US 20230107242A1

a2y Patent Application Publication o) Pub. No.: US 2023/0107242 Al

a9y United States

BAHRAMI et al. 43) Pub. Date: Apr. 6, 2023

(54) CODE ENRICHMENT THROUGH (52) US. CL
METADATA FOR CODE SYNTHESIS CPC oo, GOGF 8/73 (2013.01); GO6F 16/951
(2019.01)

(71) Applicant: FUJITSU LIMITED, Kanagawa (JP)

(72) Inventors: Mehdi BAHRAMI, San Jose, CA (US);
Wei-Peng CHEN, Fremont, CA (US)

(73) Assignee: FUJITSU LIMITED, Kanagawa (JP)
(21) Appl. No.: 17/814,516
(22) Filed: Jul. 24, 2022

Related U.S. Application Data
(60) Provisional application No. 63/261,602, filed on Sep.
24, 2021.

Publication Classification
(51) Int. CL

GOG6F 8/73 (2006.01)
GOG6F 16/951 (2006.01)
109\
Data Source 104 &

. C/Communicaﬂaﬁ
erk m

(57) ABSTRACT

According to an aspect of an embodiment, operations for
code enrichment through metadata for code synthesis are
provided. The operations include acquiring package data
that include source code files and package metadata. The
operations further include extracting additional metadata
associated with software package and preparing metadata
features based on the package metadata and the additional
metadata. The operations further include identifying a set of
target portions of a source code included in the source code
files and updating one or more source code files using the
metadata features. Such files are updated by performing at
least one of a revision of existing code comments, and an
addition of new code comments for the target portions. The
operations further include generating a dataset of natural
language (NL) text features and respective code features and
training a language model on a sequence-to-sequence gen-
eration task.

User Device 108

Package Data 112

¥ ¥
System 102 Dataset 114

Descrintion: q 1124
ABG is a Python package that provides fast, flexible, and]
expressive data sfructures designed to make Wo;rkingé
with "relational” or "labeled” data both easy and intuitive. |

It aims fo be the fundamental high-level building block for:

Language Model 106

Bource Code Files:
D pkainee 2
[

®

i 1128

i §

US 2023/0107242 A1

b B

gL

307 epopy sbenbue

SAIIUL pUB ASes Ljog BIRp p3B0e), JO feuonelRl, Uim
Buppom avew o) paubisap SAUMONNS RIBp aAnsseldxs!
u%“@éxmm“wmﬁmwmggﬁmﬁmmwx%ﬁ%%ﬁ&g umﬁ

Apr. 6,2023 Sheet 1 of 8

YL uondLosa(;
1T eieq sbevoey
FIT 8seieg TOT wisisAg w
3 |
S Q1T omiap —
8O aoiasg] Jasn g UORESIUNLALION 2 BT sunog eleg

Patent Application Publication

ﬁ/oaw

Patent Application Publication Apr. 6,2023 Sheet 2 of 8 US 2023/0107242 A1

200

~ Communication Network 11

System 102 J\L

Network inferface 21

- Memory 204
Processor 202 —
| Persistent Data Storage
208
110 Device 208 -

FiG. 2

Apr. 6,2023 Sheet 3 of 8 US 2023/0107242 A1

Patent Application Publication

VE 'O

“ ssssssssssss UOUIRd e
m Byo0 D affenbue BuuuesBoly m”
L 0aNFOYd] |
| Adussvopsien (] ¥
| JEPUSTPUIS0 o |1}
” urasAs Bugeradp MW
POROIGEYTS0 * |

asuLor '

HWYi00] sisAjeur ejep uoyiig Inpsmod 1ngy |

O 0 A L it S0 A s 0 A P S0 P 0 L L AP P L o L ik P] 0 A P e 0 A P A 9 0 P 8 S N8P e P A P P 4 PO S 4 Y 0 O L S0 A . UL R YL T Y P S P T 0

w CAgeING SIS e Pg e
m Biep Buissiu jo Bunpuey Asey e BOUSIPTY PopLa] m ,
oM S80p oay 1By sBur 2y 10 Mmag e 18n] ale Risk FOIET e :
w $3iN3e04 VIR SO Wm
w TGOS o ||
m 120B Si SpIRMOY Aot S)t UO oM ADBSIE 51 "eBenfiue] Aue Ul Sj0eHEAR 100] snielg ewdoensq | |
m uonpindiueul 7 SISAIEUR BIBD 82UN05 usdo Sjgeyl puB nusmod 150w syl Buioosy 1o ob Jepeoig SIONISSEL) ”_
} SL) Sey 3 AEUCHIDPY "UOWIAJ U1 SisAieuR ejep puom jeal ‘eogorid Bulop 1of o0jq Butping jeael-ybiy —
| [JUSWEDUN; BU) B4 0} SWIE 3} "SAIIMUI pue ASES Yjog BIED B[RqR), 10 feunieied, um Bupliom sxew 314 PROJUMO(*/ |
i 0] paubisep semongs eiep sassasdne pue ‘sigiey 1ser sepinoid i ebeyord uophd B S nay mm
W ¢ SEIBUM A 1011 25BN fm “"

Apr. 6,2023 Sheet 4 of 8 US 2023/0107242 A1

Patent Application Publication

88 94

ASNZDIT Biid-28ush

158} BANT-SOPIADI

usopueuyne ladd {usiuon-uondunssg

8 ¢=c UOYAL-SRINDEY

BuuseuiBuz/munusins & oo | JelSsE)

uophd o sbenbue BuruueiBold UBssEn

wapusdapul SO WRBAS Buneisd syssEl)

SSUSOIT (1SY © peAcsddy 190 - SSUBLIT LUBYISSELD
YOUBASEM/A0USIOS 1 A0USIPNY DBDUSIU] IYISSRI)

BIOSUOT © USIUCHAUT ISIISSEID

JBIS/UCHINPGI - § & STIEIS wowidoBas(JalIsser

Aue iopeld

S0B/ASD-D0BALO gD/ SO P00 800 ITHNANsioY
gigeis/s00p-00e/8i0 BiepAd 008/ SUly UORBIUSWNGO TTHN-oelld
sansSHogRAsp-oaRico anuuby sty evnely Bng un-sioig
BSNRID-C-(ISH 85U

B0 uohd@inep-o0e elR-Ioyny

wes) jusidopass Dgy SU Loyny

fucerpid ogyy sdny ebed-awioy

SOUSHRIS PUR 'S3LSS SW ‘SISAIRUR BIBD JOf SRIMONAS BIRD INUBMO [ABIWNG
00D HOSIBA

08y SleN

L7 LUOISIOA-CIERRIoN

=

OANFFONd<O8Y<D08Y

G007 aopygiug 19S) JUORISIT \

Patent Application Publication Apr. 6,2023 Sheet 5 of 8 US 2023/0107242 A1

400

A

Receive repository address /-/

¥

4

Extract list of software packages from data source by using repository address /—~/
4

o

06
Y
Scrap data related {o list of software packages from data source by using web
crawier
L4 /jﬁs
Acquire package daia associated with software package from dala source

¥ 4190

Extract addifional metadata associated with software package from source code | —
files

¥ 412
Prepare metadata features based on package metadata and additional metadata o~

k 414

Generate hisrarchy model by including source code files and metadata features in /.J
accordance with order of priority

-

416

tdentify set of target portions of source code included in source code files P

¥ 41
Update one or more source code files of source code files by using meladata 8
features

A 420

Generate dataset of natural language (NL) text features and respective code e’

features by using updated one or more source code files

¥ 422

Train languags mode! on sequence-to-sequence generation task based on o

generated dataset

FiG. 4

Patent Application Publication Apr. 6,2023 Sheet 6 of 8 US 2023/0107242 A1

500

\A Package Data 502
Metadata Features (Al} Source Code Files 504
506 =
A+ = "packages” PRGANED
from Setup.py
Az = “install_requires” g
atup.
from Setup.py ue-pY
As= ‘Metadata-Version” init
from PKG-INFO -
Aq= “‘Classifier: License” * oy
from PKG-INFO '

As = “Classifier:
Programming Language”
from PKG-INFO

Ae = keywords” from
setup.py

Az = “entry_points” from
setup.py

As = "Deseriplion” from
PKG-INFO

Ag = “Platformy” from PKG-
INFO

FiG. §

8 "Si4

US 2023/0107242 A1

Apr. 6,2023 Sheet 7 of 8

NG W
{Le5/8Hp0nn du =+ o
(S winy Bucim U pa4, SWSHTWNY == |+ | LI9SSE

{ITasiont] + {85870 + DZG7 L oI du =+ Yy
N =, N0
g =, 100
- SUIGHTWING = 1 aSIoAL
(shzimisiBeunue u e 10
(9296yeu0ly I du + (e somez du = 0o
(£00000 1 poiuin du =
{sheue fisuuByosiocusy = sleus
(potum-du=adfp Dheue du wingss
uonespdag 1080xs
{(SABLEIXSU = 134
AR
3198iq0a1dn SUCLIALD S8 SLURS L} 8Q BINGYS
rowniiesepudy
SUIMay
U s wny
Reuepu duliciessy .« sheue

SISIBURE

Aesrepudu < (Ul SWsywiny
Treuepu-duliorisy sAeue)sAenieTysey suiguwoD h.am

FE

CUSBMINAS B1ep mzammaxm
 pUR ‘Si0ixaY 1584 5opinasd wmﬁ sBeyoed uoulhd © $1 gy, |

