a2 United States Patent

US011900162B2

ao) Patent No.: US 11,900,162 B2

Mathew et al. 45) Date of Patent: Feb. 13, 2024
(54) AUTONOMOUS APPLICATION (52) US. CL
MANAGEMENT FOR DISTRIBUTED CPC ...ccccee. GOG6F 9/5016 (2013.01); GOGF 8/71
COMPUTING SYSTEMS (2013.01); GO6F 9/5094 (2013.01); GO6F
11/079 (2013.01); GO6F 11/0721 (2013.01);
(71) Applicant: Sedai Inc., Pleasanton, CA (US) GO6F 11/0769 (2013.01); GOGF 11/3006
(2013.01); GOGF 11/34 (2013.01); GO6F
(72) Inventors: Suresh Mathew, San Ramon, CA (US); 11/3452 (2013.01); GO6N 3/08 (2013.01);
Nikhil Gopinath Kurup, Tampa, FL. GO8B 21/182 (2013.01); HO4L 43/16
(US); Hari Chandrasekhar, Highlands (2013.01); HO4L 67/10 (2013.01); HO4L 67/34
Ranch, CO (US); Benjamin Thomas, (2013.01); GO6F 2209/501 (2013.01)
San Jose, CA (US) (58) Field of Classification Search
None
(73) Assignee: SEDAL INC., Pleasanton, CA (US) See application file for complete search history.
(*) Notice: Subject to any disclaimer, the term of this (56) References Cited
patent is extended or adjusted under 35
U.S.C. 154(b) by 61 days. U.S. PATENT DOCUMENTS
N o
@1) Appl. No.: 17/678,907 20200394535 AL+ 122020 Ramabingam - GOGF 18211
(22) Filed: Feb. 23, 2022 2021/0351885 Al™* 112021 Chavva ... GO6N 3/04
* cited by examiner
(65) Prior Publication Data
Primary Examiner — Eric C Wai
US 2022/0413917 Al Dec. 29, 2022 (74) Attorney, Agent, or Firm — Anand P Narayan;
Related U.S. Application Data Yantra Patents LLC
(62) Division of application No. 17/387,984, filed on Jul. (57) ABSTRACT
28, 2021, now Pat. No. 11,294,723. Implementations described herein relate to methods, sys-
(Continued) tems, and computer-readable media to manage a computing
resource allocation for a software application. In some
(51) Inmt. CL implementations, a method may include executing a first test
GO6F 9/50 (2006.01) function using the distributed computing system at a first
GO6N 3/08 (2023.01) plurality of allocation setpoints for the computing resource,
GO6F 11/07 (2006.01) based on the execution, obtaining one or more performance
GO6F 8/71 (2018.01) metrics for the first test function for each setpoint of the first
G08B 21/18 (2006.01) plurality of allocation setpoints, training a machine learning
HO4L 43/16 (2022.01) model based on the obtained one or more performance
HO4L 67/10 (2022.01) metrics; and utilizing the trained machine learning model to
HO4L 67/00 (2022.01) manage the computing resource for a second function.
GO6F 11/30 (2006.01)
GO6F 11/34 (2006.01) 20 Claims, 12 Drawing Sheets

Parformsarys Meirls
I

T = é

P o
Tost Farwtion Model T80 ™

P

7500 f}\\ é /7506
N {
Tagp A &

P

fonrriputing Rescsrne Adlonaton (T8 _



US 11,900,162 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 63/214,783, filed on Jun.
25, 2021, provisional application No. 63/214,784,
filed on Jun. 25, 2021.



U.S. Patent

Feb. 13,2024

Sheet 1 of 12

US 11,900,162 B2

Clowd Monitoring
Systemi{s) 140

- -“‘L’“““i:»*’“"““» lf‘_‘“}"‘m\ x‘*"ly"’“‘;«-""“\ l
- A e AN S
| Cloud ‘ Cloud ) i Cloud }
4 ; ;- i A o -
't computing A computing A (" computing A
. osystem~1 N \f\“ system -2 N \_ System-N \
{ 130a _ | o { 1300 %
™~ 4 “A/’; \k\:‘; ‘L,_,/'/ N"\—( : /J}
'\\K@)\\ f e xﬁ,,_M)\ S N /kw

T’ M\TM

Enderprise compuler system -1
16Qa

Enterprise computer system «2
180k

Endarprise computer aystem -N

User
device -1
150a
UUser J

1060

R r—'x

device -2 \
1500

.—_—\

CLOUD MANAGEMENT SYSTEM 110

FIG. 1

SN
User

device
=N
180n

A




U.S. Patent Feb. 13, 2024

Sheet 2 of 12

infrastructure Systern(s) 138

Monitoring System(s) 140

US 11,900,162 B2

Enterprise
Bystemis} 160

CLOUD MANAGEMENT SYSTEM 110

Time series data 210 Persistent data 220
M""ﬁm—.ﬂ__“_‘m___“‘ “\“_‘_,_\d--“—"“""';‘- \"‘-\M_hh%“__“ e danl
Alert Geaneration Engine 230 Decision Engine 240

Feedback and Reward Engine 250

Communication Engine 260

FIG. 2



U.S. Patent

Feb. 13,2024

Sheet 3 of 12

US 11,900,162 B2

Change
Management
System 325

Monitoring
System 330

Traffic
Management
435

IAAS 310 aa
FAAS 312
— CLOUD MANAGEMENT SYSTEM 110
FAAS 315 T
Container
Orchestration
aystem{s) 320 !
| ] }
Vulnerability Custom s
identification and Remediation S&g;gﬁ?gg
Scanning 349 345 Y

FIG. 3



U.S. Patent

User

Feb. 13,2024

evenifrequast
410a

Appdication

Event based /
Triggers) 415 | N\

Sheet 4 of 12

US 11,900,162 B2

422a

avanifrequest
4100

&
7

N dea
\

INFRASTRUCTURE SYSTEM 420
e >,

instanca

e
/ ingtance

.’f
/

Qutpul{s}
AN 428

3_,/"
J

Metrics 430

¥

CLOUD MANAGEMENT SYSTEM

116

FIG. 4A



U.S. Patent Feb. 13, 2024

440~

Sheet 5 of 12

Load Balancer 448

Region A 450a

l.oad
Balancar
455a

| |
fooN /N[ 480 \\

{ | instance

y
Y
i | nstance

Region B 450n

Load
Balancer
458n
|

§ r'_L\
7

,."' N i %
{ 4600 }{ 460m ) { as0p )
3 ;’J Y ,«’ ‘\ /

Computing Resource Alfocation Configuration Settings 485

FIG. 4B

US 11,900,162 B2




U.S. Patent Feb. 13, 2024 Sheet 6 of 12 US 11,900,162 B2

T Parformance metric

475 ———__ | Metric name: Function Latency

480 T Metric identifier:X34567228
infrastructure provider AWS

Monitoring provider for metric:DataPeek
Metric Type:Latency

Data Type:Number

Metric scopeApplication Spegific
Auto-remediateYes

Detection Threshold: 20ms

MNotes:

FIG. 4C



U.S. Patent Feb. 13, 2024 Sheet 7 of 12

Racsive first melric data associated with soltware
application 510

US 11,900,162 B2

¥

Determine, based on the first metric dala, that an allocation
of a compuding resource for the software application is o
be reducad
520

1

Increass allocation of the computing resource for the
software application i a second fevel of allocation greater
than the first level of allocation 530

Exercute or cause exsculion of the software application on
the distributed computing system at the second level of
allocation 540

i )

Obtain second metric dala based on sxecution of the
software application on the distributed computing system at
the second level of allocation 550

Daes the second metlric
data indicate a performance
improvemeant for the
software application when
compared 1o the frat malric
e data? 560

Mo

Mainiain resource
allocation at first fevel of
allocation 58¢

Reduce allocation of the computing resource 1o a thind leval
thatl is lower than the first level 370

FIG. 5



U.S. Patent Feb. 13, 2024 Sheet 8 of 12 US 11,900,162 B2

600 R

Execute a first test function using a distributed
computing system at a first plurality of allocation
sefpoints for the computing resource 6§10

Based on the execution, obtain one or more
performance metrics for the first test function at
gach of the first plurality of allocation selpoints §15

Train a maching leaming (ML) mode! based on the
obiained one or more performance metrics §20

Litilize trained ML model to
manage computing
resource for a second
function 630

Receive second function to be oplimized 6§35

|

Execute second test function at second plurality of
allocation setpoints for the computing resource 840

|

Obtain metrics for second test function at second
plurality of allocation setpoints 6§48
:
Utilize the trained machineg learming model o
provide an optimal allocation seipoint for the
second function 850

FIG. 6



U.S. Patent Feb. 13, 2024 Sheet 9 of 12 US 11,900,162 B2

Farfvmanis Mang

IAEN
TR

f‘?i‘i{%@

N
Y 3

¥ P ) T30
TestFuoctin Model T80 T e pa weed

Laorpruling: Restons adionation {T8H _—

FIG. 7



U.S. Patent Feb. 13, 2024 Sheet 10 of 12 US 11,900,162 B2

Training data 810

AT

‘-«\.\‘\ A
=
Ca

e
g

Resource
Allocation

Fe rfurm.énﬁs
Melric data

ST

! Fredicled ,
WP ! performance Melric
ML Model 840 | Feedback

Generator 850

under training
830

F 3

Feadback 860

FIG. 8



U.S. Patent Feb. 13, 2024 Sheet 11 of 12 US 11,900,162 B2

e ————

T - t
4 CLOUD MANAGEMENT SYSTEM 818 . .
S APPLICATION MANAGEMENT 820 paa——

Computing Benchmark

Hesource Funchion name:UserValidityChk Data 830¢
Cost data Compuiting Resource: Memary
- > Current Aliocation: 1028 Mb e
P Analyze
P N
e Performing analysis..... ™
Semce level , o ‘ o ) RS
Perdormanca Your application can be aficoated 256 Mb, with only a 10% Performance
Sata S@Qﬁ drop in performance while stifl meeting SLO targets. Metrics Data
930d
T Qperational savings can be upte $2500/month for this . J
application at this allocation setting bassd on historical usage e

FIG. 9



U.S. Patent Feb. 13, 2024 Sheet 12 of 12 US 11,900,162 B2

Computing Device 1000
Computer Readable Medium 1008
Operating System
Processor(s) 1004
1002
Application
1010
Network
interface 1008 _
Data
1012

FIG. 10



US 11,900,162 B2

1
AUTONOMOUS APPLICATION
MANAGEMENT FOR DISTRIBUTED
COMPUTING SYSTEMS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a divisional application under 35
U.S.C. § 121 of U.S. patent application Ser. No. 17/387,984,
filed Jul. 28, 2021, and titled AUTONOMOUS APPLICA-
TION MANAGEMENT FOR DISTRIBUTED COMPUT-
ING SYSTEMS, now U.S. Pat. No. 11,294,723, the contents
of which are incorporated herein by reference in their
entirety. U.S. patent application Ser. No. 17/387,984 claims
priority to U.S. Provisional Patent Application No. 63/214,
783, filed 25 Jun. 2021, titled “AUTONOMOUS MAN-
AGEMENT OF COMPUTING SYSTEMS” and to U.S.
Provisional Patent Application No. 63/214,784, filed 25 Jun.
2021, titled “CLOUD MANAGEMENT SYSTEM WITH
AUTONOMOUS ABERRANT BEHAVIOR DETEC-
TION” which are incorporated by reference herein in their
entirety.

TECHNICAL FIELD

Embodiments relate generally to autonomous application
and computing resource management, and specifically to
techniques for autonomous and intelligent management of
software applications in distributed computing systems.

