by a lock . Since serialization limits concurrency ,
programmers try to limit the overhead due to synchroniza
tion .
[0019] Intel Transactional Synchronization Extensions
(Intel TSX) allow a processor to dynamically determine
whether threads need to be serialized through lock - protected
critical sections , and to perform that serialization only when
required . (Note : the term (s) “ Intel , ” “ TSX , ” and / or " Intel
TSX ” may be subject to trademark rights in various juris
dictions throughout the world and are used here only in
reference to the products or services properly denominated
by the marks to the extent that such trademark rights may
exist .) This allows the processor to expose and exploit
concurrency that is hidden in an application because of
dynamically unnecessary synchronization .
[0020] With Intel TSX , programmer - specified code
regions (also referred to as “ transactional regions ” or just
“ transactions ”) are executed transactionally . If the transac
tional execution completes successfully , then all memory
operations performed within the transactional region will
appear to have occurred instantaneously when viewed from
other processors . A processor makes the memory operations
of the executed transaction , performed within the transac
tional region , visible to other processors only when a suc
cessful commit occurs , i . e . , when the transaction success
fully completes execution . This process is often referred to
as an atomic commit .
[0021] Intel TSX provides two software interfaces to
specify regions of code for transactional execution . Hard
ware Lock Elision (HLE) is a legacy compatible instruction
set extension (comprising the XACQUIRE and XRELEASE
prefixes) to specify transactional regions . Restricted Trans
actional Memory (RTM) is a new instruction set interface
(comprising the XBEGIN , XEND , and XABORT instruc
tions) for programmers to define transactional regions in a
more flexible manner than that possible with HLE . HLE is
for programmers who prefer the backward compatibility of
the conventional mutual exclusion programming model and
would like to run HLE - enabled software on legacy hardware

US 2017 / 0262227 A1 Sep . 14 , 2017

but would also like to take advantage of the new lock elision
capabilities on hardware with HLE support . RTM is for
programmers who prefer a flexible interface to the transac
tional execution hardware . In addition , Intel TSX also pro
vides an XTEST instruction . This instruction allows soft
ware to query whether the logical processor is
transactionally executing in a transactional region identified
by either HLE or RTM .
[0022] Since a successful transactional execution ensures
an atomic commit , the processor executes the code region
optimistically without explicit synchronization . If synchro
nization was unnecessary for that specific execution , execu
tion can commit without any cross - thread serialization . If
the processor cannot commit atomically , then the optimistic
execution fails . When this happens , the processor will roll
back the execution , a process referred to as a transactional
abort . On a transactional abort , the processor will discard all
updates performed in the memory region used by the trans
action , restore architectural state to appear as if the optimis
tic execution never occurred , and resume execution non
transactionally .
[0023] A processor can perform a transactional abort for
numerous reasons . A primary reason to abort a transaction is
due to conflicting memory accesses between the transac
tionally executing logical processor and another logical
processor . Such conflicting memory accesses may prevent a
successful transactional execution . Memory addresses read
from within a transactional region constitute the read - set of
the transactional region and addresses written to within the
transactional region constitute the write - set of the transac
tional region . Intel TSX maintains the read - and write - sets at
the granularity of a cache line . A conflicting memory access
occurs if another logical processor either reads a location
that is part of the transactional region ' s write - set or writes a
location that is a part of either the read - or write - set of the
transactional region . A conflicting access typically means
that serialization is required for this code region . Since Intel
TSX detects data conflicts at the granularity of a cache line ,
unrelated data locations placed in the same cache line will be
detected as conflicts that result in transactional aborts .
Transactional aborts may also occur due to limited transac
tional resources . For example , the amount of data accessed
in the region may exceed an implementation - specific capac
ity . Additionally , some instructions and system events may
cause transactional aborts . Frequent transactional aborts
result in wasted cycles and increased inefficiency .

available afterwards . Since the transactionally executing
logical processor neither added the address of the lock to its
write - set nor performed externally visible write operations
to the lock , other logical processors can read the lock
without causing a data conflict . This allows other logical
processors to also enter and concurrently execute the critical
section protected by the lock . The processor automatically
detects any data conflicts that occur during the transactional
execution and will perform a transactional abort if necessary .
[0026] Even though the eliding processor did not perform
any external write operations to the lock , the hardware
ensures program order of operations on the lock . If the
eliding processor itself reads the value of the lock in the
critical section , it will appear as if the processor had
acquired the lock , i . e . the read will return the non - elided
value . This behavior allows an HLE execution to be func
tionally equivalent to an execution without the HLE pre
fixes .
10027] An XRELEASE prefix can be added in front of an
instruction that is used to release the lock protecting a
critical section . Releasing the lock involves a write to the
lock . If the instruction is to restore the value of the lock to
the value the lock had prior to the XACQUIRE prefixed lock
acquire operation on the same lock , then the processor elides
the external write request associated with the release of the
lock and does not add the address of the lock to the write - set .
The processor then attempts to commit the transactional
execution .
[0028] With HLE , if multiple threads execute critical
sections protected by the same lock but they do not perform
any conflicting operations on each other ' s data , then the
threads can execute concurrently and without serialization .
Even though the software uses lock acquisition operations
on a common lock , the hardware recognizes this , elides the
lock , and executes the critical sections on the two threads
without requiring any communication through the lock — if
such communication was dynamically unnecessary .
[00291 . If the processor is unable to execute the region
transactionally , then the processor will execute the region
non - transactionally and without elision . HLE enabled soft
ware has the same forward progress guarantees as the
underlying non - HLE lock - based execution . For successful
HLE execution , the lock and the critical section code must
follow certain guidelines . These guidelines only affect per
formance ; and failure to follow these guidelines will not
result in a functional failure . Hardware without HLE support
will ignore the XACQUIRE and XRELEASE prefix hints
and will not perform any elision since these prefixes corre
spond to the REPNE / REPE IA - 32 prefixes which are
ignored on the instructions where XACQUIRE and XRE
LEASE are valid . Importantly , HLE is compatible with the
existing lock - based programming model . Improper use of
hints will not cause functional bugs though it may expose
latent bugs already in the code .
[0030] Restricted Transactional Memory (RTM) provides
a flexible software interface for transactional execution .
RTM provides three new instructions — XBEGIN , XEND ,
and XABORT — for programmers to start , commit , and abort
a transactional execution .
[0031] The programmer uses the XBEGIN instruction to
specify the start of a transactional code region and the
XEND instruction to specify the end of the transactional
code region . If the RTM region could not be successfully

Hardware Lock Elision
[0024] Hardware Lock Elision (HLE) provides a legacy
compatible instruction set interface for programmers to use
transactional execution . HLE provides two new instruction
prefix hints : XACQUIRE and XRELEASE .
[0025] With HLE , a programmer adds the XACQUIRE
prefix to the front of the instruction that is used to acquire the
lock that is protecting the critical section . The processor
treats the prefix as a hint to elide the write associated with
the lock acquire operation . Even though the lock acquire has
an associated write operation to the lock , the processor does
not add the address of the lock to the transactional region ' s
write - set nor does it issue any write requests to the lock .
Instead , the address of the lock is added to the read - set . The
logical processor enters transactional execution . If the lock
was available before the XACQUIRE prefixed instruction ,
then all other processors will continue to see the lock as

US 2017 / 0262227 A1 Sep . 14 , 2017

executed transactionally , then the XBEGIN instruction takes
an operand that provides a relative offset to the fallback
instruction address .
[0032] A processor may abort RTM transactional execu
tion for many reasons . In many instances , the hardware
automatically detects transactional abort conditions and
restarts execution from the fallback instruction address with
the architectural state corresponding to that present at the
start of the XBEGIN instruction and the EAX register
updated to describe the abort status .
[0033] The XABORT instruction allows programmers to
abort the execution of an RTM region explicitly . The
XABORT instruction takes an 8 - bit immediate argument
that is loaded into the EAX register and will thus be
available to software following an RTM abort . RTM instruc
tions do not have any data memory location associated with
them . While the hardware provides no guarantees as to
whether an RTM region will ever successfully commit
transactionally , most transactions that follow the recom
mended guidelines are expected to successfully commit
transactionally . However , programmers must always pro
vide an alternative code sequence in the fallback path to
guarantee forward progress . This may be as simple as
acquiring a lock and executing the specified code region
non - transactionally . Further , a transaction that always aborts
on a given implementation may complete transactionally on
a future implementation . Therefore , programmers must
ensure the code paths for the transactional region and the
alternative code sequence are functionally tested .

Requirements for HLE Locks
[0038] For HLE execution to successfully commit trans
actionally , the lock must satisfy certain properties and access
to the lock must follow certain guidelines .
[0039] An XRELEASE prefixed instruction must restore
the value of the elided lock to the value it had before the lock
acquisition . This allows hardware to safely elide locks by
not adding them to the write - set . The data size and data
address of the lock release (XRELEASE prefixed) instruc
tion must match that of the lock acquire (XACQUIRE
prefixed) and the lock must not cross a cache line boundary .
[0040] Software should not write to the elided lock inside
a transactional HLE region with any instruction other than
an XRELEASE prefixed instruction , otherwise such a write
may cause a transactional abort . In addition , recursive locks
(where a thread acquires the same lock multiple times
without first releasing the lock) may also cause a transac
tional abort . Note that software can observe the result of the
elided lock acquire inside the critical section . Such a read
operation will return the value of the write to the lock .
0041] The processor automatically detects violations to
these guidelines , and safely transitions to a non - transactional
execution without elision . Since Intel TSX detects conflicts
at the granularity of a cache line , writes to data collocated on
the same cache line as the elided lock may be detected as
data conflicts by other logical processors eliding the same
lock .

Detection of HLE Support
[0034] A processor supports HLE execution if CPUID .
07H . EBX . HLE [bit 41 = 1 . However , an application can use
the HLE prefixes (XACQUIRE and XRELEASE) without
checking whether the processor supports HLE . Processors
without HLE support ignore these prefixes and will execute
the code without entering transactional execution .

Transactional Nesting
[0042] Both HLE and RTM support nested transactional
regions . However , a transactional abort restores state to the
operation that started transactional execution : either the
outermost XACQUIRE prefixed HLE eligible instruction or
the outermost XBEGIN instruction . The processor treats all
nested transactions as one transaction .

Detection of RTM Support
[0035] A processor supports RTM execution if CPUID .
07H . EBX . RTM [bit 11] = 1 . An application must check if the
processor supports RTM before it uses the RTM instructions
(XBEGIN , XEND , XABORT) . These instructions will gen
erate a # UD exception when used on a processor that does
not support RTM .

Detection of XTEST Instruction
[0036] A processor supports the XTEST instruction if it
supports either HLE or RTM . An application must check
either of these feature flags before using the XTEST instruc
tion . This instruction will generate a # UD exception when
used on a processor that does not support either HLE or
RTM .

HLE Nesting and Elision
[0043] Programmers can nest HLE regions up to an imple
mentation specific depth of MAX _ HLE _ NEST _ COUNT .
Each logical processor tracks the nesting count internally but
this count is not available to software . An XACQUIRE
prefixed HLE - eligible instruction increments the nesting
count , and an XRELEASE prefixed HLE - eligible instruction
decrements it . The logical processor enters transactional
execution when the nesting count goes from zero to one . The
logical processor attempts to commit only when the nesting
count becomes zero . A transactional abort may occur if the
nesting count exceeds MAX _ HLE _ NEST _ COUNT .
10044] In addition to supporting nested HLE regions , the
processor can also elide multiple nested locks . The processor
tracks a lock for elision beginning with the XACQUIRE
prefixed HLE eligible instruction for that lock and ending
with the XRELEASE prefixed HLE eligible instruction for
that same lock . The processor can , at any one time , track up
to a MAX HLE ELIDED LOCKS number of locks . For
example , if the implementation supports a MAX _ HLE _
ELIDED LOCKS value of two and if the programmer nests
three HLE identified critical sections (by performing XAC
QUIRE prefixed HLE eligible instructions on three distinct
locks without performing an intervening XRELEASE pre
fixed HLE eligible instruction on any one of the locks) , then
the first two locks will be elided , but the third won ' t be
elided (but will be added to the transaction ' s write - set) .

Querying Transactional Execution Status
[0037] The XTEST instruction can be used to determine
the transactional status of a transactional region specified by
HLE or RTM . Note , while the HLE prefixes are ignored on
processors that do not support HLE , the XTEST instruction
will generate a # UD exception when used on processors that
do not support either HLE or RTM .

US 2017 / 0262227 A1 Sep . 14 , 2017

EAX can be O following an RTM abort . For example , a
CPUID instruction when used inside an RTM region causes
a transactional abort and may not satisfy the requirements
for setting any of the EAX bits . This may result in an EAX
value of 0 .

