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INTELLIGENT ACCESS TO A STORAGE 
DEVICE 

[ 0015 ] FIG . 3B sets forth a diagram of a storage system in 
accordance with some embodiments of the present disclo 
sure . 

TECHNICAL FIELD 

[ 0001 ] The technical field to which the invention relates is 
data storage systems . More specifically , the present inven 
tion relates to failure detection and failure remedies in data 
storage systems . 

a 

BACKGROUND 
[ 0002 ] Storage systems , and storage devices , have mul 
tiple mechanisms for failure , and usually have a mechanism 
for data recovery in case of failure . Failure mechanisms in 
storage devices can be for as few as one or a small number 
of bits , or as large as an entire storage device , and many 
storage systems can detect failures in various ways and at 
various levels , for example through use of error correction 
mechanisms or system and memory maintenance mecha 
nisms . Remedying a data failure or component failure can 
include data recovery , data reconstruction , reallocation and / 
or physical replacement of system resources . With the 
industry - wide growth in storage system capacity come new 
issues and problems , and there is thus a need for improve 
ments in failure detection and failure remedies , in which 
present embodiments arise . 

a 

BRIEF DESCRIPTION OF DRAWINGS 

a 

[ 0016 ] FIG . 3C sets forth an example of a cloud - based 
storage system in accordance with some embodiments of the 
present disclosure . 
[ 0017 ] FIG . 3D illustrates an exemplary computing device 
350 that may be specifically configured to perform one or 
more of the processes described herein . 
[ 0018 ] FIG . 4 illustrates a storage system that performs 
failure detection in NVRAM devices and can take individual 
NVRAM devices offline or online , in accordance with some 
embodiments . 
[ 0019 ] FIG . 5 depicts fine - grained failure domains in an 
NVRAM device , according to various embodiments . 
[ 0020 ] FIG . 6 illustrates authorities in a storage system 
making use of and monitoring for failures in storage system 
resources , in an embodiment . 
[ 0021 ] FIG . 7 illustrates metadata chunks with checksums 
in the NVRAM device , which can be used for failure 
detection , in one embodiment . 
[ 0022 ] FIG . 8 is a flow diagram for a method of failure 
detection in a storage system , in an embodiment that can be 
performed by various embodiments of storage systems 
including storage systems described herein and further stor 
age systems . 
[ 0023 ] DESCRIPTION OF EMBODIMENTS 
[ 0024 ] Example methods , apparatus , and products for stor 
age systems that have various mechanisms for failure detec 
tion and failure recovery in accordance with embodiments of 
the present disclosure are described with reference to the 
accompanying drawings , beginning with FIG . 1A . Various 
storage systems including storage arrays and storage clusters 
are described with reference to FIGS . 1A - 3D . Various stor 
age systems with failure detection in nonvolatile random 
access memory ( NVRAM ) and failure remedy for failures 
that are detected in the NVRAM , are described with refer 
ence to FIGS . 4-8 . 
[ 0025 ] FIG . 1A illustrates an example system for data 
storage , in accordance with some implementations . FIG . 1A 
illustrates an example system for data storage , in accordance 
with some implementations . System 100 ( also referred to as 
" storage system ” herein ) includes numerous elements for 
purposes of illustration rather than limitation . It may be 
noted that system 100 may include the same , more , or fewer 
elements configured in the same or different manner in other 
implementations . 
[ 0026 ] System 100 includes a number of computing 
devices 164A - B . Computing devices ( also referred to as 
“ client devices ” herein ) may be embodied , for example , a 
server in a data center , a workstation , a personal computer , 
a notebook , or the like . Computing devices 164A - B may be 
coupled for data communications to one or more storage 
arrays 102A - B through a storage area network ( “ SAN ' ) 158 
or a local area network ( ?LAN ' ) 160 . 
[ 0027 ] The SAN 158 may be implemented with a variety 
of data communications fabrics , devices , and protocols . For 
example , the fabrics for SAN 158 may include Fibre Chan 
nel , Ethernet , Infiniband , Serial Attached Small Computer 
System Interface ( “ SAS ' ) , or the like . Data communications 
protocols for use with SAN 158 may include Advanced 
Technology Attachment ( “ ATA ” ) , Fibre Channel Protocol , 
Small Computer System Interface ( “ SCSI ' ) , Internet Small 
Computer System Interface ( “ iSCSI ' ) , HyperSCSI , Non 

[ 0003 ] FIG . 1A illustrates a first example system for data 
storage in accordance with some implementations . 
[ 0004 ] FIG . 1B illustrates a second example system for 
data storage in accordance with some implementations . 
[ 0005 ] FIG . 1C illustrates a third example system for data 
storage in accordance with some implementations . 
[ 0006 ] FIG . 1D illustrates a fourth example system for 
data storage in accordance with some implementations . 
[ 0007 ] FIG . 2A is a perspective view of a storage cluster 
with multiple storage nodes and internal storage coupled to 
each storage node to provide network attached storage , in 
accordance with some embodiments . 
[ 0008 ] FIG . 2B is a block diagram showing an intercon 
nect switch coupling multiple storage nodes in accordance 
with some embodiments . 
[ 0009 ] FIG . 2C is a multiple level block diagram , showing 
contents of a storage node and contents of one of the 
non - volatile solid state storage units in accordance with 
some embodiments . 
[ 0010 ] FIG . 2D shows a storage server environment , 
which uses embodiments of the storage nodes and storage 
units of some previous figures in accordance with some 
embodiments . 
[ 0011 ] FIG . 2E is a blade hardware block diagram , show 
ing a control plane , compute and storage planes , and authori 
ties interacting with underlying physical resources , in accor 
dance with some embodiments . 
[ 0012 ] FIG . 2F depicts elasticity software layers in blades 
of a storage cluster , in accordance with some embodiments . 
[ 0013 ] FIG . 2G depicts authorities and storage resources 
in blades of a storage cluster , in accordance with some 
embodiments . 
[ 0014 ] FIG . 3A sets forth a diagram of a storage system 
that is coupled for data communications with a cloud 
services provider in accordance with some embodiments of 
the present disclosure . 

a 

a 
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a 

Volatile Memory Express ( ‘ NVMe ' ) over Fabrics , or the 
like . It may be noted that SAN 158 is provided for illustra 
tion , rather than limitation . Other data communication cou 
plings may be implemented between computing devices 
164A - B and storage arrays 102A - B . 
[ 0028 ] The LAN 160 may also be implemented with a 
variety of fabrics , devices , and protocols . For example , the 
fabrics for LAN 160 may include Ethernet ( 802.3 ) , wireless 
( 802.11 ) , or the like . Data communication protocols for use 
in LAN 160 may include Transmission Control Protocol 
( “ TCP ' ) , User Datagram Protocol ( ?UDP ' ) , Internet Protocol 
( ?IP ) , HyperText Transfer Protocol ( ' HTTP ' ) , Wireless 
Access Protocol ( “ WAP ' ) , Handheld Device Transport Pro 
tocol ( " HDTP ' ) , Session Initiation Protocol ( “ SIP ' ) , Real 
Time Protocol ( ?RTP ' ) , or the like . 
[ 0029 ] Storage arrays 102A - B may provide persistent data 
storage for the computing devices 164A - B . Storage array 
102A may be contained in a chassis ( not shown ) , and storage 
array 102B may be contained in another chassis ( not shown ) , 
in implementations . Storage array 1024 and 102B may 
include one or more storage array controllers 110A - D ( also 
referred to as " controller " herein ) . A storage array controller 
110A - D may be embodied as a module of automated com 
puting machinery comprising computer hardware , computer 
software , or a combination of computer hardware and soft 
ware . In some implementations , the storage array controllers 
110A - D may be configured to carry out various storage 
tasks . Storage tasks may include writing data received from 
the computing devices 164A - B to storage array 102A - B , 
erasing data from storage array 102A - B , retrieving data from 
storage array 102A - B and providing data to computing 
devices 164A - B , monitoring and reporting of disk utilization 
and performance , performing redundancy operations , such 
as Redundant Array of Independent Drives ( ?RAID ' ) or 
RAID - like data redundancy operations , compressing data , 
encrypting data , and so forth . 
[ 0030 ] Storage array controller 110A - D may be imple 
mented in a variety of ways , including as a Field Program 
mable Gate Array ( ?FPGA ’ ) , a Programmable Logic Chip 
( ' PLC ' ) , an Application Specific Integrated Circuit 
( ‘ ASIC ' ) , System - on - Chip ( “ SOC ' ) , or any computing 
device that includes discrete components such as a process 
ing device , central processing unit , computer memory , or 
various adapters . Storage array controller 110A - D may 
include , for example , a data communications adapter con 
figured to support communications via the SAN 158 or LAN 
160. In some implementations , storage array controller 
110A - D may be independently coupled to the LAN 160. In 
implementations , storage array controller 110A - D may 
include an I / O controller or the like that couples the storage 
array controller 110A - D for data communications , through a 
midplane ( not shown ) , to a persistent storage resource 
170A - B ( also referred to as a “ storage resource ” herein ) . The 
persistent storage resource 170A - B main include any num 
ber of storage drives 171A - F ( also referred to as “ storage 
devices ” herein ) and any number of non - volatile Random 
Access Memory ( ?NVRAM ' ) devices ( not shown ) . 
[ 0031 ] In some implementations , the NVRAM devices of 
a persistent storage resource 170A - B may be configured to 
receive , from the storage array controller 110A - D , data to be 
stored in the storage drives 171A - F . In some examples , the 
data may originate from computing devices 164A - B . In 
some examples , writing data to the NVRAM device may be 
carried out more quickly than directly writing data to the 

storage drive 171A - F . In implementations , the storage array 
controller 110A - D may be configured to utilize the NVRAM 
devices as a quickly accessible buffer for data destined to be 
written to the storage drives 171A - F . Latency for write 
requests using NVRAM devices as a buffer may be 
improved relative to a system in which a storage array 
controller 110A - D writes data directly to the storage drives 
171A - F . In some implementations , the NVRAM devices 
may be implemented with computer memory in the form of 
high bandwidth , low latency RAM . The NVRAM device is 
referred to as “ non - volatile ” because the NVRAM device 
may receive or include a unique power source that maintains 
the state of the RAM after main power loss to the NVRAM 
device . Such a power source may be a battery , one or more 
capacitors , or the like . In response to a power loss , the 
NVRAM device may be configured to write the contents of 
the RAM to a persistent storage , such as the storage drives 
171A - F . 

[ 0032 ] In implementations , storage drive 171A - F may 
refer to any device configured to record data persistently , 
where “ persistently ” or “ persistent ” refers as to a device's 
ability to maintain recorded data after loss of power . In some 
implementations , storage drive 171A - F may correspond to 
non - disk storage media . For example , the storage drive 
171A - F may be one or more solid - state drives ( “ SSDs ' ) , 
flash memory based storage , any type of solid - state non 
volatile memory , or any other type of non - mechanical stor 
age device . In other implementations , storage drive 171A - F 
may include may include mechanical or spinning hard disk , 
such as hard - disk drives ( ?HDD ' ) . 
[ 0033 ] In some implementations , the storage array con 
trollers 110A - D may be configured for offloading device 
management responsibilities from storage drive 171A - F in 
storage array 102A - B . For example , storage array control 
lers 110A - D may manage control information that may 
describe the state of one or more memory blocks in the 
storage drives 171A - F . The control information may indi 
cate , for example , that a particular memory block has failed 
and should no longer be written to , that a particular memory 
block contains boot code for a storage array controller 
110A - D , the number of program - erase ( ™ P / ) cycles that have 
been performed on a particular memory block , the age of 
data stored in a particular memory block , the type of data 
that is stored in a particular memory block , and so forth . In 
some implementations , the control information may be 
stored with an associated memory block as metadata . In 
other implementations , the control information for the stor 
age drives 171A - F may be stored in one or more particular 
memory blocks of the storage drives 171A - F that are 
selected by the storage array controller 110A - D . The 
selected memory blocks may be tagged with an identifier 
indicating that the selected memory block contains control 
information . The identifier may be utilized by the storage 
array controllers 110A - D in conjunction with storage drives 
171A - F to quickly identify the memory blocks that contain 
control information . For example , the storage controllers 
110A - D may issue a command to locate memory blocks that 
contain control information . It may be noted that control 
information may be so large that parts of the control infor 
mation may be stored in multiple locations , that the control 
information may be stored in multiple locations for purposes 
of redundancy , for example , or that the control information 
may otherwise be distributed across multiple memory blocks 
in the storage drive 171A - F . 
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[ 0034 ] In implementations , storage array controllers 
110A - D may offload device management responsibilities 
from storage drives 171A - F of storage array 102A - B by 
retrieving , from the storage drives 171A - F , control informa 
tion describing the state of one or more memory blocks in 
the storage drives 171A - F . Retrieving the control informa 
tion from the storage drives 171A - F may be carried out , for 
example , by the storage array controller 110A - D querying 
the storage drives 171A - F for the location of control infor 
mation for a particular storage drive 171A - F . The storage 
drives 171A - F may be configured to execute instructions 
that enable the storage drive 171A - F to identify the location 
of the control information . The instructions may be executed 
by a controller ( not shown ) associated with or otherwise 
located on the storage drive 171A - F and may cause the 
storage drive 171A - F to scan a portion of each memory 
block to identify the memory blocks that store control 
information for the storage drives 171A - F . The storage 
drives 171A - F may respond by sending a response message 
to the storage array controller 110A - D that includes the 
location of control information for the storage drive 171A - F . 
Responsive to receiving the response message , storage array 
controllers 110A - D may issue a request to read data stored 
at the address associated with the location of control infor 
mation for the storage drives 171A - F . 
[ 0035 ] In other implementations , the storage array con 
trollers 110A - D may further offload device management 
responsibilities from storage drives 171A - F by performing , 
in response to receiving the control information , a storage 
drive management operation . A storage drive management 
operation may include , for example , an operation that is 
typically performed by the storage drive 171A - F ( e.g. , the 
controller ( not shown ) associated with a particular storage 
drive 171A - F ) . A storage drive management operation may 
include , for example , ensuring that data is not written to 
failed memory blocks within the storage drive 171A - F , 
ensuring that data is written to memory blocks within the 
storage drive 171A - F in such a way that adequate wear 
leveling is achieved , and so forth . 
[ 0036 ] In implementations , storage array 102A - B may 
implement two or more storage array controllers 110A - D . 
For example , storage array 102A may include storage array 
controllers 110A and storage array controllers 110B . At a 
given instance , a single storage array controller 110A - D 
( e.g. , storage array controller 110A ) of a storage system 100 
may be designated with primary status ( also referred to as 
" primary controller ” herein ) , and other storage array con 
trollers 110A - D ( e.g. , storage array controller 110A ) may be 
designated with secondary status ( also referred to as " sec 
ondary controller ” herein ) . The primary controller may have 
particular rights , such as permission to alter data in persis 
tent storage resource 170A - B ( e.g. , writing data to persistent 
storage resource 170A - B ) . At least some of the rights of the 
primary controller may supersede the rights of the secondary 
controller . For instance , the secondary controller may not 
have permission to alter data in persistent storage resource 
170A - B when the primary controller has the right . The status 
of storage array controllers 110A - D may change . For 
example , storage array controller 110A may be designated 
with secondary status , and storage array controller 110B 
may be designated with primary status . 
[ 0037 ] In some implementations , a primary controller , 
such as storage array controller 110A , may serve as the 
primary controller for one or more storage arrays 102A - B , 

and a second controller , such as storage array controller 
110B , may serve as the secondary controller for the one or 
more storage arrays 102A - B . For example , storage array 
controller 110A may be the primary controller for storage 
array 102A and storage array 102B , and storage array 
controller 110B may be the secondary controller for storage 
array 102A and 102B . In some implementations , storage 
array controllers 110C and 110D ( also referred to as “ storage 
processing modules ” ) may neither have primary or second 
ary status . Storage array controllers 110C and 110D , imple 
mented as storage processing modules , may act as a com 
munication interface between the primary and secondary 
controllers ( e.g. , storage array controllers 110A and 110B , 
respectively ) and storage array 102B . For example , storage 
array controller 110A of storage array 102A may send a 
write request , via SAN 158 , to storage array 102B . The write 
request may be received by both storage array controllers 
110C and 110D of storage array 102B . Storage array con 
trollers 110C and 110D facilitate the communication , e.g. , 
send the write request to the appropriate storage drive 
171A - F . It may be noted that in some implementations 
storage processing modules may be used to increase the 
number of storage drives controlled by the primary and 
secondary controllers . 
[ 0038 ] In implementations , storage array controllers 
110A - D are communicatively coupled , via a midplane ( not 
shown ) , to one or more storage drives 171A - F and to one or 
more NVRAM devices ( not shown ) that are included as part 
of a storage array 102A - B . The storage array controllers 
110A - D may be coupled to the midplane via one or more 
data communication links and the midplane may be coupled 
to the storage drives 171A - F and the NVRAM devices via 
one or more data communications links . The data commu 
nications links described herein are collectively illustrated 
by data communications links 108A - D and may include a 
Peripheral Component Interconnect Express ( * PCIe ' ) bus , 
for example . 
( 0039 ] FIG . 1B illustrates an example system for data 
storage , in accordance with some implementations . Storage 
array controller 101 illustrated in FIG . 1B may similar to the 
storage array controllers 110A - D described with respect to 
FIG . 1A . In one example , storage array controller 101 may 
be similar to storage array controller 110A or storage array 
controller 110B . Storage array controller 101 includes 
numerous elements for purposes of illustration rather than 
limitation . It may be noted that storage array controller 101 
may include the same , more , or fewer elements configured 
in the same or different manner in other implementations . It 
may be noted that elements of FIG . 1A may be included 
below to help illustrate features of storage array controller 
101 . 
[ 0040 ] Storage array controller 101 may include one or 
more processing devices 104 and random access memory 
( “ RAMY ) 111. Processing device 104 ( or controller 101 ) 
represents one or more general - purpose processing devices 
such as a microprocessor , central processing unit , or the like . 
More particularly , the processing device 104 ( or controller 
101 ) may be a complex instruction set computing ( “ CISC ' ) 
microprocessor , reduced instruction set computing ( “ C ' ) 
microprocessor , very long instruction word ( ' VLIW ' ) 
microprocessor , or a processor implementing other instruc 
tion sets or processors implementing a combination of 
instruction sets . The processing device 104 ( or controller 
101 ) may also be one or more special - purpose processing 
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devices such as an application specific integrated circuit 
( ‘ ASIC ' ) , a field programmable gate array ( * FPGA ' ) , a 
digital signal processor ( ‘ DSP ' ) , network processor , or the 
like . 
[ 0041 ] The processing device 104 may be connected to the 
RAM 111 via a data communications link 106 , which may 
be embodied as a high speed memory bus such as a 
Double - Data Rate 4 ( ?DDR4 ' ) bus . Stored in RAM 111 is an 
operating system 112. In some implementations , instructions 
113 are stored in RAM 111. Instructions 113 may include 
computer program instructions for performing operations in 
in a direct - mapped flash storage system . In one embodiment , 
a direct - mapped flash storage system is one that that 
addresses data blocks within flash drives directly and with 
out an address translation performed by the storage control 
lers of the flash drives . 
[ 0042 ] In implementations , storage array controller 101 
includes one or more host bus adapters 103A - C that are 
coupled to the processing device 104 via a data communi 
cations link 105A - C . In implementations , host bus adapters 
103A - C may be computer hardware that connects a host 
system ( e.g. , the storage array controller ) to other network 
and storage arrays . In some examples , host bus adapters 
103A - C may be a Fibre Channel adapter that enables the 
storage array controller 101 to connect to a SAN , an 
Ethernet adapter that enables the storage array controller 101 
to connect to a LAN , or the like . Host bus adapters 103A - C 
may be coupled to the processing device 104 via a data 
communications link 105A - C such as , for example , a PCIe 
bus . 
[ 0043 ] In implementations , storage array controller 101 
may include a host bus adapter 114 that is coupled to an 
expander 115. The expander 115 may be used to attach a host 
system to a larger number of storage drives . The expander 
115 may , for example , be a SAS expander utilized to enable 
the host bus adapter 114 to attach to storage drives in an 
implementation where the host bus adapter 114 is embodied 
as a SAS controller . 
[ 0044 ] In implementations , storage array controller 101 
may include a switch 116 coupled to the processing device 
104 via data communications link 109. The switch 116 
may be a computer hardware device that can create multiple 
endpoints out of a single endpoint , thereby enabling multiple 
devices to share a single endpoint . The switch 116 may , for 
example , be a PCIe switch that is coupled to a PCIe bus ( e.g. , 
data communications link 109 ) and presents multiple PCIe 
connection points to the midplane . 
[ 0045 ] In implementations , storage array controller 101 
includes a data communications link 107 for coupling the 
storage array controller 101 to other storage array control 
lers . In some examples , data communications link 107 may 
be a QuickPath Interconnect ( QPI ) interconnect . 
[ 0046 ] traditional storage system that uses traditional 
flash drives may implement a process across the flash drives 
that are part of the traditional storage system . For example , 
a higher level process of the storage system may initiate and 
control a process across the flash drives . However , a flash 
drive of the traditional storage system may include its own 
storage controller that also performs the process . Thus , for 
the traditional storage system , a higher level process ( e.g. , 
initiated by the storage system ) and a lower level process 
( e.g. , initiated by a storage controller of the storage system ) 
may both be performed . 

[ 0047 ] To resolve various deficiencies of a traditional 
storage system , operations may be performed by higher 
level processes and not by the lower level processes . For 
example , the flash storage system may include flash drives 
that do not include storage controllers that provide the 
process . Thus , the operating system of the flash storage 
system itself may initiate and control the process . This may 
be accomplished by a direct - mapped flash storage system 
that addresses data blocks within the flash drives directly 
and without an address translation performed by the storage 
controllers of the flash drives . 
[ 0048 ] The operating system of the flash storage system 
may identify and maintain a list of allocation units across 
multiple flash drives of the flash storage system . The allo 
cation units may be entire erase blocks or multiple erase 
blocks . The operating system may maintain a map or address 
range that directly maps addresses to erase blocks of the 
flash drives of the flash storage system . 
[ 0049 ] Direct mapping to the erase blocks of the flash 
drives may be used to rewrite data and erase data . For 
example , the operations may be performed on one or more 
allocation units that include a first data and a second data 
where the first data is to be retained and the second data is 
no longer being used by the flash storage system . The 
operating system may initiate the process to write the first 
data to new locations within other allocation units and 
erasing the second data and marking the allocation units as 
being available for use for subsequent data . Thus , the 
process may only be performed by the higher level operating 
system of the flash storage system without an additional 
lower level process being performed by controllers of the 
flash drives . 
[ 0050 ] Advantages of the process being performed only by 
the operating system of the flash storage system include 
increased reliability of the flash drives of the flash storage 
system as unnecessary or redundant write operations are not 
being performed during the process . One possible point of 
novelty here is the concept of initiating and controlling the 
process at the operating system of the flash storage system . 
In addition , the process can be controlled by the operating 
system across multiple flash drives . This is contrast to the 
process being performed by a storage controller of a flash 
drive . 
[ 0051 ] A storage system can consist of two storage array 
controllers that share a set of drives for failover purposes , or 
it could consist of a single storage array controller that 
provides a storage service that utilizes multiple drives , or it 
could consist of a distributed network of storage array 
controllers each with some number of drives or some 
amount of Flash storage where the storage array controllers 
in the network collaborate to provide a complete storage 
service and collaborate on various aspects of a storage 
service including storage allocation and garbage collection . 
[ 0052 ] FIG . 1C illustrates a third example system 117 for 
data storage in accordance with some implementations . 
System 117 ( also referred to as “ storage system ” herein ) 
includes numerous elements for purposes of illustration 
rather than limitation . It may be noted that system 117 may 
include the same , more , or fewer elements configured in the 
same or different manner in other implementations . 
[ 0053 ] In one embodiment , system 117 includes a dual 
Peripheral Component Interconnect ( PCP ) flash storage 
device 118 with separately addressable fast write storage . 
System 117 may include a storage controller 119. In one 
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embodiment , storage controller 119A - D may be a CPU , 
ASIC , FPGA , or any other circuitry that may implement 
control structures necessary according to the present disclo 
sure . In one embodiment , system 117 includes flash memory 
devices ( e.g. , including flash memory devices 120a - n ) , 
operatively coupled to various channels of the storage 
device controller 119. Flash memory devices 120a - n , may 
be presented to the controller 119A - D as an addressable 
collection of Flash pages , erase blocks , and / or control ele 
ments sufficient to allow the storage device controller 
119A - D to program and retrieve various aspects of the Flash . 
In one embodiment , storage device controller 119A - D may 
perform operations on flash memory devices 120a - n includ 
ing storing and retrieving data content of pages , arranging 
and erasing any blocks , tracking statistics related to the use 
and reuse of Flash memory pages , erase blocks , and cells , 
tracking and predicting error codes and faults within the 
Flash memory , controlling voltage levels associated with 
programming and retrieving contents of Flash cells , etc. 
[ 0054 ] In one embodiment , system 117 may include RAM 
121 to store separately addressable fast - write data . In one 
embodiment , RAM 121 may be one or more separate 
discrete devices . In another embodiment , RAM 121 may be 
integrated into storage device controller 119 A - Dor multiple 
storage device controllers . The RAM 121 may be utilized for 
other purposes as well , such as temporary program memory 
for a processing device ( e.g. , a CPU ) in the storage device 
controller 119 . 
[ 0055 ] In one embodiment , system 117 may include a 
stored energy device 122 , such as a rechargeable battery or 
a capacitor . Stored energy device 122 may store energy 
sufficient to power the storage device controller 119 , some 
amount of the RAM ( e.g. , RAM 121 ) , and some amount of 
Flash memory ( e.g. , Flash memory 120a - 120n ) for sufficient 
time to write the contents of RAM to Flash memory . In one 
embodiment , storage device controller 119A - D may write 
the contents of RAM to Flash Memory if the storage device 
controller detects loss of external power . 
[ 0056 ] In one embodiment , system 117 includes two data 
communications links 123a , 123b . In one embodiment , data 
communications links 123a , 123b may be PCI interfaces . In 
another embodiment , data communications links 123a , 123b 
may be based on other communications standards ( e.g. , 
HyperTransport , InfiniBand , etc. ) . Data communications 
links 123a , 123b may be based on non - volatile memory 
express ( ‘ NVMe ' ) or NVMe over fabrics ( ‘ NVMf ' ) speci 
fications that allow external connection to the storage device 
controller 119A - D from other components in the storage 
system 117. It should be noted that data communications 
links may be interchangeably referred to herein as PCI buses 
for convenience . 
[ 0057 ] System 117 may also include an external power 
source ( not shown ) , which may be provided over one or both 
data communications links 123a , 123b , or which may be 
provided separately . An alternative embodiment includes a 
separate Flash memory ( not shown ) dedicated for use in 
storing the content of RAM 121. The storage device con 
troller 119A - D may present a logical device over a PCI bus 
which may include an addressable fast - write logical device , 
or a distinct part of the logical address space of the storage 
device 118 , which may be presented as PCI memory or as 
persistent storage . In one embodiment , operations to store 
into the device are directed into the RAM 121. On power 
failure , the storage device controller 119A - D may write 

