US 20190278635A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0278635 A1

Rodriguez Sierra et al. (43) Pub. Date: Sep. 12, 2019
(54) FLEXIBLE AND SCALABLE ARTIFICIAL GOG6F 16/22 (2006.01)
INTELLIGENCE AND ANALYTICS GOG6F 16/25 (2006.01)
PLATFORM WITH FLEXIBLE CONTENT GO6N 20/00 (2006.01)
STORAGE AND RETRIEVAL (52) US. CL
]] CPCcc..... GO6F 9/541 (2013.01); GOGF 16/27
(71) Applicant: OPEN TEXT SA ULC, Halifax (CA) (2019.01); GO6N 20/00 (2019.01); GO6F
. . 167221 (2019.01); GO6F 16/252 (2019.01);
(72) Inventors: Marc Rodriguez Sierra, Sant Just GO6F 16/2456 (2019.01)
Desvern (ES); Lalith Subramanian,
San Mateo, CA (US); Carles Bayes (57) ABSTRACT
Martin, Sant Just Desvern (ES) .
Systems and methods for content management wherein a
(21) Appl. No.: 16/295,379 client can submit requests to a first API which the forwards
the requests to either an IMDB or a gateway to a distributed
(22) Filed: Mar. 7, 2019 cluster-computing framework. Requests to the IMDB are
serviced and responses from the IMDB are returned to the
Related U.S. Application Data client. Requests that are forwarded to the gateway are first
(60) Provisional application No. 62/639,899, filed on Mar. modified for the distributed cluster-computing fr.amewc.)rk,
and are then parsed by the gateway and used to instantiate
7, 2018. . .
processors that generate corresponding requests to the dis-
o . . tributed cluster-computing framework. Responsive data
Publication Classification from the distributed cluster-computing framework is used to
(51) Int. CL generate responses to the client requests that are forwarded
GO6F 9/54 (2006.01) to the first API which modifies them to appear as if they were
GO6F 16/27 (2006.01) generated by the IMDB. These meodified responses are
GO6F 16/2455 (2006.01) returned by the first API to the client.
Client 210
P e
< HTTP 3
e e}
¥
Frontend 220
SN P
< HTTP 3
e e , 230
A
Web services |17 252
Appiication layer || 4 250
236 -
23
Business layer a 938 Spark Cluster with Hive 257 258_‘}
= 252 Postgre J
FastDB AP TCP " Spark Gateway /
- ¢ j [ndfs }
Spark APl | Hadoop API l Hive
254-—"
é' .
- 25 259
v /,—«240 260 256 <

FastDB columnar
database

Data lake

US 2019/0278635 Al

Sep. 12,2019 Sheet 1 of 5

Patent Application Publication

L Bid
Welo i) WsiD
g M mt\\ M gt\ H
anusbijplu} ssauisng Buiues?y SoNAIRUY DROUBADY
. . SUILDEIN .

J

14

Qmwi\\,

Aloysodss jenus)

OmT\\

ffomw

sonAleuy 8}

hi

f/.sﬁ:

Wwauiuodiaue Bunndwoed ssudisiug

$82IN0G BI1B

J

g0t

\

ol

Patent Application Publication Sep. 12,2019 Sheet 2 of 5 US 2019/0278635 A1

Client 210
PN e
< HTTP 3
S
¥
Frontend 220
N
< HTTP 3 230
B e /,/’
\ 4
Web services 1~ 492
Application layer I | 234 /f;zg@
—236
Business layer o Spark Cluster with Hive ._;,{;;;;;;;
238 252,\ AAAAAAAAAA
M‘/M :: oo s
FastDB API Q TCP _j Spark Gateway
5 - v
&
Spark AP Hadoop API
254 1 ,
g !
3 259
v 49 260 256

FastDB columnar
daiabase

Data lake

Fig. 2

Patent Application Publication Sep. 12,2019 Sheet 3 of 5

US 2019/0278635 Al

Client sends initial request to frontend
user interface

302

i

Frontend user interface sends request
to custom FastDB API

304

i

Custom FastDB APl determines
whether to access FasiDR columnar
database or Spark distributed dataset

306

308

Fig. 3A

roc:ess as FastDB or Spark .

Patent Application Publication Sep. 12,2019 Sheet 4 of 5 US 2019/0278635 A1

Custom FastDB AP! uses initial 310
request 1o access FastDB database

i

Custom FastDB APl retrieves data

responsive o the initial request from 1444

the FastDB database and generales a
response to the request

i

Custom FastDB APl returns response 314
io frontend user interface

i

Frontend user interface generates {3445
display and returns it {o the client

Fig. 3B

Patent Application Publication Sep. 12,2019 Sheet 5 of 5 US 2019/0278635 A1

Custom FastDB APl generates
modified request and forwards
modified request to Spark gateway 1320

:

Spark gateway reads and parses
modified request and identifies
processing class corresponding to
requeast

'

Spark gateway instantiates processor | .—-924
from identified class

:

Processor retrieves dataset(s) for | -228
tables involved in the request

!

Processor joins dataset(s) for retrieved
tables, selects fields for requested | 45g
data and applies filters over joined

datasst(s)

!

Processor generates response o
modified request and retumns itto §—330
custom FastDB AP

I

Custom FastDB APl generates 330
modified response and retumns i to
frontend user interface

!

Frontend user interface generales {.-3234
display and returns if to the client

322

Fig. 3C

US 2019/0278635 Al

FLEXIBLE AND SCALABLE ARTIFICIAL
INTELLIGENCE AND ANALYTICS
PLATFORM WITH FLEXIBLE CONTENT
STORAGE AND RETRIEVAL

CROSS-REFERENCE TO RELATED
APPLICATION(S)

[0001] This application claims a benefit of priority under
35 U.S.C. § 119(e) from the filing date of U.S. Provisional
Application No. 62/639,899, filed Mar. 7, 2018, entitled
“FLEXIBLE AND SCALABLE ARTIFICIAL INTELLI-
GENCE AND ANALYTICS PLATFORM WITH
ADVANCED CONTENT ANALYTICS AND DATA
INGESTION,” the entire disclosure of which is fully incor-
porated by reference herein for all purposes.

TECHNICAL FIELD

[0002] This disclosure relates generally to content analyt-
ics and more particularly to systems, methods, and computer
program products for a flexible and scalable artificial intel-
ligence and analytics platform that provides alternate con-
tent storage mechanisms that are accessible by a client
through the same API.

BACKGROUND OF THE RELATED ART

[0003] Today’s enterprises are continuously bombarded
with massive amounts of data (e.g., unstructured digital
content) from disparate sources. In many scenarios, real-
time responses and data solutions are needed to make sense
and make use of such content. Accordingly, enterprises
today generally rely on technologies to process, understand,
and utilize enterprise content. Content analytics is one such
technology.

[0004] Content analytics refers to the act of applying
business intelligence (BI) and business analytics (BA) prac-
tices to digital content. Enterprises use content analytics
software to gain insight and provide visibility into the
amount of enterprise content that is being created, the nature
of that content, and how it is used, for instance, in an
enterprise computing environment.