BACKGROUND

Some computing systems utilize distributed computing
architectures, e.g., cloud based systems to host applications.
The applications may be hosted across multiple computer
systems that are operated by different service providers, and
in many cases, using a variety of computing devices.

Some distributed computing architectures are configur-
able whereby a user, e.g., enterprise users are able to specify
a computing resource allocation setpoint, e.g., memory,
which may be associated with a particular cost of operation.

SUMMARY

A system of one or more computers can be configured to
perform particular operations or actions by virtue of having
software, firmware, hardware, or a combination of them
installed on the system that in operation causes or cause the
system to perform the actions. One or more computer
programs can be configured to perform particular operations
or actions by virtue of including instructions that, when
executed by data processing apparatus, cause the apparatus
to perform the actions. One general aspect includes a method
to manage a computing resource allocation for a software
application implemented on a distributed computing system.
The method also includes receiving first metric data asso-
ciated with the software application executing on a distrib-
uted computing system; determining, based on the first
metric data, that an allocation of a computing resource for
the software application is to be reduced from a first level of
allocation; increasing allocation of the computing resource
for the software application to a second level of allocation
greater than the first level of allocation; executing or causing
the execution of the software application on the distributed
computing system at the second level of allocation; obtain-
ing second metric data based on execution of the software
application on the distributed computing system at the
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2

second level of allocation; and reducing allocation of the
computing resource to a third level that is lower than the first
level based on a determination that the second metric data
does not indicate a performance improvement for the soft-
ware application when compared to the first metric data.
Other embodiments of this aspect include corresponding
computer systems, apparatus, and computer programs
recorded on one or more computer storage devices, each
configured to perform the actions of the methods.

Implementations may include one or more of the follow-
ing features. The method may include: obtaining historical
metric data associated with the software application; pro-
grammatically analyzing the obtained historical metric data
and the first metric data; and determining that the allocation
of the computing resource is to be reduced from a first level
of allocation based on the programmatic analysis. The
computing resource is memory allocated to the software
application on the distributed computing system. A quantity
of central processing units (CPU) power allocated to the
software application is based on a corresponding allocation
of memory allocated to the software application. The dis-
tributed computing system is a serverless computing system,
and where the software application is a function or package
configured to be executable on the serverless computing
system. Determining that the allocation of the computing
resource is to be reduced from the first level of allocation is
based on a comparison of the first metric data to the obtained
metric data for the second software application at the
plurality of allocation setpoints; and determining an optimal
allocation setpoint for the computing resource based on the
comparison. Determining, based on the first metric data, that
an allocation of a computing resource for the software
application is to be reduced from a first level of allocation
may include: providing the first metric data to a trained
machine learning model; and receiving, from the trained
machine learning model, a second level of allocation for the
computing resource, where the second level of allocation is
lower than the first level of allocation. Determining that the
allocation of a computing resource for the software appli-
cation is to be reduced from a first level of allocation may
include determining a second level of allocation for the
execution of the software application, and where a total cost
of execution of the software application is lower at the
second level of allocation when compared to the first level
of allocation, and where the performance of the software
application at the second level of allocation is lower when
compared to the first level of allocation, and where the
performance of the software application at the second level
of allocation meets a service level performance threshold.
Implementations of the described techniques may include
hardware, a method or process, or computer software on a
computer-accessible medium.

One general aspect includes a method to manage a
computing resource for a distributed computing system. The
method also includes executing a first test function using the
distributed computing system at a first plurality of allocation
setpoints for the computing resource; based on the execu-
tion, obtaining one or more performance metrics for the first
test function for each setpoint of the first plurality of
allocation setpoints; training a machine learning model
based on the obtained one or more performance metrics; and
utilizing the trained machine learning model to manage the
computing resource for a second function. Other embodi-
ments of this aspect include corresponding computer sys-
tems, apparatus, and computer programs recorded on one or
more computer storage devices, each configured to perform
the actions of the methods.
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Implementations may include one or more of the follow-
ing features. The method where training the machine learn-
ing model may include providing feedback to the machine
learning model based on a comparison between a predicted
performance metric and a corresponding obtained perfor-
mance metric of the one or more performance metrics.
Training the machine learning model may include training
the machine learning model to determine an order of a
polynomial function that characterizes performance of the
first test function based on a fit of each of the obtained
performance metrics over the first plurality of allocation
setpoints. Utilizing the trained machine learning model to
manage the computing resource for the second function may
include: receiving the second function to be optimized for
the computing system; executing the second function at a
second plurality of allocation setpoints for the computing
resource, where the second plurality of allocation setpoints
may include a fewer number of setpoints compared to the
first plurality of allocation setpoints; obtaining one or more
performance metrics for the second function for each of the
second plurality of allocation setpoints; fitting a polynomial
function of the determined order to the obtained perfor-
mance metrics for the second function for each of the second
plurality of allocation setpoints; determining an optimal
allocation setpoint for the one or more performance metrics
based on the fitted polynomial function; and providing a
recommendation of a setpoint for the computing resource for
the second function based on the determined optimal allo-
cation setpoint. The method may include implementing the
recommendation of the allocated resource setpoint for the
second function. The recommendation is a change from a
first level of allocation, and where implementing the rec-
ommendation may include: obtaining first metric data based
on the second function executing the first level of allocation;
increasing allocation of the computing resource to a second
level of allocation greater than the first level of allocation;
executing or causing the execution of the second function on
the distributed computing system at the second level of
allocation; obtaining second metric data based on the second
function executing on the distributed computing system; and
reducing allocation of the computing resource to a third
level of allocation lower than the first level of allocation
based on a determination that the second metric data does
not indicate an improvement over the first metric data.
Fitting the polynomial function of the determined order to
the obtained performance metrics for the second function
further may include fitting the polynomial function to the
obtained performance metrics for the second function such
that no portion of the fitted polynomial based on the second
function intersects with the polynomial function based on
the test function. Training the machine learning model based
on the obtained one or more performance metrics may
include fitting a third order polynomial function to the
obtained performance metrics over the first plurality of
setpoints. Implementations of the described techniques may
include hardware, a method or process, or computer soft-
ware on a computer-accessible medium.

One general aspect includes a non-transitory computer-
readable medium may include instructions that. The non-
transitory computer-readable medium also includes receiv-
ing first metric data associated with a software application
executing on a distributed computing system; determining,
based on the first metric data, that an allocation of a
computing resource for the software application is to be
reduced from a first level of allocation; increasing allocation
of the computing resource for the software application to a
second level of allocation greater than the first level of
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allocation; executing or causing the execution of the soft-
ware application on the distributed computing system at the
second level of allocation; obtaining second metric data
based on execution of the software application on the
distributed computing system at the second level of alloca-
tion; and reducing allocation of the computing resource to a
third level that is lower than the first level based on a
determination that the second metric data does not indicate
a performance improvement for the software application
when compared to the first metric data. Other embodiments
of this aspect include corresponding computer systems,
apparatus, and computer programs recorded on one or more
computer storage devices, each configured to perform the
actions of the methods.

Implementations may include one or more of the follow-
ing features. The non-transitory computer-readable medium
where the computing resource is memory allocated to the
software application on the distributed computing system.
The distributed computing system is a serverless computing
system, and where the software application is a function or
package configured to be executable on the serverless com-
puting system. The operations further may include: obtain-
ing metric data for a second software application at a
plurality of allocation setpoints for the computing resource,
and where determining that the allocation of the computing
resource is to be reduced from the first level of allocation is
based on a comparison of the first metric data to the obtained
metric data for the second software application at the
plurality of allocation setpoints; and determining an optimal
allocation setpoint for the computing resource based on the
comparison. Implementations of the described techniques
may include hardware, a method or process, or computer
software on a computer-accessible medium.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of an example distributed computing
environment, in accordance with some implementations.

FIG. 2 illustrates a cloud management system, in accor-
dance with some implementations.

FIG. 3 is a diagram that depicts an example of a cloud
management system and example interacting systems, in
accordance with some implementations.

FIG. 4A depicts an example implementation of a server-
less function in a distributed (cloud) computing environ-
ment, in accordance with some implementations.

FIG. 4B depicts an example topology within a distributed
(cloud) computing environment, in accordance with some
implementations.

FIG. 4C depicts an example performance metric record
utilized in monitoring a distributed computing system, in
accordance with some implementations

FIG. 5 is a flowchart illustrating an example method to
manage a computing resource allocation for a software
application implemented on a distributed computing system,
in accordance with some implementations.

FIG. 6 is a flowchart illustrating an example method to
manage a computing resource for a distributed computing
system, in accordance with some implementations.

FIG. 7 illustrates an example plot of a performance metric
obtained at different resource allocation setpoints for differ-
ent software applications (functions) implemented in a dis-
tributed computing system.

FIG. 8 is a block diagram illustrating an example of
supervised machine learning (ML) to predict a performance
metric for a software application, in accordance with some
implementations.
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FIG. 9 depicts an example screenshot of a cloud manage-
ment system, in accordance with some implementations.

FIG. 10 is a block diagram illustrating an example com-
puting device, in accordance with some implementations.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In
the drawings, similar symbols typically identify similar
components, unless context dictates otherwise. The illustra-
tive embodiments described in the detailed description,
drawings, and claims are not meant to be limiting. Other
embodiments may be utilized, and other changes may be
made, without departing from the spirit or scope of the
subject matter presented herein. Aspects of the present
disclosure, as generally described herein, and illustrated in
the Figures, can be arranged, substituted, combined, sepa-
rated, and designed in a wide variety of different configu-
rations, all of which are contemplated herein.

References in the specification to “some implementa-
tions”, “an implementation”, “an example implementation”,
etc. indicate that the implementation/embodiment described
may include a particular feature, structure, or characteristic,
but every implementation/embodiment may not necessarily
include the particular feature, structure, or characteristic.
Moreover, such phrases are not necessarily referring to the
same embodiment. Further, when a particular feature, struc-
ture, or characteristic is described in connection with an
implementation or embodiment, such feature, structure, or
characteristic may be implemented in connection with other
implementations or embodiments whether or not explicitly
described.

Today’s extremely competitive global market calls for a
high degree of business agility and responsiveness to cus-
tomer needs and tastes. The introduction rate of new features
via software releases has steadily increased to meet ever-
evolving customer needs, and innovative computing archi-
tectures such as cloud native microservice architectures are
becoming the new norm. Releases have risen to hundreds
per month with a consequent impact on the roles and
responsibilities of Site Reliability Engineers (SRE) who are
tasked with managing the computing environment.

Technical outages to computing systems can have signifi-
cant business implications. For example, Costco warehouse,
with over 98.6 million members, had one of its biggest
outages on Thanksgiving Day in 2019, impacting close to
2.6 million of its customers and causing more than $11
million in losses. On the same day, Home Depot, H&M, and
Nordstrom customers too reported issues with their e-com-
merce sites. According to the Information Technology
Industry Council (ITIC), 86% of the companies estimate that
an hour of downtime can cause a greater than $300,000
revenue loss, and for 34% of companies, anywhere from $1
to $5 million.

RetailTouchPoints reported that for Black Friday shop-
pers specifically, nearly half of consumers (49%) say they
will abandon their cart if they receive any error message
during checkout that prevents them from completing their
purchase. Shoppers who have to wait six seconds are 50%
less likely to make a purchase, and 33% of shoppers will
visit a competitor if the site they are currently on is slow to
load.

For more critical services like health care, the stakes are
much higher. Dexcom, a leader in continuous glucose moni-
toring systems, had a service outage for more than 24 hours,
which resulted in irate customers and lives at risk.
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With businesses increasingly earning larger revenue
shares from online commerce, CTOs and SRE organizations
are under tremendous pressure to achieve high levels of site
availability at the most optimal costs—all while satisfying
ever-increasing regulatory pressures.

