
US 20220229694A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0229694 A1

Hampton (43) Pub . Date : Jul . 21 , 2022

Publication Classification (54) SYSTEMS AND METHODS FOR THREAD
MANAGEMENT TO OPTIMIZE RESOURCE
UTILIZATION IN A DISTRIBUTED
COMPUTING ENVIRONMENT

(71) Applicant : SailPoint Technologies , Inc. ,
Wilmington , DE (US)

(72) Inventor : Adam Ethan Hampton , Houston , TX
(US)

(51) Int . Ci .
G06F 9/48 (2006.01)
H04L 29/08 (2006.01)
G06F 9/50 (2006.01)

(52) U.S. Ci .
CPC G06F 9/4881 (2013.01) ; G06F 2209/5018

(2013.01) ; G06F 9/505 (2013.01) ; H04L 67/10
(2013.01)

(57) ABSTRACT
Systems and methods for embodiments for load attenuating
thread pools (LATP) that may be associated with a service
deployed in distributed computer environment , where that
service utilizes a shared resource . A LATP includes a thread
pool comprising a number of worker threads servicing
requests handled by a service that includes such a LATP . The
thread pool is managed by a thread pool manager of the
LATP that can attenuate (herein used to mean add , remove
or leave unchanged) the number of worker threads in the
thread pool based on a resource utilization metric associated
with the shared resource .

(21) Appl . No .: 17 / 489,539

(22) Filed : Sep. 29 , 2021 2

Related U.S. Application Data
(63) Continuation of application No. 17 / 153,970 , filed on

Jan. 21 , 2021 , now Pat . No. 11,163,606 .

WORKER THREADS BATCH
WORKLOAD 106 108

108 Il 102
SHARED

RESOURCE
120 108

QUEUED
WORK ITEMS 112

THREAD POOL
AND WORKLOAD

MANAGER

01) INTERACTIVE USER WORKLOAD

3 140

RESOURCE
COMMUNICATION
QUERIES AND
TRANSACTIONS

140

wy USER INTERFACE
WORKLOAD USERS

WORKER THREADS

BATCH WORKLOAD
106

108

104

Patent Application Publication

108

- lll

102

SHARED RESOURCE 120

108

QUEUED WORK ITEMS

112 THREAD POOL AND WORKLOAD MANAGER

00

INTERACTIVE USER WORKLOAD

Jul . 21 , 2022 Sheet 1 of 5

140

ka
140

RESOURCE COMMUNICATION QUERIES AND TRANSACTIONS

140

USER INTERFACE WORKLOAD

US 2022/0229694 A1

USERS

FIG . 1

US 2022/0229694 A1

00:00

00:00

00:00 05/30

00:00 06/01

00:00 06/04

05/31

06/02

06/03

06/05

0

mpany

Helicated that the

mother

??? ? ???

20

44. « 44. << < ** < 44 444 44 44+ 444

71

202 ZONE AVAILABLE CAPACITY
1

40

1

. ---

... -

.....

1
?

?? ?? ? ?? ? 1 1-27 128

???? ?? ???? ??? ????? ?? ??

cod

??? ??? ??? ?? ? ???? ????? ? ????? ???? ? ????? ???? ?????

FFFF . FI

77.788 -77 . PT . FI .

- - rr- FA - r .

1

Jul , 21 , 2022 Sheet 2 of 5

CPU UTILIZATION %

60

204 NOZ7707 CAPACITY

08

???? ??????? ???? " ???? ????? ??? ??

???? ?? ????

L

" ????????.???????? " " ????? ? : : " ! “ ???????? ????????? • ????????? . 5 ?????????? ?? ?? ????? ????????? " " ???? ? ' ?? ?? “ ?? ???? ?? ??? ?? ? " ??????

4914

?? ???? ?????

wwwyoung
pantang

Z

Z

CAPACITY EXCEEDED ZONE 204 (e.g. , LAST 20 % RESERVED)

hehendenekanandamanakamandamandamentalmente nakanakannandamantino mandamendamento mengaku

?? ?? ?? ??? ??? ?? ?? ? =

???? ??? ? ??? ???? ??

??? ????

???? ???? ?? ?? ?? ?? ?? ??? ??? ????

?? . ????? ????

???? ??? ????? ??? ? ?? ?? ?? ??? ???? ?????? ????

?? ?? ??? ????? ?????? ????? ??- ?? ???? ?? ???? ???? ??

???? ??? ???? ?? ???? ? ?? ???? ? ?

???? ? ?? FF ?? ??? ??

3

WWWWWW

FULL THRESHOLD

CAPACITY AVAILABLE THRESHOLD

120

FIG . 2

Patent Application Publication

RESOURCE UTILIZATION METRIC STORAGE 322

RESOURCE UTILIZATION METRIC QUERIES

LEEE

304

Patent Application Publication

they
?????

my

BATCH MICROSERVICE PROGRAM INSTANCE
306

WORKER THREADS

308

308

samomonymer

25

UTILIZATION METRICS

308

308

312 THREAD POOL AND WORKLOAD MANAGER

> BILI

(cca

Jul . 21 , 2022 Sheet 3 of 5

320 SHARED RESOURCE

BATCH MICROSERVICE PROGRAM INSTANCE

COMMON QUEUE OF WORK TEMS

54
308

RESOURCE COMMUNICATION QUERIES AND TRANSACTIONS
308

304

308

312 THREAD POOL AND WORKLOAD MANAGER

US 2022/0229694 A1

308

306

WORKER THREADS

FIG . 3

410

410

420

DI

SHARED RESOURCE

Patent Application Publication

FIG . 4

452

RESOURCE UTILIZATION INTERFACE

410 BATCH REQUEST QUEUE

DISTRIBUTED COMPUTING PLATFORM

450

405

WORK
405

405

WORK ITEM

WORK ITEM

Jul . 21 , 2022 Sheet 4 of 5

440

440

440

USER SERVICES

BATCH REQUEST SERVICE

BATCH REQUEST SERVICE

407

THREAD POOL AND WORKLOAD MANAGER

THREAD POOL AND WORKLOAD MANAGER

USER SERVICE

USER SERVICE

USER SERVICE

404

406

406

412

412

THREAD MANAGER UPDATER

1

476

408

408

THREAD POOL

408

THREAD 408 POOL

RESOURCE UTILIZATION METRIC

POLICY

THREAD MANAGEMENT CONFIGURATION
US 2022/0229694 A1

422

474

482

510

520

530

Patent Application Publication

YES

DELAY UNTIL NEW RESOURCE UTILIZATION METRIC AVAILABLE

NO

DYNAMIC CONTROL ENABLED ?

CAPACITY AVAILABLE ?

570

NO

CAPACITY

NO

YES

YES

CAPACITY EXCEEDED ?

NO

MAXIMUM THREADS ?

YES

540

LEAVE THREADS UNCHANGED
560

YES

NO

Jul . 21 , 2022 Sheet 5 of 5

ADD THREADS
550

YES

590

MINIMUM THREADS ?

580

NO REMOVE THREADS
582

US 2022/0229694 A1

FIG . 5

US 2022/0229694 A1 Jul . 21 , 2022
1

SYSTEMS AND METHODS FOR THREAD
MANAGEMENT TO OPTIMIZE RESOURCE

UTILIZATION IN A DISTRIBUTED
COMPUTING ENVIRONMENT

RELATED APPLICATION (S)
[0001] application is a continuation of , and claims a ben
efit of priority under 35 U.S.C. 120 of , U.S. patent applica
tion Ser . No. 17 / 153,970 filed Jan. 21 , 2021 , entitled “ SYS
TEMS AND METHODS FOR THREAD MANAGEMENT
TO OPTIMIZE RESOURCE UTILIZATION IN A DIS
TRIBUTED COMPUTING ENVIRONMENT , ” which is
hereby incorporated herein for all purposes .

TECHNICAL FIELD

[0002] This disclosure relates generally to management of
resources utilization in computing systems . In particular ,
embodiments of this disclosure relate to optimizing utiliza
tion of resources in a distributed computing environment
through thread management . Even more specifically ,
embodiments of this disclosure relate to the management of
resource utilization of a shared resource thorough workload
attenuation based on a resource utilization metric .

BACKGROUND

[0003] In distributed and networked computing systems
resource contention has become an increasingly prevalent
issue . Specifically , distributed computing processes may
utilize available resources in the computing environment . In
certain cases , the resource is provided on a computing
system or platform (used interchangeably) distinct from the
computing system on which the process is executing . The
computing process thus accesses the desired resource over a
computing network . Because of the distributed nature of
such computing environments the accessing computing pro
cess may access the resource without regard for (or knowl
edge of) other processes in the distributed environment that
are also utilizing the resource .
[0004] T accessed resources may , however , be finite
resources limited by a number of variables including soft
ware or hardware limitations associated with the resource
such as available TCP sockets , processor availability or
capabilities , or memory or other storage availability , among
others . Thus , contention for these shared resources resulting
from the use of these resources by processes in a distributed
computing processes may result in a degradation of the
performance of the resource and , in turn , the degradation of
the performance of the accessing processes themselves , as
these processes may depend on the operation of these