stored content associated with the addressable fast - write 
logical storage to Flash memory ( e.g. , Flash memory 120a 
n ) for long - term persistent storage . 
[ 0058 ] In one embodiment , the logical device may include 
some presentation of some or all of the content of the Flash 
memory devices 120a - n , where that presentation allows a 
storage system including a storage device 118 ( e.g. , storage 
system 117 ) to directly address Flash memory pages and 
directly reprogram erase blocks from storage system com 
ponents that are external to the storage device through the 
PCI bus . The presentation may also allow one or more of the 
external components to control and retrieve other aspects of 
the Flash memory including some or all of : tracking statis 
tics related to use and reuse of Flash memory pages , erase 
blocks , and cells across all the Flash memory devices ; 
tracking and predicting error codes and faults within and 
across the Flash memory devices , controlling voltage levels 
associated with programming and retrieving contents of 
Flash cells ; etc. 
[ 0059 ] In one embodiment , the stored energy device 122 
may be sufficient to ensure completion of in - progress opera 
tions to the Flash memory devices 120a - 120n stored energy 
device 122 may power storage device controller 119A - D and 
associated Flash memory devices ( e.g. , 120a - n ) for those 
operations , as well as for the storing of fast - write RAM to 
Flash memory . Stored energy device 122 may be used to 
store accumulated statistics and other parameters kept and 
tracked by the Flash memory devices 120a - n and / or the 
storage device controller 119. Separate capacitors or stored 
energy devices ( such as smaller capacitors near or embedded 
within the Flash memory devices themselves ) may be used 
for some or all of the operations described herein . 
[ 0060 ] Various schemes may be used to track and optimize 
the life span of the stored energy component , such as 
adjusting voltage levels over time , partially discharging the 
storage energy device 122 to measure corresponding dis 
charge characteristics , etc. If the available energy decreases 
over time , the effective available capacity of the addressable 
fast - write storage may be decreased to ensure that it can be 
written safely based on the currently available stored energy . 
[ 0061 ] FIG . 1D illustrates a third example system 124 for 
data storage in accordance with some implementations . In 
one embodiment , system 124 includes storage controllers 
125a , 125b . In one embodiment , storage controllers 125a , 
125b are operatively coupled to Dual PCI storage devices 
119a , 119b and 119c , 119d , respectively . Storage controllers 
125a , 125b may be operatively coupled ( e.g. , via a storage 
network 130 ) to some number of host computers 127a - n . 
[ 0062 ] In one embodiment , two storage controllers ( e.g. , 
125a and 125b ) provide storage services , such as a SCS ) 
block storage array , a file server , an object server , a database 
or data analytics service , etc. The storage controllers 125a , 
125b may provide services through some number of network 
interfaces ( e.g. , 126a - d ) to host computers 127a - n outside of 
the storage system 124. Storage controllers 125a , 125b may 
provide integrated services or an application entirely within 
the storage system 124 , forming a converged storage and 
compute system . The storage controllers 125a , 125b may 
utilize the fast write memory within or across storage 
devices 119a - d to journal in progress operations to ensure 
the operations are not lost on a power failure , storage 
controller removal , storage controller or storage system 
shutdown , or some fault of one or more software or hard 
ware components within the storage system 124 . 
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[ 0063 ] In one embodiment , controllers 125a , 125b operate 
as PCI masters to one or the other PCI buses 128a , 128b . In 
another embodiment , 128a and 128bmay be based on other 
communications standards ( e.g. , HyperTransport , Infini 
Band , etc. ) . Other storage system embodiments may operate 
storage controllers 125a , 125b as multi - masters for both PCI 
buses 128a , 128b . Alternately , a PCI / NVMe / NVMf switch 
ing infrastructure or fabric may connect multiple storage 
controllers . Some storage system embodiments may allow 
storage devices to communicate with each other directly 
rather than communicating only with storage controllers . In 
one embodiment , a storage device controller 119a may be 
operable under direction from a storage controller 125a to 
synthesize and transfer data to be stored into Flash memory 
devices from data that has been stored in RAM ( e.g. , RAM 
121 of FIG . 1C ) . For example , a recalculated version of 
RAM content may be transferred after a storage controller 
has determined that an operation has fully committed across 
the storage system , or when fast - write memory on the device 
has reached a certain used capacity , or after a certain amount 
of time , to ensure improve safety of the data or to release 
addressable fast - write capacity for reuse . This mechanism 
may be used , for example , to avoid a second transfer over a 
bus ( e.g. , 128a , 128b ) from the storage controllers 125a , 
125b . In one embodiment , a recalculation may include 
compressing data , attaching indexing or other metadata , 
combining multiple data segments together , performing era 
sure code calculations , etc. 
[ 0064 ] In one embodiment , under direction from a storage 
controller 125a , 125b , a storage device controller 119a , 119b 
may be operable to calculate and transfer data to other 
storage devices from data stored in RAM ( e.g. , RAM 121 of 
FIG . 1C ) without involvement of the storage controllers 
125a , 125b . This operation may be used to mirror data stored 
in one controller 125a to another controller 125b , or it could 
be used to offload compression , data aggregation , and / or 
erasure coding calculations and transfers to storage devices 
to reduce load on storage controllers or the storage controller 
interface 129a , 129b to the PCI bus 128a , 128b . 
[ 0065 ] A age device controller 119A - D may include 
mechanisms for implementing high availability primitives 
for use by other parts of a storage system external to the Dual 
PCI storage device 118. For example , reservation or exclu 
sion primitives may be provided so that , in a storage system 
with two storage controllers providing a highly available 
storage service , one storage controller may prevent the other 
storage controller from accessing or continuing to access the 
storage device . This could be used , for example , in cases 
where one controller detects that the other controller is not 
functioning properly or where the interconnect between the 
two storage controllers may itself not be functioning prop 
erly . 
[ 0066 ] In one embodiment , a storage system for use with 
Dual PCI direct mapped storage devices with separately 
addressable fast write storage includes systems that manage 
erase blocks or groups of erase blocks as allocation units for 
storing data on behalf of the storage service , or for storing 
metadata ( e.g. , indexes , logs , etc. ) associated with the stor 
age service , or for proper management of the storage system 
itself . Flash pages , which may be a few kilobytes in size , 
may be written as data arrives or as the storage system is to 
persist data for long intervals of time ( e.g. , above a defined 
threshold of time ) . To commit data more quickly , or to 
reduce the number of writes to the Flash memory devices , 

the storage controllers may first write data into the sepa 
rately addressable fast write storage on one more storage 
devices . 
[ 0067 ] In one embodiment , the storage controllers 125a , 
125b may initiate the use of erase blocks within and across 
storage devices ( e.g. , 118 ) in accordance with an age and 
expected remaining lifespan of the storage devices , or based 
on other statistics . The storage controllers 125a , 125b may 
initiate garbage collection and data migration data between 
storage devices in accordance with pages that are no longer 
needed as well as to manage Flash page and erase block 
lifespans and to manage overall system performance . 
[ 0068 ] In one embodiment , the storage system 124 may 
utilize mirroring and / or erasure coding schemes as part of 
storing data into addressable fast write storage and / or as part 
of writing data into allocation units associated with erase 
blocks . Erasure codes may be used across storage devices , as 
well as within erase blocks or allocation units , or within and 
across Flash memory devices on a single storage device , to 
provide redundancy against single or multiple storage device 
failures or to protect against internal corruptions of Flash 
memory pages resulting from Flash memory operations or 
from degradation of Flash memory cells . Mirroring and 
erasure coding at various levels may be used to recover from 
multiple types of failures that occur separately or in com 
bination . 
[ 0069 ] The embodiments depicted with reference to FIGS . 
2A - G illustrate a storage cluster that stores user data , such 
as user data originating from one or more user or client 
systems or other sources external to the storage cluster . The 
storage cluster distributes user data across storage nodes 
housed within a chassis , or across multiple chassis , using 
erasure coding and redundant copies of metadata . Erasure 
coding refers to a method of data protection or reconstruc 
tion in which data is stored across a set of different locations , 
such as disks , storage nodes or geographic locations . Flash 
memory is one type of solid - state memory that may be 
integrated with the embodiments , although the embodiments 
may be extended to other types of solid - state memory or 
other storage medium , including non - solid state memory . 
Control of storage locations and workloads are distributed 
across the storage locations in a clustered peer - to - peer 
system . Tasks such as mediating communications between 
the various storage nodes , detecting when a storage node has 
become unavailable , and balancing I / Os ( inputs and outputs ) 
across the various storage nodes , are all handled on a 
distributed basis . Data is laid out or distributed across 
multiple storage nodes in data fragments or stripes that 
support data recovery in some embodiments . Ownership of 
data can be reassigned within a cluster , independent of input 
and output patterns . This architecture described in more 
detail below allows a storage node in the cluster to fail , with 
the system remaining operational , since the data can be 
reconstructed from other storage nodes and thus remain 
available for input and output operations . In various embodi 
ments , a storage node may be referred to as a cluster node , 
a blade , or a server . 
[ 0070 ] The storage cluster may be contained within a 
chassis , i.e. , an enclosure housing one or more storage 
nodes . A mechanism to provide power to each storage node , 
such as a power distribution bus , and a communication 
mechanism , such as a communication bus that enables 
communication between the storage nodes are included 
within the chassis . The storage cluster can run as an inde 
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pendent system in one location according to some embodi 
ments . In one embodiment , a chassis contains at least two 
instances of both the power distribution and the communi 
cation bus which may be enabled or disabled independently . 
The internal communication bus may be an Ethernet bus , 
however , other technologies such as PCIe , InfiniBand , and 
others , are equally suitable . The chassis provides a port for 
an external communication bus for enabling communication 
between multiple chassis , directly or through a switch , and 
with client systems . The external communication may use a 
technology such as Ethernet , InfiniBand , Fibre Channel , etc. 
In some embodiments , the external communication bus uses 
different communication bus technologies for inter - chassis 
and client communication . If a switch is deployed within or 
between chassis , the switch may act as a translation between 
multiple protocols or technologies . When multiple chassis 
are connected to define a storage cluster , the storage cluster 
may be accessed by a client using either proprietary inter 
faces or standard interfaces such as network file system 
( ‘ NFS ' ) , common internet file system ( “ CIFS ' ) , small com 
puter system interface ( SCSI ' ) or hypertext transfer proto 
col ( " HTTP ' ) . Translation from the client protocol may 
occur at the switch , chassis external communication bus or 
within each storage node . In some embodiments , multiple 
chassis may be coupled or connected to each other through 
an aggregator switch . A portion and / or all of the coupled or 
connected chassis may be designated as a storage cluster . As 
discussed above , each chassis can have multiple blades , each 
blade has a media access control ( “ MAC ' ) address , but the 
storage cluster is presented to an external network as having 
a single cluster IP address and a single MAC address in some 
embodiments . 
[ 0071 ] Each storage node may be one or more storage 
servers and each storage server is connected to one or more 
non - volatile solid state memory units , which may be 
referred to as storage units or storage devices . One embodi 
ment includes a single storage server in each storage node 
and between one to eight non - volatile solid state memory 
units , however this one example is not meant to be limiting . 
The storage server may include a processor , DRAM and 
interfaces for the internal communication bus and power 
distribution for each of the power buses . Inside the storage 
node , the interfaces and storage unit share a communication 
bus , e.g. , PCI Express , in some embodiments . The non 
volatile solid state memory units may directly access the 
internal communication bus interface through a storage node 
communication bus , or request the storage node to access the 
bus interface . The non - volatile solid state memory unit 
contains an embedded CPU , solid state storage controller , 
and a quantity of solid state mass storage , e.g. , between 2-32 
terabytes ( ‘ TB ' ) in some embodiments . An embedded vola 
tile storage medium , such as DRAM , and an energy reserve 
apparatus are included in the non - volatile solid state 
memory unit . In some embodiments , the energy reserve 
apparatus is a capacitor , super - capacitor , or battery that 
enables transferring a subset of DRAM contents to a stable 
storage medium in the case of power loss . In some embodi 
ments , the non - volatile solid state memory unit is con 
structed with a storage class memory , such as phase change 
or magnetoresistive random access memory ( ‘ MRAM ' ) that 
substitutes for DRAM and enables a reduced power hold - up 
apparatus . 
[ 0072 ] One of many features of the storage nodes and 
non - volatile solid state storage is the ability to proactively 

rebuild data in a storage cluster . The storage nodes and 
non - volatile solid state storage can determine when a storage 
node or non - volatile solid state storage in the storage cluster 
is unreachable , independent of whether there is an attempt to 
read data involving that storage node or non - volatile solid 
state storage . The storage nodes and non - volatile solid state 
storage then cooperate to recover and rebuild the data in at 
least partially new locations . This constitutes a proactive 
rebuild , in that the system rebuilds data without waiting until 
the data is needed for a read access initiated from a client 
system employing the storage cluster . These and further 
details of the storage memory and operation thereof are 
discussed below . 
[ 0073 ] FIG . 2A is a perspective view of a storage cluster 
161 , with multiple storage nodes 150 and internal solid - state 
memory coupled to each storage node to provide network 
attached storage or storage area network , in accordance with 
some embodiments . A network attached storage , storage 
area network , or a storage cluster , or other storage memory , 
could include one or more storage clusters 161 , each having 
one or more storage nodes 150 , in a flexible and reconfig 
urable arrangement of both the physical components and the 
amount of storage memory provided thereby . The storage 
cluster 161 is designed to fit in a rack , and one or more racks 
can be set up and populated as desired for the storage 
memory . The storage cluster 161 has a chassis 138 having 
multiple slots 142. It should be appreciated that chassis 138 
may be referred to as a housing , enclosure , or rack unit . In 
one embodiment , the chassis 138 has fourteen slots 142 , 
although other numbers of slots are readily devised . For 
example , some embodiments have four slots , eight slots , 
sixteen slots , thirty - two slots , or other suitable number of 
slots . Each slot 142 can accommodate one storage node 150 
in some embodiments . Chassis 138 includes flaps 148 that 
can be utilized to mount the chassis 138 on a rack . Fans 144 
provide air circulation for cooling of the storage nodes 150 
and components thereof , although other cooling components 
could be used , or an embodiment could be devised without 
cooling components . A switch fabric 146 couples storage 
nodes 150 within chassis 138 together and to a network for 
communication to the memory . In an embodiment depicted 
in herein , the slots 142 to the left of the switch fabric 146 and 
fans 144 are shown occupied by storage nodes 150 , while 
the slots 142 to the right of the switch fabric 146 and fans 
144 are empty and available for insertion of storage node 
150 for illustrative purposes . This configuration is one 
example , and one or more storage nodes 150 could occupy 
the slots 142 in various further arrangements . The storage 
node arrangements need not be sequential or adjacent in 
some embodiments . Storage nodes 150 are hot pluggable , 
meaning that a storage node 150 can be inserted into a slot 
142 in the chassis 138 , or removed from a slot 142 , without 
stopping or powering down the system . Upon insertion or 
removal of storage node 150 from slot 142 , the system 
automatically reconfigures in order to recognize and adapt to 
the change . Reconfiguration , in some embodiments , 
includes restoring redundancy and / or rebalancing data or 
load . 
[ 0074 ] Each storage node 150 can have multiple compo 
nents . In the embodiment shown here , the storage node 150 
includes a printed circuit board 159 populated by a CPU 
156 , i.e. , processor , a memory 154 coupled to the CPU 156 , 
and a non - volatile solid state storage 152 coupled to the CPU 
156 , although other mountings and / or components could be 
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used in further embodiments . The memory 154 has instruc 
tions which are executed by the CPU 156 and / or data 
operated on by the CPU 156. As further explained below , the 
non - volatile solid state storage 152 includes flash or , in 
further embodiments , other types of solid - state memory . 
[ 0075 ] Referring to FIG . 2A , storage cluster 161 is scal 
able , meaning that storage capacity with non - uniform stor 
age sizes is readily added , as described above . One or more 
storage nodes 150 can be plugged into or removed from each 
chassis and the storage cluster self - configures in some 
embodiments . Plug - in storage nodes 150 , whether installed 
in a chassis as delivered or later added , can have different 
sizes . For example , in one embodiment a storage node 150 
can have any multiple of 4 TB , e.g. , 8 TB , 12 TB , 16 TB , 32 
TB , etc. In further embodiments , a storage node 150 could 
have any multiple of other storage amounts or capacities . 
Storage capacity of each storage node 150 is broadcast , and 
influences decisions of how to stripe the data . For maximum 
storage efficiency , an embodiment can self - configure as wide 
as possible in the stripe , subject to a predetermined require 
ment of continued operation with loss of up to one , or up to 
two , non - volatile solid state storage units 152 or storage 
nodes 150 within the chassis . 
[ 0076 ] FIG . 2B is a block diagram showing a communi 
cations interconnect 173 and power distribution bus 172 
coupling multiple storage nodes 150. Referring back to FIG . 
2A , the communications interconnect 173 can be included in 
or implemented with the switch fabric 146 in some embodi 
ments . Where multiple storage clusters 161 occupy a rack , 
the communications interconnect 173 can be included in or 
implemented with a top of rack switch , in some embodi 
ments . As illustrated in FIG . 2B , storage cluster 161 is 
enclosed within a single chassis 138. External port 176 is 
coupled to storage nodes 150 through communications inter 
connect 173 , while external port 174 is coupled directly to 
a storage node . External power port 178 is coupled to power 
distribution bus 172. Storage nodes 150 may include varying 
amounts and differing capacities of non - volatile solid state 
storage 152 as described with reference to FIG . 2A . In 
addition , one or more age nodes 150 may be a compute 
only storage node as illustrated in FIG . 2B . Authorities 168 
are implemented on the non - volatile solid state storages 152 , 
for example as lists or other data structures stored in 
memory . In some embodiments the authorities are stored 
within the non - volatile solid state storage 152 and supported 
by software executing on a controller or other processor of 
the non - volatile solid state storage 152. In a further embodi 
ment , authorities 168 are implemented on the storage nodes 
150 , for example as lists or other data structures stored in the 
memory 154 and supported by software executing on the 
CPU 156 of the storage node 150. Authorities 168 control 
how and where data is stored in the non - volatile solid state 
storages 152 in some embodiments . This control assists in 
determining which type of erasure coding scheme is applied 
to the data , and which storage nodes 150 have which 
portions of the data . Each authority 168 may be assigned to 
a non - volatile solid state storage 152. Each authority may 
control a range of inode numbers , segment numbers , or other 
data identifiers which are assigned to data by a file system , 
by the storage nodes 150 , or by the non - volatile solid state 
storage 152 , in various embodiments . 
[ 0077 ] Every piece of data , and every piece of metadata , 
has redundancy in the system in some embodiments . In 
addition , every piece of data and every piece of metadata has 

an owner , which may be referred to as an authority . If that 
authority is unreachable , for example through failure of a 
storage node , there is a plan of succession for how to find 
that data or that metadata . In various embodiments , there are 
redundant copies of authorities 168. Authorities 168 have a 
relationship to storage nodes 150 and non - volatile solid state 
storage 152 in some embodiments . Each authority 168 , 
covering a range of data segment numbers or other identi 
fiers of the data , may be assigned to a specific non - volatile 
solid state storage 152. In some embodiments the authorities 
168 for all of such ranges are distributed over the non 
volatile solid state storages 152 of a storage cluster . Each 
storage node 150 has a network port that provides access to 
the non - volatile solid state storage ( s ) 152 of that storage 
node 150. Data can be stored in a segment , which is 
associated with a segment number and that segment number 
is an indirection for a configuration of a RAID ( redundant 
array of independent disks ) stripe in some embodiments . 
The assignment and use of the authorities 168 thus estab 
lishes an indirection to data . Indirection may be referred to 
as the ability to reference data indirectly , in this case via an 
authority 168 , in accordance with some embodiments . A 
segment identifies a set of non - volatile solid state storage 
152 and a local identifier into the set of non - volatile solid 
state storage 152 that may contain data . In some embodi 
ments , the local identifier is an offset into the device and may 
be reused sequentially by multiple segments . In other 
embodiments the local identifier is unique for a specific 
segment and never reused . The offsets in the non - volatile 
solid state storage 152 are applied to locating data for 
writing to or reading from the non - volatile solid state storage 
152 ( in the form of a RAID stripe ) . Data is striped across 
multiple units of non - volatile solid state storage 152 , which 
may include or be different from the non - volatile solid state 
storage 152 having the authority 168 for a particular data 
segment . 

[ 0078 ] If there is a change in where a particular segment 
of data is located , e.g. , during a data move or a data 
reconstruction , the authority 168 for that data segment 
should be consulted , at that non - volatile solid state storage 
152 or storage node 150 having that authority 168. In order 
to locate a particular piece of data , embodiments calculate a 
hash value for a data segment or apply an inode number or 
a data segment number . The output of this operation points 
to a non - volatile solid state storage 152 having the authority 
168 for that particular piece of data . In some embodiments 
there are two stages to this operation . The first stage maps an 
entity identifier ( ID ) , e.g. , a segment number , inode number , 
or directory number to an authority identifier . This mapping 
may include a calculation such as a hash or a bit mask . The 
second stage is mapping the authority identifier to a par 
ticular non - volatile solid state storage 152 , which may be 
done through an explicit mapping . The operation is repeat 
able , so that when the calculation is performed , the result of 
the calculation repeatably and reliably points to a particular 
non - volatile solid state storage 152 having that authority 
168. The operation may include the set of reachable storage 
nodes as input . If the set of reachable non - volatile solid state 
storage units changes the optimal set changes . In some 
embodiments , the persisted value is the current assignment 
( which is always true ) and the calculated value is the target 
assignment the cluster will attempt to reconfigure towards . 
This calculation may be used to determine the optimal 
non - volatile solid state storage 152 for an authority in the 
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presence of a set of non - volatile solid state storage 152 that 
are reachable and constitute the same cluster . The calcula 
tion also determines an ordered set of peer non - volatile solid 
state storage 152 that will also record the authority to 
non - volatile solid state storage mapping so that the authority 
may be determined even if the assigned non - volatile solid 
state storage is unreachable . A duplicate or substitute author 
ity 168 may be consulted if a specific authority 168 is 
unavailable in some embodiments . 
[ 0079 ] With reference to FIG . 2A and 2B , two of the many 
tasks of the CPU 156 on a storage node 150 are to break up 
write data , and reassemble read data . When the system has 
determined that data is to be written , the authority 168 for 
that data is located as above . When the segment ID for data 
is already determined the request to write is forwarded to the 
non - volatile solid state storage 152 currently determined to 
be the host of the authority 168 determined from the 
segment . The host CPU 156 of the storage node 150 , on 
which the non - volatile solid state storage 152 and corre 
sponding authority 168 reside , then breaks up or shards the 
data and transmits the data out to various non - volatile solid 
state storage 152. The transmitted data is written as a data 
stripe in accordance with an erasure coding scheme . In some 
embodiments , data is requested to be pulled , and in other 
embodiments , data is pushed . In reverse , when data is read , 
the authority 168 for the segment ID containing the data is 
located as described above . The host CPU 156 of the storage 
node 150 on which the non - volatile solid state storage 152 
and corresponding authority 168 reside requests the data 
from the non - volatile solid state storage and corresponding 
storage nodes pointed to by the authority . In some embodi 
ments the data is read from flash storage as a data stripe . The 
host CPU 156 of storage node 150 then reassembles the read 
data , correcting any errors ( if present ) according to the 
appropriate erasure coding scheme , and forwards the reas 
sembled data to the network . In further embodiments , some 
or all of these tasks can be handled in the non - volatile solid 
state storage 152. In some embodiments , the segment host 
requests the data be sent to storage node 150 by requesting 
pages from storage and then sending the data to the storage 
node making the original request . 
[ 0080 ] In some systems , for example in UNIX - style file 
systems , data is handled with an index node or inode , which 
specifies a data structure that represents an object in a file 
system . The object could be a file or a directory , for example . 
Metadata may accompany the object , as attributes such as 
permission data and a creation timestamp , among other 
attributes . A segment number could be assigned to all or a 
portion of such an object in a file system . In other systems , 
data segments are handled with a segment number assigned 
elsewhere . For purposes of discussion , the unit of distribu 
tion is an entity , and an entity can be a file , a directory or a 
segment . That is , entities are units of data or metadata stored 
by a storage system . Entities are grouped into sets called 
authorities . Each authority has an authority owner , which is 
a storage node that has the exclusive right to update the 
entities in the authority . In other words , a storage node 
contains the authority , and that the authority , in turn , con 
tains entities . 
[ 0081 ] A segment is a logical container of data in accor 
dance with some embodiments . A segment is an address 
space between medium address space and physical flash 
locations , i.e. , the data segment number , are in this address 
space . Segments may also contain meta - data , which enable 

