
US 20180314846A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0314846 A1

Schultz et al . (43) Pub . Date : Nov . 1 , 2018

(54) SECURING VIRTUAL EXECUTION
ENVIRONMENTS

(52) (71) Applicant : Microsoft Technology Licensing , LLC
Redmond , WA (US)

G06F 21 / 64 (2006 . 01)
G06F 21 / 57 (2006 . 01)
U . S . CI .
CPC GO6F 21 / 6218 (2013 . 01) ; G06F 9 / 45558

(2013 . 01) ; G06F 2009 / 45587 (2013 . 01) ; G06F
21 / 575 (2013 . 01) ; G06F 21 / 64 (2013 . 01) (72)

(57) ABSTRACT

Inventors : Benjamin M . Schultz , Bothell , WA
(US) ; KINSHUMANN , Redmond , WA
(US) ; David John Linsley , Seattle , WA
(US) ; CHARLES GLENN JEFFRIES ,
Sammamish , WA (US) ; Giridhar
Viswanathan , Redmond , WA (US) ;
Scott Daniel Anderson , Seattle , WA
(US) ; Frederick J . Smith , Redmond ,
WA (US) ; Hari R . Pulapaka ,
Redmond , WA (US) ; JianMing Zhou ,
Sammamish , WA (US) ; Margarit
Simeonov Chenchev , Sammamish , WA
(US) ; David B . Probert , Snohomish ,
WA (US)

Facilities are provided to secure guest runtime environments
(GREs) . Security policy specifications may be associated
with GREs . A GRE ' s security policy may be specific to the
GRE and may also include security policy inherited from
higher levels such as a host operating environment . The
security policy of a GRE specifies restrictions and / or per
missions for activities that may be performed within the
scope of execution of the GRE . A GRE ' s security policy
may limit what the GRE ’ s guest software may do within the
GRE . Restrictions / permissions may be applied to objects
such as files , configuration data , and the like . Security
specifications may be applied to execution initiated within a
GRE . A GRE ' s security specification may restrict / permit
executable objects from loading and executing within the
GRE . The executability or accessibility of objects may be
conditioned on factors such as the health / integrity of the
GRE , the host system , requested files , and others .

(21) Appl . No . : 15 / 582 , 741

(22) Filed : Apr . 30 , 2017

(51)
Publication Classification

Int . Ci .
G06F 21 / 62 (2006 . 01)
G06F 9 / 455 (2006 . 01)

VIRTUAL MACHINE VIRTUAL MACHINE

APP APP APP APP

GUEST OS 134 – to 134 GUEST OS
POLICY

POLICY

POLICY POLICY 1087 108 A 108

POLICY HYPERVISOR
(GUEST RUNTIME ENGINE) 100

CPU MEM NIC STORAGE

124 126 128 130

Patent Application Publication Nov . 1 , 2018 Sheet 1 of 7 US 2018 / 0314846 A1

100 104

HOST

HOST OS / KERNEL

GUEST RUNTIME
ENGINE

GUEST RUNTIME
ENVIRONMENTS

POLICY

FIG . 1

Patent Application Publication Nov . 1 , 2018 Sheet 2 of 7 US 2018 / 0314846 A1

100
120

VIRTUAL MACHINE VIRTUAL MACHINE

APP APP APP APP

134 - 4 GUEST OS
POLICY H GUESTOS - 134

POLICY
POLICY1 108 1 08

POLICY
122 - 4 HYPERVISOR

(GUEST RUNTIME ENGINE) W 100

CPU CPU MEM MEMNIC NIC STORAGE STORAGE
He

24 de 128 180 132

FIG . 2

Patent Application Publication Nov . 1 , 2018 Sheet 3 of 7 US 2018 / 0314846 A1

102
140 140

1

CONTAINER CONTAINER

SERVICE APP

116 7 118 APP
DEPENDENCIES /

LIBRARIES

APP
DEPENDENCIES /

LIBRARIES

108 POLICY POLICY H tt108

142 CONTAINER ENGINE
(GUEST RUNTIME ENGINE)

POLICY

104 HOST OS / KERNEL 100

CPU MEM NIC STORAGE

Ba 126 128 130 132

FIG . 3

Patent Application Publication Nov . 1 , 2018 Sheet 4 of 7 US 2018 / 0314846 A1

102 160 100 / 104 164

HOST RUNTIME ENVIRONMENT

GUEST RUNTIME ENVIRONMENT

SERVICE
POLICY MANAGER + POLICY MONITOR

APPLICATION

GUEST POLICY HEALTH /
INTEGRITY
MONITOR POLICY

STORE

168 162 166 16

FIG . 4

Patent Application Publication Nov . 1 , 2018 Sheet 5 of 7 US 2018 / 0314846 A1

180
instantiate new guest runtime

environment (GRE)

1182
read relevant policies

184
begin monitoring execution of GRE

186 for instructions , processes , and / or
resources , evaluate requested or

performed execution / access against
policy

188 for each violation , take corrective
action , e . g . , deny request , reverse
access , issue message or warning ,

etc .