as a Service (SaaS) by hosting applications ; Infrastructure as
a Service (IaaS) by hosting equipment (servers , storage
components , network components , etc.) ; or a Platform as a
Service (PaaS) by hosting a computing platform (operating
system , databases , hardware , storage , etc.) . These services
are generally referred to by the umbrella term SaaS .
[0006] Many software providers have taken advantage of
these new delivery models to implement their software
solutions or applications (referred to as their software plat
form or solution) as a set of these services and to utilize
services provided by cloud computing providers . Typically ,
the set of services providing the software platform are
deployed in a cloud computing environment , as discussed .
Cloud computing resources are usually housed in large
server farms that run these services , in many cases using a
virtualized architecture wherein the service runs inside vir
tual servers , or so - called “ virtual machines ” (VMs) or “ con
tainers ” , that are mapped onto physical servers in a data
center facility . Many providers of cloud computing plat
forms that offer such cloud based resources currently exist ,
such as Amazon Web Services (AWS) , Google Cloud Plat
form , Microsoft Azure , etc. Thus , in many cases software
providers , such as enterprises or the like , may deploy their
software platform as a set of services on , or their software
platform may utilize resources provided by , a third - party
cloud computing platform such as AWS , alleviating the need
for such enterprises to provide the hardware infrastructure
for running or implementing such services or resources .
[0007] The use of such SaaS has resulted in a proliferation
of services . In fact , many implementations of computing
platforms have begun to utilize microservice architectures .
These architectures may employ microservices (which will
be understood to come in under the term services more
generally) which are generally numerous smaller , more
specific services , where multiple instances of a particular
microservice may exist . Typically , these instances of a
particular microservice may be dynamically variable such
that instances of a microservice may be created or depre
cated as needed in a computing platform . Moreover , the
implementation of multi - tenancy in such computing plat
forms has further increased the number and variability of
such services in many modern computing platforms .
[0008] While having many advantages then , the architec
tures of many modern distributed networked computing
platforms including an increased prevalence of services and
resources and increasing separation and distribution of such
services and resources has served to aggravate the resource
contention problem . Namely , there is a high likelihood that
these numerous distributed services will contend for a
limited shared resource , resulting in performance degrada
tion that , in turn , may negatively affect the performance of
the services utilizing the resource and , ultimately , may result
in a negative user experience for users (e.g. , human or
machine) of such services .
[0009] What is desired then , is a process control mecha
nism that may serve to mitigate the effects of resource
contention .

a

resources .

[0005] These problems are exacerbated by the architec
tures of a number of current implementations of these
distributed networked computer systems . Many times , the
services of a software platform (e.g. , sometimes referred to
as web services) are provided in the context of cloud
computing . A cloud computing based service or resource
generally refers to a service or resource that allows request
ers (e.g. , clients such as other services or systems) to access
operations provided by the service through one or more
requests sent over a network (the Internet , for example)
using an interface (e.g. , a Representational State Transfer , or
RESTful , interface or the like) provided by the service . In
this manner , a service may , as examples , provide Software

SUMMARY
[0010] As mentioned , the architectures of many modern
distributed networked computing platforms including an
increased prevalence of services and resources and increas
ing separation and distribution of such services and
resources has served to aggravate the resource contention

US 2022/0229694 A1 Jul . 21 , 2022
2

a

problem . Namely , there is a high likelihood that these
numerous distributed services will contend for a limited
shared resource , resulting in performance degradation that ,
in turn , may negatively affect the performance of the ser
vices utilizing the resource and , ultimately , may result in a
negative user experience for users (e.g. , human or machine)
of such services .
[0011] It may be useful to illustrate certain examples of
such resource contention and its detrimental effects . As but
one example , many SaaS environments are set up as a set of
services deployed to implement a computing platform .
These services may share the use of cloud deployed
resources such as a relational database or the like (e.g. , AWS
Relational Database Service (RDS) or the like) . Some of
these services may be adapted to handle user requests for
functionality of the computing platform , such as requests
coming in through a client or web based interface to the
computing platform . Thus , these services may be expected
to respond to such requests in real - time and to avoid timing
out or the like . Accordingly , response time of those services
to those requests may be important as it affects response
times of those services to user requests and thus the user
experience .
[0012] In contrast , some of the services of the computing
platform may be adapted to service “ batch ” (or other)
requests (collectively referred to as batch requests) that may
be , for example , internal to the computing platform or
otherwise involved with the operation of the platform and
which may require the processing of large amounts of data .
Often time such requests are services in the background of
the processing of such computing platforms . These batch
requests may include requests associated with the collection
or transformation of data such as extract , transform and load
(ETL) processing from source systems or the like . Thus ,
while there is no real - time requirement for the processing of
such requests , the services that are adapted to process these
batch request may nonetheless contend for the same cloud
deployed resources (e.g. , storage such as relational data
systems) as the other services of the computing platform ,
including those that have real - time response requirements
such as those that service user requests . In other words , these
shared resources may simultaneously be utilized in the
servicing of user interface requests and (e.g. , queued , back
ground) batch tasks .
[0013] Many of these types of shared resource (e.g. ,
relational database software engines) do not horizontally
scale or do not scale efficiently or on demand , and cannot
vertically scale without software downtime that negatively
impacts service availability . When these shared resources
become saturated or overloaded with processing requests the
user experience can thus degrade as it affects the services of
the computing platform servicing these requests . Such deg
radation can happen when the interface to the shared
resource (e.g. , relational database system) perceptibly slows
down or outright fails due to timing out . Computing plat
forms that place no controls on utilization of these shared
resources may thus be exposed to outages or poor perfor
mance due to saturation or overload of those shared
resources . These outages or degradations may occur , for
example , during times when large queues of batch work are
queued to be processed and when high volumes of user
driven traffic demands timely responses from these shared
resource . These problems are pronounced in multi - tenant
SaaS computing platforms where one tenant can cause a

large (e.g. , batch) task to be performed , where the perfor
mance of this task negatively impacts the performance of the
computing platform for other tenants . This type of perfor
mance degradation is colloquially known as the “ noisy
neighbor ” problem .
[0014] Simple solutions to these problems place a fixed
limit of how much load the queued batch jobs may place on
the shared resource . This fixed limit is usually manually
configured . Such solutions are not dynamic then ; they sim
ply restrict batch job throughput down to a level that is
heuristically shown to not negatively impact the user expe
rience . Implementations of these systems may thus simply
reduce the number of service instances or requests that can
concurrently connect to the shared resource , or they may
institute semaphores or other gating limits that prevent too
many sources of load from transacting with the shared
resource concurrently . These fixed systems require manual
tuning and importantly leave a lot of available compute
capacity unused and idle during periods of lower demand
from servicing user interface requests .
[0015] Accordingly , an effective control mechanism is
desired in distributed computing platforms to prevent out
ages or service degradation in these platforms due to
increased processing latency of shared resources . It is also
desirable that such a control mechanism mitigate the risk of
“ noisy neighbor ” problems , where different tenants ' batch
jobs or user interface load cause perceptible degradation for
other users .
[0016] To those ends , among others , embodiments as
disclosed herein provide systems and methods for load
attenuating thread pools (LATP) that may be associated with
a service deployed in distributed computer environment ,
where that service utilizes a shared resource . A LATP
includes a thread pool comprising a number of worker
threads servicing requests handled by a service that includes
such a LATP . The thread pool is managed by a thread pool
manager of the LATP that can attenuate (herein used to mean
add , remove or leave unchanged) the number of worker
threads in the thread pool based on a resource utilization
metric associated with the shared resource . In particular , at
some time interval a resource utilization metric associated
with the shared resource may be obtained and evaluated
using a thread policy . This resource utilization metric may
be a I / O metric , a network metric or a CPU utilization metric
or the like that is offered by the provider of the shared
resource and accessible through an interface associated with
the provider of the shared resource . Depending on the results
of the evaluation of the resource utilization metric , threads
may be added to the thread pool , threads of the pool may be
removed (e.g . , killed or made idle) or the number of threads
may be unchanged .
[0017] Such LATPs may be useful when used with mul
tiple autonomous services that are accessing a shared
resources where there is little to no ability to determine
concurrency or threading of these other services , or of
controlling the processing or implementation of these
remotely shared resources , such as when the shared resource
is a remote shared resource offered by a cloud service
provider or the like . Thus , the resource utilization metrics
can serve a proxy for the load of the shared resource across
the distributed computing environment , allowing services
within that environment to tailor their own usage of the
shared resource to ensure that headroom or availability of

a

US 2022/0229694 A1 Jul . 21 , 2022
3

a

a

that shared resource to handle higher priority or particular
types of requests from within that distributed computing
environment .
[0018] As such , embodiments may be especially useful
when deployed to manage the utilization of a shared
resource in a distributed computing environment that has
(batch) services for batch (e.g. , background or lower prior
ity) work items and higher priority items such as user
requests . A load attenuating thread pool may be utilized with
each of the batch services for processing batch work items
such that each of the batch services includes a LATP . Each
LATP associated with a batch service may operate indepen
dently to manage the thread pool for that particular service
based on the resource utilization metric associated with the
shared resource . Thus , there may be no coordination
between the LATPs of each batch service or the batch
services (e.g. , LATP thread managers may not communicate
or have any awareness of other LATP thread managers or
even of other services) in managing their respective thread
pools . Based on the resource utilization metric associated
with the shared resource , each LATP manager determines
(e.g. , independently) whether to add more worker threads to
processing batch requests for that batch service instance ,
leave the number of thread unchanged , or to remove (e.g. ,
kill or idle) the number of threads for that batch service
instance . As LATP thread managers may be adapted not to
operate in synchronicity (e.g. , accessing the resource utili
zation metric or making attenuation determinations at the
same time or operating according to the same time interval ,
etc.) the thread adjustments for the thread pool for each
service may be distributed across the time interval or inter
vals utilized by such LATP thread manager and may occur
at different times . Accordingly , LATP thread managers may
be thought of as acting autonomously for a cooperative
shared goal of optimizing shared resource utilization (e.g. ,
such that higher priority requests from other services may be
processed by the shared resource in a timely manner) .
[0019] In one embodiment , a distributed computing sys
tem can include a set of first lower priority services , each
lower priority service comprising a load attenuated thread
pool comprising a thread pool manager and a thread pool
comprising a set of threads , where each thread of the thread
pool utilizes a shared resource deployed at a computing
platform accessible over a computing network by the lower
priority service . The distributed computing system also
includes a set of higher priority services , each higher priority
service adapted to process work items utilizing the shared
resource . These higher priority services may , for example ,
be associated with user interface requests of the distributed
computing system .
[0020] In this embodiment , each thread pool manager of
each service is independently adapted to , at a time interval :
determine a resource utilization metric associated with the
shared resource and evaluate the resource utilization metric
associated with the shared resource against a policy defining
a capacity full threshold and a capacity available threshold
to determine if the resource utilization metric falls into a
capacity exceeded zone , a capacity full zone or a capacity
available zone . When the resource utilization metric falls
into a capacity exceeded zone , a removal thread number is
determined and that removal thread number of threads
removed from an existing number of the set of threads of the
thread pool . When the resource utilization metric falls into
a capacity available zone a thread addition number is