data redundancy to be restored ( rewritten to different flash 
locations or devices ) without the involvement of higher level 
software . In one embodiment , an internal format of a seg 
ment contains client data and medium mappings to deter 
mine the position of that data . Each data segment is pro 
tected , e.g. , from memory and other failures , by breaking the 
segment into a number of data and parity shards , where 
applicable . The data and parity shards are distributed , i.e. , 
striped , across non - volatile solid state storage 152 coupled 
to the host CPUs 156 ( See FIGS . 2E and 2G ) in accordance 
with an erasure coding scheme . Usage of the term segments 
refers to the container and its place in the address space of 
segments in some embodiments . Usage of the term stripe 
refers to the same set of shards as a segment and includes 
how the shards are distributed along with redundancy or 
parity information in accordance with some embodiments . 
[ 0082 ] A series of address - space transformations takes 
place across an entire storage system . At the top are the 
directory entries ( file names ) which link to an inode . Inodes 
point into medium address space , where data is logically 
stored . Medium addresses may be mapped through a series 
of indirect mediums to spread the load of large files , or 
implement data services like deduplication or snapshots . 
Medium addresses may be mapped through a series of 
indirect mediums to spread the load of large files , or 
implement data services like deduplication or snapshots . 
Segment addresses are then translated into physical flash 
locations . Physical flash locations have an address range 
bounded by the amount of flash in the system in accordance 
with some embodiments . Medium addresses and segment 
addresses are logical containers , and in some embodiments 
use a 128 bit or larger identifier so as to be practically 
infinite , with a likelihood of reuse calculated as longer than 
the expected life of the system . Addresses from logical 
containers are allocated in a hierarchical fashion in some 
embodiments . Initially , each non - volatile solid state storage 
unit 152 may be assigned a range of address space . Within 
this assigned range , the non - volatile solid state storage 152 
is able to allocate addresses without synchronization with 
other non - volatile solid state storage 152 . 
[ 0083 ] Data and metadata is stored by a set of underlying 
storage layouts that are optimized for varying workload 
patterns and storage devices . These layouts incorporate 
multiple redundancy schemes , compression formats and 
index algorithms . Some of these layouts store information 
about authorities and authority masters , while others store 
file metadata and file data . The redundancy schemes include 
error correction codes that tolerate corrupted bits within a 
single storage device ( such as a NAND flash chip ) , erasure 
codes that tolerate the failure of multiple storage nodes , and 
replication schemes that tolerate data center or regional 
failures . In some embodiments , low density parity check 
( “ LDPC ' ) code is used within a single storage unit . Reed 
Solomon encoding is used within a storage cluster , and 
mirroring is used within a storage grid in some embodi 
ments . Metadata may be stored using an ordered log struc 
tured index ( such as a Log Structured Merge Tree ) , and large 
data may not be stored in a log structured layout . 
[ 0084 ] In order to maintain consistency across multiple 
copies of an entity , the storage nodes agree implicitly on two 
things through calculations : ( 1 ) the authority that contains 
the entity , and ( 2 ) the storage node that contains the author 
ity . The assignment of entities to authorities can be done by 
pseudo randomly assigning entities to authorities , by split 
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ting entities into ranges based upon an externally produced 
key , or by placing a single entity into each authority . 
Examples of pseudorandom schemes are linear hashing and 
the Replication Under Scalable Hashing ( ?RUSH ' ) family of 
hashes , including Controlled Replication Under Scalable 
Hashing ( " CRUSH ' ) . In some embodiments , pseudo - ran 
dom assignment is utilized only for assigning authorities to 
nodes because the set of nodes can change . The set of 
authorities cannot change so any subjective function may be 
applied in these embodiments . Some placement schemes 
automatically place authorities on storage nodes , while other 
placement schemes rely on an explicit mapping of authori 
ties to storage nodes . In some embodiments , a pseudoran 
dom scheme is utilized to map from each authority to a set 
of candidate authority owners . A pseudorandom data distri 
bution function related to CRUSH may assign authorities to 
storage nodes and create a list of where the authorities are 
assigned . Each storage node has a copy of the pseudorandom 
data distribution function , and can arrive at the same calcu 
lation for distributing , and later finding or locating an 
authority . Each of the pseudorandom schemes requires the 
reachable set of storage nodes as input in some embodiments 
in order to conclude the same target nodes . Once an entity 
has been placed in an authority , the entity may be stored on 
physical devices so that no expected failure will lead to 
unexpected data loss . In some embodiments , rebalancing 
algorithms attempt to store the copies of all entities within 
an authority in the same layout and on the same set of 
machines . 
[ 0085 ] Examples of expected failures include device fail 
ures , stolen machines , datacenter fires , and regional disas 
ters , such as nuclear or geological events . Different failures 
lead to different levels of acceptable data loss . In some 
embodiments , a stolen storage node impacts neither the 
security nor the reliability of the system , while depending on 
system configuration , a regional event could lead to no loss 
of data , a few seconds or minutes of lost updates , or even 
complete data loss . 
[ 0086 ] In the embodiments , the placement of data for 
storage redundancy is independent of the placement of 
authorities for data consistency . In some embodiments , 
storage nodes that contain authorities do not contain any 
persistent storage . Instead , the storage nodes are connected 
to non - volatile solid state storage units that do not contain 
authorities . The communications interconnect between stor 
age nodes and non - volatile solid state storage units consists 
of multiple communication technologies and has non - uni 
form performance and fault tolerance characteristics . In 
some embodiments , as mentioned above , non - volatile solid 
state storage units are connected to storage nodes via PCI 
express , storage nodes are connected together within a 
single chassis using Ethernet backplane , and chassis are 
connected together to form a storage cluster . Storage clusters 
are connected to clients using Ethernet or fiber channel in 
some embodiments . If multiple storage clusters are config 
ured into a storage grid , the multiple storage clusters are 
connected using the Internet or other long - distance network 
ing links , such as a “ metro scale ” link or private link that 
does not traverse the internet . 
[ 0087 ] Authority owners have the exclusive right to 
modify entities , to migrate entities from one non - volatile 
solid state storage unit to another non - volatile solid state 
storage unit , and to add and remove copies of entities . This 
allows for maintaining the redundancy of the underlying 

data . When an authority owner fails , is going to be decom 
missioned , or is overloaded , the authority is transferred to a 
new storage node . Transient failures make it non - trivial to 
ensure that all non - faulty machines agree upon the new 
authority location . The ambiguity that arises due to transient 
failures can be achieved automatically by a 
protocol such as Paxos , hot - warm failover schemes , via 
manual intervention by a remote system administrator , or by 
a local hardware administrator ( such as by physically 
removing the failed machine from the cluster , or pressing a 
button on the failed machine ) . In some embodiments , a 
consensus protocol is used , and failover is automatic . If too 
many failures or replication events occur in too short a time 
period , the system goes into a self - preservation mode and 
halts replication and data movement activities until an 
administrator intervenes in accordance with some embodi 
ments . 

[ 0088 ] As authorities are transferred between storage 
nodes and authority owners update entities in their authori 
ties , the system transfers messages between the storage 
nodes and non - volatile solid state storage units . With regard 
to persistent messages , messages that have different pur 
poses are of different types . Depending on the type of the 
message , the system maintains different ordering and dura 
bility guarantees . As the persistent messages are being 
processed , the messages are temporarily stored in multiple 
durable and non - durable storage hardware technologies . In 
some embodiments , messages are stored in RAM , NVRAM 
and on NAND flash devices , and a variety of protocols are 
used in order to make efficient use of each storage medium . 
Latency - sensitive client requests may be persisted in repli 
cated NVRAM , and then later NAND , while background 
rebalancing operations are persisted directly to NAND . 
[ 0089 ] Persistent messages are persistently stored prior to 
being transmitted . This allows the system to continue to 
serve client requests despite failures and component replace 
ment . Although many hardware components contain unique 
identifiers that are visible to system administrators , manu 
facturer , hardware supply chain and ongoing monitoring 
quality control infrastructure , applications running on top of 
the infrastructure address virtualize addresses . These virtu 
alized addresses do not change over the lifetime of the 
storage system , regardless of component failures and 
replacements . This allows each component of the storage 
system to be replaced over time without reconfiguration or 
disruptions of client request processing , i.e. , the system 
supports non - disruptive upgrades . 
[ 0090 ] In some embodiments , the virtualized addresses are 
stored with sufficient redundancy . A continuous monitoring 
system correlates hardware and software status and the 
hardware identifiers . This allows detection and prediction of 
failures due to faulty components and manufacturing details . 
The monitoring system also enables the proactive transfer of 
authorities and entities away from impacted devices before 
failure occurs by removing the component from the critical 
path in some embodiments . 
[ 0091 ] FIG . 2C is a multiple level block diagram , showing 
contents of a storage node 150 and contents of a non - volatile 
solid state storage 152 of the storage node 150. Data is 
communicated to and from the storage node 150 by a 
network interface controller ( “ NIC ’ ) 202 in some embodi 
ments . Each storage node 150 has a CPU 156 , and one or 
more non - volatile solid state storage 152 , as discussed 
above . Moving down one level in FIG . 2C , each non - volatile 
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solid state storage 152 has a relatively fast non - volatile solid 
state memory , such as nonvolatile random access memory 
( “ NVRAM ’ ) 204 , and flash memory 206. In some embodi 
ments , NVRAM 204 may be a component that does not 
require program / erase cycles ( DRAM , MRAM , PCM ) , and 
can be a memory that can support being written vastly more 
often than the memory is read from . Moving down another 
level in FIG . 2C , the NVRAM 204 is implemented in one 
embodiment as high speed volatile memory , such as 
dynamic random access memory ( DRAM ) 216 , backed up 
by energy reserve 218. Energy reserve 218 provides suffi 
cient electrical power to keep the DRAM 216 powered long 
enough for contents to be transferred to the flash memory 
206 in the event of power failure . In some embodiments , 
energy reserve 218 is a capacitor , super - capacitor , battery , or 
other device , that supplies a suitable supply of energy 
sufficient to enable the transfer of the contents of DRAM 
216 to a stable storage medium in the case of power loss . 
The flash memory 206 is implemented as multiple flash dies 
222 , which may be referred to as packages of flash dies 222 
or an array of flash dies 222. It should be appreciated that the 
flash dies 222 could be packaged in any number of ways , 
with a single die per package , multiple dies per package ( i.e. 
multichip packages ) , in hybrid packages , as bare dies on a 
printed circuit board or other substrate , as encapsulated dies , 
etc. In the embodiment shown , the non - volatile solid state 
storage 152 has a controller 212 or other processor , and an 
input output ( I / O ) port 210 coupled to the controller 212. I / O 
port 210 is coupled to the CPU 156 and / or the network 
interface controller 202 of the flash storage node 150. Flash 
input output ( I / O ) port 220 is coupled to the flash dies 222 , 
and a direct memory access unit ( DMA ) 214 is coupled to 
the controller 212 , the DRAM 216 and the flash dies 222. In 
the embodiment shown , the I / O port 210 , controller 212 , 
DMA unit 214 and flash I / O port 220 are implemented on a 
programmable logic device ( ?PLD ' ) 208 , e.g. , a field pro 
grammable gate array ( FPGA ) . In this embodiment , each 
flash die 222 has pages , organized as sixteen kB ( kilobyte ) 
pages 224 , and a register 226 through which data can be 
written to or read from the flash die 222. In further embodi 
ments , other types of solid - state memory are used in place 
of , or in addition to flash memory illustrated within flash die 
222 . 

[ 0092 ] Storage clusters 161 , in various embodiments as 
disclosed herein , can be contrasted with storage arrays in 
general . The storage nodes 150 are part of a collection that 
creates the storage cluster 161. Each storage node 150 owns 
a slice of data and computing required to provide the data . 
Multiple storage nodes 150 cooperate to store and retrieve 
the data . Storage memory or storage devices , as used in 
storage arrays in general , are less involved with processing 
and manipulating the data . Storage memory or storage 
devices in a storage array receive commands to read , write , 
or erase data . The storage memory or storage devices in a 
storage array are not aware of a larger system in which they 
are embedded , or what the data means . Storage memory or 
storage devices in storage arrays can include various types 
of storage memory , such as RAM , solid state drives , hard 
disk drives , etc. The storage units 152 described herein have 
multiple interfaces active simultaneously and serving mul 
tiple purposes . In some embodiments , some of the function 
ality of a storage node 150 is shifted into a storage unit 152 , 
transforming the storage unit 152 into a combination of 
storage unit 152 and storage node 150. Placing computing 

( relative to storage data ) into the storage unit 152 places this 
computing closer to the data itself . The various system 
embodiments have a hierarchy of storage node layers with 
different capabilities . By contrast , in a storage array , a 
controller owns and knows everything about all of the data 
that the controller manages in a shelf or storage devices . In 
a storage cluster 161 , as described herein , multiple control 
lers in multiple storage units 152 and / or storage nodes 150 
cooperate in various ways ( e.g. , for erasure coding , data 
sharding , metadata communication and redundancy , storage 
capacity expansion or contraction , data recovery , and so on ) . 
[ 0093 ] FIG . 2D shows a storage server environment , 
which uses embodiments of the storage nodes 150 and 
storage units 152 of FIGS . 2A - C . In this version , each 
storage unit 152 has a processor such as controller 212 ( see 
FIG . 2C ) , an FPGA ( field programmable gate array ) , flash 
memory 206 , and NVRAM 204 ( which is super - capacitor 
backed DRAM 216 , see FIGS . 2B and 2C ) on a PCIe 
( peripheral component interconnect express ) board in a 
chassis 138 ( see FIG . 2A ) . The storage unit 152 may be 
implemented as a single board containing storage , and may 
be the largest tolerable failure domain inside the chassis . In 
some embodiments , up to two storage units 152 may fail and 
the device will continue with no data loss . 
[ 0094 ] The physical storage is divided into named regions 
based on application usage in some embodiments . The 
NVRAM 204 is a contiguous block of reserved memory in 
the storage unit 152 DRAM 216 , and is backed by NAND 
flash . NVRAM 204 is logically divided into multiple 
memory regions written for two as spool ( e.g. , spool_ 
region ) . Space within the NVRAM 204 spools is managed 
by each authority 168 independently . Each device provides 
an amount of storage space to each authority 168. That 
authority 168 further manages lifetimes and allocations 
within that space . Examples of a spool include distributed 
transactions or notions . When the primary power to a storage 
unit 152 fails , onboard super - capacitors provide a short 
duration of power hold up . During this holdup interval , the 
contents of the NVRAM 204 are flushed to flash memory 
206. On the next power - on , the contents of the NVRAM 204 
are recovered from the flash memory 206 . 
[ 0095 ] As for the storage unit controller , the responsibility 
of the logical “ controller ” is distributed across each of the 
blades containing authorities 168. This distribution of logi 
cal control is shown in FIG . 2D as a host controller 242 , 
mid - tier controller 244 and storage unit controller ( s ) 246 . 
Management of the control plane and the storage plane are 
treated independently , although parts may be physically 
co - located on the same blade . Each authority 168 effectively 
serves as an independent controller . Each authority 168 
provides its own data and metadata structures , its own 
background workers , and maintains its own lifecycle . 
[ 0096 ] FIG . 2E is a blade 252 hardware block diagram , 
showing a control plane 254 , compute and storage planes 
256 , 258 , and authorities 168 interacting with underlying 
physical resources , using embodiments of the storage nodes 
150 and storage units 152 of FIGS . 2A - C in the storage 
server environment of FIG . 2D . The control plane 254 is 
partitioned into a number of authorities 168 which can use 
the compute resources in the compute plane 256 to run on 
any of the blades 252. The storage plane 258 is partitioned 
into a set of devices , each of which provides access to flash 
206 and NVRAM 204 resources . In one embodiment , the 
compute plane 256 may perform the operations of a storage 
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array controller , as described herein , on one or more devices 
of the storage plane 258 ( e.g. , a storage array ) . 
[ 0097 ] In the compute and storage planes 256 , 258 of FIG . 
2E , the authorities 168 interact with the underlying physical 
resources ( i.e. , devices ) . From the point of view of an 
authority 168 , its resources are striped over all of the 
physical devices . From the point of view of a device , it 
provides resources to all authorities 168 , irrespective of 
where the authorities happen to run . Each authority 168 has 
allocated or has been allocated one or more partitions 260 of 
storage memory in the storage units 152 , e.g. partitions 260 
in flash memory 206 and NVRAM 204. Each authority 168 
uses those allocated partitions 260 that belong to it , for 
writing or reading user data . Authorities can be associated 
with differing amounts of physical storage of the system . For 
example , one authority 168 could have a larger number of 
partitions 260 or larger sized partitions 260 in one or more 
storage units 152 than one or more other authorities 168 . 
[ 0098 ] FIG . 2F depicts elasticity software layers in blades 
252 of a storage cluster , in accordance with some embodi 
ments . In the elasticity structure , elasticity software is sym 
metric , i.e. , each blade's compute module 270 runs the three 
identical layers of processes depicted in FIG . 2F . Storage 
managers 274 execute read and write requests from other 
blades 252 for data and metadata stored in local storage unit 
152 NVRAM 204 and flash 206. Authorities 168 fulfill client 
requests by issuing the necessary reads and writes to the 
blades 252 on whose storage units 152 the corresponding 
data or metadata resides . Endpoints 272 parse client con 
nection requests received from switch fabric 146 supervi 
sory software , relay the client connection requests to the 
authorities 168 responsible for fulfillment , and relay the 
authorities ' 168 responses to clients . The symmetric three 
layer structure enables the storage system's high degree of 
concurrency . Elasticity scales out efficiently and reliably in 
these embodiments . In addition , elasticity implements a 
unique scale - out technique that balances work evenly across 
all resources regardless of client access pattern , and maxi 
mizes concurrency by eliminating much of the need for 
inter - blade coordination that typically occurs with conven 
tional distributed locking . 
[ 0099 ] Still referring to FIG . 2F , authorities 168 running in 
the compute modules 270 of a blade 252 perform the internal 
operations required to fulfill client requests . One feature of 
elasticity is that authorities 168 are stateless , i.e. , they cache 
active data and metadata in their own blades ' 252 DRAMS 
for fast access , but the authorities store every update in their 
NVRAM 204 partitions on three separate blades 252 until 
the update has been written to flash 206. All the storage 
system writes to NVRAM 204 are in triplicate to partitions 
on three separate blades 252 in some embodiments . With 
triple - mirrored NVRAM 204 and persistent storage pro 
tected by parity and Reed - Solomon RAID checksums , the 
storage system can survive concurrent failure of two blades 
252 with no loss of data , metadata , or access to either . 
[ 0100 ] Because authorities 168 are stateless , they can 
migrate between blades 252. Each authority 168 has a 
unique identifier . NVRAM 204 and flash 206 partitions are 
associated with authorities ' 168 identifiers , not with the 
blades 252 on which they are running in some . Thus , when 
an authority 168 migrates , the authority 168 continues to 
manage the same storage partitions from its new location . 
When a new blade 252 is installed in an embodiment of the 
storage cluster , the system automatically rebalances load by : 

partitioning the new blade's 252 storage for use by the 
system's authorities 168 , migrating selected authorities 168 
to the new blade 252 , starting endpoints 272 on the new 
blade 252 and including them in the switch fabric's 146 
client connection distribution algorithm . 
[ 0101 ] From their new locations , migrated authorities 168 
persist the contents of their NVRAM 204 partitions on flash 
206 , process read and write requests from other authorities 
168 , and fulfill the client requests that endpoints 272 direct 
to them . Similarly , if a blade 252 fails or is removed , the 
system redistributes its authorities 168 among the system's 
remaining blades 252. The redistributed authorities 168 
continue to perform their original functions from their new 
locations . 
[ 0102 ] FIG . 26 depicts authorities 168 and storage 
resources in blades 252 of a storage cluster , in accordance 
with some embodiments . Each authority 168 is exclusively 
responsible for a partition of the flash 206 and NVRAM 204 
on each blade 252. The authority 168 manages the content 
and integrity of its partitions independently of other authori 
ties 168. Authorities 168 compress incoming data and pre 
serve it temporarily in their NVRAM 204 partitions , and 
then consolidate , RAID - protect , and persist the data in 
segments of the storage in their flash 206 partitions . As the 
authorities 168 write data to flash 206 , storage managers 274 
perform the necessary flash translation to optimize write 
performance and maximize media longevity . In the back 
ground , authorities 168 “ garbage collect , ” or reclaim space 
occupied by data that clients have made obsolete by over 
writing the data . It should be appreciated that since authori 
ties ' 168 partitions are disjoint , there is no need for distrib 
uted locking to execute client and writes or to perform 
background functions . 
[ 0103 ] The embodiments described herein may utilize 
various software , communication and / or networking proto 
cols . In addition , the configuration of the hardware and / or 
software may be adjusted to accommodate various proto 
cols . For example , the embodiments may utilize Active 
Directory , which is a database based system that provides 
authentication , directory , policy , and other services in a 
WINDOWSTM environment . In these embodiments , LDAP 
( Lightweight Directory Access Protocol ) is one example 
application protocol for querying and modifying items in 
directory service providers such as Active Directory . In 
some embodiments , a network lock manager ( ‘ NLM ' ) is 
utilized as a facility that works in cooperation with the 
Network File System ( ' NFS ' ) to provide a System V style of 
advisory file and record locking over a network . The Server 
Message Block ( “ SMB ' ) protocol , one version of which is 
also known as Common Internet File System ( “ CIFS ' ) , may 
be integrated with the storage systems discussed herein . 
SMP operates as an application - layer network protocol 
typically used for providing shared access to files , printers , 
and serial ports and miscellaneous communications between 
nodes on a network . SMB also provides an authenticated 
inter - process communication mechanism . AMAZONTM S3 
( Simple Storage Service ) is a web service offered by Ama 
zon Web Services , and the systems described herein may 
interface with Amazon S3 , through web services interfaces 
( REST ( representational state transfer ) , SOAP ( simple 
object access protocol ) , and BitTorrent ) . A RESTful API 
( application programming interface ) breaks down a trans 
action to create a series of small modules . Each module 
addresses a particular underlying part of the transaction . The 
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control or permissions provided with these embodiments , 
especially for object data , may include utilization of an 
access control list ( ‘ ACL ’ ) . The ACL is a list of permissions 
attached to an object and the ACL specifies which users or 
system processes are granted access to objects , as well as 
what operations are allowed on given objects . The systems 
may utilize Internet Protocol version 6 ( ?IPv6 ' ) , as well as 
IPv4 , for the communications protocol that provides an 
identification and location system for computers on net 
works and routes traffic across the Internet . The routing of 
packets between networked systems may include Equal - cost 
multi - path routing ( ‘ ECMP ' ) , which is a routing strategy 
where next - hop packet forwarding to a single destination 
can occur over multiple “ best paths ” which tie for top place 
in routing metric calculations . Multi - path routing can be 
used in conjunction with most routing protocols , because it 
is a per - hop decision limited to a single router . The software 
may support Multi - tenancy , which is an architecture in 
which a single instance of a software application serves 
multiple customers . Each customer may be referred to as a 
tenant . Tenants may be given the ability to customize some 
parts of the application , but may not customize the appli 
cation's code , in some embodiments . The embodiments may 
maintain audit logs . An audit log is a document that records 
an event in a computing system . In addition to documenting 
what resources were accessed , audit log entries typically 
include destination and source addresses , a timestamp , and 
user login information for compliance with various regula 
tions . The embodiments may support various key manage 
ment policies , such as encryption key rotation . In addition , 
the system may support dynamic root passwords or some 
variation dynamically changing passwords . 
[ 0104 ] FIG . 3A sets forth a diagram of a storage system 
306 that is coupled for data communications with a cloud 
services provider 302 in accordance with some embodi 
ments of the present disclosure . Although depicted in less 
detail , the storage system 306 depicted in FIG . 3A may be 
similar to the storage systems described above with refer 
ence to FIGS . 1A - 1D and FIGS . 2A - 2G . In some embodi 
ments , the storage system 306 depicted in FIG . 3A may be 
embodied as a storage system that includes imbalanced 
active / active controllers , as a storage system that includes 
balanced active / active controllers , as a storage system that 
includes active / active controllers where less than all of each 
controller's resources are utilized such that each controller 
has reserve resources that may be used to support failover , 
as a storage system that includes fully active / active control 
lers , as a storage system that includes dataset - segregated 
controllers , as a storage system that includes dual - layer 
architectures with front - end controllers and back - end inte 
grated storage controllers , as a storage system that includes 
scale - out clusters of dual - controller arrays , as well as com 
binations of such embodiments . 
[ 0105 ] In the example depicted in FIG . 3A , the storage 
system 306 is coupled to the cloud services provider 302 via 
a data communications link 304. The data communications 
link 304 may be embodied as a dedicated data communica 
tions link , as a data communications pathway that is pro 
vided through the use of one or data communications 
networks such as a wide area network ( “ WAN ' ) or local area 
network ( “ LAN ' ) , or as some other mechanism capable of 
transporting digital information between the storage system 
306 and the cloud services provider 302. Such a data 
communications link 304 may be fully wired , fully wireless , 

