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SECURING VIRTUAL EXECUTION 
ENVIRONMENTS 

computer . Naturally , there has been concern and measures 
taken for security . Containers have been considered less 
secure than VMs because containers usually run under the 
purview of a same operating system kernel and share a same 
memory space . Regardless of the type of GRE , most security 
efforts have focused on protecting the host from threats 
originating from within a GRE executing on the host . The 
thought has been that if the host is protected from malicious 
activity that might originate from within a GRE , the integrity 
and security facilities of the host can be relied on to maintain 
walls between the GREs on the host . In other words , each 
GRE on a host has been protected by protecting the host 
environment ; as long as the host is not compromised the 
GRE layer on the host has been assumed to sufficiently 
secure the GREs . This can be seen in the Docker Engine 
container implementation . The Docker Engine uses the 
seccomp facility to limit which system calls can be called 
from within a container , thus making it more difficult for a 
container to access or alter objects outside the container . 
[ 0005 ] This host - centric security approach has failed to 
adequately secure GREs . Because the host environment 
usually has a higher security level ( e . g . , kernel - mode ) than 
the GREs themselves ( e . g . , user - mode ) , GREs are inherently 
vulnerable to the host environment . Even an uncompro 
mised host environment has the potential to alter the content 
or behavior of a GRE . What is needed are new ways of 
securing GREs that focus on internally protecting GREs . 
New techniques that help secure GREs by limiting what can 
be done within a GRE are described below . In some cases , 
even a compromised host environment may have limited 
ability to in turn compromise or corrupt the GREs that it is 
hosting and the guest software of the GREs . 

BACKGROUND 
[ 0001 ] Virtualization has become prevalent for numerous 
reasons . Machine virtualization has been used to increase 
utilization of hardware resources , improve security , isolate 
code , facilitate shifting of workloads among machines , 
enable incompatible operating systems to execute on a same 
machine , partition a single machine between tenants , and 
other reasons . Machine virtualization involves a virtualiza 
tion layer ( e . g . , a hypervisor ) presenting the hardware of a 
machine as virtual machines ( VMs ) . Each VM typically has 
its own virtualized hardware such as a virtual disk drive , 
virtual processors , virtualized memory , etc . Each VM will 
usually have a guest operating installed thereon ; the guest 
operating system operates as though it were executing 
directly on the host machine ' s hardware and the virtualiza 
tion layer is transparent to the guest operating system . 
[ 0002 ] Machine virtualization has advantages and disad 
vantages . One disadvantage is excessive resource overhead . 
Each VM requires storage . Sharing processing time among 
VMs requires many expensive context switches . Handling 
privileged instructions can also incur context switching 
overhead . Each VM has an entire operating system which 
can require significant storage . Each VM requires its own 
memory space . The virtualization layer can itself have a 
large footprint and of uses processor time just to manage 
resource sharing . Furthermore , virtual machines also take 
significant time to create , provision , and start executing . 
Although migration of a VM between hosts is practical and 
commonly used , migration requires significant time and 
network bandwidth . 
10003 ] . The shortcomings of machine virtualization have 
led to a resurgence in container virtualization . Container 
virtualization involves forming isolation environments ( con 
tainers ) from objects of the host operating system ; pro 
cesses , files , memory , etc . A container engine acts as an 
abstraction layer between a container and the operating 
system resources . File system objects , namespaces , registry 
or configuration data , and the like are logically mapped 
between the operating system and the container . A container 
might , for instance , appear to have its own file system , when 
in fact files in a container namespace are mapped by the 
container engine to files in the operating system ' s 
namespace . A container engine might also regulate how 
much compute resources are available to containers . For 
instance , processor time , memory , filesystem size , and other 
quantifiable resources might be proportionally rationed 
among containers . A container might also have binaries , 
libraries , and other objects upon which guest software 
running in a container might depend . Thus , if the host 
operating system ' s kernel is sufficiently compatible with a 
container engine , the container might provide objects such 
as libraries that enable the container ' s guest software to 
effectively execute in a different version of the host operat 
ing system . Containers tend to have faster start times than 
VMs , lower storage requirements , migrate faster , and 
require less processing overhead for context switching and 
processor sharing . 
[ 0004 ] Security has been a concern for all types of secure / 
isolated guest runtime environments ( GREs ) , whether VMs , 
containers , or otherwise . An objective of GREs is to allow 
applications of different provenance to share the same host 