In the pre-DevOps/Cloud era, monolithic services
designed site architectures for product and software releases
once or twice a year. However, businesses’ modern needs
now dictate faster responses to market signals. With the
advent of cloud technology and simultaneous services seg-
mentation, product features can be released quicker than
ever—sometimes more than 50 times per year. But along-
side an increased churn rate for features and versions comes
elevated management costs.

Cloud adoption, virtualization, and DevOps maturity have
led to agile deployment strategies and reduced time to
market (TTM), which allows businesses to compete more
effectively. Automation played a vital role on the road to
achieving agile deployment—processes transitioned from
being imperatively managed by a set of system administra-
tors with command line interface, to being declaratively
managed by a much smaller team of administrators in a
distributed framework.

Organizations commonly utilize multiple cloud providers
to implement their computing solutions. For example, an
organization may utilize offerings from one or more provid-
ers, e.g., Amazon Web Services (AWS), Google Cloud
Platform (GCP), Microsoft Azure etc., to implement their
solution architecture. Metrics associated with their solution
architecture and applications running over their architecture
may be provided by multiple monitoring providers.

A typical software product implemented via a microser-
vices based architecture may include hundreds of underlying
applications. For example, a money transfer application may
include multiple microservices operating using a combina-
tion of parallel and sequential processes, e.g., a client login
microservice, a pre-validation check microservice, a micro-
service that performs funds availability verification, a risk
analysis microservice to investigate fraud or other unauthor-
ized transaction, etc.

Each microservice may be executed by a different code-
set, implemented and managed by different teams, with their
own development cycles, releases, etc. Each of the micro-
services may utilize its own metric or set of metrics to
monitor performance and health of the microservice and/or
application.

During run-time, issues and problems may occur at any of
multiple levels, e.g., runtime errors or performance issues
caused by code issues due to a new release, integration
issues of a particular microservice with other microservices,
integration issues with third party providers, network issues,
hardware issues, etc.

This disclosure describes a cloud management platform to
autonomously monitor distributed computer systems and
their computing resource allocation settings, detect abnor-
mal system behaviour and anomalies, and autonomously
generate alerts and recommendations. In some implementa-
tions, autonomous remediation may be undertaken by the
cloud management platform.

Unlike traditional remediation techniques and run book
automation platforms that provide threshold based automa-
tion, advanced machine learning techniques are utilized
herein to detect issues with an application centric approach.
The cloud management platform can integrate with various
Cloud/PaaS providers and can auto detect (infer) an appli-
cation topology with minimal user intervention. Integration
with multiple monitoring providers is enabled and the metric
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data obtained can be overlaid on the inferred application
topology. Application behavior is continually monitored and
clustering techniques (e.g., self correcting bounded cluster-
ing) may be utilized to identify misbehaving instances.

Another limitation commonly encountered with monitor-
ing providers is collection delay. Monitoring providers com-
monly provide metric data that includes a data collection
delay, e.g., a 15-20 minutes data collection delay, which
effectively leads to delayed detection of aberrant (abnormal)
application behavior. For example, problems may be
brought to notice of SREs after the collection delay. Per
techniques of this disclosure, machine learning models are
utilized to learn application behavior over time. The ML
model(s) can predict a current (estimated) state of one or
more applications and thereby compensate for missing data
due to the collection delay.

Autonomous system characteristics in a cloud context are
incorporated into the cloud management platform which
utilizes an influx of data streams, e.g., time-series data of
metrics, to build a layer of intelligence via a core decision
engine that utilizes probability theory and applies machine
learning techniques. The cloud management platform is
self-learning and utilizes a self-correcting model to seam-
lessly manage cloud platforms with a focus on explainable
decisions.

Abnormal and aberrant (anomalous) behavior of applica-
tions may arise from specific anomalous instances, errors in
the application codebase, network issues, etc. Per techniques
of this disclosure, a trained ML model is utilized to analyze
application level problems and instance level problems and
provide a recommendation based on identification of a
problem source.

A two-tiered approach is utilized, whereby an alert engine
generates signals and/or scores based on identification of
instance-level and application-level outlets from the moni-
tored metrics for each configured application being moni-
tored. The generated signals and/or scores are then provided
to a core decision engine, which utilizes additional historical
data and feedback from previously provided recommenda-
tions and/or actions to provide recommendations for a
current scenario.

The cloud management platform (system) may also be
utilized to determine optimal operating points for a cloud
based implementation, and to generate recommendations for
resource allocation during utilization of distributed comput-
ing systems.

Machine learning techniques are utilized to assess client
computing system topology, resource allocation settings,
and performance metrics to proactively recommend operat-
ing settings to ensure that software applications remain
highly efficient, secure, available, and cost-effective.

For example, in the case of a serverless computing
implementation, e.g. Lambda instances, a recommendations
feature of the cloud management platform, would automati-
cally identify under-utilized memory within the implemen-
tations and may recommend a proactive scale down of the
memory allocated to a software application (function).

Optimization and management of resource allocation is
based on benchmarking of the distributed computing system
using a known software application, e.g., a test function. In
a typical distributed computing set up, a customer user
selects a memory allocation setting for their application,
which comes with a certain cost for operation, e.g., higher
memory allocation incurs a greater cost per unit of time that
the computing resources are utilized. At the same time, a
higher memory allocation may enable a software application
to execute in a smaller amount of time, which may more than
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compensate for the greater unit cost. An amount of CPU
power may also be specified by the customer user, though in
many cases, the CPU allocation may automatically be based
on the selected memory allocation setting and be opaque to
the customer.

Doubling a memory allocation setting may have an unpre-
dictable impact on a time of execution, a user experience
metric, or any one of numerous metrics that are critical from
a business perspective. Conservatively selecting a high
memory setting may incur unnecessary costs. A technical
problem in the software arts is an optimal selection of a
computing resource allocation setting, e.g., memory, for a
given software application and/or infrastructure provider.

Per techniques of this disclosure, for a given implemen-
tation of a distributed computing system such as a serverless
system, an optimal (sweet spot) memory allocation is deter-
mined for a software application (function) that is to be
executed in the distributed computing system.

In some implementations, an optimal memory allocation
or other computing resource setting may be determined for
each function taking into account performance require-
ments, service level objectives (SLO), and cost consider-
ations.

In some implementations, a test function may be selected
for performing a benchmark study of a distributed comput-
ing system. The test function may be any function, e.g., a
mathematical operation that takes a finite time for comple-
tion. The test function is executed at a set of allocation
setpoints that span an available set of resource allocation
setpoints. For example, in a serverless system where
memory is the primary resource being set (selected), the test
function may be executed at a range of set points, e.g.
starting from a minimum of about 128 MB to an upper
bound of about 10 GB. At each setpoint, a performance
metric, e.g., latency or time of execution is obtained.

A machine learning model may be trained based on the
setpoints and the corresponding performance metrics. In
some implementations, a mathematical model may be deter-
mined based on the obtained data to characterize and bench-
mark the distributed computing system behavior.

When a software application that is to be executed over
the same (or similar) distributed computing system is
received, it is then compared to the benchmark obtained. An
actual invocation history, resource allocation settings, per-
formance metrics, etc., of the software application may be
obtained, if it has been previously executed in the distributed
computing system

Based on the obtained data, characteristics of the particu-
lar software application, e.g., function, are determined. The
software application may be optionally executed at addi-
tional setpoints if it is determined that some setpoints are
missing.

A comparison of the obtained data for the software
application and the benchmark data is utilized to extrapolate
the software application behavior over the complete set of
available resource allocation setpoints, and to determine a
ML or mathematical model for the software application.
Based on the ML or mathematical model, an optimal set-
point for the resource is determined, e.g., based on a point
of slope change, or other inflection point, along with cost
and performance constraints.

FIG. 1 is a diagram of an example distributed computing
environment, in accordance with some implementations.
FIG. 1 illustrates an example system environment 100, in
accordance with some implementations of the disclosure and
illustrates a block diagram of an environment 100 wherein
a cloud management service might be used. FIG. 1 and the



US 11,900,162 B2

9

other figures utilize similar (like) reference numerals to
identify like elements. A letter after a reference numeral,
such as “130,” indicates that the text refers specifically to the
element having that particular reference numeral. A refer-
ence numeral in the text without a following letter, such as
“130,” refers to any or all of the elements in the figures
bearing that reference numeral (e.g., “130” in the text refers
to reference numerals “130a,” “1305,” and/or “130%” in the
figures).

The system environment 100 includes a cloud manage-
ment system 110, which may include a variety of computer
subsystems. Each of the subsystems can include a set of
networked computers and devices.

The cloud management system is utilized to manage one
or more distributed computing systems that are associated
with one or more enterprise computer systems 160a, 1605,
and 160z that utilize one or more cloud computing systems
offered by respective infrastructure providers, 130a, 1305,
and 1307 that are connected via network 120.

Environment 100 may also include user devices 150a,
2505, and 1507 that are utilized by users to access and/or
execute one or more applications on the cloud computing
systems. The cloud management system 110 itself may be
implemented as a cloud-based system that is supplied and
hosted by one or more third-party providers, and is acces-
sible to users, e.g. system administrators and/or system
reliability engineers (SREs), etc., via a variety of connected
devices.

User devices 150 and enterprise computer system 160
may include any machine, system, or set of machines,
systems that are used by an enterprise and users. For
example, any of user devices 150 can include handheld
computing devices, mobile devices, servers, cloud comput-
ing devices, laptop computers, work stations, and/or a net-
work of computing devices. As illustrated in FIG. 1, user
devices 150 might interact via a network 120 with a cloud
computing system 130 that provides a service.

Cloud computing systems 130, cloud management system
110, and enterprise computer system 160 may utilize captive
storage and/or cloud based storage. In some implementa-
tions, on-demand database services may be utilized. The
data store may include information from one or more tenants
stored into tables of a common database image to form a
multi-tenant database system (MTS). A database image may
include multiple database objects. A relational database
management system (RDMS) or the equivalent may execute
storage and retrieval of information against the database
object(s).

Access to cloud management system 110, enterprise com-
puter systems 160, cloud monitoring system 140, and cloud
computing system 130 may be controlled by permissions
(permission levels) assigned to respective users. For
example, when an employee or contractor associated with a
cloud management system 110 is interacting with enterprise
computer system 160, cloud monitoring system 140, user
device(s) of the employee or contractor is provided access
on the basis of permissions associated with that employee or
contractor. However, an administrator associated with cloud
management system 110 may be provided additional access
privileges based on access privileges allotted to that admin-
istrator. In user systems with a hierarchical organization
level, users at a certain permission level may have access to
applications, data, and database information accessible to a
lower permission level user, but may not be provided access
to certain applications, database information, and data acces-
sible to a user at a higher permission level. Thus, users can
have different capabilities with regard to accessing and
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modifying application and database information, depending
on a user’s security or permission level.

Network 120 is any network or combination of networks
of computing devices that enable devices to communicate
with one another. For example, network 120 can be any one
or any combination of a LAN (local area network), WAN
(wide area network), telephone network, wireless network,
point-to-point network, star network, token ring network,
hub network, or other appropriate configuration.

The computer systems may be connected using TCP/IP
and use other common Internet protocols to communicate,
such as HTTP, FTP, AFS, WAP, etc. Users may access the
systems by utilizing different platforms and frameworks,
e.g., by using single-page client applications that use HTML
and TypeScript.

