US 20180285084A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2018/0285084 A1

Mimlitch, III et al. 43) Pub. Date: Oct. 4, 2018
(54) MIXED MODE PROGRAMMING GO6F 8/41 (2006.01)
1) Applicant: I tion First. Inc.. G dle. TX GO6F 8/33 (2006.01)
(71) Applicant: (glé())va ion First, Inc., Greenville, GO6F 11/36 (2006.01)
(52) US. CL
(72) Inventors: Robert H. Mimlitch, III, Greenville, CPC oo GOGF 8/34 (2013.01); GOGF 8/51
TX (US); Jason R. McKenna, (2013.01); GOGF 11/3664 (2013.01); GOGF
Pittsburgh, PA (US); Levi K. Pope, 8/33 (2013.01); GO6F 8/447 (2013.01)
Greenville, TX (US); James B.
Pearman, Los Angles, CA (US);
Timothy S. Friez, Pittsburgh, PA (US);
Paul D. Copioli, Greenville, TX (US) 7 ABSTRACT
(73) Assignee: gll}lé())vatlon First, Inc., Greenville, TX A mixed mode programming method permitting users to
program with graphical coding blocks and textual code
(21) Appl. No.: 15/925,813 within the same programming tool. The mixed mode pre-
serves the advantages of graphical block programming while
(22) Filed: Mar. 20, 2018 introducing textual coding as needed for instructional rea-
L sons and/or for functional reasons. Converting a graphical
Related U.S. Application Data code block or group of blocks to a textual block lets the user
(60) Provisional application No. 62/480,800, filed on Apr. see a portion of the textual code in the context of a larger
3, 2017, provisional application No. 62/509,819, filed program. Within one programming tool the mixed mode
on May 23, 2017. method allows users to learn programming and build purely
L . . graphical blocks; then transition into mixed graphical and
Publication Classification textual code and ultimately lead to their ability to program
(51) Int.CL in purely textual code. The mixed mode further allows users
GO6F 8/34 (2006.01) to program using any combination of drag-and-drop graphi-
GO6F 8/51 (2006.01) cal blocks and typed textual code in various forms.
s ™
when {START Wj 106
\'~'___/ i
Nl 7
™ print Hello, World !

_,...,...,\“J

Patent Application Publication Oct. 4,2018 Sheet 1 of 35 US 2018/0285084 A1

f‘ﬁﬁ

Setup | Output | Sensing
| Operators | Control | My Blocks |
Setup
v 828 Brain

12—

timer

reset

]set L.CD to row{ 1) coiumn repeat |

Output @‘;’gfjuﬂd (Alarm ¥)
v 828 Brain § 19

_ cieCD

12—

clear line

12--.

new line «! |

{piay sound (Alarm v }3
~{play note (C1v) (HALF)

Sensing
v BB Brain

12~

rd

FIG. 1
{Prior Art)

Patent Application Publication

Oct. 4, 2018

Sheet 2 of 35 US 2018/0285084 A1

K/‘ZQ

EDmicro:bit ez Projects j|«Blocks

=JavaSeript] 7 Help

< Music

® |ed

-4 Radio

By using this site you agree (%)
to the use of cookies for
anaEytta:s, Learn more

o Loops

forev |

for (o) m fs'om 0t

= Logic

Variables

= Maih

-~ Advanced

w (same

&= Images

@ Pins

< Serial

3 Control

Add Package

FiG. 2
{Prior Art)

(v Joud)
€ "Oid

US 2018/0285084 A1

Oct. 4,2018 Sheet 3 of 35

mm&

Patent Application Publication

{ suonound[]
‘L + JUNOTY = JUNOT sajqeueA[]
{(LPHOA Ol|3H,JUB[E MOPUIM
}(€ => Junod) apym 10103]
L= JUNOD sisf]
maif]
‘LaniEA (L TBNIBA X JUNOT) JBA e {]
o1 (= 3uRon) e sdoot]]
-1 a Jduogeae :ebenbuen R -H H 8) ad 21507
7 4 N
8¢ g9e 7¢

Patent Application Publication Oct. 4,2018 Sheet 4 of 35

US 2018/0285084 A1

£3 Demonsiration - Subline Text 2
File Edt Selecton Find View Goto Tools Project Performances Help
/e e\
31 void baseb4_encode(cont wintd_t = data, size tlength, char = dsf)

38 1 a1 i
3 size tore idx=0; B

\ﬁ 34 SEZ&_} dst idx :D, e
35 for { (src_idx + 2) <length: src_idx += 3, dst idx += 4) e
%% {WEE@E:G 180 = datalsrc_idy];
38 winil {51 = datalsrc_idx+ 1] Emmm—
39 wint0 {82 = datalsrc_idx + 2]
2? dsifdst idx + 0] = charsetf{s0 & Oxfc) >> 2]; =
47 dsifdst idx + 1] = charset[{(s0 & 0x03) << 4) 1{(s1 & 00} >> 4)] é
43 datldst | cix+2]""harset{{(sf o0 <<2‘§(s’i&0xc@} >> gl e
44 dafldst idx + 3] = charact](s2 & Dx31); —
5 -
46
47 ifisrc ik <length) pre—,
48 =
49 wintd_t s0 = datafsrc_idx]; o
50 wintd T8t ={src_idx + 1 <length)7 dalajsre i +1]:5; =
51 : i es—————
9, dalfdst idx++] = charset]{s0 & Oxfc) >> 2] =
53 ds*[dﬂ idx+] = charsel]{(s 0 & 0403) << 4} 1{(s1 & 0x10) >> 4] P
54 if {src_idx + 1 <length}
gg } dsffdst idx+] - characi]{{s1 & Oxf) <«< 2]
Line 31, Column 55 Spaces. 4 Ot

FiG. 4
{Prior Art)

Patent Application Publication Oct. 4,2018 Sheet 5 of 35 US 2018/0285084 A1

102 4 N
™
when {START Wjj 106
W {/}
104~ print [Hello, World !) }
___________/
FIG. 5A
i ™,
112 M //} \
N printf({Hello, World"); ¥
\ t
118 120
116

FIG. 5B

Patent Application Publication Oct. 4,2018 Sheet 6 of 35 US 2018/0285084 A1

102
N when STARTw
104~
Noprint (Hello, World!)]

138~ 140 144
fcrever | ?42 /

. <([Dsstaﬂce} D stancein (mm)) < @>}

= piay sound_Alarm v}\,;%

138 ~¢ :
\‘fﬂi?"ii, 172
176 “ ’ ,
183 [N { rangefinder (distance) < 50)
™
1781 ‘
180 M:: —playsound(alarm);
~y =X+ 1 474
printf {"%d", x);
185—1 K
‘]
\-v:v;—ij 182

FIG. 6B

Patent Application Publication Oct. 4,2018 Sheet 7 of 35 US 2018/0285084 A1

W‘EQG
196~ =z
it (_HELO) 200
start typing code here ...
yping =202
198~
~ play sound Alarm)

FIG. 7

Patent Application Publication Oct. 4,2018 Sheet 8 of 35 US 2018/0285084 A1

fﬁ’?ﬁ
12
"{ when START+|

214\@5?(Hello, Woridl)]

216~ :

28 (roraver i

QZQN\\ if <{ {Distaﬂgej Distance in (mm}) < [56}>}

B

0y amd Alarm)

t (1)

FIG. BA
KZZE
212
214
216~
218~
N 224
if { rangefinder (distance} < 50)

playsound(atarmy;

x=x+1; 225

printf ("%d", x);

)

FIG. 8B

Patent Application Publication Oct. 4,2018 Sheet 9 of 35 US 2018/0285084 A1

KZ%
2 when START) .
m *
208 printf{ "Hello, World™);
el x = Q;
while(true)
/»if(rangefinder (distance) < 50)
225"
playsound(alarm);
X=x+1;
printf("%d", x};
}
FIG. 8C 230
232

i
2344 int main { void)
{
printf ("Hello, World");
=X = 0

228—" while(true)

i rangefinder (distance) < 50)

225 {
playsound(alarmj;
X=X+ 1
printf ("%d", x);

FIG. 8D

Patent Application Publication Oct. 4,2018 Sheet 10 of 35 US 2018/0285084 A1

250
252 ¥
E when STARTv}
254 \@i[HELLO)J

FIG. %A

252 \-Ewhen START] 256

258~ print [HELLO j] pHNt("HELLO"™) .

254
FiG. 9B

when STARTw 260
(when STARTS =

VA e’

Herator =

a
if ()~
print < We can count)E { 208
print("We can count”);
}
else
{270
}

FIG. 9C

Patent Application Publication

274

254

Wheﬂ START~

P 278

(iterator = (0))

repeat

Oct. 4,2018 Sheet 11 of 35

276
/

T Nt
iterator = < +)]
S e

if (lterator = 10)

print("We can count
to 10%);

}

else

print("%d", lterator);

FIG. 9D

282~

(repeat |

lterator ={{ |
p
if

else

T

o

We can count to "EG)

int main (void)

int iterator = (;
for(inti=; i< 10; i++)

terator = lterator + 1;
if (lterator = 10)

print("We can count
to 107);

else

print("%d", lterator);

FiG.9E

US 2018/0285084 A1

Patent Application Publication

?/’“333

< 308

Oct. 4,2018 Sheet 12 0of 35 US2

fi’iﬁ@

018/0285084 A1

FIG. 10A |when START] ?’;}0
2584 printf (HELLO™) -
304 319
FIG.10B
|when START) ?0
print { HELLO E printf ("HELLO") ; [2]]
\”‘””\.....J » o
repeat
Alarm
@auﬂd m“@'j 300
302~
FQG“ 1@@ N
SO Grintt CHELLOT) . iy 312

\""““\.._...m/

b S

) 3
305\(repeat ; 314

308
@%?:S:ound Alarm - }’/

FIG. 10D

Patent Application Publication Oct. 4,2018 Sheet 13 0of 35 US 2018/0285084 A1

322~ y 320 324

396 when START w | ﬁ]\gn START v M0

¢ e AN Ve

108 oroadcast = { HELLO j

i orever reped

Jristuaishl S

330- ola Alam w

332

334

322

insert code
/xi”

334k

FIG. 1B

Patent Application Publication Oct. 4,2018 Sheet 14 of 35 US 2018/0285084 A1

302
g 320 324

‘ 340
when START » when START < E
B X

'

ot { HELLO)}

‘—“\.....,...f
_A repeal]
forever

vvvvvvvvvvvvvvvv ‘ play sound Marm v |

Pt a—
S

)

broadcast ¥ |

printf{ "
\ 3341

342

3341 insert code
e

352~

364 -

360

Patent Application Publication Oct. 4,2018 Sheet 15 0of 35 US 2018/0285084 A1
] 270 354
,: /
Y
‘.) - p—
for(inti=0; i< 10; i++)
380
4 x"g;?;m\\m 380
print("%d", x); 382
!
s b
- AN SN y,
H] !
372 374 384 376 368
FIG. 12A
394 392
\ /
/%d is a format N
specifier that tells the
1 compiler an integer
for(iy valueis goingtobe |
/ inted. '
S { \prin J
(CENER]) R
| print F& | print("26d", x);
AAAAAAAAAAAAAAAAAAA N \ \ K\\ /
\‘ \\‘ e
368
258 390

FIG.12B

Patent Application Publication Oct. 4,2018 Sheet 16 of 35 US 2018/0285084 A1

when SIART ¥]

wer] Print ("HELLO'

404" jj °

x = (w2405 Z))
414«»—*’/ :’"""’""\ "

| Print (odtx Z))
4@8-—~/ \\

Patent Application Publication

420

424

4207 |

Oct. 4,2018 Sheet 17 of 35 US 2018/0285084 A1

when START = ;

print HELLO E

I | insert code

clearl CD{)

FIG. 14A

when START w |

FIG. 14B

gi{ 422

i ~422

426

Patent Application Publication Oct. 4,2018 Sheet 18 of 35 US 2018/0285084 A1

[when_sTanr)

rapeat -j

§ierator = |

—430

f’(ﬁﬂ e oo %?F?)

printf("We can count!"),

else
\
432

E . FIG. 15A

when STARTw

lterator = }

gt gty PP Crmpgunt

434

Eterat@r\’ﬁ@mtg}? = (flterator] + (1) 430
__,_.if (ﬂ“ ronon anes “H)
A
436 — } prmif(“We c:an count!”)
-
"ﬂ-\\
} 432

FIG. 15B 448 442

Patent Application Publication Oct. 4,2018 Sheet 19 of 35 US 2018/0285084 A1

\when STARTv |

T Nt

Somsmcnn w

“

i (Herator == ™"
436—1 | { (N 4238

printf("We can count!™),
-

/ else

444 {

N/) ’ FIG. 15C

when STARTw

torator = }

repeat]
&rat{zr = ((lterator) -%-@E //\,—»43@

o
-if (terator == §)
// | \-448
436 printf("We can count!™);
else
{
}

R ’

FiG. 15D

Patent Application Publication Oct. 4,2018 Sheet 20 of 35
452
when STARTw /
- : 1 456
= { Q)1 Intlerator = 0
450 w (0)] Intlterator = G; J
repeat (10) e —
%‘m\ ']{ } for(int i=0; i<10; 44
terator = {(terator)+ (1)]} {
454~ M == lterator = lterator + 1;

it (lerator) = LM}]

eg:j
print (T We can court ﬂ

Nyl

}

if lterator == 8)
v
printf("We can count!);

else

{
}

FIG. 16

P 464

when STARTw

when START»

Counter =

>

Cagmer * 40 }E

4741 |

_for(int i=0; E<‘§ﬁ;)

Counter = Counter * 10;

N

462

FIG. 17

US 2018/0285084 A1

TN

3

Patent Application Publication

when STARTw
\--—-\ "

P

lterator

repeat

o

482

/

@mmr = lerator + 1; ﬁm
if { Herator==§) ‘ N

printf{ "Eight")

Oct. 4,2018 Sheet 21 of 35

>

>

}

SNyl

3\
480

FIG. 18

when STARTY)

US 2018/0285084 A1

repeat ! ?4

a@éramr = Herator + *'§;
if { lterator==8)
{

=

printf("Eight”
)

Patent Application Publication Oct. 4,2018 Sheet 22 of 35

US 2018/0285084 A1

when STARTw
~ yd

NS

terator = \” Int lterator = 0;

™ AN

Y e

;/5@53

p—

for (inti=0;i<10; l++)

{

s

terator = lterator + 1;
f (terator == 8)

printf { "We can count!”);

LW~ R -

printf { "%s", lerator };

{
'
glse
{
}

12)

FiG. 19A

when START =
R 4

lterator =

E int lterator =0;

“ AN

0, e

;/’ 500

g

for {inti=0;i<10; [++)

{

erator = lterator + 1;
(lterator == 8§)

printf { "We can count!”);

Ise

OO0~ OO o G B ot

S
<o

printf { "%s", lterator };

L~ 502

It
if
{
;
e
{
}

QY
PN

}

|

FIG. 198

Patent Application Publication Oct. 4,2018 Sheet 23 of 35 US 2018/0285084 A1

when STARTw
\««_mml A

yd
 lterator ={0) WE Int lterator = 0;
. "

e 500

for (int i=0;i<10;1++)

{ ‘Error. “%s" is a)

lterator | format Speciﬁer/

it 1telfor a string.