SUMMARY 
10006 ] . The following summary is included only to intro 
duce some concepts discussed in the Detailed Description 
below . This summary is not comprehensive and is not 
intended to delineate the scope of the claimed subject matter , 
which is set forth by the claims presented at the end . 
[ 0007 ] Facilities are provided to secure GREs . Security 
policy specifications may be associated with GREs . A 
GRE ' s security policy may be specific to the GRE and may 
also include security policy inherited from higher levels 
such as a host operating environment . The security policy of 
a GRE specifies restrictions and / or permissions for activities 
that may be performed within the scope of execution of the 
GRE . A GRE ' s security policy may limit what the GRE ' s 
guest software may do within the GRE . Restrictions / per 
missions may be applied to particular objects such as files , 
configuration data , and the like . Security specifications may 
also be applied to execution initiated within a GRE . A 
GRE ' s security specification may restrict or permit execut 
able objects ( libraries , applications , etc . ) from loading and 
executing within the GRE . The executability or accessibility 
of objects may be conditioned on factors such as the 
health / integrity of the GRE , the host system , requested files , 
and others . 
10008 ] . Many of the attendant features will be explained 
below with reference to the following detailed description 
considered in connection with the accompanying drawings . 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0009 ] The present description will be better understood 
from the following detailed description read in light of the 
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accompanying drawings , wherein like reference numerals 
are used to designate like parts in the accompanying descrip 
tion . 
[ 0010 ] FIG . 1 shows an example of a computing device 
provided with guest runtime environments ( GREs ) . 
[ 0011 ] FIG . 2 shows an embodiment where GREs are 
implemented as virtual machines . 
[ 0012 ] FIG . 3 shows an embodiment where GREs are 
implemented as containers . 
[ 0013 ] FIG . 4 shows components for policy enforcement . 
[ 0014 ] FIG . 5 shows a general process corresponding to 
FIG . 4 for enforcing the policy of the GRE . 
[ 0015 ] FIG . 6 shows how file hashes or signatures can be 
used for securing GREs . 
[ 0016 ] FIG . 7 shows a computing device . 

DETAILED DESCRIPTION 
[ 0017 ] FIG . 1 shows an example of a computing device 
100 provided with guest runtime environments ( GREs ) 102 . 
A GRE 102 is an execution environment that isolates the 
execution of guest software from other objects executing 
under the host operating system 104 . The GREs 102 may be 
managed by a virtualization layer or guest runtime engine 
106 such as a machine virtualization hypervisor , a container 
engine , or the like . A GRE 102 may be a virtual machine , an 
execution container , etc . 
10018 ] A GRE 102 is provided with a security policy 108 . 
The security policy 108 is configured to safeguard the 
execution and / or content of the corresponding GRE 102 . As 
will be described further below , the security policy 108 may 
include an executing portion and a specification portion . The 
security specification specifies restrictions imposed by an 
integration manager ( a person who manages the host com 
puter and the GRE infrastructure ) and / or by a guest admin 
istrator ( a person who manages the guest content of the 
GREs ) . The security specification for a GRE 102 may 
instead be defined as part of the application that will be 
running in the GRE . 
[ 0019 ] In one embodiment , the security specification of 
the security policy 108 specifies executable units that users 
can or cannot run in the corresponding GRE virtual envi 
ronment . The executable units may be specified as applica 
tions , libraries , packages , versions , etc . As described further 
below , the executable units may be specified as hashes 
( perhaps signed ) of corresponding files . Thus , when a file is 
to be loaded for execution in the GRE , a hash of the file may 
be computed and compared to a hash in the security speci 
fication to determine whether the file is allowed to be 
executed in the GRE . Even if the requested execution is 
initiated from outside the GRE the file may still be denied 
execution . Indicia of execution units may take any form , 
including file names , package identifiers , hashes , etc . 
10020 ) Other objects besides executable units may also be 
specified as accessible or not . Configuration data , files , 
memory segments , registers , network addresses or domains , 
or other objects may be identified in the security specifica 
tion . The security specification may also include the types of 
access permitted / denied for specific objects . In one embodi 
ment , the non - executable objects may be requested , in the 
GRE , as parameters of applications ( e . g . , launch param 
eters ) , as parameters of system calls , etc . For example , the 
security specification might include black / white lists of 
uniform resource identifiers / locators ( URIS / URLs ) . When a 
URL , for instance , is requested , a corresponding application 