[0005] Content analytics software such as OpenText™
Content Analytics, which is available from Open Text,
headquartered in Canada, as part of the Open Text Informa-
tion Access Platform, can provide many benefits, including
creating machine-readable content from unstructured con-
tent, extracting meaningful and/or relevant content from the
unstructured content, discovering valuable factual informa-
tion from the unstructured content, increasing productivity
by significantly reducing the time required to identify what
content should be kept (e.g., for compliance reasons, which
can also reduce legal risk), and so on.

[0006] While existing content analytics systems can be
quite powerful and useful in many applications, it may be
difficult to increase the scale of the data that is handled while
maintaining performance. In other words, if a system uses
one type of content storage mechanism (e.g., an in-memory
database, or IMDB), performance is improved, but the
amount of data that can be handled is limited. With other
types of content storage mechanisms (e.g., a distributed
cluster-computing framework), the amount of data that can
be handled is increased, but this is achieved at the expense
of performance. Additionally, these different types of data
storage use very different mechanisms to access the stored

Sep. 12,2019

data, using the different types of data storage may require
adaptation of user interfaces to work with different APIs for
the different data storage mechanisms. It would be desirable
to provide a mechanism for content storage that overcomes
these problems relating to performance, data capacity, scal-
ability and ease of access.

SUMMARY OF THE DISCLOSURE

[0007] Embodiments disclosed herein provide innovations
and improvements in the field of content analytics, wherein
content can be stored in different types of repositories that
implement very different technologies. In one embodiment,
a content analytics system incorporates both an IMDB
storage mechanism, such as a FastDB columnar database,
and a distributed cluster-computing framework storage
mechanism, such as a Spark cluster-computing framework.
A user device interacts with a frontend user interface (UI) to
communicate data requests to a custom API. The custom
API can selectively convey the requests, either to an IMDB,
or to a gateway for access to a distributed cluster-computing
framework. If a request is directed to the IMDB, the request
received by the custom API will be used to query the IMDB.
A response to the request is generated and returned to the
IMDB API, which forwards the response to the user device.
If a request is directed to the distributed cluster-computing
framework, the custom API will forward the request to the
gateway for the distributed cluster-computing framework.
The gateway will parse the request and use the parsed
components to generate a set of instructions that will be
executed through the distributed cluster-computing frame-
work. A response is returned by the distributed cluster-
computing framework to the gateway, which parses the
response and uses the parsed components to generate a
second response which is equivalent to the response that
would have been returned from the IMDB. This second
response generated by the gateway is forwarded to the
IMDB API. The IMDB API then forwards this response to
the user device. Thus, the user device operates as if it is
interacting only with the IMDB system, whether the request
is served by the IMDB or the distributed cluster-computing
framework. Through appropriate selection of these alterna-
tive data storage mechanisms, the system may provide both
the higher performance of the IMDB and the greater scal-
ability and capacity of the distributed cluster-computing
framework.

[0008] One embodiment comprises a content management
system having one or more processors executing an
advanced analytics system. A first data store is communi-
catively coupled to the advanced analytics system, wherein
the first data store comprises a first database. A second data
store is also communicatively coupled to the advanced
analytics system, wherein the second data store comprises a
second database that is distributed across a plurality of
physically separate data storage devices that are intercon-
nected with the advanced analytics system by one or more
networks. The advanced analytics system includes a user
interface that is coupled to a first database application
program interface (API). In a first mode, the first database
APl is adapted to receive a first request for data from the UI,
where the request is configured to query the first database.
The first database API forwards the received first request to
the first database and receives a response from the first
database, which is then forwarded to the Ul In a second
mode, the first database API is adapted to receive the first

US 2019/0278635 Al

request for data from the Ul, but instead of forwarding it to
the first database, the API generates a second request is
forwarded to a gateway for the second database, where the
second request is configured to query the second database
via an API for the second database. (The first request is not
configured for the second database API.) The gateway is
adapted to access the API, generating instructions to retrieve
the desired data from the second database. The gateway
receives a response from the second database API which is
forwarded to the first API. Because this response is not
configured in the same manner as a response from the first
database API itself, the first API generates a second response
which appears to be the same as if the first API had been
used to access the first database. This second response is
forwarded to the UL

[0009] Inone embodiment, the first database comprises an
in-memory database, such as a FastDB columnar database.
The second database may comprise a distributed cluster-
computing framework such as a Spark framework. In one
embodiment, the gateway is adapted to parse the second
request, identify a processing class corresponding to the
second request, and instantiate a processor from the identi-
fied processing class to handle the processing of the received
request. The instantiated processor may retrieve datasets
from the distributed cluster-computing framework, where
the datasets correspond to tables involved in the first request.
The processor may then join the retrieved datasets, select
fields identified in the first request, and apply filters over the
joined datasets to produce the first response. In one embodi-
ment, a user may manually select either the first mode, in
which the first API forwards received requests to the first
database, or the second mode, in which requests are for-
warded to the gateway to be processed and serviced by the
second database. The first or second mode may alternatively
be selected automatically by the first API based on condi-
tions or characteristics of the first request, such as the
amount of data involved in the servicing of the request.

[0010] An alternative embodiment comprises a method for
servicing requests for data in an enterprise data processing
environment having an IMDB API for accessing an IMDB
and a distributed cluster-computing framework API for
accessing a distributed cluster-computing framework, where
a gateway is communicatively coupled between the IMDB
API and the distributed cluster-computing framework API.
The method includes receiving an initial request for data
from a client, wherein the initial request is configured for an
IMDB API, providing the initial request to a custom API,
and determining whether the request will be serviced by an
IMDB or a distributed cluster-computing framework. The
method further includes, in response to determining that the
initial request will be serviced by the IMDB, the custom API
forwarding the initial request to the IMDB, receiving a
response to the initial request from the, and forwarding the
response from the responsive to the initial request. Alterna-
tively, in response to determining that the initial request will
be serviced by the distributed cluster-computing framework,
the custom API will forward generate a modified request and
send it to a gateway corresponding to the distributed cluster-
computing framework. The gateway will then parse the
modified request and generate instructions to be executed by
the distributed cluster-computing framework to query this
framework. The gateway receives a response from the
distributed cluster-computing framework and returns the
response to the custom API, which generates a modified

Sep. 12,2019

response that appears the same as if the first API had been
used to access the first database. This modified response is
forwarded to the client.

[0011] Another alternative embodiment comprises a com-
puter program product having a non-transitory computer-
readable storage medium that stores computer instructions
executable by a processor to perform a method substantially
as described above. Numerous other embodiments are also
possible.