or some aggregation of wired and wireless data communi 
cations pathways . In such an example , digital information 
may be exchanged between the storage system 306 and the 
cloud services provider 302 via the data communications 
link 304 using one or more data communications protocols . 
For example , digital information may be exchanged between 
the storage system 306 and the cloud services provider 302 
via the data communications link 304 using the handheld 
device transfer protocol ( ?HDTP ' ) , hypertext transfer pro 
tocol ( * HTTP ' ) , internet protocol ( * IP ' ) , real - time transfer 
protocol ( ?RTP ' ) , transmission control protocol ( “ TCP ' ) , 
user datagram protocol ( ?UDP ' ) , wireless application pro 
tocol ( “ WAP ' ) , or other protocol . 
[ 0106 ] The cloud services provider 302 depicted in FIG . 
3A may be embodied , for example , as a system and com 
puting environment that provides services to users of the 
cloud services provider 302 through the sharing of comput 
ing resources via the data communications link 304. The 
cloud services provider 302 may provide on - demand access 
to a shared pool of configurable computing resources such as 
computer networks , servers , storage , applications and ser 
vices , and so on . The shared pool of configurable resources 
may be rapidly provisioned and released to a user of the 
cloud services provider 302 with minimal management 
effort . Generally , the user of the cloud services provider 302 
is unaware of the exact computing resources utilized by the 
cloud services provider 302 to provide the services . 
Although in many cases such a cloud services provider 302 
may be accessible via the Internet , readers of skill in the art 
will recognize that any system that abstracts the use of 
shared resources to provide services to a user through any 
data communications link may be considered a cloud ser 
vices provider 302 . 
[ 0107 ] In the example depicted in FIG . 3A , the cloud 
services provider 302 may be configured to provide a variety 
of services to the storage system 306 and users of the storage 
system 306 through the implementation of various service 
models . For example , the cloud services provider 302 may 
be configured to provide services to the storage system 306 
and users of the storage system 306 through the implemen 
tation of an infrastructure as a service ( “ IaaS ' ) service model 
where the cloud services provider 302 offers computing 
infrastructure such as virtual machines and other resources 
as a service to subscribers . In addition , the cloud services 
provider 302 may be configured to provide services to the 
storage system 306 and users of the storage system 306 
through the implementation of a platform as a service 
( “ PaaS ) service model where the cloud services provider 
302 offers a development environment to application devel 
opers . Such a development environment may include , for 
example , an operating system , programming - language 
execution environment , database , web server , or other com 
ponents that may be utilized by application developers to 
develop and run software solutions on a cloud platform . 
Furthermore , the cloud services provider 302 may be con 
figured to provide services to the storage system 306 and 
users of the storage system 306 through the implementation 
of a software as a service ( “ SaaS ' ) service model where the 
cloud services provider 302 offers application software , 
databases , as well as the platforms that are used to run the 
applications to the storage system 306 and users of the 
storage system 306 , providing the storage system 306 and 
users of the storage system 306 with on - demand software 
and eliminating the need to install and run the application on 
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local computers , which may simplify maintenance and sup 
port of the application . The cloud services provider 302 may 
be further configured to provide services to the storage 
system 306 and users of the storage system 306 through the 
implementation of an authentication as a service ( “ AaaS ) 
service model where the cloud services provider 302 offers 
authentication services that can be used to secure access to 
applications , data sources , or other resources . The cloud 
services provider 302 may also be configured to provide 
services to the storage system 306 and users of the storage 
system 306 through the implementation of a storage as a 
service model where the cloud services provider 302 offers 
access to its storage infrastructure for use by the storage 
system 306 and users of the storage system 306. Readers 
will appreciate that the cloud services provider 302 may be 
configured to provide additional services to the storage 
system 306 and users of the storage system 306 through the 
implementation of additional service models , as the service 
models described above are included only for explanatory 
purposes and in no way represent a limitation of the services 
that may be offered by the cloud services provider 302 or a 
limitation as to the service models that may be implemented 
by the cloud services provider 302 . 
[ 0108 ] In the example depicted in FIG . 3A , the cloud 
services provider 302 may be embodied , for example , as a 
private cloud , as a public cloud , or as a combination of a 
private cloud and public cloud . In an embodiment in which 
the cloud services provider 302 is embodied as a private 
cloud , the cloud services provider 302 may be dedicated to 
providing services to a single organization rather than pro 
viding services to multiple organizations . In an embodiment 
where the cloud services provider 302 is embodied as a 
public cloud , the cloud services provider 302 may provide 
services to multiple organizations . Public cloud and private 
cloud deployment models may differ and may come with 
various advantages and disadvantages . For example , 
because a public cloud deployment involves the sharing of 
a computing infrastructure across different organization , 
such a deployment may not be ideal for organizations with 
security concerns , mission - critical workloads , uptime 
requirements demands , and so on . While a private cloud 
deployment can address some of these issues , a private cloud 
deployment may require on - premises staff to manage the 
private cloud . In still alternative embodiments , the cloud 
services provider 302 may be embodied as a mix of a private 
and public cloud services with a hybrid cloud deployment . 
[ 0109 ] Although not explicitly depicted in FIG . 3A , read 
ers will appreciate that additional hardware components and 
additional software components may be necessary to facili 
tate the delivery of cloud services to the storage system 306 
and users of the storage system 306. For example , the 
storage system 306 may be coupled to ( or even include ) a 
cloud storage gateway . Such a cloud storage gateway may be 
embodied , for example , as hardware - based or software 
based appliance that is located on premise with the storage 
system 306. Such a cloud storage gateway may operate as a 
bridge between local applications that are executing on the 
storage array 306 and remote , cloud - based storage that is 
utilized by the storage array 306. Through the use of a cloud 
storage gateway , organizations may move primary iSCSI or 
NAS to the cloud services provider 302 , thereby enabling 
the organization to save space on their on - premises storage 
systems . Such a cloud storage gateway may be configured to 
emulate a disk array , a block - based device , a file server , or 

other storage system that can translate the SCSI commands , 
file server commands , or other appropriate command into 
REST - space protocols that facilitate communications with 
the cloud services provider 302 . 
[ 0110 ] In order to enable the storage system 306 and users 
of the storage system 306 to make use of the services 
provided by the cloud services provider 302 , a cloud migra 
tion process may take place during which data , applications , 
or other elements from an organization's local systems ( or 
even from another cloud environment ) are moved to the 
cloud services provider 302. In order to successfully migrate 
data , applications , or other elements to the cloud services 
provider's 302 environment , middleware such as a cloud 
migration tool may be utilized to bridge gaps between the 
cloud services provider's 302 environment and an organi 
zation's environment . Such cloud migration tools may also 
be configured to address potentially high network costs and 
long transfer times associated with migrating large volumes 
of data to the cloud services provider 302 , as well as 
addressing security concerns associated with sensitive data 
to the cloud services provider 302 over data communications 
networks . In order to further enable the storage system 306 
and users of the storage system 306 to make use of the 
services provided by the cloud services provider 302 , a 
cloud orchestrator may also be used to arrange and coordi 
nate automated tasks in pursuit of creating a consolidated 
process or workflow . Such a cloud orchestrator may perform 
tasks such as configuring various components , whether 
those components are cloud components or on - premises 
components , as well as managing the interconnections 
between such components . The cloud orchestrator can sim 
plify the inter - component communication and connections 
to ensure that links are correctly configured and maintained . 
[ 0111 ] In the example depicted in FIG . 3A , and as 
described briefly above , the cloud services provider 302 may 
be configured to provide services to the storage system 306 
and users of the storage system 306 through the usage of a 
SaaS service model where the cloud services provider 302 
offers application software , databases , as well as the plat 
forms that are used to run the applications to the storage 
system 306 and users of the storage system 306 , providing 
the storage system 306 and users of the storage system 306 
with on - demand software and eliminating the need to install 
and run the application on local computers , which may 
simplify maintenance and support of the application . Such 
applications may take many forms in accordance with 
various embodiments of the present disclosure . For example , 
the cloud services provider 302 may be configured to 
provide access to data analytics applications to the storage 
system 306 and users of the storage system 306. Such data 
analytics applications may be configured , for example , to 
receive telemetry data phoned home by the storage system 
306. Such telemetry data may describe various operating 
characteristics of the storage system 306 and may be ana 
lyzed , for example , to determine the health of the storage 
system 306 , to identify workloads that are executing on the 
storage system 306 , to predict when the storage system 306 
will run out of various resources , to recommend configura 
tion changes , hardware or software upgrades , workflow 
migrations , or other actions that may improve the operation 
of the storage system 306 . 
[ 0112 ] The cloud services provider 302 may also be con 
figured to provide access to virtualized computing environ 
ments to the storage system 306 and users of the storage 
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system 306. Such virtualized computing environments may 
be embodied , for example , as a virtual machine or other 
virtualized computer hardware platforms , virtual storage 
devices , virtualized computer network resources , and so on . 
Examples of such virtualized environments can include 
virtual machines that are created to emulate an actual 
computer , virtualized desktop environments that separate a 
logical desktop from a physical machine , virtualized file 
systems that allow uniform access to different types of 
concrete file systems , and many others . 
[ 0113 ] For further explanation , FIG . 3B sets forth a dia 
gram of a storage system 306 in accordance with some 
embodiments of the present disclosure . Although depicted in 
less detail , the storage system 306 depicted in FIG . 3B may 
be similar to the storage systems described above with 
reference to FIGS . 1A - 1D and FIGS . 2A - 2G as the storage 
system may include many of the components described 
above . 
[ 0114 ] The storage system 306 depicted in FIG . 3B may 
include storage resources 308 , which may be embodied in 
many forms . For example , in some embodiments the storage 
resources 308 can include nano - RAM or another form of 
nonvolatile random access memory that utilizes carbon 
nanotubes deposited on a substrate . In some embodiments , 
the storage resources 308 may include 3D crosspoint non 
volatile memory in which bit storage is based on a change 
of bulk resistance , in conjunction with a stackable cross 
gridded data access array . In some embodiments , the storage 
resources 308 may include flash memory , including single 
level cell ( “ SLC ’ ) NAND flash , multi - level cell ( -MLC ' ) 
NAND flash , triple - level cell ( ?TLC ' ) NAND flash , quad 
level cell ( ?QLC ' ) NAND flash , and others . In some embodi 
ments , the storage resources 308 may include non - volatile 
magnetoresistive random - access memory ( * MRAM ' ) , 
including spin transfer torque ( “ STT ' ) MRAM , in which 
data is stored through the use of magnetic storage elements . 
In some embodiments , the example storage resources 308 
may include non - volatile phase - change memory ( ?PCM ' ) 
that may have the ability to hold multiple bits in a single cell 
as cells can achieve a number of distinct intermediary states . 
In some embodiments , the storage resources 308 may 
include quantum memory that allows for the storage and 
retrieval of photonic quantum information . In some embodi 
ments , the example storage resources 308 may include 
resistive random - access memory ( " ReRAM ' ) in which data 
is stored by changing the resistance across a dielectric 
solid - state material . In some embodiments , the storage 
resources 308 may include storage class memory ( “ SCM ' ) in 
which solid - state nonvolatile memory may be manufactured 
at a high density using some combination of sub - litho 
graphic patterning techniques , multiple bits per cell , mul 
tiple layers of devices , and so on . Readers will appreciate 
that other forms of computer memories and storage devices 
may be utilized by the storage systems described above , 
including DRAM , SRAM , EEPROM , universal memory , 
and many others . The storage resources 308 depicted in FIG . 
3A may be embodied in a variety of form factors , including 
but not limited to , dual in - line memory modules ( -DIMMs ) , 
non - volatile dual in - line memory modules ( ‘ NVDIMMs ' ) , 
M.2 , U.2 , and others . 
[ 0115 ] The storage resources 308 depicted in FIG . 3A may 
include various forms of storage - class memory ( “ SCM ' ) . 
SCM may effectively treat fast , non - volatile memory ( e.g. , 
NAND flash ) as an extension of DRAM such that an entire 

dataset may be treated as an in - memory dataset that resides 
entirely in DRAM . SCM may include non - volatile media 
such as , for example , NAND flash . Such NAND flash may 
be accessed utilizing NVMe that can use the PCIe bus as its 
transport , providing for relatively low access latencies com 
pared to older protocols . In fact , the network protocols used 
for SSDs in all - flash arrays can include NVMe using Eth 
ernet ( ROCE , NVME TCP ) , Fibre Channel ( NVMe FC ) , 
InfiniBand ( iWARP ) , and others that make it possible to treat 
fast , non - volatile memory as an extension of DRAM . In 
view of the fact that DRAM is often byte - addressable and 
fast , non - volatile memory such as NAND flash is block 
addressable , a controller software / hardware stack may be 
needed to convert the block data to the bytes that are stored 
in the media . Examples of media and software that may be 
used as SCM can include , for example , 3D XPoint , Intel 
Memory Drive Technology , Samsung's Z - SSD , and others . 
[ 0116 ] The example storage system 306 depicted in FIG . 
3B may implement a variety of storage architectures . For 
example , storage systems in accordance with some embodi 
ments of the present disclosure may utilize block storage 
where data is stored in blocks , and each block essentially 
acts as an individual hard drive . Storage systems in accor 
dance with some embodiments of the present disclosure may 
utilize object storage , where data is managed as objects . 
Each object may include the data itself , a variable amount of 
metadata , and a globally unique identifier , where object 
storage can be implemented at multiple levels ( e.g. , device 
level , system level , interface level ) . Storage systems in 
accordance with some embodiments of the present disclo 
sure utilize file storage in which data is stored in a hierar 
chical structure . Such data may be saved in files and folders , 
and presented to both the system storing it and the system 
retrieving it in the same format . 
[ 0117 ] The example storage system 306 depicted in FIG . 
3B may be embodied as a storage system in which additional 
storage resources can be added through the use of a scale - up 
model , additional storage resources can be added through 
the use of a scale - out model , or through some combination 
thereof . In a scale - up model , additional storage may be 
added by adding additional storage devices . In a scale - out 
model , however , additional storage nodes may be added to 
a cluster of storage nodes , where such storage nodes can 
include additional processing resources , additional network 
ing resources , and so on . 
[ 0118 ] The storage system 306 depicted in FIG . 3B also 
includes communications resources 310 that may be useful 
in facilitating data communications between components 
within the storage system 306 , as well as data communica 
tions between the storage system 306 and computing devices 
that are outside of the storage system 306. The communi 
cations resources 310 may be configured to utilize a variety 
of different protocols and data communication fabrics to 
facilitate data communications between components within 
the storage systems as well as computing devices that are 
outside of the storage system . For example , the communi 
cations resources 310 can include fibre channel ( * FC ' ) 
technologies such as FC fabrics and FC protocols that can 
transport SCSI commands over FC networks . The commu 
nications resources 310 can also include FC over ethernet 
( ?FCOE ' ) technologies through which FC frames are encap 
sulated and transmitted over Ethernet networks . The com 
munications resources 310 can also include InfiniBand 
( " IB ' ) technologies in which a switched fabric topology is 
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utilized to facilitate transmissions between channel adapters . 
The communications resources 310 can also include NVM 
Express ( ‘ NVMe ' ) technologies and NVMe over fabrics 
( ‘ NVMeoF ' ) technologies through which non - volatile stor 
age media attached via a PCI express ( * PCIe ' ) bus may be 
accessed . The communications resources 310 can also 
include mechanisms for accessing storage resources 308 
within the storage system 306 utilizing serial attached SCSI 
( “ SAS ' ) , serial ATA ( “ SATA ’ ) bus interfaces for connecting 
storage resources 308 within the storage system 306 to host 
bus adapters within the storage system 306 , internet small 
computer systems interface ( ?iSCSI ) technologies to pro 
vide block - level access to storage resources 308 within the 
storage system 306 , and other communications resources 
that that may be useful in facilitating data communications 
between components within the storage system 306 , as well 
as data communications between the storage system 306 and 
computing devices that are outside of the storage system 
306 . 
[ 0119 ] The storage system 306 depicted in FIG . 3B also 
includes processing resources 312 that may be useful in 
useful in executing computer program instructions and per 
forming other computational tasks within the storage system 
306. The processing resources 312 may include one or more 
application - specific integrated circuits ( " ASICs ' ) that are 
customized for some particular purpose as well as one or 
more central processing units ( “ CPUs ” ) . The processing 
resources 312 may also include one or more digital signal 
processors ( DSPs ) , one or more field - programmable gate 
arrays ( ?FPGAs ' ) , one or more systems on a chip ( “ SoCs ' ) , 
or other form of processing resources 312. The storage 
system 306 may utilize the storage resources 312 to perform 
a variety of tasks including , but not limited to , supporting the 
execution of software resources 314 that will be described in 
greater detail below . 
[ 0120 ] The storage system 306 depicted in FIG . 3B also 
includes software resources 314 that , when executed by 
processing resources 312 within the storage system 306 , 
may perform various tasks . The software resources 314 may 
include , for example , one or more modules of computer 
program instructions that when executed by processing 
resources 312 within the storage system 306 are useful in 
carrying out various data protection techniques to preserve 
the integrity of data that is stored within the storage systems . 
Readers will appreciate that such data protection techniques 
may be carried out , for example , by system software execut 
ing on computer hardware within the storage system , by a 
cloud services provider , or in other ways . Such data protec 
tion techniques can include , for example , data archiving 
techniques that cause data that is no longer actively used to 
be moved to a separate storage device or separate storage 
system for long - term retention , data backup techniques 
through which data stored in the storage system may be 
copied and stored in a distinct location to avoid data loss in 
the event of equipment failure or some other form of 
catastrophe with the storage system , data replication tech 
niques through which data stored in the storage system is 
replicated to another storage system such that the data may 
be accessible via multiple storage systems , data snapshotting 
techniques through which the state of data within the storage 
system is captured at various points in time , data and 
database cloning techniques through which duplicate copies 
of data and databases may be created , and other data 
protection techniques . Through the use of such data protec 

tion techniques , business continuity and disaster recovery 
objectives may be met as a failure of the storage system may 
not result in the loss of data stored in the storage system . 
[ 0121 ] The software resources 314 may also include soft 
ware that is useful in implementing software - defined storage 
( “ SDS ' ) . In such an example , the software resources 314 
may include one or more modules of computer program 
instructions that , when executed , are useful in policy - based 
provisioning and management of data storage that is inde 
pendent of the underlying hardware . Such software 
resources 314 may be useful in implementing storage vir 
tualization to separate the storage hardware from the soft 
ware that manages the storage hardware . 
[ 0122 ] The software resources 314 may also include soft 
ware that is useful in facilitating and optimizing I / O opera 
tions that are directed to the storage resources 308 in the 
storage system 306. For example , the software resources 314 
may include software modules that perform carry out vari 
ous data reduction techniques such as , for example , data 
compression , data deduplication , and others . The software 
resources 314 may include software modules that intelli 
gently group together 1/0 operations to facilitate better 
usage of the underlying storage resource 308 , software 
modules that perform data migration operations to migrate 
from within a storage system , as well as software modules 
that perform other functions . Such software resources 314 
may be embodied as one or more software containers or in 
many other ways . 
[ 0123 ] Readers will appreciate that the presence of such 
software resources 314 may provide for an improved user 
experience of the storage system 306 , an expansion of 
functionality supported by the storage system 306 , and many 
other benefits . Consider the specific example of the software 
resources 314 carrying out data backup techniques through 
which data stored in the storage system may be copied and 
stored in a distinct location to avoid data loss in the event of 
equipment failure or some other form of catastrophe . In such 
an example , the systems described herein may more reliably 
( and with less burden placed on the user ) perform backup 
operations relative to interactive backup management sys 
tems that require high degrees of user interactivity , offer less 
robust automation and feature sets , and so on . 
[ 0124 ] For further explanation , FIG . 3C sets forth an 
example of a cloud - based storage system 318 in accordance 
with some embodiments of the present disclosure . In the 
example depicted in FIG . 3C , the cloud - based storage sys 
tem 318 is created entirely in a cloud computing environ 
ment 316 such as , for example , Amazon Web Services 
( ‘ AWS ' ) , Microsoft Azure , Google Cloud Platform , IBM 
Cloud , Oracle Cloud , and others . The cloud - based storage 
system 318 may be used to provide services similar to the 
services that may be provided by the storage systems 
described above . For example , the cloud - based storage 
system 318 may be used to provide block storage services to 
users of the cloud - based storage system 318 , the cloud 
based storage system 318 may be used to provide storage 
services to users of the cloud - based storage system 318 
through the use of solid - state storage , and so on . 
[ 0125 ] The cloud - based storage system 318 depicted in 
FIG . 3C includes two cloud computing instances 320 , 322 
that each are used to support the execution of a storage 
controller application 324 , 326. The cloud computing 
instances 320 , 322 may be embodied , for example , as 
instances of cloud computing resources ( e.g. , virtual 
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machines ) that may be provided by the cloud computing 
environment 316 to support the execution of software appli 
cations such as the storage controller application 324 , 326 . 
In one embodiment , the cloud computing instances 320 , 322 
may be embodied as Amazon Elastic Compute Cloud 
( “ EC2 ' ) instances . In such an example , an Amazon Machine 
Image ( ‘ AMI ' ) that includes the storage controller applica 
tion 324 , 326 may be booted to create and configure a virtual 
machine that may execute the storage controller application 
324 , 326 . 
[ 0126 ] In the example method depicted in FIG . 3C , the 
storage controller application 324 , 326 may be embodied as 
a module of computer program instructions that , when 
executed , carries out various storage tasks . For example , the 
storage controller application 324 , 326 may be embodied as 
a module of computer program instructions that , when 
executed , carries out the same tasks as the controllers 110A , 
110B in FIG . 1A described above such as writing data 
received from the users of the cloud - based storage system 
318 to the cloud - based storage system 318 , erasing data 
from the cloud - based storage system 318 , retrieving data 
from the cloud - based storage system 318 and providing such 
data to users of the cloud - based storage system 318 , moni 
toring and reporting of disk utilization and performance , 
performing redundancy operations , such as RAID or RAID 
like data redundancy operations , compressing data , encrypt 
ing data , deduplicating data , and so forth . Readers will 
appreciate that because there are two cloud computing 
instances 320 , 322 that each include the storage controller 
application 324 , 326 , in some embodiments one cloud 
computing instance 320 may operate as the primary con 
troller as described above while the other cloud computing 
instance 322 may operate as the secondary controller as 
described above . In such an example , in order to save costs , 
the cloud computing instance 320 that operates as the 
primary controller may be deployed on a relatively high 
performance and relatively expensive cloud computing 
instance while the cloud computing instance 322 that oper 
ates as the secondary controller may be deployed on a 
relatively low - performance and relatively inexpensive cloud 
computing instance . Readers will appreciate that the storage 
controller application 324 , 326 depicted in FIG . 3C may 
include identical source code that is executed within differ 
ent cloud computing instances 320 , 322 . 
[ 0127 ] Consider an example in which the cloud computing 
environment 316 is embodied as AWS and the cloud com 
puting instances are embodied as EC2 instances . In such an 
example , AWS offers many types of EC2 instances . For 
example , AWS offers a suite of general purpose EC2 
instances that include varying levels of memory and pro 
cessing power . In such an example , the cloud computing 
instance 320 that operates as the primary controller may be 
deployed on one of the instance types that has a relatively 
large amount of memory and processing power while the 
cloud computing instance 322 that operates as the secondary 
controller may be deployed on one of the instance types that 
has a relatively small amount of memory and processing 
power . In such an example , upon the occurrence of a failover 
event where the roles of primary and secondary are 
switched , a double failover may actually be carried out such 
that : 1 ) a first failover event where the cloud computing 
instance 322 that formerly operated as the secondary con 
troller begins to operate as the primary controller , and 2 ) a 
third cloud computing instance ( not shown ) that is of an 

instance type that has a relatively large amount of memory 
and processing power is spun up with a copy of the storage 
controller application , where the third cloud computing 
instance begins operating as the primary controller while the 
cloud computing instance 322 that originally operated as the 
secondary controller begins operating as the secondary 
controller again . In such an example , the cloud computing 
instance 320 that formerly operated as the primary controller 
may be terminated . Readers will appreciate that in alterna 
tive embodiments , the cloud computing instance 320 that is 
operating as the secondary controller after the failover event 
may continue to operate as the secondary controller and the 
cloud computing instance 322 that operated as the primary 
controller after the occurrence of the failover event may be 
terminated once the primary role has been assumed by the 
third cloud computing instance ( not shown ) . 
[ 0128 ] Readers will appreciate that while the embodi 
ments described above relate to embodiments where one 
cloud computing instance 320 operates as the primary 
controller and the second cloud computing instance 322 
operates as the secondary controller , other embodiments are 
within the scope of the present disclosure . For example , each 
cloud computing instance 320 , 322 may operate as a primary 
controller for some portion of the address space supported 
by the cloud - based storage system 318 , each cloud comput 
ing instance 320 , 322 may operate as a primary controller 
where the servicing of I / O operations directed to the cloud 
based storage system 318 are divided in some other way , and 
so on . In fact , in other embodiments where costs savings 
may be prioritized over performance demands , only a single 
cloud computing instance may exist that contains the storage 
controller application . In such an example , a controller 
failure may take more time to recover from as a new cloud 
computing instance that includes the storage controller 
application would need to be spun up rather than having an 
already created cloud computing instance take on the role of 
servicing I / O operations that would have otherwise been 
handled by the failed cloud computing instance . 
[ 0129 ] The cloud - based storage system 318 depicted in 
FIG . 3C includes cloud computing instances 340a , 340b , 
340n with local storage 330 , 334 , 338. The cloud computing 
instances 340a , 3405 , 340n depicted in FIG . 3C may be 
embodied , for example , as instances of cloud computing 
resources that may be provided by the cloud computing 
environment 316 to support the execution of software appli 
cations . The cloud computing instances 340a , 340 , 340n of 
FIG . 3C may differ from the cloud computing instances 320 , 
322 described above as the cloud computing instances 340a , 
340b , 340n of FIG . 3C have local storage 330 , 334 , 338 
resources whereas the cloud computing instances 320 , 322 
that support the execution of the storage controller applica 
tion 324 , 326 need not have local storage resources . The 
cloud computing instances 340a , 340 , 340n with local 
storage 330 , 334 , 338 may be embodied , for example , as 
EC2 M5 instances that include one or more SSDs , as EC2 
R5 instances that include one or more SSDs , as EC2 13 
instances that include one or more SSDs , and so on . In some 
embodiments , the local storage 330 , 334 , 338 must be 
embodied as solid - state storage ( e.g. , SSDs ) rather than 
storage that makes use of hard disk drives . 
[ 0130 ] In the example depicted in FIG . 3C , each of the 
cloud computing instances 340a , 340 , 340n with local 
storage 330 , 334 , 338 can include a software daemon 328 , 
332 , 336 that , when executed by a cloud computing instance 
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340a , 3406 , 340n can present itself to the storage controller 
applications 324 , 326 as if the cloud computing instance 
340a , 340 , 340n were a physical storage device ( e.g. , one 
or more SSDs ) . In such an example , the software daemon 
328 , 332 , 336 may include computer program instructions 
similar to those that would normally be contained on a 
storage device such that the storage controller applications 
324 , 326 can send and receive the same commands that a 
storage controller would send to storage devices . In such a 
way , the storage controller applications 324 , 326 may 
include code that is identical to ( or substantially identical to ) 
the code that would be executed by the controllers in the 
storage systems described above . In these and similar 
embodiments , communications between the storage control 
ler applications 324 , 326 and the cloud computing instances 
340a , 340 , 340n with local storage 330 , 334 , 338 may 
utilize iSCSI , NVMe over TCP , messaging , a custom pro 
tocol , or in some other mechanism . 
[ 0131 ] In the example depicted in FIG . 3C , each of the 
cloud computing instances 340a , 340 , 340n with local 
storage 330 , 334 , 338 may also be coupled to block - storage 
342 , 344 , 346 that is offered by the cloud computing 
environment 316. The block - storage 342 , 344 , 346 that is 
offered by the cloud computing environment 316 may be 
embodied , for example , as Amazon Elastic Block Store 
( ‘ EBS ' ) volumes . For example , a first EBS volume may be 
coupled to a first cloud computing instance 340a , a second 
EBS volume may be coupled to a second cloud computing 
instance 340b , and a third EBS volume may be coupled to 
a third cloud computing instance 340n . In such an example , 
the block - storage 342 , 344 , 346 that is offered by the cloud 
computing environment 316 may be utilized in a manner 
that is similar to how the NVRAM devices described above 
are utilized , as the software daemon 328 , 332 , 336 ( or some 
other module ) that is executing within a particular cloud 
comping instance 340a , 340b , 340n may , upon receiving a 
request to write data , initiate a write of the data to its 
attached EBS volume as well as a write of the data to its 
local storage 330 , 334 , 338 resources . In some alternative 
embodiments , data may only be written to the local storage 
330 , 334 , 338 resources within a particular cloud comping 
instance 340a , 340 , 340n . In an alternative embodiment , 
rather than using the block - storage 342 , 344 , 346 that is 
offered by the cloud computing environment 316 as 
NVRAM , actual RAM on each of the cloud computing 
instances 340a , 3406 , 340n with local storage 330 , 334 , 338 
may be used as NVRAM , thereby decreasing network 
utilization costs that would be associated with using an EBS 
volume as the NVRAM . 
[ 0132 ] In the example depicted in FIG . 3C , the cloud 
computing instances 340a , 340 , 340n with local storage 
330 , 334 , 338 may be utilized , by cloud computing instances 
320 , 322 that support the execution of the storage controller 
application 324 , 326 to service I / O operations that are 
directed to the cloud - based storage system 318. Consider an 
example in which a first cloud computing instance 320 that 
is executing the storage controller application 324 is oper 
ating as the primary controller . In such an example , the first 
cloud computing instance 320 that is executing the storage 
controller application 324 may receive ( directly or indirectly 
via the secondary controller ) requests to write data to the 
cloud - based storage system 318 from users of the cloud 
based storage system 318. In such an example , the first cloud 
computing instance 320 that is executing the storage con 