FIG . 5

Patent Application Publication Nov . 1 , 2018 Sheet 6 of 7 US 2018 / 0314846 A1

180

FILESYSTEM

184 FILE - 1

FILE - 2
CODE INTEGRITY

SYSTEM 186

HASHI
FINGERPRINT
MODULE FILE - 3 188

102

194 SIGNING
MODULE GRE

FILE - N ??? ?? ??? ??

???? ??? SIGNING
POLICY ??

SIGNED
HASHES ??? ??? ??? ??? ?? ???? ??? ??? ???

. . .

API
??? ??? ?????? ?? ??? ???

PROCESS
LOADI
CREATE
MODULE

06

FIG . 6

Patent Application Publication Nov . 1 , 2018 Sheet 7 of 7 US 2018 / 0314846 A1

222

222 228

102

224 226

FIG . 7

US 2018 / 0314846 A1 Nov . 1 , 2018

SECURING VIRTUAL EXECUTION
ENVIRONMENTS

computer . Naturally , there has been concern and measures
taken for security . Containers have been considered less
secure than VMs because containers usually run under the
purview of a same operating system kernel and share a same
memory space . Regardless of the type of GRE , most security
efforts have focused on protecting the host from threats
originating from within a GRE executing on the host . The
thought has been that if the host is protected from malicious
activity that might originate from within a GRE , the integrity
and security facilities of the host can be relied on to maintain
walls between the GREs on the host . In other words , each
GRE on a host has been protected by protecting the host
environment ; as long as the host is not compromised the
GRE layer on the host has been assumed to sufficiently
secure the GREs . This can be seen in the Docker Engine
container implementation . The Docker Engine uses the
seccomp facility to limit which system calls can be called
from within a container , thus making it more difficult for a
container to access or alter objects outside the container .
[0005] This host - centric security approach has failed to
adequately secure GREs . Because the host environment
usually has a higher security level (e . g . , kernel - mode) than
the GREs themselves (e . g . , user - mode) , GREs are inherently
vulnerable to the host environment . Even an uncompro
mised host environment has the potential to alter the content
or behavior of a GRE . What is needed are new ways of
securing GREs that focus on internally protecting GREs .
New techniques that help secure GREs by limiting what can
be done within a GRE are described below . In some cases ,
even a compromised host environment may have limited
ability to in turn compromise or corrupt the GREs that it is
hosting and the guest software of the GREs .

BACKGROUND
[0001] Virtualization has become prevalent for numerous
reasons . Machine virtualization has been used to increase
utilization of hardware resources , improve security , isolate
code , facilitate shifting of workloads among machines ,
enable incompatible operating systems to execute on a same
machine , partition a single machine between tenants , and
other reasons . Machine virtualization involves a virtualiza
tion layer (e . g . , a hypervisor) presenting the hardware of a
machine as virtual machines (VMs) . Each VM typically has
its own virtualized hardware such as a virtual disk drive ,
virtual processors , virtualized memory , etc . Each VM will
usually have a guest operating installed thereon ; the guest
operating system operates as though it were executing
directly on the host machine ' s hardware and the virtualiza
tion layer is transparent to the guest operating system .
[0002] Machine virtualization has advantages and disad
vantages . One disadvantage is excessive resource overhead .
Each VM requires storage . Sharing processing time among
VMs requires many expensive context switches . Handling
privileged instructions can also incur context switching
overhead . Each VM has an entire operating system which
can require significant storage . Each VM requires its own
memory space . The virtualization layer can itself have a
large footprint and of uses processor time just to manage
resource sharing . Furthermore , virtual machines also take
significant time to create , provision , and start executing .
Although migration of a VM between hosts is practical and
commonly used , migration requires significant time and
network bandwidth .
10003] . The shortcomings of machine virtualization have
led to a resurgence in container virtualization . Container
virtualization involves forming isolation environments (con
tainers) from objects of the host operating system ; pro
cesses , files , memory , etc . A container engine acts as an
abstraction layer between a container and the operating
system resources . File system objects , namespaces , registry
or configuration data , and the like are logically mapped
between the operating system and the container . A container
might , for instance , appear to have its own file system , when
in fact files in a container namespace are mapped by the
container engine to files in the operating system ' s
namespace . A container engine might also regulate how
much compute resources are available to containers . For
instance , processor time , memory , filesystem size , and other
quantifiable resources might be proportionally rationed
among containers . A container might also have binaries ,
libraries , and other objects upon which guest software
running in a container might depend . Thus , if the host
operating system ' s kernel is sufficiently compatible with a
container engine , the container might provide objects such
as libraries that enable the container ' s guest software to
effectively execute in a different version of the host operat
ing system . Containers tend to have faster start times than
VMs , lower storage requirements , migrate faster , and
require less processing overhead for context switching and
processor sharing .
[0004] Security has been a concern for all types of secure /
isolated guest runtime environments (GREs) , whether VMs ,
containers , or otherwise . An objective of GREs is to allow
applications of different provenance to share the same host