such as a browser might only be allowed to open the URL 
if the URL is on a white list ( or not on a black list ) . A 
whitelist of permissible files can be particularly useful when 
a GRE contains guest software with a highly specific and 
limited purpose . A file whitelist would prevent any non 
specified files from being opened , written , read , created , 
and / or deleted . 
[ 0021 ] In embodiments where a GRE is implemented as a 
virtualization container and executes as a process ( prefer 
ably user - mode ) of the host operating system 104 , objects to 
be restricted / granted may be specified in the namespaces of 
the container . For example , file or registry locations may be 
specified with locations / paths presented to the container ' s 
guest software by a container engine ' s filesystem or registry 
virtualization . Object restriction / access can be enforced 
within the container engine code that handles the virtualized 
aspects of containers . 
[ 0022 ] Among the settings that might be denied / granted 
by the security policy , settings of the GRE itself may also be 
specified . For example , in the case of a VM - type GRE , the 
security policy might specify that debugging cannot be 
enabled . Similarly , some machine virtualization hypervisors 
implement VM tracing where the instructions and data that 
are executed / accessed by a VM ' s virtual processor ( s ) are 
captured and stored in a trace file . A security policy may 
specify that tracing cannot be turned on for the correspond 
ing GRE . Similarly , the security policy can specify security 
attributes that objects must have before being executed / 
accessed in a GRE . For instance , the security policy may 
require any executable code that is requested to execute 
within a GRE to be signed and verified before it can be 
executed . 
[ 0023 ] The same approach may be used with non - execut 
able objects , e . g . , any file to be opened for reading may need 
to be verified as authentic or original before being opened . 
In the case of GREs implemented as containers , such 
protections can be applied to the container image data such 
as dependency libraries or other executables or configuration 
data that are part of the container itself or its virtualization 
datas . That is , verification can be required for elements of 
the container image that bridge the gap between the envi 
ronment of the host operating system and the environment 
needed by the guest application software . 

[ 0024 ] Combinations of the GRE securement techniques 
outlined above can provide highly secure environments . A 
whitelist of the only executable files permitted to be 
executed in combination with a requirement that all accessed 
files be verified makes injection of malicious code in to a 
GRE difficult . 