However , the execution will still continue transactionally .
Once an XRELEASE for one of the two elided locks is
encountered , a subsequent lock acquired through the XAC
QUIRE prefixed HLE eligible instruction will be elided .
(0045] The processor attempts to commit the HLE execu
tion when all elided XACQUIRE and XRELEASE pairs
have been matched , the nesting count goes to zero , and the
locks have satisfied requirements . If execution cannot com
mit atomically , then execution transitions to a non - transac
tional execution without elision as if the first instruction did
not have an XACQUIRE prefix .

RTM Nesting
[0046] Programmers can nest RTM regions up to an
implementation specific MAX _ RTM _ NEST _ COUNT . The
logical processor tracks the nesting count internally but this
count is not available to software . An XBEGIN instruction
increments the nesting count , and an XEND instruction
decrements the nesting count . The logical processor
attempts to commit only if the nesting count becomes zero .
A transactional abort occurs if the nesting count exceeds
MAX _ RTM _ NEST _ COUNT .

RTM Memory Ordering
[0050] A successful RTM commit causes all memory
operations in the RTM region to appear to execute atomi
cally . A successfully committed RTM region consisting of an
XBEGIN followed by an XEND , even with no memory
operations in the RTM region , has the same ordering seman
tics as a LOCK prefixed instruction .
[0051] The XBEGIN instruction does not have fencing
semantics . However , if an RTM execution aborts , then all
memory updates from within the RTM region are discarded
and are not made visible to any other logical processor .

Nesting HLE and RTM
[0047] HLE and RTM provide two alternative software
interfaces to a common transactional execution capability .
Transactional processing behavior is implementation spe
cific when HLE and RTM are nested together , e . g . , HLE is
inside RTM or RTM is inside HLE . However , in all cases ,
the implementation will maintain HLE and RTM semantics .
An implementation may choose to ignore HLE hints when
used inside RTM regions , and may cause a transactional
abort when RTM instructions are used inside HLE regions .
In the latter case , the transition from transactional to non
transactional execution occurs seamlessly since the proces
sor will re - execute the HLE region without actually doing
elision , and then execute the RTM instructions .

RTM - Enabled Debugger Support
[0052] By default , any debug exception inside an RTM
region will cause a transactional abort and will redirect
control flow to the fallback instruction address with archi
tectural state recovered and bit 4 in EAX set . However , to
allow software debuggers to intercept execution on debug
exceptions , the RTM architecture provides additional capa
bility .
[0053] If bit 11 of DR7 and bit 15 of the IA32 _ DE
BUGCTL _ MSR are both 1 , any RTM abort due to a debug
exception (# DB) or breakpoint exception (# BP) causes
execution to roll back and restart from the XBEGIN instruc
tion instead of the fallback address . In this scenario , the
EAX register will also be restored back to the point of the
XBEGIN instruction .

Programming Considerations

Abort Status Definition
10048] RTM uses the EAX register to communicate abort
status to software . Following an RTM abort the EAX
register has the following definition .

TABLE 1

[0054] Typical programmer - identified regions are
expected to transactionally execute and commit success
fully . However , Intel TSX does not provide any such guar
antee . A transactional execution may abort for many reasons .
To take full advantage of the transactional capabilities ,
programmers should follow certain guidelines to increase
the probability of their transactional execution committing
successfully .
[0055] This section discusses various events that may
cause transactional aborts . The architecture ensures that
updates performed within a transaction that subsequently
aborts execution will never become visible . Only committed
transactional executions initiate an update to the architec
tural state . Transactional aborts never cause functional fail
ures and only affect performance .

RTM Abort Status Definition

EAX Register
Bit Position Meaning

Instruction Based Considerations uw N

Set if abort caused by XABORT instruction
If set , the transaction may succeed on retry , this bit is
always clear if bit 0 is set
Set if another logical processor conflicted with a memory
address that was part of the transaction that aborted
Set if an internal buffer overflowed
Set if a debug breakpoint was hit
Set if an abort occurred during execution of a nested
transaction
Reserved
XABORT argument (only valid if bit 0 set , otherwise
reserved)

23 : 6
31 - 24

[0056] Programmers can use any instruction safely inside
a transaction (HLE or RTM) and can use transactions at any
privilege level . However , some instructions will always
abort the transactional execution and cause execution to
seamlessly and safely transition to a non - transactional path .
[0057] Intel TSX allows for most common instructions to
be used inside transactions without causing aborts . The
following operations inside a transaction do not typically
cause an abort :

[0049] The EAX abort status for RTM only provides
causes for aborts . It does not by itself encode whether an
abort or commit occurred for the RTM region . The value of

US 2017 / 0262227 A1 Sep . 14 , 2017

[0078] UD2 , RSM , RDMSR , WRMSR , HLT , MONI
TOR , MWAIT , XSETBV , VZEROUPPER , MASK
MOVQ , and V / MASKMOVDQU .

[0058] Operations on the instruction pointer register ,
general purpose registers (GPRS) and the status flags
(CF , OF , SF , PF , AF , and ZF) ; and

[0059] Operations on XMM and YMM registers and the
MXCSR register .

10060] However , programmers must be careful when
intermixing SSE and AVX operations inside a transactional
region . Intermixing SSE instructions accessing XMM reg
isters and AVX instructions accessing YMM registers may
cause transactions to abort . Programmers may use REP /
REPNE prefixed string operations inside transactions . How
ever , long strings may cause aborts . Further , the use of CLD
and STD instructions may cause aborts if they change the
value of the DF flag . However , if DF is 1 , the STD
instruction will not cause an abort . Similarly , if DF is 0 , then
the CLD instruction will not cause an abort .
[0061] Instructions not enumerated here as causing abort
when used inside a transaction will typically not cause a
transaction to abort (examples include but are not limited to
MFENCE , LFENCE , SFENCE , RDTSC , RDTSCP , etc .) .
[0062] The following instructions will abort transactional
execution on any implementation :
[0063] XABORT
[0064] CPUID
[0065] PAUSE
[0066] In addition , in some implementations , the follow
ing instructions may always cause transactional aborts .
These instructions are not expected to be commonly used
inside typical transactional regions . However , programmers
must not rely on these instructions to force a transactional
abort , since whether they cause transactional aborts is imple
mentation dependent .

[0067] Operations on X87 and MMX architecture state .
This includes all MMX and X87 instructions , including
the FXRSTOR and FXSAVE instructions .

[0068] Update to non - status portion of EFLAGS : CLI ,
STI , POPFD , POPFQ , CLTS .

[0069] Instructions that update segment registers , debug
registers and / or control registers :

[0070] MOV to DS / ES / FS / GS / SS , POP DS / ES / FS / GS /
SS , LDS , LES , LFS , LGS , LSS , SWAPGS ,
WRFSBASE , WRGSBASE , LGDT , SGDT , LIDT ,
SIDT , LLDT , SLDT , LTR , STR , Far CALL , Far JMP ,
Far RET , IRET , MOV to DRX , MOV to CRO / CR2 /
CR3 / CR4 / CR8 and LMSW .

[0071] Ring transitions : SYSENTER , SYSCALL ,
SYSEXIT , and SYSRET .

[0072] TLB and Cacheability control : CLFLUSH ,
INVD , WBINVD , INVLPG , INVPCID , and memory
instructions with a non - temporal hint (MOVNTDOA ,
MOVNTDO , MOVNTI , MOVNTPD , MOVNTPS ,
and MOVNTQ) .

[0073] Processor state save : XSAVE , XSAVEOPT , and
XRSTOR .

[0074] Interrupts : INTn , INTO .
[0075] IO : IN , INS , REP INS , OUT , OUTS , REP OUTS
and their variants .

100761 VMX : VMPTRLD , VMPTRST , VMCLEAR ,
VMREAD , VMWRITE , VMCALL , VMLAUNCH ,
VMRESUME , VMXOFF , VMXON , INVEPT , and
INVVPID .

[0077] SMX : GETSEC .

Runtime Considerations
[0079] In addition to the instruction - based considerations ,
runtime events may cause transactional execution to abort .
These may be due to data access patterns or micro - archi
tectural implementation features . The following list is not a
comprehensive discussion of all abort causes .
[0080] Any fault or trap in a transaction that must be
exposed to software will be suppressed . Transactional
execution will abort and execution will transition to a
non - transactional execution , as if the fault or trap had never
occurred . If an exception is not masked , then that un - masked
exception will result in a transactional abort and the state
will appear as if the exception had never occurred .
10081] Synchronous exception events (# DE , # OF , # NP ,
SS , # GP , # BR , # UD , # AC , # XF , # PF , # NM , # TS , # MF ,
DB , # BP / INT3) that occur during transactional execution
may cause an execution not to commit transactionally , and
require a non - transactional execution . These events are
suppressed as if they had never occurred . With HLE , since
the non - transactional code path is identical to the transac
tional code path , these events will typically reappear when
the instruction that caused the exception is re - executed
non - transactionally , causing the associated synchronous
events to be delivered appropriately in the non - transactional
execution . Asynchronous events (NMI , SMI , INTR , IPI ,
PMI , etc .) occurring during transactional execution may
cause the transactional execution to abort and transition to a
non - transactional execution . The asynchronous events will
be pended and handled after the transactional abort is
processed .
[0082] Transactions only support write - back cacheable
memory type operations . A transaction may always abort if
the transaction includes operations on any other memory
type . This includes instruction fetches to UC memory type .
10083] Memory accesses within a transactional region
may require the processor to set the Accessed and Dirty flags
of the referenced page table entry . The behavior of how the
processor handles this is implementation specific . Some
implementations may allow the updates to these flags to
become externally visible even if the transactional region
subsequently aborts . Some Intel TSX implementations may
choose to abort the transactional execution if these flags
need to be updated . Further , a processor ' s page - table walk
may generate accesses to its own transactionally written but
uncommitted state . Some Intel TSX implementations may
choose to abort the execution of a transactional region in
such situations . Regardless , the architecture ensures that , if
the transactional region aborts , then the transactionally writ
ten state will not be made architecturally visible through the
behavior of structures such as TLBs .
100841 Executing self - modifying code transactionally may
also cause transactional aborts . Programmers must continue
to follow the Intel recommended guidelines for writing
self - modifying and cross - modifying code even when
employing HLE and RTM . While an implementation of
RTM and HLE will typically provide sufficient resources for
executing common transactional regions , implementation
constraints and excessive sizes for transactional regions may
cause a transactional execution to abort and transition to a
non - transactional execution . The architecture provides no

US 2017 / 0262227 A1 Sep . 14 , 2017

guarantee of the amount of resources available to do trans
actional execution and does not guarantee that a transac
tional execution will ever succeed .
[0085] Conflicting requests to a cache line accessed within
a transactional region may prevent the transaction from
executing successfully . For example , if logical processor PO
reads line A in a transactional region and another logical
processor P1 writes line A (either inside or outside a trans
actional region) then logical processor PO may abort if
logical processor Pl ’ s write interferes with processor PO ' s
ability to execute transactionally .
10086) Similarly , if PO writes line A in a transactional
region and P1 reads or writes line A (either inside or outside
a transactional region) , then PO may abort if Pi ' s access to
line A interferes with PO ' s ability to execute transactionally .
In addition , other coherence traffic may at times appear as
conflicting requests and may cause aborts . While these false
conflicts may happen , they are expected to be uncommon .
The conflict resolution policy to determine whether PO or P1
aborts in the above scenarios is implementation specific .
Generic Transaction Execution embodiments :
[0087] According to “ ARCHITECTURES FOR TRANS
ACTIONAL MEMORY ” , a dissertation submitted to the
Department of Computer Science and the Committee on
Graduate Studies of Stanford University in partial fulfill
ment of the requirements for the Degree of Doctor of
Philosophy , by Austen McDonald , June 2009 , incorporated
by reference herein in its entirety , fundamentally , there are
three mechanisms needed to implement an atomic and
isolated transactional region : versioning , conflict detection ,
and contention management .
[0088] To make a transactional code region appear atomic ,
all the modifications performed by that transactional code
region must be stored and kept isolated from other transac
tions until commit time . The system does this by imple
menting a versioning policy . Two versioning paradigms
exist : eager and lazy . An eager versioning system stores
newly generated transactional values in place and stores
previous memory values on the side , in what is called an
undo - log . A lazy versioning system stores new values tem
porarily in what is called a write buffer , copying them to
memory only on commit . In either system , the cache is used
to optimize storage of new versions .
[0089] To ensure that transactions appear to be performed
atomically , conflicts must be detected and resolved . The two
systems , i . e . , the eager and lazy versioning systems , detect
conflicts by implementing a conflict detection policy , either
optimistic or pessimistic . An optimistic system executes
transactions in parallel , checking for conflicts only when a
transaction commits . A pessimistic system checks for con
flicts at each load and store . Similar to versioning , conflict
detection also uses the cache , marking each line as either
part of the read - set , part of the write - set , or both . The two
systems resolve conflicts by implementing a contention
management policy . Many contention management policies
exist , some are more appropriate for optimistic conflict
detection and some are more appropriate for pessimistic .
Described below are some example policies .
[0090] Since each transactional memory (TM) system
needs both versioning detection and conflict detection , these
options give rise to four distinct TM designs : Eager - Pessi
mistic (EP) , Eager - Optimistic (EO) , Lazy - Pessimistic (LP) ,
and Lazy - Optimistic (LO) . Table 2 briefly describes all four
distinct TM designs .