An application execution environment as described herein
can be any software environment that supports execution of
a software application. For example, an application execu-
tion environment supported herein may be an operating
system (e.g., Linux, Windows, Unix, etc.), a hypervisor that
supports execution of one or more virtual machines (e.g.,
Xen®, Oracle VM Server, Microsoft Hyper-V™,
VMWare® Workstation, VirtualBox®, etc.), a virtual com-
puter defined by a specification, e.g., a Java Virtual Machine
(JVM), an application execution container (e.g., containers
based on Linux CGroups, Docker, Kubernetes, CoreOS,
etc.), a process executing under an operating system (e.g., a
UNIX process), etc. In some implementations, the applica-
tion execution environment may be a software application,
e.g., that is configured to execute on server hardware.

Techniques of this disclosure can be applied to a wide
variety of deployment types, e.g., to distributed computing
systems that utilize stateless containers, stateful containers,
serverless deployments, etc.

FIG. 2 illustrates a cloud management system, in accor-
dance with some implementations.

Cloud management system 110 may include subsystems
configured for different functionality. In some implementa-
tions, cloud management system 110 may include an alert
generation engine 230, a decision engine (core engine) 240,
a feedback and reward engine 250, and a communication
engine 260. Cloud management system 110 may also
include one or more databases (datastores), for example, a
time series database 210, and a persistent database 220.

In some implementations, databases 210 and 220 may be
configured as external databases and/or cloud based data
storage that is accessible to the cloud management system.
In some implementations, the cloud management system
110 is communicatively coupled to one or more infrastruc-
ture systems 130, monitoring system(s) 140, and enterprise
system(s) 160.

In some implementations, the cloud management system
is configured to receive monitoring metrics associated with
applications implemented on and/or executing on one or
more infrastructure systems (cloud computing systems). The
monitoring metrics may be received directly from the infra-
structure systems and/or monitoring system(s) associated
with respective infrastructure systems.

FIG. 3 is a diagram that depicts an example of a cloud
management system and interacting computing systems, in
accordance with some implementations.

As depicted in FIG. 3, the cloud management system is
configured to interact with multiple systems for various
purposes. For example, the cloud management system may
be coupled to Infrastructure as a service (IAAS) systems 310
that enable an enterprise to lease or rent servers for compute
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and storage resources. The cloud management system may
be coupled to TAAS systems located in different geographi-
cal locations.

In some implementations, the cloud management system
may be coupled to Function as a service (FAAS) systems
312, also referred to as serverless systems that enable an
enterprise to execute one or more functions as a service, and
where payment for the use of the infrastructure is made on
a per-use-basis, based on units of time consumed and a cost
that may be based on an allocation of computing resource.

FAAS systems enable enterprises to only pay for infra-
structure at a time of use, and not during idle times.
Additionally, the infrastructure sizing, etc. is implemented
by the service provider, thereby freeing up the enterprise
from costs and efforts associated with infrastructure man-
agement.

In some implementations, the cloud management system
may be coupled to Platform as a service (PAAS) systems
315 that enable enterprises to lease servers as well as receive
access to other development and deployment resources, e.g.,
middleware, development tools, database management sys-
tems, business analytics services, etc.; to Container Orches-
tration systems 320 that enable automation of containerized
workloads, e.g., Kubernetes, Docker Swarm, Apache Mesos,
etc.

In some implementations, the cloud management system
may be coupled to one or more Change Management
System(s) 325 that enable enterprises to manage change and
release processes and to meet their auditing and compliance
requirements; to one or more monitoring systems 330; and
to Traffic Management System(s) 335 that are utilized to
manage cloud traffic at various layers.

In some implementations, the cloud management system
may be coupled to a vulnerability identification and scan-
ning system 340, e.g., which may operate upon alerts
received from the cloud management system to detect
security issues/flaws and or attacks.

In some implementations, the cloud management system
may be coupled to a Custom Remediation System 345,
operable to perform custom remediations based on detected
anomalies.

One or more notification systems 350, e.g., Slack, pager
systems, email systems, etc. may be coupled to the cloud
management system for the transmission of alerts, messages,
and notifications to users.

FIG. 4A depicts an example implementation of a server-
less function in a distributed (cloud) computing environ-
ment, in accordance with some implementations.

A serverless function environment, sometimes referred to
as a Function as a service (FAAS), enables a user to utilize
infrastructure hosted by a third party provider. The execution
of the function is based on a trigger/event trigger based on
auser or application action. For example, as depicted in FIG.
4A, event based triggers 415 may originate from a user
request or event 410qa that may originate on a user device.
For example, a user may initiate an upload of a picture from
their mobile device, which may serve as an event trigger.

Event based triggers may also originate based on an
application event/request 4105, which may be another soft-
ware application that triggers an event request.

Based on the event trigger, an infrastructure system 410
may invoke an instance 422a or 4225 and execute a function
associated with the event trigger. The code for the function
may be typically previously provided by the enterprise, e.g.,
as a container, code, function call, etc. For example, in the
scenario described earlier, the function may be a codeset
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(code) that compresses the uploaded picture, and stores it in
a database for subsequent access.

Each instance or execution of the function may generate
one or more outputs, writes to one or more database(s),
output to user devices etc.

Per techniques of this disclosure, one or more perfor-
mance metrics 470 may be provided to the cloud manage-
ment system 110, on a continuous, periodical, or indirectly
via a database or a monitoring system.

The metrics may include data that is aggregated as well as
individual data points, and may include metrics such as
arrival data for requests and/or queries that trigger the
function(s), latency for each request, runtime, memory uti-
lized, start-up time. In some implementations, the metrics
may also include costs associated with the execution of the
function.

FIG. 4B depicts an example topology within a distributed
(cloud) computing environment, in accordance with some
implementations. This example topology may be utilized as
part of a cloud-based implementation for one or more
enterprise applications.

Distributed computing environments are commonly dis-
tributed over geographical regions to serve a diverse set of
users, with dedicated computing resources earmarked for
processing applications associated with a particular region.
Within each region, one or more cloud computing systems
may be utilized to serve and process applications. Load
balancers at a global regional level are utilized to distribute
the computing load evenly across available computing
resources.

A first step undertaken by a cloud management platform
is the discovery of a site (e.g., a client site) and charting of
its topology. Subsequently, a complete and holistic state of
all applications and infrastructure is registered, which
enables complete observability and permits the system to
become self-aware. Application tags for each application
may be utilized to infer a particular site’s infrastructure as
well as to create custom profiles.

In this illustrative example, an example topology 440 of
the computing environment is depicted in FIG. 4B. A load
balancer 445 at the global level is utilized to receive
requests, e.g., http requests, etc., from users and distribute it
to regional computing clusters 450a or 450x.

Within each region, a load balancer may be utilized to
distribute computing tasks to available resources. For
example, load balancer 4554 may be utilized in region 450a,
and load balancer 4557 may be utilized in region B.

Based on the type of requests, the load balancers may
distribute tasks to available virtual machines within the
cluster. Specialized management tools and software may be
available for the distribution of tasks to resources.

In some implementations, a virtual machine may be
utilized for only one type of application, whereas in other
implementations, a virtual machine may be utilized for
multiple types of applications, and even multiple applica-
tions from multiple client users.

Specific infrastructure providers may utilize different
techniques and tools to track assignment of computing tasks
to resources. For example, in some implementations, a load
balancer may maintain a list of currently executing tasks,
and alternately, a history or log of tasks processed as well.

In some other implementations, e.g., containerized sys-
tems, a state of a cluster of compute resources may be
represented as objects that describe what containerized
applications are running on which nodes, resources allocated
to those applications, and any associated policies.
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In some implementations, computing resources may be
configurable. For example, in an environment that utilizes
virtual machines, a quantity of memory or CPU allotted to
each virtual machine may be configurable. Configurable
environments may provide advantages by adjusting the
resources based on the type of loads being handled. Con-
figuration settings may be stored and/or adjusted autono-
mously or via human intervention. In FIG. 4B, the settings
are depicted as being controlled via Computing Resource
Allocation Configuration Settings 465, which may be
accessed by/via the cloud management system.

FIG. 4C depicts an example performance metric record
utilized in monitoring a distributed computing system, in
accordance with some implementations

As described earlier, the cloud management system may
receive and/or obtain one or more monitoring metrics from
a cloud computing system and/or monitoring system asso-
ciated with one or more applications that are being moni-
tored and managed.

In some implementations, the monitoring metrics may be
automatically received by the cloud management system. In
some other implementations, the monitoring metrics may be
obtained by querying a database, e.g. Prometheus, etc. at
periodic intervals.

In this illustrative example, an example monitoring metric
record for a performance metric 470 is depicted, with
associated attributes; a metric name 475, a metric identifier
480, and other attributes, e.g., an originating infrastructure
provider (cloud computing provider) identifier, a monitoring
metric provider, a metric type, a data type associated with
the monitoring metric, metric scope, an auto remediate field
that indicates whether auto remediation should be performed
based on the particular metric, a detection threshold for any
anomaly detection, and notes associated with a metric.

The list of attributes for the example metric provided
above is provided as an example, and is not exhaustive, and
specific implementations may utilize additional monitoring
metrics for each application being managed/monitored, and
some implementations may omit some of the attributes
altogether.

Monitoring metrics and their attributes may be specified
by a user, e.g., a user or administrator associated with an
enterprise system, monitoring system, or cloud computing
system provider, or be automatically inferred by the cloud
management system.

A suitable user interface may be utilized to enable users
to define/specify monitoring metrics and associated attri-
butes. Menu options, e.g. pull-down menu options, etc., may
be provided to enable easy user selection of monitoring
metric and associated attributes For example, a metric type
attribute for a monitoring metric may be specified to be one
of'a volume, saturation, latency, error, ticket; a data type for
a monitoring metric may be specified to be one of a number,
a percentage, or a counter; a metric scope for a monitoring
metric may be specified to be one of site wide, application
specific, load balancer, or instance.

In some implementations, the attributes may be specified
by tags that are associated with the monitoring metric and
provided by the cloud computing system or the monitoring
system that is generating and providing the metrics.

FIG. 5 is a flowchart illustrating an example method to
manage a computing resource allocation for a software
application implemented on a distributed computing system,
in accordance with some implementations.

The distributed computing system may be a serverless
computing system or a virtualized environment, and the
software application may be a function or package config-
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ured to be executable on the serverless computing system or
in the virtualized environment. For example, the distributed
computing system may be a containerized computing sys-
tem, a Kubernetes cluster, a stateless application, a Platform
as a service (PAAS), etc.

In some implementations, method 500 can be imple-
mented, for example, on cloud management system 110
described with reference to FIG. 1. In some implementa-
tions, some or all of the method 500 can be implemented on
one or more enterprise computer systems 160, on cloud
computing system 130, on cloud monitoring system 140, as
shown in FIG. 1, on and/or on a combination of the systems.
In the described examples, the implementing system
includes one or more digital processors or processing cir-
cuitry (“processors”), and one or more storage devices (e.g.,
databases 210, 220 or other storage). In some implementa-
tions, different components of one or more servers and/or
clients can perform different blocks or other parts of the
method 500. In some examples, a first device is described as
performing blocks of method 500. Some implementations
can have one or more blocks of method 500 performed by
one or more other devices (e.g., other client devices or server
devices) that can send results or data to the first device.

In some implementations, the method 500, or portions of
the method, can be initiated automatically by a system. In
some implementations, the implementing system is a first
device. For example, the method (or portions thereof) can be
periodically performed, or performed based on one or more
particular events or conditions, e.g., reception of perfor-
mance metric data, at a predetermined time, a predetermined
time period having expired since the last performance of
method 500, and/or one or more other conditions or events
occurring which can be specified in settings read by the
method.

At block 510, first metric data associated with a software
application is received.

The first metric data may include one or more metrics,
e.g., performance metrics that are being monitored for the
software application. For example, the first metric data may
include a latency of execution, CPU power consumed, end
to end user latency, etc. for the software application.