100251 Yet another way the content and behavior of GRES 
can be protected is by specifying security properties of 
objects outside of the scope of the GREs . That is , although 
the intent of a GRE security policy may be to secure the 
content of a GRE , the GRE internals can be further secured 
by imposing requirements on the environment providing or 
hosting the GRE . A trusted entity can be provided by the 
host , hypervisor , container engine , or equivalent . The trusted 
entity can be safeguarded by a Trusted Platform Module or 
other cryptoprocessor . The trusted entity assures that envi 
ronment outside the GRE is secure and therefore can be 
trusted to manage execution of the GRE . Any host hardware 
or software features may be tested against cryptographically 
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stored identifiers , e . g . , the operating system type or revision , 
a signature of the kernel or hypervisor , a trusted boot 
sequence , etc . 
[ 0026 ] Returning to FIG . 1 , the arrows to the policy 108 
represent a hierarchical policy embodiment where the policy 
for a GRE can be a combination of GRE - based policy and 
host - based policy . In one embodiment , an integration admin 
istrator defines a host / hypervisor policy enforced at the host 
level , i . e . , by the host operating system 104 . The policy 
enforced within a GRE may be a combination of a GRE 
policy and the host policy ( or part of the host policy ) . Any 
type of policy specification discussed above can be specified 
in the host - based policy . When a GRE is started or instan 
tiated , the policy that will be enforced for the GRE is built 
from policies of whichever layers back the GRE . This allows 
the integration administrator to specify policy for the host as 
well as the GRE . The guest administrator is authorized to 
configure the GRE and constructs the GRE ' s policy speci 
fication , and the GRE ' s policy enforcement enforces policy 
for both the host and the GRE . This embodiment allows the 
GRE to have a stricter security policy than the host . This also 
allows a GRE to adapt a security policy of a new host when 
the GRE is migrated between hosts , and yet maintain its own 
GRE - specific policy . More than two layers of policy may be 
stacked . For example , if the GRE is a container executing 
within a VM , there may be policy specific to the container , 
policy specific to the VM , and policy specific to the host or 
hypervisor . In another embodiment , some of the security 
policy for a GRE is inherited from secure boot policy . If 
containers are implemented as compositions of other con 
tainers , then the security policies of the GREs that make up 
a given GRE may also be combined to serve as the effective 
GRE - level security policy for the composite GRE . 
10027 ] FIG . 2 shows an embodiment where GREs are 
implemented as virtual machines 120 . A hypervisor 122 , 
perhaps in combination with a privileged VM , shares host 
hardware 124 such as a central processing unit ( CPU ) 126 , 
memory 128 , a network interface 130 , and persistent storage 
132 , among the VMs 120 . The hypervisor 122 may be 
implemented with existing software but augmented as 
described herein . 
[ 0028 ] The policy 108 in the machine virtualization 
embodiment may be spread across host , virtualization , and 
guest layers . At the virtualization / hypervisor layer , policy 
can be implemented in terms of access to / from VMs by 
virtual devices , executable modules loadable by the hyper 
visor , resources accessible from a VM , network restrictions / 
grants ( e . g . , firewall rules ) , etc . It is also possible to imple 
ment policy at the VM / partition layer . A policy is associated 
with a VM and the policy is enforced only against the VM . 
This policy is enforced between the hypervisor and the guest 
operating system 134 . This policy may be implemented as a 
filter between the VM and the guest operating system . The 
VM - level policy may merely be a policy specification that is 
inherited and enforced by a policy manager executing in the 
guest operating system 134 . That is , the VM - level policy 
may function as the host - level policy discussed above with 
reference to FIG . 1 . GRE - level policy may be implemented 
within the guest operating system 134 in the ways described 
above , i . e . , using code verification , object / executable white / 
black lists , etc . 
[ 0029 ] FIG . 3 shows an embodiment where GREs are 
implemented as containers 140 . In this embodiment , as 
discussed in the Background , the GRE / container typically 