[0091] FIGS . 1 and 2 depict an example of a multicore TM
environment . FIG . 1 shows many TM - enabled CPUs (CPU1
114a , CPU2 114b , and other CPUs not shown) on one die
100 , connected with an interconnect 122 , under management
of an interconnect control 120a , 120b . Each CPU 114a and
114b (also known as a Processor) may have a split cache
consisting of Instruction Cache 116a and 116b for caching
instructions from memory to be executed and Data Cache
with TM support 118a and 118b for caching data (operands)
of memory locations to be operated on by CPU 114a and
114b (in FIG . 1 , each CPU 114a , 114b and its associated
caches are referenced as 112a and 112b) . In an implemen
tation , caches of multiple dies 100 are interconnected to
support cache coherency between the caches of multiple dies
100 . In an implementation , a single cache , rather than the
split cache is employed holding both instructions and data .
In implementations , the CPU caches are one level of caching
in a hierarchical cache structure . For example each die 100
may employ shared cache 124 to be shared amongst all the
CPUs on die 100 . In another implementation , each die may
have access to shared cache 124 , shared amongst all the
processors of all dies 100 .
[0092] FIG . 2 shows the details of transactional CPU
environment 112a , having CPU 114a , including additions to
support TM . Transactional CPU (processor) 114a may
include hardware for supporting Register Checkpoints 126
and special TM Registers 128 . The transactional CPU cache
may have MESI bits 130 , Tags 140 and Data 142 of a
conventional cache but also , for example , R bits 132 show
ing a line has been read by CPU 114a while executing a
transaction and W bits 138 showing a line has been written
to by CPU 114a while executing a transaction .
[0093] A key detail for programmers in any TM system is
how non - transactional accesses interact with transactions .
By design , transactional accesses are screened from each
other using the mechanisms above . However , the interaction
between a regular , non - transactional load with a transaction
containing a new value for that address must still be con
sidered . In addition , the interaction between a non - transac
tional store with a transaction that has read that address must
also be explored . These are issues of the database concept
isolation .
10094) ATM system is said to implement strong isolation ,
sometimes called strong atomicity , when every non - trans
actional load and store acts like an atomic transaction .
Therefore , non - transactional loads cannot see uncommitted
data and non - transactional stores cause atomicity violations
in any transactions that have read that address . A system
where this is not the case is said to implement weak
isolation , sometimes called weak atomicity .
10095] . Strong isolation is often more desirable than weak
isolation due to the relative ease of conceptualization and
implementation of strong isolation . Additionally , if a pro
grammer has forgotten to surround some shared memory
references with transactions , causing bugs , then with strong
isolation , the programmer will often detect that oversight
using a simple debug interface because the programmer will
see a non - transactional region causing atomicity violations .
Also , programs written in one model may work differently
on another model . Further , strong isolation is often easier to
support in hardware TM than weak isolation . With strong
isolation , since the coherence protocol already manages load
and store communication between processors , transactions
can detect non - transactional loads and stores and act appro

US 2017 / 0262227 A1 Sep . 14 , 2017

priately . To implement strong isolation in software Trans -
actional Memory (TM) , non - transactional code must be
modified to include read - and write - barriers ; potentially
crippling performance . Although great effort has been
expended to remove many unneeded barriers , such tech
niques are often complex and performance is typically far
lower than that of HTMs .

needed line . If the other processors have the needed line
non - speculatively or have the line R 132 (Read) , they
downgrade that line to S , and in certain cases issue a
cache - to - cache transfer if they have the line in MESI ' s 130
Mor E state . However , if the cache has the line W 138 , then
a conflict is detected between the two transactions and
additional action (s) must be taken .

TABLE 2
Transactional Memory Design Space

VERSIONING

Lazy Eager

CONFLICT
DETECTION

Optimistic Storing updates in a write Not practical : waiting to update
buffer ; detecting conflicts at memory until commit time but
commit time . detecting conflicts at access time

guarantees wasted work and
provides no advantage .

Storing updates in a write Updating memory , keeping old
buffer ; detecting conflicts at values in undo log ; detecting
access time . conflicts at access time .

Pessimistic

[0096] Table 2 illustrates the fundamental design space of
transactional memory (versioning and conflict detection) .

Eager - Pessimistic (EP)
[0097] This first TM design described below is known as
Eager - Pessimistic . An EP system stores its write - set " in
place ” (hence the name " eager ”) and , to support rollback ,
stores the old values of overwritten lines in an " undo log ” .
Processors use the W 138 and R 132 cache bits to track read
and write - sets and detect conflicts when receiving snooped
load requests . Perhaps the most notable examples of EP
systems in known literature are LogTM and UTM .
[0098] Beginning a transaction in an EP system is much
like beginning a transaction in other systems : tm _ begin ()
takes a register checkpoint , and initializes any status regis
ters . An EP system also requires initializing the undo log , the
details of which are dependent on the log format , but often
involve initializing a log base pointer to a region of pre
allocated , thread - private memory , and clearing a log bounds
register .
[0099] Versioning : In EP , due to the way eager versioning
is designed to function , the MESI 130 state transitions
(cache line indicators corresponding to Modified , Exclusive ,
Shared , and Invalid code states) are left mostly unchanged .
Outside of a transaction , the MESI 130 state transitions are
left completely unchanged . When reading a line inside a
transaction , the standard coherence transitions apply (S
(Shared) - > S , I (Invalid) - > S , or I > E (Exclusive)) , issuing a
load miss as needed , but the R 132 bit is also set . Likewise ,
writing a line applies the standard transitions (S - > M , E - > ,
I - > M) , issuing a miss as needed , but also sets the W 138
(Written) bit . The first time a line is written , the old version
of the entire line is loaded then written to the undo log to
preserve it in case the current transaction aborts . The newly
written data is then stored “ in - place , " over the old data .
[0100] Conflict Detection : Pessimistic conflict detection
uses coherence messages exchanged on misses , or upgrades ,
to look for conflicts between transactions . When a read miss
occurs within a transaction , other processors receive a load
request ; but they ignore the request if they do not have the

[0101] Similarly , when a transaction seeks to upgrade a
line from shared to modified (on a first write) , the transaction
issues an exclusive load request , which is also used to detect
conflicts . If a receiving cache has the line non - speculatively ,
then the line is invalidated , and in certain cases a cache - to
cache transfer (M or E states) is issued . But , if the line is R
132 or W 138 , a conflict is detected .
(0102] Validation : Because conflict detection is performed
on every load , a transaction always has exclusive access to
its own write - set . Therefore , validation does not require any
additional work .
[0103] Commit : Since eager versioning stores the new
version of data items in place , the commit process simply
clears the W 138 and R 132 bits and discards the undo log .
[0104] Abort : When a transaction rolls back , the original
version of each cache line in the undo log must be restored ,
a process called “ unrolling ” or “ applying ” the log . This is
done during tm _ discard (and must be atomic with regard
to other transactions . Specifically , the write - set must still be
used to detect conflicts : this transaction has the only correct
version of lines in its undo log , and requesting transactions
must wait for the correct version to be restored from that log .
Such a log can be applied using a hardware state machine or
software abort handler .
0105] Eager - Pessimistic has the characteristics of : Com
mit is simple and since it is in - place , very fast . Similarly ,
validation is a no - op . Pessimistic conflict detection detects
conflicts early , thereby reducing the number of doomed ”
transactions . For example , if two transactions are involved
in a Write - After - Read dependency , then that dependency is
detected immediately in pessimistic conflict detection . How
ever , in optimistic conflict detection such conflicts are not
detected until the writer commits .
[0106] Eager - Pessimistic also has the characteristics of :
As described above , the first time a cache line is written , the
old value must be written to the log , incurring extra cache
accesses . Aborts are expensive as they require undoing the
log . For each cache line in the log , a load must be issued ,
perhaps going as far as main memory before continuing to
the next line . Pessimistic conflict detection also prevents
certain serializable schedules from existing .

US 2017 / 0262227 A1 Sep . 14 , 2017

[0107] Additionally , because conflicts are handled as they
occur , there is a potential for livelock and careful contention
management mechanisms must be employed to guarantee
forward progress .

[0114] Lazy - Optimistic has the characteristics of : Aborts
are very fast , requiring no additional loads or stores and
making only local changes . More serializable schedules can
exist than found in EP , which allows an LO system to more
aggressively speculate that transactions are independent ,
which can yield higher performance . Finally , the late detec
tion of conflicts can increase the likelihood of forward
progress .
[0115] Lazy - Optimistic also has the characteristics of :
Validation takes global communication time proportional to
size of write set . Doomed transactions can waste work since
conflicts are detected only at commit time .

Lazy - Optimistic (LO)
[0108] Another popular TM design is Lazy - Optimistic
(LO) , which stores its write - set in a “ write buffer ” or “ redo
log ” and detects conflicts at commit time (still using the R
132 and W 138 bits) .
[0109] Versioning : Just as in the EP system , the MESI
protocol of the LO design is enforced outside of the trans
actions . Once inside a transaction , reading a line incurs the
standard MESI transitions but also sets the R 132 bit .
Likewise , writing a line sets the W 138 bit of the line , but
handling the MESI transitions of the LO design is different
from that of the EP design . First , with lazy versioning , the
new versions of written data are stored in the cache hierar
chy until commit while other transactions have access to old
versions available in memory or other caches . To make
available the old versions , dirty lines (M lines) must be
evicted when first written by a transaction . Second , no
upgrade misses are needed because of the optimistic conflict
detection feature : if a transaction has a line in the S state , it
can simply write to it and upgrade that line to an M state
without communicating the changes with other transactions
because conflict detection is done at commit time .
101101 Conflict Detection and Validation : To validate a
transaction and detect conflicts , LO communicates the
addresses of speculatively modified lines to other transac
tions only when it is preparing to commit . On validation , the
processor sends one , potentially large , network packet con
taining all the addresses in the write - set . Data is not sent , but
left in the cache of the committer and marked dirty (M) . To
build this packet without searching the cache for lines
marked W , a simple bit vector is used , called a " store buffer , "
with one bit per cache line to track these speculatively
modified lines . Other transactions use this address packet to
detect conflicts : if an address is found in the cache and the
R 132 and / or W 138 bits are set , then a conflict is initiated .
If the line is found but neither R 132 nor W 138 is set , then
the line is simply invalidated , which is similar to processing
an exclusive load .
[0111] To support transaction atomicity , these address
packets must be handled atomically , i . e . , no two address
packets may exist at once with the same addresses . In an LO
system , this can be achieved by simply acquiring a global
commit token before sending the address packet . However ,
a two - phase commit scheme could be employed by first
sending out the address packet , collecting responses , enforc
ing an ordering protocol (perhaps oldest transaction first) ,
and committing once all responses are satisfactory .
[0112] Commit : Once validation has occurred , commit
needs no special treatment : simply clear W 138 and R 132
bits and the store buffer . The transaction ' s writes are already
marked dirty in the cache and other caches ' copies of these
lines have been invalidated via the address packet . Other
processors can then access the committed data through the
regular coherence protocol .
[0113] Abort : Rollback is equally easy : because the write
set is contained within the local caches , these lines can be
invalidated , then clear W 138 and R 132 bits and the store
buffer . The store buffer allows W lines to be found to
invalidate without the need to search the cache .