In some implementations, the first metric data may be
specified by a user. In some implementations, credentials for
a particular infrastructure provider and/or monitoring pro-
vider are obtained, and the metric data (e.g., a plurality of
metrics) may include all metrics that are generated for the set
of applications associated with a client. In some implemen-
tations, a list of available monitoring metrics as well as a set
of key metrics may be obtained, e.g., from an enterprise
client.

In some implementations, configuration information, cre-
dentials, etc., are stored in a persistent database, e.g., data
store 220 described with reference to FIG. 2. In some
implementations, a list of monitoring metrics may be
obtained from cloud providers, whereas, in some other
implementations, a list of monitoring metrics may be
obtained from monitoring providers. In some implementa-
tions, the monitoring metrics may be obtained from a
combination of cloud providers and monitoring providers. In
some implementations, a list of monitoring metrics may be
a human curated list of monitoring metrics.

The monitoring metrics may include error data, entries
within log files, and any other information associated with
parameters and metrics that are indicative of system perfor-
mance and health as well as application performance and
health.
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The monitoring metrics can include metrics from multiple
applications, and from multiple parts of an integrated soft-
ware chain. Different components in the application stack
may provide their own monitoring metrics. For example,
application level metrics may be obtained that are associated
with a particular application; monitoring metrics may be
obtained from one or more load balancers that manage
computing resources and may include metrics such as a
number of connections, and metadata associated with each
connection; an infrastructure provider, e.g., AWS, may pro-
vide monitoring metrics such as instance identifier(s), CPU
usage per minute for each instance, and input/output (I/O)
bytes associated with each instance, etc.

Example metrics may include CPU utilization, latency,
memory utilization, Disk I/O for an application at an appli-
cation and/or an instance level. Some monitoring metrics
may be user experience based metrics, that may be obtained
or inferred based on actual user experience with an appli-
cation.

The monitoring metrics may be received from different
cloud providers and/or monitoring providers. In some imple-
mentations, received monitoring metrics may be normalized
to a single format (standard), which may be applied across
all providers to enable comparison and combination of
monitoring metrics received from different sources.

In some implementations, the monitoring metrics are
received as time-series data associated with a particular time
period (interval). In some implementations, additional nor-
malization operations may be performed such that the time-
series data of different monitoring metrics are synchronous
and refer to the same time period.

In some implementations, the time-series data is obtained
by querying a database where the time-series data is stored,
e.g., an external data source at a cloud computing system or
a cloud monitoring provider or third party provider. In some
implementations, the time-series data may be obtained by
querying a time-series database, e.g., database 210 described
with reference to FIG. 2. In some implementations, the
time-series data may be obtained from a monitoring solution
and time series database, e.g., Victoria Metrics, Prometheus,
etc. In some implementations, the time-series data may be
obtained via a pull model wherein an initial request for data
may originate from the cloud management system, which is
then responded to by the database server.

The time series data may be obtained for multiple time
intervals, e.g., time intervals of 2 days, 7 days, 3 months, 6
months, etc. In some implementations, different time inter-
vals may be utilized for different applications and/or infra-
structure providers.

In some implementations, normalization of the obtained
monitoring metrics may be performed, e.g., if received from
different sources that have different scales, units, etc. In
some implementations, a topology of the distributed com-
puting system may be inferred periodically, e.g., every 20
minutes, every 30 minutes, etc.

In some implementations, the metric data may be received
that corresponds to a period of time that has already trans-
pired, and is received with a delay. In some implementa-
tions, the metric data may be received in real-time, or near
real-time.

In some implementations, the software application may
be a serverless function. In a serverless computing environ-
ment, an execution model is provided for a distributed
(cloud) computing system in which a cloud provider
dynamically allocates, and then charges an enterprise user
for the compute resources and storage needed to execute a
function, application or code provided by the enterprise user.
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Serverless functions are event-driven, meaning the code
provided by the enterprise user is invoked only when
triggered by a request originating from a user and/or appli-
cation.

In some implementations, the software application may
be an application implemented over a set of virtual
machines, e.g., similar to a system depicted in FIG. 4B. In
a virtual computer system, computers are virtualized, e.g.,
software-based or virtual versions of a computer are created,
each with dedicated amounts of CPU, memory and storage
that are provided from a physical host computer. Configu-
ration settings may be utilized to specify the amount of CPU,
memory, and storage to be provided. In managing a virtual
computing system, metric data may include data from mul-
tiple instances of the application that have previously
executed on different virtual machines of the distributed
computing system.

In some implementations, historical metric data associ-
ated with the software application may be obtained. The
obtained historical metric data may be programmatically
analyzed along with the first metric data to determine an
allocation of a computing resource. In some implementa-
tions, it may be determined that the allocation of the
computing resource is to be reduced from a first level of
allocation based on the programmatic analysis.

Block 510 may be followed by block 520.

At block 520, it may be determined, based on the first
metric data, that an allocation of a computing resource for
the software application is to be reduced from a first level of
allocation.

As described earlier, serverless systems and virtual sys-
tems are commonly configurable to enable a specified
amount of one or more computing resources to be allocated.
A cost of utilization may also be based on the specified
amount of computing resources. In some implementations,
the computing resource is an amount of memory allocated to
the software application on the distributed computing sys-
tem. In some implementations, the computing resource is a
number of CPUs or CPU power allocated to the software
application on the distributed computing system.

Different levels of configurability may be provided by a
service provider associated with the distributed computing
systems. For example, in some implementations, an alloca-
tion level of a particular computing resource may be utilized
to select levels for other computing rescues. For example, an
amount of Central Processing Units (CPU) power allocated
to the software application may be based on a corresponding
allocation of memory allocated (based on selection by an
enterprise user) to the software application.

During run-time and use of the distributed computing
system, a cloud management system, e.g., cloud manage-
ment system 110 described with reference to FIG. 1, may be
utilized to adjust a level of allocation of one or more
computing resources. For example, in some implementa-
tions, based on an analysis of first metric data, it may be
determined that the allocation is to be decreased from a first
level of resource allocation for the computing resource.

In some implementations, the determination may also be
made that the allocation is to be increased from a first level
of allocation. For resources that have the opposite effect on
performance, e.g., a resource whereby performance is
improved by reducing an allocation of a particular resource,
performance metrics are measured after increasing the allo-
cation of the particular computing resource.

In some implementations, the determination that the allo-
cation of the computing resource is to be reduced from the
first level of allocation is based on a comparison of the first
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metric data to the obtained metric data for a test software
application at the plurality of allocation setpoints, and deter-
mination of an optimal allocation setpoint for the computing
resource based on the comparison, wherein the optimal
allocation setpoint occurs at a lower level of resource
allocation.

In some implementations, the optimal allocation setpoint
for the computing resource may be based on an inflection
point of the obtained metric data.

In some implementations, the determination, based on the
first metric data, that an allocation of a computing resource
for the software application is to be reduced from a first level
of allocation may include providing the first metric data to
a trained machine learning model and receiving, from the
trained machine learning model, a second level of allocation
for the computing resource, wherein the second level of
allocation is lower than the first level of allocation.

In some implementations, determination of an optimal
and/or recommended setpoint may be based on performance
as well as cost considerations. For example, in some situa-
tions, reducing a level of resource allocation may reduce
performance, but not to the extent that it affects service level
objectives (SLO) and/or target specifications for perfor-
mance. Reducing the level of resource allocation may,
however, reduce costs significantly. In such a scenario, it
may be advantageous to reduce a level of resource alloca-
tion, e.g., memory, thereby incurring a loss of performance,
but still realize a significant cost savings.

In some implementations, the determination of reduction
of a level of resource allocation may be based on sensitivity
weights associated with each performance metric and with
each cost incurred during the execution of the software
application. The sensitivity weights may be previously
obtained, e.g., from an enterprise user, and stored in a
database.

For example, in such a scenario, determining that the
allocation of a computing resource for the software appli-
cation is to be reduced from a first level of allocation may
include a determination a second (and lower) level of
allocation for the execution of the software application, and
wherein a total cost of execution of the software application
is lower at the second level of allocation when compared to
the first level of allocation, and wherein the performance of
the software application at the second level of allocation is
lower when compared to the first level of allocation, and
wherein the performance of the software application at the
second level of allocation meets a service level performance
threshold.

Block 520 may be followed by block 530. At block 530,
an allocation of the computing resource for the software
application may be increased to a second level of allocation
greater than the first level of allocation. In some implemen-
tations, an allocation of a computing resource is first
adjusted in an opposite direction to a direction or recom-
mendation and/or a direction of intent of adjustment. This is
to ensure that the eventual adjustment of allocation of the
computing resource does not lead to performance degrada-
tion.

For example, an allocation of memory for a serverless
function may be initially set to a level of 1024 MB. A
determination/recommendation may be made to reduce the
allocation to 512 MB. Per techniques of this disclosure, the
allocation is increased, for example to 2048 MB, or to a next
higher level of resource allocation setting based on provided
settings.

The higher allocation may serve as an additional check
and/or verification to ensure that performance of the soft-
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ware application may not degrade significantly when the
allocation is reduced (lowered).

Block 530 may be followed by block 540.

At block 540, the software application is executed (or
caused to be executed) on the distributed computing system
at the second level of allocation. A trigger may be simulated
or generated by the cloud management system to cause this
execution for the purpose of obtaining metrics at the newly
selected allocation level for the computing resource.

In some implementations, rather than cause the execution
explicitly, the method may rely on an execution of the
software application, at the new setting (second level of
allocation) based on an actual event, e.g., based on a user
request or other trigger event that causes execution of the
software application at the new setting.

Block 540 may be followed by block 550.

At block 550, second metric data based on execution of
the software application on the distributed computing sys-
tem at the second level of allocation may be obtained.

The second metric data may be obtained via a query
and/or API that provides the second metric data to the cloud
management system. In some implementations, it may be
obtained explicitly via a request or a query subsequent to the
adjustment of the allocation level, whereas in some other
implementations it may be obtained at a previously config-
ured (e.g., normal or usual) frequency of obtaining the
metric as part of monitoring by the cloud management
system.

In some implementations the second metric data may
include a smaller number (set) of metrics than elements in
the first metric data. For example, a recommendation to
adjust (reduce) an allocation level may be made based on an
analysis of multiple metrics, whereas the second metric data
may only include a single metric.

At block 560, it is determined whether the second metric
data is indicative of performance improvement for the
software application when compared to the first metric data.

The determination of performance improvements may be
made keeping thresholds in mind, and may be made on an
aggregate basis, once a threshold number of datapoints (of
the second metric data) is obtained.

If it is determined that the second metric data is not
indicative of performance improvement for the software
application when compared to the first metric data, then
block 560 may be followed by block 570, else block 560
may be followed by block 580.

At block 570, an allocation of the computing resource
may be reduced to a third level that is lower than the first
level, e.g., based on a determination that the second metric
data does not indicate a performance improvement for the
software application when compared to the first metric data.

In some implementations, the third level of resource
allocation may be the actual recommended resource alloca-
tion level, e.g., a level determined per block 520. In some
other implementations, the third level of resource allocation
may be an intermediate level of resource allocation between
the first level and a recommended level and the process of
reducing a resource allocation may be implemented by a
series of sequential operations that progressively adjust the
allocation of the computing resource.

At block 580, the allocation is maintained at the first level
of allocation, e.g., not reduced to a third level of allocation.

For example, if a recommendation was received to reduce
an allocation of a computing resource from a first level to a
third level, per techniques of this disclosure, an adjustment
is made to a second level that is higher than the first level.
If the performance metric for the software application at the
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second level is indicative of a performance improvement,
e.g. improvement in performance metrics that meets a
predetermined threshold, the recommendation, e.g., to
reduce the resource allocation may not be implemented, e.g.,
allocation may not be reduced to the third level per the
recommendation and instead may be maintained at the first
level of allocation, or may be maintained at the second level
of allocation.