executes as a process of the host operating system / kernel 
104 . A container engine 142 virtualizes various operating 
system objects used by the guest application / service that 
executes within a container 140 , for example by translating 
between container namespaces and respective operating 
system namespaces . The container engine 142 may also 
perform management functions such as starting and stopping 
containers , saving the state of containers , managing the 
images encapsulated in containers , layering containers , etc . 
The Docker Engine is an open source project that may be 
extended with security policy features as described herein . 
[ 0030 ] As discussed above , policy may be implemented in 
part above the GRE / container layer . In addition , the con 
tainer engine 142 itself is a point where policy can be 
specified and enforced . This allows policy to be specified 
and enforced for all containers managed by the container 
engine 142 . Each container 140 may have its own policy in 
addition to or instead of a policy for all containers . As 
discussed above , the policy enforced for a container may be 
a union of policies that pertain to the container , including 
host , container engine , and / or container policy . As also 
discussed above , the policy for a container may specify 
objects that may or may not be accessed and executables that 
may or may / not be executed within a container . 
[ 0031 ] FIG . 4 shows components for policy enforcement . 
The components in FIG . 4 may be implemented in either a 
hypervisor - based embodiment or a container - based embodi 
ment . For convenience , the components will be described as 
applied to containers . The GRE 102 hosts guest software 
such as a service and / or application 160 . The GRE 102 also 
includes a policy monitor 162 . The policy monitor 162 may 
be a thread launched by the container process or a child 
process of the container process . The policy monitor is in 
communication with a policy manager 164 that executes 
outside of the scope of the container / GRE 102 . The policy 
manager 164 and policy monitor 162 may communicate 
using any type of interprocess communication . The GRE 
102 may also have a health monitor 166 . The policy manager 
164 accesses a policy store 166 . The policy store 166 may 
include any policy not specific to the GRE , as discussed 
above . In another embodiment , the policy manager 164 may 
supply some of the policy to be enforced by the policy 
monitor 162 . The policy monitor 162 reads GRE - specific 
policy from a store of guest policy 168 . 
[ 0032 ] FIG . 5 shows a general process corresponding to 
FIG . 4 for enforcing the policy of the GRE 102 . The GRE 
is assumed to be configured and ready to execute , including 
the GRE - specific security specifications stored in the guest 
policy 168 . At step 180 the GRE is started and begins 
executing . At the same time , or just before , the policy 
monitor 162 reads the guest policy 168 and loads the rules 
into memory . The integrity of the guest policy 168 may also 
be verified and if the guest policy is not verified then the 
GRE is halted and not permitted to execute . At step 184 the 
policy monitor 162 begins monitoring execution of the 
GRE . The monitoring or policy enforcement is described 
below . 
[ 0033 ] At step 186 the monitoring evaluates instructions 
to execute new processes , access resources , and the like . 
These requests are evaluated against the requirements in the 
guest policy 168 . At step 188 any violations that are detected 
trigger corresponding corrective actions . The corrective 
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actions may be configured in the guest policy 168 or may be 
based on the nature of the rules violated or the type of object 
being requested . 
[ 0034 ] The corrective action may be reversing an access to 
a resource , denying the corresponding request , issuing a 
warning message or a signal outside the GRE which in turn 
triggers corrective action outside the GRE . For example , the 
policy manager 164 might be notified of a violation and the 
policy manager 164 takes some action . Alternatively , the 
policy monitor 162 may invoke a call provided by an API of 
the guest runtime engine 106 . For instance , if the guest 
runtime engine 106 is a hypervisor then the policy monitor 
162 may request the hypervisor to halt the GRE , take a 
checkpoint of the GRE , undo execution of the GRE that 
proceeded the violation , etc . If the guest runtime engine 106 
is a container engine , then similarly the policy monitor 162 
may terminate the GRE / container , undo , or discard any 
pending changes to the GRE or the GRE ' s guest software , 
or the like . 
[ 0035 ] In one embodiment , the policy monitor 106 
includes a shim , hooks , or other means to associate security 
checks with resource requests that originate within the GRE . 
To regulate execution of code , process creation calls may be 
secured . Any time a create - process , fork , exec , spawn , 
load - library , or similar call / function for creating a new 
process or thread or loading new executable code into newly 
allocated executable memory is invoked from within the 
GRE ( usually , by the GRE ' s guest software ) , the target of 
the call is evaluated against the GRE ' s policy . This may 
involve any of the techniques discussed above , including 
verifying the identity and integrity of the target , determining 
if the target is permitted / banned by the GRE ' s policy in the 
guest policy 168 , or similar security specifications . 
[ 0036 ] Other attempts to access or modify resources may 
be similarly monitored . Attempts to access hardware 
resources or services may be monitored . File system 
requests may be evaluated . Calls to network resources may 
be restricted in firewall - like fashion based on addresses , 
ports , or protocols . Access to resources from within the GRE 
may also be monitored and blocked based on quantitative 
restrictions . The guest policy 168 ( or inherited external 
policy ) can specify limits on how many CPU cores are 
available , what frequency they may operate at , network 
bandwidth consumption , how many applications / threads / 
services may run at one time , a maximum proportion of total 
processing power to be consumed , and so forth . 
[ 0037 ] As discussed above , GRE security may also or 
alternatively be improved with an integrity monitor 166 . The 
integrity monitor 166 monitors the state of the GRE during 
its execution . File hashes of the GRE and / or the guest 
software are regular checked , resource usage is evaluated , 
registry entries or settings , among others . The integrity 
monitoring may check the status of objects at arbitrary times 
instead of when requested . The integrity monitor 166 com 
municates inconsistencies or integrity failures to the policy 
monitor 162 . The policy monitor 162 conditions access to 
resources such as files and configuration data or loading of 
new executable code only if the GRE has passed the heath 
evaluation of the integrity monitor 166 . 
[ 0038 ] FIG . 6 shows how file hashes or signatures can be 
used for securing GREs . A file system 180 is managed by the 
host operating system . The file system 180 stores files 182 . 
A code integrity system 184 includes a hashing module 186 
and a signing module 188 . The hash module 186 computes 