700 weisig

008 *

Patent Application Publication

N0 Wmai
(LES/6Hpann du = o
(SWwislwiny BuoM Ul pa4, ‘SISl TWnY == | + | 9sse
(T asI8AU + {78590 + (ZSZRIPSIIN GU =+ PR
HOUE =, N0
Bz N0
[~ SLUSH WING = | 9SI8AL
{sAzieleiReWinus W e 110
{g206pEx0poIIN du + (e S0mZ du = N0
(2000001 Jyghun-du = ynus
(sheue Tisuiupyy sj00ua) = sABLE
{powm du=2diip ‘Hleue du wnss
uonessydors weoxe
{sheimiixsu = 180
AR
a108iqoadny s ucUA4D 5B BLURS B 8] PINOYS
fpoumifeuepu-dy
SUIMEN
W swey wny
[feuepuduliceisy . sheie

3
SIBuRed |
:

£ O o o € WS W W S W S B £ WS W € Y R MO R W T S T H R R S T O CHY O TS O A R K Y

Aesepurdu < (ui susywng
TAesepudulicpsl slenglsie s ysey atguoD M.m@

US 2023/0107242 A1

Apr. 6,2023 Sheet 8 of 8

004

Patent Application Publication

WO WngR
{1£5/6H0un du =+ 110
Suwel winy Buoss Ui pa4, ‘SWSHTWNY == | + | LIBSSE

{ITesionul + (3500 + 0ZSZaivoum du =+ yry

Yk =, N0

g =, 00

F- SLUSYHTIINU = | OSI8AL
{sheuglapiaunua U e 10}
i du + (ISl souez du = 1o
{£00000 1 pgiun du = ynw
{sheue Tismlluryo sjoous) = sdeue

{(porun-du=adiip ‘[ieue du wnsl
uopeBydas 1soxs

{(sAeim)iau = 184
AR

{8/9GHEX0)PY

aioslgosidng sUoALD 58 swes il 8q Egom_m
pownifesepu du

StLma

W Swey T winy

[Aeuepurdulicessy . sleue

sisleuREd

Aesepudu < (i “wﬁﬁmx&é

‘Teuepuduliciesy sAeu)sAgiE SRy SUIGLIOD 180
JUSeonas e gmmmmawm

pue ‘sioixey 158y sepnad ey sbeyoed uowdd e 51 08y,

L8

.\\.\\\
H904

Sy BIRp

Y 0] B0
g Buysey

P

804

¥

F07 ©poyy

10 (Rjes
(L£G6H oI du =+ 100
LSUslwiny BUoEA U PB4, ‘SWEYTWINL == | + | LUASSE
{asiontl + | B5IOAU + 07670l du =+ Ynw
UL =, N0
B =, N0
F- SIUEH WNU = | 9S8k
{SARLRIOIRIBUINGS Ul B 1 O}
{920540X0yoIIN du + (sigexys0sez du = 10
{£00000 pguin du =
{shese smlluLyosiocus) = sepp
{popumn du=adfip ‘ifese du wnpl
‘uogessydols 1soxs

afenbuen

707 WRISAS

014

{sAeLBlXau = 154

a198lqosidn] SUCALD SB SlUeS 8U) 8¢ DINOUS
| poumidesepu dy
W SN
i Wi sLe wing
m [feuepuduliciessy : sheue

SISIBLRIE

et

d U SRIMONAS BIED SAI3SA

Ban _

¥ai

ipue ‘s|giey ey sepimosd H,mﬁ abeyoed uouihd B 5104y, 1

US 2023/0107242 Al

CODE ENRICHMENT THROUGH
METADATA FOR CODE SYNTHESIS

CROSS-REFERENCE TO RELATED
APPLICATIONS/INCORPORATION BY
REFERENCE

[0001] This application claims priority to U.S. Provisional
Patent Application Ser. No. 63/261,602 filed on Sep. 24,
2021, titled, “Library Corpus for Large-Scale Language
Models and Code Retrieval Models Using Augmented
Code”, the entire content of which is hereby incorporated
herein by reference.

FIELD

[0002] The embodiments discussed in the present disclo-
sure are related to code enrichment through metadata for
code synthesis.

BACKGROUND

[0003] With advancements in machine learning, various
types of language models have been developed for different
machine-programming tasks, such as code synthesis or code
retrieval. A language model is a statistical representation of
probability distribution for a sequence of words where it
aims to find relations between different words by processing
a large corpora. Some language models aim to learn general-
purpose representations that support downstream Natural
Language-Programming language (NL-PL) applications
such as code synthesis. Code synthesis corresponds to a task
where a machine (such as a computer) aims to generate a
source code for a given query as input. To perform code
synthesis using a language model, the language model has to
be trained initially. For training the language model, many
state-of-the-art techniques disregard vast amount of non-
code information present in the source code.

[0004] The subject matter claimed herein is not limited to
embodiments that solve any disadvantages or that operate
only in environments such as those described above. Rather,
this background is only provided to illustrate one example
technology area where some embodiments described herein
may be practiced.

SUMMARY

[0005] According to an aspect of an embodiment, opera-
tions may include acquiring package data associated with a
software package from a data source. The package data may
include source code files and package metadata associated
with the software package. The operations may further
include extracting additional metadata associated with the
software package from the source code files and preparing
metadata features based on the package metadata and the
additional metadata. The operations may further include
identifying a set of target portions of a source code included
in the source code files and updating one or more source
code files of the source code files by using the metadata
features. The one or more source code files may be updated
by performing at least one of a revision of existing code
comments that may be associated with the set of target
portions and an addition of new code comments for the set
of target portions. The operations may further include gen-
erating a dataset of natural language (NL) text features and
respective code features by using the updated one or more
source code files. Thereafter, the operations may include

Apr. 6, 2023

training a language model on a sequence-to-sequence gen-
eration task based on the generated dataset.

[0006] The objective and advantages of the embodiments
will be realized and achieved at least by the elements,
features, and combinations particularly pointed out in the
claims.

[0007] It is to be understood that both the foregoing
general description and the following detailed description
are merely examples and explanatory and are not restrictive
of the invention, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Example embodiments will be described and
explained with additional specificity and detail through the
use of the accompanying drawings in which:

[0009] FIG. 1 is a diagram representing an exemplary
environment related to code enrichment through metadata
for code synthesis;

[0010] FIG. 2 is a block diagram of a system for code
enrichment through metadata for code synthesis;

[0011] FIG. 3A is a diagram that depicts an exemplary
package data for code enrichment through metadata for code
synthesis;

[0012] FIG. 3B is a diagram that depicts an exemplary
additional metadata associated with the software package
[0013] FIG. 4 illustrates a flowchart of an exemplary
method for code enrichment through metadata for code
synthesis;

[0014] FIG. Sillustrates an exemplary hierarchy model for
code enrichment through metadata for code synthesis;
[0015] FIG. 6 illustrates an exemplary scenario for updat-
ing one or more source code files for code enrichment
through metadata for code synthesis;

[0016] FIG. 7 is a diagram that illustrates an exemplary
scenario for training of a language model for code synthesis;
[0017] all according to at least one embodiment described
in the present disclosure.

DESCRIPTION OF EMBODIMENTS

[0018] Machine learning has led to development of lan-
guage models for various machine-programming tasks. A
language model is a probabilistic model that provides a
statistical representation of probability distribution for a
sequence of words where it aims to find relation between
different words by processing a large corpora. For instance,
the language model may be able to predict the likelihood of
word “Deliver” appears after “Leverages” as such “ABC
Leverages World’s Fastest Supercomputer ‘XYZ’ and Al to
Deliver Real-Time Tsunami Prediction in Joint Project”.
Specifically, given sequence of length m, the language
model may assign a probability P(w,, w,, . . . , w,,) to the
whole sequence.

[0019] Language models are being used in a variety of
sequence-to-sequence generation tasks such as a code syn-
thesis task, a code retrieval task, or a software package
analysis task. The code synthesis task corresponds to a task
of generation of a source-code based on a natural language
query. The code retrieval task corresponds to a task of
retrieval of code snippets relevant to a given natural lan-
guage query from a code base. The software package
analysis task corresponds to a task of analysis of the soft-
ware package for relevant information.

US 2023/0107242 Al

[0020] To perform the above-mentioned sequence-to-se-
quence generation tasks, the language models have to be
trained on examples of datasets. For example, in case of
code synthesis task, the language model has to be trained on
a dataset that includes pairs of code snippets and natural
language queries. Current state-of-art techniques for the
training of the language models use only code snippet and
natural language queries. The training using such dataset
results in generation of language models that may be less
generalized and may lack accuracy. For example, when the
natural language queries are “Library A save a csv”, and
“Library B save a csv”, the trained language model may not
be able differentiate between the above-mentioned natural
language queries and may generate same code snippet for
both the queries. This output may be irrelevant or undesir-
able. Therefore, there is a need to generate generalized
language models trained on such sequence to sequence
generation tasks.

[0021] The disclosure uses metadata associated with the
code snippets in the training dataset. Specifically, the dis-
closed invention trains the language model with the code
snippets and metadata features associated with the code
snippets. Such metadata features may include software
package information, installation requirements, metadata
version information, license information, supported pro-
gramming languages, entry points, descriptions, platform
information, and the like. The usage of such metadata
features may enhance and enrich the capabilities of the
language models for the sequence-to-sequence generation
task.