determined and that thread addition number of threads is
added to the existing number of the set of threads of the
thread pool . When the resource utilization metric falls into
a capacity full zone the set of threads is left unchanged .
[0021] In some embodiments , determining the removal
thread number comprises applying a back - off ratio defined
in the policy to the existing number of the set of threads or
a maximum number of threads as defined in the policy .
[0022] In particular embodiments , the resource utilization
metric is a hardware or network utilization metric associated
with a total load placed on the shared resource , such as the
CPU utilization of the computing platform on which the
shared resource is deployed . This computing platform may
be , for example , a (e.g. , third party) cloud based computing
platform .
[0023] Specific embodiments may include thread manager
updater adapted to access the shared resource , obtain the
resource utilization metric , and store the resource utilization
metric at a storage location , wherein each thread pool
manager accesses the resource utilization metric at the
storage location .
[0024] Embodiments thus provide numerous advantages
over previously available systems and methods for manag
ing resource utilization . In particular , embodiments that
employ the LATP approach to shared resource management
may improve response times for high priority requests that
it is desired to respond to in real - time or near real - time
(collectively real - time) avoiding time out issues and improv
ing usability and user experiences with distributed comput
ing platforms . More specifically , the LATP approach of
embodiments allows a granular attenuation of load , includ
ing down to individual worker thread counts . Embodiments
utilizing the LATP approach allow potentially faster feed
back loop iteration , limited only by the frequency of updates
from the resource utilization metric by the provider of the
shared resource . The LATP approach has other advantages :
attenuating threads in a pool is faster and more granular than
attenuating the number of running containers . Moreover , the
LATP approach provides a smoother decision process for
electing when to vertically up - scale portions of other infra
structure . With LATP as employed in embodiments outages
of infrastructure to address resource contention issues (e.g. ,
to increase the compute resources available to shared
resources) may no longer be required .
[0025] These , and other , aspects of the disclosure will be
better appreciated and understood when considered in con
junction with the following description and the accompa
nying drawings . It should be understood , however , that the
following description , while indicating various embodi
ments of the disclosure and numerous specific details
thereof , is given by way of illustration and not of limitation .
Many substitutions , modifications , additions and / or rear
rangements may be made within the scope of the disclosure
without departing from the spirit thereof , and the disclosure
includes all such substitutions , modifications , additions and /
or rearrangements .

BRIEF DESCRIPTION OF THE FIGURES

[0026] The drawings accompanying and forming part of
this specification are included to depict certain aspects of the
invention . A clearer impression of the invention , and of the
components and operation of systems provided with the
invention , will become more readily apparent by referring to
the exemplary , and therefore nonlimiting , embodiments

US 2022/0229694 A1 Jul . 21 , 2022
4

illustrated in the drawings , wherein identical reference
numerals designate the same components . Note that the
features illustrated in the drawings are not necessarily drawn
to scale .
[0027] FIG . 1 is a block diagram of a distributed net
worked computer environment including one embodiment
of a load attenuated thread pool .
[0028] FIG . 2 is a depiction of example capacity zones .
[0029] FIG . 3 is a block diagram of a distributed net
worked computer environment including one embodiment
of a load attenuated thread pool .
[0030] FIG . 4 is a block diagram of a distributed net
worked computer environment including one embodiment
of a load attenuated thread pool .
[0031] FIG . 5 is a flow diagram of one embodiment of a
method for attenuating threads in a load attenuated thread
pool .

DETAILED DESCRIPTION

[0032] The invention and the various features and advan
tageous details thereof are explained more fully with refer
ence to the non - limiting embodiments that are illustrated in
the accompanying drawings and detailed in the following
description . Descriptions of well - known starting materials ,
processing techniques , components and equipment are omit
ted so as not to unnecessarily obscure the invention in detail .
It should be understood , however , that the detailed descrip
tion and the specific examples , while indicating some
embodiments of the invention , are given by way of illustra
tion only and not by way of limitation . Various substitutions ,
modifications , additions and / or rearrangements within the
spirit and / or scope of the underlying inventive concept will
become apparent to those skilled in the art from this disclo

[0035] In contrast , some of the services of the computing
platform may be adapted to service “ batch ” (or other)
requests (collectively referred to as batch requests) that may
be , for example , internal to the computing platform or
otherwise involved with the operation of the platform and
which may require the processing of large amounts of data .
Often time such requests are services in the background of
the processing of such computing platforms . These batch
requests may include requests associated with the collection
or transformation of data such as extract , transform and load
(ETL) processing from source systems or the like . Thus ,
while there is no real - time requirement for the processing of
such requests , the services that are adapted to process these
batch request may nonetheless contend for the same cloud
deployed resources (e.g. , storage such as relational data
systems) as the other services of the computing platform ,
including those that have real - time response requirements
such as those that service user requests . In other words , these
shared resources may simultaneously be utilized in the
servicing of user interface requests and (e.g. , queued , back
ground) batch tasks .
[0036] Many of these types of shared resource (e.g. ,
relational database software engines) do not horizontally
scale or do not scale efficiently or on demand , and cannot
vertically scale without software downtime that negatively
impacts service availability . When these shared resources
become saturated or overloaded with processing requests the
user experience can thus degrade as it affects the services of
the computing platform servicing these requests . Such deg
radation can happen when the interface to the shared
resource (e.g. , relational database system) perceptibly slows
down or outright fails due to timing out . Computing plat
forms that place no controls on utilization of these shared
resources may thus be exposed to outages or poor perfor
mance due to saturation or overload of those shared
resources . These outages or degradations may occur , for
example , during times when large queues of batch work are
queued to be processed and when high volumes of user
driven traffic demands timely responses from these shared
resource . These problems are pronounced in multi - tenant
SaaS computing platforms where one tenant can cause a
large (e.g. , batch) task to be performed , where the perfor
mance of this task negatively impacts the performance of the
computing platform for other tenants . This type of perfor
mance degradation is colloquially known as the “ noisy
neighbor " problem .
[0037] Accordingly , an effective control mechanism is
desired in distributed computing platforms to prevent out
ages or service degradation in these platforms due to
increased processing latency of shared resources . It is also
desirable that such a control mechanism mitigate the risk of
“ noisy neighbor ” problems , where different tenants ' batch
jobs or user interface load cause perceptible degradation for
other users .
[0038] To those ends , among others , embodiments as
disclosed herein provide systems and methods for load
attenuating thread pools (LATP) that may be associated with
a service deployed in distributed computer environment ,
where that service utilizes a shared resource . A LATP
includes a thread pool comprising a number of worker
threads servicing requests handled by a service that includes
such a LATP . The thread pool is managed by a thread pool
manager of the LATP that can attenuate (herein used to mean
add , remove or leave unchanged) the number of worker

sure .

[0033] Before delving into more detail regarding the spe
cific embodiments disclosed herein , some context may be
helpful . As discussed above the architectures of many mod
ern distributed networked computing platforms include an
increased prevalence of services and resources and increas
ing separation and distribution of such services and
resources has served to aggravate the resource contention
problem . Namely , there is a high likelihood that these
numerous distributed services will contend for a limited
shared resource , resulting in performance degradation that ,
in turn , may negatively affect the performance of the ser
vices utilizing the resource and , ultimately , may result in a
negative user experience for users (e.g. , human or machine)
of such services .
[0034] It may be useful to illustrate certain examples of
such resource contention and its detrimental effects . As but
one example , many SaaS environments are set up as a set of
services deployed to implement a computing platform .
These services may share the use of cloud deployed
resources such as a relational database or the like (e.g. , AWS
Relational Database System (RDS) or the like) . Some of
these services may be adapted to handle user requests for
functionality of the computing platform , such as requests
coming in through a client or web based interface to the
computing platform . Thus , these services may be expected
to respond to such requests in real - time and to avoid timing
out or the like . Accordingly , response time of those services
to those requests may be important as it affects response
times of those services to user requests and thus the user
experience .

