
US 20220214833A1
INI

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0214833 A1 .

Zhang et al . (43) Pub . Date : Jul . 7 , 2022
)

(54) METHOD , DEVICE AND COMPUTER
PROGRAM PRODUCT FOR DATA WRITING

(52) U.S. CI .
CPC G06F 370659 (2013.01) ; G06F 370626

(2013.01) ; HO3M 7/30 (2013.01) ; G06F
3/0673 (2013.01) ; GO6F 3/0644 (2013.01) (71) Applicant : EMC IP Holding Company LLC ,

Hopkinton , MA (US)
(57) ABSTRACT

(72) Inventors : Leihu Zhang , Beijing (CN) ; Chen
Gong , Beijing (CN) ; Shuo Lv , Beijing
(CN)

(21) Appl . No .: 17 / 205,542

(22) Filed : Mar. 18 , 2021

(30) Foreign Application Priority Data

Techniques for data writing involve : determining an unavail
able storage zone in multiple storage zones of a storage area ,
wherein each storage zone is used to store a zip header and
compressed data corresponding to the zip header ; acquiring
a reference zip header for the unavailable storage zone ,
wherein the reference zip header includes metadata indicat
ing a zone length of the unavailable storage zone ; and
generating consecutive write requests for the storage area
based at least on target data to be written to the storage area
and the reference zip header , so as to write the target data to
available storage zones in the multiple storage zones .
Accordingly , rewriting of data can be implemented by
constructing large consecutive write requests , thus improv
ing the write performance of the storage device .

Jan. 6 , 2021 (CN) 202110013351.6

Publication Classification
(51) Int . Cl .

G06F 3/06 (2006.01)

18

Patent Application Publication Jul . 7 , 2022 Sheet 1 of 5 US 2022/0214833 A1

320-2

VIA
FIG . 1A

FIG . 1B

FIG . 1C

150-1,160-2 , 150-3 1504
NO < 09

M sectors SM sectors £ sectors + M sectors STM sectors sectors M sectors usay

FIG . 1D

Patent Application Publication Jul . 7 , 2022 Sheet 2 of 5 US 2022/0214833 A1

200

Backup metadata Data portions

Zone 1 Length 1)
Data zone 1

(Zip header 1 ,
Current compressed

data) Zone 2 Length 2)
Void I (Previous
compressed data) Zone 3 Length 3)

***** ***** *****

Zone 4 (Length +)
Data zone 2
(Zip header 2 .

Curent compressed

Void 2 (Previous
compressed data)

Void 3 (Zip
header 3. Previous
Ompressed data)
????????

Data zone 4 (Zip
header 4. Cixtent
Compressed data)

you

FIG . 2

Patent Application Publication Jul . 7 , 2022 Sheet 3 of 5 US 2022/0214833 A1

Host

320

Storage mariager

Storage device

FIG . 3

Patent Application Publication Jul . 7 , 2022 Sheet 4 of 5 US 2022/0214833 A1

WWW

Determining an mavailable storage zone in
tmultiple storage zones of a storage area

Acquiring a reference zip header for
the unavailable storage zone

Genarating consecrave write requests for the storage
area based at least on target data to be written to
the storage area and the reference zip header

FIG . 4

Patent Application Publication Jul . 7 , 2022 Sheet 5 of 5 US 2022/0214833 A1

Zip header Zip header Zip header

ZLEN : 18 ZLEN : 15

Other content Other content Other content

FIG . 5

603

604

Www

10 úterface

007

Input wit Communication Output mit Storage will

FIG . 6

US 2022/0214833 A1 Jul . 7. 2022
1

METHOD , DEVICE AND COMPUTER
PROGRAM PRODUCT FOR DATA WRITING

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to Chinese Patent
Application No. CN202110013351.6 , on file at the China
National Intellectual Property Administration (CNIPA) , hav
ing a filing date of Jan. 6 , 2021 and having “ METHOD ,
DEVICE AND COMPUTER PROGRAM PRODUCT FOR
DATA WRITING ” as a title , the contents and teachings of
which are herein incorporated by reference in their entirety .

storage zone is used to store a zip header and compressed
data corresponding to the zip header ; acquiring a reference
zip header for the unavailable storage zone , wherein the
reference zip header includes metadata indicating a zone
length of the unavailable storage zone ; and generating
consecutive write requests for the storage area based at least
on target data to be written to the storage area and the
reference zip header , so as to write the target data to
available storage zones in the multiple storage zones .
[0008] In a third aspect of the present disclosure , a com
puter program product is provided . The computer program
product is stored in a non - transitory computer storage
medium and includes machine - executable instructions that ,
when run in a device , cause the device to perform any step
of the method described according to the first aspect of the
present disclosure .
[0009] The Summary of the Invention section is provided
in order to introduce the selection of concepts in a simplified
form , which will be further described in the Detailed
Description below . The Summary of the Invention section is
not intended to identify key features or essential features of
the present disclosure , nor is it intended to limit the scope of
the present disclosure .