[0012] The embodiments disclosed herein may provide
solutions to one or more of the problems found in the prior
art. For instance, the present embodiments provide scalabil-
ity that enables the system to handle big data through the use
of a distributed cluster-computing framework, while still
allowing the use of a higher-performance IMDB when
working with smaller data sets. Further, the present embodi-
ments do not require clients to be adapted to interact with
multiple APIs corresponding to the multiple types of data
storage (e.g., IMDB and distributed cluster-computing
framework), but instead allow clients to submit requests that
are configured for a single API (e.g., the IMDB API). This
API determines which type of data storage will service the
request and either queries the corresponding database, or
forwards the request to a gateway that generates correspond-
ing requests for the distributed cluster-computing frame-
work. Similarly, responses from the distributed cluster-
computing framework are reconfigured to the form of the
IMDB API’s responses so that the client only has to be
configured to handle tis single type of response. Still other
advantages will be apparent to those skilled in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The drawings accompanying and forming part of
this specification are included to depict certain aspects of the
invention. A clearer impression of the invention, and of the
components and operation of systems provided with the
invention, will become more readily apparent by referring to
the exemplary, and therefore non-limiting, embodiments
illustrated in the drawings, wherein identical reference
numerals designate the same components. Note that the
features illustrated in the drawings are not necessarily drawn
to scale.

[0014] FIG. 1 depicts a diagrammatical representation of
an enterprise computing environment according to some
embodiments.

[0015] FIG. 2 depicts a diagrammatical representation of
a portion of the advanced analytics system and data storage
systems of the enterprise computing environment according
to some embodiments.

[0016] FIGS. 3A-3C depict flow diagrams illustrating an
exemplary method for selecting access to either an IMDB or
a distributed cluster-computing framework and making the
corresponding access according to some embodiments.

DETAILED DESCRIPTION

[0017] The invention and the various features and advan-
tageous details thereof are explained more fully with refer-
ence to the non-limiting embodiments that are illustrated in
the accompanying drawings and detailed in the following
description. Descriptions of well-known starting materials,
processing techniques, components, and equipment are
omitted so as not to unnecessarily obscure the invention in
detail. It should be understood, however, that the detailed

US 2019/0278635 Al

description and the specific examples, while indicating some
embodiments of the invention, are given by way of illustra-
tion only and not by way of limitation. Various substitutions,
modifications, additions, and/or rearrangements within the
spirit and/or scope of the underlying inventive concept will
become apparent to those skilled in the art from this disclo-
sure.

[0018] One object of some embodiments herein is to
provide a technical solution to the scalability and perfor-
mance problems described above. Another object of some
embodiments is to provide a technical solution to the prob-
lem of easily accessing different types of data storage.
Solutions may be provided in a system in which a modified
API for an IMDB determines whether a client request should
be serviced by the corresponding IMDB, or a distributed
cluster-computing framework. In the former case, the client
request is serviced by the IMDB API accessing the IMDB in
a conventional manner. In the latter case, the client request
is serviced by the IMDB API forwarding the request to a
gateway for the distributed cluster-computing framework,
which generates a new request based on the initial client
request and then accesses the distributed cluster-computing
framework using this second request. The response from the
distributed cluster-computing framework is then used as the
basis for generating a second response which is equivalent
to a response provided by the IMDB. This second response
is forwarded by the gateway to the IMDB API, which returns
it to the client.

[0019] These features may be provided in a system that
delivers artificial intelligence (Al), machine learning, data
discovery, task automation, business optimization, and
sophisticated dashboarding that enables enterprises to make
smart and speedy decisions with their data. In some embodi-
ments, this system may include a flexible and scalable Al
and analytics platform (“platform™) with advanced content
analytics, data ingestion, and reporting/sharing functions.
The platform, which includes hardware and software, may
combine machine learning (ML), advanced analytics, enter-
prise-grade BI, and capabilities to acquire, merge, manage,
and analyze structured and unstructured big data, including
big content stored in Enterprise Information Management
(EIM) systems. The platform enables machine-assisted deci-
sion making, automation, and business optimization.

[0020] In some embodiments, as illustrated in FIG. 1, the
platform operates in an enterprise computing environment.
The enterprise computing environment 100 may include a
text analytics system 110, an advanced analytics system 120,
a developer platform 130 for data scientists (also referred to
as a “Machine Learning Designer”) and a business intelli-
gence system 140. The text analytics system in this embodi-
ment is communicatively connected to a variety of disparate
data sources 160, including those that are external to the
enterprise computing environment and those that are internal
to the enterprise computing environment (not separately
shown here). The text analytics system may, for instance, be
communicatively connected to social media application data
source(s), website data sources(s), and an enterprise reposi-
tories fileshare. Examples of social media applications
include Twitter, Facebook, LinkedIn, etc. Website data
sources can include any web server hosting a website on the
Internet. Examples of an enterprise content source can
include an EIM system, a content server, an enterprise
content management (ECM), etc. Other sources of data may
also be possible (e.g., Internet of Things (IoT) devices).

Sep. 12,2019

[0021] The text analytics system 110 of the platform may
include a data crawler configured for communicating with
social media server(s) through a REST application program-
ming interface (API) layer to obtain and/or receive unstruc-
tured social media content. This can include posts, com-
ments, likes, images, links, or any content (whether it is
automatically generated content or user generated content)
that can be crawled from a social media application data
source. Output from the data crawler is considered unstruc-
tured social media content which can be in disparate for-
mats.

[0022] The text analytics system 110 of the platform may
also include a web crawler configured for communicating
with website server(s) through the REST API layer to obtain
and/or receive unstructured web content from the Internet.
Other crawlers are also possible and can be readily added
(e.g., by adding a plug-in particular to the data type such as
transcribed voice data) to the text analytics system, making
the platform flexible and extensive with regard to data
sources and types and not limited to social media or websites
on the Internet.

[0023] The unstructured content (from various input
sources and in different formats) may be provided to a data
ingestion pipeline for processing, content extraction, content
analyzing, and tagging. In some embodiments, the data
ingestion pipeline processes text data separately and differ-
ently from numerical information. For example, meaning or
sentiment may be extracted or derived from text data (e.g.,
a text string of 140 characters or less), while an approxi-
mation numerical analysis may be performed on numerical
information. The data ingestion pipeline decomposes input
data of various types from various data sources into a single
common data model that is persisted in a central repository
150. The central repository is accessible by systems and/or
services running on the platform, including the advanced
analytics system 120, machine learning system 130, and
business intelligence system 140 as shown in FIG. 1. The
central repository may also accessible by other systems
and/or services, such as a comprehensive query and report-
ing system and a directory service (e.g., OpenText Directory
Service). Clients (e.g., 170, 172, 174) can access advanced
analytics system 120, machine learning system 130, and
business intelligence system 140 and can access central
repository through them.

[0024] The advanced analytics system includes a frontend
user interface (UI) configured for end users, an administra-
tive Ul configured for system administrators, visual data
mining and predictive analysis applications, and APIs (not
shown) for the Uls and applications (e.g., web service APIs
for delivering analytics software as web services, REST
APIs for the Uls, etc.). Additionally, the advanced analytics
system includes an IMDb API with algorithms for accessing
unstructured and structured data persisted in databases (e.g.,
proprietary FastDB columnar databases) in the central
repository. The advanced analytics system further includes a
gateway to a distributed cluster-computing framework such
as Apache Spark. Apache Spark requires a cluster manager
and a distributed storage system. In one embodiment,
Apache Hadoop software framework is used for distributed
storage and processing of datasets of big data. Skilled
artisans appreciate that “big data” refers to data sets that are
so voluminous and complex (and sometimes that grow
rapidly) that traditional data processing software is inad-
equate to process them. In order to have certain big data

US 2019/0278635 Al

analytics features (which will not run on the Spark (Parquet)
database format) run on the datasets, the datasets may first
be translated from the Parquet database format to a propri-
etary columnar database format.