hashes for the respective files 182 and the signing module 
1 88 signs the hashes . The signed hashes are stored in a 
catalog 190 in association with the full file names of the files 
182 . An API 192 can be used to check the integrity of a file 
182 . When a file name is passed through the API 192 , the 
hash module 186 computes a hash for the named file . The 
corresponding file ' s hash stored in the catalog 190 , if its 
signature is verified , is compared to the computed hash , and 
if the hashes match the integrity of the named file is verified . 
[ 0039 ] AGRE 102 may use the code integrity system 184 
in the following way . The GRE 194 includes a signing policy 
194 , which may be part of the guest policy . A process 
load / create module 196 consults the signing policy 194 each 
time a file is to be loaded for execution in the GRE . If the 
signing policy 194 indicates that the file to be loaded must 
checked , then an indication of the file requested for loading / 
execution is passed to the API 192 . The file ' s integrity is 
checked as described above and if the file ' s integrity is 
verified then executable memory is allocated and the process 
load / create module 196 loads the file into the new execut 
able memory . 
[ 0040 ] File integrity checking may be combined with file 
white / black listing within the GRE . In this way , which files 
may be executed in the GRE is controlled , and even if a file 
is permitted to be executed , execution is conditioned on the 
file passing an integrity check . The code integrity checking 
can also be used to restrict execution to only files that are 
signed by a certain publisher , which can be helpful when 
anti - virus software is not running in the GRE ( as is often the 
case ) . 
[ 0041 ] In some cases , the code integrity policy will sup 
port forwarding . For example , the host may be a highly 
secure environment and the container / GRE is less secure . 
The container allows access to public websites and enables 
the user to open unwanted attachments . The container may 
also run unknown or potentially malicious executables . In 
this example , the user acquires these executables via 
attached storage , and the file is on the host . When the user 
tries to launch this executable on the host , the same moni 
toring method above is applied , however when a create 
process function is called , this executable is forwarded into 
the container . In some scenarios , as the executable has never 
been run , this will launch the installation in the container and 
the user will be able to use the executable in an isolated 
environment . Note that some executables have a non - deter 
ministic set of dependencies and may not run using this 
method . 
[ 0042 ] In one embodiment code integrity policy is added 
to the container by adding the code integrity policy to a 
registry of a base image of a container before the container 
is instantiated . Alternatively , code integrity policy is inserted 
during initial machine configuration while booting a con 
tainer . Yet another technique is to add code integrity to a 
container ' s pre - boot environment as a Unified Extensible 
Firmware Interface ( UEFI ) variable so it can be read by the 
code integrity service inside the container . Finally , during 
boot the container code integrity service explicitly reaches 
out to the host code integrity service to ask for the code 
integrity policy that the container needs to enforce . These 
policy - providing techniques can also be used for any policy 
or settings that need to be transferred to a container from the 
host . 
[ 0043 ] FIG . 7 shows details of the computing device 100 
on which embodiments described above may be imple 
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mented . The technical disclosures herein will suffice for 
programmers to write software , and / or configure reconfigu 
rable processing hardware ( e . g . , field - programmable gate 
arrays ( FPGAs ) ) , and / or design application - specific inte 
grated circuits ( ASICs ) , etc . , to run on the computing device 
100 to implement any of the features or embodiments 
described herein . 
[ 00441 The computing device 100 may have display ( s ) 
222 , a network interface 228 , as well as storage hardware 
224 and processing hardware 226 , which may be a combi 
nation of any one or more : central processing units , graphics 
processing units , analog - to - digital converters , bus chips , 
FPGAs , ASICs , Application - specific Standard Products 
( ASSPs ) , or Complex Programmable Logic Devices 
( CPLDs ) , etc . The storage hardware 224 may be any com 
bination of magnetic storage , static memory , volatile 
memory , non - volatile memory , optically or magnetically 
readable matter , etc . The meaning of the terms “ storage ” and 
“ storage hardware ” , as used herein does not refer to signals 
or energy per se , but rather refers to physical apparatuses and 
states of matter . The hardware elements of the computing 
device 100 may cooperate in ways well understood in the art 
of machine computing . In addition , input devices may be 
integrated with or in communication with the computing 
device 100 . The computing device 100 may have any 
form - factor or may be used in any type of encompassing 
device . The computing device 100 may be in the form of a 
handheld device such as a smartphone , a tablet computer , a 
gaming device , a server , a rack - mounted or backplaned 
computer - on - a - board , a system - on - a - chip , or others . 
10045 ) Embodiments and features discussed above can be 
realized in the form of information stored in volatile or 
non - volatile computer or device readable storage hardware . 
This is deemed to include at least hardware such as optical 
storage ( e . g . , compact - disk read - only memory ( CD - ROM ) ) , 
magnetic media , flash read - only memory ( ROM ) , or any 
means of storing digital information in to be readily avail 
able for the processing hardware 226 . The stored informa 
tion can be in the form of machine executable instructions 
( e . g . , compiled executable binary code ) , source code , byte 
code , or any other information that can be used to enable or 
configure computing devices to perform the various embodi 
ments discussed above . This is also considered to include at 
least volatile memory such as random - access memory 
( RAM ) and / or virtual memory storing information such as 
central processing unit ( CPU ) instructions during execution 
of a program carrying out an embodiment , as well as 
non - volatile media storing information that allows a pro 
gram or executable to be loaded and executed . The embodi 
ments and features can be performed on any type of com 
puting device , including portable devices , workstations , 
servers , mobile wireless devices , and so on . 