a

US 2022/0229694 A1 Jul . 21 , 2022
5

a a

a

a

threads in the thread pool based on a resource utilization
metric associated with the shared resource . In particular , at
some time interval a resource utilization metric associated
with the shared resource may be obtained and evaluated
using a thread policy . This resource utilization metric may
be a I / O metric , a network metric or a CPU utilization metric
or the like that is offered by the provider of the shared
resource and accessible through an interface associated with
the provider of the shared resource . Depending on the results
of the evaluation of the resource utilization metric , threads
may be added to the thread pool , threads of the pool may be
removed (e.g . , killed or made idle) or the number of threads
may be unchanged .
[0039] Such LATPs may be useful when used with mul
tiple autonomous services that are accessing a shared
resources where there is little to no ability to determine
concurrency or threading of these other services , or of
controlling the processing or implementation of these
remotely shared resources , such as when the shared resource
is a remote shared resource offered by a cloud service
provider or the like . Thus , the resource utilization metrics
can serve a proxy for the load of the shared resource across
the distributed computing environment , allowing services
within that environment to tailor their own usage of the
shared resource to ensure that headroom or availability of
that shared resource to handle higher priority or particular
types of requests from within that distributed computing
environment .
[0040] As such , embodiments may be especially useful
when deployed to manage the utilization of a shared
resource in a distributed computing environment that has
(batch) services for batch (e.g. , background or lower prior
ity) work items and higher priority items such as user
requests . A load attenuating thread pool may be utilized with
each of the batch services for processing batch work items
such that each of the batch services includes a LATP . Each
LATP associated with a batch service may operate indepen
dently to manage the thread pool for that particular service
based on the resource utilization metric associated with the
shared resource . Thus , there may be no coordination
between the LATPs of each batch service or the batch
services (e.g. , LATP thread managers may not communicate
or have any awareness of other LATP thread managers or
even of other services) in managing their respective thread
pools .
[0041] Based on the resource utilization metric associated
with the shared resource , each LATP manager determines
(e.g. , independently) whether to add more worker threads to
processing batch requests for that batch service instance ,
leave the number of thread unchanged , or to remove (e.g. ,
kill or idle) the number of threads for that batch service
instance . As LATP thread managers may be adapted not to
operate in synchronicity (e.g. , accessing the resource utili
zation metric or making attenuation determinations at the
same time or operating according to the same time interval ,
etc.) the thread adjustments for the thread pool for each
service may be distributed across the time interval or inter
vals utilized by such LATP thread manager and may occur
at different times . Accordingly , LATP thread managers may
be thought of as acting autonomously for a cooperative
shared goal of optimizing shared resource utilization (e.g. ,
such that higher priority requests from other services may be
processed by the shared resource in a timely manner) .

[0042] In some embodiments , LATP may be usefully
applied in the context of distributed computing platforms
where the workload of the distributed computing platform
may be divided into at least two groups that interact with the
shared resource whose utilization it is desired to manage ,
where those two groups include a workload associated with
batch requests that may be of a lower priority and a
workload whose items have a higher priority . It is thus
desired to manage the load placed on the shared resource
(e.g. , by the lower priority batch requests) to allow the
shared resource to time process the higher priority workload
items (e.g. , to give priority to , or reserve enough overhead
of the shared resource to timely process , the higher priority
workload items) .
[0043] Turning then to FIG . 1 , a block diagram of an
embodiment of a distributed computer environment 100
including a distributed computing platform 102. The dis
tributed (e.g. , comprising a set of services) computing
platform 102 may , for example , provide some form of
product or service accessible by users (e.g. , human or
machine) over a computing network such as the Internet or
the like . The distributed computing platform comprises one
or more (batch) services 104 devoted to processing the batch
(e.g. , background or lower priority) workload . This service
104 may utilize a shared resource 120. This shared resource
120 can be a shared resource deployed on , or provided by ,
a computing platform such as a (e.g. , remote) cloud com
puting platform , or internal to distributed computing plat
form 102 , or another type of resource available over the
network . Thus , this shared resource 120 may be almost any
kind of system , database or otherwise that may be accessed
through an interface offered by the shared resource , includ
ing those shared resources 120 that may be constrained to
one operating system instance or an I / O backplane , etc .. For
example , shared resource 120 may be a Single OS Instance ”
or “ Single Write - Enabled Master Node ” database technol
ogy , including for example Amazon RDS , NoSQL databases
like Key / Value or other document stores . This shared
resource 120 may accordingly be thought of as a finite
resource (e.g. , having a limited number of CPU cores ,
memory , socket connections , etc.)
[0044] The service 104 includes a thread pool comprising
a set of worker threads 108 processes the batch workload of
the computing platform 102 by obtaining a batch work item
from a batch work item queue and providing the batch work
item to a worker thread 108 of the thread pool 106. The
worker thread 108 can then process the batch work item .
During processing the batch work item the worker thread
108 may access the shared resource 120 by sending a request
or other communication to the shared resource across com
puting network 130. In some cases , for example , a worker
thread 108 may be given a connection (e.g. , its own exclu
sive connection such a Java Database Connectivity (JDBC)
connection to the shared resource 120) .
[0045] Distributed computing platform 102 may also have
one or more services 140 devoted to processing higher
priority requests . These higher priority requests may be
associated with an interactive user workload comprised of
users requests (e.g. , as received through an interface offered
by the distributed computing platform 102) . Specifically ,
users may interact with an interface provided by the com
puting platform 102 such as a web page or the like and
requests for the distributed computing platform 102 may be
generated from these user interactions . These user requests

a

a

US 2022/0229694 A1 Jul . 21 , 2022
6

are usually distributed (e.g. , through a load balancer or the
like) to an appropriate service 140. During processing the
user request the service 140 may access the shared resource
120 by sending a request or other communication to the
shared resource across computing network 130. This inter
active user workload tend to be queries supporting the
presentation of the application's user interface . They tend to
have more real - time requirements on responsiveness from
the shared resource 120. In other words , when a request to
the shared resource 120 takes a long time , a user must wait
longer before information is displayed on their interface or
browser . Moreover , the size of this interactive user workload
is relatively unpredictable , as it depends heavily on the
behavior of users , and many time users across different
tenants of the distributed computing system 102 .
[0046] The real - time and highly variable requirements of
this user interactive workload can be contrasted with the
batch workload . Batch tasks , which are usually not exposed
directly to the end users , tend to be more tolerant of
processing latency of delays in the shared resource 120 .
Thus , the batch workload may be more predictable and
steady state . It can be noted however , that such tasks may
also be exposed to failure in conditions of total overload of
the shared resource 120. For example , while batch tasks may
not be constrained by REST API or HTTP timeout limita
tions , they still have response time limits implemented at the
interface or (e.g. , TCP) socket layers .
[0047] Thus , to ensure that sufficient overhead capacity of
shared resource 120 is available to service the higher priority
requests originating from interactive user workload services
140 a control mechanism for regulating the workload placed
on the shared resource 120 may be implemented in distrib
uted computing platform 120. As it may be difficult to
regulate or control the volume or timing of requests of the
higher priority requests originating from interactive user
workload service 140 (e.g. , because of their real - time
requirements) , effective control mechanisms may be imple
mented in association with batch service 104 .
[0048] Such a control mechanism may comprise a load
attenuated thread pool (LATP) included in the batch service
104. This LATP includes the thread pool 106 comprising the
worker threads 108 servicing the requests handled by the
service 104 and thread pool manager 112 that can attenuate
(herein used to mean add , remove or leave unchanged) the
number of worker threads 108 (or the connections of those
workers) in the thread pool 106 based on a resource utili
zation metric associated with the shared resource 120. The
thread pool manager 112 aims to manage the amount of load
placed on the shared resource 120 from the batch sources of
workload , providing a reservation of a capacity or overhead
of shared resource 120 to always be available for servicing
the relatively unpredictable needs of the interactive users .
Thus , it will be understood in this disclosure that the term
“ lower priority service ” is utilized to mean a serve whose
threads are managed by an embodiment of a thread pool
manager while , conversely , the term “ higher priority ser
vice ” will be understood to mean a service whose threads or
other methods of processing work items are not managed
utilizing a LATP .
[0049] In particular , thread pool manager 112 may attenu
ate (herein used to mean add , remove or leave unchanged)
the number of worker threads 108 in the thread pool 106
based on a resource utilization metric associated with the
shared resource 120. In particular , at some time interval a

resource utilization metric associated with the shared
resource 120 may be obtained and evaluated using a thread
policy by thread pool manager 112. This resource utilization
metric may be a I / O metric , a network metric , a CPU
utilization metric or the like that is offered by the provider
of the shared resource 120 and accessible through an inter
face associated with the shared resource 120. This interface
may for example be an operating system associated with a
server or computing platform on which the shared resource
120 is implemented (e.g. , a RDBMS ' operating system) or
a cloud platform provider's monitoring tools . For example ,
in the case of the Amazon's RDS , resource utilization
metrics such as a CPU utilization metric , network I / O
metrics or block Device I / O metrics may be accessed
through Amazon Web Services ' (AWS) CloudWatch inter
face . Depending on the results of the evaluation of the
resource utilization metric , threads 108 may be added to the
thread pool 106 , threads 108 of the pool 106 may be
removed (e.g . , killed or made idle) or the number of threads
108 may be unchanged . For example , in many cases , where
the shared resource 120 is a relational database system , each
thread 108 may be given its own exclusive connection (e.g. ,
a Java Database Connection (JDBC)) from a pool . These
connections may be removed or terminated by removing the
thread 108 or the connection . This may be done at the
connector (e.g. , the JDBC connector) layer , thus requiring
no changes to the service applications or the computing
platform on which the service is executing . In one embodi
ment , the LATP can be implemented as a Thread Pool
controller that implements Java's Executor Service interface .
It will be noted that the same concept may apply to all
pthreads compatible languages like Perl , Python , or C / C ++
for example .
[0050] Specifically , in one embodiment thread pool man
ager 112 decides how to manage the number of active
worker threads 108 in the thread pool 106 via a control loop ,
using the resource utilization metric associated with the
shared resource 120. In controller engineering terminology
the resource utilization metric (e.g. , a CPU Utilization
metric) is a Process Variable being controlled . The control
loop obtains the resource utilization metric (e.g. , a CPU
Utilization metric) , compares it to a given policy for the
service , and then determines what , if any , action should be
taken . Embodiments of LATP may operate according to a
principle that work can be added to service while the
resource utilization metric (or combination of resource uti
lization metrics such as CPU utilization , block device I / O
capacity , or network I / O capacity) remain in a " capacity
available ” state . As long as batch work to be done remains
present in a queue of batch work items , the number of
worker threads in the thread pool that are processing the
batch workload , (e.g. , and thus open connections to the
shared resource such as a database system) , can be slowly
increased . In many cases , it is desirable that workload (e.g. ,
new threads) should be added slowly , with small increments
in additional concurrency , so that the additional workload
may be added gradually and the additional workload's
impact on the shared resource (e.g. , as determined from the
resource utilization metric such as the CPU utilization)
measured appropriately .
[0051] Embodiments of the LATP may be thought of
applying a policy that divides the resource utilization metric
CPU utilization into three regions or areas that are demar
cated by resource utilization thresholds . FIG . 2 depicts a