SUMMARY
10006] . The following summary is included only to intro
duce some concepts discussed in the Detailed Description
below . This summary is not comprehensive and is not
intended to delineate the scope of the claimed subject matter ,
which is set forth by the claims presented at the end .
[0007] Facilities are provided to secure GREs . Security
policy specifications may be associated with GREs . A
GRE ' s security policy may be specific to the GRE and may
also include security policy inherited from higher levels
such as a host operating environment . The security policy of
a GRE specifies restrictions and / or permissions for activities
that may be performed within the scope of execution of the
GRE . A GRE ' s security policy may limit what the GRE ' s
guest software may do within the GRE . Restrictions / per
missions may be applied to particular objects such as files ,
configuration data , and the like . Security specifications may
also be applied to execution initiated within a GRE . A
GRE ' s security specification may restrict or permit execut
able objects (libraries , applications , etc .) from loading and
executing within the GRE . The executability or accessibility
of objects may be conditioned on factors such as the
health / integrity of the GRE , the host system , requested files ,
and others .
10008] . Many of the attendant features will be explained
below with reference to the following detailed description
considered in connection with the accompanying drawings .

BRIEF DESCRIPTION OF THE DRAWINGS
[0009] The present description will be better understood
from the following detailed description read in light of the

US 2018 / 0314846 A1 Nov . 1 , 2018

accompanying drawings , wherein like reference numerals
are used to designate like parts in the accompanying descrip
tion .
[0010] FIG . 1 shows an example of a computing device
provided with guest runtime environments (GREs) .
[0011] FIG . 2 shows an embodiment where GREs are
implemented as virtual machines .
[0012] FIG . 3 shows an embodiment where GREs are
implemented as containers .
[0013] FIG . 4 shows components for policy enforcement .
[0014] FIG . 5 shows a general process corresponding to
FIG . 4 for enforcing the policy of the GRE .
[0015] FIG . 6 shows how file hashes or signatures can be
used for securing GREs .
[0016] FIG . 7 shows a computing device .

DETAILED DESCRIPTION
[0017] FIG . 1 shows an example of a computing device
100 provided with guest runtime environments (GREs) 102 .
A GRE 102 is an execution environment that isolates the
execution of guest software from other objects executing
under the host operating system 104 . The GREs 102 may be
managed by a virtualization layer or guest runtime engine
106 such as a machine virtualization hypervisor , a container
engine , or the like . A GRE 102 may be a virtual machine , an
execution container , etc .
10018] A GRE 102 is provided with a security policy 108 .
The security policy 108 is configured to safeguard the
execution and / or content of the corresponding GRE 102 . As
will be described further below , the security policy 108 may
include an executing portion and a specification portion . The
security specification specifies restrictions imposed by an
integration manager (a person who manages the host com
puter and the GRE infrastructure) and / or by a guest admin
istrator (a person who manages the guest content of the
GREs) . The security specification for a GRE 102 may
instead be defined as part of the application that will be
running in the GRE .
[0019] In one embodiment , the security specification of
the security policy 108 specifies executable units that users
can or cannot run in the corresponding GRE virtual envi
ronment . The executable units may be specified as applica
tions , libraries , packages , versions , etc . As described further
below , the executable units may be specified as hashes
(perhaps signed) of corresponding files . Thus , when a file is
to be loaded for execution in the GRE , a hash of the file may
be computed and compared to a hash in the security speci
fication to determine whether the file is allowed to be
executed in the GRE . Even if the requested execution is
initiated from outside the GRE the file may still be denied
execution . Indicia of execution units may take any form ,
including file names , package identifiers , hashes , etc .
10020) Other objects besides executable units may also be
specified as accessible or not . Configuration data , files ,
memory segments , registers , network addresses or domains ,
or other objects may be identified in the security specifica
tion . The security specification may also include the types of
access permitted / denied for specific objects . In one embodi
ment , the non - executable objects may be requested , in the
GRE , as parameters of applications (e . g . , launch param
eters) , as parameters of system calls , etc . For example , the
security specification might include black / white lists of
uniform resource identifiers / locators (URIS / URLs) . When a
URL , for instance , is requested , a corresponding application