{ llteratoris an e
printl integer. "%d" is|t!")

; appropriate for

else integers. y.

—-— 504

Fa

BCQOONG}W%OOMME{

print { “"ilfas“g lterator) ; —

17 T

when STARTw
/ N

} Int lterator = O;
) — {‘500
for (int i=0;i<10; |++)

{

terator = lterator + 1
if (Herator == 8)

PO
o
L

(

lterator =

printf { "We can Count!” };

else

{000 ~d O UT I QDR mle jf

{
10 printf { "%d" , lterator);

FIG. 190

Patent Application Publication Oct. 4,2018 Sheet 24 of 35 US 2018/0285084 A1
Int lterator = 0
S,) R '~ 500
1 for {int I=0;i<10; I++)
2 {
3 lterator = Herator + 1
4 if (Herator == 8)
5
6 printf ("We can Count ! ")
7 } 506
8 else //’/’r
9 {
10 printf { "%s", Herator) ;
11 }
12}
FIG. 19E
(when START)
) N . \ = .
' Int terator = {;
P {"5{}0
1 for {int I=0;i<10; I++)
2 { _— 508
3 lterator = leralor + 1; -
4 if (Herator == 8§)
5
6 printf { "We can Count 1" };
7 }
8 else
9
10 printf ("%d", Herator);
11 }
12}

FIG.19F

Patent Application Publication Oct. 4,2018 Sheet 25 of 35 US 2018/0285084 A1

’ . 520
mﬁum = addValues (myCount, 1) ; 1 [infaddValues { int value1, int valuez)
ot
if ﬁs?%faézfeEven { myCount))} retum valuet + value 2;

n._)

bool isValuekven { int value)

retum (value % 2)==0,

522 EiG. 20A

when START =

) e N —~ .
terator ={ 0) } Int Herator = §;
532\m ‘ - 4
- File Edit Window Help
1 for {int i=0;i<10; l++)
2
3 lterator = lterator + 1
4 if { Herator == §)
5 {
6 printf { "We can Count!" };
7 }
8 glse
9
10 printf { "%s", Heralor) ;
11 }
12}
S0~ , 1t Go
MOEMMO Language:C++ Saving...) FIG. 20B

Patent Application Publication Oct. 4,2018 Sheet 26 of 35 US 2018/0285084 A1

A S >,

1
C++ Code 910

< 1 510

C Code <

51
Assembly Code }/ °
N S

FIG. 21

Patent Application Publication Oct. 4,2018 Sheet 27 of 35 US 2018/0285084 A1

(when EveNTL?)

TN 5’”550
lterator ={ 0)]

) .

1 /I Loop countin

% for (int i=0;1<10; I++)

4 lterator = Heralor + 1;

g if (lerator == 8§)

g printf { "We can Count!" };
9 else

10

11 printf { "%d", lterator);

12 }

13 }

p—— 7554
1 wait { 1000) ; \»556
2 printf { "%d" ,1);

3 printf { "%d" , lterator) ;
4 printf { "Program Complete” } ;
FIG. 22A

when EVENT1w 550
m 5{/’

iterator = J 552

P
{{ Loop counting 13 Lines

T e

1 wait(1000) ;

2 printf ("%d" ,i);

3 printf { "%d" |, Interator) ;
4

printf ("Program Complete™) ; 554

FiG. 22B

N

Patent Application Publication Oct. 4,2018 Sheet 28 of 35 US 2018/0285084 A1

::‘fatf? =(0)] £552
/i Loop counting 13 Lines (#1 >°
N -
wait (1000); 4 Lines @ °%°
S~ 4
broadcast EVENTE*&} 554’
N
FIG. 22C
{"‘57@
S’
Limwmtext d “ 1 HelloWorld |
FIG. 23A

575
P
if q Q{butﬁanwpr@%edv] =< 11
do printf_text d "[Hello World]"
%“""‘\;

\ |

FIG. 23B

Patent Application Publication Oct. 4,2018 Sheet 29 of 35

OO0~ O = QIR -

S S S S G G,
DLWy =0

6147
816 —1

6187

int main (void)

int lterator = 0;

for (inti=0;i<10; l++)
{

lterator = lterator + 1;

US 2018/0285084 A1

600

if (terator == 8)

printf{ "We can count!”);
}
else

printf("%d", lterator);
printf("Keep Trying");
wait(1000);

FIG. 24A

Int lterator = 0; |
3 —repeat 10)|

E‘iea‘a or = ?terai:@r +1;

pri ntf(“%d”, lterator);
printf("Keep trying");
waat('! QG{}}

/—”8‘36

FIG. 248

Patent Application Publication Oct. 4,2018 Sheet 30 of 35 US 2018/0285084 A1

602
™ 1 |when START ¥ | 610
2 Int Herator = (; /
‘/““3

620~ 4
5
6
7
8 | |else
9 printf("%d", lterator);
10 printf("Keep trying");
11 wait{(1000);
12 .. pay
13 L
14
15

FiG. 24C

Patent Application Publication Oct. 4,2018 Sheet 31 of 35 US 2018/0285084 A1

602 -
H—610

priﬂif(“%d", lterator);
printf("Keep trying");
‘wait(1 GGG)

FIG. 24D
602~ e | 622

1—when START ¥ /

g12—"1 3
4
5
6
7
8
9
10
11

/ el

13

624 1
15 FIG. 24E

US 2018/0285084 A1

Oct. 4,2018 Sheet 32 of 35

Patent Application Publication

¢ 'Old

UOIIUBAU] 8U} JO SIUSWIPOqUIT] SI0W
10 83U 0} BUIpIODOY SUOIONIISU|
weibold yim paunbiyuocn

AN

7

/r 004

US 2018/0285084 A1

Oct. 4,2018 Sheet 33 of 35

Patent Application Publication

s

Ld

R Eag ges

G0L

8¢ "Ol4

1suisu|
—A_ /NVAMUNYT

LONUBAU| 83U} JO mwmmﬁm@omﬁm IO
10 8uUQ 0] BuIploooy SUOONIISU|
wesbold yum paunbyuon

004

US 2018/0285084 A1

004

Oct. 4,2018 Sheet 34 of 35

LONUSAU| 8} JO SiUsWIpoquus IO
10 38U 0} BUIpIOOOY SUOHONAISU|
weibold yum paunbiyuon

L8914

UOIIUBAU| 8L 1O SJUSWIPOQUIT SI0WN
10 8uUQ 01 BUIpIODDY SUOHONIISU|

painbiyucn

weabosd yum

/

2

Patent Application Publication

iueld

/

Gz

&

JBljoU0N

&

0zZ4

US 2018/0285084 A1

Oct. 4,2018 Sheet 35 of 35

Patent Application Publication

6Z "Oid
[sngdidD /
' TV
L] 301A8(] pien BAL(0oPIA
ajgeinbyucosy aldo pieH U
, 064 \-zzs 28/ ~08/
/ sng uoisuedx3 /
, N
J8jjouon
sng
) -89/ X
/ sng /
,, zos
UOIUBAL| 8Y} JO
SIUBWIPOQUIT SJON 10 BUQD 181OHUOT
0} BUIPIO22Y SUOIONASU| Aiowey NdO
weibold ypm painbyuon gy vy
/ aﬁgmm\&
uepy
99/ *~ 00z

US 2018/0285084 Al

MIXED MODE PROGRAMMING

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] The Present application claims priority to U.S.
Provisional Application 62/480,800 filed Apr. 3, 2017 and
U.S. Provisional Application 62/509,819 filed May 23,
2017.

BACKGROUND OF THE INVENTION

[0002] Block-based programming is programming within
an environment where instructions are mainly represented as
blocks. Block-based programming is also referred to as
block-based coding, block modality, graphical program-
ming, and visual programming language. Examples of
block-based programming languages include Scratch, Mod-
kit, ROBOTC Graphical, and many others. Blocks normally
consist of one or more declarations and statements. In most
block-based programming languages, blocks can be nested
within other blocks. Blocks are fundamental to structured
programming, in which control structures are created from
blocks.

[0003] The purpose of blocks in programming is to enable
groups of statements to be treated as if they were one
statement, represented by a block, and to narrow the lexical
scope of variables, procedures and functions declared within
a block. Additionally, the interface of block-based program-
ming languages allows programs to be written by dragging
and dropping the blocks into an editor in a manner repre-
senting the building of a puzzle. The goal of these features
is to lower the barrier of entry for novice programmers as
they begin learning computer science.

[0004] While block-based programming was created with
novice programmers in mind, professionals today are still
using a text-based programming language. As opposed to
dragging and dropping blocks, text-based programming is
the process of typing letters, numbers and symbols. Text-
based programming, also referred to as text modality, used
in programming language such as C, Javascript and Python,
requires programmers to utilize formal syntax to compile a
program.

[0005] Why is studying block modality important? Struc-
turation is defined by the relationship between the represen-
tational infrastructure used within a knowledge domain and
the knowledge and understanding that the infrastructure
enables and promotes. This relationship is not static, so it is
important that there is a clear understanding of what learning
block modality is enabling and promoting. This is why
studying blocks-based modality is so important.

[0006] Why is block modality so popular? In a prior art
study where students were able to choose their modality,
students overwhelmingly used the block-based modality.
The transition from block to text is not a one-direction shift,
but instead students move back and forth over time. Any
time students wanted to use a new command or a more
complex command, they used blocks.

[0007] Block modality encourages users to quickly create,
compile and then test their programs. The research refers to
the block-based modality as having a tight edit-execute
cycle. This means relying more on productive programming
processes, as students are given immediate feedback.
[0008] As such one can imagine there are quite a few
typical environments to assist users in block programming.

Oct. 4, 2018

Prior Art FIG. 1 shows in the prior art one example of a
typical block programming environment 10 with blocks 12
in the left toolbar 14 and a working area 16 on the right side
of the environment 10. Blocks 12 on the left toolbar can be
dragged into the workspace on the right. New blocks 12"
when placed typically snap to nearby existing blocks 12'.
Once in the working area 16 the code blocks form a
computer program. FIG. 1 is an example of the Modkit
editor for VEX that is based on Scratch by MIT.

[0009] Inanother example, Prior Art FIG. 2 shows another
prior art environment 20 BBC Micro:Bit editor and language
that is based on Blockly. In yet another example, Prior Art
FIG. 3 shows the known environment 30 Google Blockly,
which incorporates a toolbar 32 on the left side of the
environment 34. Google Blockly has a middle panel 36 that
contains the block working area and has a right panel 38 that
contains the complete final code that is equivalent to the
block. Lastly, Prior Art FIG. 4 is an example of the Sublime
text editor environment 40 showing C++ code.

[0010] However, there are challenges in the above pro-
gramming approach, especially in transitioning between
block modality and text modality. Some of these challenges
are:

[0011] Readability—Students find it much easier to
read and understand a block of code when it is written
in block modality, a more “natural” language.

[0012] Commands memorization—in block modality,
novices can browse all available commands, but in text
modality, students often have to memorize commands.
Additionally, there is normally a larger library of text
commands.

[0013] Syntax Memorization—in text modality, stu-
dents have to memorize syntax.

[0014] Input Flexibility—typing/spelling is required in
text modality, but not in block modality.

[0015] Prototypes versus Definition—in block modal-
ity, when a user drags a command into a loop, uses a
function (myblocks in Scratch or Line Following in
ROBOTC Graphical) or does something more
advanced, like broadcasting a message, the user just has
to manipulate the parameters within that block. In
text-based modality, programmers have to construct all
of this syntax on their own. This includes the order of
the commands, what syntax to use with those com-
mands, matching variable types, etc.

[0016] Matching Identifiers—block modalities handle
this for users, usually with drop-down menus, whereas
in text modality, the user has to match on their own.

[0017] Defining Scope—missing or extra brackets in
languages that define scope with explicit symbols is
one of the most common errors with beginning pro-
grammers. Research says that knowing how to control
scope is not enough; the mechanics of arranging and
maintaining scope is still challenging.

[0018] Writing Expressions—expressions are provided
for students in block modality. They have to be written,
and written correctly, in text modality.

[0019] Data types—students do not have to use or
understand data types with block modality.

[0020] Error Messages—with block modality, students
get little practice with interpreting error messages.

[0021] Formatting—with block modality, students
don’t have to use manage their layout with things like
whitespace and indentation.