US 2022/0229694 A1 Jul . 21 , 2022
7

graphical example of such a division , again , taking CPU
utilization as an example resource utilization metric and a
database system as an example shared resource . As depicted
a " low ” utilization region 202 may be defined by a resource
utilization metric that falls below a certain capacity available
threshold (e.g. , specified by a policy) where there is suffi
cient CPU headroom for more background or batch load to
be added to the shared resource . This is the " capacity
available ” region where it may be desirable to add more
threads to the thread pool of a batch service . In the depicted a
example , a “ medium ” region 204 may be defined by a
resource utilization metric that falls below a full threshold
(e.g. , specified by a policy) and above the capacity available
threshold , where there is sufficient load on the shared
resource that it may not be desirable to increase the load on
the shared resource . This is the “ capacity full ” region . Once
the system reaches a CPU utilization in the “ full ” state no
more concurrency or load should be added to the shared
resource . The number of worker threads may thus remain
fixed , and this is considered a “ steady state ” . Some capacity
of the shared resource is used for background work , while
some capacity of the shared resource remains in reservation
for the high priority requests . (e.g. , user interface originated
requests) . A “ high ” region 206 that indicates that the shared
resource is overloaded , and steps should be taken to reduce
load against the shared resource . This is the “ capacity
exceeded ” region . This may also be thought of as the
overhead or capacity that it is desired to reserve for high
priority (e.g. , user interface) requests on the shared resource .
If the resource utilization metric falls into this region , the
policy may define the how the LATP should reduce the
amount of load on the shared resource to free up resources
for other demands . This may entail a reduction of the
number of threads comprising the thread pool of the LATP .
[0052] It will be noted that the various threshold values
and numbers and resource utilization metric (e.g. , CPU
utilization) are given by way of examples . Other resource
utilization metrics and thresholds may be utilized in different
policies and are fully contemplated herein . For example ,
similar regions and thresholds may be defined for exist
Network I / O saturation and block device I / O saturation . The
threshold may also not strictly percentages ; different cloud
infrastructures may have different “ upper limits ” on these
metrics . For example , different thresholds may be applied to
reads and writes per second and raw data bytes read and
written per second . The specific numbers and thresholds
used for shared resources may also vary significantly with
the type of backing infrastructure (e.g. , AWS RDS Instance
Size) in use , as well as with the type of storage allocated to
the shared resource , for example .
[0053] As may be noted , in distributed computing envi
ronments , there may be one or more services that may be
utilized to process lower priority (e.g. , batch) work item .
Thus , in embodiments , there is not one single LATP inside
a single software process , instead there are multiple LATPs ,
each LATP included in a service instance (e.g. , a microser
vice instance) that are all simultaneously processing work
from the same queue of pending batch work items and all
interacting with the same scarce shared resource (e.g. ,
relational database) . The service instances are usually dis
tributed across multiple physical computing facilities (e.g. ,
they may be in different Availability Zones) .
[0054] FIG . 3 is a block diagram depicting one embodi
ment of LATP deployment in a service architecture in a

distributed computing environment such as a SaaS multi
tenant environment . Here , batch services 304 are devoted to
processing the batch (e.g. , background or lower priority)
workload . These services 304 may all utilize shared resource
320. This shared resource 320 can be a shared resource
deployed on , or provided by , a cloud platform or internal to
the distributed computing platform or another type of
resource available over the network . Thus , this shared
resource 320 may be almost any kind of system , database or
otherwise that may be accessed through an interface offered
by the shared resource 320 , including for example a rela
tional database system . This shared resource 320 may
accordingly be thought of as a finite resource (e.g. , having
a limited number of CPU cores , memory , socket connec
tions , etc.) .
[0055] Each service 304 includes a LATP including a
thread pool 306 comprising a set of worker threads 308
servicing batch requests from a queue of batch work items ,
and thread pool manager 312 that can attenuate the number
of worker threads 308 in the thread pool 306 based on a
resource utilization metric associated with the shared
resource 320. The thread pool manager 312 aims to manage
the amount of load placed on the shared resource 320 from
the batch sources of workload , providing a reservation of a
capacity or overhead of shared resource 320 to always be
available for servicing the relatively unpredictable needs of
the interactive users .
[0056] In particular , at some time interval a resource
utilization metric (e.g. , CPU utilization) associated with the
shared resource 320 may be obtained from the shared
resource 320 and stored in a resource utilization metric
storage location 322 such as a cache (e.g. , a Redis database
within the distributed computing environment) . For
example , the distributed computing environment may have
an updater that calls or otherwise accesses the interface of
the shared resource 320 at some interval to request or obtain
the resource utilization metric and stores the resource utili
zation metric in the resource utilization metric storage
location 322. This interface of the shared resource 320 may
for example be an operating system associated with a server
or computing platform on which the shared resource 120 is
implemented (e.g. , a RDBMS ' operating system) or a cloud
platform provider's monitoring tools . For example , in the
case of the Amazon's RDS , resource utilization metrics such
as a CPU utilization metric , network 1/0 metrics or block
Device I / O metrics may be accessed through AWS Cloud
Watch interface . Thus , in some embodiments , the thread
pool managers 312 across each instance of the services 304
may share a resource utilization metric (e.g. , feedback loop
data source) stored in storage location 322 .
[0057] Accordingly , at some interval each thread pool
manager 312 of each LATP in each service 304 may (e.g. ,
interpedently) obtain the resource metric from the resource
utilization metric storage location 322 and evaluate the
obtained resource utilization metric using a thread policy .
Depending on the results of the evaluation of the resource
utilization metric , threads 308 may be added to the thread
pool 306 , threads 308 of the pool 306 may be removed (e.g. ,
killed or made idle) or the number of threads 308 may be
unchanged .
[0058] It may be noted here , that according to certain
embodiments , while each thread pool manager 312 may
receive the same resource utilization data , their decisions
may not be synchronous , nor are the thread pool managers

US 2022/0229694 A1 Jul . 21 , 2022
8

312 comn mmunicating among themselves in any way . The
utilization metrics from the resource utilization metric stor
age location 322 are a " one way ” stream of data to each of
the thread pool managers 312. This architecture provides a
unique advantage because it does not require integration
with auto - scaling systems , infrastructure systems like K8S
or Terraform , or runtime monitoring systems . Moreover , the
autonomy of the thread pool managers 312 allows superior
flexibility in deployment .
[0059] To illustrate , as LATP thread managers 312 in each
service 304 may be adapted not to operate in synchronicity
(e.g. , accessing the resource utilization metric or making
attenuation determinations at the same time or operating
according to the same time interval , etc.) the thread adjust
ments for the thread pool 306 for each service 304 may be
distributed across the time interval or intervals utilized by
such LATP thread managers 312 and may occur at different
times . Accordingly , LATP thread managers 312 may be
thought of as acting autonomously for a cooperative shared
goal of optimizing shared resource utilization (e.g. , such that
higher priority requests from other services may be pro
cessed by the shared resource in a timely manner) .
[0060] Referring to FIG . 4 now , a distributed computing
environment including one embodiment of a distributed
computing platform 450 utilizing load attenuating thread
pools is depicted . The distributed (e.g. , comprising a set of
services) computing platform 450 may , for example , provide
some form of product or service accessible by users (e.g. ,
human or machine) over a computing network such as the
Internet or the like . Such distributed computing platforms
may include , for example platforms such as SailPoint's
IdentityNow or IdentityIQ identity management platforms .
As another example , a computing platform 450 may be a
banking platform implementing a banking application
whereby batch transactions between banks may be carried
out to do ledger reconciliations while also supporting cus
tomer facing websites and bank interactions with users .
[0061] The distributed computing platform comprises one
or more (batch) services 404 devoted to processing the lower
priority batch (e.g. , background or other lower priority)
workload comprised of batch work items 405 in a batch
request queue 407. Such batch work items 405 may include
requests or other work items associated with the collection
or transformation of data such as extract , transform and load
(ETL) processing from source systems or the like . For
example , in the identity management context such back
ground work items 407 may be related to the collection and
uploading of identity management data from one or more
source systems within one or more enterprises such as
described , for example , in U.S. patent application Ser . No.
16 / 791,047 , filed Feb. 14 , 2020 by Lees et al , entitled
“ Systems and Methods for Searching in Identity Manage
ment Artificial Intelligence Systems " and U.S. patent appli
cation Ser . No. 16 / 749,577 , filed Jan. 22 , 2020 by Anderson
et al , entitled “ Systems and Methods for Tagging in Identity
Management Artificial Intelligence Systems and Uses for
Same , Including Context Based Governance ” both of which
are incorporated herein by reference in their entirety .
[0062] Each of these batch services 404 may utilize a
shared resource 420. This shared resource 420 can be a
shared resource deployed on , or provided by , a cloud plat
form or internal to distributed computing platform 450 or
another type of resource available over network 452. Thus ,
this shared resource 420 may be almost any kind of system ,