such as a browser might only be allowed to open the URL
if the URL is on a white list (or not on a black list) . A
whitelist of permissible files can be particularly useful when
a GRE contains guest software with a highly specific and
limited purpose . A file whitelist would prevent any non
specified files from being opened , written , read , created ,
and / or deleted .
[0021] In embodiments where a GRE is implemented as a
virtualization container and executes as a process (prefer
ably user - mode) of the host operating system 104 , objects to
be restricted / granted may be specified in the namespaces of
the container . For example , file or registry locations may be
specified with locations / paths presented to the container ' s
guest software by a container engine ' s filesystem or registry
virtualization . Object restriction / access can be enforced
within the container engine code that handles the virtualized
aspects of containers .
[0022] Among the settings that might be denied / granted
by the security policy , settings of the GRE itself may also be
specified . For example , in the case of a VM - type GRE , the
security policy might specify that debugging cannot be
enabled . Similarly , some machine virtualization hypervisors
implement VM tracing where the instructions and data that
are executed / accessed by a VM ' s virtual processor (s) are
captured and stored in a trace file . A security policy may
specify that tracing cannot be turned on for the correspond
ing GRE . Similarly , the security policy can specify security
attributes that objects must have before being executed /
accessed in a GRE . For instance , the security policy may
require any executable code that is requested to execute
within a GRE to be signed and verified before it can be
executed .
[0023] The same approach may be used with non - execut
able objects , e . g . , any file to be opened for reading may need
to be verified as authentic or original before being opened .
In the case of GREs implemented as containers , such
protections can be applied to the container image data such
as dependency libraries or other executables or configuration
data that are part of the container itself or its virtualization
datas . That is , verification can be required for elements of
the container image that bridge the gap between the envi
ronment of the host operating system and the environment
needed by the guest application software .

[0024] Combinations of the GRE securement techniques
outlined above can provide highly secure environments . A
whitelist of the only executable files permitted to be
executed in combination with a requirement that all accessed
files be verified makes injection of malicious code in to a
GRE difficult .

100251 Yet another way the content and behavior of GRES
can be protected is by specifying security properties of
objects outside of the scope of the GREs . That is , although
the intent of a GRE security policy may be to secure the
content of a GRE , the GRE internals can be further secured
by imposing requirements on the environment providing or
hosting the GRE . A trusted entity can be provided by the
host , hypervisor , container engine , or equivalent . The trusted
entity can be safeguarded by a Trusted Platform Module or
other cryptoprocessor . The trusted entity assures that envi
ronment outside the GRE is secure and therefore can be
trusted to manage execution of the GRE . Any host hardware
or software features may be tested against cryptographically

US 2018 / 0314846 A1 Nov . 1 , 2018

stored identifiers , e . g . , the operating system type or revision ,
a signature of the kernel or hypervisor , a trusted boot
sequence , etc .
[0026] Returning to FIG . 1 , the arrows to the policy 108
represent a hierarchical policy embodiment where the policy
for a GRE can be a combination of GRE - based policy and
host - based policy . In one embodiment , an integration admin
istrator defines a host / hypervisor policy enforced at the host
level , i . e . , by the host operating system 104 . The policy
enforced within a GRE may be a combination of a GRE
policy and the host policy (or part of the host policy) . Any
type of policy specification discussed above can be specified
in the host - based policy . When a GRE is started or instan
tiated , the policy that will be enforced for the GRE is built
from policies of whichever layers back the GRE . This allows
the integration administrator to specify policy for the host as
well as the GRE . The guest administrator is authorized to
configure the GRE and constructs the GRE ' s policy speci
fication , and the GRE ' s policy enforcement enforces policy
for both the host and the GRE . This embodiment allows the
GRE to have a stricter security policy than the host . This also
allows a GRE to adapt a security policy of a new host when
the GRE is migrated between hosts , and yet maintain its own
GRE - specific policy . More than two layers of policy may be
stacked . For example , if the GRE is a container executing
within a VM , there may be policy specific to the container ,
policy specific to the VM , and policy specific to the host or
hypervisor . In another embodiment , some of the security
policy for a GRE is inherited from secure boot policy . If
containers are implemented as compositions of other con
tainers , then the security policies of the GREs that make up
a given GRE may also be combined to serve as the effective
GRE - level security policy for the composite GRE .
10027] FIG . 2 shows an embodiment where GREs are
implemented as virtual machines 120 . A hypervisor 122 ,
perhaps in combination with a privileged VM , shares host
hardware 124 such as a central processing unit (CPU) 126 ,
memory 128 , a network interface 130 , and persistent storage
132 , among the VMs 120 . The hypervisor 122 may be
implemented with existing software but augmented as
described herein .
[0028] The policy 108 in the machine virtualization
embodiment may be spread across host , virtualization , and
guest layers . At the virtualization / hypervisor layer , policy
can be implemented in terms of access to / from VMs by
virtual devices , executable modules loadable by the hyper
visor , resources accessible from a VM , network restrictions /
grants (e . g . , firewall rules) , etc . It is also possible to imple
ment policy at the VM / partition layer . A policy is associated
with a VM and the policy is enforced only against the VM .
This policy is enforced between the hypervisor and the guest
operating system 134 . This policy may be implemented as a
filter between the VM and the guest operating system . The
VM - level policy may merely be a policy specification that is
inherited and enforced by a policy manager executing in the
guest operating system 134 . That is , the VM - level policy
may function as the host - level policy discussed above with
reference to FIG . 1 . GRE - level policy may be implemented
within the guest operating system 134 in the ways described
above , i . e . , using code verification , object / executable white /
black lists , etc .
[0029] FIG . 3 shows an embodiment where GREs are
implemented as containers 140 . In this embodiment , as
discussed in the Background , the GRE / container typically