[0025] Conventional IMDBs could not scale to allow
processing of large amounts of data (e.g., hundreds or more
gigabytes of data), so a new platform is provided. Architec-
turally, the platform disclosed herein combines big data
analytics (BDA), data ingestion pipeline, information man-
agement and dashboarding, and a developer platform in a
comprehensive, intelligent, and seamless manner. The pres-
ent enterprise computing environment includes both an
IMDB that is persisted in a locally accessible memory (e.g.,
a FastDB columnar database which runs in the main
memory of a host), and a distributed data framework that is
persisted across multiple, typically networked data stores
(e.g., a Spark distributed data framework), in order to obtain
some of the advantages of both of these types of data
storage. In one embodiment, the platform utilizes Hadoop
and Spark to scale to larger data sets and perform analytics.
The platform also adds a Notebook paradigm, which
approximates a developer platform for data scientists.
[0026] Examples of the IMDB which are described herein
include a FastDB columnar database, although it should be
noted that other IMDBs may be employed in alternative
embodiments. A column-oriented or columnar database
management system stores data tables by column. Practical
use of a column-oriented is very similar to the use of a
row-oriented database, and both can use traditional database
query languages (e.g., SQL or the like) to load data and
perform queries. Both row and columnar databases are
commonly used in extract, transform, load (ETL) and data
visualization tools. These databases may provide very high
performance when they reside in the main memory of the
host. The use of columnar databases in particular may
improve performance under certain workloads because these
databases can, in these cases, more precisely access the data
needed to answer queries than row-oriented databases which
must scan and discard rows of data that are not wanted.

[0027] Although IMDBs may be well suited for online
analytical processing workloads, there are limits to the
amounts of data that they can handle. In particular, they may
be insufficient to handle big data. The present enterprise
computing environment therefore also utilizes a distributed
cluster-computing framework. In the examples below, a
Spark distributed cluster-computing framework is used, but
other frameworks may be implemented in other embodi-
ments. Spark uses a resilient distributed dataset architecture
which has a set of data items distributed over a cluster of
machines. Spark offers fault tolerance and virtually unlim-
ited capacity, so it can be used for analytics involving big
data. While Spark can handle the vast amounts of data
involved in big data analytics, its performance may suffer as
a result of network latencies when accessing the data stored
in the Spark cluster. It may therefore be desirable in some
scenarios, such as when a data scientist wishes to perform a
number of queries or analyses on a subset of the data stored
in the Spark framework, to retrieve a portion of the data that
from the Spark framework to the FastDB columnar database
in order to perform the queries or analyses on the subset of
the data with higher performance.

[0028] As described above, ingested data (which is per-
sisted in the central repository according to the single data
model) is accessible for consumption by both the advanced

Sep. 12,2019

analytics system and the comprehensive query and reporting
system. In turn, these systems can also input numerical data
that comes through them into the single data model. More
specifically, the comprehensive query and reporting system
can perform traditional BI analytics and the advanced ana-
Iytics system can perform advance modeling. Numerical
outputs from the analytics can be inserted by these systems
into the single data model and persisted in the central
repository. Further, the platform includes an improved gate-
way to a reliable and robust cluster-computing framework.
The gateway provides fast and efficient access to the extraor-
dinarily large data set (e.g., hundreds and hundreds of
gigabyte of data) that is stored in the cluster-based data
framework while allowing the client to use the same queries
that are used for the local (e.g., memory-based) database.
[0029] As noted above, although the embodiments
described in detail below use a FastDB columnar database as
the IMDB, and use a Spark framework as the distributed
cluster-computing framework, other embodiments may use
other databases and distributed frameworks. References
below to FastDB and Spark should therefore be broadly
construed to cover these other databases and distributed
frameworks, rather than being regarded as limiting.

[0030] In one embodiment, the advanced analytics system
of the enterprise computing environment includes an API
associated with the IMDB (e.g., a FastDB API) that can be
accessed by a client to interact with the IMDB (e.g., a
FastDB columnar database). In a first mode, the client
accesses the FastDB API normally, with the API receiving a
request from the client and forwarding the request to the
FastDB database using FastDB API objects. Data responsive
to the request is retrieved from the FastDB database and is
returned by the FastDB API to the client.

[0031] In a second mode, the FastDB API receives a
request and, instead of accessing the FastDB database, the
FastDB API generates a second request which is based on
the FastDB request that would have been used to access the
FastDB database, but is configured to access the Spark
framework. The new request is forwarded to a gateway to
the cluster-based data framework (e.g., a Spark framework).
The Spark gateway parses the second request and generates
instructions to be executed through the distributed cluster-
computing framework. The instructions are executed to
access the data in the Spark framework (which may be
referred to as a data lake). After data responsive to the
request is received by the gateway, the response is forwarded
to the FastDB API. The FastDB API generates a second
response, which is configured as if the request had been
serviced by the FastDB columnar database, and this second
response is returned to the client.

[0032] In this system, the client accesses the FastDB API
in the same way, regardless of whether the request will be
serviced in the first mode or the second mode. Consequently,
the client does not have to be concerned with the details of
how the Spark data framework is accessed, but only has to
be able to access the FastDB API. Similarly, the client does
not have to be able to understand how data is served by the
Spark data framework, but only has to be able to handle data
as it is returned by the FastDB API.

[0033] It should be noted that, while FastDB is used herein
as an example of a local database, it is intended to be
exemplary, and other embodiments of the invention may be
implemented with other types of local databases instead of
a FastDB database. Similarly, the use of a Spark data

US 2019/0278635 Al

framework in the exemplary embodiments described herein
is intended to be illustrative, rather than limiting, and other
types of cluster-based data storage frameworks may be
implemented in alternative embodiments of the invention.
[0034] Referring to FIG. 2, a diagrammatical representa-
tion of a portion of the advanced analytics system and data
storage systems of the enterprise computing environment is
shown. As depicted in this figure, a client is communica-
tively coupled to an advanced analytics application 230 via
a frontend Ul. Advanced analytics application 230 includes
a web services layer 232, an application layer 234 and a
business layer 236. Advanced analytics application 230 also
includes a FastDB API 238 which is communicatively
coupled to a FastDB columnar database.

[0035] Advanced analytics application 230 is also coupled
to a Spark cluster 250 via FastDB API 238. In one mode,
FastDB API 238 communicates with Spark gateway 252 as
will be explained in more detail below. Spark Cluster 250
includes a Postgre database 257 which stores metadata for
the tables stored in the Spark Cluster, a Hadoop distributed
file system (HDFS) 258, a Hive database interface 259, a
Hadoop API 256 and a Spark API 254. The dataset stored
within Spark cluster 250 may be referred to a data lake 260.
[0036] Client 210 can access the data in FastDB database
240 and in data lake 260 through the FastDB API of
advanced analytics application 230. The access can be made
in a first mode, in which FastDB API 238 functions “nor-
mally”, accessing the data in FastDB database 240. That is,
the FastDB API receives client requests from frontend Ul
220 and forwards the requests to FastDB columnar database
240, then the responses returned to the FastDB API from the
FastDB database are forwarded through the frontend UI to
the client. Alternatively, the client can access data in a
second mode, in which FastDB API 238 generates a modi-
fied request and forwards the modified request to Spark
gateway 252. This is necessary because the FastDB and
Spark APIs and the respective data storage systems are
substantially different, and the request configured to access
the FastDB database through the FastDB API would not be
operable to access the Spark dataset through the Spark API.
The request forwarded by FastDB API 238 to Spark gateway
252 is configured to access data lake 260.