TECHNICAL FIELD

[0002] Embodiments of the present disclosure relate to the
field of computers , and in particular to a method , a device ,
and a computer program product for data writing .

BACKGROUND

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] In order to reduce the storage space occupied by
data in a storage device , the data can be compressed at a
certain compression ratio before it is written to a storage
area . When the storage area is written with data (e.g. ,
input / output (1/0) instructions) compressed at a certain
compression ratio for a first time , the data is consecutive
within the storage area . Subsequent data can be rewritten to
the same storage area to overwrite the original data .
[0004] A physical storage area can be divided into several
zones of a page size according to a paging management
solution , wherein the page size is the minimum allocation
unit of 4 KB or 8 KB . If the subsequent data has a higher
compression ratio than the original data , the subsequent data
is usually non - consecutive within the same storage area and
there is a gap (also called a “ void ”) between the subsequent
data and the original data . In addition , some original data
may also be recycled and marked as unavailable and become
gaps that affect data writing .

a

[0010] The above and other objects , features , and advan
tages of the present disclosure will become more apparent
by describing the example embodiments of the present
disclosure in more detail in combination with the accompa
nying drawings . In the example embodiments of the present
disclosure , the same reference numerals generally represent
the same parts .
[0011] FIGS . 1A - 1D illustrate a schematic diagram of
conventional data rewriting ;
[0012] FIG . 2 illustrates a schematic diagram of mapping
between backup metadata and compressed data ;
[0013] FIG . 3 illustrates a schematic diagram of an
example environment where the embodiments of the present
disclosure can be implemented ;
[0014] FIG . 4 illustrates a flowchart of a process of data
writing according to embodiments of the present disclosure ;
[0015] FIG . 5 illustrates a schematic diagram of candidate
zip headers according to embodiments of the present dis
closure ; and
[0016] FIG . 6 illustrates a schematic block diagram of an
example device that can be used to implement embodiments
of the present disclosure .

SUMMARY OF THE INVENTION

DETAILED DESCRIPTION

[0005] The embodiments of the present disclosure provide
a solution for data writing .
[0006] According to a first aspect of the present disclo
sure , a method for data writing is proposed . The method
includes : determining an unavailable storage zone in mul
tiple storage zones of a storage area , wherein each storage
zone is used to store a zip header and compressed data
corresponding to the zip header ; acquiring a reference zip
header for the unavailable storage zone , wherein the refer
ence zip header includes metadata indicating a zone length
of the unavailable storage zone ; and generating consecutive
write requests for the storage area based at least on target
data to be written to the storage area and the reference zip
header , so as to write the target data to available storage
zones in the multiple storage zones .
[0007] According to a second aspect of the present dis
closure , an electronic device is proposed . The device
includes : at least one processing unit ; and at least one
memory which is coupled to the at least one processing unit
and stores instructions for execution by the at least one
processing unit , wherein the instructions , when executed by
the at least one processing unit , cause the device to perform
actions including : determining an unavailable storage zone
in multiple storage zones of a storage area , wherein each

[0017] The individual features of the various embodi
ments , examples , and implementations disclosed within this
document can be combined in any desired manner that
makes technological sense . Furthermore , the individual fea
tures are hereby combined in this manner to form all
possible combinations , permutations and variants except to
the extent that such combinations , permutations and / or
variants have been explicitly excluded or are impractical .
Support for such combinations , permutations and variants is
considered to exist within this document .
[0018] It should be understood that the specialized cir
cuitry that performs one or more of the various operations
disclosed herein may be formed by one or more processors
operating in accordance with specialized instructions per