US 2018/0285084 Al

[0022] Improved Programming Approach—block
modality encourages a bottom-up programming
approach (identify lower-level tools that you can com-
pose to become a bigger program). Students do worse
on logic-based questions on AP CS exam than on any
other type of question.

[0023] Improved Comprehension—students do not
have a deep understanding of how loops work, what
variables are, and what they do in a programming
context after programming in block modality. Blocks
help students understand what a command does, not
how to transfer that knowledge to different applica-
tions.

[0024] Syntax—students still have to deal with syntax
when experiencing text modality for the first time.
Using block modality does not solve this transition
issue.

[0025] In additionally there are several problems when
using variables, expressions, and loops that have been
previously reported. Specifically, students have problems
with assigning variables that need to assume multiple values
at the same time. Distinguishing between what goes inside
of a loop and what precedes or follows a loop, and that an
expression involving the control variable of a loop can have
different values in each cycle of the loop causes problems.

[0026] As such a need exists to help

SUMMARY OF THE INVENTION

[0027] As illustrated by the drawings and provided by the
disclosure there is according to one or more of the embodi-
ments of the invention, a system defined to include a
processor and a memory medium, coupled to the processor.
The memory medium stores program instructions execut-
able by a computer system, and the program instructions are
configured to: (a) create an graphical coding environment
that defines a plurality of graphical programming blocks; (b)
wherein the graphical coding environment further defines a
coding programming block; and (c) create a graphical pro-
gram in the graphical coding environment in response to
user input, wherein the graphical program comprises, in
response to the user input, at least one graphical program-
ming block and at least one coding programming block
interconnected in the graphical coding environment that
visually indicates functionality of the graphical program in
accordance with the user input; and (d) generate an output
program based on the graphical program, wherein the output
program implements the functionality of the graphical pro-
gram, and (e) wherein the output program when executed,
controls either a virtual object or a physical object in
accordance with the user defined functionality of the graphi-
cal program. Based on this system, each graphical program-
ming block, of the plurality of graphical programming
blocks, is configured to represent a predefined programming
element; and, the coding programming block is configured
to represent a programming block for use in the graphical
coding environment and further configured to use standard
textual coding language within the programming block.

[0028] According to this system, the program instructions,
that are configured to create the graphical coding environ-
ment, further define a set of instructions, stored on the
memory, to define a variable edit mode. In addition, one or
more of the graphical programming blocks, of the plurality

Oct. 4, 2018

of graphical programming blocks, is configured to include a
variable element set by a user activating the variable edit
mode.

[0029] In an aspect of this system, the program instruc-
tions being configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to define a peek mode, wherein the peek mode is
defined for a user to select a graphical programming block.
The set of instructions for the peek mode is configured to
convert the selected graphical programming block into a
standard textual programming language, and display within
the graphical coding environment the standard textual pro-
gramming language in a display window adjacent to the
graphical programming block.

[0030] In another aspect of this system, the set of instruc-
tions for the peek mode is further configured to create a
coding programming block equivalent to the selected
graphical programming block, and wherein the coding pro-
gramming block being accessible to edit with standard
textual coding language.

[0031] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to color code two or more graphical programming
blocks with different predefined colors.

[0032] In another aspect of this system, the color code set
of instructions are further configured to color code the
textual programming language in the display window adja-
cent to the one or more graphical programming blocks such
that the color of the textual programming language matches
the color of the graphical programming block.

[0033] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to define a conversion mode. The conversion mode
is configured for a user to select one or more graphical
programming blocks. Upon activation, the set of instructions
for the conversion mode is configured to convert the selected
one or more graphical programming blocks into a standard
textual programming language, and create one or more
coding programming blocks equivalent to the selected one
or more graphical programming blocks, and wherein the one
or more coding programming blocks being accessible to edit
with standard textual coding language.

[0034] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to define a graphical programming argument block
for use in creation of the graphical program. The graphical
programming argument block is configured as a graphical
block with an argument segment embedded within the
graphical block, and the set of instructions further config-
ured to accept standard textual coding language in the
argument segment.

[0035] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to automatically convert a graphical block to
standard textual coding language, and insert the standard
textual coding language into the coding programming block
defined in the graphical program, at a position defined by a
user and within the coding programming block, when the
graphical block is selected by a user and the user defines said
position for insertion.

US 2018/0285084 Al

[0036] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to merge blocks. The set of instructions to merge
blocks being configured to automatically add a second
coding programming block to a first coding programming
block, defining a merged coding programming block com-
prising: both a second standard textual coding language
defined by the second coding programming block; and a first
standard textual coding language defined by the first coding
programming block. In another aspect of this system, the set
of instructions to merge blocks being further configured to
inset the second standard textual coding language at a
positioned within the first standard textual coding language
selected by a user.

[0037] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to identify errors in the coding programming block.
The set of instructions to identify errors being configured to
check an user defined standard textual coding language
within the coding programming block to determine if the
output program can properly execute to control either the
virtual object or a physical object in accordance with the
user defined functionality. In addition, the set of instructions
to identify errors automatically change the color of the user
defined standard textual coding language when the output
program fails to properly execute. In another aspect of this
system, the set of instructions to identify errors is further
configured to change the color of the user defined standard
textual coding language prior to the output program being
generated.

[0038] In another aspect of this system, the graphical
coding environment further includes set of instructions to
define a mixed programming mode. The mixed program-
ming mode is configured to create a text programming
environment within the graphical coding environment,
wherein the text programming environment defines coding
text lines, receive graphical programming blocks, and
receive standard textual coding language on the coding text
lines. In addition, the mixed programming mode is further
configures to create the graphical program in response to
user input, wherein the graphical program comprises, in
response to the user input, at least one graphical program-
ming block and standard textual coding language intercon-
nected in the graphical coding environment that visually
indicates functionality of the graphical program in accor-
dance with the user input.

[0039] In another embodiment of the invention, there is
provided a system including a processor and a memory
medium, coupled to the processor, wherein the memory
medium stores program instructions executable by a com-
puter system. The program instructions being configured to
create a mixed programming coding environment. The
mixed programming coding environment defines a plurality
of graphical programming blocks. Each graphical program-
ming block, of the plurality of graphical programming
blocks, is configured to represent a predefined programming
element, In addition, the mixed programming coding envi-
ronment includes coding text lines configured to receive
standard textual coding language. The mixed programming
coding environment is further configured to create a graphi-
cal program in the mixed programming coding environment
in response to user input. The graphical program comprises,

Oct. 4, 2018

in response to the user input, at least one graphical pro-
gramming block and standard textual coding language inter-
connected in the graphical coding environment that visually
indicates functionality of the graphical program in accor-
dance with the user input, The mixed programming coding
environment is further configured to generate an output
program based on the graphical program, wherein the output
program implements the functionality of the graphical pro-
gram and the output program when executed, controls either
a virtual object or a physical object in accordance with the
user defined functionality of the graphical program.

[0040] In another embodiment of the invention, there is
provided a system having a processor and a memory
medium, coupled to the processor. The memory medium
stores program instructions executable by a computer sys-
tem. The program instructions are configured to create an
graphical coding environment, and to create a graphical
program in the graphical coding environment in response to
user input. The graphical program comprises, in response to
the user input, at least one graphical programming block and
at least one coding programming block interconnected in the
graphical coding environment that visually indicates func-
tionality of the graphical program in accordance with the
user input. The graphical program when executed, controls
either a virtual object or a physical object in accordance with
the user defined functionality.

[0041] In another aspect of this system, the graphical
coding environment further includes a set of instructions,
stored on the memory, to configure the graphical program-
ming block to represent a predefined programming element,
and configure the coding programming block to represent a
programming block for use with standard textual coding
language.

[0042] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to define a variable edit mode. One or more of the
graphical programming block, of the plurality of graphical
programming blocks, is further configured to include a
variable element set by a user activating the variable edit
mode.

[0043] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to define a peek mode. The peek mode is defined
for a user to select a graphical programming block, for
which the set of instructions for the peek mode is configured
to convert the selected graphical programming block into a
standard textual programming language, and display within
the graphical coding environment the standard textual pro-
gramming language in a display window adjacent to the
graphical programming block.

[0044] In another aspect of this system, wherein the set of
instructions for the peek mode is further configured to create
a coding programming block equivalent to the selected
graphical programming block, and wherein the coding pro-
gramming block being accessible to edit with standard
textual coding language.

[0045] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to color code two or more graphical programming
blocks with different predefined colors. In yet another aspect
of this system, the color code set of instructions are further

US 2018/0285084 Al

configured to color code the textual programming language
in the display window adjacent to the one or more graphical
programming blocks such that the color of the textual
programming language matches the color of the graphical
programming block.

[0046] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to define a conversion mode. The conversion mode
is configured for a user to select one or more graphical
programming blocks. Upon activation, the set of instructions
for the conversion mode is configured to convert the selected
one or more graphical programming blocks into a standard
textual programming language, and create one or more
coding programming blocks equivalent to the selected one
or more graphical programming blocks, and wherein the one
or more coding programming blocks being accessible to edit
with standard textual coding language.

[0047] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to define a graphical programming argument block
for use in creation of the graphical program. The graphical
programming argument block is configured as a graphical
block with an argument segment embedded within the
graphical block, and the set of instructions further config-
ured to accept standard textual coding language in the
argument segment.

[0048] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to automatically covert a graphical block to stan-
dard textual coding language, and to insert the standard
textual coding language into the coding programming block
defined in the graphical program, at a position defined by a
user and within the coding programming block, when the
graphical block is selected by a user and the user defines said
position for insertion.

[0049] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions, stored on the
memory, to merge blocks. The set of instructions to merge
blocks being configured to automatically add a second
coding programming block to a first coding programming
block, defining a merged coding programming block com-
prising: both a second standard textual coding language
defined by the second coding programming block; and a first
standard textual coding language defined by the first coding
programming block. In another aspect of this system, the set
of instructions to merge blocks being further configured to
inset the second standard textual coding language at a
positioned within the first standard textual coding language
selected by a user.

[0050] In another aspect of this system, the program
instructions configured to create the graphical coding envi-
ronment, further define a set of instructions stored on the
memory to identify errors in the coding programming block.
The set of instructions to identify errors being configured to
check an user defined standard textual coding language
within the coding programming block to determine if the
output program can properly execute to control either the
virtual object or a physical object in accordance with the
user defined functionality; and automatically change the
color of the user defined standard textual coding language

Oct. 4, 2018

when the output program fails to properly execute. In
another aspect of this system, the set of instructions to
identify errors is further configured to change the color of
the user defined standard textual coding language prior to
the output program being generated.

BRIEF DESCRIPTION OF THE DRAWINGS

[0051] For a fuller understanding of the nature of the
present invention, reference should be made to the following
detailed description taken in conjunction with the accom-
panying drawings in which:

[0052] FIG. 1 is a prior art illustration of an example of a
block programming environment developed by Modkit edi-
tor based on Scratch programming by The Massachusetts
Institute of Technology;

[0053] FIG. 2 is another prior art illustration of an example
of BBC Micro:Bit editor and language based on Blockly;
[0054] FIG. 3 is yet another prior art illustration of an
example of Google Blockly;

[0055] FIG. 4 is a prior art illustration example of Sublime
text editor showing C++ coding;

[0056] FIG. 5A is a block program made with Graphical
Blocks;
[0057] FIG. 5B shows a program in accordance with an

embodiment of the invention that is equivalent to that of
FIG. 5A;

[0058] FIG. 6A shows another program made with
Graphical Blocks;

[0059] FIG. 6B shows a program in accordance with an
embodiment of the invention that is equivalent to that of the
Graphical Blocks of FIG. 6A;

[0060] FIG. 7 shows a program made up of Graphical
Blocks and the beginning of a Code Block without any code
entered;

[0061] FIG. 8A shows another program made with
Graphical Blocks;

[0062] FIG. 8B shows a program in accordance with an
embodiment of the invention, which includes Graphical
Blocks and a Coding Block that is equivalent to that of
specific Graphical Blocks of FIG. 8A;

[0063] FIG. 8C shows a program in accordance with an
embodiment of the invention, which includes a Graphical
Block and a Coding Block that is equivalent to that of
specific Graphical Blocks of FIG. 8A;

[0064] FIG. 8D shows a program in accordance with an
embodiment of the invention, which includes a Coding
Block that is equivalent to that of all of the Graphical Blocks
of FIG. 8A;

[0065] FIGS. 9A-9E illustrate a Peek Function that allows
a user to quickly view a Graphical Block as a Code Block;
[0066] FIGS. 10A-10D illustrate a Block Convert Func-
tion that converts a Graphical Block to a Code Block within
the Graphical Block program;

[0067] FIGS. 11A-11C illustrate a screen template that
permits the addition of new Blank Code Blocks into a from
the Toolbox Area into a Working Area;

[0068] FIGS. 12A-12B show an Editor Feature in a Code
Block with a Hover Over Function for users to better
understand the C statements in Coding Blocks;

[0069] FIG. 13 illustrates a Code Block that includes a the
argument window for entering text, to permit users to
express formulas in a code format;

US 2018/0285084 Al

[0070] FIGS. 14A and 14B illustrate in one embodiment
of the invention the ability to change the left Toolbar Area
from Blocks to Text snippets;

[0071] FIGS. 15A-15D illustrate a function to add Graphi-
cal Blocks into an Existing Code Block by automatically
converting the Graphical Block to text during the insertion;

[0072] FIG. 16 illustrates data types;

[0073] FIG. 17 illustrates Graphical Block conversion to
Code Block;

[0074] FIG. 18 shows the merging of two Code Blocks

into a single resulting Code Block;

[0075] FIGS. 19A-19F in one or more embodiments of the
present invention error indicators to allow the correction of
coding in the developed program;

[0076] FIGS. 20A-20B shows advance function in accor-
dance with one or more of the embodiments of the invention;
[0077] FIG. 21 illustrates various coding languages the
user may utilize in the application programming;

[0078] FIGS. 22A-22C illustrates the ability to collapsible
and expand code blocks in the programming environment;
[0079] FIGS. 23A-23B shows a visual programming edi-
tor in accordance with an embodiment of the invention
[0080] FIG. 24A shows code as an example of an all
textual program;

[0081] FIG. 24B illustrates an alternative embodiment of
the mixed mode programming using a mixed textual pro-
gramming environment that includes a program that is
identical to the all textual program of FIG. 24A;

[0082] FIG. 24C shows the same program as in FIG. 24B,
except that the user has clicked in the text to insert a new
empty line;

[0083] FIG. 24D shows the user deleting a line of text;
[083.5] FIG. 24E shows a new program being developed in
the mixed textual programming environment;

[0084] FIG. 25 illustrates a computer system configured to
execute a mixed mode graphical programming environment
according to one or more embodiments of the present
invention;

[0085] FIG. 26 illustrates a network system comprising
two or more computer systems that may implement a mixed
mode graphical programming environment according to one
or more embodiments of the present invention;

[0086] FIG. 27 is a high level block diagram of an
exemplary system which may execute or utilize a mixed
mode graphical programming environment according to one
or more embodiments of the present invention;

[0087] FIG. 28 illustrates an exemplary system which may
perform control and/or simulation functions utilizing a
mixed mode graphical programming environment according
to one or more embodiments of the present invention; and
[0088] FIG. 29 is an exemplary block diagram of the
computer systems of FIGS. 25-28.