executes as a process of the host operating system / kernel
104 . A container engine 142 virtualizes various operating
system objects used by the guest application / service that
executes within a container 140 , for example by translating
between container namespaces and respective operating
system namespaces . The container engine 142 may also
perform management functions such as starting and stopping
containers , saving the state of containers , managing the
images encapsulated in containers , layering containers , etc .
The Docker Engine is an open source project that may be
extended with security policy features as described herein .
[0030] As discussed above , policy may be implemented in
part above the GRE / container layer . In addition , the con
tainer engine 142 itself is a point where policy can be
specified and enforced . This allows policy to be specified
and enforced for all containers managed by the container
engine 142 . Each container 140 may have its own policy in
addition to or instead of a policy for all containers . As
discussed above , the policy enforced for a container may be
a union of policies that pertain to the container , including
host , container engine , and / or container policy . As also
discussed above , the policy for a container may specify
objects that may or may not be accessed and executables that
may or may / not be executed within a container .
[0031] FIG . 4 shows components for policy enforcement .
The components in FIG . 4 may be implemented in either a
hypervisor - based embodiment or a container - based embodi
ment . For convenience , the components will be described as
applied to containers . The GRE 102 hosts guest software
such as a service and / or application 160 . The GRE 102 also
includes a policy monitor 162 . The policy monitor 162 may
be a thread launched by the container process or a child
process of the container process . The policy monitor is in
communication with a policy manager 164 that executes
outside of the scope of the container / GRE 102 . The policy
manager 164 and policy monitor 162 may communicate
using any type of interprocess communication . The GRE
102 may also have a health monitor 166 . The policy manager
164 accesses a policy store 166 . The policy store 166 may
include any policy not specific to the GRE , as discussed
above . In another embodiment , the policy manager 164 may
supply some of the policy to be enforced by the policy
monitor 162 . The policy monitor 162 reads GRE - specific
policy from a store of guest policy 168 .
[0032] FIG . 5 shows a general process corresponding to
FIG . 4 for enforcing the policy of the GRE 102 . The GRE
is assumed to be configured and ready to execute , including
the GRE - specific security specifications stored in the guest
policy 168 . At step 180 the GRE is started and begins
executing . At the same time , or just before , the policy
monitor 162 reads the guest policy 168 and loads the rules
into memory . The integrity of the guest policy 168 may also
be verified and if the guest policy is not verified then the
GRE is halted and not permitted to execute . At step 184 the
policy monitor 162 begins monitoring execution of the
GRE . The monitoring or policy enforcement is described
below .
[0033] At step 186 the monitoring evaluates instructions
to execute new processes , access resources , and the like .
These requests are evaluated against the requirements in the
guest policy 168 . At step 188 any violations that are detected
trigger corresponding corrective actions . The corrective