[0022] In contrast to the state-of-the-art solutions, the
disclosed language model may be more generalized as
compared to language models trained using state-of-the-art
approaches. Also, the disclosed language model may be help
software engineers to generate code with more details as
compared to state-of-the-art methods. Based on experimen-
tal data, it has been observed that the performance of the
language model trained based on metadata features, code,
and natural language query may be better than the language
models trained based on the state-of-the-art approaches.
[0023] Embodiments of the present disclosure are
explained with reference to the accompanying drawings.
[0024] FIG. 1 is a diagram representing an exemplary
environment related to code enrichment through metadata
for code synthesis, arranged in accordance with at least one
embodiment described in the present disclosure. With ref-
erence to FIG.1, there is shown an example environment
100. In the example environment 100, there is shown a
system 102 and a data source 104. There is further shown a
language model 106, a user device 108, a communication
network 110, package data 112, and a dataset 114. The
system 102, the data source 104, and the user device 108
may be communicatively coupled to each other, via the
communication network 110.

[0025] There is further shown a user 116 who may be
associated with the user device 108. Examples of the user
device 108 may include, but are not limited to, a mobile
device, a desktop computer, a laptop, or a computer work-
station. In one or more embodiments, the user device 108
may include a user-end terminal device and a server com-
municatively coupled to the user-end terminal device.
Examples of the user-end terminal device may include, but
are not limited to, a mobile device, a desktop computer, a
laptop, or a computer workstation.

Apr. 6, 2023

[0026] The data source 104 may include suitable logic,
circuitry, and interfaces that may be configured to store the
package data 112. The package data 112 may be associated
with a software package and may include source code files
112A and package metadata 112B associated with the soft-
ware package. In an embodiment, the source code files 112A
may include a source code (i.e., a computer-executable
code) and the package metadata 112B may include metadata
about the software package in the form of a natural language
text. In an embodiment, the source code files 112A may also
include additional metadata about the software package.
Examples of the data source 104 may include, but are not
limited to, a web-based code hosting server, a database
server, a file server, a web server, a Really Simple Syndi-
cation (RSS) feed, servers that host website(s) and web
application(s) related to packages.

[0027] In an embodiment, the data source 104 may be
implemented as multiple servers, which may include storage
distributed across one or more availability zones (e.g.,
datacenters). In an embodiment, the data source may include
a front-end system and a back-end system. The front-end
system may be configured to provide an interface (such as a
webpage or a client-side interface of a web-application) to
view information associated with the package data 112. The
back-end system may store databases, logic, and instructions
to display content on the interface provided by the front-end
system.

[0028] The language model 106 may be a probabilistic
model that may be trained to generate probability distribu-
tion over sequences on an alphabet of tokens. The language
model 106 may one of a statistical language model or a
neural language model. The statistical language model may
use statistical techniques to learn the probability distribu-
tion. These statistical techniques may include, for example,
a unigram technique, a N-gram technique, a Hidden Markov
Models (HMM), and other linguistic rules. Details of the
implementation of the above-mentioned statistical tech-
niques are known in the art. Therefore, a detailed description
of'the above-mentioned statistical techniques has been omit-
ted for the sake of brevity.

[0029] The neural language model may use one or more
neural networks to learn the probability distribution of
words. In an embodiment, each of the one or more neural
networks included in the neural language model may be a
computational network or a system of artificial neurons,
arranged in a plurality of layers, as nodes. The plurality of
layers of the neural network may include an input layer, one
or more hidden layers, and an output layer. Each layer of the
plurality of layers may include one or more nodes (i.e.,
artificial neurons). Outputs of all nodes in the input layer
may be coupled to at least one node of hidden layer(s).
Similarly, inputs of each hidden layer may be coupled to
outputs of at least one node in other layers of the neural
network. Outputs of each hidden layer may be coupled to
inputs of at least one node in other layers of the neural
network. Node(s) in the final layer may receive inputs from
at least one hidden layer to output a result. The number of
layers and the number of nodes in each layer may be
determined from hyper-parameters of the neural network.
Such hyper-parameters may be set before or after training
the neural network on the dataset 114.

[0030] Eachnode ofthe neural network may correspond to
a mathematical function (e.g., a sigmoid function or a
rectified linear unit) with a set of parameters, tunable during

US 2023/0107242 Al

training of the network. The set of parameters may include,
for example, a weight parameter, a regularization parameter,
and the like. Each node may use the mathematical function
to compute an output based on one or more inputs from
nodes in other layer(s) (e.g., previous layer(s)) of the neural
network. All or some of the nodes of the neural network may
correspond to same or a different mathematical function.
[0031] In training of the neural network, one or more
parameters of each node of the neural network may be
updated, based on whether output of the final layer for a
given input (from the dataset 114) matches a correct result
based on a loss function for the neural network. The above
process may be repeated for same or a different input till a
minima of loss function is achieved, and a training error is
minimized. Several methods for training are known in art,
for example, gradient descent, stochastic gradient descent,
batch gradient descent, gradient boost, meta-heuristics, and
the like.

[0032] The neural language model may include electronic
data, which may be implemented as, for example, a software
component of an application executable on the system 102.
The neural language model may rely on libraries, external
scripts, or other logic/instructions for execution by a pro-
cessing device, such as a processor. The neural language
model may include code and routines configured to enable
a computing device, such as the processor to perform one or
more operations for generation of the lines of computer
executable code for a natural language query as an input to
the neural language model. Additionally, or alternatively, the
neural language model may be implemented using hardware
including a processor, a microprocessor (e.g., to perform or
control performance of one or more operations), a field-
programmable gate array (FPGA), or an application-specific
integrated circuit (ASIC). Alternatively, in some embodi-
ments, the neural language model may be implemented
using a combination of hardware and software.

[0033] Examples of each of the one or more neural net-
works may include, but are not limited to, a deep neural
network (DNN), a convolutional neural network (CNN), a
recurrent neural network (RNN), a CNN-recurrent neural
network (CNN-RNN), an artificial neural network (ANN), a
Long Short Term Memory (LSTM) network based RNN,
LSTM+ANN, a gated recurrent unit (GRU)-based RNN; a
fully connected neural network, a Connectionist Temporal
Classification (CTC) based RNN, a deep Bayesian neural
network, and/or a combination of such networks. In certain
embodiments, each of the one or more neural networks may
be based on a hybrid architecture of multiple Deep Neural
Networks (DNNs).

[0034] In an embodiment, the language model 106 may
correspond to a DNN that uses an encoder-decoder archi-
tecture. The DNN may be trained to generate one or more
lines of computer-executable code for a natural language
query as an input to the language. Specifically, such a
language model may include an encoder neural network and
a decoder neural network. Examples of such a DNN may
include, but are not limited to, a Long Short-Term Memory
(LSTM) network, a gated recurrent unit (GRU) network, a
transformer model, or a variant of the transformer model,
such as such as a Bidirectional Encoder Representations
from Transformers (BERT) model or CodeBERT model.
[0035] In operation, the system 102 may be configured to
acquire package data 112 associated with a software package
from the data source 104. The package metadata may

Apr. 6, 2023

include the source code files 112A and the package metadata
112B. In an embodiment, the package metadata 112B may
include at least one of a name of the software package, one
or more classes used in the software package, a description
of the software package, a summary of the software pack-
age, a programming language associated with the software
package, an author of the software package, or a set of
classifiers. Details about acquiring to the package data 112
are provided, for example, in FIG. 4.

[0036] Upon reception, the system 102 may be further
configured to extract additional metadata associated with the
software package from the source code files 112A. In an
embodiment, the system 102 may be configured to parse the
source code files 112A to extract the additional metadata
associated with the software package. Content of the addi-
tional metadata may be different from the package metadata
112B. Details about the additional metadata are provided,
for example, in FIG. 3B.

[0037] The system 102 may be further configured to
prepare metadata features based on the package metadata
112B and the extracted additional metadata. In an embodi-
ment, the preparation may include parsing the package
metadata 112B and the additional metadata into metadata
features. Each of the prepared metadata features may be
represented in a key-value format and may include at least
one of, but not limited to, software package information,
installation requirement information, metadata version
information, license information, supported programming
languages, entry points, descriptions, or platform informa-
tion. More details on the metadata features are provided, for
example, in FIG. 4 and FIG. 5.

[0038] Based on the preparation of the metadata features,
the system 102 may be configured to identify a set of target
portions of source code included in the source code files
112A. The set of target portions may correspond to functions
or classes that may be used in the source code. The identi-
fication may be performed to restrict a scope of update to the
target portions in the source code files, as described herein.
[0039] The system 102 may be further configured to
update one or more source code files of the source code files
112A by using the metadata features. Such files may be
updated by performing at least one of a revision of existing
code comments associated with the set of target portions and
an addition of new code comments for the set of target
portions. Examples of updating the one or more source code
files are provided, for example, in FIG. 6.

[0040] The system 102 may be further configured to
generate the dataset 114 of natural language (NL) text
features and respective code features by using the updated
one or more source code files. In an embodiment, the system
102 may be configures to control the user device 108 to
display the generated dataset 114 on the user device 108.
Based on the generated dataset 114, the system 102 may be
further configured to train the language model 106. The
language model 106 may be trained on a sequence-to-
sequence generation task, such as but not limited to, a code
synthesis task, a code retrieval task, or a software package
analysis task. Details about the training of the language
model 106 are provided, for example, in FIG. 7.