[0037] When Spark gateway 252 receives a modified
request from FastDB API 238, it generates instructions to
access data lake 260 via Spark API 254. When the Spark
dataset is accessed, a response is returned to Spark API 254,
which forwards the response to Spark gateway 252. This
response is then forwarded to FastDB API 238. Since the
response would not be recognized as the FasDB-configured
response that the client’s original request, FastDB API 238
generates a new response, based on the response received
from Spark API 254. This new response is configured in the
same manner as a response that would have been generated
by FastDB database 240 if it had serviced the request. The
response generated by FastDB API 238 is then forwarded to
client 210 via frontend UI 220.

[0038] FastDB API 238 provides a mechanism for appli-
cations to execute instructions on FastDB database 240 or
the Spark distributed cluster-computing framework without
knowing the underlying XML messages. After the advanced
analytics application has instantiated and populated properly
the FastDB API’s objects according to the query that must
be executed, FastDB API 238 either uses these objects to
query the FastDB columnar database, or serializes these

Sep. 12,2019

objects to compose an XML instruction to be forwarded to
Spark gateway 252. In a similar way, when FastDB API 238
gets the resulting response from the FastDB database 240, or
from the Spark framework via the Spark gateway 252, it will
generate instances of the classes extracting the data from the
XML response, which will then be used by the advanced
analytics application 230. The advanced analytics applica-
tion processes the FastDB API objects that have been
created from the response and generates its own XML
format message that will be delivered to the client applica-
tion 210 via the frontend UT 220.

[0039] The operation of the Spark gateway will be
explained in more detail in connection with FIGS. 3A-3C,
which are a set of flow diagrams illustrating an exemplary
method for selecting access to either the FastDB database or
the Spark framework and making the corresponding access.

[0040] Referring to FIG. 3A, the client sends an initial
request to the frontend UI (302). The frontend UI then sends
this request to the FastDB API of the advanced analytics
application (304). The FastDB API determines whether a
corresponding access should be made to the FastDB colum-
nar database, or to the Spark distributed data set (306). This
determination may be made in a number of ways. For
example, in one embodiment, the user may manually select
which of the data stores to be accessed before ever making
the request. In other words, the user may simply choose to
use one of the data stores or the other, and may select an
appropriate setting (e.g., a flag or other indicator). Then,
when the FastDB API receives the client request, it identifies
this setting and forwards the request to the appropriate
destination as determined from the setting. In an alternative
embodiment, the determination of whether to access the
FastDB database or the Spark distributed data set may be
made automatically by the FastDB API when the client
request is received. In this case, the determination may be
based upon attributes or characteristics of the request itself.
For instance, if the request involves an amount of data that
is below a threshold, the FastDB API may proceed to access
the FastDB database, which can often handle smaller data
sets with greater performance. On the other hand, if the
request involves an amount of data that is above the thresh-
old, the FastDB API may access the Spark data set because
the FastDB database may not be well suited to handle this
larger amount of data. After the FastDB API as determined
which data store should be accessed, the client request is
forwarded and processed appropriately (i.e., according to
FIG. 3B in the case of accesses to the FastDB database, or
according to FIG. 3C in the case of accesses to the Spark
data set).

[0041] Referring to FIG. 3B, a flow diagram illustrating
the processing of the client request to access the FastDB
database (the first mode identified above) is shown. In this
case, the modified FastDB API functions in the same manner
as an ordinary FastDB API, using the initial request that is
received from the front end UI to access the FastDB data-
base using FastDB API objects (310). The FastDB API
retrieves data responsive to the initial request from the
FastDB database and generates a response to the initial
request (312). The FastDB API then returns the generated
response to the front end Ul (314). The frontend UI then
generates a display based on the response and returns the
display to the client (316). As noted above, this process is the
same as it would be using an ordinary FastDB APIL.

US 2019/0278635 Al Sep. 12,2019
6
[0042] Referring to FIG. 3C, a flow diagram illustrating be understandable as a response to the FastDB-oriented
the processing of the client request to access the Spark data client request, so the custom FastDB API uses the responsive
set (the second mode identified above) is shown. As noted ~ data to generate a FastDB-oriented response to the initial
above, this process is performed if the modified FastDB API client request and returns this response to the front end Ul
determines that the client request should be serviced using (3.'32)’ and the front end UT uses .thls response o generate a
display that is returned to the client (334).

the Spark data set rather than the FastDB database. When the - . .

. . [0043] An example is provided below to illustrate the
FastDB API determines that the client request should be operation of the system in the second mode, as depicted in
serviced using the Spark data set. the FastDB API generates FIG. 3C. In this example, it is desired to retrieve data from
a new request that is based on the client’s original request wo tables: Customer and Household. Fach table has an
but is adapted to access the Spark framework, and forwards underlying ORC file (in Optimized Row Columnar file
this new request to the Spark gateway (320). The Spark format) and is registered in Hive Catalog. The metadata of
gateway reads the received modified request, parses the the relationship between the Customer and Household tables
request, and identifies a processing class corresponding to is stored in PostgreSQL and is managed by the Spark
the request (322). Based upon the identified processing gateway. The specific information that the user wishes to get
class, the Spark gateway instantiates a corresponding pro- from the tables is the first fifty customers that are identified
cessor to handle the request (324). The instantiated proces- in the tables as ‘Directors’ and ‘Females’. The user requires
sor then accesses the Spark data set to retrieve data for the that the response contain three fields: Country, County and
tables that are involved in the request (326). The processor Surname of the customer. The Spark gateway is the com-
then joins the data sets for the retrieved tables, selects fields ponent that will retrieve data from the data lake, process this
corresponding to the requested data, and applies filters over data and produce the results that will be provided to the user.
the joined data sets to produce the requested data (328), [0044] Below is the initial request that is sent to applica-
which is returned to the custom FastDB API (330). At this tion web services from the frontend UI and will be for-
point, the responsive data is not configured so that it would warded to the FastDB APIL

<recordView>

<nameex>[default].[customer]</nameex>
<page>1</page>
<pageSize>50</pageSize>

<filter>

<domainstore>

<operationwithprevious>AND</operationwithprevious™>
<name>rootblock</name>
<label>occupation EQ DI</label>
<definition>
<simplequery>
<name>rootblock</name>
<operationwithprevious™>AND</operationwithprevious™>
<count>8034</count>
<remain>8034</remain>
<column>[default].[customer].[occupation]</column>
<operator>EQ</operator>
<value>DI</value>
</simplequery>
<domainstore>
<operationwithprevious™>AND</operationwithprevious™>
<name>rootblock</name>
<label>gender EQ F</label>
<definition>
<simplequery>
<name>rootblock</name>
<operationwithprevious>AND</operationwithprevious™>
<count>95947</count>
<remain>95947</remain>
<column>[default].[customer].[gender]</column>
<operator>EQ</operator>
<value>F</value>
</simplequery>
</definition>
<count>95947</count>
<remain>877</remain>
<resolutiontable>[default].[customer]</resolutiontable>
</domainstore>
</definition>
<count>877</count>
<remain>877</remain>
<resolutiontable>[default].[customer]</resolutiontable>

</domainstore>

</filter>

<template>
<column>[default].[household].[country]</column>
<column>[default].[household].[county] </col umn>

US 2019/0278635 Al

-continued

Sep. 12,2019

<column>[default].[customer].[surname]</column>
</template>
</recordView>

[0045] The advanced analytics application uses the cus-
tom FastDB API to generate a modified request for the Spark
gateway. A TCP connection is established from the appli-

cation to the Spark gateway and an XML message contain-
ing the modified request is sent to the Spark gateway via the
TCP connection. The modified request is shown below.