troller application 324 may perform various tasks such as , 
for example , deduplicating the data contained in the request , 
compressing the data contained in the request , determining 
where to the write the data contained in the request , and so 
on , before ultimately sending a request to write a dedupli 
cated , encrypted , or otherwise possibly updated version of 
the data to one or more of the cloud computing instances 
340a , 340 , 340n with local storage 330 , 334 , 338. Either 
cloud computing instance 320 , 322 , in some embodiments , 
may receive a request to read data from the cloud - based 
storage system 318 and may ultimately send a request to 
read data to one or more of the cloud computing instances 
340a , 340b , 340n with local storage 330 , 334 , 338 . 
[ 0133 ] Readers will appreciate that when a request to write 
data is received by a particular cloud computing instance 
340a , 340b , 340n with local storage 330 , 334 , 338 , the 
software daemon 328 , 332 , 336 or some other module of 
computer program instructions that is executing on the 
particular cloud computing instance 340a , 340b , 340n may 
be configured to not only write the data to its own local 
storage 330 , 334 , 338 resources and any appropriate block 
storage 342 , 344 , 346 that are offered by the cloud comput 
ing environment 316 , but the software daemon 328 , 332 , 336 
or some other module of computer program instructions that 
is executing on the particular cloud computing instance 
340a , 340 , 340n may also be configured to write the data 
to cloud - based object storage 348 that is attached to the 
particular cloud computing instance 340a , 340 , 340n . The 
cloud - based object storage 348 that is attached to the par 
ticular cloud computing instance 340 , 3406 , 340n may be 
embodied , for example , as Amazon Simple Storage Service 
( * S3 ' ) storage that is accessible by the particular cloud 
computing instance 340a , 340b , 340n . In other embodi 
ments , the cloud computing instances 320 , 322 that each 
include the storage controller application 324 , 326 may 
initiate the storage of the data in the local storage 330 , 334 , 
338 of the cloud computing instances 340a , 340b , 340n and 
the cloud - based object storage 348 . 
[ 0134 ] Readers will appreciate that , as described above , 
the cloud - based storage system 318 may be used to provide 
block storage services to users of the cloud - based storage 
system 318. While the local storage 330 , 334 , 338 resources 
and the block - storage 342 , 344 , 346 resources that are 
utilized by the cloud computing instances 340a , 340 , 340n 
may support block - level access , the cloud - based object 
storage 348 that is attached to the particular cloud comput 
ing instance 340a , 340 , 340n supports only object - based 
access . In order to address this , the software daemon 328 , 
332 , 336 or some other module of computer program 
instructions that is executing on the particular cloud com 
puting instance 340a , 340 , 340n may be configured to take 
blocks of data , package those blocks into objects , and write 
the objects to the cloud - based object storage 348 that is 
attached to the particular cloud computing instance 340a , 
340 , 340n . 
[ 0135 ] Consider an example in which data is written to the 
local storage 330 , 334 , 338 resources and the block - storage 
342 , 344 , 346 resources that are utilized by the cloud 
computing instances 340a , 3406 , 340n in 1 MB blocks . In 
such an example , assume that a user of the cloud - based 
storage system 318 issues a request to write data that , after 
being compressed and deduplicated by the storage controller 
application 324 , 326 results in the need to write 5 MB of 
data . In such an example , writing the data to the local storage 
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330 , 334 , 338 resources and the block - storage 342 , 344 , 346 
resources that are utilized by the cloud computing instances 
340a , 340 , 340n is relatively straightforward as 5 blocks 
that are 1 MB in size are written to the local storage 330 , 
334 , 338 resources and the block - storage 342 , 344 , 346 
resources that are utilized by the cloud computing instances 
340a , 340 , 340n . In such an example , the software daemon 
328 , 332 , 336 or some other module of computer program 
instructions that is executing on the particular cloud com 
puting instance 340a , 340b , 340n may be configured to : 1 ) 
create a first object that includes the first 1 MB of data and 
write the first object to the cloud - based object storage 348 , 
2 ) create a second object that includes the second 1 MB of 
data and write the second object to the cloud - based object 
storage 348 , 3 ) create a third object that includes the third 1 
MB of data and write the third object to the cloud - based 
object storage 348 , and so on . As such , in some embodi 
ments , each object that is written to the cloud - based object 
storage 348 may be identical ( or nearly identical ) in size . 
Readers will appreciate that in such an example , metadata 
that is associated with the data itself may be included in each 
object ( e.g. , the first 1 MB of the object is data and the 
remaining portion is metadata associated with the data ) . 
[ 0136 ] Readers will appreciate that the cloud - based object 
storage 348 may be incorporated into the cloud - based stor 
age system 318 to increase the durability of the cloud - based 
storage system 318. Continuing with the example described 
above where the cloud computing instances 340a , 340b , 
340n are EC2 instances , readers will understand that EC2 
instances are only guaranteed to have a monthly uptime of 
99.9 % and data stored in the local instance store only 
persists during the lifetime of the EC2 instance . As such , 
relying on the cloud computing instances 340a , 340 , 340n 
with local storage 330 , 334 , 338 as the only source of 
persistent data storage in the cloud - based storage system 318 
may result in a relatively unreliable storage system . Like 
wise , EBS volumes are designed for 99.999 % availability . 
As such , even relying on EBS as the persistent data store in 
the cloud - based storage system 318 may result in a storage 
system that is not sufficiently durable . Amazon S3 , however , 
is designed to provide 99.999999999 % durability , meaning 
that a cloud - based storage system 318 that can incorporate 
S3 into its pool of storage is substantially more durable than 
various other options . 
[ 0137 ] Readers will appreciate that while a cloud - based 
storage system 318 that can incorporate S3 into its pool of 
storage substantially more durable than various other 
options , utilizing S3 as the primary pool of storage may 
result in storage system that has relatively slow response 
times and relatively long I / O latencies . As such , the cloud 
based storage system 318 depicted in FIG . 3C not only 
stores data in S3 but the cloud - based storage system 318 also 
stores data in local storage 330 , 334 , 338 resources and 
block - storage 342 , 344 , 346 resources that are utilized by the 
cloud computing instances 340a , 340b , 340n , such that read 
operations can be serviced from local storage 330 , 334 , 338 
resources and the block - storage 342 , 344 , 346 resources that 
are utilized by the cloud computing instances 340a , 340b , 
340n , thereby reducing read latency when users of the 
cloud - based storage system 318 attempt to read data from 
the cloud - based storage system 318 . 
[ 0138 ] In some embodiments , all data that is stored by the 
cloud - based storage system 318 may be stored in both : 1 ) the 
cloud - based object storage 348 , and 2 ) at least one of the 

local storage 330 , 334 , 338 resources or block - storage 342 , 
344 , 346 resources that are utilized by the cloud computing 
instances 340a , 340 , 340n . In such embodiments , the local 
storage 330 , 334 , 338 resources and block - storage 342 , 344 , 
346 resources that are utilized by the cloud computing 
instances 340a , 340b , 340n may effectively operate as cache 
that generally includes all data that is also stored in S3 , such 
that all reads of data may be serviced by the cloud comput 
ing instances 340a , 340 , 340n without requiring the cloud 
computing instances 340a , 340b , 340n to access the cloud 
based object storage 348. Readers will appreciate that in 
other embodiments , however , all data that is stored by the 
cloud - based storage system 318 may be stored in the cloud 
based object storage 348 , but less than all data that is stored 
by the cloud - based storage system 318 may be stored in at 
least one of the local storage 330 , 334 , 338 resources or 
block - storage 342 , 344 , 346 resources that are utilized by the 
cloud computing instances 340a , 340b , 340n . In such an 
example , various policies may be utilized to determine 
which subset of the data that is stored by the cloud - based 
storage system 318 should reside in both : 1 ) the cloud - based 
object storage 348 , and 2 ) at least one of the local storage 
330 , 334 , 338 resources or block - storage 342 , 344 , 346 
resources that are utilized by the cloud computing instances 
340a , 340 , 340n . 
[ 0139 ] As described above , when the cloud computing 
instances 340a , 340b , 340n with local storage 330 , 334 , 338 
are embodied as EC2 instances , the cloud computing 
instances 340a , 3406 , 340n with local storage 330 , 334 , 338 
are only guaranteed to have a monthly uptime of 99.9 % and 
data stored in the local instance store only persists during the 
lifetime of each cloud computing instance 340a , 340b , 340n 
with local storage 330 , 334 , 338. As such , one or more 
modules of computer program instructions that are execut 
ing within the cloud - based storage system 318 ( e.g. , a 
monitoring module that is executing on its own EC2 
instance ) may be designed to handle the failure of one or 
more of the cloud computing instances 340a , 340b , 340n 
with local storage 330 , 334 , 338. In such an example , the 
monitoring module may handle the failure of one or more of 
the cloud computing instances 340a , 3406 , 340n with local 
storage 330 , 334 , 338 by creating one or more new cloud 
computing instances with local storage , retrieving data that 
was stored on the failed cloud computing instances 340a , 
3406 , 340n from the cloud - based object storage 348 , and 
storing the data retrieved from the cloud - based object stor 
age 348 in local storage on the newly created cloud com 
puting instances . Readers will appreciate that many variants 
of this process may be implemented . 
[ 0140 ] Consider an example in which all cloud computing 
instances 340a , 340 , 340n with local storage 330 , 334 , 338 
failed . In such an example , the monitoring module may 
create new cloud computing instances with local storage , 
where high - bandwidth instances types are selected that 
allow for the maximum data transfer rates between the 
newly created high - bandwidth cloud computing instances 
with local storage and the cloud - based object storage 348 . 
Readers will appreciate that instances types are selected that 
allow for the maximum data transfer rates between the new 
cloud computing instances and the cloud - based object stor 
age 348 such that the new high - bandwidth cloud computing 
instances can be rehydrated with data from the cloud - based 
object storage 348 as quickly as possible . Once the new 
high - bandwidth cloud computing instances are rehydrated 
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with data from the cloud - based object storage 348 , less 
expensive lower - bandwidth cloud computing instances may 
be created , data may be migrated to the less expensive 
lower - bandwidth cloud computing instances , and the high 
bandwidth cloud computing instances may be terminated . 
[ 0141 ] Readers will appreciate that in some embodiments , 
the number of new cloud computing instances that are 
created may substantially exceed the number of cloud com 
puting instances that are needed to locally store all of the 
data stored by the cloud - based storage system 318. The 
number of new cloud computing instances that are created 
may substantially exceed the number of cloud computing 
instances that are needed to locally store all of the data 
stored by the cloud - based storage system 318 in order to 
more rapidly pull data from the cloud - based object storage 
348 and into the new cloud computing instances , as each 
new cloud computing instance can in parallel ) retrieve 
some portion of the data stored by the cloud - based storage 
system 318. In such embodiments , once the data stored by 
the cloud - based storage system 318 has been pulled into the 
newly created cloud computing instances , the data may be 
consolidated within a subset of the newly created cloud 
computing instances and those newly created cloud com 
puting instances that are excessive may be terminated . 
[ 0142 ] Consider an example in which 1000 cloud com 
puting instances are needed in order to locally store all valid 
data that users of the cloud - based storage system 318 have 
written to the cloud - based storage system 318. In such an 
example , assume that all 1,000 cloud computing instances 
fail . In such an example , the monitoring module may cause 
100,000 cloud computing instances to be created , where 
each cloud computing instance is responsible for retrieving , 
from the cloud - based object storage 348 , distinct 1/100 , 
000th chunks of the valid data that users of the cloud - based 
storage system 318 have written to the cloud - based storage 
system 318 and locally storing the distinct chunk of the 
dataset that it retrieved . In such an example , because each of 
the 100,000 cloud computing instances can retrieve data 
from the cloud - based object storage 348 in parallel , the 
caching layer may be restored 100 times faster as compared 
to an embodiment where the monitoring module only create 
1000 replacement cloud computing instances . In such an 
example , over time the data that is stored locally in the 
100,000 could be consolidated into 1,000 cloud computing 
instances and the remaining 99,000 cloud computing 
instances could be terminated . 
[ 0143 ] Readers will appreciate that various performance 
aspects of the cloud - based storage system 318 may be 
monitored ( e.g. , by a monitoring module that is executing in 
an EC2 instance ) such that the cloud - based storage system 
318 can be scaled - up or scaled - out as needed . Consider an 
example in which the monitoring module monitors the 
performance of the could - based storage system 318 via 
communications with one or more of the cloud computing 
instances 320 , 322 that each are used to support the execu 
tion of a storage controller application 324 , 326 , via moni 
toring communications between cloud computing instances 
320 , 322 , 340a , 340b , 340n , via monitoring communications 
between cloud computing instances 320 , 322 , 340a , 340b , 
340n and the cloud - based object storage 348 , or in some 
other way . In such an example , assume that the monitoring 
module determines that the cloud computing instances 320 , 
322 that are used to support the execution of a storage 
controller application 324 , 326 are undersized and not 

sufficiently servicing the I / O requests that are issued by users 
of the cloud - based storage system 318. In such an example , 
the monitoring module may create a new , more powerful 
cloud computing instance ( e.g. , a cloud computing instance 
of a type that includes more processing power , more 
memory , etc. . ) that includes the storage controller 
application such that the new , more powerful cloud com 
puting instance can begin operating as the primary control 
ler . Likewise , if the monitoring module determines that the 
cloud computing instances 320 , 322 that are used to support 
the execution of a storage controller application 324 , 326 are 
oversized and that cost savings could be gained by switching 
to a smaller , less powerful cloud computing instance , the 
monitoring module may create a new , less powerful ( and 
less expensive ) cloud computing instance that includes the 
storage controller application such that the new , less pow 
erful cloud computing instance can begin operating as the 
primary controller . 
[ 0144 ] Consider , as an additional example of dynamically 
sizing the cloud - based storage system 318 , an example in 
which the monitoring module determines that the utilization 
of the local storage that is collectively provided by the cloud 
computing instances 340a , 3406 , 340n has reached a pre 
determined utilization threshold ( e.g. , 95 % ) . In such an 
example , the monitoring module may create additional 
cloud computing instances with local storage to expand the 
pool of local storage that is offered by the cloud computing 
instances . Alternatively , the monitoring module may create 
one or more new cloud computing instances that have larger 
amounts of local storage than the already existing cloud 
computing instances 340a , 340 , 340n , such that data stored 
in an already existing cloud computing instance 340a , 340b , 
340n can be migrated to the one or more new cloud 
computing instances and the already existing cloud comput 
ing instance 340a , 3406 , 340n can be terminated , thereby 
expanding the pool of local storage that is offered by the 
cloud computing instances . Likewise , if the pool of local 
storage that is offered by the cloud computing instances is 
unnecessarily large , data can be consolidated and some 
cloud computing instances can be terminated . 
[ 0145 ] Readers will appreciate that the cloud - based stor 
age system 318 may be sized up and down automatically by 
a monitoring module applying a predetermined set of rules 
that may be relatively simple of relatively complicated . In 
fact , the monitoring module may not only take into account 
the current state of the cloud - based storage system 318 , but 
the monitoring module may also apply predictive policies 
that are based on , for example , observed behavior ( e.g. , 
every night from 10 PM until 6 AM usage of the storage 
system is relatively light ) , predetermined fingerprints ( e.g. , 
every time a virtual desktop infrastructure adds 100 virtual 
desktops , the number of IOPS directed to the storage system 
increase by X ) , and so on . In such an example , the dynamic 
scaling of the cloud - based storage system 318 may be based 
on current performance metrics , predicted workloads , and 
many other factors , including combinations thereof . 
[ 0146 ] Readers will further appreciate that because the 
cloud - based storage system 318 may be dynamically scaled , 
the cloud - based storage system 318 may even operate in a 
way that is more dynamic . Consider the example of garbage 
collection . In a traditional storage system , the amount of 
storage is fixed . As such , at some point the storage system 
may be forced to perform garbage collection as the amount 
of available storage has become so constrained that the 
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storage system is on the verge of running out of storage . In 
contrast , the cloud - based storage system 318 described here 
can always ‘ add ' additional storage ( e.g. , by adding more 
cloud computing instances with local storage ) . Because the 
cloud - based storage system 318 described here can always 
“ add’additional storage , the cloud - based storage system 318 
can make more intelligent decisions regarding when to 
perform garbage collection . For example , the cloud - based 
storage system 318 may implement a policy that garbage 
collection only be performed when the number of IOPS 
being serviced by the cloud - based storage system 318 falls 
below a certain level . In some embodiments , other system 
level functions ( e.g. , deduplication , compression ) may also 
be turned off and on in response to system load , given that 
the size of the cloud - based storage system 318 is not 
constrained in the same way that traditional storage systems 
are constrained . 
[ 0147 ] Readers will appreciate that embodiments of the 
present disclosure resolve an issue with block - storage ser 
vices offered by some cloud computing environments as 
some cloud computing environments only allow for one 
cloud computing instance to connect to a block - storage 
storage volume at a single time . For example , in Amazon 
AWS , only a single EC2 instance may be connected to an 
EBS volume . Through the use of EC2 instances with local 
storage , embodiments of the present disclosure can offer 
multi - connect capabilities where multiple EC2 instances can 
connect to another EC2 instance with local storage ( “ a drive 
instance ” ) . In such embodiments , the drive instances may 
include software executing within the drive instance that 
allows the drive instance to support I / O directed to a 
particular volume from each connected EC2 instance . As 
such , some embodiments of the present disclosure may be 
embodied as multi - connect block storage services that may 
not include all of the components depicted in FIG . 3C . 
[ 0148 ] In some embodiments , especially in embodiments 
where the cloud - based object storage 348 resources are 
embodied as Amazon S3 , the cloud - based storage system 
318 may include one or more modules ( e.g. , a module of 
compute program instructions executing on an EC2 
instance ) that are configured to ensure that when the local 
storage of a particular cloud computing instance is rehy 
drated with data from S3 , the appropriate data is actually in 
S3 . This issue arises largely because S3 implements an 
eventual consistency model where , when overwriting an 
existing object , reads of the object will eventually ( but not 
necessarily immediately ) become consistent and will even 
tually ( but not necessarily immediately ) return the overwrit 
ten version of the object . To address this issue , in some 
embodiments of the present disclosure , object in S3 are 
never overwritten . Instead , a traditional ‘ overwrite ' would 
result in the creation of the new object ( that includes the 
updated version of the data ) and the eventual deletion of the 
old object ( that includes the previous version of the data ) . 
[ 0149 ] In some embodiments of the present disclosure , as 
part of an attempt to never ( or almost never ) overwrite an 
object , when data is written to S3 the resultant object may 
be tagged with a sequence number . In some embodiments , 
these sequence numbers may be persisted elsewhere ( e.g. , in 
a database ) such that at any point in time , the sequence 
number associated with the most up - to - date version of some 
piece of data can be known . In such a way , a determination 
can be made as to whether S3 has the most recent version of 
some piece of data by merely reading the sequence number 

associated with an object — and without actually reading the 
data from S3 . The ability to make this determination may be 
particularly important when a cloud computing instance 
with local storage crashes , as it would be undesirable to 
rehydrate the local storage of a replacement cloud comput 
ing instance with out - of - date data . In fact , because the 
cloud - based storage system 318 does not need to access the 
data to verify its validity , the data can stay encrypted and 
access charges can be avoided . 
[ 0150 ] The storage systems described above may carry out 
intelligent data backup techniques through which data stored 
in the storage system may be copied and stored in a distinct 
location to avoid data loss in the event of equipment failure 
or some other form of catastrophe . For example , the storage 
systems described above may be configured to examine each 
backup to avoid restoring the storage system to an undesir 
able state . Consider an example in which malware infects 
the storage system . In such an example , the storage system 
may include software resources 314 that can scan each 
backup to identify backups that were captured before the 
malware infected the storage system and those backups that 
were captured after the malware infected the storage system . 
In such an example , the storage system may restore itself 
from a backup that does not include the malware or at least 
not restore the portions of a backup that contained the 
malware . In such an example , the storage system may 
include software resources 314 that can scan each backup to 
identify the presences of malware ( or a virus , or some other 
undesirable ) , for example , by identifying write operations 
that were serviced by the storage system and originated from 
a network subnet that is suspected to have delivered the 
malware , by identifying write operations that were serviced 
by the storage system and originated from a user that is 
suspected to have delivered the malware , by identifying 
write operations that were serviced by the storage system 
and examining the content of the write operation against 
fingerprints of the malware , and in many other ways . 
[ 0151 ] Readers will further appreciate that the backups 
( often in the form of one or more snapshots ) may also be 
utilized to perform rapid recovery of the sto age system . 
Consider an example in which the storage system is infected 
with ransomware that locks users out of the storage system . 
In such an example , software resources 314 within the 
storage system may be configured to detect the presence of 
ransomware and may be further configured to restore the 
storage system to a point - in - time , using the retained back 
ups , prior to the point - in - time at which the ransomware 
infected the storage system . In such an example , the pres 
ence of ransomware may be explicitly detected through the 
use of software tools utilized by the system , ugh the use 
of a key ( e.g. , a USB drive ) that is inserted into the storage 
system , or in a similar way . Likewise , the presence of 
ransomware may be inferred in response to system activity 
meeting a predetermined fingerprint such as , for example , no 
reads or writes coming into the system for a predetermined 
period of time . 
[ 0152 ] Readers will appreciate that the various compo 
nents depicted in FIG . 3B may be grouped into one or more 
optimized computing packages as converged infrastructures . 
Such converged infrastructures may include pools of com 
puters , storage and networking resources that can be shared 
by multiple applications and managed in a collective manner 
using policy - driven processes . Such converged infrastruc 
tures may minimize compatibility issues between various 
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components within the storage system 306 while also reduc 
ing various costs associated with the establishment and 
operation of the storage system 306. Such converged infra 
structures may be implemented with a converged infrastruc 
ture reference architecture , with standalone appliances , with 
a software driven hyper - converged approach ( e.g. , hyper 
converged infrastructures ) , or in other ways . 
[ 0153 ] Readers will appreciate that the storage system 306 
depicted in FIG . 3B may be useful for supporting various 
types of software applications . For example , the storage 
system 306 may be useful in supporting artificial intelli 
gence ( -AI ) applications , database applications , DevOps 
projects , electronic design automation tools , event - driven 
software applications , high performance computing appli 
cations , simulation applications , high - speed data capture 
and analysis applications , machine learning applications , 
media production applications , media serving applications , 
picture archiving and communication systems ( “ PACS ' ) 
applications , software development applications , virtual 
reality applications , augmented reality applications , and 
many other types of applications by providing storage 
resources to such applications . 
[ 0154 ] The storage systems described above may operate 
to support a wide variety of applications . In view of the fact 
that the storage systems include compute resources , storage 
resources , and a wide variety of other resources , the storage 
systems may be well suited to support applications that are 
resource intensive such as , for example , AI applications . 
Such AI applications may enable devices to perceive their 
environment and take actions that maximize their chance of 
success at some goal . Examples of such AI applications can 
include IBM Watson , Microsoft Oxford , Google DeepMind , 
Baidu Minwa , and others . The storage systems described 
above may also be well suited to support other types of 
applications that are resource intensive such as , for example , 
machine learning applications . Machine learning applica 
tions may perform various types of data analysis to automate 
analytical model building . Using algorithms that iteratively 
learn from data , machine learning applications can enable 
computers to learn without being explicitly programmed . 
One particular area of machine learning is referred to as 
reinforcement learning , which involves taking suitable 
actions to maximize reward in a particular situation . Rein 
forcement learning may be employed to find the best pos 
sible behavior or path that a particular software application 
or machine should take in a specific situation . Reinforce 
ment learning differs from other areas of machine learning 
( e.g. , supervised learning , unsupervised learning ) in that 
correct input / output pairs need not be presented for rein 
forcement learning and sub - optimal actions need not be 
explicitly corrected . 
[ 0155 ] In addition to the resources already described , the 
storage systems described above may also include graphics 
processing units ( " GPUs ' ) , occasionally referred to as visual 
processing unit ( “ VPUs ’ ) . Such GPUs may be embodied as 
specialized electronic circuits that rapidly manipulate and 
alter memory to accelerate the creation of images in a frame 
buffer intended for output to a display device . Such GPUs 
may be included within any of the computing devices that 
are part of the storage systems described above , including as 
one of many individually scalable components of a storage 
system , where other examples of individually scalable com 
ponents of such storage system can include storage compo 
nents , memory components , compute components ( e.g. , 

CPUs , FPGAs , ASICs ) , networking components , software 
components , and others . In addition to GPUs , the storage 
systems described above may also include neural network 
processors ( ‘ NNPs ’ ) for use in various aspects of neural 
network processing . Such NNPs may be used in place of ( or 
in addition to ) GPUs and may be also be independently 
scalable . 
[ 0156 ] As described above , the storage systems described 
herein may be configured to support artificial intelligence 
applications , machine learning applications , big data ana 
lytics applications , and many other types of applications . 
The rapid growth in these sort of applications is being driven 
by three technologies : deep learning ( DL ) , GPU processors , 
and Big Data . Deep learning is a computing model that 
makes use of massively parallel neural networks inspired by 
the human brain . Instead of experts handcrafting software , a 
deep learning model writes its own software by learning 
from lots of examples . A GPU is modern processor with 
thousands of cores , well - suited to run algorithms that 
loosely represent the parallel nature of the human brain . 
[ 0157 ] Advances in deep neural networks have ignited a 
new wave of algorithms and tools for data scientists to tap 
into their data with artificial intelligence ( AI ) . With 
improved algorithms , larger data sets , and various frame 
works ( including open - source software libraries for machine 
learning across a range of tasks ) , data scientists are tackling 
new use cases like autonomous driving vehicles , natural 
language processing and understanding , computer vision , 
machine reasoning , strong Al , and many others . Applica 
tions of such techniques may include : machine and vehicular 
object detection , identification and avoidance ; visual recog 
nition , classification and tagging ; algorithmic financial trad 
ing strategy performance management ; simultaneous local 
ization and mapping ; predictive maintenance of high - value 
machinery ; prevention against cyber security threats , exper 
tise automation ; image recognition and classification ; ques 
tion answering ; robotics ; text analytics ( extraction , classifi 
cation ) and text generation and translation , and many others . 
Applications of AI techniques has materialized in a wide 
array of products include , for example , Amazon Echo's 
speech recognition technology that allows users to talk to 
their machines , Google TranslateTM which allows for 
machine - based language translation , Spotify's Discover 
Weekly that provides recommendations on new songs and 
artists that a user may like based on the user's usage and 
traffic analysis , Quill's text generation offering that takes 
structured data and turns it into narrative stories , Chatbots 
that provide real - time , contextually specific answers to ques 
tions in a dialog format , and many others . Furthermore , AI 
may impact a wide variety of industries and sectors . For 
example , Al solutions may be used in healthcare to take 
clinical notes , patient files , research data , and other inputs to 
generate potential treatment options for doctors to explore . 
Likewise , AI solutions may be used by retailers to person 
alize consumer recommendations based on a person's digital 
footprint of behaviors , profile data , or other data . 
[ 0158 ] Training deep neural networks , however , requires 
both high quality input data and large amounts of compu 
tation . GPUs are massively parallel processors capable of 
operating on large amounts of data simultaneously . When 
combined into a multi - GPU cluster , a high throughput 
pipeline may be required to feed input data from storage to 
the compute engines . Deep learning is more than just 
constructing and training models . There also exists an entire 
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data pipeline that must be designed for the scale , iteration , 
and experimentation necessary for a data science team to 
succeed . 