Lazy - Pessimistic (LP)
[0116] Lazy - Pessimistic (LP) represents a third TM design
option , sitting somewhere between EP and LO : storing
newly written lines in a write buffer but detecting conflicts
on a per access basis .
[0117] Versioning : Versioning is similar but not identical
to that of LO : reading a line sets its R bit 132 , writing a line
sets its W bit 138 , and a store buffer is used to track W lines
in the cache . Also , dirty (M) lines must be evicted when first
written by a transaction , just as in LO . However , since
conflict detection is pessimistic , load exclusives must be
performed when upgrading a transactional line from I ,
S - > M , which is unlike LO .
[0118] Conflict Detection : LP ' s conflict detection operates
the same as EP ' s : using coherence messages to look for
conflicts between transactions .
[0119] Validation : Like in EP , pessimistic conflict detec
tion ensures that at any point , a running transaction has no
conflicts with any other running transaction , so validation is
a no - op .
[0120] Commit : Commit needs no special treatment : sim
ply clear W 138 and R 132 bits and the store buffer , like in
LO .

[0121] Abort : Rollback is also like that of LO : simply
invalidate the write - set using the store buffer and clear the W
and R bits and the store buffer .

Eager - Optimistic (EO)
0122] The LP has the characteristics of : Like LO , aborts
are very fast . Like EP , the use of pessimistic conflict
detection reduces the number of “ doomed ” transactions .
Like EP , some serializable schedules are not allowed and
conflict detection must be performed on each cache miss .
[0123] The final combination of versioning and conflict
detection is Eager - Optimistic (EO) . EO may be a less than
optimal choice for HTM systems : since new transactional
versions are written in - place , other transactions have no
choice but to notice conflicts as they occur (i . e . , as cache
misses occur) . But since EO waits until commit time to
detect conflicts , those transactions become " zombies , " con
tinuing to execute , wasting resources , yet are " doomed ” to
abort .
[0124] EO has proven to be useful in STMs and is imple
mented by Bartok - STM and McRT . A lazy versioning STM
needs to check its write buffer on each read to ensure that it
is reading the most recent value . Since the write buffer is not
a hardware structure , this is expensive , hence the preference
for write - in - place eager versioning . Additionally , since

US 2017 / 0262227 A1 Sep . 14 , 2017
10

checking for conflicts is also expensive in an STM , opti
mistic conflict detection offers the advantage of performing
this operation in bulk .

Contention Management
10125] . How a transaction rolls back once the system has
decided to abort that transaction has been described above ,
but , since a conflict involves two transactions , the topics of
which transaction should abort , how that abort should be
initiated , and when should the aborted transaction be retried
need to be explored . These are topics that are addressed by
Contention Management (CM) , a key component of trans
actional memory . Described below are policies regarding
how the systems initiate aborts and the various established
methods of managing which transactions should abort in a
conflict .

Contention Management Policies
[0126] A Contention Management (CM) Policy is a
mechanism that determines which transaction involved in a
conflict should abort and when the aborted transaction
should be retried . For example , it is often the case that
retrying an aborted transaction immediately does not lead to
the best performance . Conversely , employing a back - off
mechanism , which delays the retrying of an aborted trans
action , can yield better performance . STMs first grappled
with finding the best contention management policies and
many of the policies outlined below were originally devel
oped for STMs .
101271 CM Policies draw on a number of measures to
make decisions , including ages of the transactions , size of
read - and write - sets , the number of previous aborts , etc . The
combinations of measures to make such decisions are end
less , but certain combinations are described below , roughly
in order of increasing complexity .
10128] To establish some nomenclature , first note that in a
conflict there are two sides : the attacker and the defender .
The attacker is the transaction requesting access to a shared
memory location . In pessimistic conflict detection , the
attacker is the transaction issuing the load or load exclusive .
In optimistic , the attacker is the transaction attempting to
validate . The defender in both cases is the transaction
receiving the attacker ' s request .
[0129] An Aggressive CM Policy immediately and always
retries either the attacker or the defender . In LO , Aggressive
means that the attacker always wins , and so Aggressive is
sometimes called committer wins . Such a policy was used
for the earliest LO systems . In the case of EP , Aggressive can
be either defender wins or attacker wins .
[0130] Restarting a conflicting transaction that will imme
diately experience another conflict is bound to waste work —
namely interconnect bandwidth refilling cache misses . A
Polite CM Policy employs exponential back - off (but linear
could also be used) before restarting conflicts . To prevent
starvation , a situation where a process does not have
resources allocated to it by the scheduler , the exponential
back - off greatly increases the odds of transaction success
after some n retries .
[0131] Another approach to conflict resolution is to ran
domly abort the attacker or defender (a policy called Ran
domized) . Such a policy may be combined with a random
ized back - off scheme to avoid unneeded contention .

[0132] However , making random choices , when selecting
a transaction to abort , can result in aborting transactions that
have completed “ a lot of work , ” which can waste resources .
To avoid such waste , the amount of work completed on the
transaction can be taken into account when determining
which transaction to abort . One measure of work could be a
transaction ' s age . Other methods include Oldest , Bulk TM ,
Size Matters , Karma , and Polka . Oldest is a simple time
stamp method that aborts the younger transaction in a
conflict . Bulk TM uses this scheme . Size Matters is like
Oldest but instead of transaction age , the number of read /
written words is used as the priority , reverting to Oldest after
a fixed number of aborts . Karma is similar , using the size of
the write - set as priority . Rollback then proceeds after back
ing off a fixed amount of time . Aborted transactions keep
their priorities after being aborted (hence the name Karma) .
Polka works like Karma but instead of backing off a pre
defined amount of time , it backs off exponentially more each
time .
[0133] Since aborting wastes work , it is logical to argue
that stalling an attacker until the defender has finished their
transaction would lead to better performance . Unfortunately ,
such a simple scheme easily leads to deadlock .
[0134] Deadlock avoidance techniques can be used to
solve this problem . Greedy uses two rules to avoid deadlock .
The first rule is , if a first transaction , T1 , has lower priority
than a second transaction , TO , or if T1 is waiting for another
transaction , then T1 aborts when conflicting with TO . The
second rule is , if T1 has higher priority than T0 and is not
waiting , then TO waits until T1 commits , aborts , or starts
waiting (in which case the first rule is applied) . Greedy
provides some guarantees about time bounds for executing
a set of transactions . One EP design (LogTM) uses a CM
policy similar to Greedy to achieve stalling with conserva
tive deadlock avoidance .
[0135] Example MESI coherency rules provide for four
possible states in which a cache line of a multiprocessor
cache system may reside , M , E , S , and I , defined as follows :
[0136] Modified (M) : The cache line is present only in the
current cache , and is dirty ; it has been modified from the
value in main memory . The cache is required to write the
data back to main memory at some time in the future , before
permitting any other read of the (no longer valid) main
memory state . The write - back changes the line to the Exclu
sive state .
[0137] Exclusive (E) : The cache line is present only in the
current cache , but is clean ; it matches main memory . It may
be changed to the Shared state at any time , in response to a
read request . Alternatively , it may be changed to the Modi
fied state when writing to it .
[0138] Shared (S) : Indicates that this cache line may be
stored in other caches of the machine and is “ clean ” ; it
matches the main memory . The line may be discarded
(changed to the Invalid state) at any time .
[0139] Invalid (I) : Indicates that this cache line is invalid
(unused) .
10140] TM coherency status indicators (R 132 , W 138)
may be provided for each cache line , in addition to , or
encoded in the MESI coherency bits . An R 132 indicator
indicates the current transaction has read from the data of the
cache line , and a W 138 indicator indicates the current
transaction has written to the data of the cache line .
10141] In another aspect of TM design , a system is
designed using transactional store buffers . U . S . Pat . No .

sta

US 2017 / 0262227 A1 Sep . 14 , 2017

TABLE 3 - continued
Example Transaction Code

* branch if lock busy JNZ Ickbzy
. . . perform operation . . .
TEND * end transaction

* Ickbzy
*

abort
* AHI
*

PPA

TABORT * abort if lock busy ; this
resumes after TBEGIN

JO fallback * no retry if CC = 3
R0 , 1 * increment retry count

CIJNL R0 , 6 , fallback * give up after 6 attempts
RO , TX * random delay based on retry

count
. . . potentially wait for lock to become free

loop * jump back to retry fallback
OBTAIN lock * using Compare & Swap
. . . perform operation . . .
RELEASE lock
.

6 , 349 , 361 titled “ Methods and Apparatus for Reordering and
Renaming Memory References in a Multiprocessor Com
puter System , ” filed Mar . 31 , 2000 and incorporated by
reference herein in its entirety , teaches a method for reor
dering and renaming memory references in a multiprocessor
computer system having at least a first and a second pro
cessor . The first processor has a first private cache and a first
buffer , and the second processor has a second private cache
and a second buffer . The method includes the steps of , for
each of a plurality of gated store requests received by the
first processor to store a datum , exclusively acquiring a
cache line that contains the datum by the first private cache ,
and storing the datum in the first buffer . Upon the first buffer
receiving a load request from the first processor to load a
particular datum , the particular datum is provided to the first
processor from among the data stored in the first buffer
based on an in - order sequence of load and store operations .
Upon the first cache receiving a load request from the second
cache for a given datum , an error condition is indicated and
a current state of at least one of the processors is reset to an
earlier state when the load request for the given datum
corresponds to the data stored in the first buffer .
[0142] The main implementation components of one such
transactional memory facility are a transaction - backup reg
ister file for holding pre - transaction GR (general register)
content , a cache directory to track the cache lines accessed
during the transaction , a store cache to buffer stores until the
transaction ends , and firmware routines to perform various
complex functions . In this section a detailed implementation
is described .
IBM ZEnterprise EC12 Enterprise Server Embodiment
10143] The IBM zEnterprise EC12 enterprise server intro
duces transactional execution (TX) in transactional memory ,
and is described in part in a paper , “ Transactional Memory
Architecture and Implementation for IBM System z ” of
Proceedings Pages 25 - 36 presented at MICRO - 45 , 1 - 5 Dec .
2012 , Vancouver , British Columbia , Canada , available from
IEEE Computer Society Conference Publishing Services
(CPS) , which is incorporated by reference herein in its
entirety . “ IBM , ” “ zEnterprise , " " System z , ” “ EC12 , ” and / or
" MICRO - 45 ” may be subject to trademark rights in various
jurisdictions throughout the world and are used here only in
reference to the products or services properly denominated
by the marks to the extent that such trademark rights may
exist .) .
[0144] Table 3 shows an example transaction . Transac
tions started with TBEGIN are not assured to ever success
fully complete with TEND , since they can experience an
aborting condition at every attempted execution , e . g . , due to
repeating conflicts with other CPUs . This requires that the
program support a fallback path to perform the same opera
tion non - transactionally , e . g . , by using traditional locking
schemes . This puts significant burden on the programming
and software verification teams , especially where the fall
back path is not automatically generated by a reliable
compiler .

[0145] The requirement of providing a fallback path for
aborted Transaction Execution (TX) transactions can be
onerous . Many transactions operating on shared data struc
tures are expected to be short , touch only a few distinct
memory locations , and use simple instructions only . For
those transactions , the IBM ZEnterprise EC12 introduces the
concept of constrained transactions ; under normal condi
tions , the CPU 114a (FIG . 2) assures that constrained
transactions eventually end successfully , albeit without giv
ing a strict limit on the number of necessary retries . A
constrained transaction starts with a TBEGINC instruction
and ends with a regular TEND . Implementing a task as a
constrained or non - constrained transaction typically results
in very comparable performance , but constrained transac
tions simplify software development by removing the need
for a fallback path . IBM ' s Transactional Execution archi
tecture is further described in z / Architecture , Principles of
Operation , Tenth Edition , SA22 - 7832 - 09 published Septem
ber 2012 from IBM , incorporated by reference herein in its
entirety .
0146] A constrained transaction starts with the TBEGINC
instruction . A transaction initiated with TBEGINC must
follow a list of programming constraints ; otherwise the
program takes a non - filterable constraint - violation interrup
tion . Exemplary constraints may include , but not be limited
to : the transaction can execute a maximum of 32 instruc
tions , all instruction text must be within 256 consecutive
bytes of memory ; the transaction contains only forward
pointing relative branches (i . e . , no loops or subroutine calls) ;
the transaction can access a maximum of 4 aligned octo
words (an octoword is 32 bytes) of memory ; and restriction
of the instruction - set to exclude complex instructions like
decimal or floating - point operations . The constraints are
chosen such that many common operations like doubly
linked list - insert / delete operations can be performed , includ
ing the very powerful concept of atomic compare - and - swap
targeting up to 4 aligned octowords . At the same time , the
constraints were chosen conservatively such that future CPU
implementations can assure transaction success without
needing to adjust the constraints , since that would otherwise
lead to software incompatibility .
10147] TBEGINC mostly behaves like XBEGIN in TSX
or TBEGIN on IBM ' s zEC12 servers , except that the
floating - point register (FPR) control and the program inter
ruption filtering fields do not exist and the controls are
considered to be zero . On a transaction abort , the instruction

TABLE 3

Example Transaction Code
R0 , 0

loop
LHI
TBEGIN
JNZ
LT

* initialize retry count = 0
* begin transaction
* go to abort code if CC1 = 0
* load and test the fallback lock

abort
R1 , lock

US 2017 / 0262227 A1 Sep . 14 , 2017

address is set back directly to the TBEGINC instead of to the
instruction after , reflecting the immediate retry and absence
of an abort path for constrained transactions .
[0148] Nested transactions are not allowed within con
strained transactions , but if a TBEGINC occurs within a
non - constrained transaction it is treated as opening a new
non - constrained nesting level just like TBEGIN would . This
can occur , e . g . , if a non - constrained transaction calls a
subroutine that uses a constrained transaction internally .
[0149] Since interruption filtering is implicitly off , all
exceptions during a constrained transaction lead to an inter
ruption into the operating system (OS) . Eventual successful
finishing of the transaction relies on the capability of the OS
to page in the at most 4 pages touched by any constrained
transaction . The OS must also ensure time - slices long
enough to allow the transaction to complete .