[0041] It should be noted that the communication between
the system 102, the data source 104, the language model
106, and the user device 108 may be performed via the
communication network 110. The communication network
110 may include a communication medium through which

US 2023/0107242 Al

the system 102 may communicate with the data source 104,
the language model 106, the user device 108, and/or differ-
ent devices (not shown). Examples of the communication
network 110 may include, but are not limited to, the Internet,
a cloud network, a cellular network (such as a 4th Genera-
tion Long-Term Evolution (LTE) or 5th generation New
Radio (NR)), a Wireless Fidelity (Wi-Fi) network, a Per-
sonal Area Network (PAN), a Local Area Network (LAN),
and/or a Metropolitan Area Network (MAN). Various
devices in the example environment 100 may be configured
to connect to the communication network 110, in accordance
with various wired and wireless communication protocols.
Examples of such wired and wireless communication pro-
tocols may include, but are not limited to, at least one of a
Transmission Control Protocol and Internet Protocol (TCP/
1P), User Datagram Protocol (UDP), Hypertext Transfer
Protocol (HTTP), File Transfer Protocol (FTP), ZigBee,
EDGE, IEEE 802.11, light fidelity(Li-Fi), 802.16, IEEE
802.11s, IEEE 802.11g, multi-hop communication, wireless
access point (AP), device to device communication, cellular
communication protocols, and/or Bluetooth (BT) commu-
nication protocols, or a combination thereof.

[0042] Modifications, additions, or omissions may be
made to the system 102 without departing from the scope of
the present disclosure. For example, in some embodiments,
the system 102 may include any number of other compo-
nents that may not be explicitly illustrated or described.
[0043] FIG. 2 is a block diagram of a system for code
enrichment through metadata for code synthesis, arranged in
accordance with at least one embodiment described in the
present disclosure. FIG. 2 is explained in conjunction with
elements from FIG. 1. With reference to FIG. 2, there is
shown a block diagram 200 of the system 102 of FIG. 1. The
block diagram 200 may further include a processor 202, a
memory 204, a persistent data storage 206, an 1/O block 208,
a network interface 210, and the language model 106.
[0044] The processor 202 may include suitable logic,
circuitry, and/or interfaces that may be configured to execute
program instructions associated with different operations to
be executed by the system 102. The processor 202 may
include any suitable special-purpose or general-purpose
computer, computing entity, or processing device, including
various computer hardware or software modules, and may
be configured to execute instructions stored on any appli-
cable computer-readable storage media. For example, the
processor 202 may include a microprocessor, a microcon-
troller, a digital signal processor (DSP), an application-
specific integrated circuit (ASIC), a Field-Programmable
Gate Array (FPGA), or any other digital or analog circuitry
configured to interpret and/or to execute program instruc-
tions and/or to process data. Although illustrated as a single
processor in FIG. 2, the processor 202 may include any
number of processors configured to, individually or collec-
tively, perform or direct performance of any number of
operations of the system 102, as described in the present
disclosure.

[0045] In some embodiments, the processor 202 may be
configured to interpret and/or execute program instructions
and/or process data stored in the memory 204 and/or the
persistent data storage 206. In some embodiments, the
processor 202 may fetch program instructions from the
persistent data storage 206 and load the program instructions
in the memory 204. After the program instructions are
loaded into memory 204, the processor 202 may execute the

Apr. 6, 2023

program instructions. Some of the examples of the processor
202 may be a Central Processing Unit (CPU), a Reduced
Instruction Set Computer (RISC) processor, an ASIC pro-
cessor, a Complex Instruction Set Computer (CISC) proces-
sor, a Graphical Processing Unit (GPU), a co-processor,
and/or a combination thereof.

[0046] The memory 204 may include suitable logic, cir-
cuitry, and/or interfaces that may be configured to store
program instructions executable by the processor202. In
certain embodiments, the memory 204 may be configured to
store the acquired package data 112, the extracted additional
metadata, the prepared metadata features, the identified set
of target portions, the updated one or more source code files,
and the generated dataset 114. In certain embodiments, the
memory 204 may be configured to store the language model
106. The memory 204 may include computer-readable stor-
age media for carrying or having computer-executable
instructions or data structures stored thereon. Such com-
puter-readable storage media may include any available
media that may be accessed by a general-purpose or special-
purpose computer, such as the processor 202.

[0047] By way of example, and not limitation, such com-
puter-readable storage media may include tangible or non-
transitory computer-readable storage media, including Ran-
dom Access Memory (RAM), Read-Only Memory (ROM),
Electrically Erasable Programmable Read-Only Memory
(EEPROM), Compact Disc Read-Only Memory (CD-ROM)
or other optical disk storage, magnetic disk storage or other
magnetic storage devices, flash memory devices (e.g., solid
state memory devices), or any other storage medium which
may be used to carry or store particular program code in the
form of computer-executable instructions or data structures
and which may be accessed by a general-purpose or special-
purpose computer. Combinations of the above may also be
included within the scope of computer-readable storage
media. Computer-executable instructions may include, for
example, instructions and data configured to cause the
processor 202 to perform a certain operation or group of
operations associated with the system 102.

[0048] The persistent data storage 206 may include suit-
able logic, circuitry, and/or interfaces that may be configured
to store program instructions executable by the processor
202. The persistent data storage 206 may include computer-
readable storage media for carrying or having computer-
executable instructions or data structures stored thereon.
Such computer-readable storage media may include any
available media that may be accessed by a general-purpose
or special-purpose computer, such as the processor 202.

[0049] By way of example, and not limitation, such com-
puter-readable storage media may include tangible or non-
transitory computer-readable storage media including opti-
cal disk storage, magnetic disk storage or other magnetic
storage devices (e.g., Hard-Disk Drive (HDD)), flash
memory devices (e.g., Solid State Drive (SSD), Secure
Digital (SD) card, other solid state memory devices), or any
other storage medium which may be used to carry or store
particular program code in the form of computer-executable
instructions or data structures and which may be accessed by
a general-purpose or special-purpose computer. Combina-
tions of the above may also be included within the scope of
computer-readable storage media. Computer-executable
instructions may include, for example, instructions and data

US 2023/0107242 Al

configured to cause the processor 202 to perform a certain
operation or group of operations associated with the system
102.

[0050] The 1/O device 208 may include suitable logic,
circuitry, interfaces, and/or code that may be configured to
receive one or more user inputs. The I/O device 208 may be
further configured to provide an output in response to the
one or more user inputs. The 1/O device 208 may include
various input and output devices, which may be configured
to communicate with the processor 202 and other compo-
nents, such as the network interface 210. Examples of the
input devices may include, but are not limited to, a touch
screen, a keyboard, a mouse, a joystick, and/or a micro-
phone. Examples of the output devices may include, but are
not limited to, a display device and a speaker.

[0051] The network interface 210 may include suitable
logic, circuitry, interfaces, and/or code that may be config-
ured to establish a communication among the system 102,
the data source 104, the language model 106, and the user
device 108 via the communication network 110. The net-
work interface 210 may be implemented by use of various
known technologies to support wired or wireless commu-
nication of the system 102, via the communication network
110. The network interface 210 may include, but is not
limited to, an antenna, a radio frequency (RF) transceiver,
one or more amplifiers, a tuner, one or more oscillators, a
digital signal processor, a coder-decoder (CODEC) chipset,
a subscriber identity module (SIM) card, and/or a local
buffer.

[0052] The network interface 210 may communicate via
wireless communication with networks, such as the Internet,
an Intranet, and/or a wireless network, such as a cellular
telephone network, a wireless local area network (LAN)
and/or a metropolitan area network (MAN). The wireless
communication may use any of a plurality of communica-
tion standards, protocols and technologies, such as Global
System for Mobile Communications (GSM), Enhanced Data
GSM Environment (EDGE), wideband code division mul-
tiple access (W-CDMA), Long Term Evolution (LTE), code
division multiple access (CDMA), time division multiple
access (IDMA), Bluetooth, Wireless Fidelity (Wi-Fi) (such
as IEEE 802.11a, IEEE 802.11b, IEEE 802.11g and/or IEEE
802.11n), voice over Internet Protocol (VoIP), light fidelity
(Li-Fi), or Wi-MAX.

[0053] The functions or operations executed by the system
102, as described in FIG. 1, may be performed by the
processor 202. Operations executed by the processor 202 are
described in detail, for example, in FIG. 3A, FIG. 3B, FIG.
4, FIG. 5, FIG. 6, FIG. 7, and FIG. 8.

[0054] FIG. 3A is a diagram that depicts an exemplary
package data for code enrichment through metadata for code
synthesis, according to at least one embodiment described in
the present disclosure. FIG. 3A is explained in conjunction
with elements from FIG. 1 and FIG. 2. With reference to
FIG. 3A, there is shown an electronic User Interface (UI)
300A. The electronic UI 300A may be displayed on the user
device 108. Within the electronic UI 300A, there is further
shown package data 302. The package data 302 may include
source code files 304 and package metadata 306.

[0055] In an embodiment, the system 102 may be config-
ured to acquire package data 302 from the data source 104.
The package data 302 may be associated with a software
package, such as an Open Source package in Python. The
package data 302 may include source code files 304 and the

Apr. 6, 2023

package metadata 306. Each source code file may include a
source code written in a programming language, such as but
not limited to, Python, C, C++, C#, Swift, JavaScript, Go,
Java®, or R. In accordance with an embodiment, the source
code files 304 may include resource files associated with the
software package. These resource files may include infor-
mation about resources such as, but not limited to, defini-
tions, configurations, setups, requirements, and distributions
associated with the software package. In another embodi-
ment, the source code files 304 may include folder and/or
sub-folders that include additional source code files.
[0056] The package metadata 306 associated with the
software package may include, for example, a name of the
software package, one or more classes used in the software
package, a description of the software package, a summary
of the software package, a programming language associ-
ated with the software package, an author of the software
package, a set of classifiers 308, and the like. The set of
classifiers 308 may include, for example, a license associ-
ated with the software package, an operating system depen-
dency associated with the software package, a topic associ-
ated with the software package, and the like.