US 2022/0214833 A1 Jul . 7. 2022
2

>

sistently stored in memory . Such components may be
arranged in a variety of ways such as tightly coupled with
each other (e.g. , where the components electronically com
municate over a computer bus) , distributed among different
locations (e.g. , where the components electronically com
municate over a computer network) , combinations thereof ,
and so on .
[0019] Preferred embodiments of the present disclosure
will be described in more detail below with reference to the
accompanying drawings . Although the preferred embodi
ments of the present disclosure are shown in the accompa
nying drawings , it should be understood that the present
disclosure can be implemented in various forms and should
not be limited by the embodiments set forth herein . Instead ,
these embodiments are provided to make the present dis
closure more thorough and complete , and to fully convey the
scope of the present disclosure to those skilled in the art .
[0020] The term “ include ” and variants thereof as used
herein indicate open - ended inclusion , i.e. , “ including but not
limited to . ” Unless specifically stated , the term “ or ” means
“ and / or . ” The term “ based on ” means “ based at least in part
on . ” The terms “ an example embodiment ” and “ an embodi
ment ” indicate “ at least one example embodiment . ” The
term “ another embodiment ” indicates “ at least one addi
tional embodiment . " The terms “ first , " " second , " and the
like , may refer to different or the same objects . Other explicit
and implicit definitions may also be included below .
[0021] Modern storage systems (e.g. , all - flash array (AFA)
storage devices) using the real - time data compression (Itera
tive Length Compression , ILC) technology can provide
significant reduction of the use of disk space . As mentioned
earlier , a storage area is divided into multiple storage zones
in accordance with a page size . When data is rewritten in a
sector of the storage area where original data was previously
stored , no change in metadata is caused . If the rewritten data
has the same compression ratio as the original data (i.e. , a
ratio of an amount of data before compression to an amount
of data after compression) , the storage space of the storage
area can be fully utilized , and the rewritten data is written to
a backend driving device in a consecutive manner .
[0022] However , the inventors found that if the rewritten
data has a higher compression ratio than that of the original
data , it would cause the originally consecutive data to be
stored in a non - consecutive manner and leave gaps between
storage zones . In addition , some original data may be
recycled , in which case the metadata will be modified to
indicate that the corresponding storage zone is unavailable ,
and the stored original data will not be replaced . The
conventional data rewriting process will be described in
detail below with reference to FIGS . 1A to 1D .
[0023] As shown in FIG . 1A , storage area 110 includes
four storage zones 120-1 , 120-2 , 120-3 , and 120-4 (indi
vidually or collectively referred to as storage zones 120) .
Each storage zone 120 stores original data of different sizes .
For example , the length of storage zone 120-1 is 13 sectors ,
the length of storage zone 120-2 is 13 sectors , the length of
storage zone 120-3 is 6 sectors , and the length of storage
zone 120-4 is 16 sectors .
[0024] In FIG . 1B , the data in storage zone 120-3 is
recycled , so that storage zone 120-3 is marked as unavail
able . In this case , the user will not be able to access this
storage zone 120-3 or to write data to this storage zone
120-3 . It should be understood that , based on the ILC
technology , the original data stored in this storage zone

120-3 will not be deleted , but only the corresponding
metadata is modified to indicate that this storage zone 120-3
is unavailable .
[0025] In FIG . 1C , target data 130 (also referred to as
rewritten data 130) includes three items of rewritten data
that need to be written to storage area 110 to overwrite the
original data . Specifically , the first item of rewritten data
130-1 has a length of 7 sectors , the second item of rewritten
data 130-2 has a length of 12 sectors , and the third item of
rewritten data 130-3 has a length of 16 sectors .
[0026] In this case , the first item of rewritten data will be
written to storage zone 120-1 and result in void 140-1 having
a length of 6 sectors ; and the second item of rewritten data
will be written to storage zone 120-2 and result in void 140-2
having a length of 1 sector .
[0027] As shown in FIG . 1C , in this case , 3 voids will be
generated , namely void 140-1 , void 140-2 , and unavailable
storage zone 120-3 .
[0028] According to the conventional solution , consecu
tive write requests can be constructed by writing padding
data . For example , as shown in FIG . 1D , the write requests
can be constructed according to the storage granularity (e.g. ,
M sectors per storage page , with M being 8 , for example) of
the storage area .
[0029] For example , the first item of rewritten data 130-1
(having a length of 7 sectors) can be combined with padding
data 150-1 having a length of 1 sector as the written data for
the first 8 sectors . Data 150-3 of the first 3 sectors in the
second item of rewritten data 130-2 can be combined with
padding data 150-2 having a length of 5 sectors as the
written data for the second 8 sectors .
[0030] However , the conventional solution cannot effi
ciently process unavailable storage zone 120-3 . Some con
ventional solutions do not process unavailable storage zone
120-3 to avoid affecting useful data in unavailable storage
zone 120-3 . However , this will cause the constructed write
requests to be non - consecutive , affecting the write perfor
mance of the storage system .
[0031] In addition , some conventional solutions construct
consecutive write requests by simply rewriting unavailable
storage zone 120-3 by writing padding data (for example ,
writing Os) . However , since unavailable storage zone 120-3
includes zip header information , such a zip header can help
reconstruct backup metadata (e.g. , a VBM file) . If the zip
header in unavailable storage zone 120-3 is directly over
written , this will cause the file system to be unable to
reconstruct the backup metadata .
[0032] FIG . 2 illustrates schematic diagram 200 of map
ping between backup metadata and compressed data . As
shown in FIG . 2 , backup metadata 210 can maintain meta
data corresponding to different storage zones 120 , and its
length is used to indicate the starting position of each zone
120 , thereby constructing the mapping between the metadata
and data portions 220 .
[0033] By way of example , corresponding to the example
in FIG . 1C , backup metadata 210 includes backup metadata
212 , 214 , 216 , and 218 corresponding to the four storage
zones 120 , respectively . Each item of backup metadata can
maintain corresponding length information to be directed to
the corresponding data portion .
[0034] For example , backup metadata 212 may corre
spond to the first item of rewritten data 130-1 (which
includes a zip header and corresponding compressed data)
and void 140-1 ; backup metadata 214 may correspond to the