enable or configure computing devices to perform the vari 
ous embodiments discussed above . This is also deemed to 
include at least volatile memory such as random - access 
memory ( RAM ) and / or virtual memory storing information 
such as central processing unit ( CPU ) instructions during 
execution of a program carrying out an embodiment , as well 
as non - volatile media storing information that allows a 
program or executable to be loaded and executed . The 
embodiments and features can be performed on any type of 
computing device , including portable devices , workstations , 
servers , mobile wireless devices , and so on . 

1 . A method performed by a host computing device 
comprising processing hardware and storage hardware , the 
method comprising : 

executing a host operating system , the host operating 
system executing a guest runtime environment ( GRE ) 
engine , the GRE engine configured to instantiate and 
manage the execution of GREs , each GRE comprising 
an environment that isolates execution within the GRE 
from the host operating system and from other GRES ; 

providing a security policy for a GRE managed by the 
GRE environment , the security policy specifying 
execution restrictions to be imposed on code executing 
within the GRE ; and 

enforcing the security policy with respect to the GRE by 
monitoring execution of code within the GRE against 
the security policy and enforcing the execution restric 
tions when they are determined to be applicable . 

2 . A method according to claim 1 , wherein the GRE 
engine comprises a machine virtualization hypervisor , and 
wherein the GREs comprise respective virtual machines . 

3 . A method according to claim 1 , wherein the GRE 
engine comprises a container engine and the GREs comprise 
respective containers , each container comprising a respec 
tive process managed by the container engine , each con 
tainer comprising a sandbox of files and configuration data . 

4 . A method according to claim 1 , further comprising : 
storing hashes of respective executables stored by the 

storage hardware and executable as processes by the 
operating system and / or the GRE engine , wherein the 
execution restrictions comprise one or more of the 
hashes , and wherein the monitoring comprises compar 
ing the one or more hashes of the execution restrictions 
with hashes of executables requested to execute in a 
GRE . 

5 . A method according to claim 4 , wherein the comparing 
is performed for an executable that is requested to be 
executed in the GRE or is performed for an executable that 
is already executing in the GRE . 

6 . A method according to claim 1 , further comprising 
implementing a host - level security policy that governs the 
host operating system , and implementing the host - level 
security policy , at least in part , within a GRE . 

7 . A method according to claim 1 , further comprising 
executing a loader that loads executable files and / or libraries 
for a GRE by , each time a file and / or library is requested to 
be loaded for execution , determining whether the requested 
file and / or library is authorized to execute within the GRE . 