[0057] As shown in FIG. 3A, for example, the source code
files 304 for an ‘ABC’ package may include “_init_.py” file,
“setup.py” file, “versioneer.py”, “version.py”, “PKG-INFO”
file, and “config” folder. The “_init_.py” file, the “setup.py”
file, and the “versioneer.py” or “version.py” file may include
the version of source code of the software package and the
“PKG-INFO” file may include information on resources
associated with the software package. For example, the
information in PKG-INFO file may include characteristics
of the package along with information that helps control
installation of the package. The “config” folder may include
one or more sub-folders or additional source code files. Also,
the package metadata 306 may indicate the name of the
software package as “ABC”, the description of the software
package as “ABC is a Python package that provides fast,
flexible, . . . ”, the programming language associated with
the software package as “Python”, the license associated
with the software package as “OSI Approved”, the operating
system dependency associated with the software package as
“OS Independent”, and the topic associated with the soft-
ware package as “Science/Research”.

[0058] FIG. 3B is a diagram that depicts additional meta-
data associated with the software package, according to at
least one embodiment described in the present disclosure.
FIG. 3B is explained in conjunction with elements from
FIG. 1, FIG. 2, and FIG. 3A. With reference to FIG. 3B,
there is shown an electronic User Interface (UI) 300B. The
electronic UI 300B may be displayed on the user device 108.
Within the electronic UI 300B, there is shown a path 310 of
a first source code file (i.e., the PKG-INFO file) and addi-
tional metadata 312 included in the first source code file.

[0059] In an embodiment, the system 102 may be config-
ured to extract the additional metadata 312 associated with
the software package from the source code files 304. For the
extraction, the system 102 may be configured to parse each
of the source code files 304 associated with the source code
package. Such additional metadata may include, for
example, a metadata version associated with the software
package, contact details of the author associated with the
software package, one or more uniform resource locators
(URLs) associated with the software package, a program-
ming language requirement associated with the software

US 2023/0107242 Al

package, a description content type associated with the
software package, or background information associated
with the software package. In one or more embodiments, the
additional metadata 312 may include one or more compo-
nents of the package metadata 306.

[0060] By way of example, the additional metadata 312
included in the first source code file “PKG-INFO” may be in
a key-value format, and may include values of keys such as,
but not limited to, “Metadata-Version”, “Name”, “Version”,
“Summary”, “Home-page”, “Author”, “Author-email”,
“License”, “Project-URL”, “Project-URL”, “Project-URL”,
“Platform”, “Classifier: Development Status”, “Classifier:
Environment”, “Classifier: Intended Audience”, “Classifier:
License”, “Classifier: Operating System”, “Classifier: Pro-
gramming Language”, “Classifier: Topic”, “Requires-Py-
thon”, “Description-Content-Type”, “Provides-Extra”, “Ver-
sion”, and “License-File”.

[0061] FIG. 4 illustrates a flowchart of an exemplary
method of code enrichment through metadata for code
synthesis, according to at least one embodiment described in
the present disclosure. FIG. 4 is explained in conjunction
with elements from FIG. 1, FIG. 2, and FIG. 3. With
reference to FIG. 4, there is shown a flowchart 400. The
method illustrated in the flowchart 400 may start at 402 and
may be performed by any suitable system, apparatus, or
device, such as by the system 102 of FIG. 1 or FIG. 2.
[0062] At 402, a repository address may be received. In an
embodiment, the system 102 may be configured to receive
the repository address from the user 116 via the user device
108. The repository address may be a URL associated a
webpage of a repository that may be hosted on the data
source 104. Examples of the repositories for Python pro-
gramming language may include, but are not limited to,
Anaconda® and PyPi®. The repositories for JavaScript
programming language may include, for example, npm®.
[0063] At 404, a list of software packages may be
extracted. In an embodiment, the system 102 may be con-
figured to extract the list of software packages based on the
received repository address. The list of software packages
may be extracted from the data source 104 and such pack-
ages may be associated with the repository linked to the
repository address.

[0064] At 406, data related to the list of software packages
may be scraped or extracted. In an embodiment, the system
102 may be configured to scrape data related to the extracted
list of software packages from the data source. For scraping,
the system 102 may use a web crawler or a web scraper to
scrap the data related to the each of the extracted list of
software packages. The scrapping of data may correspond to
a process by which elements of a web-based resource are
discovered and parsed to select the data that matches a
defined set of rules for collection of the data.

[0065] At 408, the package data 302 may be acquired. In
an embodiment, the system 102 may be configured to
acquire package data associated with a software package of
the list of software packages. The package data 302 may be
acquired from the data source 104. Specifically, the package
data 302 may be acquired from the data scraped from the
data source using the repository address.

[0066] The package data 302 may include the source code
files 304 and the package metadata 306 associated with the
software package. In an embodiment, each of the source
code files 304 may include the source code that may be
executed to achieve an objective of the software package. In

Apr. 6, 2023

another embodiment, the source code files 304 may include
resource files associated with the software package. These
resource files may include information about resources such
as, but not limited to, definitions, configurations, setups,
requirements, and distributions associated with the software
package. The package metadata 306 associated with the
software package may include at least one of, but not limited
to, a name of the software package, one or more classes used
in the software package, a description of the software
package, a summary of the software package, a program-
ming language associated with the software package, an
author of the software package, or a set of classifiers. An
example page of the package data 302 is provided, for
example, in FIG.

[0067] At 410, additional metadata may be extracted. In an
embodiment, the system 102 may be configured to extract
additional metadata associated with the software package
from the source code files 304. Details about the additional
metadata and the extraction of the additional metadata are
provided, for example, in FIG. 3B.

[0068] At 412, metadata feature may be prepared. In an
embodiment, the system 102 may be configured to prepare
the metadata features. The metadata features may be pre-
pared based on the package metadata 306 and the additional
metadata. In an embodiment, the preparation of the metadata
features may include parsing the package metadata 306 and
the additional metadata into the metadata features. Each of
the prepared metadata features may be represented in a
key-value (i.e., key: value) format. In an embodiment, the
prepared metadata features may include at least one of
software package information, installation requirement
information, metadata version information, license informa-
tion, supported programming languages information, entry
point information, description information, or platform
information. The software package information may be
associated with the software package and may include
information related to, but not limited to, a name of the
software package, a URL associated with the software
package, an alias name of the software package, or a version
of the software package. The installation requirement infor-
mation may include information related to one or more
software or hardware resources that may be required for a
computer to install and/or execute a source code associated
with the software package. The metadata version informa-
tion may include information associated with a version of
the package metadata 306. The license information may
include information associated with a type of license asso-
ciated with the software package. The supported program-
ming languages information may include information asso-
ciated with one or more programming languages that may
have been used in preparation of the source code of the
software package. The keywords information may include
information associated with one or more keywords used in
the preparation of the source code of the software package.
The entry point information may include information asso-
ciated with one or more entry points within the source code
of the software package. The description information may
include information related to, but is not limited to, a
summary of the software package, a project description of
the software package, and a short description of the software
package. The platform information may include information
related to, but is not limited to, a platform (or operating
system) required for the execution of the source code
associated with the software package.

US 2023/0107242 Al

[0069] As a first example, if the name of software package
is “ABC”, then the corresponding metadata feature may be
represented as (“package_name”,“ABC). As another
example, if the metadata version associated with the soft-
ware package “ABC” is “1.0”, the corresponding metadata
feature may be represented as (“metadata_version”,*1.0”).
[0070] At 414, a hierarchy model may be generated. The
hierarchy model may be generated by including the source
code files and the metadata features. The source code files,
and the metadata features may be included in accordance
with an order of priority. In an embodiment, the order of
priority may be pre-defined or preset based on rules and
criteria. Details about the hierarchy model and the genera-
tion of the hierarchy model are provided, for example, in
FIG. 5.

[0071] At 416, a set of target portions the source code
included in the source code files 304 may be identified. Each
of the set of the target portions of the source code may be
identified from the source code files using the hierarchy
model. In an embodiment, the set of target portions may
correspond to functions or classes that may be used in the
source code. Details about the identification of the set of
target portions are provided, for example, in FIG. 6.
[0072] At 418, one or more source code files of the source
code files may be updated. In an embodiment, the system
102 may be configured to update one or more source code
files of the source code files by using the metadata features.
As discussed, the metadata features may be represented as
key-value pairs. The system 102 may be configured to
update the one or more source code files by performing at
least one of a revision of existing code comments that may
be associated with the set of target portions and an addition
of new code comments for the set of target portions.
[0073] In an embodiment, the system 102 may be config-
ured to search for keys of the metadata features in the one
or more source code files. The search may be performed
within a content of the set of target portions. Specifically, the
search may be performed in the content that may be within
a scope of the set of target portions.