US 2022/0214833 A1 Jul . 7. 2022
3

9

second item of rewritten data 130-2 and void 140-2 ; backup
metadata 216 may correspond to unavailable storage zone
120-3 ; and backup metadata 218 may correspond to the third
item of rewritten data 130-3 .
[0035] As can be seen , if the zip header included in
unavailable rewritten data 120-3 is overwritten , this will
cause the file system to be unable to reconstruct the backup
metadata according to the zip header included in data
portion 220 once backup metadata 210 becomes corrupted .
[0036] According to the embodiments of the present dis
closure , a solution for data writing is provided . This solution
enables the efficient construction of large consecutive writ
ing by rewriting the zip header corresponding to the length
of the unavailable storage zone . In addition , this solution
retains useful information in the zip header , thus enabling
support for reconstruction of the backup metadata .
[0037] The embodiments of the present disclosure will be
specifically described below with reference to the accom
panying drawings . FIG . 3 illustrates a schematic diagram of
example environment 300 for data writing according to
embodiments of the present disclosure . As shown in FIG . 3 ,
example environment 300 includes host 310 , storage man
ager 320 , and storage device 330. It should be understood
that the structure of example environment 300 is described
for illustrative purpose only and does not imply any limi
tation to the scope of the present disclosure . For example ,
the embodiments of the present disclosure may also be
applied to an environment different from example environ
ment 300 .
[0038] Host 310 may be , for example , any physical com
puter , virtual machine , server , etc. , running user applica
tions . Host 310 can send an I / O request to storage manager
320 , for example , for reading data from storage device 330
and / or writing data to storage device 330. In response to
receiving a read request from host 310 , storage manager 320
can read data from storage device 330 and return the read
data to host 310. In response to receiving a write request
from host 310 , storage manager 320 can write data to storage
device 330. Storage device 330 can be any non - volatile
storage medium currently known or to be developed in
future , such as a disk , a solid state disk (SSD) or disk array
(RAID) , etc.
[0039] Storage manager 320 can be deployed with a
compression / decompression engine (not shown) . For
example , when storage manager 320 receives a request from
host 310 to write data to storage device 330 , storage man
ager 320 can use the compression / decompression engine to
compress the data to be stored and then store the compressed
data to storage device 330 .
[0040] As described above , storage manager 320 is
capable of constructing consecutive write requests while
storage manager 320 is performing data writing . The
detailed process of data writing according to embodiments
of the present disclosure will be described below in combi
nation with FIGS . 4 to 5 .
[0041] FIG . 4 illustrates a flowchart of example process
400 for data writing according to embodiments of the
present disclosure . For example , process 400 may be per
formed by storage manager 320 as shown in FIG . 3. It
should be understood that process 400 may also be per
formed by any other suitable device and may include
additional actions not shown and / or may omit the actions
shown , and the scope of the present disclosure is not limited