database or otherwise that may be accessed through shared
resource interface 422 offered by the shared resource 420 .
For example , shared resource 420 may be a relational
database system , including for example Amazon RDS . The
shared resource 420 may be associated with a resource
utilization interface 442 through which resource utilization
metrics associated with the distributed computing platforms
use of the shared resource 420. One example of such a
resource utilization interface is AWS ' CloudWatch interface .
Continuing with the example of an identity management
computing platform , the batch service 404 may access the
shared resource 420 to store or otherwise access or manipu
late identity management data associated with enterprises
utilizing the distributed computing platform 450 .
[0063] Accordingly , each batch service 404 includes a
thread pool 406 comprising a set of worker threads 408 to
processes the batch workload of the computing platform 450
by obtaining a batch work item 405 from batch work item
queue 407 and providing the batch work item 407 to a
worker thread 408 of the thread pool 406. The worker thread
408 can then process the batch work item 405. During
processing the batch work item the worker thread 408 may
access the shared resource 420 by sending a request or other
communication to the shared resource 420 across computing
network 452 .
[0064] Distributed computing platform 450 may also have
one or more services 440 devoted to processing higher
priority requests . These higher priority requests may be
associated with an interactive user workload comprised of
users requests (e.g. , as received through a user interface
offered by the distributed computing platform 450) . Specifi
cally , users may interact with an interface provided by the
computing platform 450 at their user devices 410 such as a
web page or the like and requests for the distributed com
puting platform 450 may be generated from these user
interactions . These user requests are usually distributed
(e.g. , through a load balancer or the like) to an appropriate
service 440. During processing the user request the service
440 may access the shared resource 420 by sending a request
or other communication to the shared resource across com
puting network 452. This interactive user workload tend to
be queries supporting the presentation of the computing
platform's user interface . They tend to have more real - time
requirements on responsiveness from the shared resource
420. In other words , when a request to the shared resource
420 takes a long time , a user must wait longer before
information is displayed on their interface or browser at the
user's device 410 .
[0065] Thus , to ensure that sufficient overhead capacity of
shared resource 420 is available service the higher priority
requests originating from interactive user workload services
440 a control mechanism for regulating the workload placed
on the shared resource 420 may be implemented in distrib
uted computing platform 450. As it may be difficult to
regulate or control the volume or timing of requests of the
higher priority requests originating from interactive user
workload service 440 (e.g. , because of their real - time
requirements) , effective control mechanisms may be imple
mented in association with batch services 404 .
[0066] Such a control mechanism may comprise a load
attenuated thread pool (LATP) included in each (or a subset
of) batch service 404. Each instance of the LATP within a
batch service 404 includes the thread pool 406 comprising
the worker threads 408 of that service 404 and thread pool

US 2022/0229694 A1 Jul . 21 , 2022
9

a

a

manager 412 that can attenuate (herein used to mean add ,
remove or leave unchanged) the number of worker threads
408 (or the connections of those workers) in the thread pool
406 based on a resource utilization metric associated with
the shared resource 420. The thread pool manager 412 may
be adapted to independently (e.g. , without communication
with the other thread pool managers 412 of the other batch
services 404) manage the amount of load placed on the
shared resource 420 from the batch sources of workload ,
providing a reservation of a capacity or overhead of shared
resource 420 to always be available for servicing the rela
tively unpredictable needs of the interactive users .
[0067] Thus , when batch service 404 is spawned or oth
erwise starts in distributed computing platform 450 , the
thread pool manager 412 may read a thread management
configuration 482 stored within the distributed computing
platform 450. Such a configuration 482 may indicate , for
example , if dynamic thread control is enabled or disabled .
This configuration 482 may also be checked at some time
interval by each batch service 404. In this manner , all LATPs
within each batch service 404 may be controlled from a
central “ switch ” to turn off or on thread management by the
LATPs . As noted , in one embodiment , each LATP may be
based on Java Executor Service such that if the thread
management is turned off using configuration 482 the LATP
may function as a typical Java ExecutorService thread pool .
[0068] The thread pool manager 412 may also determine
a policy 474 associated with the associated service 404 to
configure itself . For example , a thread pool manager 412
may send a request for a policy 474 (e.g. , with one or more
criteria or identifiers) and an appropriate policy may be
returned to the thread pool manager 412. Alternatively , the
thread pool manager may access an appropriate policy 474
(e.g. , based one or more criteria or identifiers) . It will be
noted that there may be different policies 474 for different
types of batch service 404 or the policy to utilize may be
selected of vary based on other criteria such as the time of
day . In this manner the thread attenuation policy may be
changed or altered based on particular criteria such as the
time of day or the like . This capability may allow the dual
advantages of LATP and also time based scheduling to be
simultaneously achieved .
[0069] There are several parameters that can be configured
for a given policy , and different instances of an LATP
instance (e.g. , different thread pool managers 412 and asso
ciated thread pools 406) in different services 404 may have
different policies in effect to manage their specific queues of
work items . Policy parameters may include , for example :
initial worker thread count (e.g. , with default : 1) ; minimum
worker thread count (e.g. , with default : 1) ; maximum
worker threads allowed (e.g. , default : 16) ; step up threads
per time interval (cycle) (e.g. , default : 1) ; back - off ratio
(e.g. , default 0.5) ; full zone threshold (e.g. , default : 50 % in
the case where the resource utilization metric is CPU
utilization) ; or (capacity) exceeded zone threshold (e.g. ,
default : 75 % in the case where the resource utilization
metric is CPU utilization) .
[0070] The initial worker count specifies how many
worker threads are started initially , (e.g. , before any resource
utilization metric such as CPU utilization) has been received
by the thread pool managers 412. The minimum worker
thread count is a floor ; the thread pool managers 412 may
not allow the number of worker threads 408 to go below this
number . Even if the resource metric (CPU utilization) indi

cates a complete saturation or overloaded state this number
of worker threads 408 will be allowed to process work . The
maximum worker threads allowed is a ceiling . Regardless of
whether additional resource overhead (e.g. , CPU cycles) are
available this may be the largest number of worker threads
408 that will be concurrently instantiated . The step - up
threads per time interval (cycle) is the number of threads 408
that will be added to the pool 406. It may be desired to keep
this number conservatively small in certain embodiments .
The back - off ratio is what percentage of threads 408 are
removed from thread pool 406 when the resource utilization
metric (e.g. , CPU utilization) is higher than the exceeded
zone or capacity full threshold (e.g. , a percentage) . In some
embodiment , it may be the case that always at least one
worker thread 408 is removed , but a policy 474 can indicate
more than one thread 408 should be removed . It will be
noted that more aggressive back - off policies return cycles to
the higher priority work items more quickly . The full thresh
old (e.g. , a percentage) is the threshold above which the
thread pool manager 412 will apply a steady - state policy of
not adding any more worker threads 408 to the pool 406. The
capacity exceeded threshold is the threshold (e.g. , of the
resource utilization metric such as CPU utilization) above
which the thread pool manager 412 begins removing worker
threads 408 from the thread pool 406 .
[0071] During operation then , thread pool manager 412
can attenuate (e.g. , add , remove or leave unchanged) the
number of worker threads 408 in the thread pool 406 based
on a resource utilization metric associated with the shared
resource 420. This resource utilization may be a utilization
metric associated with a total load placed on an aspect of the
shared resource 420 such as a hardware or network utiliza
tion metric associated with a total load placed on the shared
resource 420. In this manner , the thread pool manager 412
independently manages the number of worker threads 408 of
the thread pool 406 of only that service 404 based on a
resource utilization metric associated with a total load
placed on (e.g. , the hardware or network resources of) the
shared resource 420 .
[0072] In one embodiment , at some time interval (e.g. ,
cycle) the resource utilization metric associated with the
shared resource 420 may be obtained by the distributed
computing platform 450 from the shared resource 420 and
stored in a resource utilization metric storage location 422
such as a cache (e.g. , a Redis database within the distributed
computing platform 450) . For example , the distributed com
puting platform 450 may have a thread manager updater 476
that calls or otherwise accesses resource utilization interface
442 of the shared resource 420 at some interval to request or
obtain the resource utilization metric and stores the resource
utilization metric in the resource utilization metric storage
location 422. This interface of the shared resource 420 may
for example be an operating system associated with a server
or computing platform on which the shared resource 120 is
implemented (e.g. , a RDBMS ' operating system) or a cloud
platform provider's monitoring tools . For example , in the
case of the Amazon's RDS , resource utilization metrics such
as a CPU utilization metric , network I / O metrics or block
device I / O metrics may be accessed through AWS Cloud
Watch interface . It will be noted that a resource utilization
metric may comprise multiple values of different utilization
metrics or a combination , score or weighting derived from
the combination of multiple utilization metrics without loss
of generality .

US 2022/0229694 A1 Jul . 21 , 2022
10

[0073] While the value for the resource utilization metric
may be based on , or include , metrics or data obtained from
the shared resource 420 or providers of the shared resource
420 it will also be noted that the value for the resource
utilization metric may also be determined based on data
determined at the distributed computing platform 450. Such
data may include data determined from utilization metrics
associated with , and determined on , distributed computing
platform , including for example queue depths associated
with the batch services 404 or user services 440 or utilization
metrics for interface services or server platforms or other
data . As another example , an automated browser or auto
mated browser tool may be used to submit requests to the
user services 440 and determined a value for a service level
metric . This service level metric may be utilized in the
determination of a resource utilization metric . The use of
such data in determining a resource utilization metric may
allow thread management of the threads of an LATP to be
based on resource utilization metrics associated with the
shared resource 420 , data of the distributed computing
platform , or a combination of data pertaining to the distrib
uted computing platform and the shared resource 420 .
[0074] Accordingly , at some interval each thread pool
manager 412 of each LATP in each service 404 may (e.g. ,
independently) obtain the resource metric from the resource
utilization metric storage location 422 (or be notified when
the resource utilization metric has changed from a last
update) and evaluate the obtained resource utilization metric
using the policy 474 (e.g. , a thread attenuation policy) by
which the service was configured . In one embodiment , the
thread pool manager 412 may delay until resource utilization
metric 422 has been updated .
[0075] When the resource utilization metric has been
updated , the thread pool manager 412 can determine if
dynamic thread control is enabled (e.g. , is the thread pool
manager configured for dynamic thread control according to
the thread management configuration 482 by which the
LATP was configured) . If dynamic thread control has not
been enabled , the thread pool manager 412 can wait until the
resource utilization metric is again updated and check again
(if dynamic thread management has been updated in the
interim) .
[0076] If however , dynamic thread management is
enabled , the availability of the shared resource can be
determined . Specifically , the current value of the resource
utilization metric can be compared to one or more param
eters of the policy 474 by which the LATP was configured
to determine if there is capacity of the shared resource
available (e.g. , is the resource utilization metric below the
capacity available threshold) . If thread pool manager 412
determines that capacity of the shared resource 420 is
available (e.g. , the resource utilization metric 422 is in the
capacity available zone) , the thread pool manager 412 can
then determine if there are currently a maximum number
(e.g. , as define by the policy 474) of threads 408 in the thread
pool 406. If there are currently a maximum number of
threads 408 in the thread pool 406 no action may be taken
and the thread pool manager 412 may once again delay until
a new value for the resource utilization metric for the shared
resource 420 once again become available . If there are not
currently a maximum number of threads 408 in the thread
pool 406 , one or more threads 408 may be added to the
thread pool 406. The number of threads to add (e.g. , the