[0074] Based on the search, the system 102 may be
configured to determine pieces of the content that includes
keywords matching at least a subset of the keys of the
metadata features. The determined pieces of content may
correspond to the existing code comments. The system 102
may be configured to replace the keywords in the existing
code comments with values corresponding to the subset of
the keys in the metadata features. This replacement of the
keywords in the existing code comments with values cor-
responding to a subset of the keys in the metadata features
may correspond to the revision of the existing code com-
ments.

[0075] Inaccordance with an embodiment, the system 102
may be configured to update the one or more source code
files by addition of new code comments for the set of target
portions. Each of the new code comments may include a key
of the subset of the keys and a value corresponding to the
key in the metadata features. Each of the new code com-
ments may be included in a proximity of a respective target
portion of the set of target portions of the source code. With
reference to the FIG. 3A and the first example, at least one
of'the source code files may be updated by addition of a new
comment “ABC is a Python package that provides fast,
flexible, and expressive data structures designed to make
working with “relational” or “labeled” data both easy and

Apr. 6, 2023

intuitive. It aims to be the fundamental high-level building
block for doing practical, real world data analysis in Python.
Additionally, it has the broader goal of becoming the most
powerful and flexible open source data analysis/manipula-
tion tool available in any language. It is already well on its
way towards this goal.” Details related to update of the one
or more source code files are provided, for example, in FIG.
6.

[0076] At 420, a dataset of natural language (NL) text
features and respective code features may be generated. In
an embodiment, the system 102 may be configured to
generate the dataset of the NL text features and the code
features. The dataset may be generated by using the updated
one or more source code files. Details about the generation
of the dataset are provided in FIG. 7, for example.

[0077] At 422, the language model 106 may be trained on
the sequence-to-sequence generation task based on the gen-
erated dataset. The sequence-to-sequence generation task
may be one a code synthesis task, a code retrieval task, or a
software package analysis task. The language model may be
trained to generate lines of computer executable code for a
natural language query as an input to the language model
106. In an embodiment, the language model may be imple-
mented using Deep Neural Network(s) that use an encoder-
decoder architecture. If a pre-trained language model exists,
then the system 102 may fine-tune the pre-trained language
model based on the generated dataset. In fine-tuning,
examples of the dataset 114 may be used to update param-
eters such as weights of the pre-trained language model.
Details about training the language model 106 are provided,
for example, in FIG. 7.

[0078] Control may pass to end. Although the flowchart
400 is illustrated as discrete operations, such as 402, 404,
406, 408, 410, 412, 414, 416, 418, 420, and 422. However,
in certain embodiments, such discrete operations may be
further divided into additional operations, combined into
fewer operations, or eliminated, depending on the particular
implementation without detracting from the essence of the
disclosed embodiments.

[0079] FIG. Sillustrates an exemplary hierarchy model for
code enrichment through metadata for code synthesis,
according to at least one embodiment described in the
present disclosure. FIG. 5 is explained in conjunction with
elements from FIG. 1, FIG. 2, FIG. 3A, FIG. 3B, and FIG.
4. With reference to FIG. 5, there is shown a hierarchy model
500. There is further shown package data 502, source code
files 504, and metadata features 506.

[0080] In an embodiment, the system 102 may be config-
ured to acquire package data 502 associated with a software
package from a data source. The package data 502 may
include the source code files 504 and package metadata
associated with the software package. By way of example,
and not limitation, the source code files 504 may include, a
“PKG-INFO” file, a “Setup.py” file, an “_init_" file, and a
“*py” file. In an embodiment, the asterisk in “*.py” may
indicate that all the files with a “.py” extension may be
considered as part of in the source code files.

[0081] The system 102 may be further configured to
extract the additional metadata associated with the software
package from the source code files 504. Based on the
package metadata and the extracted additional metadata, the
system 102 may be configured to prepare metadata features
(A,) 506. The system 102 may be further configured to
generate the hierarchy model 500. The hierarchy model 500

US 2023/0107242 Al

may include the source code files 504 and the metadata
features 506. The source code files 504 and the metadata
features 506 may be arranged in an order of priority. In an
embodiment, the order of priority may be pre-decided or
preset based on rules and criteria. For example, the “PKG-
INFO” file may have highest priority and therefore may be
placed at the top in the hierarchy model 500. The “Setup.py”
may have a second highest priority after the “PKG-INFO”
file and therefore may be placed below the “PKG-INFO” file
in the section associated with the source code files 504 in the
hierarchy model 500. From the metadata features 506, a
metadata feature with key “packages” and the corresponding
value from the “Setup.py” file may have the highest priority
among the metadata features and therefore, such a metadata
feature may be placed in the top of the hierarchy model 500.
As another example, the metadata feature with key “install_
requires” and the corresponding value from the “Setup.py”
file may have the second highest priority within the metadata
features 506. Therefore, such a feature may be placed right
below the metadata feature with key “packages”.

[0082] In an embodiment, the metadata features 506 may
be represented by A, and may include, for example, a first
metadata feature (A)), a second metadata feature (A,), a
third metadata feature (A;), a fourth metadata feature(A,), a
fifth metadata feature (As), a sixth metadata feature (Ay), a
seventh metadata feature (A,), an eight metadata feature
(Ag), and a ninth metadata feature (A,. Mathematically, the
metadata features may be represented by equation (1) as
follows:

A[AL Az, Az, Ay, As, Ag, Az, Ag, Agl M

[0083] In an embodiment, the metadata features 506 may
include at least one of software package information, instal-
lation requirement information, metadata version informa-
tion, license information, supported programming languages
information, entry point information, description informa-
tion, or platform information. Specifically, the first metadata
feature (A,) may include software package information, the
second metadata feature (A,) may include the installation
requirement information, the third metadata feature (A;)
may include the metadata version information, the fourth
metadata feature (A,) may include the license information,
the fifth metadata feature (A,) may include the supported
programming languages information, the sixth metadata
feature (A;) may include the keywords information, the
seventh metadata feature (A,) may include the entry point
information, the eighth metadata feature (Ag) may include
the description information, and the ninth metadata feature
(A,) may the platform information.

[0084] In an embodiment, the software package informa-
tion associated with the first metadata feature (A,) may be
extracted from “Setup.py” file, the installation requirement
information associated with the second metadata feature
(A,) may be extracted from “Setup.py” file, the metadata
version information associated with the third metadata fea-
ture (A;) may be extracted from “PKG-INFO” file, the
license information associated with the fourth metadata
feature (A,) may be extracted from “PKG-INFO” file, the
supported programming languages information associated
with the second metadata feature (A5) may be extracted
from “PKG-INFO” file, the keywords associated with the
sixth metadata feature (A,) may be extracted from “Setup.
py” file, the entry point information associated with the
seventh metadata feature (A,) may be extracted from “Set-

Apr. 6, 2023

up.py” file, the description associated with the eighth meta-
data feature (Ag) may be extracted from “PKG-INFO” file,
and the platform information associated with the ninth
metadata feature (A,) may be extracted from “PKG-INFO”
file.

[0085] The system 102 may be further configured to
identify a set of target portions of the source code included
in the source code files 504 by using the generated hierarchy
model 500. The set of target portions may correspond
functions or classes that may be used in the source code. The
identified set of target portions may have to be updated using
the metadata features 506. Details about updating the set of
target portions are provided, for example, in FIG. 6.

[0086] In an embodiment, the system 102 may be config-
ured to generate an index list based on identified set of target
portions. Specifically, the system 102 may be configured to
generate the index list of one or more classes in the identified
set of target portions, based on a presence of one or more
functions (or methods) associated with the one or more
classes in the identified set of target portions.

[0087] By using the index list, the system 102 may be
configured to search for keys of the metadata features 506 in
the one or more source code files. Specifically, the search
may be performed within a content of the set of target
portions. In an embodiment, the content of the set of target
portions may include comments or docstrings (written in the
one or more source code files) associated with the corre-
sponding set of target portions. An example of the content of
target portions that include comments or docstrings is pro-
vided, for example, in FIG. 6. The system 102 may be
configured to determine pieces of the content that include
keywords matching at least a subset of the keys of the
metadata features 506. In an embodiment, the determined
pieces of the content may correspond to existing code
comments. As an example, a piece of the content that
corresponds to existing code comments may be given as
follows:

[0088] “Parameters arrays:Iterator[np.ndarray] num_item-
s:int Returns np.ndarray[uint64|Should be the same as
CPython’s tupleobject.c”

[0089] The system 102 may be configured to update one or
more source code files of the source code files 504 by using
the metadata features 506. The one or more source code files
may be updated by performing a revision of the existing
code comments associated with the set of target portions.
The revision of the existing code comments may be per-
formed by replacing the keywords in the existing code
comments with values corresponding to the subset of the
keys in the metadata features 506.

[0090] In another embodiment, the system 102 may be
configured to update one or more source code files of the
source code files 504 by using the metadata features 506 and
by performing addition of new code comments for the set of
target portions. Each of the new code comments may include
a key of the subset of the keys and a value corresponding to
the key in the metadata features 506. In an embodiment,
each of the new code comments may be included in a
proximity of a respective target portion of the set of target
portions of the source code. For example, the new comment
may be included immediately before or immediately after
the source code of the respective target portion. Details
about the addition of the new comment are provided, for
example, in FIG. 6.

US 2023/0107242 Al

[0091] FIG. 6 illustrates an exemplary scenario for updat-
ing one or more source code files for code enrichment
through metadata for code synthesis, according to at least
one embodiment described in the present disclosure. FIG. 6
is explained in conjunction with elements from FIG. 1, FIG.
2, FIG. 3A, FIG. 3B, FIG. 4, and FIG. 5. With reference to
FIG. 6, there is shown a scenario 600. There is further shown
a system 602, a first source code file 604, and an updated first
source code file 606. The system 602 may be an exemplary
implementation of the system 102 of FIG. 1 or FIG. 2.