TABLE 4

TBEGINC

Transaction Code Example
* begin constrained transaction

. . . perform operation . . .
* end transaction TEND

connected to a coherent symmetric multi - processor (SMP)
system with up to 144 cores (not all cores are available to run
customer workload) .
10154) Coherency is managed with a variant of the MESI
protocol . Cache - lines can be owned read - only (shared) or
exclusive ; the L1 240 and L2 268 are store - through and thus
do not contain dirty lines . The L3 272 and L4 caches (not
shown) are store - in and track dirty states . Each cache is
inclusive of all its connected lower level caches .
10155] Coherency requests are called " cross interrogates "
(XI) and are sent hierarchically from higher level to lower
level caches , and between the L4s . When one core misses
the L1 240 and L2 268 and requests the cache line from its
local L3 272 , the L3 272 checks whether it owns the line ,
and if necessary sends an XI to the currently owning L2
268 / L1 240 under that L3 272 to ensure coherency , before
it returns the cache line to the requestor . If the request also
misses the L3 272 , the L3 272 sends a request to the L4 (not
shown) , which enforces coherency by sending XIs to all
necessary L3s under that L4 , and to the neighboring L4s .
Then the L4 responds to the requesting L3 which forwards
the response to the L2 268 / L1 240 .
(0156) Note that due to the inclusivity rule of the cache
hierarchy , sometimes cache lines are XI ’ ed from lower - level
caches due to evictions on higher - level caches caused by
associativity overflows from requests to other cache lines .
These XIs can be called “ LRU XIs ” , where LRU stands for
least recently used .
101571 . Making reference to yet another type of XI
requests , Demote - XIs transition cache - ownership from
exclusive into read - only state , and Exclusive - XIs transition
cache ownership from exclusive into invalid state . Demote
XIs and Exclusive - XIs need a response back to the XI
sender . The target cache can " accept ” the XI , or send a
" reject ” response if it first needs to evict dirty data before
accepting the XI . The L1 240 / L2 268 caches are store
through , but may reject demote - XIs and exclusive XIs if
they have stores in their store queues that need to be sent to
L3 before downgrading the exclusive state . A rejected XI
will be repeated by the sender . Read - only - XIs are sent to
caches that own the line read - only ; no response is needed for
such XIs since they cannot be rejected . The details of the
SMP protocol are similar to those described for the IBM z10
by P . Mak , C . Walters , and G . Strait , in " IBM System z10
processor cache subsystem microarchitecture ” , IBM Journal
of Research and Development , Vol 53 : 1 , 2009 , which is
incorporated by reference herein in its entirety .

[0150] Table 4 shows the constrained - transactional imple
mentation of the code in Table 3 , assuming that the con
strained transactions do not interact with other locking
based code . No lock testing is shown therefore , but could be
added if constrained transactions and lock - based code were
mixed .
[0151] When failure occurs repeatedly , software emula
tion is performed using millicode as part of system firmware .
Advantageously , constrained transactions have desirable
properties because of the burden removed from program
mers .
[0152] With reference to FIG . 3 , the IBM ZEnterprise
EC12 processor introduced transactional execution facility
200 . The processor can decode 3 instructions per clock
cycle ; simple instructions are dispatched as single micro
ops , and more complex instructions are cracked into mul
tiple micro - ops . Micro - ops (Uops 234a , 234b , and 234c) are
written into unified issue queue 216 , from where they can be
issued out - of - order . Up to two fixed - point , one floating
point , two load / store , and two branch instructions can
execute every cycle . Global Completion Table (GCT) 230
holds every micro - op 234a , 234b , and 234c and transaction
nesting depth (TND) 232 . The GCT 230 is written in - order
at decode time , tracks the execution status of each micro - op
234a , 234b , and 234c , and completes instructions when all
micro - ops 234a , 234b , and 234c of the oldest instruction
group have successfully executed .
[0153] Level 1 (L1) data cache 240 is a 96 KB (kilo - byte)
6 - way associative cache with 256 byte cache - lines and 4
cycle use latency , coupled to a private 1 MB (mega - byte)
8 - way associative 2nd - level (L2) data cache 268 with 7
cycles use - latency penalty for L1 240 misses . The L1 240
cache is the cache closest to a processor and Ln cache is a
cache at the nth level of caching . Both L1 240 and L2 268
caches are store - through . Six cores on each central processor
(CP) chip share a 48 MB 3rd - level store - in cache , and six CP
chips are connected to an off - chip 384 MB 4th - level cache ,
packaged together on a glass ceramic multi - chip module
(MCM) . Up to 4 multi - chip modules (MCMs) can be

Transactional Instruction Execution
f0158] FIG . 3 depicts example components of an example
transactional execution environment , including a CPU and
caches / components with which it interacts (such as those
depicted in FIGS . 1 and 2) . The instruction decode unit 208
(IDU) keeps track of the current transaction nesting depth
212 (TND) . When the IDU 208 receives a TBEGIN instruc
tion , the nesting depth 212 is incremented , and conversely
decremented on TEND instructions . The nesting depth 212
is written into the GCT 230 for every dispatched instruction .
When a TBEGIN or TEND is decoded on a speculative path
that later gets flushed , the IDU ' s 208 nesting depth 212 is
refreshed from the youngest GCT 230 entry that is not
flushed . The transactional state is also written into the issue
queue 216 for consumption by the execution units , mostly
by the Load / Store Unit (LSU) 280 , which also has an

US 2017 / 0262227 A1 Sep . 14 , 2017
13

effective address calculator 236 is included in the LSU 280 .
The TBEGIN instruction may specify a transaction diag
nostic block (TDB) for recording status information , should
the transaction abort before reaching a TEND instruction .
[0159) Similar to the nesting depth , the IDU 208 / GCT 230
collaboratively track the access register / floating - point reg
ister (AR / FPR) modification masks through the transaction
nest ; the IDU 208 can place an abort request into the GCT
230 when an AR / FPR - modifying instruction is decoded and
the modification mask blocks that . When the instruction
becomes next - to - complete , completion is blocked and the
transaction aborts . Other restricted instructions are handled
similarly , including TBEGIN if decoded while in a con
strained transaction , or exceeding the maximum nesting
depth .
[0160] An outermost TBEGIN is cracked into multiple
micro - ops depending on the GR - Save - Mask ; each micro - op
234a , 234b , and 234c (including , for example uop 0 , uop 1 ,
and uop2) will be executed by one of the two fixed point
units (FXUS) 220 to save a pair of GRs 228 into a special
transaction - backup register file 224 , that is used to later
restore the GR 228 content in case of a transaction abort .
Also the TBEGIN spawns micro - ops 234a , 234b , and 234c
to perform an accessibility test for the TDB if one is
specified ; the address is saved in a special purpose register
for later usage in the abort case . At the decoding of an
outermost TBEGIN , the instruction address and the instruc
tion text of the TBEGIN are also saved in special purpose
registers for a potential abort processing later on .
[0161] TEND and NTSTG are single micro - op 234a ,
234b , and 234c instructions ; NTSTG (non - transactional
store) is handled like a normal store except that it is marked
as non - transactional in the issue queue 216 so that the LSU
280 can treat it appropriately . TEND is a no - op at execution
time , the ending of the transaction is performed when TEND
completes .
[0162] As mentioned , instructions that are within a trans
action are marked as such in the issue queue 216 , but
otherwise execute mostly unchanged ; the LSU 280 performs
isolation tracking as described in the next section .
0163] Since decoding is in - order , and since the IDU 208
keeps track of the current transactional state and writes it
into the issue queue 216 along with every instruction from
the transaction , execution of TBEGIN , TEND , and instruc
tions before , within , and after the transaction can be per
formed out of order . It is even possible (though unlikely) that
TEND is executed first , then the entire transaction , and lastly
the TBEGIN executes . Program order is restored through the
GCT 230 at completion time . The length of transactions is
not limited by the size of the GCT 230 , since general
purpose registers (GRs) 228 can be restored from the backup
register file 224 .
10164] During execution , the program event recording
(PER) events are filtered based on the Event Suppression
Control , and a PER TEND event is detected if enabled .
Similarly , while in transactional mode , a pseudo - random
generator may be causing the random aborts as enabled by
the Transaction Diagnostics Control .

demote XI , the LSU 280 rejects the XI back to the L3 272
in the hope of finishing the transaction before the L3 272
repeats the XI . This “ stiff - arming ” is very efficient in highly
contended transactions . In order to prevent hangs when two
CPUs stiff - arm each other , a XI - reject counter is imple
mented , which triggers a transaction abort when a threshold
is met .
[0166] The L1 cache directory 240 is traditionally imple
mented with static random access memories (SRAMs) . For
the transactional memory implementation , the valid bits 244
(64 rowsx6 ways) of the directory have been moved into
normal logic latches , and are supplemented with two more
bits per cache line : the TX - read 248 and TX - dirty 252 bits .
[0167] The TX - read 248 bits are reset when a new outer
most TBEGIN is decoded (which is interlocked against a
prior still pending transaction) . The TX - read 248 bit is set at
execution time by every load instruction that is marked
“ transactional ” in the issue queue . Note that this can lead to
over - marking if speculative loads are executed , for example
on a mispredicted branch path . The alternative of setting the
TX - read 248 bit at load completion time was too expensive
for silicon area , since multiple loads can complete at the
same time , requiring many read - ports on the load - queue .
[0168] Stores execute the same way as in non - transac
tional mode , but a transaction mark is placed in the store
queue (STO) 260 entry of the store instruction . At write
back time , when the data from the STQ 260 is written into
the L1 240 , the TX - dirty bit 252 in the L1 - directory 256 is
set for the written cache line . Store write - back into the L1
240 occurs only after the store instruction has completed ,
and at most one store is written back per cycle . Before
completion and write - back , loads can access the data from
the STQ 260 by means of store - forwarding ; after write - back ,
the CPU 114a (FIG . 2) can access the speculatively updated
data in the L1 240 . If the transaction ends successfully , the
TX - dirty bits 252 of all cache - lines are cleared , and also the
TX - marks of not yet written stores are cleared in the STQ
260 , effectively turning the pending stores into normal
stores .
[0169] On a transaction abort , all pending transactional
stores are invalidated from the STQ 260 , even those already
completed . All cache lines that were modified by the trans
action in the L1 240 , that is , have the TX - dirty bit 252 on ,
have their valid bits turned off , effectively removing them
from the L1 240 cache instantaneously .
[0170] The architecture requires that before completing a
new instruction , the isolation of the transaction read - and
write - set is maintained . This isolation is ensured by stalling
instruction completion at appropriate times when Xls are
pending ; speculative out - of order execution is allowed ,
optimistically assuming that the pending XIs are to different
addresses and not actually cause a transaction conflict . This
design fits very naturally with the XI - vs - completion inter
locks that are implemented on prior systems to ensure the
strong memory ordering that the architecture requires .
[0171] When the L1 240 receives an XI , L1 240 accesses
the directory to check validity of the XI ’ ed address in the L1
240 , and if the TX - read bit 248 is active on the XI ’ ed line
and the XI is not rejected , the LSU 280 triggers an abort .
When a cache line with active TX - read bit 248 is LRU ' ed
from the L1 240 , a special LRU - extension vector remembers
for each of the 64 rows of the L1 240 that a TX - read line
existed on that row . Since no precise address tracking exists
for the LRU extensions , any non - rejected XI that hits a valid

Tracking for Transactional Isolation
[0165] The Load / Store Unit 280 tracks cache lines that
were accessed during transactional execution , and triggers
an abort if an XI from another CPU (or an LRU - XI) conflicts
with the footprint . If the conflicting XI is an exclusive or