DETAILED EXPLANATION OF THE
INVENTION AND NEW METHOD

[0089] While the invention is susceptible to embodiments
in many different forms, there are shown in the drawings and
will be described herein, in detail, the preferred embodi-
ments of the present invention. It should be understood,
however, that the present disclosure is to be considered an
exemplification of the principles of the invention and is not
intended to limit the spirit or scope of the claims by the
embodiments illustrated.

Oct. 4, 2018

[0090] The following is a glossary of terms used in the
present application:

[0091] Memory Medium—any form of various types of
memory devices or storage devices and is intended to
include an installation medium; a computer system memory
or random access memory such as DRAM, DDR RAM,
SRAM, EDO RAM, Rambus RAM, etc.; a non-volatile
memory such as a Flash, magnetic media, e.g., a hard drive,
or optical storage; registers, or other similar types of
memory elements, etc. In addition, the memory medium
may be located in a first computer in which the programs are
executed, or may be located in a second different computer
which connects to the first computer over a network, such as
the Internet. In the latter instance, the second computer may
provide program instructions to the first computer for execu-
tion. The term “memory medium” may include two or more
memory mediums which may reside in different locations,
e.g., in different computers that are connected over a net-
work.

[0092] Carrier Medium—a memory medium, as well as a
physical transmission medium, such as a bus, network,
and/or other physical transmission medium that conveys
signals such as electrical, electromagnetic, or digital signals.

[0093] Programmable Hardware Element—includes vari-
ous hardware devices comprising multiple programmable
function blocks connected via a programmable interconnect.
A programmable hardware element may also be referred to
as “reconfigurable logic”.

[0094] Software Program—the term “software program”
is intended to have the full breadth of its ordinary meaning,
and includes any type of program instructions, code, script
and/or data, or combinations thereof, that may be stored in
a memory medium and executed by a processor. Exemplary
software programs include programs written in text-based
programming languages, such as C, C++, PASCAL, FOR-
TRAN, COBOL, JAVA, assembly language, etc.; graphical
programs (programs written in graphical programming lan-
guages); assembly language programs; programs that have
been compiled to machine language; scripts; and other types
of executable software. A software program may comprise
two or more software programs that interoperate in some
manner. Note that various embodiments described herein
may be implemented by a computer or software program. A
software program may be stored as program instructions on
a memory medium.

[0095] Program—the term “program” is intended to have
the full breadth of its ordinary meaning The term “program”
includes 1) a software program which may be stored in a
memory and is executable by a processor or 2) a hardware
configuration program useable for configuring a program-
mable hardware element.

[0096] Graphical Program—A program comprising a plu-
rality of interconnected nodes or icons, wherein the plurality
of interconnected nodes or icons visually indicate function-
ality of the program. The interconnected nodes or icons are
graphical source code for the program. Graphical function
nodes may also be referred to as functional blocks, or simply
blocks.

[0097] The following provides examples of various
aspects of graphical programs. The following examples and
discussion are not intended to limit the above definition of
graphical program, but rather provide examples of what the
term “graphical program” encompasses:

US 2018/0285084 Al

[0098] The nodes in a graphical program may be con-
nected in one or more of a data flow, control flow, and/or
execution flow format. The nodes may also be connected in
a “signal flow” format, which is a subset of data flow.
[0099] The term “graphical program” includes models or
block diagrams created in graphical modeling environments,
wherein the model or block diagram comprises intercon-
nected blocks (i.e., nodes) or icons that visually indicate
operation of the model or block diagram.

[0100] A graphical program may be represented in the
memory of the computer system as data structures and/or
program instructions. The graphical program, e.g., these
data structures and/or program instructions, may be com-
piled or interpreted to produce machine language that
accomplishes the desired method or process as shown in the
graphical program.

[0101] Input data to a graphical program may be received
from any of various sources, such as from a device, unit
under test, a process being measured or controlled, another
computer program, a database, or from a file. Also, a user
may input data to a graphical program or virtual instrument
using a graphical user interface, e.g., a front panel.

[0102] A graphical program may optionally have a GUI
associated with the graphical program. In this case, the
plurality of interconnected blocks or nodes is often referred
to as the block diagram portion of the graphical program.
[0103] Node—In the context of a graphical program, an
element that may be included in a graphical program. The
graphical program nodes (or simply nodes) in a graphical
program may also be referred to as blocks. A node may have
an associated icon that represents the node in the graphical
program, as well as underlying code and/or data that imple-
ments the functionality of the node. Exemplary nodes (or
blocks) include function nodes, sub-program nodes, termi-
nal nodes, structure nodes, etc. Nodes may be connected
together in a graphical program by connection icons or
wires.

[0104] Data Flow Program—A Software Program in
which the program architecture is that of a directed graph
specifying the flow of data through the program, and thus
functions execute whenever the necessary input data are
available. Data flow programs can be contrasted with pro-
cedural programs, which specity an execution flow of com-
putations to be performed. As used herein “data flow” or
“data flow programs” refer to “dynamically-scheduled data
flow” and/or “statically-defined data flow”.

[0105] Graphical Data Flow Program (or Graphical Data
Flow Diagram)—A Graphical Program which is also a Data
Flow Program. A Graphical Data Flow Program comprises
a plurality of interconnected nodes (blocks), wherein at least
a subset of the connections among the nodes visually
indicate that data produced by one node is used by another
node.

[0106] Graphical User Interface—this term is intended to
have the full breadth of its ordinary meaning The term
“Graphical User Interface” is often abbreviated to “GUI”. A
GUI may comprise only one or more input GUI elements,
only one or more output GUI elements, or both input and
output GUI elements.

[0107] A GUI may comprise a single window having one
or more GUI Elements, or may comprise a plurality of
individual GUI Elements (or individual windows each hav-
ing one or more GUI Elements), wherein the individual GUI
Elements or windows may optionally be tiled together.

Oct. 4, 2018

[0108] A GUI may be associated with a graphical pro-
gram. In this instance, various mechanisms may be used to
connect GUI Elements in the GUI with nodes in the graphi-
cal program. For example, when Input Controls and Output
Indicators are created in the GUI, corresponding nodes (e.g.,
terminals) may be automatically created in the graphical
program or block diagram. Alternatively, the user can place
terminal nodes in the block diagram which may cause the
display of corresponding GUI Elements front panel objects
in the GUI, either at edit time or later at run time. As another
example, the GUI may comprise GUI Elements embedded
in the block diagram portion of the graphical program.
[0109] Input Control—a graphical user interface element
for providing user input to a program. An input control
displays the value input by the user and is capable of being
manipulated at the discretion of the user.

[0110] Output Indicator—a graphical user interface ele-
ment for displaying output from a program. Exemplary
output indicators include charts, graphs, gauges, output text
boxes, numeric displays, etc. An output indicator is some-
times referred to as an “output control”.

[0111] Computer System—any of various types of com-
puting or processing systems, including a personal computer
system (PC), mainframe computer system, workstation,
network appliance, Internet appliance, personal digital assis-
tant (PDA), television system, grid computing system, or
other device or combinations of devices. In general, the term
“computer system” can be broadly defined to encompass any
device (or combination of devices) having at least one
processor that executes instructions from a memory
medium.

[0112] Automatically—refers to an action or operation
performed by a computer system (e.g., software executed by
the computer system) or device (e.g., circuitry, program-
mable hardware elements, ASICs, etc.), without user input
directly specifying or performing the action or operation.
Thus the term “automatically” is in contrast to an operation
being manually performed or specified by the user, where
the user provides input to directly perform the operation. An
automatic procedure may be initiated by input provided by
the user, but the subsequent actions that are performed
“automatically” are not specified by the user, i.e., are not
performed “manually”, where the user specifies each action
to perform. For example, a user filling out an electronic form
by selecting each field and providing input specitying infor-
mation (e.g., by typing information, selecting check boxes,
radio selections, etc.) is filling out the form manually, even
though the computer system must update the form in
response to the user actions. The form may be automatically
filled out by the computer system where the computer
system (e.g., software executing on the computer system)
analyzes the fields of the form and fills in the form without
any user input specifying the answers to the fields. As
indicated above, the user may invoke the automatic filling of
the form, but is not involved in the actual filling of the form
(e.g., the user is not manually specifying answers to fields
but rather they are automatically completed). The present
specification provides various examples of operations being
automatically performed in response to actions the user has
taken.

[0113] Referring now to FIG. 25 illustrates a computer
system 700 configured to implement various embodiments
of the present invention. The computer system 700 may
include a display device configured to display one or more

US 2018/0285084 Al

programs as they are created and/or executed. The display
device may also be configured to display a graphical user
interface of the program(s) during execution. The computer
system 700 may include at least one memory medium on
which one or more computer programs or software compo-
nents according to one embodiment of the present invention
may be stored. For example, the memory medium may store
one or more graphical programs or software tools which are
executable to perform the methods described herein. Addi-
tionally, the memory medium may store a graphical pro-
gramming development environment application used to
create and/or execute such graphical programs. The memory
medium may also store operating system software, as well
as other software for operation of the computer system.
[0114] Referring now to FIG. 26 illustrates a system
including a first computer system 700 that is coupled to a
second computer system 705. The computer system 700 may
be coupled via a network 710 (or a computer bus) to the
second computer system 705. The computer systems may
each be any of various types, as desired. The network can
also be any of various types, including a LAN (local area
network), WAN (wide area network), the Internet, or an
Intranet, among others. The computer systems may execute
a program in a distributed fashion. For example, computer
700 may execute a first portion of the block diagram of a
graphical program and computer system 705 may execute a
second portion of the block diagram of the graphical pro-
gram.

[0115] In one embodiment, the graphical user interface of
the graphical program may be displayed on a display device
of the computer system 700, and the block diagram may
execute on a device coupled to the computer system 700. In
one embodiment, the graphical program may be downloaded
and executed on the device.

[0116] It is noted that embodiments of the present inven-
tion can be used for a plethora of applications and are not
limited to anything specific/As such the applications dis-
cussed in the present description are exemplary only, and
embodiments of the present invention may be used in any of
various types of systems.

[0117] FIG. 27 is a high level block diagram of an exem-
plary system which may execute or utilize graphical pro-
grams. FIG. 3A illustrates a general high-level block dia-
gram of a generic control and/or simulation system which
comprises a controller 720 and a plant 725. The controller
720 represents a control system/algorithm the user may be
trying to develop. The plant 725 represents the system the
user may be trying to control. For example, if the user is
designing an program for a robot, the controller 720 is the
program and the plant 725 is the robot. As shown, a user may
create a program, such as a graphical program, that specifies
or implements the functionality of one or both of the
controller 720 and the plant 725.

[0118] FIG. 28 illustrates an exemplary system which may
perform control and/or simulation functions. As shown, the
controller 720 may be implemented by a computer system
700 or other device (e.g., including a processor and memory
medium and/or including a programmable hardware ele-
ment) that executes or implements a graphical program, or
a program generated based on a graphical program. In a
similar manner, the plant 725 may be implemented by a
computer system or other device 730 (e.g., including a
processor and memory medium and/or including a program-
mable hardware element) that executes or implements a

Oct. 4, 2018

graphical program, or may be implemented in or as a real
physical system, e.g., a robot.

[0119] FIG. 29 is a block diagram representing one
embodiment of the computer system 700 and/or 705 illus-
trated in FIGS. 25 and 26, or computer system 700 shown in
FIG. 28. It is noted that any type of computer system
configuration or architecture can be used as desired, and
FIG. 29 illustrates a representative PC embodiment. It is also
noted that the computer system may be a general purpose
computer system, a computer implemented on a card, or
other types of embodiments. Elements of a computer not
necessary to understand the present description have been
omitted for simplicity.

[0120] The computer may include at least one central
processing unit or CPU (processor) 760 which is coupled to
a processor or host bus 762. The CPU 760 may be any of
various types. A memory medium, typically comprising
RAM and referred to as main memory, 766 is coupled to the
host bus 762 by means of memory controller 764. The main
memory 766 may store program instructions implementing
embodiments of the present invention. The main memory
may also store operating system software, as well as other
software for operation of the computer system.