US 2018 / 0314846 A1 Nov . 1 , 2018

actions may be configured in the guest policy 168 or may be
based on the nature of the rules violated or the type of object
being requested .
[0034] The corrective action may be reversing an access to
a resource , denying the corresponding request , issuing a
warning message or a signal outside the GRE which in turn
triggers corrective action outside the GRE . For example , the
policy manager 164 might be notified of a violation and the
policy manager 164 takes some action . Alternatively , the
policy monitor 162 may invoke a call provided by an API of
the guest runtime engine 106 . For instance , if the guest
runtime engine 106 is a hypervisor then the policy monitor
162 may request the hypervisor to halt the GRE , take a
checkpoint of the GRE , undo execution of the GRE that
proceeded the violation , etc . If the guest runtime engine 106
is a container engine , then similarly the policy monitor 162
may terminate the GRE / container , undo , or discard any
pending changes to the GRE or the GRE ' s guest software ,
or the like .
[0035] In one embodiment , the policy monitor 106
includes a shim , hooks , or other means to associate security
checks with resource requests that originate within the GRE .
To regulate execution of code , process creation calls may be
secured . Any time a create - process , fork , exec , spawn ,
load - library , or similar call / function for creating a new
process or thread or loading new executable code into newly
allocated executable memory is invoked from within the
GRE (usually , by the GRE ' s guest software) , the target of
the call is evaluated against the GRE ' s policy . This may
involve any of the techniques discussed above , including
verifying the identity and integrity of the target , determining
if the target is permitted / banned by the GRE ' s policy in the
guest policy 168 , or similar security specifications .
[0036] Other attempts to access or modify resources may
be similarly monitored . Attempts to access hardware
resources or services may be monitored . File system
requests may be evaluated . Calls to network resources may
be restricted in firewall - like fashion based on addresses ,
ports , or protocols . Access to resources from within the GRE
may also be monitored and blocked based on quantitative
restrictions . The guest policy 168 (or inherited external
policy) can specify limits on how many CPU cores are
available , what frequency they may operate at , network
bandwidth consumption , how many applications / threads /
services may run at one time , a maximum proportion of total
processing power to be consumed , and so forth .
[0037] As discussed above , GRE security may also or
alternatively be improved with an integrity monitor 166 . The
integrity monitor 166 monitors the state of the GRE during
its execution . File hashes of the GRE and / or the guest
software are regular checked , resource usage is evaluated ,
registry entries or settings , among others . The integrity
monitoring may check the status of objects at arbitrary times
instead of when requested . The integrity monitor 166 com
municates inconsistencies or integrity failures to the policy
monitor 162 . The policy monitor 162 conditions access to
resources such as files and configuration data or loading of
new executable code only if the GRE has passed the heath
evaluation of the integrity monitor 166 .
[0038] FIG . 6 shows how file hashes or signatures can be
used for securing GREs . A file system 180 is managed by the
host operating system . The file system 180 stores files 182 .
A code integrity system 184 includes a hashing module 186
and a signing module 188 . The hash module 186 computes

hashes for the respective files 182 and the signing module
1 88 signs the hashes . The signed hashes are stored in a
catalog 190 in association with the full file names of the files
182 . An API 192 can be used to check the integrity of a file
182 . When a file name is passed through the API 192 , the
hash module 186 computes a hash for the named file . The
corresponding file ' s hash stored in the catalog 190 , if its
signature is verified , is compared to the computed hash , and
if the hashes match the integrity of the named file is verified .
[0039] AGRE 102 may use the code integrity system 184
in the following way . The GRE 194 includes a signing policy
194 , which may be part of the guest policy . A process
load / create module 196 consults the signing policy 194 each
time a file is to be loaded for execution in the GRE . If the
signing policy 194 indicates that the file to be loaded must
checked , then an indication of the file requested for loading /
execution is passed to the API 192 . The file ' s integrity is
checked as described above and if the file ' s integrity is
verified then executable memory is allocated and the process
load / create module 196 loads the file into the new execut
able memory .
[0040] File integrity checking may be combined with file
white / black listing within the GRE . In this way , which files
may be executed in the GRE is controlled , and even if a file
is permitted to be executed , execution is conditioned on the
file passing an integrity check . The code integrity checking
can also be used to restrict execution to only files that are
signed by a certain publisher , which can be helpful when
anti - virus software is not running in the GRE (as is often the
case) .
[0041] In some cases , the code integrity policy will sup
port forwarding . For example , the host may be a highly
secure environment and the container / GRE is less secure .
The container allows access to public websites and enables
the user to open unwanted attachments . The container may
also run unknown or potentially malicious executables . In
this example , the user acquires these executables via
attached storage , and the file is on the host . When the user
tries to launch this executable on the host , the same moni
toring method above is applied , however when a create
process function is called , this executable is forwarded into
the container . In some scenarios , as the executable has never
been run , this will launch the installation in the container and
the user will be able to use the executable in an isolated
environment . Note that some executables have a non - deter
ministic set of dependencies and may not run using this
method .
[0042] In one embodiment code integrity policy is added
to the container by adding the code integrity policy to a
registry of a base image of a container before the container
is instantiated . Alternatively , code integrity policy is inserted
during initial machine configuration while booting a con
tainer . Yet another technique is to add code integrity to a
container ' s pre - boot environment as a Unified Extensible
Firmware Interface (UEFI) variable so it can be read by the
code integrity service inside the container . Finally , during
boot the container code integrity service explicitly reaches
out to the host code integrity service to ask for the code
integrity policy that the container needs to enforce . These
policy - providing techniques can also be used for any policy
or settings that need to be transferred to a container from the
host .
[0043] FIG . 7 shows details of the computing device 100
on which embodiments described above may be imple