US 2017 / 0262227 A1 Sep . 14 , 2017
14

extension row the LSU 280 triggers an abort . Providing the
LRU - extension effectively increases the read footprint capa -
bility from the Ll - size to the L2 - size and associativity ,
provided no conflicts with other CPUs 114a and 114b (FIGS .
1 and 2) against the non - precise LRU - extension tracking
causes aborts .
[0172] The store footprint is limited by the store cache size
(the store cache is discussed in more detail below) and thus
implicitly by the L2 268 size and associativity . No LRU
extension action needs to be performed when a TX - dirty 252
cache line is LRU ' ed from the L1 240 .

dirty lines can be evicted from the L1 240 , they have to stay
resident in the L2 268 throughout the transaction . The
maximum store footprint is thus limited to the store cache
size of 64x128 bytes , and it is also limited by the associa
tivity of the L2 268 . Since the L2 268 is 8 - way associative
and has 512 rows , it is typically large enough to not cause
transaction aborts .
[0179] If a transaction aborts , the store cache 264 is
notified and all entries holding transactional data are invali
dated . The store cache 264 also has a mark per doubleword
(8 bytes) whether the entry was written by a NTSTG
instruction — those doublewords stay valid across transac
tion aborts . Store Cache

[0173] In prior systems , since the L1 240 and L2 268 are
store - through caches , every store instruction causes an L3
272 store access ; with now 6 cores per L3 272 and further
improved performance of each core , the store rate for the L3
272 (and to a lesser extent for the L2 268) becomes
problematic for certain workloads . In order to avoid store
queuing delays , a gathering store cache 264 had to be added ,
that combines stores to neighboring addresses before send
ing them to the L3 272 .
[0174] For transactional memory performance , it is
acceptable to invalidate every TX - dirty 252 cache line from
the L1 240 on transaction aborts , because the L2 268 cache
is very close (7 cycles L1 240 miss penalty) to bring back the
clean lines . However , it would be unacceptable for perfor
mance (and silicon area for tracking) to have transactional
stores write the L2 268 before the transaction ends and then
invalidate all dirty L2 268 cache lines on abort (or even
worse on the shared L3 272) .
101751 . The two problems of store bandwidth and transac
tional memory store handling can both be addressed with the
gathering store cache 264 . The cache 264 is a circular queue
of 64 entries , each entry holding 128 bytes of data with
byte - precise valid bits . In non - transactional operation , when
a store is received from the LSU 280 , the store cache 264
checks whether an entry exists for the same address , and if
so gathers the new store into the existing entry . If no entry
exists , a new entry is written into the queue , and if the
number of free entries falls under a threshold , the oldest
entries are written back to the L2 268 and L3 272 caches .
[0176] When a new outermost transaction begins , all
existing entries in the store cache are marked closed so that
no new stores can be gathered into them , and eviction of
those entries to L2 268 and L3 272 is started . From that point
on , the transactional stores coming out of the LSU 280 STQ
260 allocate new entries , or gather into existing transactional
entries . The write - back of those stores into L2 268 and L3
272 is blocked , until the transaction ends successfully ; at
that point subsequent (post - transaction) stores can continue
to gather into existing entries , until the next transaction
closes those entries again .
0177] The store cache 264 is queried on every exclusive
or demote XI , and causes an XI reject if the XI compares to
any active entry . If the core is not completing further
instructions while continuously rejecting XIs , the transac
tion is aborted at a certain threshold to avoid hangs .
10178] The LSU 280 requests a transaction abort when the
store cache 264 overflows . The LSU 280 detects this con
dition when it tries to send a new store that cannot merge
into an existing entry , and the entire store cache 264 is filled
with stores from the current transaction . The store cache 264
is managed as a subset of the L2 268 : while transactionally

Millicode - Implemented Functions
[0180] Traditionally , IBM mainframe server processors
contain a layer of firmware called millicode which performs
complex functions like certain CISC instruction executions ,
interruption handling , system synchronization , and RAS .
Millicode includes machine dependent instructions as well
as instructions of the instruction set architecture (ISA) that
are fetched and executed from memory similarly to instruc
tions of application programs and the operating system
(OS) . Firmware resides in a restricted area of main memory
that customer programs cannot access . When hardware
detects a situation that needs to invoke millicode , the
instruction fetching unit 204 switches into “ millicode mode ”
and starts fetching at the appropriate location in the milli
code memory area . Millicode may be fetched and executed
in the same way as instructions of the instruction set
architecture (ISA) , and may include ISA instructions .
[0181] For transactional memory , millicode is involved in
various complex situations . Every transaction abort invokes
a dedicated millicode subroutine to perform the necessary
abort steps . The transaction - abort millicode starts by reading
special - purpose registers (SPRs) holding the hardware inter
nal abort reason , potential exception reasons , and the
aborted instruction address , which millicode then uses to
store a TDB if one is specified . The TBEGIN instruction text
is loaded from an SPR to obtain the GR - save - mask , which
is needed for millicode to know which GRs 238 to restore .
[0182] The CPU 114a (FIG . 2) supports a special milli
code - only instruction to read out the backup - GRs 224 and
copy them into the main GRs 228 . The TBEGIN instruction
address is also loaded from an SPR to set the new instruction
address in the PSW to continue execution after the TBEGIN
once the millicode abort subroutine finishes . That PSW may
later be saved as program - old PSW in case the abort is
caused by a non - filtered program interruption .
[0183] The TABORT instruction may be millicode imple
mented ; when the IDU 208 decodes TABORT , it instructs
the instruction fetch unit to branch into TABORT ' s milli
code , from which millicode branches into the common abort
subroutine .
[0184] The Extract Transaction Nesting Depth (ETND)
instruction may also be millicoded , since it is not perfor
mance critical ; millicode loads the current nesting depth out
of a special hardware register and places it into a GR 228 .
The PPA instruction is millicoded ; it performs the optimal
delay based on the current abort count provided by software
as an operand to PPA , and also based on other hardware
internal state .
[0185] For constrained transactions , millicode may keep
track of the number of aborts . The counter is reset to 0 on

US 2017 / 0262227 A1 Sep . 14 , 2017
15

successful TEND completion , or if an interruption into the
OS occurs (since it is not known if or when the OS will
return to the program) . Depending on the current abort
count , millicode can invoke certain mechanisms to improve
the chance of success for the subsequent transaction retry .
The mechanisms involve , for example , successively increas
ing random delays between retries , and reducing the amount
of speculative execution to avoid encountering aborts caused
by speculative accesses to data that the transaction is not
actually using . As a last resort , millicode can broadcast to
other CPUs other than 114a which is processing the local
transaction , to stop all conflicting work and retry the local
transaction before releasing the other CPUs to continue
normal processing . Where multiple CPUs are enabled , their nd

activity must be coordinated to not cause deadlocks , so some
serialization between millicode instances on different CPUs
114 is required .

B . Computer Program Product Claim Support
[0186] A computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0187] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
ar area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0188] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , or

either source code or object code written in any combination
of one or more programming languages , including an object
oriented programming language such as Smalltalk , C + + or
the like , and conventional procedural programming lan
guages , such as the “ C ” programming language or similar
programming languages . The computer readable program
instructions may execute entirely on the user ' s computer ,
partly on the user ' s computer , as a stand - alone software
package , partly on the user ' s computer and partly on a
remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user ' s computer through any type of
network , including a local area network (LAN) or a wide
area network (WAN) , or the connection may be made to an
external computer (for example , through the Internet using
an Internet Service Provider) . In some embodiments , elec
tronic circuitry including , for example , programmable logic
circuitry , field - programmable gate arrays (FPGA) , or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , in order to perform aspects of the
present invention .
[0189] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
f0190] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0191] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
10192] . The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg

US 2017 / 0262227 A1 Sep . 14 , 2017

ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions .

C . Computer Program Product Claim Support
[0193] An embodiment of a possible hardware and soft
ware environment for software and / or methods according to
the present invention will now be described in detail with
reference to the Figures . FIG . 4 depicts a block diagram of
components of a computing device 400 , in accordance with
an illustrative embodiment of the present invention . It
should be appreciated that FIG . 4 provides only an illustra
tion of one implementation and does not imply any limita
tions with regard to the environments in which different
embodiments may be implemented . Many modifications to
the depicted environment may be made . It should be appre
ciated FIG . 4 provides only an illustration of one implemen
tation and does not imply any limitations with regard to the
environments in which different embodiments may be
implemented
[0194] The computing environment of FIG . 4 is , in many
respects , representative of the various computer subsystem
(s) in the present invention . Accordingly , several portions of
the computing environment will now be discussed in the
following paragraphs .
[0195] Computing device 400 includes communications
fabric 402 , which provides communications between com
puter processor (s) 404 , memory 406 , persistent storage 408 ,
communications unit 410 , and input / output (I / O) interface (s)
412 . Communications fabric 402 can be implemented with
any architecture designed for passing data and / or control
information between processors (such as microprocessors ,
communications and network processors , etc .) , system
memory , peripheral devices , and any additional hardware
components within a system . For example , communications
fabric 402 can be implemented with one or more buses .
[0196] Computing device 400 is capable of communicat
ing with other computer subsystems via network 401 . Net
work 401 can be , for example , a local area network (LAN) ,
a wide area network (WAN) such as the Internet , or a
combination of the two , and can include wired , wireless , or
fiber optic connections . In general , network 401 can be any
combination of connections and protocols that will support
communications between computing device 400 and other
computing devices .
[0197] Memory 406 and persistent storage 408 are com
puter - readable storage media . In one embodiment , memory
406 includes random access memory (RAM) and cache
memory 414 . In general , memory 406 can include any
suitable volatile or non - volatile computer - readable storage
media .
[0198] In some embodiments , regulation logic 420 may be
stored for execution by one or more of the respective

computer processors 404 of computing device 400 via one
or more memories of memory 406 of computing device 400 .
In the depicted embodiment , persistent storage 408 includes
a magnetic hard disk drive . Alternatively , or in addition to a
magnetic hard disk drive , persistent storage 408 can include
a solid state hard drive , a semiconductor storage device ,
read - only memory (ROM) , erasable programmable read
only memory (EPROM) , flash memory , or any other com
puter - readable storage media that is capable of storing
program instructions or digital information . In some
embodiments , regulation logic 420 may be implemented
using logic gates .
[0199) . The media used by persistent storage 408 may also
be removable . For example , a removable hard drive may be
used for persistent storage 408 . Other examples include
optical and magnetic disks , thumb drives , and smart cards
that are inserted into a drive for transfer onto another
computer - readable storage medium that is also part of per
sistent storage 408 .
[0200] Communications unit 410 , in the examples , pro
vides for communications with other data processing sys
tems or devices , including computing device 400 . In the
examples , communications unit 410 includes one or more
network interface cards . Communications unit 410 may
provide communications through the use of either or both
physical and wireless communications links .
10201] I / O interface (s) 412 allows for input and output of
data with other devices that may be connected to computing
device 400 . For example , I / O interface 412 may provide a
connection to external devices 416 such as a keyboard ,
keypad , camera , a touch screen , and / or some other suitable
input device . External devices 416 can also include portable
computer - readable storage media such as , for example ,
thumb drives , portable optical or magnetic disks , and
memory cards . Software and data used to practice embodi
ments of the present invention , e . g . , regulation logic 420 can
be stored on such portable computer - readable storage media
and can be loaded onto persistent storage 408 of computing
device 400 via I / O interface (s) 412 of computing device 400 .
It should be noted that , in some embodiments , regulation
logic 420 is implemented as a hardware module .
[0202] Display 418 provides a mechanism to display data
to a user and may be , for example , a computer monitor .
10203] . The logic described herein is identified based upon
the application for which it is implemented in a specific
embodiment of the invention . However , it should be appre
ciated that any particular logic nomenclature herein is used
merely for convenience , and thus the invention should not be
limited to use solely in any specific application identified
and / or implied by such nomenclature .
[0204] Regulation logic 420 detects the cause of the
termination of the transaction and selects the parameters for
the retrying of the operation . A transaction is a group of
instructions that operate in an atomic manner on a data
structure in memory , as viewed by other CPUs and the I / O
subsystem . For a transaction to be complete the changes
need to be finalized and made permanent in their entirety .
The processing of a transaction can either be successful or
fail , it cannot be partially completed . In additional embodi
ments , a transaction is an individual , or indivisible , opera
tion which is part of a larger operation . One event which can
cause the termination of the transaction before completion is
a transient condition . A transient condition , or transient
property of an element of the system , is one which is