8 . A computing device comprising : 
processing hardware ; 
storage hardware storing instructions configured to cause 

the processing hardware to perform a process , the 
process comprising : 

CONCLUSION 
[ 0046 ] Embodiments and features discussed above can be 
realized in the form of information stored in volatile or 
non - volatile computer or device readable media . This is 
deemed to include at least media such as optical storage 
( e . g . , compact - disk read - only memory ( CD - ROM ) ) , mag 
netic media , flash read - only memory ( ROM ) , or any current 
or future means of storing digital information . The stored 
information can be in the form of machine executable 
instructions ( e . g . , compiled executable binary code ) , source 
code , bytecode , or any other information that can be used to 
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executing guest runtime environment ( GRE ) engine 
that creates and executes GRE instances , each GRE 
instance comprising an isolated execution environ 
ment wherein files and / or memory of each GRE 
instance is isolated by the GRE engine ; 

providing a plurality of security policies associated 
with respective GRE instances ; 

executing a policy monitor in a GRE instance , the 
policy monitor accessing a security policy specific to 
the GRE instance , the policy monitor monitoring 
requests , within the GRE instance , to execute files , 
the policy monitor determines whether to the 
requests are authorized based on whether the files 
requested for execution are specified by the security 
policy ; and 

notifying an enforcement module when a request for 
execution of a file is not authorized . 

9 . A computing device according to claim 8 , wherein the 
enforcement module either prevents execution of the file , 
terminates execution of the file , or issues a notification 
indication violation of the security policy . 

10 . A computing device according to claim 8 , wherein the 
process further comprises computing hashes of the files 
requested for execution to determine whether the files are 
authorized for execution in the GRE instance . 

11 . A computing device according to claim 8 , wherein the 
process further comprises accessing a host - based policy that 
governs execution policy outside of the GRE engine . 

12 . A computing device according to claim 11 , wherein 
the process further comprises applying at least a portion of 
the host - based policy by the policy monitor in the GRE 
instance . 

13 . A computing device according to claim 11 , wherein 
the process further comprises determining , based on the 
host - based policy , to instantiate the GRE instance . 

14 . A computing device according to claim 13 , wherein 
the process further comprises responding to a request to 
execute an application by evaluating the host - based policy to 
determine to instantiate the GRE instance . 

15 . A computing device according to claim 8 , wherein the 
GRE instance comprises a virtualization container or a 
virtual machine . 

16 . A computing device according to claim 8 , wherein the 
GRE instance comprises a container that comprises a user 
space process managed by an operating system of the 
computing device , and wherein the GRE engine performs 
the enforcing of the security policy . 

17 . Computer storage hardware storing information con 
figured to enable a computing device to perform a process , 
the process comprising : 
managing execution of guest runtime environments 

( GREs ) on the computing device , the managing includ 
ing virtualizing access to hardware of the computing 
device by guest software executing in the GREs ; 

associating a security policy specification with a GRE , the 
security policy specification specifying security restric 
tions to be enforced within scope of execution of the 
GRE ; 

enforcing the security policy specification by monitoring 
requests to access objects within the GRE ; and 

determining whether to grant or deny access to the objects 
within the GRE based on the monitoring . 

18 . Computer storage hardware according to claim 17 , 
wherein the monitoring further comprises checking the 
integrity of the objects , the GRE , and or a host operating 
system hosting the GREs . 

19 . Computer storage hardware according to claim 18 , the 
process further comprising receiving a host policy specifi 
cation from associated with host operating system and 
performing the monitoring in accordance with the host 
policy specification . 

20 . Computer storage hardware according to claim 17 , 
wherein the GRE comprises a container , wherein the policy 
specification comprises a code integrity policy , and wherein 
the code integrity policy is added to the container either by 
( i ) adding the code integrity policy to a registry of a base 
image of a container before the container is instantiated , ( ii ) 
by inserting the code integrity policy into the container 
during an initial configuration while booting a container , ( iii ) 
by adding code integrity to a container ' s pre - boot environ 
ment as a Unified Extensible Firmware Interface ( UEFI ) 
variable , or ( iv ) by the container requesting the code integ 
rity policy . 

* * * * * 