<qcomm origin_app=“Magellan Data Discovery” origin_ username="“Administrator”>

<operation>getrecordset</operation>
<type>query</type>

<definition>

<recordset>

<name>rootblock</name>
<definition>
<resolutiontable>[default]. [customer]</resolutiontable>

<page>1</page>

<pagesize>50</pagesize>

<template>

<name>template</name>

<definition>
<column>[default].[household].[country]</column>
<column>[default].[household].[county]</column>
<column>[default].[customer].[surname]</column>

</definition>

</template>

<domainstore>

<operationwithprevious>AND</operationwithprevious™>
<name>rootblock</name>
<label>occupation EQ DI</label>
<definition>
<simplequery>
<name>rootblock</name>
<operationwithprevious™>AND</operationwithprevious™>
<column>[default].[customer].[occupation]</column>
<operator>EQ</operator>
<value>DI</value>
</simplequery>
<domainstore>
<operationwithprevious™>AND</operationwithprevious™>
<name>rootblock</name>
<label>gender EQ F</label>
<definition>
<simplequery>
<name>rootblock</name>
<operationwithprevious>AND</operationwithprevious™>
<column>[default].[customer].[gender]</column>
<operator>EQ</operator>
<value>F</value>
</simplequery>
</definition>
<resolutiontable>[default].[customer]</resolutiontable>
</domainstore>
</definition>

<resolutiontable>[default].[customer]</resolutiontable>

</domainstore>
</definition>

</recordset>

</definition>
</qcomm >

US 2019/0278635 Al

[0046] The Spark gateway reads the modified request
received from the custom FastDB API and parses the
request. The Spark gateway identifies the operation involved
in the initial request and selects a processing class corre-
sponding to the operation. In this example, the operation of
the initial request is “getrecordset”. The Spark gateway
instantiates a processor from the selected processing class
and the processor performs operations using Spark API
objects that allow dataset manipulation to service the
request.

[0047] The processor instantiated by the Spark gateway
retrieves data sets for each of the involved tables from the
Spark data lake. The instantiated processor joins the
retrieved datasets of each table using the metainformation
that is stored for the tables in the PostgreSQL database. The
processor selects the fields that are required by the client
request and applies filters over this joined dataset to obtain
the desired information.

[0048] After the instantiated processor has completed the
query of the Spark data lake to obtain the requested infor-
mation, the response below is generated and, serialized as
XML, is forwarded through the TCP socket to the FastDB
APL

<qresponse>
<header>
<page>0</page>
<pagesize>50</pagesize>
<pages>18</pages>
<numcolumns>3</numcolumns>
<totalrows>877</totalrows>
<numrows>30</numrows>
</header>
<body>
<recordset>
<h>
<c>[default
<c>[default

[customer].[___uniqueid___]</c>

[
<c>[default

[

household]. [country]</c>
household).[county]</c>
customer]. [surname]</c>

<c¢>[default

</h>

<r>
<¢>29</c>
<c></c>
<c></c>
<c¢>Benjeman</c>

</r>

<r>
<c>463</c>
<c>US</c>
<c¢>Los Angeles</c>
<¢>Farnaby</c>

</r>

... suppressed rows ...

<r>
<¢>16907</c>
<c>US</c>
<c¢>Los Angeles</c>
<c¢>Hopwood-Robinson</c>

</r>

<frecordset>
</body>
</qresponse>

[0049] If this response were simply forwarded from the
FastDB API back to the frontend UI, the UI would not be
able to correctly interpret the response because it expects a
response that corresponds to the FastDB-oriented request
that it forwarded to the FastDB API. Consequently, the
custom FastDB API deserializes the XML response from the
Spark gateway, creating the needed class instances that can

Sep. 12,2019

be handled by the requesting application. The resulting
modified response which is shown below is returned to the
client application through the frontend UL

<result r="877" p="18’ co="4">

<r>

<t v="[default].[customer].[___uniqueid___]’ type="7"></t>
<t v="[default].[household].[country]’ type="6"></t>

<t v="[default].[household].[county]” type="6"></t>

<t v="[default].[customer].[surname]’ type="6"></t>

<fr>

<r>

<¢ v="29"></c>
<¢ v=""></c>
<¢ v=""></c>
<¢ v="Benjeman’></c>
<fr>
<r>
<¢ v="463"></c>
<¢ v="US"></c>
<¢ v=°"Los Angeles’></c>
<¢ v="Farnaby’></c>
<fr>
... suppressed rows ...
<r>
<¢ v="16170"></c>
<¢ v="US"></c>
<¢ v="Alameda’></c>
<¢ v="Hevicon’></c>
<fr>
<r>
<¢ v="16907"></c>
<¢ v="US"></c>
<¢ v=°"Los Angeles’></c>
<¢ v="Hopwood-Robinson’></c>
<fr>
</result>

[0050] In this example, the advanced analytics application
is executing the queries against the Spark gateway, but the
flow using the FastDB API would be the same, because the
FastDB API isolates the application layer from the under-
lying analytical engine—Spark or FastDB.

[0051] The foregoing description is directed primarily to a
method embodiment. An alternative embodiment comprises
a system having a processor and a non-transitory computer-
readable storage medium that stores computer instructions
executable by the processor to perform a method substan-
tially as described above. Another embodiment comprises a
computer program product having a non-transitory com-
puter-readable storage medium that stores computer instruc-
tions executable by a processor to perform a method sub-
stantially as described above. Numerous other embodiments
are also possible.

[0052] Embodiments discussed herein can be imple-
mented in a computer communicatively coupled to a net-
work (for example, the Internet), another computer, or in a
standalone computer. As is known to those skilled in the art,
a suitable computer can include a central processing unit
(“CPU”), at least one read-only memory (“ROM?”), at least
one random access memory (“RAM”), at least one hard
drive (“HD”), and one or more input/output (“1/0”) device
(s). The I/O devices can include a keyboard, monitor, printer,
electronic pointing device (for example, mouse, trackball,
stylus, touch pad, etc.), or the like. In embodiments of the
invention, the computer has access to at least one database
over the network.