in this regard . For ease of description , process 400 will be
described below with reference to FIGS . 1 to 3 .
[0042] At block 402 , storage manager 320 determines
unavailable storage zone 120-3 in multiple storage zones
120 of storage area 110 , wherein each storage zone 120 is
used to store a zip header and compressed data correspond
ing to the zip header .
[0043] As shown in FIG . 1 , upon receiving a rewrite
request to write the target data to storage area 110 , storage
manager 320 may indicate that storage area 110 includes
unavailable storage zone 120-3 .
[0044] In some implementations , storage zone 120-3 may
be marked as unavailable in response to being recycled .
Alternatively , storage zone 120-3 may also be marked as
unavailable in response to receiving a rewrite request with a
data size larger than the length of that storage zone .
[0045] In some implementations , storage manager 320
may mark storage zone 120-3 as unavailable by modifying
the metadata corresponding to storage zone 120-3 , without
deleting the compressed data stored in storage zone 120-3 .
Such an unavailable storage zone 120-3 will not be acces
sible , thus creating the voids (or , gaps) described above .
[0046] At block 404 , storage manager 320 acquires a
reference zip header for unavailable storage zone 120-3 ,
wherein the reference zip header includes metadata indicat
ing the zone length of the unavailable storage zone .
[0047] In some implementations , in order to enable stor
age manager 320 to construct consecutive write requests
without affecting the zip header included in unavailable
storage zone 120-3 , storage manager 320 can pre - construct
a set of candidate zip headers .
[0048] FIG . 5 illustrates schematic diagram 500 of candi
date zip headers according to embodiments of the present
disclosure . As shown in FIG . 5 , storage manager 320 can
allocate a buffer of a predetermined size in a memory for
storing a set of candidate zip headers 510-1 , 510-2 , to 510 - N
(individually or collectively referred to as candidate zip
headers 510) .
[0049] As shown in FIG . 5 , each candidate zip header 510
corresponds to a different zone length (ZLEN) . For example ,
candidate zip header 510-1 corresponds to a zone having a
zone length of 16 sectors and stores metadata indicating that
the zone length is 16 sectors . Candidate zip header 510-2
corresponds to a zone having a zone length of 15 sectors and
stores metadata indicating that the zone length is 15 sectors .
[0050] Since the file system needs to utilize only the zone
length information in the zip header when reconstructing
backup metadata , candidate zip header 510-1 may also
include other appropriate metadata for verification purposes .
It should be understood that other metadata can be initialized
as any appropriate content , and the present disclosure is not
intended to be limiting in this respect .
[0051] After completing the construction of the set of
candidate zip headers 510 , storage manager 320 can use this
set of candidate zip headers 510 to determine a reference zip
header corresponding to unavailable storage zone 120-3 .
[0052] Specifically , storage manager 320 can determine
the zone length of unavailable storage zone 120-3 . Taking
FIG . 1C as an example , storage manager 320 determines that
the zone length of this unavailable storage zone 120-3 is 6
sectors according to the metadata (e.g. , the VBM file) in the
memory , for example .
[0053] Storage manager 320 can determine an index for
the reference zip header based on the zone length . By way

2

a

US 2022/0214833 A1 Jul . 7. 2022
4

a

9

a

of example , depending on the order in which the set of
candidate zip headers 510 are organized , different zone
lengths may correspond to different indexes . For example , in
FIG . 5 , candidate zip headers 510 are arranged in a descend
ing order of the zone length , and accordingly , the index
corresponding to the zone length (6) may be determined as
10 , i.e. , indicating the 11th candidate zip header in the set of
candidate zip headers 510 .
[0054] Additionally , storage manager 320 determines ,
based on the index , the reference zip header from the set of
candidate zip headers 510 corresponding to different zone
lengths . Taking FIG . 5 as an example , storage manager 320
can determine the 11th candidate zip header as the reference
zip header for unavailable storage zone 120-3 .
[0055] Continuing to refer to FIG . 2 , at block 406 , storage
manager 320 generates consecutive write requests for stor
age area 110 based at least on target data 130 to be written
into the storage area and the reference zip header , so as to
write the target data to available storage zones in the
multiple storage zones 120 .
[0056] In some implementations , for unavailable storage
zone 120-3 , storage manager 320 can generate zone padding
data for the unavailable storage zone using the reference zip
header , wherein the zone padding data includes the reference
zip header and first padding data that is used to overwrite
compressed data previously stored in the unavailable storage
zone .

[0057] Taking FIG . 1C as an example , storage manager
320 can generate zone padding data for unavailable storage
zone 120-3 , wherein the first sector may be padded using the
reference zip header and the remaining 5 sectors may be
padded using a predetermined value (e.g. , 0) .
[0058] Additionally , storage manager 320 can generate
consecutive write requests based at least on target data 130
and the zone padding data . Specifically , if data in only a
portion of the available storage zones in the multiple storage
zones 120 needs to be overwritten by the target data , storage
manager 320 can determine a remaining portion of the
available storage zones that does not need to be replaced
with the target data .
[0059] Taking FIG . 1C as an example , storage zone 120-1
includes the remaining portion that is not overwritten , that
is , void 140-1 . Storage zone 120-2 includes the remaining
portion that is not overwritten , that is , void 140-2 .
[0060] Storage manager 320 can generate the second
padding data for the remaining portion . By way of example ,
storage manager 320 can generate the second padding data
by writing a predetermined value (e.g. , 0) .
[0061] Additionally , storage manager 320 can generate the
consecutive write requests based on the target data , the zone
padding data , and the second padding data . As shown in
FIG . 1C , according to the solution of the present disclosure ,
storage manager 320 can determine that the first 7 sectors of
storage zone 120-1 will be written with first rewritten data
130-1 and the next 6 sectors will be written with the padding
data ; the first 12 sectors of storage zone 120-2 will be written
with second rewritten data 130-2 and the next 1 sector will
be written with the padding data ; storage zone 120-3 will be
written with the padding data ; and storage zone 120-4 will
be written with third rewritten data 130-3 . Based on this
approach , storage manager 320 can generate large consecu
tive write requests .
[0062] In some implementations , in order to enable the
written data to align with the storage granularity of storage