[ 0159 ] Data is the heart of modern Al and deep learning 
algorithms . Before training can begin , one problem that 
must be addressed revolves around collecting the labeled 
data that is crucial for training an accurate Al model . A full 
scale AI deployment may be required to continuously col 
lect , clean , transform , label , and store large amounts of data . 
Adding additional high quality data points directly translates 
to more accurate models and better insights . Data samples 
may undergo a series of processing steps including , but not 
limited to : 1 ) ingesting the data from an external source into 
the training system and storing the data in raw form , 2 ) 
cleaning and transforming the data in a format convenient 
for training , including linking data samples to the appropri 
ate label , 3 ) exploring parameters and models , quickly 
testing with a smaller dataset , and iterating to converge on 
the most promising models to push into the production 
cluster , 4 ) executing training phases to select random 
batches of input data , including both new and older samples , 
and feeding those into production GPU servers for compu 
tation to update model parameters , and 5 ) evaluating includ 
ing using a holdback portion of the data not used in training 
in order to evaluate model accuracy on the holdout data . This 
lifecycle may apply for any type of parallelized machine 
learning , not just neural networks or deep learning . For 
example , standard machine learning frameworks may rely 
on CPUs instead of GPUs but the data ingest and training 
workflows may be the same . Readers will appreciate that a 
single shared storage data hub creates a coordination point 
throughout the lifecycle without the need for extra data 
copies among the ingest , preprocessing , and training stages . 
Rarely is the ingested data used for only one purpose , and 
shared storage gives the flexibility to train multiple different 
models or apply traditional analytics to the data . 
[ 0160 ] Readers will appreciate that each stage in the AI 
data pipeline may have varying requirements from the data 
hub ( e.g. , the storage system or collection of storage sys 
tems ) . Scale - out storage systems must deliver uncompro 
mising performance for all manner of access types and 
patterns from small , metadata - heavy to large files , from 
random to sequential access patterns , and from low to high 
concurrency . The storage systems described above may 
serve as an ideal Al data hub as the systems may service 
unstructured workloads . In the first stage , data is ideally 
ingested and stored on to the same data hub that following 
stages will use , in order to avoid excess data copying . The 
next two steps can be done on a standard compute server that 
optionally includes a GPU , and then in the fourth and last 
stage , full training production jobs are run on powerful 
GPU - accelerated servers . Often , there is a production pipe 
line alongside an experimental pipeline operating on the 
same dataset . Further , the GPU - accelerated servers can be 
used independently for different models or joined together to 
train on one larger model , even spanning multiple systems 
for distributed training . If the shared storage tier is slow , then 
data must be copied to local storage for each phase , resulting 
in wasted time staging data onto different servers . The ideal 
data hub for the AI training pipeline delivers performance 
similar to data stored locally on the server node while also 
having the simplicity and performance to enable all pipeline 
stages to operate concurrently . 

[ 0161 ] A data scientist works to improve the usefulness of 
the trained model through a wide variety of approaches : 
more data , better data , smarter training , and deeper models . 
In many cases , there will be teams of data scientists sharing 
the same datasets and working in parallel to produce new 
and improved training models . Often , there is a team of data 
scientists working within these phases concurrently on the 
same shared datasets . Multiple , concurrent workloads of 
data processing , experimentation , and full - scale training 
layer the demands of multiple access patterns on the storage 
tier . In other words , storage cannot just satisfy large file 
reads , but must contend with a mix of large and small file 
reads and writes . Finally , with multiple data scientists 
exploring datasets and models , it may be critical to store data 
in its native format to provide flexibility for each user to 
transform , clean , and use the data in a unique way . The 
storage systems described above may provide a natural 
shared storage home for the dataset , with data protection 
redundancy ( e.g. , by using RAID ) and the performance 
necessary to be a common access point for multiple devel 
opers and multiple experiments . Using the storage systems 
described above may avoid the need to carefully copy 
subsets of the data for local work , saving both engineering 
and GPU - accelerated servers use time . These copies become 
a constant and growing tax as the raw data set and desired 
transformations constantly update and change . 
[ 0162 ] Readers will appreciate that a fundamental reason 
why deep learning has seen a surge in success is the 
continued improvement of models with larger data set sizes . 
In contrast , classical machine learning algorithms , like logis 
tic regression , stop improving in accuracy at smaller data set 
sizes . As such , the separation of compute resources and 
storage resources may also allow independent scaling of 
each tier , avoiding many of the complexities inherent in 
managing both together . As the data set size grows or new 
data sets are considered , a scale out storage system must be 
able to expand easily . Similarly , if more concurrent training 
is required , additional GPUs or other compute resources can 
be added without concern for their internal storage . Further 
more , the storage systems described above may make build 
ing , operating , and growing an Al system easier due to the 
random read bandwidth provided by the storage systems , the 
ability to of the storage systems to randomly read small files 
( 50 KB ) high rates ( meaning that no extra effort is required 
to aggregate individual data points to make larger , storage 
friendly files ) , the ability of the storage systems to scale 
capacity and performance as either the dataset grows or the 
throughput requirements grow , the ability of the storage 
systems to support files or objects , the ability of the storage 
systems to tune performance for large or small files ( i.e. , no 
need for the user to provision filesystems ) , the ability of the 
storage systems to support non - disruptive upgrades of hard 
ware and software even during production model training , 
and for many other reasons . 
[ 0163 ] Small file performance of the storage tier may be 
critical as many types of inputs , including text , audio , or 
images will be natively stored as small files . If the storage 
tier does not handle small files well , an extra step will be 
required to pre - process and group samples into larger files . 
Storage , built on top of spinning disks , that relies on SSD as 
a caching tier , may fall short of the performance needed . 
Because training with random input batches results in more 
accurate models , the entire data set must be accessible with 
full performance . SSD caches only provide high perfor 
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mance for a small subset of the data and will be ineffective 
at hiding the latency of spinning drives . 
[ 0164 ] Although the preceding paragraphs discuss deep 
learning applications , readers will appreciate that the storage 
systems described herein may also be part of a distributed 
deep learning ( ?DDL ” ) platform to support the execution of 
DDL algorithms . Distributed deep learning may can be used 
to significantly accelerate deep learning with distributed 
computing on GPUs ( or other form of accelerator or com 
puter program instruction executor ) , such that parallelism 
can be achieved . In addition , the output of training machine 
learning and deep learning models , such as a fully trained 
machine learning model , may be used for a variety of 
purposes and in conjunction with other tools . For example , 
trained machine learning models may be used in conjunction 
with tools like Core ML to integrate a broad variety of 
machine learning model types into an application . In fact , 
trained models may be run through Core ML converter tools 
and inserted into a custom application that can be deployed 
on compatible devices . The storage systems described above 
may also be paired with other technologies such as Tensor 
Flow , an open - source software library for dataflow program 
ming across a range of tasks that may be used for machine 
learning applications such as neural networks , to facilitate 
the development of such machine learning models , applica 
tions , and so on . 
[ 0165 ] Readers will further appreciate that the systems 
described above may be deployed in a variety of ways to 
support the democratization of Al , as AI becomes more 
available for mass consumption . The democratization of AI 
may include , for example , the ability to offer AI as a 
Platform - as - a - Service , the growth of Artificial general intel 
ligence offerings , the proliferation of Autonomous level 4 
and Autonomous level 5 vehicles , the availability of autono 
mous mobile robots , the development of conversational AI 
platforms , and many others . For example , the systems 
described above may be deployed in cloud environments , 
edge environments , or other environments that are useful in 
supporting the democratization of Al . As part of the democ 
ratization of AI , a movement may occur from narrow AI that 
consists of highly scoped machine learning solutions that 
target a particular task to artificial general intelligence where 
the use of machine learning is expanded to handle a broad 
range of use cases that could essentially perform any intel 
ligent task that a human could perform and could learn 
dynamically , much like a human . 
[ 0166 ] The storage systems described above may also be 
used in a neuromorphic computing environment . Neuromor 
phic computing is a form of computing that mimics brain 
cells . To support neuromorphic computing , an architecture 
of interconnected “ neurons ” replace traditional computing 
models with low - powered signals that go directly between 
neurons for more efficient computation . Neuromorphic com 
puting may make use of very - large - scale integration ( VLSI ) 
systems containing electronic analog circuits to mimic 
neuro - biological architectures present in the nervous system , 
as well as analog , digital , mixed - mode analog / digital VLSI , 
and software systems that implement models of neural 
systems for perception , motor control , or multisensory inte 
gration 
[ 0167 ] Readers will appreciate that the storage systems 
described above may be configured to support the storage or 
use of ( among other types of data ) blockchains . Such 
blockchains may be embodied as a continuously growing list 

of records , called blocks , which are linked and secured using 
cryptography . Each block in a blockchain may contain a 
hash pointer as a link to a previous block , a timestamp , 
transaction data , and so on . Blockchains may be designed to 
be resistant to modification of the data and can serve as an 
open , distributed ledger that can record transactions between 
two parties efficiently and in a verifiable and permanent way . 
This makes blockchains potentially suitable for the record 
ing of events , medical records , and other records manage 
ment activities , such as identity management , transaction 
processing , and others . In addition to supporting the storage 
and use of blockchain technologies , the storage systems 
described above may also support the storage and use of 
derivative items such as , for example , open source block 
chains and related tools that are part of the IBMTM 
Hyperledger project , permissioned blockchains in which a 
certain number of trusted parties are allowed to access the 
block chain , blockchain products that enable developers to 
build their own distributed ledger projects , and others . 
Readers will appreciate that blockchain technologies may 
impact a wide variety of industries and sectors . For example , 
blockchain technologies may be used in real estate transac 
tions as blockchain based contracts whose use can eliminate 
the need for 3rd parties and enable self - executing actions 
when conditions are met . Likewise , universal health records 
can be created by aggregating and placing a person's health 
history onto a blockchain ledger for any healthcare provider , 
or permissioned health care providers , to access and update . 
[ 0168 ] Readers will appreciate that the usage of block 
chains is not limited to financial transactions , contracts , and 
the like . In fact , blockchains may be leveraged to enable the 
decentralized aggregation , ordering , timestamping and 
archiving of any type of information , including structured 
data , correspondence , documentation , other data . 
Through the usage of blockchains , participants can provably 
and permanently agree on exactly what data was entered , 
when and by whom , without relying on a trusted interme 
diary . For example , SAP's recently launched blockchain 
platform , which supports MultiChain and Hyperledger Fab 
ric , targets a broad range of supply chain and other non 
financial applications . 
[ 0169 ] One way to use a blockchain for recording data is 
to embed each piece of data directly inside a transaction . 
Every blockchain transaction may be digitally signed by one 
or more parties , replicated to a plurality of nodes , ordered 
and timestamped by the chain's consensus algorithm , and 
stored permanently in a tamper - proof way . Any data within 
the transaction will therefore be stored identically but inde 
pendently by every node , along with a proof of who wrote 
it and when . The chain's users are able to retrieve this 
information at any future time . This type of storage may be 
referred to as on - chain storage . On - chain storage may not be 
particularly practical , however , when attempting to store a 
very large dataset . As such , in accordance with embodiments 
of the present disclosure , blockchains and the storage sys 
tems described herein may be leveraged to support on - chain 
storage of data as well as off - chain storage of data . 
[ 0170 ] Off - chain storage of data can be implemented in a 
variety of ways and can occur when the data itself is not 
stored within the blockchain . For example , in one embodi 
ment , a hash function may be utilized and the data itself may 
be fed into the hash function to generate a hash value . In 
such an example , the hashes of large pieces of data may be 
embedded within transactions , instead of the data itself . 

or 
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Each hash may serve as a commitment to its input data , with 
the data itself being stored outside of the blockchain . Read 
ers will appreciate that any blockchain participant that needs 
an off - chain piece of data cannot reproduce the data from its 
hash , but if the data can be retrieved in some other way , then 
the on - chain hash serves to confirm who created it and when . 
Just like regular on - chain data , the hash may be embedded 
inside a digitally signed transaction , which was included in 
the chain by consensus . 
[ 0171 ] Readers will appreciate that , in other embodiments , 
alternatives to blockchains may be used to facilitate the 
decentralized storage of information . For example , one 
alternative to a blockchain that may be used is a blockweave . 
While conventional blockchains store every transaction to 
achieve validation , a blockweave permits secure decentral 
ization without the usage of the entire chain , thereby 
enabling low cost on - chain storage of data . Such block 
weaves may utilize a consensus mechanism that is based on 
proof of access ( PoA ) and proof of work ( PoW ) . While 
typical PoW systems only depend on the previous block in 
order to generate each successive block , the PoA algorithm 
may incorporate data from a randomly chosen previous 
block . Combined with the blockweave data structure , miners 
do not need to store all blocks ( forming a blockchain ) , but 
rather can store any previous blocks forming a weave of 
blocks ( a blockweave ) . This enables increased levels of 
scalability , speed and low - cost and reduces the cost of data 
storage in part because miners need not store all blocks , 
thereby resulting in a substantial reduction in the amount of 
electricity that is consumed during the mining process 
because , as the network expands , electricity consumption 
decreases because a blockweave demands less and less 
hashing power for consensus as data is added to the system . 
Furthermore , blockweaves may be deployed on a decentral 
ized storage network in which incentives are created to 
encourage rapid data sharing . Such decentralized storage 
networks may also make use of blockshadowing techniques , 
where nodes only send a minimal block “ shadow ” to other 
nodes that allows peers to reconstruct a full block , instead of 
transmitting the full block itself . 
[ 0172 ] The storage systems described above may , either 
alone or in combination with other computing devices , be 
used to support in - memory computing applications . In 
memory computing involves the storage of information in 
RAM that is distributed across a cluster of computers . 
In - memory computing helps business customers , including 
retailers , banks and utilities , to quickly detect patterns , 
analyze massive data volumes on the fly , and perform their 
operations quickly . Readers will appreciate that the storage 
systems described above , especially those that are config 
urable with customizable amounts of processing resources , 
storage resources , and memory resources ( e.g. , those sys 
tems in which blades that contain configurable amounts of 
each type of resource ) , may be configured in a way so as to 
provide an infrastructure that can support in - memory com 
puting . Likewise , the storage systems described above may 
include component parts ( e.g. , NVDIMMs , 3D crosspoint 
storage that provide fast random access memory that is 
persistent ) that can actually provide for an improved in 
memory computing environment as compared to in - memory 
computing environments that rely on RAM distributed 
across dedicated servers . 
[ 0173 ] In some embodiments , the storage systems 
described above may be configured to operate as a hybrid 

in - memory computing environment that includes a universal 
interface to all storage media ( e.g. , RAM , flash storage , 3D 
crosspoint storage ) . In such embodiments , users may have 
no knowledge regarding the details of where their data is 
stored but they can still use the same full , unified API to 
address data . In such embodiments , the storage system may 
( in the background ) move data to the fastest layer avail 
able — including intelligently placing the data in dependence 
upon various characteristics of the data or in dependence 
upon some other heuristic . In such an example , the storage 
systems may even make use of existing products such as 
Apache Ignite and GridGain to move data between the 
various storage layers , or the storage systems may make use 
of custom software to move data between the various 
storage layers . The storage systems described herein may 
implement various optimizations to improve the perfor 
mance of in - memory computing such as , for example , 
having computations occur as close to the data as possible . 
[ 0174 ] Readers will further appreciate that in some 
embodiments , the storage systems described above may be 
paired with other resources to support the applications 
described above . For example , one infrastructure could 
include primary compute in the form of servers and work 
stations which specialize in using General - purpose comput 
ing on graphics processing units ( " GPGPU ' ) to accelerate 
deep learning applications that are interconnected into a 
computation engine to train parameters for deep neural 
networks . Each system may have Ethernet external connec 
tivity , InfiniBand external connectivity , some other form of 
external connectivity , or some combination thereof . In such 
an example , the GPUs can be grouped for a single large 
training or used independently to train multiple models . The 
infrastructure could also include a storage system such as 
those described above to provide , for example , a scale - out 
all - flash file or object store through which data can be 
accessed via high - performance protocols such as NFS , S3 , 
and so on . The infrastructure can also include , for example , 
redundant top - of - rack Ethernet switches connected to stor 
age and compute via ports in MLAG port channels for 
redundancy . The infrastructure could also include additional 
compute in the form of whitebox servers , optionally with 
GPUs , for data ingestion , pre - processing , and model debug 
ging . Readers will appreciate that additional infrastructures 
are also be possible . 
[ 0175 ] Readers will appreciate that the systems described 
above may be better suited for the applications described 
above relative to other systems that may include , for 
example , a distributed direct - attached storage ( DDAS ) solu 
tion deployed in server nodes . Such DDAS solutions be 
built for handling large , less sequential accesses but may be 
less able to handle small , random accesses . Readers will 
further appreciate that the storage systems described above 
may be utilized to provide a platform for the applications 
described above that is preferable to the utilization of 
cloud - based resources as the storage systems may be 
included in an on - site or in - house infrastructure that is more 
secure , more locally and internally managed , more robust in 
feature sets and performance , or otherwise preferable to the 
utilization of cloud - based resources as part of a platform to 
support the applications described above . For example , 
services built on platforms such as IBM's Watson may 
require a business enterprise to distribute individual user 
information , such as financial transaction information or 
identifiable patient records , to other institutions . As such , 

may 
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cloud - based offerings of AI as a service may be less desir 
able than internally managed and offered AI as a service that 
is supported by storage systems such as the storage systems 
described above , for a wide array of technical reasons as 
well as for various business reasons . 
[ 0176 ] Readers will appreciate that the storage systems 
described above , either alone or in coordination with other 
computing machinery may be configured to support other AI 
related tools . For example , the storage systems may make 
use of tools like ONXX or other open neural network 
exchange formats that make it easier to transfer models 
written in different AI frameworks . Likewise , the storage 
systems may be configured to support tools like Amazon's 
Gluon that allow developers to prototype , build , and train 
deep learning models . In fact , the storage systems described 
above may be part of a larger platform , such as IBMTM 
Cloud Private for Data , that includes integrated data science , 
data engineering and application building services . Such 
platforms may seamlessly collect , organize , secure , and 
analyze data across an enterprise , as well as simplify hybrid 
data management , unified data governance and integration , 
data science and business analytics with a single solution . 
( 0177 ] Readers will further appreciate that the storage 
systems described above may also be deployed as an edge 
solution . Such an edge solution may be in place to optimize 
cloud computing systems by performing data processing at 
the edge of the network , near the source of the data . Edge 
computing can push applications , data and computing power 
( i.e. , services ) away from centralized points to the logical 
extremes of a network . Through the use of edge solutions 
such as the storage systems described above , computational 
tasks may be performed using the compute resources pro 
vided by such storage systems , data may be storage using the 
storage resources of the storage system , and cloud - based 
services may be accessed through the use of various 
resources of the storage system ( including networking 
resources ) . By performing computational tasks on the edge 
solution , storing data on the edge solution , and generally 
making use of the edge solution , the consumption of expen 
sive cloud - based resources may be avoided and , in fact , 
performance improvements may be experienced relative to 
a heavier reliance on cloud - based resources . 
[ 0178 ] While many tasks may benefit from the utilization 
of an edge solution , some particular uses may be especially 
suited for deployment in such an environment . For example , 
devices like drones , autonomous cars , robots , and others 
may require extremely rapid processing so fast , in fact , 
that sending data up to a cloud environment and back to 
receive data processing support may simply be too slow . 
Likewise , machines like locomotiv and gas turbines that 
generate large amounts of information through the use of a 
wide array of data - generating sensors may benefit from the 
rapid data processing capabilities of an edge solution . As an 
additional example , some IoT devices such as connected 
video cameras may not be well - suited for the utilization of 
cloud - based resources as it may be impractical ( not only 
from a privacy perspective , security perspective , or a finan 
cial perspective ) to send the data to the cloud simply because 
of the pure volume of data that is involved . As such , many 
tasks that really on data processing , storage , or communi 
cations may be better suited by platforms that include edge 
solutions such as the storage systems described above . 
[ 0179 ] Consider a specific example of inventory manage 
ment in a warehouse , distribution center , or similar location . 