[0121] The host bus 762 may be coupled to an expansion
or input/output bus 770 by means of a bus controller 768 or
bus bridge logic. The expansion bus 770 may be the PCI
(Peripheral Component Interconnect) expansion bus,
although other bus types can be used. The expansion bus 770
includes slots for various devices such as described above.
The computer 700 further comprises a video display sub-
system 780 and hard drive 782 coupled to the expansion bus
770. The computer 700 may also comprise a GPIB card 722
coupled to a GPIB bus 712.

[0122] As shown, a device 790 may also be connected to
the computer. The device 790 may include a processor and
memory which may execute a RTOS. The device 790 may
also or instead comprise a programmable hardware element.
The computer system may be configured to deploy a graphi-
cal program or a program generated based on a graphical
program to the device 790 for execution on the device 790.
The deployed program may take the form of graphical
program instructions or data structures that directly repre-
sent the graphical program, or that were generated based on
the graphical program. Alternatively, the deployed graphical
program may take the form of text code (e.g., C code)
generated from the graphical program. As another example,
the deployed graphical program may take the form of
compiled code generated from either the graphical program
or from text code that in turn was generated from the
graphical program. In some embodiments, the graphical
program and/or the program generated from the graphical
program are data flow programs. In a further embodiment,
the generated program may be a hardware configuration
program, and may be deployed to a programmable hardware
element. Moreover, in some embodiments, the generated
program may be suitable for deployment in a distributed
manner, e.g., across multiple, possibly heterogeneous, tar-
gets. Thus, for example, a first portion of the program may
be directed to a CPU based platform, while another portion
may be targeted for a programmable hardware element.
[0123] The examples used to describe this invention use
the textual C programming language, however, this inven-
tion could equally use any language such as, but not limited
to, C++, javascript, python, basic, assembly, etc. The

US 2018/0285084 Al

examples used to describe this invention use the graphical
programming language from the application Modkit that are
based on the graphical programming language Scratch,
however, this invention could equally use any graphical
block language such as Blockly, Alice, etc.

[0124] The new method allows for a slow single step
method of transitioning from blocks to text, while maintain-
ing the benefits of block modality, such as the tight edit-
execute cycle and lessening the cognitive load for students
by curtailing the amount of memorization of commands and
syntax needed by the students.

[0125] The first step is to stay within the graphical pro-
gramming environment while learning textual coding. This
delays the transition of applications to a later date, after the
student has mastered text coding.

[0126] The second step is to allow the student to see the
text behind a graphical coding block in small increments. A
student can see a single block converted to text. By a simple
action such as a right click or long press a block can be
converted to a textual coding block. This allows learning of
the text formatting and language in small digestible bites.
Students can slowly be exposed to the extra syntax included
in text modality, that is abstracted out when using block
modality. In FIGS. 5A and 5B, students would see how the
paired parentheses and quotation marks would need to be
added when using text modality. The students can also see
that the name of the print block changes slightly in text
modality to “printf”.

[0127] The present invention is provided, in one or more
embodiments, a user interface configured to run on a com-
puter, mobile application processor, or web browser. The
user interface will be separated into various areas (described
further below), such as but not limited to a Toolbar Area and
a Working Area similar to other block programming envi-
ronments. However, as further provided, the present inven-
tion is directed to a block programming environment that
provides for mixed mode programming. The environment in
accordance to one or more embodiments of the invention
permits the user to create programs using a mix of Graphical
Blocks and textual code within Code Blocks. Additionally
the user can view and/or convert any Graphical Block as
textual code. Even still, the user can create and edit textual
code within Graphical Block program.

[0128] FIG. 5A shows a program 100 made of Graphical
Blocks. The first block 102 is a When block that is set to
trigger when the program Starts. The second block 104 is a
Print block that prints the textual content 106 entered by the
user. In this case the user entered the text:

[0129] Hello, World!

[0130] FIG. 5B shows a program 110 that is equivalent to
that of FIG. 5A. The program 110 contains one Graphical
Block 102 and one Code Block 112. The Graphical Block
102 is a When block that is set to Start. The Code Block 112
uses text modality and in this case contains standard C code
114. The single line of code 114 is a printf statement with
one argument. The statement contains standard C formatting
with parenthesis 116, quotes 118, and a semicolon 120.
Color coding of the portions of the text to match the blocks
and arguments can also be implemented to assist the student
to understand what parts of the block became what parts of
the text. In this example the word print from a blue colored
block 116 became

Oct. 4, 2018

[0131] printf();

with the text and symbols colored blue. Hello, World!, as an
example colored purple, became

[0132] “Hello, World!”

with the text colored purple.

[0133] Once a Graphical Block is converted to a text
block, the new textual block can be edited in an identical
manner as in a real text editing application. This introduces
the student to textual editing on a single line basis, before
seeing and navigating an entire program in a new environ-
ment. Additionally, the text in the textual coding block can
use modern editor text formatting stands such as color
coding of terms and identifying formatting errors before
compile time.

[0134] Once simple single commands are understood,
larger blocks of code can be converted with a simple user
command. As illustrated in FIGS. 6A and 6B, the IF state-
ment is converted with one action by the user.

[0135] Research indicates that an issue students have
when transitioning from block to text is that students have a
difficult time defining the scope (e.g. using brackets) of their
task. This new method allows students to use the block to
define the scope. When the students convert the IF statement
to text, the matching curly braces are provided for them.
Students can then focus on the logic needed inside of the
scope.

[0136] FIG. 6A shows a program 130 made up of all
Graphical Blocks. The first four blocks are a When block
102, a Print block 104, an X Equals block 132, and a Forever
block 134. The Print block 104 contains a Parameter 105 of
Hello, World!. The X Equals block contains a Value 136 of
0. In addition, an If block 138 is provided as a sub-block to
the Forever block 134. The If block 138 contains a Less
Than math-block 140, a Distance sensor-block 142 and a
Value 144 of 50. The If block 138 additionally contains three
sub-blocks: a Play Sound block 150, an X Equals block 152
and a Print block 154. The Play Sound block 150 contains
a Parameter 156 set to Alarm 158. The X Equals block 152
includes a Plus math-block 160, an X variable-block 162 and
a Value 164 of 1. The Print block 154 contains an X
variable-block 166. The symbol 168 at the end of the Print
block 154 is a format setting button that allows the user to
set the print formatting.

[0137] FIG. 6B shows a program, in accordance with an
embodiment of the invention, 170 that is equivalent to
Graphical Blocks program 130 of FIG. 6A. The first four
Graphical Blocks are the When block 102, the Print block
104, the X Equals block 132, and the Forever block 138
which are the same as in FIG. 6A. The fifth block is a Code
Block 172. The Code Block 172 contents contains an “if”
statement using standard C formatting 174, which represents
the Graphical Block If block 138 of FIG. 6A, including
indentions, braces, parenthesis, quotes, and semicolons. The
printf statement 174 contains standard C formatting includ-
ing the arguments (“%d”, x) 176.

[0138] As illustrated, the user will be presented with If
block 138 with parameters 140, 142, and 144 from FIG. 6A
are all represented in the Code Block 172 of FIG. 6B with
the C formatted statement, 176,

if (rangefinder (distance) < 50)

)

US 2018/0285084 Al

[0139] The play sound block 150 from FIG. 6A is repre-
sented in FIG. 6B with the C formatted statement, 178,
[0140] playsound(alarm);

[0141] The X=block 132 from FIG. 6A is represented in
FIG. 6B with the C formatted statement, 180,

[0142] x=x+1;

[0143] The Print block 154 from FIG. 6A is represented in
FIG. 6B with the C formatted statement, 182,

[0144] printf(“%d”, x);

[0145] The C statements in the Code Block 172 are in the
appropriate order beginning with the if statement 176,
followed by an opening brace 183, followed then by the
three contained code lines 178, 180, and 182, and complet-
ing with the closing brace 185 at the end.

[0146] An important feature of this mixed mode program-
ming is that blocks and code are in-line with one another and
in the correct sequential order.

[0147] The graphical environment is now designed to
handle mixed modes of program entry, with graphical blocks
in the traditional sense, and new textual blocks that allow
code to be typed within. The application now can parse
block to code and mix in the textual code into a single
program output for the intended target that executes the
program.

[0148] The user can continue to write programs using a
combination of graphical blocks and code. As illustrated in
FIG. 7, the student has added graphical block and a new
textual code block to a single program. Lessons and learning
can continue while the student is gradually eased into text
programming in small amounts. Additionally, students can
be given the freedom to scaffold their own learning. Students
can introduce some text commands to their graphical code at
their own instructional pace. Research indicates that stu-
dents fluctuate between block modality and text modality as
they learn new commands and encounter new programming
structures. This functionality allows the user to perform this
scaffolding at an individualized pace.

[0149] FIG. 7 shows a program 190 made up of Graphical
Blocks 192, 194, 196, and 198. The Code Block 200 has not
had any C code entered within. The text 202 “start typing
code . .. ” is exemplary and is designed to give instructions
to a new user to start typing here. The text 202 typically
disappears once typing begins.

[0150] As the student progresses they will slowly be able
to write more and more textual code, while needing to rely
on fewer and fewer graphical blocks. In FIGS. 8A through
8D, there is an example of the final stages of learning as the
most complex outer layers of the program are mastered by
the student until there is all text code and no graphical
blocks.

[0151] FIG. 8A represents an example of block program-
ming by a student who has mastered the block modality and
is ready to begin transitioning to text modality. FIG. 8A
shows a program 210 made up of all Graphical Blocks. This
program is made up of a When block 212, a Print block 214,
a X=block 216, a Forever block 218, and a If block 220
along with its parameters and contents.

[0152] FIG. 8B represents an example of both block
programming and text programming by a student who has
just started to transition to text modality. FIG. 8B shows a
program 222 that is equivalent to program 210 from FIG.
8A. Program 222 has the same Graphical Blocks including
the When block 212, the Print block 214, the X=block 216,
and the Forever block 218. Program 222 also contains a

Oct. 4, 2018

Code Block 224 that contains C statements 225 and format-
ting that is functionally equivalent to the If block 220 along
with its parameters and contents in FIG. 8A.

[0153] FIG. 8C represents an example of both block
programming and text programming by a student who has
mostly transitioned to text modality. FIG. 8C shows a
program 226 that is equivalent to both the program 210 from
FIG. 8A and the program 222 from FIG. 8B. The When
block 212 is still a Graphical Block, however, the Code
Block 227 has the C statements 225 from the Code Block
224 of FIG. 8B with the added C statements 228 that are
equivalent to the Print block 214, the X=block 216, and the
Forever block 218 from FIG. 8B.

[0154] FIG. 8D represents an example of all text program-
ming by a student who has completely transitioned to text
modality. FIG. 8D shows a program 230 that is made
entirely of one Code Block 232. Program 230 is equivalent
to program 210 from FIG. 8A, the program 222 from FIG.
8B, and the program 226 from FIG. 8C. The Code Block 232
has the C statements 228 and 225 from Code Block 227 of
FIG. 8C with the added C statements 234 that are equivalent
to the When block 212 from FIG. 8C.

[0155] Several options are envisioned for implementation
of the new Mixed Mode Programming. In one embodiment
the following functionality exist.

[0156] A Code Peek feature that allows the user to
glance at the code that makes up a block without
actually converting the block.

[0157] A Block Convert feature that allows the Block to
become a Code Block. The Code Block can now be
edited and modified.

[0158] A new blank Code Block can be dragged from
the toolbox on the left and used with other normal
blocks or as a stand-alone code.

[0159] Code Blocks can have features similar to text
editors, such as color coded text, auto-indention, auto-
complete, bracket support, etc.

[0160] When editing a Code Block the left toolbar may
change from Blocks to Text snippets, allowing them to
be dragged into the text of the Code Block.

[0161] Normal Blocks may be dragged into an existing
Code Block and when dropped they convert to text and
get inserted.

[0162] We can start to introduce data types within the
Code Block peeks and conversions.

[0163] When a Code Block exists inside a containing
normal Block such as an IF or REPEAT, and when the
IF or REPEAT is converted to a Code Block, the result
is a single Code Block with both the new IF or
REPEAT and the pre-existing code.

[0164] Adjacent Code Block can be merged.

[0165] Hovering over textual code can provide addi-
tional descriptions or help.

[0166] Code can be converted back to blocks as well.
This can be difficult since there are things in text that
may not be easily convertible back to block—but that
case could be detected or prevented.

[0167] Block colorization for “errors” to identify
issues? L.e. the entire block turns red to identify issues
before download. Addition to the block coloring, the
text can be highlighted to point out the specific coding
issue. Hovering the mouse over the highlight will give
the users hints to what is incorrect.

US 2018/0285084 Al

[0168] The usual compile and download features still
exist.
[0169] Peek at the Code: FIGS. 9A-9E illustrate a Peek

Function that allows the user to glance at a Code Block with
C Statements that makes up a Graphical block without
actually converting the Graphical block. This feature may
allow the user to see both the code and normal blocks that
created that code at the same time. One possible implemen-
tation of a Peek Function is to right-click on a Graphical
block. In a touch environment this could be a long press.

[0170] FIG. 9A shows a program 250 containing two
Graphical Blocks: When block 252 and Print block 254. In
FIG. 9B, a method of the Peek Function is illustrated and
which allows the user to peek at the Code Block 256 that is
equivalent to one of the Graphical Blocks. The program in
FIG. 9B is the same program 250 from FIG. 9A containing
two Graphical Blocks When block 252 and Print block 254.
A cursor 258 is shown clicking on the Print block 254, which
as a result of the click action the equivalent Code Block 256
is shown to the right of Print block 254. Either releasing the
click button would hide the equivalent Code Block 256 or
alternately clicking again could hide the equivalent Code
Block 256.

[0171] FIG. 9C shows an example of a Peek Function to
peek at the Code Block that is equivalent to multiple
Graphical Blocks, some of which are incomplete. The pro-
gram 260 contains various Graphical Blocks. A cursor 258
is shown clicking on the If block 260. As a result of the click
action the equivalent Code Block 262 is shown to the right
of If block 260. In this example the If block 260 is missing
an argument 264 and is missing block(s) in the else slot 266
The equivalent C code statements in Code Block 262 is
appropriately missing the if argument statements 268 and
the else statements 270.