US 2018 / 0314846 A1 Nov . 1 , 2018

mented . The technical disclosures herein will suffice for
programmers to write software , and / or configure reconfigu
rable processing hardware (e . g . , field - programmable gate
arrays (FPGAs)) , and / or design application - specific inte
grated circuits (ASICs) , etc . , to run on the computing device
100 to implement any of the features or embodiments
described herein .
[00441 The computing device 100 may have display (s)
222 , a network interface 228 , as well as storage hardware
224 and processing hardware 226 , which may be a combi
nation of any one or more : central processing units , graphics
processing units , analog - to - digital converters , bus chips ,
FPGAs , ASICs , Application - specific Standard Products
(ASSPs) , or Complex Programmable Logic Devices
(CPLDs) , etc . The storage hardware 224 may be any com
bination of magnetic storage , static memory , volatile
memory , non - volatile memory , optically or magnetically
readable matter , etc . The meaning of the terms “ storage ” and
“ storage hardware ” , as used herein does not refer to signals
or energy per se , but rather refers to physical apparatuses and
states of matter . The hardware elements of the computing
device 100 may cooperate in ways well understood in the art
of machine computing . In addition , input devices may be
integrated with or in communication with the computing
device 100 . The computing device 100 may have any
form - factor or may be used in any type of encompassing
device . The computing device 100 may be in the form of a
handheld device such as a smartphone , a tablet computer , a
gaming device , a server , a rack - mounted or backplaned
computer - on - a - board , a system - on - a - chip , or others .
10045) Embodiments and features discussed above can be
realized in the form of information stored in volatile or
non - volatile computer or device readable storage hardware .
This is deemed to include at least hardware such as optical
storage (e . g . , compact - disk read - only memory (CD - ROM)) ,
magnetic media , flash read - only memory (ROM) , or any
means of storing digital information in to be readily avail
able for the processing hardware 226 . The stored informa
tion can be in the form of machine executable instructions
(e . g . , compiled executable binary code) , source code , byte
code , or any other information that can be used to enable or
configure computing devices to perform the various embodi
ments discussed above . This is also considered to include at
least volatile memory such as random - access memory
(RAM) and / or virtual memory storing information such as
central processing unit (CPU) instructions during execution
of a program carrying out an embodiment , as well as
non - volatile media storing information that allows a pro
gram or executable to be loaded and executed . The embodi
ments and features can be performed on any type of com
puting device , including portable devices , workstations ,
servers , mobile wireless devices , and so on .

enable or configure computing devices to perform the vari
ous embodiments discussed above . This is also deemed to
include at least volatile memory such as random - access
memory (RAM) and / or virtual memory storing information
such as central processing unit (CPU) instructions during
execution of a program carrying out an embodiment , as well
as non - volatile media storing information that allows a
program or executable to be loaded and executed . The
embodiments and features can be performed on any type of
computing device , including portable devices , workstations ,
servers , mobile wireless devices , and so on .

1 . A method performed by a host computing device
comprising processing hardware and storage hardware , the
method comprising :

executing a host operating system , the host operating
system executing a guest runtime environment (GRE)
engine , the GRE engine configured to instantiate and
manage the execution of GREs , each GRE comprising
an environment that isolates execution within the GRE
from the host operating system and from other GRES ;

providing a security policy for a GRE managed by the
GRE environment , the security policy specifying
execution restrictions to be imposed on code executing
within the GRE ; and

enforcing the security policy with respect to the GRE by
monitoring execution of code within the GRE against
the security policy and enforcing the execution restric
tions when they are determined to be applicable .

2 . A method according to claim 1 , wherein the GRE
engine comprises a machine virtualization hypervisor , and
wherein the GREs comprise respective virtual machines .

3 . A method according to claim 1 , wherein the GRE
engine comprises a container engine and the GREs comprise
respective containers , each container comprising a respec
tive process managed by the container engine , each con
tainer comprising a sandbox of files and configuration data .