A large inventory , warehousing , shipping , order - fulfillment , 
manufacturing or other operation has a large amount of 
inventory on inventory shelves , and high resolution digital 
cameras that produce a firehose of large data . All of this data 
may be taken into an image processing system , which may 
reduce the amount of data to a firehose of small data . All of 
the small data may be stored on - premises in storage . The 
on - premises storage , at the edge of the facility , may be 
coupled to the cloud , for external reports , real - time control 
and cloud storage . Inventory management may be per 
formed with the results of the image processing , so that 
inventory can be tracked on the shelves and restocked , 
moved , shipped , modified with new products , or discontin 
ued / obsolescent products deleted , etc. The above scenario is 
a prime candidate for an embodiment of the configurable 
processing and storage systems described above . A combi 
nation of compute - only blades and offload blades suited for 
the image processing , perhaps with deep learning on off 
load - FPGA or offload - custom blade ( s ) could take in the 
firehose of large data from all of the digital cameras , and 
produce the firehose of small data . All of the small data 
could then be stored by storage nodes , operating with 
storage units in whichever combination of types of storage 
blades best handles the data flow . This is an example of 
storage and function acceleration and integration . Depend 
ing on external communication needs with the cloud , and 
external processing in the cloud , and depending on reliabil 
ity of network connections and cloud resources , the system 
could be sized for storage and compute management with 
bursty workloads and variable conductivity reliability . Also , 
depending on other inventory management aspects , the 
system could be configured for scheduling and resource 
management in a hybrid edge / cloud environment . 
[ 0180 ] The storage systems described above may alone , or 
in combination with other computing resources , serves as a 
network edge platform that combines compute resources , 
storage resources , networking resources , cloud technologies 
and network virtualization technologies , and so on . As part 
of the network , the edge may take on characteristics similar 
to other network facilities , from the customer premise and 
backhaul aggregation facilities to Points of Presence ( PoPs ) 
and regional data centers . Readers will appreciate that 
network workloads , such as Virtual Network Functions 
( VNFs ) and others , will reside on the network edge plat 
form . Enabled by a combination of containers and virtual 
machines , the network edge platform may rely on control 
lers and schedulers that are no longer geographically co 
located with the data processing resources . The functions , as 
microservices , may split into control planes , user and data 
planes , or even state machines , allowing for independent 
optimization and scaling techniques to be applied . Such user 
and data planes may be enabled through increased accelera 
tors , both those residing in server platforms , such as FPGAs 
and Smart NICs , and through SDN - enabled merchant silicon 
and programmable ASICs . 
[ 0181 ] The storage systems described above may also be 
optimized for use in big data analytics . Big data analytics 
may be generally described as the process of examining 
large and varied data sets to uncover hidden patterns , 
unknown correlations , market trends , customer preferences 
and other useful information that can help organizations 
make more - informed business decisions . Big data analytics 
applications enable data scientists , predictive modelers , stat 
isticians and other analytics professionals to analyze grow a 
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ing volumes of structured transaction data , plus other forms 
of data that are often left untapped by conventional business 
intelligence ( BI ) and analytics programs . As part of that 
process , semi - structured and unstructured data such as , for 
example , internet clickstream data , web server logs , social 
media content , text from customer emails and survey 
responses , mobile - phone call - detail records , IoT sensor data , 
and other data may be converted to a structured form . Big 
data analytics is a form of advanced analytics , which 
involves complex applications with elements such as pre 
dictive models , statistical algorithms and what - if analyses 
powered by high - performance analytics systems . 
[ 0182 ] The storage systems described above may also 
support ( including implementing as a system interface ) 
applications that perform tasks in response to human speech . 
For example , the storage systems may support the execution 
intelligent personal assistant applications such as , for 
example , Amazon's Alexa , Apple Siri , Google Voice , Sam 
sung Bixby , Microsoft Cortana , and others . While the 
examples described in the previous sentence make use of 
voice as input , the storage systems described above may also 
support chatbots , talkbots , chatterbots , or artificial conver 
sational entities or other applications that are configured to 
conduct a conversation via auditory or textual methods . 
Likewise , the storage system may actually execute such an 
application to enable a user such as a system administrator 
to interact with the storage system via speech . Such appli 
cations are generally capable of voice interaction , music 
playback , making to - do lists , setting alarms , streaming pod 
casts , playing audiobooks , and providing weather , traffic , 
and other real time information , such as news , although in 
embodiments in accordance with the present disclosure , 
such applications may be utilized as interfaces to various 
system management operations . 
[ 0183 ] The storage systems described above may also 
implement AI platforms for delivering on the vision of 
self - driving storage . Such Al platforms may be configured to 
deliver global predictive intelligence by collecting and ana 
lyzing large amounts of storage system telemetry data points 
to enable effortless mana nent , analytics and support . In 
fact , such storage systems may be capable of predicting both 
capacity and performance , as well as generating intelligent 
advice on workload deployment , interaction and optimiza 
tion . Such AI platforms may be configured to scan all 
incoming storage system telemetry data against a library of 
issue fingerprints to predict and resolve incidents in real 
time , before they impact customer environments , and cap 
tures hundreds of variables related to performance that are 
used to forecast performance load . 
[ 0184 ] The storage systems described above may support 
the serialized or simultaneous execution artificial intelli 
gence applications , machine learning applications , data ana 
lytics applications , data transformations , and other tasks that 
collectively may form an Al ladder . Such an Al ladder may 
effectively be formed by combining such elements to form 
a complete data science pipeline , where exist dependencies 
between elements of the AI ladder . For example , AI may 
require that some form of machine learning has taken place , 
machine learning may require that some form of analytics 
has taken place , analytics may require that some form of 
data and information architecting has taken place , and so on . 
As such , each element may be viewed as a rung in an AI 
ladder that collectively can form a complete and sophisti 
cated Al solution . 

[ 0185 ] The storage systems described above may also , 
either alone or in combination with other computing envi 
ronments , be used to deliver an AI everywhere experience 
where AI permeates wide and expansive aspects of business 
and life . For example , AI may play an important role in the 
delivery of deep learning solutions , deep reinforcement 
learning solutions , artificial general intelligence solutions , 
autonomous vehicles , cognitive computing solutions , com 
mercial UAVs or drones , conversational user interfaces , 
enterprise taxonomies , ontology management solutions , 
machine learning solutions , smart dust , smart robots , smart 
workplaces , and many others . The storage systems described 
above may also , either alone or in combination with other 
computing environments , be used to deliver a wide range of 
transparently immersive experiences where technology can 
introduce transparency between people , businesses , and 
things . Such transparently immersive experiences may be 
delivered as augmented reality technologies , connected 
homes , virtual reality technologies , brain - computer inter 
faces , human augmentation technologies , nanotube electron 
ics , volumetric displays , 4D printing technologies , or others . 
The storage systems described above may also , either alone 
or in combination with other computing environments , be 
used to support a wide variety of digital platforms . Such 
digital platforms can include , for example , 56 wireless 
systems and platforms , digital twin platforms , edge com 
puting platforms , IoT platforms , quantum computing plat 
forms , serverless PaaS , software - defined security , neuro 
morphic computing platforms , and so on . 
[ 0186 ] Readers will appreciate that some transparently 
immersive experiences may involve the use of digital twins 
of various “ things ” such as people , places , processes , sys 
tems , and so on . Such digital twins and other immersive 
technologies can alter the way that humans interact with 
technology , as conversational platforms , augmented reality , 
virtual reality and mixed reality provide a more natural and 
immersive interaction with the digital world . In fact , digital 
twins may be linked with the real - world , perhaps even in 
real - time , to understand the state of a thing or system , 
respond to changes , and so on . Because digital twins con 
solidate massive amounts of information on individual 
assets and groups of assets ( even possibly providing control 
of those assets ) , digital twins may communicate with each 
other to digital factory models of multiple linked digital 
twins . 
[ 0187 ] The storage systems described above may also be 
part of a multi - cloud environment in which multiple cloud 
computing and storage services are deployed in a single 
heterogeneous architecture . In order to facilitate the opera 
tion of such a multi - cloud environment , DevOps tools may 
be deployed to enable orchestration across clouds . Likewise , 
continuous development and continuous integration tools 
may be deployed to standardize processes around continu 
ous integration and delivery , new feature rollout and provi 
sioning cloud workloads . By standardizing these processes , 
a multi - cloud strategy may be implemented that enables the 
utilization of the best provider for each workload . Further 
more , application monitoring and visibility tools may be 
deployed to move application workloads around different 
clouds , identify performance issues , and perform other 
tasks . In addition , security and compliance tools may be 
deployed for to ensure compliance with security require 
ments , government regulations , and so on . Such a multi 
cloud environment may also include tools for application 
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delivery and smart workload management to ensure efficient 
application delivery and help direct workloads across the 
distributed and heterogeneous infrastructure , as well as tools 
that ease the deployment and maintenance of packaged and 
custom applications in the cloud and enable portability 
amongst clouds . The multi - cloud environment may similarly 
include tools for data portability . 
[ 0188 ] The storage systems described above may be used 
as a part of a platform to enable the use of crypto - anchors 
that may be used to authenticate a product's origins and 
contents to ensure that it matches a blockchain record 
associated with the product . Such crypto - anchors may take 
many forms including , for example , as edible ink , as a 
mobile sensor , as a microchip , and others . Similarly , as part 
of a suite of tools to secure data stored on the storage system , 
the storage systems described above may implement various 
encryption technologies and schemes , including lattice cryp 
tography . Lattice cryptography can involve constructions of 
cryptographic primitives that involve lattices , either in the 
construction itself or in the security proof . Unlike public - key 
schemes such as the RSA , Diffie - Hellman or Elliptic - Curve 
cryptosystems , which are easily attacked by a quantum 
computer , some lattice - based constructions appear to be 
resistant to attack by both classical and quantum computers . 
[ 0189 ] A quantum computer is a device that performs 
quantum computing . Quantum computing is computing 
using quantum - mechanical phenomena , such as superposi 
tion and entanglement . Quantum computers differ from 
traditional computers that are based on transistors , as such 
traditional computers require that data be encoded into 
binary digits ( bits ) , each of which is always in one of two 
definite states ( 0 or 1 ) . In contrast to traditional computers , 
quantum computers use quantum bits , which can be in 
superpositions of states . A quantum computer maintains a 
sequence of qubits , where a single qubit can represent a one , 
a zero , or any quantum superposition of those two qubit 
states . A pair of qubits can be in any quantum superposition 
of 4 states , and three qubits in any superposition of 8 states . 
A quantum computer with n qubits can generally be in an 
arbitrary superposition of up to 2în different states simulta 
neously , whereas a traditional computer can only be in one 
of these states at any one time . A quantum Turing machine 
is a theoretical model of such a computer . 
[ 0190 ] The storage systems described above may also be 
paired with FPGA - accelerated servers as part of a larger AI 
or ML infrastructure . Such FPGA - accelerated servers may 
reside near ( e.g. , in the same data center ) the storage systems 
described above or even incorporated into an appliance that 
includes one or more storage systems , one or more FPGA 
accelerated servers , networking infrastructure that supports 
communications between the one or more storage systems 
and the one or more FPGA - accelerated servers , as well as 
other hardware and software components . Alternatively , 
FPGA - accelerated servers may reside within a cloud com 
puting environment that may be used to perform compute 
related tasks for AI and ML jobs . Any of the embodiments 
described above may be used to collectively serve as a 
FPGA - based AI or ML platform . Readers will appreciate 
that , in some embodiments of the FPGA - based AI or ML 
platform , the FPGAs that are contained within the FPGA 
accelerated servers may be reconfigured for different types 
of ML models ( e.g. , LSTMs , CNNs , GRUs ) . The ability to 
reconfigure the FPGAs that are contained within the FPGA 
accelerated servers may enable the acceleration of a ML or 

AI application based on the most optimal numerical preci 
sion and memory model being used . Readers will appreciate 
that by treating the collection of FPGA - accelerated servers 
as a pool of FPGAs , any CPU in the data center may utilize 
the pool of FPGAs as a shared hardware microservice , rather 
than limiting a server to dedicated accelerators plugged into 
it . 

[ 0191 ] The FPGA - accelerated servers and the GPU - accel 
erated servers described above may implement a model of 
computing where , rather than keeping a small amount of 
data in a CPU and running a long stream of instructions over 
it as occurred in more traditional computing models , the 
machine learning model and parameters are pinned into the 
high - bandwidth on - chip memory with lots of data streaming 
though the high - bandwidth on - chip memory . FPGAs may 
even be more efficient than GPUs for this computing model , 
as the FPGAs can be programmed with only the instructions 
needed to run this kind of computing model . 
[ 0192 ] The storage systems described above may be con 
figured to provide parallel storage , for example , through the 
use of a parallel file system such as BeeGFS . Such parallel 
files systems may include a distributed metadata architec 
ture . For example , the parallel file system may include a 
plurality of metadata servers across which metadata is 
distributed , as well as components that include services for 
clients and storage servers . Through the use of a parallel file 
system , file contents may be distributed over a plurality of 
storage servers using striping and metadata may be distrib 
uted over a plurality of metadata servers on a directory level , 
with each server storing a part of the complete file system 
tree . Readers will appreciate that in some embodiments , the 
storage servers and metadata servers may run in userspace 
on top of an existing local file system . Furthermore , dedi 
cated hardware is not required for client services , the meta 
data servers , or the hardware servers as metadata servers , 
storage servers , and even the client services may be run on 
the same machines . 

[ 0193 ] Readers will appreciate that , in part due to the 
emergence of many of the technologies discussed above 
including mobile devices , cloud services , social networks , 
big data analytics , and so on , an information technology 
platform may be needed to integrate all of these technologies 
and drive new business opportunities by quickly delivering 
revenue - generating products , services , and experiences 
rather than merely providing the technology to automate 
internal business processes . Information technology organi 
zations may need to balance resources and investments 
needed to keep core legacy systems up and running while 
also integrating technologies to build an information tech 
nology platform that can provide the speed and flexibility in 
areas such as , for example , exploiting big data , managing 
unstructured data , and working with cloud applications and 
services . One possible embodiment of such an information 
technology platform is a composable infrastructure that 
includes fluid resource pools , such as many of the systems 
described above that , can meet the changing needs of 
applications by allowing for the composition and recompo 
sition of blocks of disaggregated compute , storage , and 
fabric infrastructure . Such a composable infrastructure can 
also include a single management interface to eliminate 
complexity and a unified API to discover , search , inventory , 
configure , provision , update , and diagnose the composable 
infrastructure . 
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offered by 5G networks may cause the 5G networks to 
handle amounts and types of data ( e.g. , sensor data from 
self - driving cars , data generated by AR / VR technologies ) 
that weren't as feasible for previous generation networks . In 
such examples , the scalability offered by the systems 
described above may be very valuable as the amount of data 
increases , adoption of emerging technologies increase , and 
SO on . 

[ 0194 ] The systems described above can support the 
execution of a wide array of software applications . Such 
software applications can be deployed in a variety of ways , 
including container - based deployment models . Container 
ized applications may be managed using a variety of tools . 
For example , containerized applications may be managed 
using Docker Swarm , a clustering and scheduling tool for 
Docker containers that enables IT administrators and devel 
opers to establish and manage a cluster of Docker nodes as 
a single virtual system . Likewise , containerized applications 
may be managed through the use of Kubernetes , a container 
orchestration system for automating deployment , scaling 
and management of containerized applications . Kubernetes 
may execute on top of operating systems such as , for 
example , Red Hat Enterprise Linux , Ubuntu Server , SUSE 
Linux Enterprise Servers , and others . In such examples , a 
master node may assign tasks to worker / minion nodes . 
Kubernetes can include a set of components ( e.g. , kubelet , 
kube - proxy , cAdvisor ) that manage individual nodes as a 
well as a set of components ( e.g. , etcd , API server , Sched 
uler , Control Manager ) that form a control plane . Various 
controllers ( e.g. , Replication Controller , DaemonSet Con 
troller ) can drive the state of a Kubernetes cluster by 
managing a set of pods that includes one or more containers 
that are deployed on a single node . Containerized applica 
tions may be used to facilitate a serverless , cloud native 
computing deployment and management model for software 
applications . In support of a serverless , cloud native com 
puting deployment and management model for software 
applications , containers may be used as part of an event 
handling mechanisms ( e.g. , AWS Lambdas ) such that vari 
ous events cause a containerized application to be spun up 
to operate as an event handler . 
[ 0195 ] The systems described above may be deployed in 
a variety of ways , including being deployed in ways that 
support fifth generation ( “ 5G ’ ) networks . 5G networks may 
support substantially faster data communications than pre 
vious generations of mobile communications networks and , 
as a consequence may lead to the disaggregation of data and 
computing resources as modern massive data centers may 
become less prominent and may be replaced , for example , 
by more - local , micro data centers that are close to the 
mobile - network towers . The systems described above may 
be included in such local , micro data centers and may be part 
of or paired to multi - access edge computing ( ‘ MEC ' ) sys 
tems . Such MEC systems may enable cloud computing 
capabilities and an IT service environment at the edge of the 
cellular network . By running applications and performing 
related processing tasks closer to the cellular customer , 
network congestion may be reduced and applications may 
perform better . MEC technology is designed to be imple 
mented at the cellular base stations or other edge nodes , and 
enables flexible and rapid deployment of new applications 
and services for customers . MEC may also allow cellular 
operators to open their radio access network ( ?RAN ' ) to 
authorized third - parties , such as application developers and 
content provider . Furthermore , edge computing and micro 
data centers may substantially reduce the cost of smart 
phones that work with the 5G network because customer 
may not need devices with such intensive processing power 
and the expensive requisite components . 
[ 0196 ] Readers will appreciate that 5G networks may 
generate more data than previous network generations , espe 
cially in view of the fact that the high network bandwidth 

[ 0197 ] In some examples , a non - transitory computer - read 
able medium storing computer - readable instructions may be 
provided in accordance with the principles described herein . 
The instructions , when executed by a processor of a com 
puting device , may direct the processor and / or computing 
device to perform one or more operations , including one or 
more of the operations described herein . Such instructions 
may be stored and / or transmitted using any of a variety of 
known computer - readable media . 
[ 0198 ] A non - transitory computer - readable medium as 
referred to herein may include any non - transitory storage 
medium that participates in providing data ( e.g. , instruc 
tions ) that may be read and / or executed by a computing 
device ( e.g. , by a processor of a computing device ) . For 
example , a non - transitory computer - readable medium may 
include , but is not limited to , any combination of non 
volatile storage media and / or volatile storage media . Exem 
plary non - volatile storage media include , but are not limited 
to , read - only memory , flash memory , a solid - state drive , a 
magnetic storage device ( e.g. a hard disk , a floppy disk , 
magnetic tape , etc. ) , ferroelectric random - access memory 
( “ RAM ” ) , and an optical disc ( e.g. , a compact disc , a digital 
video disc , a Blu - ray disc , etc. ) . Exemplary volatile storage 
media include , but are not limited to , RAM ( e.g. , dynamic 
RAM ) . 
[ 0199 ] For further explanation , FIG . 3D illustrates an 
exemplary computing device 350 that may be specifically 
configured to perform one or more of the processes 
described herein . As shown in FIG . 3D , computing device 
350 may include a communication interface 352 , a processor 
354 , a storage device 356 , and an input / output ( “ I / O ” ) 
module 358 communicatively connected one to another via 
a communication infrastructure 360. While an exemplary 
computing device 350 is shown in FIG . 3D , the components 
illustrated in FIG . 3D are not intended to be limiting . 
Additional or alternative components may be used in other 
embodiments . Components of computing device 350 shown 
in FIG . 3D will now be described in additional detail . 
[ 0200 ) Communication interface 352 may be configured 
to communicate with one or more computing devices . 
Examples of communication interface 352 include , without 
limitation , a wired network interface ( such as a network 
interface card ) , a wireless network interface ( such as a 
wireless network interface card ) , a modem , an audio / video 
connection , and any other suitable interface . 
[ 0201 ] Processor 354 generally represents any type or 
form of processing unit capable of processing data and / or 
interpreting , executing , and / or directing execution of one or 
more of the instructions , processes , and / or operations 
described herein . Processor 354 may perform operations by 
executing computer - executable instructions 362 ( e.g. , an 
application , software , code , and / or other executable data 
instance ) stored in storage device 356 . 
[ 0202 ] Storage device 356 may include one or more data 
storage media , devices , or configurations and may employ 
any type , form , and combination of data storage media 
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and / or device . For example , storage device 356 may include , 
but is not limited to , any combination of the non - volatile 
media and / or volatile media described herein . Electronic 
data , including data described herein , may be temporarily 
and / or permanently stored in storage device 356. For 
example , data representative of computer - executable 
instructions 362 configured to direct processor 354 to per 
form any of the operations described herein may be stored 
within storage device 356. In some examples , data may be 
arranged in one or more databases residing within storage 
device 356 . 

[ 0203 ] I / O module 358 may include one or more I / O 
modules configured to receive user input and provide user 
output . I / O module 358 may include any hardware , firm 
ware , software , or combination thereof supportive of input 
and output capabilities . For example , I / O module 358 may 
include hardware and / or software for capturing user input , 
including , but not limited to , a keyboard or keypad , a 
touchscreen component ( e.g. , touchscreen display ) , a 
receiver ( e.g. , an RF or infrared receiver ) , motion sensors , 
and / or one or more input buttons . 
[ 0204 ) 1/0 module 358 may include one or more devices 
for presenting output to a user , including , but not limited to , 
a graphics engine , a display ( e.g. , a display screen ) , one or 
more output drivers ( e.g. , display drivers ) , one or more 
audio speakers , and one or more audio drivers . In certain 
embodiments , I / O module 358 is configured to provide 
graphical data to a display for presentation to a user . The 
graphical data may be representative of one or more graphi 
cal user interfaces and / or any other graphical content as may 
serve a particular implementation . In some examples , any of 
the systems , computing devices , and / or other components 
described herein may be implemented by computing device 
350 . 

[ 0205 ] FIG . 4 illustrates a storage system 402 that per 
forms failure detection in NVRAM devices 408 and can take 
individual NVRAM devices 408 offline or online , in accor 
dance with some embodiments . Storage arrays , storage 
clusters , and other embodiments of the storage system 402 
have storage devices 406 , including multiple storage 
memory devices 410 , multiple NVRAM devices 408 , and 
one or more processors 404. For example , FIGS . 1A - 1D and 
accompanying description illustrate storage arrays with pri 
mary and secondary storage controllers . FIGS . 2A - 2G and 
accompanying description illustrate storage clusters 161 
with storage nodes 150 and storage units 152 with solid - state 
memory , or blades 252 with a control plane 254 , compute 
plane 256 and storage plane 258 , and authorities 168 that 
each own and access portions of data and metadata in the 
storage system . Many of these embodiments include 
NVRAM and storage memory . 
[ 0206 ] Failures in the storage system 402 can occur at the 
level of a single or multiple bits in an NVRAM device 408 
or a storage memory device 410 , sections or portions of an 
NVRAM device 408 or storage memory device 410 , an 
entire NVRAM device 408 or storage memory device 410 , 
a portion of or an entire component or subsystem that 
includes an NVRAM device 408 and / or a storage memory 
device 410 ( e.g. , a storage unit 152 or a storage node 150 in 
FIGS . 2A - 2D , or system 117 and / or system 118 in storage 
system 124 in FIG . 1D ) , or various further system resources , 
etc. Failures can be permanent , for example a hardware 
failure , or temporary , for example as caused by noise , power 

supply droop , or even a stray cosmic ray flipping a bit , for 
example a single event upset or SEU . 
[ 0207 ] One class of failures is media failures , for example 
during an NVRAM restore . In one embodiment , when the 
system , or for example a blade , is powered up , the NVRAM 
contents for that blade is restored to that NVRAM from a 
locally attached flash memory . Prior to development of the 
presently described mechanisms , if the storage system was 
unable to read any part of the NVRAM image from the flash 
memory , the system would take the entire device host 
including the NVRAM device and the flash memory offline . 
This caused evacuation of both the NVRAM and the flash 
memory , which was disruptive and time - consuming . A goal 
of the presently disclosed mechanisms became to just take 
the NVRAM part of the device offline and evacuate just the 
NVRAM . 
[ 0208 ] Another class of failures is silent data corruption 
due to a hard or soft fault for example in an FPGA or a data 
path . This can affect data on route to , from , or even in the 
NVRAM , and is addressed in one embodiment by fine 
grained failure domains ( see FIG . 5 ) , and in another embodi 
ment by a checksum ( see FIG . 7 ) . 
[ 0209 ] In various embodiments of the storage system 402 , 
the processor ( s ) 404 operate a resource management module 
412 that detects failure at various levels . The resource 
management module 412 could be implemented in hard 
ware , software executing on one or more processors 404 , 
and / or firmware in various combinations in various embodi 
ments . For example , the resource management module 412 
could monitor error detection or error correction of data and 
metadata written to or read from NVRAM devices 408 and 
written to or read from storage memory devices 410 , and / or 
monitor various communications channels for errors or lack 
of responsiveness , heartbeat , etc. The resource management 
module 412 could track errors , group errors in various 
categories according to numbers or types of devices or 
components affected , compare aggregated error tracking to 
various thresholds , and make decisions for failure remedies , 
in various embodiments . Resource management occurs at 
various levels in embodiments of the storage system 402 , 
and can be centralized to each of various components , 
centralized for the system as a whole , or distributed across 
various components , e.g. , with the resource management 
module 412 as a distributed module . 
[ 0210 ] One remedy for a detected failure is that the storage 
system 402 , and more specifically the processor ( s ) 404 
working with the resource management module 412 , can 
determine to take an entire component or subsystem includ 
ing an NVRAM device 408 and storage memory device 410 
offline . For example , a storage cluster 138 could take an 
entire storage node 150 , including one or more storage units 
152 offline , or could take an entire storage unit 152 including 
NVRAM 204 and flash memory 206 ( see FIG . 2C ) offline . 
A storage array with multiple systems 118 could take an 
entire system 118 including RAM 121 and flash memory 
devices 120a ( see FIGS . 1C and 1D ) offline . This may be 
appropriate action when the number of failures or extent of 
failures ( e.g. , in comparison with a threshold ) , or failure 
domain is large . The storage system 402 then directs usage 
of remaining non - failed resources , recovery and / or rebuild 
ing of data as appropriate . 
[ 0211 ] The above failure remedy may be deemed too 
drastic , expensive ( e.g. , time - consuming , resource - consum 
ing , or costly for a replacement component or subsystem ) or 
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otherwise inadvisable and not warranted in cases where the 
number of failures , extent of failures , or failure domain in 
which a failure occurs is smaller , in various embodiments . In 
one embodiment , the resource management module 422 
establishes smaller failure domains , tracks failures in these 
smaller failure domains , and can take members of these 
smaller failure domains offline or online as appropriate to a 
situation or condition . For example , the resource manage 
ment module 412 could take an individual NVRAM device 
408 , or even a portion of an individual NVRAM device 408 
offline , or bring an individual NVRAM device 408 or 
portion of an individual NVRAM device 408 online , if 
recovered , or alternatively if replaced . When a failure affects 
a portion of an NVRAM device 408 but not the remainder 
of the NVRAM device 408 , the resource management 
module 412 could take failed portion of the NVRAM device 
408 offline and keep the non - failed remainder of the 
NVRAM device 408 online . 