[0172] FIG. 9D shows an example of the Peek Function to
peek at the Code Block that is equivalent to multiple
Graphical Blocks in program 272. The cursor 258 clicks on
the If block 274. As a result of the click action the equivalent
Code Block 276 is shown to the right of if block 274.

[0173] The peek function may have two options when
used on the first block of a program; 1) see just the code
equivalent of the first block, or 2) see the entire program.
FIG. 9E shows an example of the Peek Function used to
peek at the Code Block that is equivalent to an entire
program 278 of Graphical Blocks.

[0174] Convert Graphical Block to Code Block: FIGS.
10A-10D show one implementation of the Block Convert
Function that converts a Graphical Block to a Code Block.
Once converted the Code Block can then be edited using
standard C statements. Many alternate user actions can be
devised to achieve the same results. In FIG. 10A illustrates
a program 300 made up of various Graphical Blocks,
including a When block 302, a Print Block 304, and a Repeat
Block 306 with a Play Sound sub-block 308. As shown in
FIG. 10B as a first step, the cursor 258 is used to click on one
of'the Graphical Blocks as an initial Peek Function to invoke
the equivalent Code Block 310. The program 300 is the same
program from FIG. 10A. As illustrated, the cursor 258 is
shown clicking on the Graphical Block, Print block 304. As
a result of the click action the equivalent Code Block 310 is
shows to the right of Print block 304. In addition and in
accordance with the present invention, the Code Block 310
has an Edit button 312.

Oct. 4, 2018

[0175] FIG. 10C is a second step to the Block Convert
Function. FIG. 10C shows the user initiating a conversion of
a Graphical Block to an equivalent Code Block. The pro-
gram 300 is the same program from FIGS. 10A-10B. The
cursor 258 is shown clicking on the Edit button 312. FIG.
10D shows the result of the user clicking on the Edit button
312 from FIG. 10C. The mixed program 300' includes a mix
of Graphical Blocks 302 and 306 and now a Code Block 310
that has replaced the Print block 304 from the previous
figures. The Edit button 312 is part of the Code Block 310
and can be used as a means to allow the user to edit the Code
Block 310 by using C programming statements 314. Alter-
nately the user can click within the Code Block 310 to begin
the edit process.

[0176] New Code Block: FIGS. 11A-11C shows, in accor-
dance with one embodiment of the invention, a screen
template 320 allowing a user to add, from a Toolbar Area
322, a new Blank Code Block 324 that can be dragged from
the Toolbox Area 322 into a Working Area 324. The Blank
Code Block 324 can be used with other Graphical Blocks or
as a stand-alone Code Block. Once inserted, the user can
then use the Edit button 312 to insert code, i.e., the text
“insert code” is removed and the cursor is shown blinking.
The user can now type any new code from scratch.

[0177] In more specific detail, FIG. 11A shows a screen
template 320 that includes Toolbar Area 322 on the left side
and a Working Area 324 on the right side. Multiple Graphi-
cal Blocks are shown in the Toolbar Area 322 including a
When block 326, a Broadcast block 328, a Forever block
330, and a Repeat block 332. A blank Code Block 334 is also
shown in the Toolbar Area 322. The blank Code Block 334
contains the text “insert code” to let the user know this block
allows typing within. Blocks in the Toolbar Area 322 can be
dragged into the Working Area 324 on the right. The
Working Area 324 already contains multiple Graphical
Blocks forming the start of a program 340.

[0178] FIG. 11B shows the same scene as in FIG. 11B. The
user has dragged the blank Code Block 334 from the Toolbar
Area 322 on the left to the Working Area 324 on the right,
connecting the new blank Code Block 334' to the bottom of
the Repeat block 332. The new blank Code Block 334 when
inserted into the Working Area 324 will have an Edit button
312. FIG. 11C shows the same scene as FIG. 11B except that
the user has clicked on the Edit button 312 and the user has
started typing a partial C statement 342. While illustrated as
a programming print statement, the user can program any
statement in the blank Code Block 334'.

[0179] Editor Features in a Code Block: FIGS. 12A and
12B illustrate Code Blocks that have features similar to text
editors, such as color coded text, auto-indention, autocom-
plete, bracket support, etc. One option is to mimic the
coloring of the blocks with the new text. In this example the
brackets {and} are also color coded with the line that is
associated with them. A “Hover Over” Function allows
students to hover over the text code %d is see that it is a
format specifier. Similarly with data types, since the graphi-
cal block abstracts that info out, presenting the “hover over”
as a scaffolding technique would help the students.

[0180] FIG. 12A shows a program 350 made from Graphi-
cal Blocks. By placing a cursor (not shown) over the Repeat
block 352, the user has peeked at the Repeat block 352 by
revealing the equivalent Code Block 354. Each of the
Graphical Blocks can have a color that helps the user infer
its function. The color of the When block 356 and the Repeat

US 2018/0285084 Al

block 352 are orange. The color of the Print blocks 358 and
360 are blue. The color of the X block 362 and the X=block
364 are red. The color of the + block 366 is green. The C
statements 368 in the Code Block 354 are derived from
Graphical Blocks 352 thru 366. The portion of the C
statements 370, 372, and 374 (also shown below) are color
coded orange since they are the equivalent of the Repeat
block 352 that is also orange.

for(int 1 = 0; i < 10; i++)
{
¥

[0181] The portions of C statements 376 and 380 (also
shown below) are color coded red since they are the equiva-
lent of the x=block 364 and x blocks 362 that is also red.

[0182] x=x;
[0183] x
[0184] The portions of C statements 382 (also shown

below) are color coded green since they are the equivalent
of the + block 366 that is also green.

[0185] +

[0186] The portions of C statements 384 (also shown
below) are color coded blue since they are the equivalent of
the Print block 360 that is also blue.

[0187] print(“%d”,);

[0188] FIG. 12B is the same as FIG. 12A. The user
however has hovered the cursor 258 over a portion of text
“%d” 390 that the user is unfamiliar with as is does not
appear in the Print block 360. A pop-up window 392 with a
help description 394 appears to aid the user in understanding
the text portion 390 of the C statement 368.

[0189] Code Inside a Block: FIG. 13 shows a new Code
Block can be dropped into the argument window of a block.
This allows formulas to be expressed in code format. The
example below uses this method in the Print block and the
X=block. Referring now to FIG. 13, there is shown in
accordance with an embodiment of the invention, a program
400 containing Graphical Blocks: When block 402 and
Repeat block 404. Print blocks 406 and 408 are also pro-
vided and are a new form of Print blocks that allows both
blocks and C arguments within the argument window. The
user has entered the argument

[0190] “Hello”

in the argument window 410 of Print block 406, while the
user has entered the argument

[0191] “%d”, x

in the argument window 412 of Print block 408.

[0192] The x=block 414 is a new form of x=block that
allows both blocks and C arguments within the argument
window. In this example the user has entered the argument
[0193] 2*x"2+0.5

in the argument window 416. Other options for the argument
are any argument that is valid for a C equation argument.
[0194] Toolbar Change: FIGS. 14A and 14B illustrate in
one embodiment of the invention the ability to change the
left Toolbar Area 420 from Blocks to Text snippets depend-
ing on what the user is editing on the right Working Area
422. FIG. 14A shows the user dragging a Graphical Block
424 from the Toolbar Area 420 to the Working Area 422.
FIG. 14B shows the left Toolbar transformed to code snip-
pets. The user can now drag code snippets from the left
Toolbar Area 420 into the Code Block 426. Several methods

Oct. 4, 2018

can be used to change the left Toolbar from blocks to text.
One option is a user controlled switch. Another option is to
automatically switch to text snippets in the toolbar when the
user clicks within a Code Block, and automatically switch to
blocks in the toolbar when the user clicks anywhere outside
of a Code Block.

[0195] Dropping Blocks in a Code Block: FIGS. 15A
through 15D, there is illustrated a function provided by an
embodiment of the invention that permits the user to drag
Graphical Blocks into an existing Code Block and when
released/dropped/added in the invention automatically con-
verts the Graphical Block to text and inserts the text in the
position that the user desired/cursor position. This would
help users with transition difficulties. Students could drop a
command in and see the syntax that was added. As the block
is being dropped into place the text will dynamically update.
But the system can also make sure the block can only be
dropped in a location that makes since. So the user cannot
drop it in a location that would cause a coding error.
[0196] FIG. 15A shows a group of Graphical Blocks and
one Code Block 430. The Code Block 430 contains C
statements 432. FIG. 15B shows the same scene as FIG. 15A
with the addition that the user is dragging a Variable Iterator
block 434 into the Code Block 430. The application or
invention will allow the Variable Iterator block 434 to be
dropped only into valid locations. Valid locations are as part
of'the If statement 436 either before or after == 438 or as part
of the Print statement 440 either before or after the text “We
can count!” 442. FIG. 15C shows the same scene as FIG.
15B after the user has dragged and dropped the Variable
Iterator block 434 into the If statement 436 and to the left of
the == 438. The resulting valid C statement if (Iterator ==
) 444 is the result of the drag and drop. FIG. 15D shows the
same scene as FIG. 15C with the user further interacting
with the Code Block 430 by deleting the “ ” of the If
statement 436 and typing the new text “8” 448.

[0197] Data Types: FIG. 16 illustrates that the user can be
introduced to data types. Blocks abstract the types but at
some point the student will have to learn what they are.
Introducing data types would help the transition to textual
code. Data Types is one of the pain points research identifies
when transitioning from the blocks to text. When students
are in “code peek” and see the text, the data type could be
identified by weight, color, format, etc. to highlight to the
student that this was not in the graphical block. In FIG. 16
the user has peeked at the Graphical Block Iterator=0 450
revealing the Code Block 452 which contains the C state-
ment:

[0198] Int Iterator=0;

[0199] introducing the concept of a data type. Addition-
ally, in FIG. 16 the user has peeked at the group of Graphical
Blocks contained within repeat 10 454 revealing the Code
Block 456 which contains the C statements:

for(int i=0; i<10; I++)

Iterator = Iterator + 1;
if (Tterator == 8)

printf(*We can count!);

else

{
¥
¥

US 2018/0285084 Al

further introducing the concept of data types in the “for
statement”.

[0200] Enhanced Block Conversion—Several methods
can be implemented to convert a Graphical Block when the
Graphical Block contains a Code Block. FIG. 17 shows a
Code Block 462 contained within a Graphical Block Repeat
block 460. When the user requests to convert the Repeat
block 462 to a Code Block, the right side program 470 is the
result. The new Code Block merges the old Code Block 462
and wraps the repeat functionality around it. The resulting
Code Block 472 contains both the C statements for the
Repeat block 460 and the old Code Block 462.

[0201] As illustrated FIG. 17 shows a program 464 on the
left that contains a mix of Graphical Blocks and Code
Blocks. As shown on the left the Code Block 462 is
contained within the Graphical Block Repeat block 460.
Through user interaction the Repeat block is selected for
conversion to a Code Block. The resulting program 470 on
the right shows that the application has converted the Repeat
block 460 to the equivalent C statements and merged them
into the Code Block 472. The Repeat block 460 equivalent
C statements 474 are also shown below:

for (int i = 0, i<10, i++)

{

The C statement
Counter = Counter *10;

476 from the left side Code Block 462 was inserted in the
appropriate location within the Repeat block 460 equivalent
C statements 474. The resulting Code Block 472 on the right
is equivalent to the Repeat block 460 on the left plus the
Code Block 462 on the left.

[0202] Merging Code Blocks: Several methods can be
implemented to merge Code Blocks. One method could be
to drag one Code Block onto another, indicating the inten-
tion to merge. The Exact position of the dragged block could
indicate whether it is desired to add the dragged block before
or after the destination blocks code. In FIG. 18, the bottom
Code Block 480 was detached and dropped on the lower half
of the top Code Block 482. A new merged Code Block 484
contains the C statements from both blocks 480 and 482. The
application would simply automatically merge the two when
dropped.

[0203] Error Indication: It is also an aspect of the inven-
tion to provide Code Block colorization for “errors” to allow
the user to easily identify issues. Other methods could also
be implemented to identify errors. FIG. 19A shows a Code
Block 500 that uses line numbers to assist users in identi-
fying a specific lines. In this case line 10 has an error. The
incorrect specifier “% s” for an integer in the printf state-
ment. The application can indicate errors by making the
background of the block red. These issues can be identified
immediately after typing as opposed to waiting until the user
attempts to compile and download. FIG. 19B shows the line
502 that contain the error highlighted. The specific part of
the line could also be highlighted or indicated. FIG. 19C
should further user help where the user has clicked on the
highlighted line and a pop-up window 504 provides hints on
how to fix the issue. FIG. 19D shows the program with the
error corrected. FIG. 19E shows that the application can
optionally indicate errors exist by making the background of
the error red 506. FIG. 19F shows that the application can

Oct. 4, 2018

optionally indicate that no errors exist by making the back-
ground 508 of the entire Code Block green.

[0204] Advanced Functions: FIG. 20A discloses the abil-
ity to create blocks with functions 520 and 522 (these are the
two stand alone blocks on the right starting with int and also
starting with bool) to assist users to learn how to break code
up into reusable units. The function blocks do not have
“connectors” because they are stand alone units of code
(524). The function block shape can correspond with the
enclosed function’s return type. Calls to the function blocks
can be embedded in normal blocks, and they will only fit
what their return type allows. This also has the unique
advantage of being able to arrange your code vertically or
horizontally. FIG. 20A shows two function blocks posi-
tioned alongside of block code that calls the functions.
[0205] FIG. 20B shows additional features of a text editor
that can be added to the Code Blocks, such as but not limited
to Line numbers, a status bar 530 can be added to the bottom
to indicate the line number, code type, etc., and a top bar 532
can be added with pull down menus such as file, edit, etc. All
this can be contained within the Code Block. Alternately this
can be done with buttons and icons. Alternately this can be
done within the main programs menu structure.