In some implementations, if it is determined that the
second metric data is indicative of performance improve-
ment for the software application when compared to the first
metric data, the allocation level may be maintained at the
second level of allocation. This determination may be made
upon evaluation of cost considerations, SLO levels, etc.

In some implementations, aggregation of metric data over
multiple cycles of received metric data may be utilized
before making a change to an allocation setting.

Blocks 510-580 can be performed (or repeated) in a
different order than described above and/or one or more
steps can be omitted. For example, in some implementa-
tions, block 540 may be omitted, and block 530 may be
followed by block 550 based on the software application
executing on the distributed computing system based on a
user/application trigger than specifically be caused to be
executed by the cloud management system.

Blocks 530-580 may be repeated sequentially to reduce an
allocation from a first level to a third level, fourth level, etc.
via a sequence of steps wherein the reduction of resource is
implemented in a series of stages. At each stage, a previous
allocation level may be revisited to ensure no performance
degradation occurs due to the reduction of computing
resource allocation.

Similarly, blocks 530-580 may also be adapted to imple-
ment a change in resource allocation settings when it is
determined that the allocation of a computing resource is to
be increased, rather than reduced. In such a case, based on
a determining, based on the first metric data, that an allo-
cation of a computing resource for the software application
is to be reduced from a first level of allocation, an allocation
of the computing resource for the software application is
decreased to a second level of allocation lower than the first
level of allocation, executing or causing the execution of the
software application on the distributed computing system at
the second level of allocation; obtaining second metric data
based on execution of the software application on the
distributed computing system at the second level of alloca-
tion; and increasing allocation of the computing resource to
a third level that is greater than the first level based on a
determination that the second metric data does not indicate
a performance improvement for the software application
when compared to the first metric data.

In some implementations, blocks 510-580 may be per-
formed periodically based on previously received metric,
traffic, and performance data to generate recommendations
for resource allocations, e.g., of memory, provision concur-
rency, etc. In some implementations, the recommendations
may be autonomously implemented by the cloud manage-
ment system.

FIG. 6 is a flowchart illustrating an example method to
manage a computing resource for a distributed computing
system, in accordance with some implementations.

In some implementations, method 600 can be imple-
mented, for example, on cloud management system 110
described with reference to FIG. 1. In some implementa-
tions, some or all of the method 600 can be implemented on
one or more of cloud enterprise computer systems 160, on
cloud computing system 130, on cloud monitoring system
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140, as shown in FIG. 1, on and/or on a combination of the
systems. In the described examples, the implementing sys-
tem includes one or more digital processors or processing
circuitry (“processors”), and one or more storage devices
(e.g., databases 210, 220 or other storage). In some imple-
mentations, different components of one or more servers
and/or clients can perform different blocks or other parts of
the method 600. In some examples, a first device is
described as performing blocks of method 600. Some imple-
mentations can have one or more blocks of method 600
performed by one or more other devices (e.g., other client
devices or server devices) that can send results or data to the
first device.

In some implementations, the method 600, or portions of
the method, can be initiated automatically by a system. In
some implementations, the implementing system is a first
device. For example, the method (or portions thereof) can be
periodically performed, or performed based on one or more
particular events or conditions, e.g., reception of new soft-
ware application (function), reception of a new release or
update of a software application, at a predetermined time, a
change in configuration one or more elements of a distrib-
uted computing system, a predetermined time period having
expired since the last performance of method 600, and/or
one or more other conditions or events occurring which can
be specified in settings read by the method.

Processing may begin at block 610.

At block 610, a first test function may be executed using
the distributed computing system at a first plurality of
allocation setpoints for the computing resource.

In some implementations, each setpoint of the first plu-
rality of allocation setpoints is associated with a correspond-
ing setting for a single computing resource, e.g., memory,
CPU, etc. In some other implementations, each setpoint of
the first plurality of allocation setpoints is associated with a
corresponding setting for a plurality of computing resources,
e.g., n-tuples of memory, CPU, etc.

In some implementations, an allocation level for a com-
puting resource may be based on an allocation level for
another computing resource. For example, an amount of
CPU provided by a serverless function may be automatically
linked to a selection of an allocation level for memory, and
may not be specifically selected by a user.

In some implementations, the allocation setpoints may be
multidimensional, e.g., configurable for each available com-
puting resource, e.g., memory, CPU, storage, etc.

Selection of the first (test) function may be determined
based on complete utilization of resources, and designed
such that no user provided function is likely to obtain a
better (or worse) performance metric at a corresponding
allocation of a computing resource.

In some implementations, two or more test functions may
be utilized which can provide an upper as well as a lower
bound for the performance versus resource curve for a set of
received functions.

Block 610 may be followed by block 615.

At block 615, based on the execution, one or more
performance metrics for the first test function for each of the
first plurality of allocation setpoints are obtained.

The performance metrics may include one or more per-
formance metrics utilized to characterize performance of the
software application over the distributed computing sys-
tems, and may include both backend metrics and user facing
metrics. In some implementations, the one or more perfor-
mance metrics may include one or more of latency, a time
of execution for the software application, a cold start time
for the software application, a total execution time for the
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software application, a user centric processing time that is
indicative of a total wait time for a user that triggered the
software application, etc.

Block 615 may be followed by block 620.

At block 620, a machine learning model may be trained
based on the obtained one or more performance metrics.

In some implementations, training the machine learning
model may include providing feedback to the machine
learning model based on a comparison between a predicted
performance metric and a corresponding obtained perfor-
mance metric of the one or more performance metrics. In
some implementations, the obtained one or more metrics
may be denoised, e.g., provided to a filter, before being
provided to the machine learning model.

In some implementations, training the machine learning
model may include training the machine learning model to
determine an order of a polynomial function that character-
izes performance of the first test function. The order may be
determined based on a fit of each of the obtained perfor-
mance metrics over the first plurality of allocation setpoints.

In some implementations, training the machine learning
model may include training the machine learning model
based on the obtained one or more performance metrics by
fitting a third order polynomial function to the obtained
performance metrics over the first plurality of setpoints.

In some implementations, a non-polynomial or other
function may be utilized to fit the obtained performance
metrics to determine a mathematical or statistical model for
the performance metrics for the first test function based on
the corresponding obtained one or more performance met-
rics.

Block 620 may be followed by block 630.

At block 630, the trained machine learning model may be
utilized to manage the computing resource for a second
function. The second function may be a new function that is
received from an enterprise user, or may be a new release of
an existing function. In some implementations, a set of
functions may be retrieved from a monitoring or version
control system for analysis with the trained machine learn-
ing model. In some implementations, historical metrics
associated with a second function may also be obtained.

Block 630 may be followed by block 635.

At block 635, the second function to be optimized may be
received.

Block 635 may be followed by block 640.

At block 640, the second function may be executed using
the distributed computing system at a second plurality of
allocation setpoints for the computing resource. In some
implementations, the second plurality of allocation setpoints
comprises a fewer number of setpoints compared to the first
plurality of allocation setpoints.

For example, the first plurality of allocation setpoints may
span the entire available options of allocation setpoints,
whereas only a subset of those may be utilized as the second
plurality of allocation setpoints. This may enable a quick
analysis and determination of an optimal operating point,
rather than sweep an entire solution space of allocation
setpoints

In some implementations, the setpoints in the second
plurality of setpoints may include setpoints that are also
included in the first plurality of setpoints to enable an easy
comparison, e.g., a visual comparison. In some implemen-
tations, the setpoints in the second plurality of setpoints may
include setpoints that are not included in the first plurality of
setpoints, and an extrapolation may be performed for com-
parison.

Block 640 may be followed by block 645.
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At block 645, one or more performance metrics for the
second function are obtained for each of the second plurality
of allocation setpoints.

Block 645 may be followed by block 650.

At block 650, the trained machine learning model may be
utilized to provide a recommendation of a setpoint for the
computing resource for the second function based on an
optimal allocation setpoint.

In some implementations, the optimal allocation setpoint
may be determined by fitting a polynomial function to the
obtained performance metrics for the second function for
each of the second plurality of allocation setpoints. The
polynomial function may be of an order determined based
on previous fitting of a known function, e.g., a first test
function. Based on the fitted polynomial function, the opti-
mal allocation setpoint for the one or more performance
metrics may be determined for the second (received) func-
tion.

In some implementations, fitting the polynomial function
of'the determined order to the obtained performance metrics
for the second function may include fitting the polynomial
function to the obtained performance metrics for the second
function such that no portion of the fitted polynomial
function based on the second function intersects with the
polynomial function based on the test function.

Test functions such as the first function are selected such
that they fully utilize computing resources, and are designed
such that they offer the lowest performance operating points
for a particular setting of a computing resource. When a
second function, e.g., a received function for evaluation, is
executed, and its performance indicates better metrics, it
may be indicative of a noisy and/or erroneous reading. Using
the test function performance metrics as a lower bound
mitigates a risk of propagating an erroneous reading and/or
noise. In some cases, a metric datapoint of a second function
that crosses the bound may be excluded. In some limitations,
the metric datapoint may be set to the corresponding data
point of the test function (limited to that of the test function),
and in some implementations, it may set to be offset by a
distance based on other data points obtained for the second
function, and a relative distance of the other data points from
the corresponding metric data for the test function.

In some implementations, a plurality of test functions may
be characterized for their performance over a set of alloca-
tion setpoints, each with a different set of characteristics. A
model, e.g., mathematical/statistical/Machine Learning
model may be determined for each of the performance
metrics for multiple test functions. When a second function
is received for evaluation, a suitable function of the plurality
of test functions may be selected to match the received
function, and the analysis may be performed for the selected
suitable function.

In some implementations, a first test function may be
characterized by repeating for a plurality of providers,
regions, computing environments, etc.

Based on the determined optimal allocation setpoint, a
recommendation of a setpoint for the computing resource for
the second function may be provided (generated), e.g., via
an alert, or via a user interface.

Blocks 610-650 can be performed (or repeated) in a
different order than described above and/or one or more
steps can be omitted. For example, in some implementa-
tions, block 610 may be omitted, and processing can proceed
directly based on metrics stored in a database, e.g., databases
210 and/or 220 described with reference to FIG. 2.
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In some implementations, an autonomous action may be
undertaken to implement the provided recommendation of
the allocated resource setpoint for the second function.

Implementation of a recommendation may include
obtaining first metric data based on the second function
executing the first level of allocation; increasing allocation
of the computing resource to a second level of allocation
greater than the first level of allocation; executing or causing
the execution of the second function on the distributed
computing system at the second level of allocation; obtain-
ing second metric data based on the second function execut-
ing on the distributed computing system; and reducing
allocation of the computing resource to a third level of
allocation lower than the first level of allocation based on a
determination that the second metric data does not indicate
an improvement over the first metric data.

The metric data may also include data associated with
errors, traffic arrival patterns, etc. In some implementations,
a distributed computing system may offer concurrency han-
dling, wherein a specified amount of computing resources
(threads) are reserved and kept active for a particular enter-
prise client, and wherein a cold start time may be avoided
when handling a query/request. This may provide superior
performance when handling requests, but comes at a cost. A
number of parallel concurrent compute processes (com-
putes) to be reserved for the client is an additional input to
be provided by the enterprise client. Reserving concurrent
compute processes that are un-utilized or under-utilized can
be disadvantageous to the enterprise client.

In some implementations, a cloud management system
may provide a recommendation based on a previous history
of execution of the software applications in the distributed
computing system, e.g., serverless system.

Historical and seasonal traffic patterns may be obtained by
a processor associated with the cloud management system,
and based on cost data and traffic patterns, e.g., request
arrivals as a function of time, etc., a recommendation may
be provided that optimizes cost and performance based on
the expected traffic pattern(s).