some 

> 

[ 0212 ] In embodiments , individual NVRAM 
devices 408 are physically replaceable , without having to 
replace an entire component or subsystem that includes an 
NVRAM device 408 and a storage memory device 410 . 
Relatedly , the resource management module 412 could take 
an individual storage memory device 410 , or portion of an 
individual storage memory device 410 offline , or bring a 
recovered or replacement storage memory device 410 , or 
portion of one , online , in some embodiments . In some 
embodiments , individual storage memory devices 410 are 
physically replaceable . When taking all or a portion of an 
NVRAM device 408 , or all or a portion of a storage memory 
device 410 offline , the resource management module 412 
directs the storage system 402 to use other , non - failed 
system resources , for ongoing data and metadata accesses 
and / or data recovery or reconstruction . 
[ 0213 ] FIG . 5 depicts fine - grained failure domains 502 in 
an NVRAM device 408 , according to various embodiments . 
The storage system 402 establishes , monitors , and manages 
the failure domains 502 with various combinations of the 
following features in various embodiments . A failure 
domain 502 could be defined as one or more NVRAM 
pages , one or more NVRAM blocks , one or more NVRAM 
dies , one or more NVRAM planes , or one or more devices 
in the NVRAM device 408. In one embodiment , failure 
domains 502 are defined on a per authority 168 basis , with 
each authority 168 ( e.g. , authority 1 , authority 2 , authority 
N , etc. ) using a portion of the NVRAM device 408 in the 
failure domain 502 associated with or assigned to that 
authority 168. The storage system 402 could establish and 
monitor failure domains 502 on a per group of authorities 
168 basis . In one embodiment , failure domains 502 are 
defined and assigned , established and monitored in a manner 
relating to how records are updated in the storage system 
402. For example , authorities 168 update records in the 
storage system 402 , in some embodiments , storage control 
lers update records and the storage system 402 in further 
embodiments , records are updated by various modules in 
some embodiments , and failure domains 502 are defined 
accordingly . When a failure in an NVRAM device 408 
affects one or more authorities 168 in the storage system 
402 , the storage system 402 could take the failed portion of 
the NVRAM device 408 , or the entire NVRAM device 408 , 
offline and direct the authority or authorities 168 affected by 

the failure to use an unaffected , i.e. , non - failed portion of the 
NVRAM device 408 or another NVRAM device 408 in the 
storage system . 
[ 0214 ] The storage system 402 performs various actions 
with the failure domains 502 in the NVRAM device 408. For 
example , an online offline action 504 takes an individual 
failure domain 502 in the NVRAM device 408 offline or 
online . An update records action 506 updates one or more 
records for data or metadata , in a failure domain 502 in the 
NVRAM device 408. A read or write action 508 reads or 
writes data or metadata in a failure domain 502 in the 
NVRAM device 408 ( this could be broken out into a read 
action and / or a write action , as readily devised ) . A flush 
action 510 flushes contents of the NVRAM device 408 , in 
one or more or all of the failure domains 502 , to storage 
memory . Flush frees up space in an NVRAM device 408 , so 
that the storage system 402 can write more data to the 
NVRAM device 408 , with the NVRAM device ( s ) 408 
acting as a type of buffer for data on the way to the storage 
memory device ( s ) 410. An evacuate action 512 evacuates 
one or more or all of the failure domains 502 of the NVRAM 
device 408. Evacuate moves data off of an NVRAM device 
408 , because the NVRAM device 408 is unreachable , 
unhealthy , corrupted or otherwise unsuitable for continued 
use . Taking offline and evacuating an NVRAM device 408 
takes much less time than taking offline and evacuating an 
entire component or subsystem that includes both an 
NVRAM device 408 and a storage memory device 410 , 
because the storage memory device 410 has a larger amount 
of memory and is slower to read than an NVRAM device 
408. Also , leaving the storage memory device 410 online 
and only taking offline a portion or all of a failing NVRAM 
device 408 conserves system resources . In various embodi 
ments , failure domains 502 can be defined according to one 
or more of these actions 504 , 506 , 508 , 510 , 512 and / or 
according to authorities 168 involvement in these actions 
504 , 506 , 508 , 510 , 512. When the storage system 402 takes 
one or more failure domains 502 in the NVRAM DEVICE 
408 offline , the system ( e.g. , the processor ( s ) , resource 
management module 412 , authorities 168 , etc. ) directs to use 
further non - failed failure domains 502 in the NVRAM 
device 408 , i.e. , a remainder of the NVRAM device 408 that 
the storage system 402 keeps online , or another NVRAM 
device 408 that is online as appropriate . 
[ 0215 ] FIG . 6 illustrates authorities 168 in a storage sys 
tem 402 making use of and monitoring for failures in storage 
system resources 604 , in an embodiment . The storage sys 
tem resources 604 include NVRAM devices 408 , storage 
memory devices 410 , communication channels 602 , proces 
sors 404 and possibly other resources as readily devised . 
Each authority 168 performs a monitor action 606 , and 
monitors storage system resources 604 used by that author 
ity 168. Equivalently , the resource management module 412 
( see FIG . 4 ) monitors storage system resources 604 on a per 
authority 168 basis . Each authority 168 ( or the resource 
management module 412 on a per authority 168 basis ) 
determines whether the authority 168 sees failure ( s ) in the 
storage system resources 604 associated with that authority 
168 , for example on a broad - grained or fine - grained failure 
domain basis . Authorities 168 can do so independently of 
each other . In the example scenario shown in FIG . 6 , the 
authority 168 labeled Al sees zero failures and can therefore 
perform reliable access of data and metadata in the storage 
system 402 and tolerate one or two failures in any given 
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storage system resource 604 or failure domain . Authority 
status 612 for A1 is determined as reliable access . The 
authority 168 labeled A3 sees one failure in a failure domain 
associated to that authority 168 , and thus has less reliable 
access to data and metadata in the storage system 402 and 
can tolerate only one more failure in that same failure 
domain ( but possibly two failures in other failure domains 
associated to that authority 168 ) . In system where reliable 
access is defined as access with the ability to tolerate two 
failures ( e.g. , error correction coded data will be readable if 
there are zero , one or two failures ) , this may be deemed as 
not having ( full , two - failure protected ) reliable access , for 
authority status 612 of A3 , and deserving of action ( s ) to 
remedy a failure . The authority 168 labeled AN sees two 
failures in a failure domain associated to that authority 168 , 
leaving that authority 168 sufficient resources to recover 
data , but insufficient resources to tolerate more failure ( s ) . 
This may be deemed as not having ( full , two - failure pro 
tected ) reliable access , for authority status 612 of AN , and 
deserving of action ( s ) to remedy a failure . Other definitions 
of reliable access and status regarding reliable access are 
readily devised as variations , such as storage systems that 
are able to tolerate one , two or three failures , or other 
numbers of failures , in keeping with the teachings herein . 
[ 0216 ] To remedy a failure , the storage system 402 can 
perform various remedy actions . For starters , the storage 
system 402 can perform an indicate action 614 and indicate 
one or more failures , for example through status postings , 
messages , metadata , etc. The storage system 402 can per 
form a rebuild action 616 , specifically performing a RAID 
rebuild of data and metadata . The storage system 402 can 
perform a resource shift action 608 , and direct authorities 
168 to use non - failed resources . In one embodiment , the 
storage system 402 performs a queue generation action 610 , 
and directs one or more authorities 168 that have seen one 
or more failures to generate action queues , each with access 
actions for the authority 168 to perform from the queue 
when failure - free operation of the NVRAM device 408 is 
restored , the NVRAM device 408 is replaced , or other 

are allocated or assigned , e.g. , non - failed 
NVRAM device ( s ) or portions , in various embodiments . 
There could be one or more action queues per authority 168 , 
or action queues for reads , action queues for writes , action 
queues for other actions ( e.g. , deletions , erasures , etc. ) , in 
various combinations in various embodiments . One goal , or 
perhaps even a requirement of the remedy actions performed 
by the storage system 402 is to keep online sufficient storage 
system resources 604 , including sufficient numbers of non 
failed NVRAM devices 408 or non - failed portions ( e.g. , 
failure domains ) thereof and sufficient numbers of non 
failed storage memory devices 410 to provide reliable access 
to data and metadata in the storage system . This may involve 
recovering components or subsystems and / or recovering 
data and rebuilding data in remaining storage system 
resources 604 . 
[ 0217 ] FIG . 7 illustrates metadata chunks 702 with check 
sums 704 in the NVRAM device 408 , which can be used for 
failure detection , in one embodiment . Variations with vari 
ous numbers of bits or bytes per chunk of metadata , and 
various numbers of bits or bytes for a checksum are readily 
devised . In this version , a metadata chunk 702 is 8 bytes 
long , and one of the bytes ( e.g. , the last byte or byte 8 ) is 
used for a checksum 704 of the other seven bytes . In one 
embodiment , one or more metadata chunks 702 in the 

NVRAM device 408 form a fine - grained failure domain ( see 
FIG . 5 ) . Some embodiments of the storage system 402 can 
monitor for failures in metadata chunks 702 , for example if 
a checksum 704 as recorded in the metadata chunk 702 does 
not agree with a checksum freshly generated from the other 
seven bytes of the metadata chunk 702. Upon detection of a 
failure , the storage system can work to restore the metadata 
chunk 702 , in the NVRAM device 408 , or take that portion 
or a greater portion of the NVRAM device 408 offline for 
example using one of the mechanisms described above . 
[ 0218 ] FIG . 8 is a flow diagram for a method of failure 
detection in a storage system , in an embodiment that can be 
performed by various embodiments of storage systems 
including storage systems described herein and further stor 
age systems . More specifically , the method can be practiced 
by one or more processors in a storage system , for example 
by one or more storage array controllers , storage node 
processors , storage unit processors , or a centralized , mul 
tiple centralized , or distributed resource management mod 
ule , or authorities of the storage system in various embodi 
ments . 
[ 0219 ] In an action 802 , the storage system establishes 
fine - grained failure domains in NVRAM devices . Examples 
of fine - grained failure domains are described above with 
reference to FIG . 5 and FIG . 7 . 
[ 0220 ] In an action 804 , the storage system detects a 
failure in an NVRAM device . Many types of failure , at many 
different levels , and various mechanisms for detecting one or 
more of these failures , are described above . Some embodi 
ments of the storage system use fine - grained failure domains 
according to the action 802 , other embodiments use course 
grained failure domains and omit the action 802 in a 
variation of the method . 
[ 0221 ] In an action 806 , the storage system takes a portion 
or all of the NVRAM device offline . This could include 
taking one or multiple fine - grained failure domains offline . 
In an action 808 , the storage system keeps the non - failing 
remainder of the NVRAM device online ( if applicable ) , and 
keeps other non - failing NVRAM devices online . This action 
808 could accompany or include directing to use the remain 
ing non - failing NVRAM devices or non - failing portion ( s ) of 
the NVRAM device for recovery or rebuilding of data or 
metadata . 
[ 0222 ] In an action 810 , the storage system brings online 
the recovered NVRAM device ( e.g. , if recovery is success 
ful ) , or brings online a physical replacement of the NVRAM 
device ( e.g. , if the NVRAM device is physically replaceable 
and this has been done ) . 
[ 0223 ] Advantages and features of the present disclosure 
can be further described by the following statements : 
[ 0224 ] 1. A method of failure detection in a storage 
system , performed by the storage system , comprising : 
[ 0225 ] detecting a failure in a nonvolatile random access 
memory ( NVRAM ) device that is in or coupled to a storage 
device having storage memory , wherein the storage system 
comprises a plurality of NVRAM devices and a plurality of 
storage devices having storage memory ; and 
[ 0226 ] taking a portion or all of the NVRAM device 
offline , responsive to the detecting the failure , while keeping 
online the storage memory of the storage device , sufficient 
ones of the plurality of NVRAM devices and sufficient ones 
of the plurality of storage devices having storage memory , to 
provide reliable access to data and metadata in the storage 
system . 
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[ 0227 ] 2. The method of statement 1 , further comprising : 
[ 0228 ] bringing online a physical replacement of the 
NVRAM device that was taken offline , while keeping online 
the storage memory of the storage device , the sufficient ones 
of the plurality of NVRAM devices and the sufficient ones 
of the plurality of storage devices having storage memory . 
[ 0229 ] 3. The method of statement 1 , further comprising : 
[ 0230 ] determining that the failure in the NVRAM device 
affects the portion of the NVRAM device and not a remain 
der of the NVRAM device , wherein the taking the portion or 
all of the NVRAM device offline comprises taking the 
portion of the NVRAM device offline while keeping the 
remainder of the NVRAM device online . 
[ 0231 ] 4. The method of statement 1 , further comprising : 
[ 0232 ] determining that the failure in the NVRAM device 
affects one or more authorities in the storage system , 
wherein the storage system has a plurality of authorities each 
owning and accessing a portion of the data and the metadata 
of the storage system , wherein the taking the portion or all 
of the NVRAM device offline comprises directing the one or 
more authorities affected by the failure in the NVRAM 
device to use a further , unaffected portion of the NVRAM 
device or use a further NVRAM device in the storage 
system . 
[ 0233 ] 5. The method of statement 1 , further comprising : 
[ 0234 ] determining that the failure in the NVRAM device 
affects one or more authorities in the storage system , 
wherein the storage system has a plurality of authorities each 
owning and accessing a portion of the data and the metadata 
of the storage system , wherein the taking the portion or all 
of the NVRAM device offline comprises the one or more 
authorities affected by the failure the NVRAM device 
generating a queue of access operations to be performed on 
the NVRAM device and performing the access operations 
from the queue when failure - free operation of the NVRAM 
device is restored or the NVRAM device is replaced . 
[ 0235 ] 6. The method of statement 1 , further comprising : 
[ 0236 ] establishing and monitoring fine - grained failure 
domains in the NVRAM device , on a per authority or per 
group of authorities basis , wherein the storage system has a 
plurality of authorities each owning and accessing a portion 
of the data and the metadata of the storage system , wherein 
the taking the portion or all of the NVRAM device offline 
comprises taking one or more of the fine - grained failure 
domains in the NVRAM device offline while keeping a 
remainder of the NVRAM device online . 
[ 0237 ] 7. The method of statement 1 , further comprising : 
[ 0238 ] establishing and monitoring fine - grained failure 
domains in the NVRAM device , relating to how records are 
upd I in the storage system , wherein the taking the portion 
or all of the NVRAM device offline comprises taking one or 
more of the fine - grained failure domains in the NVRAM 
device offline while keeping a remainder of the NVRAM 
device online . 
[ 0239 ] 8. The method of statement 1 , further comprising : 
[ 0240 ] establishing and monitoring fine - grained failure 
domains in the NVRAM device , on a page , block or device 
level , wherein the taking the portion or all of the NVRAM 
device offline comprises taking one or more of the fine 
grained failure domains in the NVRAM device offline while 
keeping a remainder of the NVRAM device online . 
[ 0241 ] 9. The method of statement 1 , further comprising : 
[ 0242 ] using one byte of an eight byte chunk of metadata 
in the NVRAM device for a checksum . 

[ 0243 ] 10. The method of statement 1 , wherein the detect 
ing the failure in the NVRAM device comprises : 
[ 0244 ] one of a plurality of authorities in the storage 
system determining , independent of other authorities in the 
storage system , that the authority has insufficient resources 
to tolerate two failures , wherein each of the plurality of 
authorities in the storage system owns and accesses a range 
of the data and the metadata . 
[ 0245 ] 11. A storage system , comprising : 
[ 0246 ] a plurality of storage devices having storage 
memory ; 
[ 0247 ] a plurality of nonvolatile random access memory 
( NVRAM ) devices coupled to or in the plurality of storage 
devices , to hold data or metadata to be written to or read 
from the storage memories ; and 
[ 0248 ] one or more processors to : 
[ 0249 ] detect a failure in a NVRAM device that is coupled 
to or in a storage device having a storage memory ; 
[ 0250 ] take a portion or all of the NVRAM device offline , 
responsive to detecting the failure ; and 
[ 0251 ] keep online the storage memory of the storage 
device , sufficient ones of the plurality of NVRAM devices 
and sufficient ones of the plurality of storage devices having 
storage memory , to provide reliable access to data and 
metadata in the storage system while the portion or all of the 
NVRAM device is offline . 
[ 0252 ] 12. The storage system of statement 11 , further 
comprising the one or more processors to : 
[ 0253 ] bring online a physical replacement of the 
NVRAM device that was taken offline , while keeping online 
the storage memory of the storage device , the sufficient ones 
of the plurality of NVRAM devices and the sufficient ones 
of the plurality of storage devices having storage memory . 
[ 0254 ] 13. The storage system of statement 11 , further 
comprising the one or more processors to : 
[ 0255 ] determine that the failure in the NVRAM device 
affects the portion of the NVRAM device and not a remain 
der of the NVRAM device , wherein to take the portion or all 
of the NVRAM device offline comprises to take the portion 
of the NVRAM device offline and keep the remainder of the 
NVRAM device online . 
[ 0256 ] 14. The storage system of statement 11 , further 
comprising the one or more processors to : 
[ 0257 ] determine that the failure in the NVRAM device 
affects one or more authorities in the storage system , 
wherein the storage system has a plurality of authorities that 
are each to own and access a portion of the data and the 
metadata of the storage system , wherein to take the portion 
or all of the NVRAM device offline comprises to direct the 
one or more authorities affected by the failure in the 
NVRAM device to use a non - failed portion of the NVRAM 
device or use a further NVRAM device in the storage 
system . 
[ 0258 ] 15. The storage system of statement 11 , further 
comprising the one or more processors to 
[ 0259 ] determine that the failure in the NVRAM device 
affects one or more authorities in the storage system , 
wherein the storage system has a plurality of authorities that 
are each to own and access a portion of the data and the 
metadata of the storage system , wherein to take the portion 
or all of the NVRAM device offline comprises the one or 
more authorities affected by the failure in the NVRAM 
device to generate a queue of access operations to be 
performed on the NVRAM device and perform the access a 
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operations from the queue when failure - free operation of the 
NVRAM device is restored or the NVRAM device is 
replaced . 
[ 0260 ] 16. The storage system of statement 11 , further 
comprising the one or more processors to : 
[ 0261 ] establish and monitor fine - grained failure domains 
in the NVRAM device , on a per authority or per group of 
authorities basis , wherein the storage system has a plurality 
of authorities that are each to own and access a portion of the 
data and the metadata of the storage system , wherein to take 
the portion or all of the NVRAM device offline comprises to 
take one or more of the fine - grained failure domains in the 
NVRAM device offline and keep a remainder of the 
NVRAM device online . 
[ 0262 ] 17. The storage system of statement 11 , further 
comprising the one or more processors to : 
[ 0263 ] establish and monitor fine - grained failure domains 
in the NVRAM device , relating to how records are updated 
in the storage system , wherein to take the portion or all of 
the NVRAM device offline comprises to take one or more of 
the fine - grained failure domains in the NVRAM device 
offline and keep a remainder of the NVRAM device online . 
[ 0264 ] 18. The storage system of statement 11 , further 
comprising the one or more processors to : 
[ 0265 ] establish and monitor fine - grained failure domains 
in the NVRAM device , on a page , block or device level , 
wherein to take the portion or all of the NVRAM device 
offline comprises to take one or more of the fine - grained 
failure domains in the NVRAM device offline and keep a 
remainder of the NVRAM device online . 
[ 0266 ] 19. The storage system of statement 11 , further 
comprising the one or more processors to : 
[ 0267 ] use one byte of an eight byte chunk of metadata in 
the NVRAM device for a checksum , wherein to detect the 
failure in the NVRAM comprises to detect the failure 
according to the checksum . 
[ 0268 ] 20. The storage system of statement 11 , wherein to 
detect the failure in the NVRAM device comprises : 
[ 0269 ] to determine , by one of a plurality of authorities in 
the storage system , independent of other authorities in the 
storage system , that the authority has insufficient resources 
to tolerate two failures , wherein each of the plurality of 
authorities in the storage system is to own and access a range 
of the data and the metadata . 
[ 0270 ] One or more embodiments may be described herein 
with the aid of method steps illustrating the performance of 
specified functions and relationships thereof . The boundar 
ies and sequence of these functional building blocks and 
method steps have been arbitrarily defined herein for con 
venience of description . Alternate boundaries and sequences 
can be defined so long as the specified functions and 
relationships are appropriately performed . Any such alter 
nate boundaries or sequences are thus within the scope and 
spirit of the claims . Further , the boundaries of these func 
tional building blocks have been arbitrarily defined for 
convenience of description . Alternate boundaries could be 
defined as long as the certain significant functions are 
appropriately performed . Similarly , flow diagram blocks 
may also have been arbitrarily defined herein to illustrate 
certain significant functionality . 
[ 0271 ] To the extent used , the flow diagram block bound 
aries and sequence could have been defined otherwise and 
still perform the certain significant functionality . Such alter 
nate definitions of both functional building blocks and flow 

diagram blocks and sequences are thus within the scope and 
spirit of the claims . One of average skill in the art will also 
recognize that the functional building blocks , and other 
illustrative blocks , modules and components herein , can be 
implemented as illustrated or by discrete components , appli 
cation specific integrated circuits , processors executing 
appropriate software and the like or any combination 
thereof . 
[ 0272 ] While particular combinations of various functions 
and features of the one or more embodiments are expressly 
described herein , other combinations of these features and 
functions are likewise possible . The present disclosure is not 
limited by the particular examples disclosed herein and 
expressly incorporates these other combinations . 

1. A method , comprising : 
detecting a failure in a nonvolatile random access memory 

( NVRAM ) device that is in or coupled to a storage 
device having storage memory , wherein the storage 
system comprises a plurality of NVRAM devices and a 
plurality of storage devices having storage memory ; 
and 

taking one or more portions of the NVRAM device 
offline , responsive to the detecting the failure , while 
keeping online the storage memory of the storage 
device , sufficient ones of the plurality of NVRAM 
devices and sufficient ones of the plurality of storage 
devices having storage memory , to provide access to 
data and metadata in the storage system ; and 

establishing and monitoring fine - grained failure domains 
in the NVRAM device , on a per authority basis , 
wherein the storage system has a plurality of authorities 
each owning and accessing a portion of the data and the 
metadata of the storage system , wherein the taking the 
one or more portions of the NVRAM device offline 
comprises taking one or more of the fine - grained failure 
domains in the NVRAM device offline . 

2. The method of claim 1 , further comprising : 
bringing online a physical replacement of the NVRAM 

device that was taken offline , while keeping online the 
storage memory of the storage device , the sufficient 
ones of the plurality of NVRAM devices and the 
sufficient ones of the plurality of storage devices having 
storage memory . 

3. The method of claim 1 , further comprising : 
determining that the failure in the NVRAM device affects 

the one or more portions of the NVRAM device and not 
a remainder of the NVRAM device , wherein the taking 
the one or more portions of the NVRAM device offline 
comprises taking the one or more portions of the 
NVRAM device offline while keeping the remainder of 
the NVRAM device online . 

4. The method of claim 1 , further comprising : 
determining that the failure in the NVRAM device affects 

one or more of the plurality of authorities in the storage 
system , wherein the taking the one or more portions of 
the NVRAM device offline comprises directing the one 
or more authorities affected by the failure in the 
NVRAM device to use a further , unaffected portion of 
the NVRAM device or use a further NVRAM device in 
the storage system . 

5. The method of claim 1 , further comprising : 
determining that the failure in the NVRAM device affects 

one or more of the plurality of authorities in the storage 
system , wherein the taking the one or more portions of 
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the NVRAM device offline comprises the one or more 
authorities affected by the failure in the NVRAM 
device generating a queue of access operations to be 
performed on the NVRAM device and performing the 
access operations from the queue when the NVRAM 
device is restored or the NVRAM device is replaced . 

6. The method of claim 1 , further comprising : 
keeping a remainder of the NVRAM device online . 
7. The method of claim 1 , 
wherein the establishing and monitoring fine - grained fail 

ure domains in the NVRAM device comprises relating 
to how records are updated in the storage system . 

8. The method of claim 1 , 
wherein the establishing and monitoring fine - grained fail 

ure domains in the NVRAM device is on a block level . 
9. The method of claim 1 , further comprising : 
using one byte of an eight byte chunk of metadata in the 
NVRAM device for a checksum . 

10. The method of claim 1 , wherein the detecting the 
failure in the NVRAM device comprises : 

one of the plurality of authorities in the storage system 
determining , independent of other authorities in the 
storage system , that the authority has insufficient 
resources to tolerate a number of failures . 

11. A storage system , comprising : 
a plurality of storage devices each having storage 
memory ; 

a plurality of nonvolatile random access memory 
( NVRAM ) devices operatively coupled to the plurality 
of storage devices , to store data or metadata to be 
written to or read from the storage memories ; and 

a processing device to : 
detect a failure in a NVRAM device that is operatively 

coupled to a storage device of the plurality of storage 
devices , the storage device having a storage 
memory ; 

take one or more portions of the NVRAM device 
offline , responsive to detecting the failure ; 

keep online the storage memory of the storage device , 
sufficient ones of the plurality of NVRAM devices 
and sufficient ones of the plurality of storage devices 
having storage memory , to provide access to data and 
metadata in the storage system while the one or more 
portions of the NVRAM device is offline ; and 

establish and monitor fine - grained failure domains in 
the NVRAM device , on a per authority basis , 
wherein the storage system has a plurality of authori 
ties that are each to own and access a portion of the 
data and the metadata of the storage system , wherein 
to take the one or more portions of the NVRAM 
device offline comprises to take one or more of the 
fine - grained failure domains in the NVRAM device 
offline . 

12. The storage system of claim 11 , further comprising the 
processing device to : 

bring online a physical replacement of the NVRAM 
device that was taken offline , while keeping online the 
storage memory of the storage device , the sufficient 

ones of the plurality of NVRAM devices and the 
sufficient ones of the plurality of storage devices having 
storage memory . 

13. The storage system of claim 11 , further comprising the 
processing device to : 

determine that the failure in the NVRAM device affects 
the one or more portions of the NVRAM device and not 
a remainder of the NVRAM device , wherein to take the 
one or more portions of the NVRAM device offline 
comprises taking the one or more portions of the 
NVRAM device offline and keeping the remainder of 
the NVRAM device online . 

14. The storage system of claim 11 , further comprising the 
processing device to : 

determine that the failure in the NVRAM device affects 
one or more authorities in the storage system , wherein 
to take the one or more portions of the NVRAM device 
offline comprises directing the one or more authorities 
affected by the failure in the NVRAM device to use a 
non - failed portion of the NVRAM device or use a 
further NVRAM device in the storage system . 

15. The storage system of claim 11 , further comprising the 
processing device to : 

determine that the failure in the NVRAM device affects 
one or more of the plurality of authorities in the storage 
system , wherein to take the one or more portions of the 
NVRAM device offline comprises the one or more 
authorities affected by the failure in the NVRAM 
device to generate a queue of access operations to be 
performed on the NVRAM device and perform the 
access operations from the queue when the NVRAM 
device is restored or the NVRAM device is replaced . 

16. The storage system of claim 11 , further comprising the 
processing device to : 

keep a remainder of the NVRAM device online . 
17. The storage system of claim 11 , further comprising the 

processing device to : 
establish and monitor the fine - grained failure domains in 

the NVRAM device , relating to how records are 
updated in the storage system . 

18. The storage system of claim 11 , further comprising the 
processing device to : 

establish and monitor the fine - grained failure domains in 
the NVRAM device , on a page level . 

19. The storage system of claim 11 , further comprising the 
processing device to : 

use one or more bytes of a chunk of metadata in the 
NVRAM device for a checksum , wherein to detect the 
failure in the NVRAM device comprises to detect the 
failure according to the checksum . 

20. The storage system of claim 11 , wherein to detect the 
failure in the NVRAM device , the processing device to : 

determine , by one of the plurality of authorities in the 
storage system , independent of other authorities in the 
storage system , that the authority has insufficient 
resources to tolerate a number of failures . 
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