[0092] In an embodiment, the system 602 may be config-
ured to acquire the package data 302 associated with a
software package from the data source 104. The package
data 302 may include the source code files 304 and the
package metadata 306 associated with the software package.
The source code files 304 may include the first source code
file 604. In an embodiment, the first source code file 604
may include a first source code 604A. The system 602 may
be further configured to extract additional metadata 312 that
may be associated with the software package from the
source code files 304. The system 602 may be further
configured to prepare metadata features based on the pack-
age metadata 306 and the additional metadata. The system
602 may be further configured to identify a set of target
portions of a source code included in the source code files
304. The set of target portions may correspond to functions
or classes that may be used in the first source code 604A.

[0093] Based on the identification of the set of target
portions, the system 102 may be further configured to update
the first source code file 604 by using the metadata features
to generate the updated first source code file 606. The first
source code file 604 may be updated by an addition of a new
code comment 608 for the set of target portions. The new
code comment 608 may include a key of the subset of the
keys and a value corresponding to the key in the metadata
features as explained in 500. For example, if the metadata
feature is (“package_name”,“ABC”), then the new code
comment 608 may be “ABC is a Python package that
provides fast, flexible, and expressive data structures”.

[0094] As another example, if the package metadata asso-
ciated with a software package includes “Read a table of
fixed-width formatted lines into DataFrame.”, then the
source code files associated with the corresponding software
package may include the following:

“z = ZipFile(io.BytesIO(content), ‘r’)
sg = z.read(‘19SG__DESC.txt’).decode(‘latin-1")
dx = z.read(*19DX__ DESC.txt’).decode(‘latin-1")
sg = pd. read_ fwf (
io. Stringto(sg),
widths=[5, 200),
names=[‘icd_predr_cd’, ‘desc’],
dtype={‘icd_predr_cd’: ‘str’})
dx = pd. read__fwi{
io. Stringlo(dx),
widths=[5, 200),
names=[‘icd_ dgns_ cd’, ‘desc’],
dtype={‘icd_dgns_cd’: ‘str’})”

[0095] The system 602 may be configured to update the
above-mentioned source code based on the metadata fea-
tures that may be prepared from the package metadata.
Specifically, the system 102 may prepare the metadata
features which may include the name of the function i.e. “pd.
read_fwt” and identify the set of target portions which may

Apr. 6, 2023

include the function “pd. read_fwf”. The system 602 may
add new comment in a proximity (e.g., immediately before
starting) of a respective target portion to update the code.
The updated code may be given as follows:

“z = ZipFile(io.BytesIO(content), ‘r’)
sg = z.read(*19SG__DESC.txt’).decode(‘latin-1")
dx = z.read(*19DX__ DESC.txt").decode(‘latin-1")
Read a table of fixed-width formatted lines into DataFrame.
sg = pd. read_ fwf (

io. Stringto(sg),

widths=[5, 200),

names=[‘icd_predr_cd’, ‘desc’],

dtype={‘icd_predr_cd’: ‘str’})
Read a table of fixed-width formatted lines into DataFrame.
dx = pd. read__fwf{(

io. Stringlo(dx),

widths=[5, 200),

names=[‘icd__dgns_ cd’, ‘desc’],

dtype={‘icd_dgns_cd’: ‘str’})”

[0096] FIG. 7 is a diagram that illustrates an exemplary
scenario for training of a language model for code synthesis,
in accordance with example embodiments. FIG. 7 is
explained in conjunction with elements from FIG. 1, FIG. 2,
FIG. 3A, FIG. 3B, FIG. 4, FIG. 5, and FIG. 6. With reference
to FIG. 7, there is shown an exemplary scenario 700. In FIG.
7, there is shown a system 702 that may include a language
model 704. The system 702 may be an exemplary imple-
mentation of the system 102 of FIG. 1 or FIG. 2. There is
further shown a first training sample 706 of a plurality of
training samples included in the dataset, an input 708, and an
output 710.

[0097] In an embodiment, the system 102 may operate in
two phases—a setup phase and a prediction phase. The
system 102 may operate in the prediction phase after one or
more operations of the setup phase has been executed.
[0098] In the setup phase, the system 702 may be config-
ured to train the language model 704 on a sequence-to-
sequence generation task. To train the language model 704,
the system 702 may be configured to generate the dataset of
NL text features and respective code features as training data
by using the updated one or more source code files. The
dataset may include the plurality of training samples. Each
training sample of the plurality of training samples in the
dataset may include an NL text feature and a respective code
feature. For example, the first training sample 706 of the
plurality of training samples may include first NL text
features 706A and first code features 706B.

[0099] The language model 704 may be trained on a
sequence-to-sequence generation task based on the gener-
ated dataset. The sequence-to-sequence generation task may
be one of a code synthesis task, a code retrieval task, or a
software package analysis task. In an embodiment, the
language model 704 may be a deep neural network that may
use an encoder-decoder architecture. In an embodiment, the
language model 704 may be trained to generate the lines of
computer executable code for a natural language query as an
input to the language model 704.

[0100] In an embodiment, the system 702 may be config-
ured to extract an NL text feature and a respective code
feature from the dataset. The system 702 may be further
configured to generate embeddings of the extracted NL text
feature and the respective code feature for training of the
language model 704 on the sequence-to-sequence genera-
tion task using the generated embedding. In an embodiment,

US 2023/0107242 Al

the system 702 may generate a plurality of tokens from the
text features and the respective code features, based on the
generated plurality of tokens. The embedding of the
extracted NL text feature and the respective code feature
may correspond to a concatenated vector representation of
the extracted NL text feature and the respective code feature.
[0101] In the prediction phase, the system 702 may be
configured to receive the input 708. The input 708 may be
received from the user 116 via the user device 108 and may
include the natural language query. By way of example, and
not limitation, the natural language query may include a text,
such as “hashing a content for ABC data frame”. Upon
reception, the system 702 may be configured to apply the
trained language model 704 on the received input 708 and
generate the output 710 based on the application of the
language model 704 on the received input 708. The gener-
ated output may include lines of computer executable code
associated with the natural language query, as shown in FIG.
7, for example.

[0102] In an embodiment, the system 702 may be config-
ured to fine-tune a pre-trained language model. The fine-
tuning of the pre-trained language model may correspond to
adjusting the pre-trained language model to achieve desired
output or performance. The system 702 may fine-tune the
pre-trained language model using the generated dataset.
Specifically, the system 702 may update parameters such as
weights of the pre-trained language model using the gener-
ated dataset.

[0103] In an embodiment, the received input 708 may
correspond to a license associated with package data, or a
category of computer-executable code (such as Web-devel-
opment, Application—development, mobile application
development. As an example, if the received input 708
corresponds to the category of computer-executable code,
then the generated output 710 may include all the codes
associated with the corresponding category.

[0104] It should be noted that the enrichment of the one or
more source code files with the metadata features and then
training the language model may improve the performance
of the language model in downstream tasks such as code
synthesis or code retrieval. In case the source code files lack
user comments, the disclosure provides a method to auto-
matically add new comments from the metadata associated
with the corresponding package.

[0105] Various embodiments of the disclosure may pro-
vide one or more non-transitory computer-readable storage
medium configured to store instructions that, in response to
being executed, cause a system (such as the system 102) to
perform operations. The operations may include acquiring
package data associated with a software package from a data
source. The package data may include source code files and
package metadata associated with the software package. The
operations may further include extracting additional meta-
data associated with the software package from the source
code files. The operations may further include preparing
metadata features based on the package metadata and the
additional metadata. The operations may further include
identifying a set of target portions of a source code included
in the source code files. The operations may further include
updating one or more source code files of the source code
files by using the metadata features. The one or more source
code files may be updated by performing at least one of a
revision of existing code comments that are associated with
the set of target portions, and an addition of new code

Apr. 6, 2023

comments for the set of target portions. The operations may
further include generating a dataset of natural language (NL)
text features and respective code features by using the
updated one or more source code files. The operations may
further include training a language model on a sequence-to-
sequence generation task based on the generated dataset.
[0106] As indicated above, the embodiments described in
the present disclosure may include the use of a special
purpose or general-purpose computer (e.g., the processor
202 of FIG. 2) including various computer hardware or
software modules, as discussed in greater detail below.
Further, as indicated above, embodiments described in the
present disclosure may be implemented using computer-
readable media (e.g., the memory 204 or the persistent data
storage 206 of FIG. 2) for carrying or having computer-
executable instructions or data structures stored thereon.
[0107] As used in the present disclosure, the terms “mod-
ule” or “component” may refer to specific hardware imple-
mentations configured to perform the actions of the module
or component and/or software objects or software routines
that may be stored on and/or executed by general purpose
hardware (e.g., computer-readable media, processing
devices, or some other hardware) of the computing system.
In some embodiments, the different components, modules,
engines, and services described in the present disclosure
may be implemented as objects or processes that execute on
the computing system (e.g., as separate threads). While
some of the systems and methods described in the present
disclosure are generally described as being implemented in
software (stored on and/or executed by general purpose
hardware), specific hardware implementations or a combi-
nation of software and specific hardware implementations
are also possible and contemplated. In this description, a
“computing entity” may be any computing system as pre-
viously defined in the present disclosure, or any module or
combination of modulates running on a computing system.
[0108] In accordance with common practice, the various
features illustrated in the drawings may not be drawn to
scale. The illustrations presented in the present disclosure
are not meant to be actual views of any particular apparatus
(e.g., device, system, etc.) or method, but are merely ideal-
ized representations that are employed to describe various
embodiments of the disclosure. Accordingly, the dimensions
of the various features may be arbitrarily expanded or
reduced for clarity. In addition, some of the drawings may be
simplified for clarity. Thus, the drawings may not depict all
of the components of a given apparatus (e.g., device) or all
operations of a particular method.