4 . A method according to claim 1 , further comprising :
storing hashes of respective executables stored by the

storage hardware and executable as processes by the
operating system and / or the GRE engine , wherein the
execution restrictions comprise one or more of the
hashes , and wherein the monitoring comprises compar
ing the one or more hashes of the execution restrictions
with hashes of executables requested to execute in a
GRE .

5 . A method according to claim 4 , wherein the comparing
is performed for an executable that is requested to be
executed in the GRE or is performed for an executable that
is already executing in the GRE .

6 . A method according to claim 1 , further comprising
implementing a host - level security policy that governs the
host operating system , and implementing the host - level
security policy , at least in part , within a GRE .

7 . A method according to claim 1 , further comprising
executing a loader that loads executable files and / or libraries
for a GRE by , each time a file and / or library is requested to
be loaded for execution , determining whether the requested
file and / or library is authorized to execute within the GRE .

8 . A computing device comprising :
processing hardware ;
storage hardware storing instructions configured to cause

the processing hardware to perform a process , the
process comprising :

CONCLUSION
[0046] Embodiments and features discussed above can be
realized in the form of information stored in volatile or
non - volatile computer or device readable media . This is
deemed to include at least media such as optical storage
(e . g . , compact - disk read - only memory (CD - ROM)) , mag
netic media , flash read - only memory (ROM) , or any current
or future means of storing digital information . The stored
information can be in the form of machine executable
instructions (e . g . , compiled executable binary code) , source
code , bytecode , or any other information that can be used to

US 2018 / 0314846 A1 Nov . 1 , 2018

executing guest runtime environment (GRE) engine
that creates and executes GRE instances , each GRE
instance comprising an isolated execution environ
ment wherein files and / or memory of each GRE
instance is isolated by the GRE engine ;

providing a plurality of security policies associated
with respective GRE instances ;

executing a policy monitor in a GRE instance , the
policy monitor accessing a security policy specific to
the GRE instance , the policy monitor monitoring
requests , within the GRE instance , to execute files ,
the policy monitor determines whether to the
requests are authorized based on whether the files
requested for execution are specified by the security
policy ; and

notifying an enforcement module when a request for
execution of a file is not authorized .

9 . A computing device according to claim 8 , wherein the
enforcement module either prevents execution of the file ,
terminates execution of the file , or issues a notification
indication violation of the security policy .

10 . A computing device according to claim 8 , wherein the
process further comprises computing hashes of the files
requested for execution to determine whether the files are
authorized for execution in the GRE instance .

11 . A computing device according to claim 8 , wherein the
process further comprises accessing a host - based policy that
governs execution policy outside of the GRE engine .

12 . A computing device according to claim 11 , wherein
the process further comprises applying at least a portion of
the host - based policy by the policy monitor in the GRE
instance .

13 . A computing device according to claim 11 , wherein
the process further comprises determining , based on the
host - based policy , to instantiate the GRE instance .

14 . A computing device according to claim 13 , wherein
the process further comprises responding to a request to
execute an application by evaluating the host - based policy to
determine to instantiate the GRE instance .

15 . A computing device according to claim 8 , wherein the
GRE instance comprises a virtualization container or a
virtual machine .

16 . A computing device according to claim 8 , wherein the
GRE instance comprises a container that comprises a user
space process managed by an operating system of the
computing device , and wherein the GRE engine performs
the enforcing of the security policy .

17 . Computer storage hardware storing information con
figured to enable a computing device to perform a process ,
the process comprising :
managing execution of guest runtime environments

(GREs) on the computing device , the managing includ
ing virtualizing access to hardware of the computing
device by guest software executing in the GREs ;

associating a security policy specification with a GRE , the
security policy specification specifying security restric
tions to be enforced within scope of execution of the
GRE ;

enforcing the security policy specification by monitoring
requests to access objects within the GRE ; and

determining whether to grant or deny access to the objects
within the GRE based on the monitoring .

18 . Computer storage hardware according to claim 17 ,
wherein the monitoring further comprises checking the
integrity of the objects , the GRE , and or a host operating
system hosting the GREs .

19 . Computer storage hardware according to claim 18 , the
process further comprising receiving a host policy specifi
cation from associated with host operating system and
performing the monitoring in accordance with the host
policy specification .

20 . Computer storage hardware according to claim 17 ,
wherein the GRE comprises a container , wherein the policy
specification comprises a code integrity policy , and wherein
the code integrity policy is added to the container either by
(i) adding the code integrity policy to a registry of a base
image of a container before the container is instantiated , (ii)
by inserting the code integrity policy into the container
during an initial configuration while booting a container , (iii)
by adding code integrity to a container ' s pre - boot environ
ment as a Unified Extensible Firmware Interface (UEFI)
variable , or (iv) by the container requesting the code integ
rity policy .

* * * * *