US 2017 / 0262227 A1 Sep . 14 , 2017

temporary . Transient conditions may be , for example asyn
chronous interruptions , another CPU trying to access
memory used within the transaction , or another thread on the
same CPU causing a cache line to be evicted using an
algorithm of least recently used (LRU) . Regulation logic
420 detects the transient condition or element , or another
cause of the transaction being terminated . In additional
embodiments , regulation logic 420 records the cause of the
transaction being terminated in a repository , such as , for
example , memory 406 , persistent storage 408 , or as an
internal hardware logic state .
[0205] Regulation logic 420 also controls the procedure
performed by computing device 400 once regulation logic
420 determines the cause of the premature termination of the
transaction . Regulation logic 420 decides if the cause of the
premature termination of the transaction can be fixed with a
series of retries of the transaction , or other methods of
allowing the transaction more attempts to be completed . In
one embodiment , regulation logic 420 permits the transac
tion a predetermined number of retries to be completed . The
predetermined number of retries does not guarantee a suc
cessful transaction , but can be used for assistance in future
transactions to increase the speed of the transaction or to
anticipate failures .
[0206] In additional embodiments , regulation logic 420
can permit the transaction to retry until the transaction is
successful . In a portion of the additional embodiments ,
regulation logic 420 may record information related to the
transaction , this information can be , for example , the cause
of the premature termination , the number of retries , and the
successful transaction . This information can potentially be
used in future transactions which fail to find a known
solution and decrease the time for future transaction to be
successful . The programs described herein are identified
based upon the application for which they are implemented
in a specific embodiment of the invention . However , it
should be appreciated that any particular logic nomenclature
herein is used merely for convenience , and thus the inven
tion should not be limited to use solely in any specific
application identified and / or implied by such nomenclature .

of the processor state at the beginning of transaction pro
cessing ; and / or (iv) invoking flag processing mod 608 to
indicate the end - of - transaction has not been detected .
10210) A transaction indicator may be implemented in
software , hardware , or a combination of the two . In some
embodiments of the present invention , the transaction indi
cator is a software implementation using a Boolean flag ,
wherein a zero value indicates that no transaction is being
processed , and a one value indicates that a transaction is
being processed . Additionally , in some embodiments of the
present invention , the transaction indicator is a hardware
implementation and a status register is used to indicate
whether or not a transaction is being processed . Further , in
some embodiments of the present invention , nested trans
actions are supported , and the transaction indicator is a
counter that is incremented each time a begin - transaction is
encountered , and decremented each time an end - transaction
is encountered , thus , indicating all nested transactions are
complete when the value in the transaction indicator reaches
zero .
10211] A metric counter may be used by the instruction
processor to determine how far the current instruction is
from the end of the transaction (e . g . , how many instructions
remain in the transaction) . When a begin - transaction instruc
tion is encountered , a metric counter corresponding to the
current transaction is initialized to zero . In some embodi
ments of the present invention , the metric counter is incre
mented once for each instruction identified during a specu
lative look ahead operation , and the metric counter is frozen
when an end - transaction instruction is encountered during
the speculative look ahead operation (i . e . , the metric counter
will contain the total number of instructions included in the
transaction corresponding to the metric counter) . In some
embodiments , the metric counter is decremented for each
completed instruction within the transaction .
[0212] . In the event that a transaction is unable to success
fully complete , the processor shall be able to perform a
rollback (e . g . , restore) of the environment (e . g . , transaction
memory , registers , variables , and the like) to a state corre
sponding to the environment at the beginning of the trans
action operation . In some embodiments of the present inven
tion , a rollback is necessary when another process causes
interference by attempting to access the transactional
memory corresponding to the transaction . If the interference
causes the transaction to halt (also referred to herein as an
abort of the transaction) without reaching the end - transac
tion instruction , all processing performed during the trans
action is discarded and a rollback operation is performed to
restore the environment to the state equivalent to that at the
start of the transaction .
[0213] When an environment utilizes speculative look
ahead (i . e . , when the environment fetches and decodes
program instructions prior to execution) , an indicator (e . g . ,
TXEND _ INSIGHT) may be maintained to determine
whether an end - of - transaction has been detected during the
speculative look ahead operation . When a begin - transaction
instruction is processed , the indicator (e . g . , TXEND _ IN
SIGHT) may be initialized to indicate that no end - transac
tion has been detected .
[0214] Processing proceeds to step 506 , where flag pro
cessing mod 608 receives a request to update an indicator
(e . g . , a flag) to contain a specified value . The received
request may identify a flag and the operation that is to be
performed on the flag . In some embodiments of the present

II . Example Embodiment
[0207] FIG . 5 shows flowchart 500 depicting an approach
according to the present invention . FIG . 6 shows regulation
logic 420 for performing at least some of the steps of
flowchart 500 . This approach will now be discussed , over
the course of the following paragraphs , with extensive
reference to FIG . 5 and FIG . 6 .
[0208] Processing begins at step 502 , where transaction
module (“ mod ”) 602 receives a begin - transaction instruction
(e . g . , T _ BEGIN , TXBEGIN , or XBEGIN among others)
indicating the beginning of a transaction . The transaction
comprises the begin - transaction instruction and all the
instructions immediately following the begin - transaction
program instruction up to , and including an end - transaction
instruction (e . g . , T _ END , TXEND , or XEND among others)
that corresponds to the begin - transaction instruction .
[0209] Processing proceeds to step 504 , where initializa
tion mod 604 carries out initialization operations necessary
to enable processing of the transaction to begin . Initializa
tion operations may include , but are not limited to : (i) setting
a transaction indicator to indicate a transaction is currently
being processed ; (ii) setting a metric counter to zero ; (iii)
preparing for a rollback situation by keeping a backup copy

US 2017 / 0262227 A1 Sep . 14 , 2017

invention , the flag is TXEND _ INSIGHT , and the operation
is indicating no end - transaction instruction has been
detected . Additionally , in some embodiments of the present
invention , additional operations are carried out , such as ,
when TXEND INSIGHT is changed to indicate that no
end - transaction instruction has been detected , the metric
counter is unfrozen to enable the metric counter to be
incremented while the speculative look ahead operation
proceeds .
[0215] Processing proceeds to step 508 , where monitor
mod 610 monitors the speculative look ahead operation and
detect when an end - transaction instruction is encountered .
Speculative look ahead is an operation that predicts an
execution path that is likely to be followed in the future ,
however , it is possible that the prediction is incorrect and the
predicted execution path is not actually followed . Predicting
an execution path that is not actually followed may occur
when the speculative look ahead operation encounters a
branch instruction in the instruction stream . Since the infor
mation that determines the actual behavior of the branch
instruction may not yet be available , the speculative look
ahead operation may predict the behavior of the branch
instruction based on previous behavior (e . g . , including but
not limited to local and global branch history , branch address
history , branch history vectors and / or a return address stack) ,
static branch prediction information encoded in the instruc
tion , branch policies tangibly incorporated into the processor
(e . g . , backward branches , i . e . , branches to lower addresses
than the address of a branch instruction may be predicted as
“ taken ”) , meta data , or the like .
[0216] Instead of waiting for the information that deter
mines the actual behavior of the branch instruction to
become available , the speculative look ahead operation
proceeds on a predicted execution path . In some embodi
ments of the present invention , a backup copy of the metric
counter is maintained each time a branch instruction is
encountered . If it is later determined that an incorrect
execution path was predicted for the branch , the metric
counter can be restored to the value it was when the branch
instruction was being speculatively looked at , and the specu
lative look ahead operation can resume following a different
execution path . In some embodiments of the present inven
tion , instruction decode is also performed speculatively
ahead of instruction execution and at least one decoupling
queue (e . g . , dispatch queue , issue queue , reorder queue , and
the like) is available to store speculatively decoded instruc
tions after the instruction decode operation and prior to
instruction execution .
[0217] If the speculative look ahead operation encounters
an end - transaction instruction , monitor mod 610 performs
tasks to indicate that an end - transaction has been encoun
tered (i . e . , an end - transaction has been detected) . Tasks to be
performed include , but are not limited to : (i) freezing the
metric counter ; and / or (ii) notifying flag processing mod 608
that that an indicator (e . g . , a flag) such as TXEND IN
SIGHT is to be set to indicate an end - transaction instruction
has been encountered .
[0218] If an end - transaction instruction has been identi
fied , and it turns out that the predicted execution path is
incorrect , then the effects of detecting the end - transaction
instruction shall be rolled back to the point at which the
incorrect branch prediction was determined . The rollback
operation may include restoring the speculative look ahead
operation to the point at which the incorrect branch predic

tion was determined . The tasks included in the rollback
operation may include , but are not limited to : (i) unfreezing
the metric counter ; (ii) restoring (e . g . , rolling back) the
metric counter to the state (i . e . , value) of the metric counter
when the speculative look ahead operation was looking at
the branch instruction ; and / or (iii) notifying flag processing
mod 608 that that an indicator (e . g . , a flag) such as TXEND _
INSIGHT is to be set to indicate that no end - transaction
instruction has been encountered .
[0219] Processing proceeds to step 510 , where flag pro
cessing mod 608 receives a request to update an indicator
(e . g . , a flag) to contain a specified value . The received
request may identify a flag and an operation that is to be
performed on the flag . In some embodiments of the present
invention , the flag is TXEND _ INSIGHT , and the operation
is indicating that an end - transaction instruction has been
detected . Additionally , in some embodiments of the present
invention , additional operations are carried out , such as
when TXEND INSIGHT is altered to indicate that an end
transaction instruction has been detected , the metric counter
is frozen to allow calculations to determine how close the
current instruction is to the end - transaction instruction .
[0220] Processing proceeds to step 512 , where interfer
ence mod 612 receives a notification identifying another
process that is attempting to access transactional memory
corresponding to an active transaction . In accordance with
one embodiment of the present invention , interference is
detected in conjunction with the tracking of read and write
sets of memory that has been the subject of accesses of the
present transaction , and further explained with reference to
FIGS . 1 , 2 , and 3 herein . Interference mod 612 may analyze
the circumstances corresponding to the interference . The
analysis may include , but is not limited to : (i) determining
if delaying the requested halt of the transaction is an option
(it should be noted that the terms “ halt ” and “ abort ” are used
interchangeably herein and have the same meaning) ; (ii)
determining if the transaction is near the end (i . e . , an
end - transaction instruction has been encountered by the
speculative look ahead operation) ; and / or (iii) if both pro
cesses are transactions , determining which transaction is
closer to completion .
[0221] Processing ends with step 514 , where determina
tion mod 614 determines an appropriate action to take with
regard to the current transaction . Possible actions may
include , but are not limited to : (i) delay the halt request , and
continue processing the transaction ; (ii) halt the transaction
and perform a rollback operation , and / or (iii) request that the
interfering transaction halt execution .
[0222] Delaying the halt request may include the interfer
ing process waiting for the transaction to complete before
the interfering process can obtain the requested data . In this
example embodiment of the present invention : (i) a trans
action is being processed ; (ii) an interference occurs ; and
(iii) the speculative look ahead operation has encountered an
end - transaction instruction . Determination mod 614 deter
mines that the transaction will continue to be executed ,
however , it is later determined that the encountered end
transaction instruction was in an incorrect execution path ,
and therefore no end - transaction instruction has been
encountered , resulting in the transaction being halted .
[0223] When a transaction halts , no additional instructions
corresponding to the transaction are run , and a rollback
operation may be performed so the processing environment
appears as if the transaction had never begun processing . In

US 2017 / 0262227 A1 Sep . 14 , 2017
19

some embodiments of the present invention , whenever a
transaction ends (e . g . , halts or runs to completion) , a trans
action indicator is updated to indicate the transaction is no
longer being processed , freeing the processor from any
limitations in place during transaction processing .
[0224] In some embodiments of the current invention , the
interfering transaction is of a lower priority , and the inter
fering transaction halts , allowing the current transaction to
continue processing . In some embodiments of the present
invention , the interfering transaction is operating with a
higher priority , and therefore the current transaction halts .
Additionally , in some embodiments of the present invention ,
no end - transaction instruction has been encountered by the
speculative look ahead operation , and therefore the current
transaction halts .
[0225] As noted above , interference mod 612 receives
access requests from remote processes and determines inter
ference . When no interference is detected , and a local
processor includes the requested data , a response with the
requested data is provided . In some embodiments of the
present invention , the interference module provides the
requested data as well as an indication that a present
transaction of the present processor is to be aborted (action
(ii) , discussed above) .
[0226] In some embodiments of the present invention , a
decision is made as to whether to provide the data imme
diately (and cause a transaction abort responsive to such
determination) , or to defer a response (action (i) , above) .
When a response is deferred , at a later time , responsive to
completing the present transaction interference mod 612
provides the data corresponding to a deferred response .
Further , when the possibility of a deadlock has been
detected , and a present transaction is to be aborted , inter
ference module is notified to provide the data in conjunction
with the initiation of a transaction abort .
02271 . It should be noted as described above that when an
abort operation is delayed , or held , both the instruction to
abort as well as the data of the interfering transaction are
withheld from processing .