area 110 , storage manager 320 can also determine multiple
data portions from the target data , the zone padding data , and
the second padding data according to the storage granularity
associated with storage area 110 , wherein the size of each
data portion corresponds to the storage granularity .
[0063] Taking FIG . 1D as an example , if the storage
granularity (i.e. , the size of each storage page) of storage
area 110 is 8 sectors , storage manager 320 can further slice
the consecutive data determined above into multiple data
portions having a size of 8 sectors . For example , first
rewritten data 130-1 and padding data 150-1 form a first data
portion ; padding data 150-2 and data 150-3 of the first 3
sectors of the second item of rewritten data 130-2 form a
second data portion ; data 150-4 of 8 sectors in the second
item of rewritten data 130-2 form a third data portion ; data
150-5 of the last 1 sector of the second item of rewritten data
130-2 , padding data 150-6 , and padding data 150-7 for
unavailable storage zone 120-3 form a fourth data portion ;
and the third item of rewritten data 130-3 forms a fifth data
portion . Additionally , the storage manager can generate the
consecutive write requests based on the multiple data por
tions . Based on this approach , the write requests can corre
spond to the storage page sizes of the storage area , thereby
ensuring alignment of data .
[0064] In some implementations , in response to a request
to reconstruct backup metadata for storage area 110 , storage
manager 320 can reconstruct the backup metadata based on
the zone length of unavailable storage zone 120 = 3 , wherein
the backup metadata indicates a distribution of the multiple
storage zones . Specifically , in the event that backup meta
data 210 as shown in FIG . 2 is corrupted , storage manager
320 can reconstruct the VBM file using the zone length (e.g. ,
6 sectors) indicated in the reference zip header that is
rewritten into unavailable storage zone 150-7 , wherein such
a VBM file is capable of indicating the distribution of
multiple storage zones 120 .
[0065] Based on the methods discussed above , the
embodiments of the present disclosure are able to construct
large consecutive write requests , thereby improving the
write performance of the storage system . In addition , by
effectively retaining the zone length information for the
unavailable storage zone , the embodiments of the present
disclosure are also able to support the reconstruction of
backup metadata , thereby improving the stability of the
storage system .
[006] FIG . 6 illustrates a schematic block diagram of
example device 600 that can be used to implement the
embodiments of the content of the present disclosure . For
example , storage manager 320 according to the embodi
ments of the present disclosure may be implemented by
device 600. As shown in the figure , device 600 includes
central processing unit (CPU) 601 that may perform various
appropriate actions and processing according to computer
program instructions stored in read - only memory (ROM)
602 or computer program instructions loaded from storage
unit 608 into random access memory (RAM) 603. In RAM
603 , various programs and data required for the operation of
the device 600 can also be stored . CPU 601 , ROM 602 , and
RAM 603 are connected to each other through bus 604 .
Input / output (I / O) interface 605 is also connected to bus 604 .
[0067] Multiple components in device 600 are connected
to I / O interface 605 , including : input unit 606 , such as a
keyboard and a mouse ; output unit 607 , such as various
types of displays and speakers ; storage unit 608 , such as a