In some implementations, a recommendation for provi-
sional concurrency may be based on a concurrency setpoint
at which the utilization of the software application in the
distributed computing system meets a predetermined thresh-
old. In some implementations, the predetermined threshold
may be about 60% of provisioned time utilization.

In some implementations, a traffic pattern to analyze a
maximum number of parallel function requests (calls)
requested for a particular function. A provisional concur-
rency setting may be determined that is based on the
maximum number of parallel requests received in a prede-
termined time, e.g., previous 24 hour period, previous week,
previous month, etc. In some implementations, a provisional
concurrency setting may be based on a percentage of the
maximum number of parallel requests received during a
period, e.g., 75%, 50%, 125%, 150%, etc.

FIG. 7 illustrates an example plot of a performance metric
obtained at different resource allocation setpoints for differ-
ent software applications (functions) implemented in a dis-
tributed computing system. The X-axis represents a com-
puting resource allocation 720, e.g., an amount of memory
allocated to the software application, while the Y-axis rep-
resents a performance metric 710 obtained at different
computing resource allocation setpoints, e.g., at each
selected memory allocation. In this illustrative example, the
performance metric may be indicative of improved perfor-
mance when the values are low, e.g., latency, and a lower
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latency number for a software function may indicate supe-
rior performance when compared to a higher latency num-
ber.

Per techniques of this disclosure, and as described with
reference to FIG. 6, performance metric values 730a-730g
are obtained for a first function, e.g., a test function. As can
be seen from FIG. 6, as increased resources are allocated, the
latency metric numbers decrease, but also start plateauing,
i.e., an increased resource allocation does not always lead to
a proportionate or corresponding increase in performance
(decrease in latency).

The test function model 740 is a graph of a fitted model
based on the obtained performance metric values.

Data Points 750a-750d are performance metrics values
for a second function, for example, a new function or an
updated release of a function, for an enterprise user.

As can be seen, the performance metric for the received
function also follows the trend of improved performance,
i.e., lower metric values as resources increase. The numbers
also lie to the right of the test function model, with the
exception of 7505 which lies to the left of the curve, i.e.,
indicative of better performance at the same resource
(memory) allocation.

As described with reference to FIG. 6, fewer data points
are obtained for received (second) functions when compared
to test (first) functions to improve computational efficiency
and to offer quicker results.

Per techniques of this disclosure, points 750a, 750c, and
750d are used as they are measured (recorded) to determine
the model. In some implementations, 7505 may not be used
as recorded since it may be noisy and erroneous.

In some implementations, the model for the received
function may be determined wherein the value of point 7505
is replaced by a corresponding value of the test function at
that resource allocation point, e.g., by a value corresponding
to point 730c.

In some implementations, the model for the received
function may be determined wherein point 7505 may be
excluded during the model determination.

In some implementations, the model for the received
function may be determined by setting a value for point 7505
based on the distance of other points of the second function
(e.g., 750a, 750c, and 750d4) from corresponding points
obtained for the test function, e.g., 7304, 730¢, and 730f), or
a model value at the corresponding points.

The fitted model for the received function may be utilized
to determine an optimal point of operation.

FIG. 8 is a block diagram illustrating an example of
supervised machine learning (ML) to predict a performance
metric for a software application, in accordance with some
implementations.

The supervised machine learning can be implemented on
a computer that includes one or more processors and
memory with software instructions. In some implementa-
tions, the one or more processors may include one or more
of a general purpose central processing unit (CPU), a
graphics processing unit (GPU), a machine-learning proces-
sor, an application-specific integrated circuit (ASIC), a field-
programmable gate array (FPGA), or any other type of
processor.

In this illustrative example, supervised learning is used to
train a machine learning (ML) model 830 based on training
data 810 and a feedback generator 850. ML, model 830 may
be implemented using any suitable machine learning tech-
nique, e.g., a feedforward neural network (FNN), a convo-
Iutional neural network (CNN), or any other suitable type of
neural network. In some implementations, other machine
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learning techniques such as Bayesian models, support vector
machines, hidden Markov models (HMMs), etc. can also be
used to implement ML model 830.

The training data 810 includes computing resource allo-
cation data 815 for one or more software applications and
corresponding performance metric data 825. The computing
resource allocation data may include any computing
resource allocation data, e.g., data described with respect to
FIG. 7. The computing resource allocation data and corre-
sponding performance metric data may be obtained from a
time-series database, from a monitoring system, etc.

In this illustrative example, computing resource allocation
data 815 are provided to a machine learning (ML) model
under training 830. The ML model generates a predicted
performance metric 840 based on a current state of the ML
model and the computing resource allocation data, e.g.
metric values such as latency, start-up time, etc. For
example, the ML, model may determine a feature vector (or
embedding) based on features of computing resource allo-
cation data 815. The feature vector (or embedding) may be
a mathematical, multi-dimensional representation generated
based on the computing resource allocation data 815.

ML model 830 may generate a predicted performance
metric for the software application based on the computing
resource allocation data associated with the software appli-
cation, e.g., based on the feature vector, and/or based on
similarity with feature vectors of other software applications
and performance metrics associated with those other soft-
ware applications.

The predicted performance 840 generated by ML model
830 is provided to feedback generator 850.

Feedback generator 850 is also provided with the
groundtruth performance metric 825 corresponding to the
software application, as measured and/or reported. Feedback
860 is generated by feedback generator 850 based on a
comparison of the predicted score with the groundtruth
performance metric. For example, if predicted performance
840 is within a predetermined threshold distance of a
groundtruth performance 825, positive feedback may be
provided as feedback 860, while if the scores are far apart
and outside a threshold distance, negative feedback is pro-
vided to the ML model under training, which may be
updated based on the received feedback using reinforcement
learning techniques.

In some implementations, the ML, model includes one or
more neural networks. The neural network(s) may be orga-
nized into a plurality of layers including a plurality of layers.
Each layer may comprise a plurality of neural network
nodes. Nodes in a particular layer may be connected to
nodes in an immediately previous layer and nodes in an
immediately next layer. In some implementations, the ML
model may be a convolutional neural network (CNN).

The training of the MLL model may be performed peri-
odically at specified intervals or may be triggered by events.
In some implementations, the training may be repeated until
a threshold level of performance prediction accuracy is
reached.

FIG. 9 depicts an example screenshot of a cloud manage-
ment system, in accordance with some implementations.

As depicted in FIG. 9, the cloud management system can
be utilized for the optimization and management of software
applications. The cloud management system utilizes com-
puting resource cost data 930a, service level performance
data 9305, benchmark data 930c¢, and performance metrics
data 9304 to optimize and manage software applications.

In this illustrative example, a screenshot is depicted of an
example application management 920 is used.
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An example software application, in this case, a serverless
function is allocated 1028 MB of memory. Based on an
analysis, e.g., at a user request, or as part of a periodic
autonomous analysis, it is determined that the function may
be allocated a lower resource allocation, e.g., 256 Mb,
leading to a cost reduction, while only experiencing a
relatively small drop in performance, e.g., 10%. It is further
determined that the SLO targets would still be met.

An estimated savings from this reduction of resource
allocation is also provided, e.g., $2500/month based on
available data 930.

In some implementations, such analysis may be autono-
mously performed, and allocations dynamically adjusted
based on historically observed traffic patterns, cost data,
metrics data, etc.

FIG. 10 is a block diagram of an example computing
device 1000 which may be used to implement one or more
features described herein. In one example, device 1000 may
be used to implement a computer device (e.g., 110, 130, 140,
and/or 160 of FIG. 1), and perform appropriate method
implementations described herein. Computing device 1000
can be any suitable computer system, server, or other
electronic or hardware device. For example, the computing
device 1000 can be a mainframe computer, desktop com-
puter, workstation, portable computer, or electronic device
(portable device, mobile device, cell phone, smartphone,
tablet computer, television, TV set top box, personal digital
assistant (PDA), media player, game device, wearable
device, etc.). In some implementations, device 1000
includes a processor 1002, a memory 1006, and input/output
(I/0) interface 1008.

Processor 1002 can be one or more processors and/or
processing circuits to execute program code and control
basic operations of the device 1000. A “processor” includes
any suitable hardware and/or software system, mechanism
or component that processes data, signals or other informa-
tion. A processor may include a system with a general-
purpose central processing unit (CPU), multiple processing
units, dedicated circuitry for achieving functionality, or
other systems. Processing need not be limited to a particular
geographic location, or have temporal limitations. For
example, a processor may perform its functions in “real-
time,” “offline,” in a “batch mode,” etc. Portions of process-
ing may be performed at different times and at different
locations, by different (or the same) processing systems. A
computer may be any processor in communication with a
memory.

Computer readable medium (memory) 1006 is typically
provided in device 1000 for access by the processor 1002,
and may be any suitable processor-readable storage
medium, e.g., random access memory (RAM), read-only
memory (ROM), Electrical Erasable Read-only Memory
(EEPROM), Flash memory, etc., suitable for storing instruc-
tions for execution by the processor, and located separate
from processor 1002 and/or integrated therewith. Memory
1006 can store software operating on the server device 1000
by the processor 1002, including an operating system 1004,
one or more applications 1010 and application data 1012. In
some implementations, application 1010 can include
instructions that enable processor 1002 to perform the
functions (or control the functions of) described herein, e.g.,
some or all of the methods described with respect to FIGS.
5 and 6.

Elements of software 1004 in memory 1006 can alterna-
tively be stored on any other suitable storage location or
computer-readable medium. In addition, memory 1006 (and/
or other connected storage device(s)) can store instructions
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and data used in the features described herein. Memory 1006
and any other type of storage (magnetic disk, optical disk,
magnetic tape, or other tangible media) can be considered
“storage” or “storage devices.”

An 1/O interface can provide functions to enable inter-
facing the server device 1000 with other systems and
devices. For example, network communication devices,
storage devices and input/output devices can communicate
via the interface. In some implementations, the 1/O interface
can connect to interface devices including input devices
(keyboard, pointing device, touchscreen, microphone, cam-
era, scanner, etc.) and/or output devices (display device,
speaker devices, printer, motor, etc.).

The audio/video input/output devices can include a user
input device (e.g., a mouse, etc.) that can be used to receive
user input, a display device (e.g., screen, monitor, etc.)
and/or a combined input and display device, that can be used
to provide graphical and/or visual output.

For ease of illustration, FIG. 10 shows one block for each
of processor 1002 and memory 1006. These blocks may
represent one or mMore processors or processing circuitries,
operating systems, memories, /O interfaces, applications,
and/or software engines. In other implementations, device
1000 may not have all of the components shown and/or may
have other elements including other types of elements
instead of, or in addition to, those shown herein. While the
cloud management system 110 or cloud computing system
130 is described as performing operations as described in
some implementations herein, any suitable component or
combination of components of cloud management system
110, cloud computing system 130, or similar system, or any
suitable processor or processors associated with such a
system, may perform the operations described.

A user device can also implement and/or be used with
features described herein. Example user devices can be
computer devices including some similar components as the
device 1000, e.g., processor(s) 1002, memory 1006, etc. An
operating system, software and applications suitable for the
client device can be provided in memory and used by the
processor. The I/O interface for a client device can be
connected to network communication devices, as well as to
input and output devices, e.g., a microphone for capturing
sound, a camera for capturing images or video, a mouse for
capturing user input, a gesture device for recognizing a user
gesture, a touchscreen to detect user input, audio speaker
devices for outputting sound, a display device for outputting
images or video, or other output devices. A display device
within the audio/video input/output devices, for example,
can be connected to (or included in) the device 1000 to
display images pre- and post-processing as described herein,
where such display device can include any suitable display
device, e.g., an LCD, LED, or plasma display screen, CRT,
television, monitor, touchscreen, 3-D display screen, pro-
jector, or other visual display device. Some implementations
can provide an audio output device, e.g., voice output or
synthesis that speaks text.