[0206] Different types of Code: The Code Block discussed
previously could have several types. One example is shown
in FIG. 21 where the user can select the type of code 510
he/she wants to add. This allows the editor inside the block
to make adjustments on syntax suggestions and error check-
ing based on the code type. Examples that work well with
normal blocks are C++, C, and Assembly. However, any
language could be used such as javascript and python.
[0207] Collapsible Code Blocks: FIG. 22A shows a Mixed
Mode program 550 with two Code Blocks 552 and 554.
Each Code Block has a collapse icon 556 as shown that
allows the user to collapse the code block down to a smaller
size. FIG. 22B shows the same Mixed Mode program 550
after the user has clicked on the collapse icon 556 for the first
Code Block 552. A portion of the C statements within Code
Block 552 are shown on the one line of the Collapsed Code
Block 552' along with the number of lines of code. FIG. 22C
shows the same Mixed Mode program 550 after the user has
clicked on both collapse icons 556 for Code Blocks 552 and
554. A portion of the C statements within Code Block are
shown on the one line of the Collapsed Code Blocks 552'
and 554' along with the number of lines of code. There are
many other ways to show a glimpse of the code within the
Collapsed Code Block

[0208] Alternate Method: FIG. 24A shows code as an
example of an all textual program 600. As further illustrated
in FIG. 24B, there is provided as an alternative embodiment
of the mixed mode programming a new mixed textual
programming environment 602 that includes a program 610
that is identical to the all textual program 600 of FIG. 24A.
This method uses a textual programming environment that is
more like a word processor. This alternate method has many
of the same advantages of the mixed mode programming
using Code Blocks. This method may have advantages to
more experienced users who already prefer a text editor for
programming and who want the advantages of using Graphi-
cal Blocks for some functions. Graphical Blocks can be
dropped into the text area 602. The example working area in
FIG. 24B shows line numbers on the left of each row. Line
1 shows a When block 612, identical to the Graphical Block
When blocks provided in the previous embodiments but is

US 2018/0285084 Al

now appearing in a text area. Line 2 shows a text code
statement 614 in between two blocks on line 1 and 3. Line
3 is the beginning of a Repeat block 616 that extends to line
12. Repeat block 616 contains textual code on lines 4, 6, 8,
9 and 10 as well as the If statement 618 that starts on line 5.

[0209] FIG. 24C shows the same program as in FIG. 24B,
except that the users has clicked in the text to insert their
cursor at the end of line 2, and pressed return to get a new
empty line number on line 3 (Ref#620). All the subsequent
Graphical Blocks and text lines have flowed down one row
similar to a text editor. Referring now also to FIG. 24D, the
same program 610 is shown, except that the user has deleted
line 2 of text. All the Graphical Blocks and text lines have
flowed up one row. Additionally the When block 612 and the
Repeat block 616 have now joined together.

[0210] FIG. 24E shows a new program being developed in
the mixed textual programming environment 602 where the
user has started by dragging a When block 612 into a
working area 622. The working area in this example has line
numbers 624.

[0211] Advantages of the New Method

[0212] Research states that a clear advantage of block
modality is that it allows students to quickly write and
compile a program, and then immediately get feedback as to
what that program accomplishes. By allowing students,
beginning with one line at a time, to directly manipulate a
programming block with text, the benefits of the tight
edit-execution cycle are maintained. Research, also tells us
that using block modality doesn’t teach students a concep-
tual understanding of variables, since students do not have
to do anything with the data types associated with variables.
By being able to directly manipulate a block, students can be
asked to identify data types for variables and thus begin to
build that conceptual understanding. Since the rest of the
program can still be blocks, students still experience the
benefits of the tight edit-execution cycle.

[0213] Inblock modality, the structure of the block defines
the scope. When students program in text modality, they
must use syntax to provide that scope. The research states
that this is one of the most prevalent errors that students
make when transitioning from block to text. The problem is
only compounded when students are using multiple IF
statements and nesting statements. With this new methods,
students can click on a block, convert it to text, and the
syntax that determines scope is provided for them. This new
method scaffolds the process for the students and lightens
the cognitive load that students experience as they are
attempting to focus on the logic of their program. Students
can also incrementally move to adding their own symbols to
scope as they transition to full text modality. This new
method will help students to build an understanding of scope
in a scaffolded way. Once again, the research is clear that
students currently have a difficult time understanding scope
when they create purely block programs and when they have
to create purely text programs.

[0214] This new method allows students to combine block
and text programming. A benefit of using block modality is
that students are not tasked with memorizing the names of
commands. As a result, students experience less cognitive
load as they attempt to focus on their programming task.
This new methods scaffolds this process as students will not
go straight from block to text, but instead be able to type new

Oct. 4, 2018

commands as they begin to become familiar with them,
while still relying on blocks for those commands that are not
memorized.

[0215] Students are able to quickly recognize what a block
command does because the names of the block are often in
a language that is more familiar to students that the names
used in text modality. This new method allows students to
drop a graphical block into a text code block, thus allowing
the students to see the text equivalent of a block. This also
allows students to see other information (e.g. data types,
identifiers) that is normally abstracted out by the block. This
introduces the students to these concepts in a more scaf-
folded way, and allows the students to still experience the
benefits of the tight edit-execution cycle.

[0216] Research also tells us that students have difficulty
writing expressions when transitioning to text modality. This
new method allows student to drop a new Code Block into
the argument of a graphical block. Students can now practice
writing expressions with limited cognitive load, as the rest
of the program is still utilizing block modality. Once again,
this new method allows users to transition in a more scaf-
folded way, and allows the students to still experience the
benefits of the tight edit-execution cycle.

[0217] One of the disadvantages of students using block
modality; is that students rely on bottom-up programming,
whereas they identify low-level tools (e.g. graphical blocks)
to compose programs. With this new method, students have
the ability to create blocks that can be used as functions. This
ability allows students to begin to employ top-down pro-
gramming, whereas they are ability to break a programming
challenges into smaller chunks and use functions to program
those smaller chunks.

[0218] A principle of good instructional design is that the
content presented to students is targeted, precise, and nar-
row. In a programming context, research tells us that there
are many pain points that students experience when they are
novice programmers and when they attempt to transition
from block to text modality. This new method will help to
foreground the targeted concepts that are presented to stu-
dents, because the one programming environment will push
other concepts, which are not the learning targets, in the
background. For example, if students were transitioning
from block modality, like Scratch, to text modality, like
Python, the learning would not be precise because the
students would have to learn a new programming environ-
ment in addition to learning Python. With this new method,
when students transition from a block to text modality, they
will not have to learn a new programming environment. As
a result, the learning content for students can be targeted,
precise and narrow and thus cognitive load can be avoided.
Allowing students to stay in one programming environment
and thus avoiding cognitive load is not a trivial achievement.
Research tells us that novice learners become “experts”
when students are able to store knowledge within a schema.
Expertise then develops when students combine ideas and
concepts into a schemata. This expertise cannot be devel-
oped when a learner’s working memory is overloaded with
new information. If students are changing programming
environments, while also trying to learn the transition
between the text modality and block modality, it is likely
that the students working memory will be overloaded with
new and additional information. Moreover, it takes time for
learners to develop a schema, therefore, it is unrealistic to
think that students will master a new programming envi-

US 2018/0285084 Al

ronment with a quick tutorial and then be able to begin with
the real learning targets of learning a text-based language.

[0219] Additionally, another benefit of block modality is
that sequencing within a program is also determined by the
blocks. For example, if a block does not “fit” in a particular
spot, the user knows it cannot place it there. This helps
novice programmers place commands in the correct
sequence. If there is an error in sequence, the user can
quickly see that feedback because of, once again, the tight
edit-execute cycle. By placing text modality within block
modality, the new method allows the user to use the advan-
tages of defined scope and sequence of the program, while
introducing students to the things that users normally
struggle with when they begin text based programming,
such as variable assignments, expressions, etc. This allows
the teacher to scaffold these concepts while maintaining the
advantages of block modality.

[0220]

[0221] Blocks that are used in the user interface have two
associated definition files. The first contains information that
describes the graphical appearance of the block, this
includes any input or output fields it may have. The second
file describes how a block is converted to text. For example,
in FIGS. 23 A through 23B, a block 570 that implements the
standard C library function called printf may appear. The
appearance of the block is controlled by this structure
contained in the definition file.

Implementation in a Visual Programming Editor

Oct. 4, 2018

Blockly.JavaScript[‘controls__if’] = function(block) {
/I elseif/else condition.
var n = 0;
var argument = Blockly.JavaScript.valueToCode(block, ‘IF” + n,
Blockly.JavaScript. ORDER__NONE) || “false’;
var branch = Blockly.JavaScript.statementToCode(block, ‘DO’ + n);
var code = “if (* + argument + *) {\n‘ + branch + *}’;
for (n = 1; n <= block.elseifCount_; n++) {
argument = Blockly.JavaScript.valueToCode(block, ‘IF’ + n,
Blockly.JavaScript. ORDER__ NONE) || “false’;
branch = Blockly.JavaScript.statementToCode(block, ‘DO’ +
n);
code += * else if (* + argument +) {\n* + branch + ’}’;

¥

if (block.elseCount_) {
branch = Blockly.JavaScript.statementToCode(block, ‘ELSE’);
code += * else {\n* + branch + }’;

return code + “\n’ ;

>

[0225] The final code that is generated for the example
function would be as follows.

/**

* Test function

*/

void foo() {

if (button__pressed == 1) {
printf(*Hello World™);

Blockly.Blocks[‘printf._block’] = {

init: function() {
this.appendValuelnput(“TEXT")
.setCheck(null)
.appendField(“printf_text”);
this.setInputsInline(true);
this.setPreviousStatement(true, null);
this.setNextStatement(true, null);
this.setColour(Blockly.Blocks.console. HUE);
this.setTooltip(**);

[0222] The code generation function for this block takes
the following form.

Blockly.JavaScript[“printf_block’] = function(block) {

var value__text =
Blockly.JavaScript.valueToCode(block, TEXT’,
Blockly.JavaScript. ORDER__ATOMIC);

// format for C code output

value_text = value_text.replace(/*/g,*");

// return code

var code = ‘printf(‘ + value_text + *);\n’;

return code;

I8

[0223] This function retrieves the parameters that have
been supplied to the block, in this example there is only a
single input field, and then creates the program text for the
appropriate programming language, in this case C.

[0224] Blocks that enclose other nested blocks 575 (FIG.
236) will recursively call the necessary functions to build an
entire section of code. For example, the following group of
blocks contains an ““if” statement that would retrieve the
code for nested blocks to be executed when the condition is
true.

[0226] In these examples Javascript is used as the lan-
guage for the block definition and code generation files,
other languages and formats for these definitions could also
be used.

[0227] In existing implementations, the entire collection
of blocks is converted to code in the background. Once the
complete final code is generated it can be passed to a
compiler to then on to the target platform for execution. All
of this happens behind the scenes allowing the student to be
shielded from the actual code. In some implementations, the
complete final code is made available to the user. In the new
implementation normal blocks are converted to textual code
in the background as before, then they are combined with the
Code Blocks textual code in the order prescribed by the
blocks order, thus making a complete final code. Again the
complete final code is generated it can be passed to a
compiler to then on to the target platform for execution.
Thus the tight edit-execution cycle is maintained.

[0228] The new implementation allows students to com-
mand a single block or group of blocks to generate their
code. A new “text editor” block replaces the original block
or blocks, the text editor block is described in the same way
as other graphical blocks with a definition for how it is to be
displayed and also how it should generate code to present to
the compiler. The single input field that this block contains
could have many of the features of a traditional program-
mers’ text editor, for example, syntax coloring, code folding,
automatic indentation and keyword completion. The original
graphical blocks can be linked to the new block and hidden
from view, in the situation the student wishes to abandon
text editing they can be restored, this would be in addition
to the usual undo capability of the application.

[0229] Blocks surrounding the text editor block can be
merged as necessary, for example, if the code block is

US 2018/0285084 Al

surrounded by a conditional statement block, the two may be
merged so the text editor contains the original code state-
ments inside the conditional statement. A student may
increase the complexity of their program by dragging new
graphical blocks to the program and merging into the text
block after their functionality has been tested. Graphical
blocks may also be dragged directly inside the text block, the
corresponding code would be directly inserted without the
necessity to type it in.

[0230] Now a user is allowed to work in both block
modality and text modality. When it is time to compile, the
blocks are parsed as before and the code blocks generate
their output in a similar way to all other graphical blocks to
complete the final program passed to the compiler.

[0231] While the instant invention has been shown and
described in accordance with a preferred and practical
embodiment thereof, it is recognized that departures from
the instant disclosure are contemplated within the spirit and
scope of the present invention.

1. A system, comprising:

a processor;

a memory medium, coupled to the processor, wherein the
memory medium stores program instructions execut-
able by a computer system, and wherein the program
instructions being configured to:
create an graphical coding environment,

wherein the graphical coding environment defines a plu-
rality of graphical programming blocks, each graphical
programming block, of the plurality of graphical pro-
gramming blocks, is configured to represent a pre-
defined programming element; and

wherein the graphical coding environment further defines
a coding programming block, the coding programming
block is configured to represent a programming block
for use in the graphical coding environment and further
configured to use standard textual coding language
within the programming block, and
create a graphical program in the graphical coding

environment in response to user input, wherein the
graphical program comprises, in response to the user
input, at least one graphical programming block and
at least one coding programming block intercon-
nected in the graphical coding environment that
visually indicates functionality of the graphical pro-
gram in accordance with the user input; and
generate an output program based on the graphical
program, wherein the output program implements
the functionality of the graphical program, and
wherein the output program when executed, controls
either a virtual object or a physical object in accordance
with the user defined functionality of the graphical
program.