thread addition number) may be defined as a parameter of
the policy 474 used to configure the LATP (e.g. , the step up
threads per time interval) .
[0077] If it is determined that there is no capacity available
when the current value of the resource utilization metric is
evaluated against the parameters of the policy , it can be
determined whether utilization of the shared resource 420 is
in the capacity full zone or the capacity exceeded zone .
Here , thread pool manager 412 can compare the value of the
current value of the resource utilization metric to a param
eter of the policy 474 by which the LATP was configured to
determine if the capacity of the shared resource is full or
exceed (e.g. , is the resource utilization metric below , or
above , the capacity full threshold) . If the thread pool man
ager 412 determines that the utilization of the shared
resource 420 falls into the capacity full zone (e.g. , the
resource utilization metric is below the capacity full thresh
old defined in the policy 474) the thread pool manager 412
may leave the number of threads unchanged and the thread
pool manager 412 may once again delay until a new value
for the resource utilization metric for the shared resource
420 once again become available . If , however , the thread
pool manager 412 determines that the utilization of the
shared resource 420 falls into the capacity exceeded zone
(e.g. , the resource utilization metric is above the capacity
full threshold defined in the policy 474) the thread pool
manager 412 may remove one or more worker threads 408
from the thread pool 406. Specifically , in one embodiment ,
the thread pool manager 412 may determine a number of
threads 408 to remove by applying the back - off ratio defined
in the policy to the existing number of threads 408 executing
or the maximum number of threads as defined in the policy
474 to determine a number of threads 408 to remove . Once
the number of threads 408 to remove is determined , this
number of threads can be terminated and (e.g. , after the
threads 408 have cleanly terminated) be removed from the
thread pool 406. The thread pool manager can then delay
until a new value for the resource utilization metric for the
shared resource once again become available .
[0078] FIG . 5 is flow diagram depicting one embodiment
of a method that may be implemented by an instance of a
LATP to attenuate threads of that LATP . Here , thread pool
manager may delay until a resource utilization metric has
been updated (STEP 510) . When the resource utilization
metric has been updated , the thread pool manager can
determine if dynamic thread control is enabled (e.g. , is the
thread pool manager configured for dynamic thread control
according to the thread management configuration by which
the LATP was configured) (STEP 520) . If dynamic thread
control has not been enabled branch of STEP 520) , the
thread pool manager can wait until the resource utilization
metric is again updated and check again (if dynamic thread
management has been updated in the interim) . If however ,
dynamic thread management is enabled (Y branch of STEP
520) , the availability of the shared resource can be deter
mined (STEP 530) .
[0079] In one embodiment , the current value of the
resource utilization metric can be compared to one or more
parameters of the policy by which the LATP was configured
to determine if there is capacity of the shared resource
available (e.g. , is the resource utilization metric below the
capacity available threshold) . If the thread pool manager
determines that capacity of the shared resource is available
(e.g. , the resource utilization metric is in the capacity

a

US 2022/0229694 A1 Jul . 21 , 2022
11

or

available zone) (Y branch of STEP 530) , the thread pool
manager can then determine if there are currently a maxi
mum number (e.g. , as define by a policy) of threads in the
thread pool of the LATP (STEP 540) . If there are currently
a maximum number of threads in the thread pool (Y branch
of STEP 540) no action may be taken and the thread pool
manager may once again delay until a new value for the
resource utilization metric for the shared resource once
again become available . If there are not currently a maxi
mum number of threads in the thread pool (N branch of
STEP 540) , one or more threads may be added to the thread
pool (STEP 550) . The number of threads to add may be
defined as a parameter of the policy used to configure the
LATP (e.g. , the step up threads per time interval) .
[0080] If it is determined that there is no capacity available
when the current value of the resource utilization metric is
evaluated against the parameters of the policy (N branch of
STEP 530) , it can be determined whether utilization of the
shared resource is in the capacity full zone (STEP 570) or the
capacity exceeded zone (STEP 560) . Here , thread pool
manager can compare the value of the current value of the
resource utilization metric to a parameter of the policy by
which the LATP was configured to determine if the capacity
of the shared resource is full or exceed (e.g. , is the resource
utilization metric below , or above , the capacity full thresh
old) . If the thread pool manager determines that the utiliza
tion of the shared resource falls into the capacity full zone
(e.g. , the resource utilization metric is below the capacity
full threshold defined in the policy) (Y branch of STEP 570)
the thread pool manager may leave the number of threads
unchanged (STEP 590) and the thread pool manager may
once again delay until a new value for the resource utiliza
tion metric for the shared resource once again become
available .
[0081] If , however , the thread pool manager determines
that the utilization of the shared resource falls into the
capacity exceeded zone (e.g. , the resource utilization metric
is above the capacity full threshold defined in the policy) (Y
branch of STEP 560) the thread pool manager may remove
one or more worker threads from the thread pool of the
LATP . Specifically , in one embodiment , it can be determined
if the existing number of worker threads is at a minimum
(e.g. , the number if existing threads is at a minimum worker
thread count) (STEP 580) . If the existing number of worker
threads is at the minimum number (Y branch of STEP 580)
the thread pool manager may once again delay until a new
value for the resource utilization metric for the shared
resource once again become available .
[0082] If however , the existing number of worker threads
exceeds the minimum number (N branch of STEP 580) the
thread pool manager may remove one or more threads from
the thread pool (STEP 582) . Here , the thread pool manager
determine a number of threads to remove (a removal thread
number) . The removal thread number may be determined ,
for example , by applying the back - off ratio defined in a
policy to the existing number of threads executing or the
maximum number of threads as defined in the policy to
determine a number of threads to remove . Once the number
of threads to remove is determined , this number of threads
can be terminated and (e.g. , after the threads have cleanly
terminated) be removed from the thread pool . The thread
pool manager can then delay until a new value for the
resource utilization metric for the shared resource once
again become available .

[0083] Those skilled in the relevant art will appreciate that
the invention can be implemented or practiced with other
computer system configurations including , without limita
tion , multi - processor systems , network devices , mini - com
puters , mainframe computers , data processors , and the like .
Embodiments can be employed in distributed computing
environments , where tasks or modules are performed by
remote processing devices , which are linked through a
communications network such as a LAN , WAN , and / or the
Internet . In a distributed computing environment , program
modules or subroutines may be located in both local and
remote memory storage devices . These program modules
subroutines may , for example , be stored or distributed on
computer - readable media , including magnetic and optically
readable and removable computer discs , stored as firmware
in chips , as well as distributed electronically over the
Internet or over other networks (including wireless net
works) . Example chips may include Electrically Erasable
Programmable Read - Only Memory (EEPROM) chips .
Embodiments discussed herein can be implemented in suit
able instructions that may reside on a non - transitory com
puter readable medium , hardware circuitry or the like , or any
combination and that may be translatable by one or more
server machines . Examples of a non - transitory computer
readable medium are provided below in this disclosure .
[0084] Although the invention has been described with
respect to specific embodiments thereof , these embodiments
are merely illustrative , and not restrictive of the invention .
Rather , the description is intended to describe illustrative
embodiments , features and functions in order to provide a
person of ordinary skill in the art context to understand the
invention without limiting the invention to any particularly
described embodiment , feature or function , including any
such embodiment feature or function described . While spe
cific embodiments of , and examples for , the invention are
described herein for illustrative purposes only , various
equivalent modifications are possible within the spirit and
scope of the invention , as those skilled in the relevant art will
recognize and appreciate .
[0085] As indicated , these modifications may be made to
the invention in light of the foregoing description of illus
trated embodiments of the invention and are to be included
within the spirit and scope of the invention . Thus , while the
invention has been described herein with reference to par
ticular embodiments thereof , a latitude of modification ,
various changes and substitutions are intended in the fore
going disclosures , and it will be appreciated that in some
instances some features of embodiments of the invention
will be employed without a corresponding use of other
features without departing from the scope and spirit of the
invention as set forth . Therefore , many modifications may
be made to adapt a particular situation or material to the
essential scope and spirit of the invention .
[0086] Reference throughout this specification to " one
embodiment ” , “ an embodiment ” , or “ a specific embodi
ment ” or similar terminology means that a particular feature ,
structure , or characteristic described in connection with the
embodiment is included in at least one embodiment and may
not necessarily be present in all embodiments . Thus , respec
tive appearances of the phrases “ in one embodiment ” , “ in an
embodiment " , or “ in a specific embodiment ” or similar
terminology in various places throughout this specification
are not necessarily referring to the same embodiment . Fur
thermore , the particular features , structures , or characteris

a

a

US 2022/0229694 A1 Jul . 21 , 2022
12

electromagnetic , infrared , or semiconductor system , appa
ratus , system , device , propagation medium , or computer
memory . Such computer - readable medium shall generally
be machine readable and include software programming or
code that can be human readable (e.g. , source code) or
machine readable (e.g. , object code) . Examples of non
transitory computer - readable media can include random
access memories , read - only memories , hard drives , data
cartridges , magnetic tapes , floppy diskettes , flash memory
drives , optical data storage devices , compact - disc read - only
memories , and other appropriate computer memories and
data storage devices .
[0092] As used herein , the terms “ comprises , ” “ compris
ing , ” “ includes , ” “ including , ” “ has , ” “ having , ” or any other
variation thereof , are intended to cover a non - exclusive
inclusion . For example , a process , product , article , or appa
ratus that comprises a list of elements is not necessarily
limited only those elements but may include other elements
not expressly listed or inherent to such process , product ,
article , or apparatus . The term “ set ” as used herein means
one or more .