limitations with regard to the environments in which differ
ent embodiments may be implemented . Many modifications
to the depicted environment may be made .
[0230] In step 702 , regulation logic 420 detects transaction
execution . This step is carried out in the process described
above in FIG . 5 .
10231] In step 704 , regulation logic 420 performs TX
initialization . This step is described above in reference to
FIG . 2 and FIG . 5 .
[0232] In step 706 , regulation logic 420 executes the
transaction . This step is carried out in the process described
above in FIG . 5 .
[0233] In decision 708 , regulation logic 420 determines if
the transaction was aborted . Regulation logic 420 detects the
transaction has aborted as described above . An abort may be
caused by , for example , a halt operation , also referred to as
an abort operation , which , as used herein , refers to an
operation responsive to a condition where two transactions
have been detected to interfere and where at least one
transaction must be aborted and the state of the processor is
reset to the state at the beginning of the aborted transaction
by performing a rollback . If regulation logic 420 determines
the transaction was aborted (yes branch , proceed to decision
710) , regulation logic , 420 determines if the cause of the
abort was due to a transient condition . If regulation logic 420
determines the transaction was not aborted (no branch ,
proceed to step 712) , regulation logic 420 completes the
transaction .
[0234] In decision 710 , regulation logic 420 determines if
the cause of the abort was due to a transient condition . A
transient condition is a condition which may show up during
one invocation of a transaction but not in a following
transaction . Such conditions may be , for example , interfer
ence from another CPU , an asynchronous interruption ,
another thread LRUing an entry out of the L1 cache with
TX _ read or TX _ dirty bits set . Non - transient conditions that
may cause an abortion may include , for example , issuing an
illegal instruction or , when running single threaded , exceed
ing a transaction footprint . If regulation logic 420 deter
mines the cause of the termination is due to a transient
condition (yes branch , proceed to step 716) , regulation logic
420 selects the retry parameters . If regulation logic 420
determines the cause of the termination is not due to a
transient condition (no branch , proceed to step 714) , regu
lation logic 420 aborts the operation .
[0235] In step 712 , regulation logic 420 completes the
transaction . Regulation logic 420 completes the execution of
the transaction till the transaction has been completed .
[0236] In step 714 , regulation logic 420 aborts the opera
tion . Regulation logic 420 aborts the operation because the
cause of the error is beyond a transient condition or element ,
or the transaction cannot be completed for other reasons .
This can be due to , for example , a loss of information
necessary for the transaction , an invalid instruction , a foot
print overflow , a transaction taking too long to execute , a
hardware failure , or other mechanical or technical issues
which can arise which would not be related to a transient
condition or element .
[0237] In step 716 , regulation logic 420 selects the retry
parameters . This step selects what actions regulation logic
420 permits the hardware of FIG . 4 to perform to attempt to
resolve the transient condition . FIG . 8 explains the step of
selecting the retry parameters in greater detail .

III . Further Comments and / or Embodiments
[0228] Some embodiments of the present invention rec
ognize the following facts , potential problems , and / or poten
tial areas for improvement with respect to the current state
of the art : (i) when deciding to make decisions about
interference between at least two transactions , and deciding
which instruction to abort , it is desirable to know which
transaction will be ending shortly (e . g . , whether holding off
on responding to a transaction may prevent an interference) ;
(ii) when an interference must cause one transaction to abort ,
it may be desirable to halt the transaction that is not close to
completing (e . g . , do not sacrifice a transaction that would
only require a few instruction to be successfully completed) ;
and / or (iii) it is desirable to offer a compatible way of
indicating the impending end of a transaction that allows
computer code and computer architecture to remain back
wardly compatible .
[0229] FIG . 7 depicts a flowchart of the operational steps
of regulation logic 420 , within the computing environment
of FIG . 4 , in accordance with one embodiment of the present
invention . Flowchart 700 depicts the steps taken by regula -
tion logic 420 to control the steps taken by the hardware or
software . It should be appreciated that FIG . 7 provides only
an illustration of one implementation and does not imply any

US 2017 / 0262227 A1 Sep . 14 , 2017
20

tro

[0238] In step 718 , regulation logic 420 performs the
permitted action . Regulation logic 420 performs the actions
approved , and selected in the process performed in FIG . 7 .
Regulation logic 420 may , for example , automatically per
form these actions once the permitted actions are selected , or
regulation logic 420 may wait a predetermined time before
starting the permitted action . In additional embodiments ,
regulation logic 420 may permit numerous permitted
actions .
[0239] In step 720 , regulation logic 420 resets to initial
transaction state . In some embodiments , regulation logic 420
determines if the permitted action allowed the transaction to
succeed . Regulation logic 420 determines if the transaction
succeeded by detecting if the transaction was able to be
performed fully to completion , without interruption or
issues . If regulation logic 420 determines the permitted
action allowed the transaction to succeed (yes branch , pro
ceed to END) , regulation logic 420 concludes the operation .
If regulation logic 420 determines the permitted action
causes the transaction to fail (no branch , proceed to 204) ,
regulation logic 420 reselects the retry parameters . In an
attempt to retry the transaction with a new set of parameters
to attempt to allow the transaction to succeed .
[0240] FIG . 8 depicts a flowchart of the operational steps
of regulation logic 420 operating within the computing
environment of FIG . 1 , in accordance with one embodiment
of the present invention . Flowchart 800 depicts the steps
taken by regulation logic 420 to structure the limitations of
the actions performed by the computing device . It should be
appreciated that FIG . 8 provides only an illustration of one
implementation and does not imply any limitations with
regard to the environments in which different embodiments
may be implemented .
[0241] In decision 802 , regulation logic 420 determines if
retry is permitted . Regulation logic 420 may , in some
instances , retry the transaction in order to resolve the con
flict . The retry of the transaction can be , for example ,
because regulation logic 420 has solved the conflict before ,
the transient condition is down to regulation logic 420 , or
retrying the transaction can potentially fix the transient
condition . If regulation logic 420 determines that the retry is
permitted (yes branch , proceed to step 804) , regulation logic
420 sets the parameters for the retry . If regulation logic 420
determines the retry is not permitted (no branch , proceed to
step 714) , regulation logic 420 aborts the operation .
[0242] In step 804 , regulation logic 420 sets parameter .
Regulation logic 420 sets the parameter which computing
device 400 performs in an attempt to have the transaction
succeed . These parameters can be , for example , number of
retries which computing device 400 performs in an attempt
to allow the transaction to succeed , time limit which com
puting device 400 is allowed to perform retries , or the action
which is performed by each retry . In additional embodiments
there is a predetermined delay in responding to coherency
requests . In additional embodiments , regulation logic 420
retries the transaction in the same manner as the first
instance which failed , or regulation logic 420 retries the
transaction in a different manner than the first instance which
failed . In additional embodiments , regulation logic 420 may
set the parameters to record each retry , the actions performed
by computing device 400 , or if the retry was successful or
a failure .
0243] In decision 806 , regulation logic 420 determines if
occurrence is recorded . In certain instances where a trans

action is terminated and it is known that the termination is
caused by a transient condition , regulation logic 420 records
information regarding the instance , which can be , for
example , the number of retries , the transient condition , if the
retries solved the transient condition , or the solution to the
transient condition for future use . If regulation logic 420
determines the information regarding the occurrence is to be
recorded (yes branch , proceed to step 718) , regulation logic
420 records the information regarding the occurrence (see
step 808) . If regulation logic 420 determines the information
regarding the occurrence is to not be recorded (no branch ,
proceed to step 714) , regulation logic 420 proceeds to step
718 (see FIG . 7) .
[0244] The present invention may be a system , a method ,
and / or a computer program product . The computer program
product may include a computer readable storage medium
(or media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention .
[0245] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0246] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing
device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing / processing
device .
[0247] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , or wans

US 2017 / 0262227 A1 Sep . 14 , 2017
21

ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions .

either source code or object code written in any combination
of one or more programming languages , including an object
oriented programming language such as Smalltalk , C + + or
the like , and conventional procedural programming lan -
guages , such as the “ C ” programming language or similar
programming languages . The computer readable program
instructions may execute entirely on the user ' s computer ,
partly on the user ' s computer , as a stand - alone software
package , partly on the user ' s computer and partly on a
remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user ' s computer through any type of
network , including a local area network (LAN) or a wide
area network (WAN) , or the connection may be made to an
external computer (for example , through the Internet using
an Internet Service Provider) . In some embodiments , elec
tronic circuitry including , for example , programmable logic
circuitry , field - programmable gate arrays (FPGA) , or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry , to perform aspects of the present
invention .
[0248] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
10249] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0250] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com
puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0251] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg

IV . Definitions
[0252] Present invention : should not be taken as an abso
lute indication that the subject matter described by the term
“ present invention ” is covered by either the claims as they
are filed , or by the claims that may eventually issue after
patent prosecution ; while the term “ present invention ” is
used to help the reader to get a general feel for which
disclosures herein that are believed as maybe being new , this
understanding , as indicated by use of the term “ present
invention , " is tentative and provisional and subject to
change over the course of patent prosecution as relevant
information is developed and as the claims are potentially
amended .
[0253] Embodiment : see definition of “ present invention ”
above similar cautions apply to the term " embodiment . ”
[0254] and / or : inclusive or ; for example , A , B " and / or ” C
means that at least one of A or B or C is true and applicable .
[02551 User / subscriber : includes , but is not necessarily
limited to , the following : (i) a single individual human ; (ii)
an artificial intelligence entity with sufficient intelligence to
act as a user or subscriber ; and / or (iii) a group of related
users or subscribers .
(0256) Module / Sub - Module : any set of hardware , firm
ware and / or software that operatively works to do some kind
of function , without regard to whether the module is : (i) in
a single local proximity ; (11) distributed over a wide area ;
(iii) in a single proximity within a larger piece of software
code ; (iv) located within a single piece of software code ; (v)
located in a single storage device , memory or medium ; (vi)
mechanically connected ; (vii) electrically connected ; and / or
(viii) connected in data communication .
[0257] Computer : any device with significant data pro
cessing and / or machine readable instruction reading capa
bilities including , but not limited to : desktop computers ,
mainframe computers , laptop computers , field - program
mable gate array (FPGA) based devices , smart phones ,
personal digital assistants (PDAs) , body - mounted or
inserted computers , embedded device style computers ,
application - specific integrated circuit (ASIC) based devices .
What is claimed is :
1 . A method for resolving terminated transactions in a

transactional memory environment , the method comprising :
initiating a hardware transaction in a computing environ
ment , wherein the hardware transaction accesses a
memory location , and wherein the hardware transaction
includes a transaction begin indicator and a transaction
end indicator ;

detecting a conflicting access of the memory location
while executing the hardware transaction ;

US 2017 / 0262227 A1 Sep . 14 , 2017

aborting the hardware transaction based on the conflicting
access of the memory location ;

determining , by hardware , that the conflicting access of
the memory location is a transient condition , and

reinitiating the hardware transaction .
2 . The method of claim 1 , further comprising :
generating , by software , a retry parameter based on , at

least , the conflicting access of the memory , wherein the
retry parameter indicates , to hardware , a maximum
number of attempts to reinitiate the hardware transac
tion prior to aborting the hardware transaction .

3 . The method of claim 2 , further comprising :
determining , by hardware , that the retry parameter has not
been met ; and

wherein reinitiating the hardware transaction is based on
the determination that the retry parameter has not been
met .

4 . The method of claim 1 , wherein the transient condition
is a condition which may cause conflicting access of the
memory location during a first invocation of the hardware
transaction , but which may not result in conflicting access of
the memory location during a subsequent invocation of the
hardware transaction .

5 . The method of claim 1 , wherein :
the conflicting access of the memory location is an

intervening store to the memory location in a near - end
transaction processing mode , wherein the near - end
transaction processing mode indicates that the conflict
ing access is near end of completion based on , at least ,
the transaction end indicator ; and

aborting the hardware transaction is further based on the
near - end transaction processing mode of the conflicting
access of the memory location .

6 . The method of claim 1 , wherein :
the step of initiating the hardware transaction in the

computing environment is performed by a first proces
sor ; and

the conflicting access of the memory location is an
intervening store to the memory location by a second
processor .

7 . The method of claim 1 , further comprising :
logging , by hardware , information about the reinitiated

hardware transaction including , at least , the initiated
hardware transaction attempt number and information
about the conflicting access .

* * * *