2. The system of claim 1, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
define a variable edit mode, and wherein one or more of the
graphical programming block, of the plurality of graphical
programming blocks, is configured to include a variable
element set by a user activating the variable edit mode.

3. The system of claim 1, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
define a peek mode, wherein the peck mode is defined for a

Oct. 4, 2018

user to select a graphical programming block, for which the
set of instructions for the peek mode is configured to:

convert the selected graphical programming block into a

standard textual programming language, and

display within the graphical coding environment the stan-

dard textual programming language in a display win-
dow adjacent to the graphical programming block.

4. The system of claim 3, wherein the set of instructions
for the peek mode is further configured to create a coding
programming block equivalent to the selected graphical
programming block, and wherein the coding programming
block being accessible to edit with standard textual coding
language.

5. The system of claim 3, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
color code two or more graphical programming blocks with
different predefined colors.

6. The system of claim 5, wherein the color code set of
instructions are further configured to color code the textual
programming language in the display window adjacent to
the one or more graphical programming blocks such that the
color of the textual programming language matches the
color of the graphical programming block.

7. The system of claim 1, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
define a conversion mode, and wherein the conversion mode
is configured for a user to select one or more graphical
programming blocks, wherein upon activation the set of
instructions for the conversion mode is configured to:

convert the selected one or more graphical programming

blocks into a standard textual programming language,
and

create one or more coding programming blocks equiva-

lent to the selected one or more graphical programming
blocks, and wherein the one or more coding program-
ming blocks being accessible to edit with standard
textual coding language.

8. The system of claim 1, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
define a graphical programming argument block for use in
creation of the graphical program, and wherein the graphical
programming argument block is configured as a graphical
block with an argument segment embedded within the
graphical block, and the set of instructions further config-
ured to accept standard textual coding language in the
argument segment.

9. The system of claim 1, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to:

automatically convert a graphical block to standard tex-

tual coding language, and insert the standard textual
coding language into the coding programming block
defined in the graphical program, at a position defined
by a user and within the coding programming block,
when the graphical block is selected by a user and the
user defines said position for insertion.

10. The system of claim 1, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
merge blocks, and wherein the set of instructions to merge
blocks being configured to:

US 2018/0285084 Al

automatically add a second coding programming block to
a first coding programming block, defining a merged
coding programming block comprising: both a second
standard textual coding language defined by the second
coding programming block; and a first standard textual
coding language defined by the first coding program-
ming block.

11. The system of claim 10, wherein the set of instructions
to merge blocks being further configured to inset the second
standard textual coding language at a positioned within the
first standard textual coding language selected by a user.

12. The system of claim 1, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
identify errors in the coding programming block, and
wherein the set of instructions to identify errors being
configured to:

check an user defined standard textual coding language
within the coding programming block to determine if
the output program can properly execute to control
either the virtual object or a physical object in accor-
dance with the user defined functionality; and

automatically change the color of the user defined stan-
dard textual coding language when the output program
fails to properly execute.

13. The system of claim 12, wherein the set of instructions
to identity errors is further configured to change the color of
the user defined standard textual coding language prior to
the output program being generated.

14. The system of claim 1, wherein the graphical coding
environment further includes set of instructions to define a
mixed programming mode, and wherein the mixed program-
ming mode is configured to:

create a text programming environment within the graphi-
cal coding environment, wherein the text programming
environment defines coding text lines,

receive graphical programming blocks, and

receive standard textual coding language on the coding
text lines; and

create the graphical program in response to user input,
wherein the graphical program comprises, in response
to the user input, at least one graphical programming
block and standard textual coding language intercon-
nected in the graphical coding environment that visu-
ally indicates functionality of the graphical program in
accordance with the user input.

15. A system, comprising:

a processor;

a memory medium, coupled to the processor, wherein the
memory medium stores program instructions execut-
able by a computer system, and wherein the program
instructions being configured to:

create a mixed programming coding environment,
wherein the mixed programming coding environment
defines a plurality of graphical programming blocks, each
graphical programming block, of the plurality of graphical
programming blocks, is configured to represent a predefined
programming element; and

wherein the mixed programming coding environment
includes coding text lines configured to receive standard
textual coding language; and

create a graphical program in the mixed programming
coding environment in response to user input, wherein
the graphical program comprises, in response to the

16

Oct. 4, 2018

user input, at least one graphical programming block
and standard textual coding language interconnected in
the graphical coding environment that visually indi-
cates functionality of the graphical program in accor-
dance with the user input; and

generate an output program based on the graphical pro-
gram, wherein the output program implements the
functionality of the graphical program, and

wherein the output program when executed, controls
either a virtual object or a physical object in accordance
with the user defined functionality of the graphical
program.

16. A system, comprising:

a processor;

a memory medium, coupled to the processor, wherein the
memory medium stores program instructions execut-
able by a computer system, and wherein the program
instructions being configured to:
create an graphical coding environment,
create a graphical program in the graphical coding

environment in response to user input, wherein the
graphical program comprises, in response to the user
input, at least one graphical programming block and
at least one coding programming block intercon-
nected in the graphical coding environment that
visually indicates functionality of the graphical pro-
gram in accordance with the user input, and
wherein the graphical program when executed, controls
either a virtual object or a physical object in accordance
with the user defined functionality.

17. The system of claim 16, wherein the graphical coding
environment further includes a set of instructions, stored on
the memory, to:

configure the graphical programming block to represent a
predefined programming element, and

configure the coding programming block to represent a
programming block for use with standard textual cod-
ing language.

18. The system of claim 17, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
define a variable edit mode, and wherein one or more of the
graphical programming block, of the plurality of graphical
programming blocks, is configured to include a variable
element set by a user activating the variable edit mode.

19. The system of claim 17, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
define a peek mode, wherein the peeck mode is defined for a
user to select a graphical programming block, for which the
set of instructions for the peek mode is configured to:

convert the selected graphical programming block into a
standard textual programming language, and

display within the graphical coding environment the stan-
dard textual programming language in a display win-
dow adjacent to the graphical programming block.

20. The system of claim 19, wherein the set of instructions
for the peek mode is further configured to create a coding
programming block equivalent to the selected graphical
programming block, and wherein the coding programming
block being accessible to edit with standard textual coding
language.

21. The system of claim 17, wherein the program instruc-
tions configured to create the graphical coding environment,

US 2018/0285084 Al

further define a set of instructions, stored on the memory, to
color code two or more graphical programming blocks with
different predefined colors.

22. The system of claim 21, wherein the color code set of
instructions are further configured to color code the textual
programming language in the display window adjacent to
the one or more graphical programming blocks such that the
color of the textual programming language matches the
color of the graphical programming block.

23. The system of claim 17, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
define a conversion mode, and wherein the conversion mode
is configured for a user to select one or more graphical
programming blocks, wherein upon activation the set of
instructions for the conversion mode is configured to:

convert the selected one or more graphical programming

blocks into a standard textual programming language,
and

create one or more coding programming blocks equiva-

lent to the selected one or more graphical programming
blocks, and wherein the one or more coding program-
ming blocks being accessible to edit with standard
textual coding language.

24. The system of claim 17, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
define a graphical programming argument block for use in
creation of the graphical program, and wherein the graphical
programming argument block is configured as a graphical
block with an argument segment embedded within the
graphical block, and the set of instructions further config-
ured to accept standard textual coding language in the
argument segment.

25. The system of claim 17, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to:

automatically covert a graphical block to standard textual

coding language, and insert the standard textual coding
language into the coding programming block defined in
the graphical program, at a position defined by a user
and within the coding programming block, when the
graphical block is selected by a user and the user
defines said position for insertion.

26. The system of claim 17, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions, stored on the memory, to
merge blocks, and wherein the set of instructions to merge
blocks being configured to:

automatically add a second coding programming block to

a first coding programming block, defining a merged
coding programming block comprising: both a second
standard textual coding language defined by the second
coding programming block; and a first standard textual
coding language defined by the first coding program-
ming block.

27. The system of claim 26, wherein the set of instructions
to merge blocks being further configured to inset the second
standard textual coding language at a positioned within the
first standard textual coding language selected by a user.

28. The system of claim 17, wherein the program instruc-
tions configured to create the graphical coding environment,
further define a set of instructions stored on the memory to

Oct. 4, 2018

identify errors in the coding programming block, and
wherein the set of instructions to identify errors being
configured to:
check an user defined standard textual coding language
within the coding programming block to determine if
the output program can properly execute to control
either the virtual object or a physical object in accor-
dance with the user defined functionality; and

automatically change the color of the user defined stan-
dard textual coding language when the output program
fails to properly execute.

29. The system of claim 28, wherein the set of instructions
to identity errors is further configured to change the color of
the user defined standard textual coding language prior to
the output program being generated.

30. An enhanced graphical user interface coding environ-
ment, comprising: at least one graphical block and at least
one coding block being connected together to form a pro-
gram.

31. The enhanced graphical coding environment of claim
30, wherein the at least one coding block is defined to accept
textual coding language and wherein the textual coding
language within the coding block is interpreted and/or
compiled into the program.

32. The enhanced graphical coding environment of claim
31, wherein the at least one coding block is compiled is
interpreted and/or compiled into the program such that a
graphical block or coding block before and/or after the at
least one coding block and insert the coding block in the
proper order.

33. A method of operating an enhanced graphical coding
environment for the creation of a program having at least
one graphical block, the method of operating the enhanced
graphical coding environment further comprising:

providing a visual representation of an equivalent code of

the at least one graphical block in a textual language.

34. The method of claim 33, wherein the step of providing
avisual representation of an equivalent code further includes
providing the visual representation of the equivalent code
within a at least one code block.

35. The method of claim 33 further comprising a step of
replacing the at least one graphical block with at least one
coding block, wherein the at least one coding block repre-
senting the at least one graphical block as an equivalent code
and the at least one coding block being further accessible for
textual code language editing.

36. The method of claim 33 further comprising a step of:

selecting one or more graphical blocks;

converting the selected graphical blocks to an at least one

coding block, wherein an equivalent code in the at least
one coding block identically represents the selected
graphical blocks in a textual code language.

37. The method of claim 36, wherein at least one coding
block being further accessible for textual code language
editing.

38. A method of operating an enhanced graphical coding
environment for the creation of a program having at least
one graphical block, the method of operating the enhanced
graphical coding environment further comprising:

connecting a code block in the enhanced graphical coding

environment to at least one graphical block to create a
program, wherein a code block is further defined as
being accessible for textual code language editing; and

US 2018/0285084 Al

compiling the program to run a set of instructions defined

by the at least one graphical block and the code block.

39. The method of operating an enhanced graphical
coding environment of claim 38, wherein the one code block
is defined to accept textual coding language and wherein the
textual coding language within the coding block is inter-
preted and/or compiled into the program.

40. The method of operating an enhanced graphical
coding environment of claim 38 further comprising:

selecting one or more graphical blocks, of the at least one

graphical block; and

peeking at the selected one or more graphical blocks as a

visual representation of a code block without convert-
ing the selected one or more graphical into a code
block.

41. The method of operating an enhanced graphical
coding environment of claim 40 further comprising convert-
ing the selected one or more graphical blocks into a code
block.

42. The method of operating an enhanced graphical
coding environment of claim 41 further comprising:

expressing in different colors different graphical blocks,

of the at least one graphical block; and

expressing the text statements defined by the code block

of the converted and selected one or more graphical
blocks in colors matching the different colors of the
different graphical blocks, such that a single text state-
ment, of the text statements, is expressed in one color
matching the color of a single graphical block, of the
converted and selected one or more graphical blocks.

43. The method of operating an enhanced graphical
coding environment of claim 42 further comprising:

dragging and dropping a graphical block into a code

block; and

automatically converting the graphical block into text

statements to create a new code block that incorporates
the dragged and dropped graphical block.

44. The method of operating an enhanced graphical
coding environment of claim 38 further comprising:

providing a tool bar area defined within the enhanced

graphical coding environment, the tool bar area having
defined graphical blocks and code blocks;

providing a working area defined within the enhanced

graphical coding environment, the working area per-

Oct. 4, 2018

mitting the connection of one more graphical blocks
and code blocks together to form the program; and
dragging from the toolbar area one or more graphical
blocks and code blocks to add the one or more graphi-
cal blocks and code blocks to an existing program.

45. The method of operating an enhanced graphical
coding environment of claim 44, wherein the enhanced
graphical coding environment:

automatically detecting work in text statements in a code

block and automatically changing the toolbar area to a
tool text creation and editing toolbar.

46. The method of operating an enhanced graphical
coding environment of claim 45, wherein the enhanced
graphical coding environment automatically detecting work
in text statements in a code block and automatically chang-
ing the toolbar area to a textual drag and drop toolbar.

47. The method of operating an enhanced graphical
coding environment of claim 38 further comprising:

providing graphical blocks and code blocks with an

individual toggle feature for collapsing and expanding
the contents of the graphical block and code blocks.

48. The method of operating an enhanced graphical
coding environment of claim 38 further comprising auto-
matically indenting textual statement based on a text coding
environment.

49. The method of operating an enhanced graphical
coding environment of claim 44 further comprising:

dragging and dropping a second code block into a first

code block, wherein the first code block is situated in
the working area; and

merging the second code block with the first code block

to create a new code block in the working area, wherein
the new code block is equivalent in text programming
statements to the first and second code blocks.

50. The method of operating an enhanced graphical
coding environment of claim 38 further comprising provid-
ing an error indicator to specify a coding error in text
statements defined in a code block.

51. The method of operating an enhanced graphical
coding environment of claim 50, wherein the error indicator
is a color coding of the coding error.

#* #* #* #* #*