[0053] ROM, RAM, and HD are computer memories for
storing computer-executable instructions executable by the

US 2019/0278635 Al

CPU or capable of being compiled or interpreted to be
executable by the CPU. Suitable computer-executable
instructions may reside on a computer readable medium
(e.g., ROM, RAM, and/or HD), hardware circuitry or the
like, or any combination thereof. Within this disclosure, the
term “computer readable medium” is not limited to ROM,
RAM, and HD and can include any type of data storage
medium that can be read by a processor. Examples of
computer-readable storage media can include, but are not
limited to, volatile and non-volatile computer memories and
storage devices such as random access memories, read-only
memories, hard drives, data cartridges, direct access storage
device arrays, magnetic tapes, floppy diskettes, flash
memory drives, optical data storage devices, compact-disc
read-only memories, and other appropriate computer memo-
ries and data storage devices. Thus, a computer-readable
medium may refer to a data cartridge, a data backup mag-
netic tape, a floppy diskette, a flash memory drive, an optical
data storage drive, a CD-ROM, ROM, RAM, HD, or the
like.

[0054] The processes described herein may be imple-
mented in suitable computer-executable instructions that
may reside on a computer readable medium (for example, a
disk, CD-ROM, a memory, etc.). Alternatively, the com-
puter-executable instructions may be stored as software code
components on a direct access storage device array, mag-
netic tape, floppy diskette, optical storage device, or other
appropriate computer-readable medium or storage device.
[0055] Any suitable programming language can be used to
implement the routines, methods or programs of embodi-
ments of the invention described herein, including C, C++,
Java, JavaScript, HTML, or any other programming or
scripting code, etc. Other software/hardware/network archi-
tectures may be used. For example, the functions of the
disclosed embodiments may be implemented on one com-
puter or shared/distributed among two or more computers in
or across a network. Communications between computers
implementing embodiments can be accomplished using any
electronic, optical, radio frequency signals, or other suitable
methods and tools of communication in compliance with
known network protocols.

[0056] Different programming techniques can be
employed such as procedural or object oriented. Any par-
ticular routine can execute on a single computer processing
device or multiple computer processing devices, a single
computer processor or multiple computer processors. Data
may be stored in a single storage medium or distributed
through multiple storage mediums, and may reside in a
single database or multiple databases (or other data storage
techniques). Although the steps, operations, or computations
may be presented in a specific order, this order may be
changed in different embodiments. In some embodiments, to
the extent multiple steps are shown as sequential in this
specification, some combination of such steps in alternative
embodiments may be performed at the same time. The
sequence of operations described herein can be interrupted,
suspended, or otherwise controlled by another process, such
as an operating system, kernel, etc. The routines can operate
in an operating system environment or as stand-alone rou-
tines. Functions, routines, methods, steps, and operations
described herein can be performed in hardware, software,
firmware, or any combination thereof.

[0057] Embodiments described herein can be imple-
mented in the form of control logic in software or hardware

Sep. 12,2019

or a combination of both. The control logic may be stored in
an information storage medium, such as a computer-read-
able medium, as a plurality of instructions adapted to direct
an information processing device to perform a set of steps
disclosed in the various embodiments. Based on the disclo-
sure and teachings provided herein, a person of ordinary
skill in the art will appreciate other ways and/or methods to
implement the invention.

[0058] Itis also within the spirit and scope of the invention
to implement in software programming or code any of the
steps, operations, methods, routines or portions thereof
described herein, where such software programming or code
can be stored in a computer-readable medium and can be
operated on by a processor to permit a computer to perform
any of the steps, operations, methods, routines or portions
thereof described herein. The invention may be imple-
mented by using software programming or code in one or
more digital computers, by using application specific inte-
grated circuits, programmable logic devices, field program-
mable gate arrays, optical, chemical, biological, quantum or
nanoengineered systems, components and mechanisms may
be used. The functions of the invention can be achieved by
distributed or networked systems. Communication or trans-
fer (or otherwise moving from one place to another) of data
may be wired, wireless, or by any other means.

[0059] A “computer-readable medium” may be any
medium that can contain, store, communicate, propagate, or
transport the program for use by or in connection with the
instruction execution system, apparatus, system, or device.
The computer readable medium can be, by way of example
only but not by limitation, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa-
ratus, system, device, propagation medium, or computer
memory. Such computer-readable medium shall generally
be machine readable and include software programming or
code that can be human readable (e.g., source code) or
machine readable (e.g., object code). Examples of non-
transitory computer-readable media can include random
access memories, read-only memories, hard drives, data
cartridges, magnetic tapes, floppy diskettes, flash memory
drives, optical data storage devices, compact-disc read-only
memories, and other appropriate computer memories and
data storage devices. In an illustrative embodiment, some or
all of the software components may reside on a single server
computer or on any combination of separate server comput-
ers. As one skilled in the art can appreciate, a computer
program product implementing an embodiment disclosed
herein may comprise one or more non-transitory computer
readable media storing computer instructions translatable by
one or more processors in a computing environment.
[0060] A “processor” includes any, hardware system,
mechanism or component that processes data, signals or
other information. A processor can include a system with a
central processing unit, multiple processing units, dedicated
circuitry for achieving functionality, or other systems. Pro-
cessing need not be limited to a geographic location, or have
temporal limitations. For example, a processor can perform
its functions in “real-time,” “offline,” in a “batch mode,” etc.
Portions of processing can be performed at different times
and at different locations, by different (or the same) pro-
cessing systems.

[0061] As used herein, the terms “comprises,” “compris-
ing,” “includes,” “including,” “has,” “having,” or any other

variation thereof, are intended to cover a non-exclusive

2 <

US 2019/0278635 Al

inclusion. For example, a process, product, article, or appa-
ratus that comprises a list of elements is not necessarily
limited only those elements but may include other elements
not expressly listed or inherent to such process, product,
article, or apparatus.

[0062] Furthermore, the term “or” as used herein is gen-
erally intended to mean “and/or” unless otherwise indicated.
For example, a condition A or B is satisfied by any one of
the following: A is true (or present) and B is false (or not
present), A is false (or not present) and B is true (or present),
and both A and B are true (or present). As used herein, a term

[Tt}

preceded by “a” or “an” (and “the” when antecedent basis is

TRt

a” or “an”) includes both singular and plural of such term,
unless clearly indicated otherwise (i.e., that the reference “a”
or “an” clearly indicates only the singular or only the plural).
Also, as used in the description herein, the meaning of “in”
includes “in” and “on” unless the context clearly dictates
otherwise.

[0063] It will also be appreciated that one or more of the
elements depicted in the drawings/figures can also be imple-
mented in a more separated or integrated manner, or even
removed or rendered as inoperable in certain cases, as is
useful in accordance with a particular application. Addition-
ally, any signal arrows in the drawings/figures should be
considered only as exemplary, and not limiting, unless
otherwise specifically noted. The scope of the disclosure
should be determined by the following claims and their legal
equivalents.