2

US 2022/0214833 A1 Jul . 7. 2022
5

magnetic disk and an optical disk ; and communication unit
609 , such as a network card , a modem , and a wireless
communication transceiver . Communication unit 609 allows
device 600 to exchange information / data with other devices
via a computer network , such as the Internet , and / or various
telecommunication networks .
[0068] The various processes and processing described
above , such as process 400 , may be executed by processing
unit 601. For example , in some embodiments , process 400
may be implemented as a computer software program that is
tangibly included in a machine - readable medium , for
example , storage unit 608. In some embodiments , part or all
of the computer program may be loaded and / or installed to
device 600 via ROM 602 and / or communication unit 609 .
When the computer program is loaded into RAM 603 and
executed by CPU 601 , one or more actions of process 400
described above may be implemented .
[0069] The present disclosure may be a method , an appa
ratus , a system , and / or a computer program product . The
computer program product may include a computer - readable
storage medium on which computer - readable program
instructions for performing various aspects of the present
disclosure are loaded .
[0070] The computer - readable storage medium may be a
tangible device that can hold and store instructions used by
an instruction execution device . For example , the computer
readable storage medium may be , but is not limited to , an
electric storage device , a magnetic storage device , an optical
storage device , an electromagnetic storage device , a semi
conductor storage device , or any suitable combination of the
foregoing . More specific examples (a non - exhaustive list) of
computer - readable storage media include : a portable com
puter disk , a hard disk , a random access memory (RAM) , a
read - only memory (ROM) , an erasable programmable read
only memory (EPROM or a flash memory) , a static random
access memory (SRAM) , a portable compact disc read - only
memory (CD - ROM) , a digital versatile disc (DVD) , a
memory stick , a floppy disk , a mechanical encoding device ,
for example , a punch card or a raised structure in a groove
with instructions stored thereon , and any suitable combina
tion of the foregoing . The computer - readable storage
medium used herein is not to be interpreted as transient
signals per se , such as radio waves or other freely propa
gating electromagnetic waves , electromagnetic waves
propagating through waveguides or other transmission
media (e.g. , light pulses through fiber - optic cables) , or
electrical signals transmitted through electrical wires .
[0071] The computer - readable program instructions
described herein can be downloaded from a computer
readable storage medium to various computing / processing
devices , or downloaded to an external computer or external
storage device via a network , such as the Internet , a local
area network , a wide area network , and / or a wireless net
work . The network may include copper transmission cables ,
fiber optic transmission , wireless transmission , routers , fire
walls , switches , gateway computers , and / or edge servers . A
network adapter card or network interface in each comput
ing / processing device receives computer - readable program
instructions from the network and forwards the computer
readable program instructions for storage in a computer
readable storage medium in each computing / processing
device .
[0072] Computer program instructions for performing the
operations of the present disclosure may be assembly

instructions , instruction set architecture (ISA) instructions ,
machine instructions , machine - related instructions , micro
code , firmware instructions , state setting data , or source or
object code written in any combination of one or more
programming languages , wherein the programming lan
guages include object - oriented programming languages ,
such as Smalltalk and C ++ , and conventional procedural
programming languages , such as the " C " language or similar
programming languages . Computer - readable program
instructions may be executed entirely on a user's computer ,
partly on a user's computer , as a stand - alone software
package , partly on a user's computer and partly on a remote
computer , or entirely on a remote computer or a server . In
the case involving a remote computer , the remote computer
can be connected to a user's computer through any kind of
network , including a local area network (LAN) or a wide
area network (WAN) , or it can be connected to an external
computer (for example connected through the Internet using
an Internet service provider) . In some embodiments , an
electronic circuit , for example , a programmable logic cir
cuit , a field programmable gate array (FPGA) , or a program
mable logic array (PLA) , is personalized by utilizing state
information of the computer - readable program instructions ,
wherein the electronic circuit may execute computer - read
able program instructions so as to implement various aspects
of the present disclosure .
[0073] Various aspects of the present disclosure are
described herein with reference to flowcharts and / or block
diagrams of the method , the apparatus (system) , and the
computer program product according to embodiments of the
present disclosure . It should be understood that each block
of the flowcharts and / or block diagrams and combinations of
blocks in the flowcharts and / or block diagrams can be
implemented by computer - readable program instructions .
[0074] These computer - readable program instructions can
be provided to a processing unit of a general - purpose
computer , a special - purpose computer , or a further program
mable data processing apparatus , thereby producing a
machine , such that these instructions , when executed by the
processing unit of the computer or the further programmable
data processing apparatus , produce means (e.g. , specialized
circuitry) for implementing functions / actions specified in
one or more blocks in the flowcharts and / or block diagrams .
These computer - readable program instructions may also be
stored in a computer - readable storage medium , and these
instructions cause a computer , a programmable data pro
cessing apparatus , and / or other devices to operate in a
specific manner ; and thus the computer - readable medium
having instructions stored includes an article of manufacture
that includes instructions that implement various aspects of
the functions / actions specified in one or more blocks in the
flowcharts and / or block diagrams .
[0075] The computer - readable program instructions may
also be loaded to a computer , a further programmable data
processing apparatus , or a further device , so that a series of
operating steps may be performed on the computer , the
further programmable data processing apparatus , or the
further device to produce a computer - implemented process ,
such that the instructions executed on the computer , the
further programmable data processing apparatus , or the
further device may implement the functions / actions speci
fied in one or more blocks in the flowcharts and / or block
diagrams .