One or more methods described herein (e.g., methods 500
and 600) can be implemented by computer program instruc-
tions or code, which can be executed on a computer. For
example, the code can be implemented by one or more
digital processors (e.g., microprocessors or other processing
circuitry), and can be stored on a computer program product
including a non-transitory computer readable medium (e.g.,
storage medium), e.g., a magnetic, optical, electromagnetic,
or semiconductor storage medium, including semiconductor
or solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only
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memory (ROM), flash memory, a rigid magnetic disk, an
optical disk, a solid-state memory drive, etc. The program
instructions can also be contained in, and provided as, an
electronic signal, for example in the form of software as a
service (SaaS) delivered from a server (e.g., a distributed
system and/or a cloud computing system). Alternatively, one
or more methods can be implemented in hardware (logic
gates, etc.), or in a combination of hardware and software.
Example hardware can be programmable processors (e.g.,
Field-Programmable Gate Array (FPGA), Complex Pro-
grammable Logic Device), general purpose processors,
graphics processors, Application Specific Integrated Circuits
(ASICs), and the like. One or more methods can be per-
formed as part of or component of an application running on
the system, or as an application or software running in
conjunction with other applications and operating systems.

One or more methods described herein can be run in a
standalone program that can be run on any type of comput-
ing device, a program run on a web browser, a mobile
application (“app”) run on a mobile computing device (e.g.,
cell phone, smart phone, tablet computer, wearable device
(wristwatch, armband, jewelry, headwear, goggles, glasses,
etc.), laptop computer, etc.). In one example, a client/server
architecture can be used, e.g., a mobile computing device (as
a client device) sends user input data to a server device and
receives from the server the final output data for output (e.g.,
for display). In another example, all computations can be
performed within the mobile app (and/or other apps) on the
mobile computing device. In another example, computations
can be split between the mobile computing device and one
or more server devices.

Although the description has been described with respect
to particular implementations thereof, these particular
implementations are merely illustrative. Concepts illustrated
in the examples may be applied to other examples and
implementations.

The functional blocks, operations, features, methods,
devices, and systems described in the present disclosure may
be integrated or divided into different combinations of
systems, devices, and functional blocks as would be known
to those skilled in the art. Any suitable programming lan-
guage and programming techniques may be used to imple-
ment the routines of particular implementations. Different
programming techniques may be employed, e.g., procedural
or object-oriented. The routines may execute on a single
processing device or multiple processors. Although the
steps, operations, or computations may be presented in a
specific order, the order may be changed in different par-
ticular implementations. In some implementations, multiple
steps or operations shown as sequential in this specification
may be performed at the same time.

What is claimed is:

1. A method to manage a computing resource for a
distributed computing system, comprising:

executing a first test function using the distributed com-

puting system at a first plurality of allocation setpoints
for the computing resource;
based on the execution, obtaining one or more perfor-
mance metrics for the first test function for each
setpoint of the first plurality of allocation setpoints;

training a machine learning model based on the obtained
one or more performance metrics, wherein training the
machine learning model comprises fitting a function to
each of the obtained performance metrics over the first
plurality of allocation setpoints;

utilizing the trained machine learning model to manage

the computing resource for a second function, wherein
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utilizing the trained machine learning model to manage

the computing resource for the second function com-

prises:

receiving the second function to be optimized for the
computing system;

executing the second function at a second plurality of
allocation setpoints for the computing resource,
wherein the second plurality of allocation setpoints
comprises a fewer number of setpoints compared to
the first plurality of allocation setpoints;

obtaining the one or more performance metrics for the

second function for each of the second plurality of
allocation setpoints;
applying the trained machine learning model to the
obtained performance metrics for the second function
for each of the second plurality of allocation setpoints;

determining an optimal allocation setpoint for the one or
more performance metrics based on the trained
machine learning model; and

providing a recommendation of a setpoint for the com-

puting resource for the second function based on the
determined optimal allocation setpoint.

2. The method of claim 1, wherein training the machine
learning model comprises providing feedback to the
machine learning model based on a comparison between a
predicted performance metric and a corresponding obtained
performance metric of the one or more performance metrics.

3. The method of claim 1, wherein training the machine
learning model further comprises training the machine learn-
ing model to determine an order of a polynomial function
that characterizes performance of the first test function based
on a fit of each of the obtained performance metrics over the
first plurality of allocation setpoints.

4. The method of claim 3, wherein utilizing the trained
machine learning model to manage the computing resource
for the second function further comprises:

fitting a polynomial function of the determined order to

the obtained performance metrics for the second func-
tion for each of the second plurality of allocation
setpoints; and

determining an optimal allocation setpoint for the one or

more performance metrics based on the fitted polyno-
mial function.

5. The method of claim 4, further comprising implement-
ing the recommendation of the allocation setpoint for the
second function.

6. The method of claim 5, wherein the recommendation is
a change from a first level of allocation, and wherein
implementing the recommendation comprises:

obtaining first metric data based on the second function

executing at the first level of allocation;

increasing allocation of the computing resource to a

second level of allocation greater than the first level of

allocation;

executing or causing the execution of the second func-
tion on the distributed computing system at the
second level of allocation;

obtaining second metric data based on the second
function executing on the distributed computing sys-
tem; and

reducing allocation of the computing resource to a third
level of allocation lower than the first level of
allocation based on a determination that the second
metric data does not indicate an improvement over
the first metric data.

7. The method of claim 4, wherein fitting the polynomial
function of the determined order to the obtained perfor-
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mance metrics for the second function further comprises
fitting the polynomial function to the obtained performance
metrics for the second function such that no portion of the
fitted polynomial based on the second function intersects
with the polynomial function based on the first test function.
8. The method of claim 1, wherein training the machine
learning model based on the obtained one or more perfor-
mance metrics comprises fitting a third order polynomial
function to the obtained performance metrics over the first
plurality of allocation setpoints.
9. A non-transitory computer-readable medium compris-
ing instructions that, responsive to execution by a processing
device, causes the processing device to perform operations
comprising:
executing a first test function using a distributed comput-
ing system at a first plurality of allocation setpoints for
a computing resource;

based on the execution, obtaining one or more perfor-
mance metrics for the first test function for each
setpoint of the first plurality of allocation setpoints;

training a machine learning model based on the obtained
one or more performance metrics, wherein training the
machine learning model comprises fitting a function to
each of the obtained performance metrics over the first
plurality of allocation setpoints; and

utilizing the trained machine learning model to manage

the computing resource for a second function, wherein

utilizing the trained machine learning model to manage

the computing resource for the second function com-

prises:

receiving the second function to be optimized for the
computing system;

executing the second function at a second plurality of
allocation setpoints for the computing resource,
wherein the second plurality of allocation setpoints
comprises a fewer number of setpoints compared to
the first plurality of allocation setpoints;

obtaining the one or more performance metrics for the

second function for each of the second plurality of
allocation setpoints;

applying the trained machine learning model to the

obtained performance metrics for the second function
for each of the second plurality of allocation setpoints;
determining an optimal allocation setpoint for the one or
more performance metrics based on the trained
machine learning model; and
providing a recommendation of a setpoint for the computing
resource for the second function based on the determined
optimal allocation setpoint.

10. The non-transitory computer-readable medium of
claim 9, wherein training the machine learning model com-
prises providing feedback to the machine learning model
based on a comparison between a predicted performance
metric and a corresponding obtained performance metric of
the one or more performance metrics.

11. The non-transitory computer-readable medium of
claim 9, wherein training the machine learning model fur-
ther comprises training the machine learning model to
determine an order of a polynomial function that character-
izes performance of the first test function based on a fit of
each of the obtained performance metrics over the first
plurality of allocation setpoints.

12. The non-transitory computer-readable medium of
claim 11, wherein utilizing the trained machine learning
model to manage the computing resource for the second
function further comprises:
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fitting a polynomial function of the determined order to
the obtained performance metrics for the second func-
tion for each of the second plurality of allocation
setpoints; and

determining an optimal allocation setpoint for the one or

more performance metrics based on the fitted polyno-
mial function.

13. The non-transitory computer-readable medium of
claim 12, wherein the operations further comprise imple-
menting the recommendation of the allocation setpoint for
the second function.

14. The non-transitory computer-readable medium of
claim 13, wherein the recommendation is a change from a
first level of allocation, and wherein implementing the
recommendation comprises:

obtaining first metric data based on the second function

executing at the first level of allocation;

increasing allocation of the computing resource to a

second level of allocation greater than the first level of

allocation;

executing or causing the execution of the second func-
tion on the distributed computing system at the
second level of allocation;

obtaining second metric data based on the second
function executing on the distributed computing sys-
tem; and

reducing allocation of the computing resource to a third
level of allocation lower than the first level of
allocation based on a determination that the second
metric data does not indicate an improvement over
the first metric data.

15. The non-transitory computer-readable medium of
claim 12, wherein fitting the polynomial function of the
determined order to the obtained performance metrics for
the second function further comprises fitting the polynomial
function to the obtained performance metrics for the second
function such that no portion of the fitted polynomial based
on the second function intersects with the polynomial func-
tion based on the first test function.

16. The non-transitory computer-readable medium of
claim 12, wherein training the machine learning model
based on the obtained one or more performance metrics
comprises fitting a third order polynomial function to the
obtained performance metrics over the first plurality of
allocation setpoints.

17. A system comprising:

a memory with instructions stored thereon; and

a processing device, coupled to the memory, the process-

ing device configured to access the memory and

execute the instructions, wherein the instructions cause

the processing device to perform operations including:

executing a first test function using a distributed com-
puting system at a first plurality of allocation set-
points for a computing resource;
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based on the execution, obtaining one or more perfor-
mance metrics for the first test function for each
setpoint of the first plurality of allocation setpoints;
training a machine learning model based on the obtained
one or more performance metrics, wherein training the
machine learning model comprises fitting a function to
each of the obtained performance metrics over the first
plurality of allocation setpoints;
utilizing the trained machine learning model to manage
the computing resource for a second function,
wherein utilizing the trained machine learning model
to manage the computing resource for the second
function comprises:
receiving the second function to be optimized for the
computing system;
executing the second function at a second plurality of
allocation setpoints for the computing resource,
wherein the second plurality of allocation set-
points comprises a fewer number of setpoints
compared to the first plurality of allocation set-
points;
obtaining the one or more performance metrics for the
second function for each of the second plurality of
allocation setpoints;
applying the trained machine learning model to the
obtained performance metrics for the second func-
tion for each of the second plurality of allocation
setpoints;
determining an optimal allocation setpoint for the one
or more performance metrics based on the trained
machine learning model; and
providing a recommendation of a setpoint for the computing
resource for the second function based on the determined
optimal allocation setpoint.

18. The system of claim 17, wherein training the machine
learning model comprises providing feedback to the
machine learning model based on a comparison between a
predicted performance metric and a corresponding obtained
performance metric of the one or more performance metrics.

19. The system of claim 17, wherein training the machine
learning model further comprises training the machine learn-
ing model to determine an order of a polynomial function
that characterizes performance of the first test function based
on a fit of each of the obtained performance metrics over the
first plurality of allocation setpoints.

20. The system of claim 19, wherein utilizing the trained
machine learning model to manage the computing resource
for the second function comprises:

fitting a polynomial function of the determined order to

the obtained performance metrics for the second func-
tion for each of the second plurality of allocation
setpoints; and

determining an optimal allocation setpoint for the one or

more performance metrics based on the fitted polyno-
mial function.