tics of any particular embodiment may be combined in any
suitable manner with one or more other embodiments . It is
to be understood that other variations and modifications of
the embodiments described and illustrated herein are pos
sible in light of the teachings herein and are to be considered
as part of the spirit and scope of the invention .
[0087] In the description herein , numerous specific details
are provided , such as examples of components and / or meth
ods , to provide a thorough understanding of embodiments of
the invention . One skilled in the relevant art will recognize ,
however , that an embodiment may be able to be practiced
without one or more of the specific details , or with other
apparatus , systems , assemblies , methods , components ,
materials , parts , and / or the like . In other instances , well
known structures , components , systems , materials , or opera
tions are not specifically shown or described in detail to
avoid obscuring aspects of embodiments of the invention .
While the invention may be illustrated by using a particular
embodiment , this is not and does not limit the invention to
any particular embodiment and a person of ordinary skill in
the art will recognize that additional embodiments are
readily understandable and are a part of this invention .
[0088] Embodiments discussed herein can be imple
mented in a set of distributed computers communicatively
coupled to a network (for example , the Internet) . Any
suitable programming language can be used to implement
the routines , methods or programs of embodiments of the
invention described herein , including R , Python , C , C ++ ,
Java , JavaScript , HTML , or any other programming or
scripting code , etc. Other software / hardware / network archi
tectures may be used . Communications between computers
implementing embodiments can be accomplished using any
electronic , optical , radio frequency signals , or other suitable
methods and tools of communication in compliance with
known network protocols .
[0089] Although the steps , operations , or computations
may be presented in a specific order , this order may be
changed in different embodiments . In some embodiments , to
the extent multiple steps are shown as sequential in this
specification , some combination of such steps in alternative
embodiments may be performed at the same time . The
sequence of operations described herein can be interrupted ,
suspended , or otherwise controlled by another process , such
as an operating system , kernel , etc. The routines can operate
in an operating system environment or as stand - alone rou
tines . Functions , routines , methods , steps and operations
described herein can be performed in hardware , software ,
firmware or any combination thereof .
[0090] Embodiments described herein can be imple
mented in the form of control logic in software or hardware
or a combination of both . The control logic may be stored in
an information storage medium , such as a computer - read
able medium , as a plurality of instructions adapted to direct
an information processing device to perform a set of steps
disclosed in the various embodiments . Based on the disclo
sure and teachings provided herein , a person of ordinary
skill in the art will appreciate other ways and / or methods to
implement the invention .
[0091] A " computer - readable medium ” may be any
medium that can contain , store , communicate , propagate , or
transport the program for use by or in connection with the
instruction execution system , apparatus , system or device .
The computer readable medium can be , by way of example
only but not by limitation , an electronic , magnetic , optical ,

[0093] Furthermore , the term “ or ” as used herein is gen
erally intended to mean “ and / or ” unless otherwise indicated .
For example , a condition A or B is satisfied by any one of
the following : A is true (or present) and B is false (or not
present) , A is false (or not present) and B is true (or present) ,
and both A and B are true (or present) . As used herein , a term
preceded by “ a ” or “ an ” (and “ the ” when antecedent basis is
“ a ” or “ an ”) includes both singular and plural of such term ,
unless clearly indicated within the claim otherwise (i.e. , that
the reference “ a ” or “ an ” clearly indicates only the singular
or only the plural) . Also , as used in the description herein
and throughout the meaning of “ in ” includes “ in ” and “ on ”
unless the context clearly dictates otherwise .

1. (canceled)
2. An system , comprising :
a processor ;
a non - transitory , computer - readable storage medium ,

including computer instructions for :
a thread pool manager adapted for use with a service , the

thread pool manager adapted for use in an environment
including a set of lower priority services having access
to a shared resource and a set of higher priority services
having access to the shared resource , wherein :
the thread pool manager is adapted for use in a load

attenuated thread pool of a lower priority service
comprising , wherein the load attenuated thread pool
includes a set of threads having access to the shared
resource ;

each higher priority service has access to the shared
resource to process work items , and the thread pool
manager is adapted to independently :
determine a resource utilization metric associated

with the shared resource ;
evaluate the resource utilization metric associated

with the shared resource against one or more
thresholds ; and

based on the evaluation of the resource metric :
determine a removal thread number and remove

that removal thread number of threads from an
existing number of the set of threads of the
thread pool ,

>

US 2022/0229694 A1 Jul . 21 , 2022
13

a

determine a thread addition number and adding
that thread addition number of threads to the
existing number of the set of threads of the
thread pool , or

leave the set of threads unchanged .
3. The system of claim 2 , wherein evaluating the resource

metric comprises determining if the resource utilization
metric falls into a capacity exceeded zone , a capacity full
zone or a capacity available zone .

4. The system of claim 2 , wherein the resource utilization
metric is obtained from a remote computing platform .

5. The system of claim 2 , wherein the set of lower priority
services and the set of higher priority services are deployed
on a cloud computing platform .

6. The system of claim 2 , wherein the resource utilization
metric comprises a network utilization metric associated
access to the shred resource or a hard utilization metric
associated with a computing platform of the shared resource .

7. The system of claim 2 , wherein the thread pool man
ager accesses a centralized thread management configura
tion to determine a policy including the one or more thresh
olds , the removal thread number or thread addition number .

8. The system of claim 7 , wherein the policy is specific to
a type of thread .

9. A method for thread management , comprising :
providing a thread pool manager adapted for use with a

service , the thread pool manager adapted for use in an
environment including a set of lower priority services
having access to a shared resource and a set of higher
priority services having access to the shared resou
wherein :
the thread pool manager is adapted for use in a load

attenuated thread pool of a lower priority service
comprising , wherein the load attenuated thread pool
includes a set of threads having access to the shared
resource ;

each higher priority service has access to the shared
resource to process work items , and the thread pool
manager is adapted to independently :
determine a resource utilization metric associated

with the shared resource ;
evaluate the resource utilization metric associated

with the shared resource against one or more
thresholds ; and

based on the evaluation of the resource metric :
determine a removal thread number and remove

that removal thread number of threads from an
existing number of the set of threads of the
thread pool ,

determine a thread addition number and adding
that thread addition number of threads to the
existing number of the set of threads of the
thread pool , or

leave the set of threads unchanged .
10. The method of claim 9 , wherein evaluating the

resource metric comprises determining if the resource uti
lization metric falls into a capacity exceeded zone , a capac
ity full zone or a capacity available zone .

11. The method of claim 9 , wherein the resource utiliza
tion metric is obtained from a remote computing platform .

12. The method of claim 9 , wherein the set of lower
priority services and the set of higher priority services are
deployed on a cloud computing platform .

13. The method of claim 9 , wherein the resource utiliza
tion metric comprises a network utilization metric associated
access to the shred resource or a hard utilization metric
associated with a computing platform of the shared resource .

14. The method of claim 9 , wherein the thread pool
manager accesses a centralized thread management configu
ration to determine a policy including the one or more
thresholds , the removal thread number or thread addition
number .

15. The method of claim 14 , wherein the policy is specific
to a type of thread .

16. A non - transitory computer readable medium , com
prising instructions for :

providing a thread pool manager adapted for use with a
service , the thread pool manager adapted for use in an
environment including a set of lower priority services
having access to a shared resource and a set of higher
priority services having access to the shared resource ,
wherein :
the thread pool manager is adapted for use in a load

attenuated thread pool of a lower priority service
comprising , wherein the load attenuated thread pool
includes a set of threads having access to the shared
resource ;

each higher priority service has access to the shared
resource to process work items , and the thread pool
manager is adapted to independently :
determine a resource utilization metric associated

with the shared resource ;
evaluate the resource utilization metric associated

with the shared resource against one or more
thresholds ; and

based on the evaluation of the resource metric :
determine a removal thread number and remove

that removal thread number of threads from an
existing number of the set of threads of the
thread pool ,

determine a thread addition number and adding
that thread addition number of threads to the
existing number of the set of threads of the
thread pool , or

leave the set of threads unchanged .
17. The non - transitory computer readable medium of

claim 16 , wherein evaluating the resource metric comprises
determining if the resource utilization metric falls into a
capacity exceeded zone , a capacity full zone or a capacity
available zone .

18. The non - transitory computer readable medium of
claim 16 , wherein the resource utilization metric is obtained
from a remote computing platform .

19. The non - transitory computer readable medium of
claim 16 , wherein the set of lower priority services and the
set of higher priority services are deployed on a cloud
computing platform .

20. The non - transitory computer readable medium of
claim 16 , wherein the resource utilization metric comprises
a network utilization metric associated access to the shred
resource or a hard utilization metric associated with a
computing platform of the shared resource .

US 2022/0229694 A1 Jul . 21 , 2022
14

21. The non - transitory computer readable medium of
claim 16 , wherein the thread pool manager accesses a
centralized thread management configuration to determine a
policy including the one or more thresholds , the removal
thread number or thread addition number .

22. The non - transitory computer readable medium of
claim 21 , wherein the policy is specific to a type of thread .

* * *