What is claimed is:

1. A content management system comprising:

one or more processors executing an advanced analytics
system,

a first data store communicatively coupled to the
advanced analytics system, wherein the first data store
comprises a first database;

a second data store communicatively coupled to the
advanced analytics system, wherein the second data
store comprises a second database distributed across a
plurality of physically separate data storage devices
that are interconnected with the advanced analytics
system by one or more networks;

wherein the advanced analytics system includes a user
interface (UI) that is coupled to a first database appli-
cation program interface (API);

wherein in a first mode the first database API is adapted
to
receive a first request for data from the Ul wherein the

request is configured to query the first database,
forward the received first request to the first database,
receive a response from the first database, and
forward the response to the first request from the first
database to the U,
wherein in a second mode the first database API is adapted
to
receive the first request for data from the U],
generate a second request corresponding to the first
request, wherein the second request is configured to
query the second database,
forward the second request to a gateway for the second
database, wherein the gateway is adapted to
receive from the second database API a response to
the second request from the second database, and
forward the first response to the first database API,

Sep. 12,2019

wherein the first database API generates a second
response which is a facsimile of a response from the
first database, forwards the second response to the
UL

2. The content management system of claim 1, wherein
the first database comprises an in-memory database.

3. The content management system of claim 2, wherein
the in-memory database comprises a columnar database.

4. The content management system of claim 2, wherein
the second database comprises a distributed cluster-comput-
ing framework.

5. The content management system of claim 4, wherein
the gateway is adapted to parse the second request, identify
a processing class corresponding to the second request,
generate a processor from the identified processing class,
retrieve from the distributed cluster-computing framework
datasets corresponding to tables involved in the second
request, join the retrieved datasets, select fields identified in
the second request, and apply filters over the joined datasets
to produce the first response.

6. The content management system of claim 1, wherein
the content management system is configured to enable a
user to manually select either the first mode or the second
mode.

7. The content management system of claim 1, wherein
the content management system is configured to automati-
cally select either the first mode or the second mode in
response to identifying one or more conditions or charac-
teristics of the first request.

8. The content management system of claim 7, wherein
the one or more conditions or characteristics of the first
request includes an amount of data associated with the first
request.

9. The content management system of claim 1, wherein
communications between the first database API and the
gateway comprise XML messages that are communicated
through corresponding TCP sockets.

10. A method for servicing requests for data in an enter-
prise data processing environment, the method comprising:

in an enterprise data processing environment including an

in-memory database API (IMDB API) for accessing an
in-memory database (IMDB) and a distributed cluster-
computing framework API for accessing a distributed
cluster-computing framework, wherein a gateway is
communicatively coupled between the IMDB API and
the distributed cluster-computing framework API:
receiving an initial request for data from a client,
wherein the initial request is configured for an in-
memory database API (IMDB API);
providing the initial request to a custom API;
determining whether the initial request will be serviced
by an in-memory database (IMDB) or a distributed
cluster-computing framework;
in response to determining that the initial request will
be serviced by the IMDB,
the custom API
forwarding the initial request to the IMDB,
receiving a response to the initial request from the,
and
forwarding the response to the client responsive to
the initial request;
in response to determining that the initial request will
be serviced by the distributed cluster-computing
framework,

US 2019/0278635 Al

the custom API
generating a modified request configured for a
distributed cluster-computing framework API,
forwarding the modified request to a gateway
corresponding to the distributed cluster-com-
puting framework,
the gateway
processing the modified request using the distrib-
uted cluster-computing framework API and
querying the distributed cluster-computing
framework via the distributed cluster-comput-
ing framework API,
receiving a first response to the modified request
from the distributed cluster-computing frame-
work, and
returning the first response to the custom API,
the custom API
receiving the first response from the gateway,
generating a modified response which is a fac-
simile of a response from the IMDB, and
forwarding the modified response to the client.

11. The method of claim 10, wherein the gateway pro-
cessing the modified request comprises: parsing the first
request, identifying a processing class corresponding to the
first request, instantiating a processor from the identified
processing class, and the instantiated processor generating
the modified request using information parsed from the first
request.

12. The method of claim 10, wherein the gateway receiv-
ing the response comprises: retrieving from the distributed
cluster-computing framework datasets corresponding to
tables involved in the first request, joining the retrieved
datasets, selecting fields identified in the first request, and
applying filters over the joined datasets to produce the first
response.

13. The method of claim 10, wherein the custom API
generating the modified response comprises: parsing the first
response and generating the modified response using infor-
mation parsed from the first response, wherein the modified
response is configured as an IMDB response.

14. The method of claim 10, further comprising a user
manually selecting either the first mode or the second mode.

15. The method of claim 10, further comprising the
custom API automatically selecting either the first mode or
the second mode in response to identifying one or more
conditions or characteristics of the first request.

16. A computer program product for servicing requests for
data in an enterprise data processing environment, the com-
puter program product comprising a non-transitory com-
puter-readable medium storing instructions executable by a
one or more processors to cause the one or more processors
to perform:

executing an enterprise data processing environment

including an in-memory database API (IMDB API) for
accessing an in-memory database (IMDB) and a dis-
tributed cluster-computing framework API for access-
ing a distributed -cluster-computing framework,
wherein a gateway is communicatively coupled
between the IMDB API and the distributed cluster-
computing framework API;

receiving an initial request for data from a client, wherein

the initial request is configured for an in-memory
database API (IMDB API);

11

Sep. 12,2019

providing the initial request to a custom API;

determining whether the initial request will be serviced by

an in-memory database (IMDB) or a distributed clus-
ter-computing framework;

in response to determining that the initial request will be

serviced by the IMDB,
the custom API
forwarding the initial request to the IMDB,
receiving a response to the initial request from the,
and
forwarding the response to the client responsive to
the initial request;
in response to determining that the initial request will be
serviced by the distributed cluster-computing frame-
work,
the custom API
generating a modified request configured for a dis-
tributed cluster-computing framework APL,
forwarding the modified request to a gateway corre-
sponding to the distributed cluster-computing
framework,
the gateway
processing the modified request using the distributed
cluster-computing framework API and querying
the distributed cluster-computing framework via
the distributed cluster-computing framework API,
receiving a first response to the modified request
from the distributed cluster-computing frame-
work, and
returning the first response to the custom API,
the custom API
receiving the first response from the gateway,
generating a modified response which is a facsimile
of a response from the IMDB, and
forwarding the modified response to the client.

17. The computer program product of claim 16, wherein
the gateway processing the modified request comprises:
parsing the first request, identifying a processing class
corresponding to the first request, instantiating a processor
from the identified processing class, and the instantiated
processor generating the modified request using information
parsed from the first request.

18. The computer program product of claim 16, wherein
the gateway receiving the response comprises: retrieving
from the distributed cluster-computing framework datasets
corresponding to tables involved in the first request, joining
the retrieved datasets, selecting fields identified in the first
request, and applying filters over the joined datasets to
produce the first response.

19. The computer program product of claim 16, wherein
the custom API generating a modified response comprises:
parsing the first response and generating the modified
response using information parsed from the first response,
wherein the modified response is configured as an IMDB
response.

20. The computer program product of claim 16, wherein
the instructions are further executable by the one or more
processors perform selecting either the first mode or the
second mode, wherein the selecting is performed either:
manually by a user; or automatically by the custom API in
response to identifying one or more conditions or charac-
teristics of the first request.

#* #* #* #* #*