[0109] Terms used in the present disclosure and especially
in the appended claims (e.g., bodies of the appended claims)
are generally intended as “open” terms (e.g., the term
“including” should be interpreted as “including, but not
limited to,” the term “having” should be interpreted as
“having at least,” the term “includes” should be interpreted
as “includes, but is not limited to,” among others).

[0110] Additionally, if a specific number of an introduced
claim recitation is intended, such an intent will be explicitly
recited in the claim, and in the absence of such recitation no
such intent is present. For example, as an aid to understand-
ing, the following appended claims may contain usage of the
introductory phrases “at least one” and “one or more” to
introduce claim recitations.

[0111] In addition, even if a specific number of an intro-
duced claim recitation is explicitly recited, those skilled in

US 2023/0107242 Al

the art will recognize that such recitation should be inter-
preted to mean at least the recited number (e.g., the bare
recitation of “two recitations,” without other modifiers,
means at least two recitations, or two or more recitations).
Furthermore, in those instances where a convention analo-
gous to “at least one of A, B, and C, etc.” or “one or more
of A, B, and C, etc.” is used, in general such a construction
is intended to include A alone, B alone, C alone, A and B
together, A and C together, B and C together, or A, B, and
C together, etc.
[0112] Further, any disjunctive word or phrase presenting
two or more alternative terms, whether in the description,
claims, or drawings, should be understood to contemplate
the possibilities of including one of the terms, either of the
terms, or both terms. For example, the phrase “A or B”
should be understood to include the possibilities of “A” or
“B” or “A and B.”
[0113] However, the use of such phrases should not be
construed to imply that the introduction of a claim recitation
by the indefinite articles “a” or “an” limits any particular
claim containing such introduced claim recitation to
embodiments containing only one such recitation, even
when the same claim includes the introductory phrases “one
or more” or “at least one” and indefinite articles such as “a”
or “an” (e.g., “a” and/or “an” should be interpreted to mean
“at least one” or “one or more”); the same holds true for the
use of definite articles used to introduce claim recitations.
[0114] Additionally, the use of the terms “first,” “second,”
“third,” etc., are not necessarily used herein to connote a
specific order or number of elements. Generally, the terms
“first,” “second,” “third,” etc., are used to distinguish
between different elements as generic identifiers. Absence a
showing that the terms “first,” “second,” “third,” etc., con-
note a specific order, these terms should not be understood
to connote a specific order. Furthermore, absence a showing
that the terms “first,” “second,” “third,” etc., connote a
specific number of elements, these terms should not be
understood to connote a specific number of elements. For
example, a first widget may be described as having a first
side and a second widget may be described as having a
second side. The use of the term “second side” with respect
to the second widget may be to distinguish such side of the
second widget from the “first side” of the first widget and not
to connote that the second widget has two sides.
[0115] All examples and conditional language recited in
the present disclosure are intended for pedagogical objects
to aid the reader in understanding the invention and the
concepts contributed by the inventor to furthering the art and
are to be construed as being without limitation to such
specifically recited examples and conditions. Although
embodiments of the present disclosure have been described
in detail, it should be understood that the various changes,
substitutions, and alterations could be made hereto without
departing from the spirit and scope of the present disclosure.
What is claimed is:
1. A method, executed by a processor, comprising:
acquiring package data associated with a software pack-
age from a data source, the package data comprising
source code files and package metadata associated with
the software package;
extracting additional metadata associated with the soft-
ware package from the source code files;
preparing metadata features based on the package meta-
data and the additional metadata;

Apr. 6, 2023

identifying a set of target portions of a source code

included in the source code files;

updating one or more source code files of the source code

files by using the metadata features, wherein the one or

more source code files are updated by performing at

least one of:

a revision of existing code comments that are associ-
ated with the set of target portions, and

an addition of new code comments for the set of target
portions;

generating a dataset of natural language (NL) text features

and respective code features by using the updated one
or more source code files; and

training a language model on a sequence-to-sequence

generation task based on the generated dataset.

2. The method according to claim 1, further comprising:

extracting a list of software packages from the data source

by using a repository address; and

scraping data related to the list of software packages from

the data source by using a web crawler, wherein the
package data associated with the software package is
acquired from the scraped data.
3. The method according to claim 1, wherein the package
metadata associated with the software package comprises at
least one of a name of the software package, one or more
classes used in the software package, a description of the
software package, a summary of the software package, a
programming language associated with the software pack-
age, an author of the software package, or a set of classifiers.
4. The method according to claim 1, wherein the prepa-
ration comprises parsing the package metadata and the
additional metadata into metadata features, each of which is
represented in a key-value format.
5. The method according to claim 1, wherein the metadata
features comprise at least one of software package informa-
tion, installation requirement information, metadata version
information, license information, supported programming
languages information, keywords information, entry points
information, description information, or platform informa-
tion.
6. The method according to claim 1, further comprising
generating a hierarchy model by including the source code
files and the metadata features in accordance with an order
of priority.
7. The method according to claim 6, wherein each of the
set of the target portions of the source code is identified from
the source code files using the hierarchy model.
8. The method according to claim 1, wherein the set of
target portions correspond to functions or classes used in the
source code.
9. The method according to claim 1, further comprising:
searching for keys of the metadata features in the one or
more source code files, wherein the search is performed
within a content of the set of target portions; and

determining, based on the search, pieces of the content
that include keywords matching at least a subset of the
keys of the metadata features, wherein the determined
pieces of the content correspond to the existing code
comments.

10. The method according to claim 9, wherein the revision
of'the existing code comments is performed by replacing the
keywords in the existing code comments with values cor-
responding to the subset of the keys in the metadata features.

US 2023/0107242 Al

11. The method according to claim 9, wherein each of the
new code comments includes a key of the subset of the keys
and a value corresponding to the key in the metadata
features, and

wherein each of the new code comments is included in a

proximity of a respective target portion of the set of
target portions of the source code.

12. The method according to claim 1, further comprising:

extracting an NL text feature and a respective code feature

from the dataset; and

generating embeddings of the extracted NL text feature

and the respective code feature, wherein the language
model is trained on the sequence-to-sequence genera-
tion task using the generated embedding.

13. The method according to claim 1, wherein the
sequence-to-sequence generation task is a code synthesis
task, a code retrieval task, or a software package analysis
task.

14. The method according to claim 1, further comprising:

receiving an input associated with data of an unseen

software package; and

generating lines of computer executable code based on

application of the trained language model on the
received input.

15. A non-transitory computer-readable storage medium
configured to store instructions that, in response to being
executed, causes a system to perform operations, the opera-
tions comprising:

acquiring package data associated with a software pack-

age from a data source, the package data comprising
source code files and package metadata associated with
the software package;

extracting additional metadata associated with the soft-

ware package from the source code files;

preparing metadata features based on the package meta-

data and the additional metadata;

identifying a set of target portions of a source code

included in the source code files;

updating one or more source code files of the source code

files by using the metadata features, wherein the one or

more source code files are updated by performing at

least one of:

a revision of existing code comments that are associ-
ated with the set of target portions, and

an addition of new code comments for the set of target
portions;

generating a dataset of natural language (NL) text features

and respective code features by using the updated one
or more source code files; and

training a language model on a sequence-to-sequence

generation task based on the generated dataset.

Apr. 6, 2023

16. The non-transitory computer-readable
medium according to claim 15,

wherein the operations further comprise:

extracting a list of software packages from the data
source by using a repository address; and

scraping data related to the list of software packages
from the data source by using a web crawler, wherein
the package data associated with the software pack-
age is acquired from the scraped data.

17. The non-transitory computer-readable storage
medium according to claim 15, wherein the metadata fea-
tures comprise at least one of software package information,
installation requirement information, metadata version
information, license information, supported programming
languages information, keywords information, entry points
information, description information, or platform informa-
tion.

18. The non-transitory computer-readable storage
medium according to claim 15, wherein the operations
further comprise generating a hierarchy model by including
the source code files and the metadata features in accordance
with an order of importance.

19. The non-transitory computer-readable storage
medium according to claim 18, wherein each of the set of the
target portions of the source code is identified from the
source code files using the hierarchy model.

20. A system, comprising:

a processor configured to:

acquire package data associated with a software pack-
age from a data source, the package data comprising
source code files and package metadata associated
with the software package;

extract additional metadata associated with the soft-
ware package from the source code files;

prepare metadata features based on the package meta-
data and the additional metadata;

identify a set of target portions of a source code
included in the source code files;

update one or more source code files of the source code
files by using the metadata features, wherein the one
or more source code files are updated by performing
at least one of:
a revision of existing code comments that are asso-

ciated with the set of target portions, and
an addition of new code comments for the set of
target portions;

generate a dataset of natural language (NL) text fea-
tures and respective code features by using the
updated one or more source code files; and

train a language model on a sequence-to-sequence
generation task based on the generated dataset.

storage

#* #* #* #* #*