US 2022/0214833 A1 Jul . 7. 2022
6

[0076] The flowcharts and block diagrams in the drawings
illustrate the architectures , functions , and operations of
possible implementations of the systems , methods , and
computer program products according to various embodi
ments of the present disclosure . In this regard , each block in
the flowcharts or block diagrams may represent a module , a
program segment , or part of an instruction , the module ,
program segment , or part of an instruction including one or
more executable instructions for implementing specified
logical functions . In some alternative implementations ,
functions marked in the blocks may also occur in an order
different from that marked in the accompanying drawings .
For example , two successive blocks may actually be
executed in parallel substantially , or they may be executed
in an opposite order sometimes , depending on the functions
involved . It should be further noted that each block in the
block diagrams and / or flowcharts as well as a combination
of blocks in the block diagrams and / or flowcharts may be
implemented using a special hardware - based system that
executes specified functions or actions , or using a combi
nation of special hardware and computer instructions .
[0077] Various implementations of the present disclosure
have been described above . The foregoing description is
illustrative rather than exhaustive , and is not limited to the
disclosed implementations . Numerous modifications and
alterations are apparent to persons of ordinary skill in the art
without departing from the scope and spirit of the illustrated
implementations . The selection of terms used herein is
intended to best explain the principles and practical appli
cations of the implementations or the improvements to
technologies on the market , or to enable other persons of
ordinary skill in the art to understand the implementations
disclosed herein .

1. A method for data writing , comprising :
determining an unavailable storage zone in multiple stor

age zones of a storage area , wherein each storage zone
is used to store a zip header and compressed data
corresponding to the zip header ;

acquiring a reference zip header for the unavailable
storage zone , wherein the reference zip header includes
metadata indicating a zone length of the unavailable
storage zone ; and

generating consecutive write requests for the storage area
based at least on target data to be written to the storage
area and the reference zip header , so as to write the
target data to available storage zones in the multiple
storage zones .

2. The method according to claim 1 , wherein acquiring the
reference zip header includes :

determining the zone length of the unavailable storage
zone ;

determining an index for the reference zip header based
on the zone length ; and

determining , based on the index , the reference zip header
from a set of candidate zip headers corresponding to
different zone lengths .

3. The method according to claim 1 , wherein generating
consecutive write requests for the storage area includes :

generating zone padding data for the unavailable storage
zone using the reference zip header , wherein the zone
padding data includes the reference zip header and first
padding data that is used to overwrite compressed data
previously stored in the unavailable storage zone ; and

generating the consecutive write requests based at least on
the target data and the zone padding data .

4. The method according to claim 3 , wherein generating
the consecutive write requests based at least on the target
data and the zone padding data includes :

if data in only a portion of the available storage zones in
the multiple storage zones needs to be overwritten by
the target data , determining a remaining portion of the
available storage zones that does not need to be
replaced with the target data ;

generating second padding data for the remaining portion ;
and

generating the consecutive write requests based on the
target data , the zone padding data , and the second
padding data .

5. The method according to claim 4 , wherein at least one
of the first padding data and the second padding data is
generated based on a predetermined value .

6. The method according to claim 4 , wherein generating
the consecutive write requests based on the target data , the
zone padding data , and the second padding data includes :

determining multiple data portions from the target data ,
the zone padding data , and the second padding data
according to a storage granularity associated with the
storage area , wherein the size of each data portion
corresponds to the storage granularity ; and

generating the consecutive write requests based on the
multiple data portions .

7. The method according to claim 1 , further comprising :
reconstructing , in response to a request to reconstruct

backup metadata for the storage area , the backup meta
data based on the zone length of the unavailable storage
zone , wherein the backup metadata indicates a distri
bution of the multiple storage zones .

8. The method according to claim 1 , wherein the unavail
able storage zone is marked as unavailable in response to
being recycled .

9. An electronic device , comprising :
at least one processing unit ; and
at least one memory which is coupled to the at least one

processing unit and stores instructions for execution by
the at least one processing unit , wherein the instruc
tions , when executed by the at least one processing
unit , cause the device to perform actions including :

determining an unavailable storage zone in multiple stor
age zones of a storage area , wherein each storage zone
is used to store a zip header and compressed data
corresponding to the zip header ;

acquiring a reference zip header for the unavailable
storage zone , wherein the reference zip header includes
metadata indicating a zone length of the unavailable
storage zone ; and

generating consecutive write requests for the storage area
based at least on target data to be written to the storage
area and the reference zip header , so as to write the
target data to available storage zones in the multiple
storage zones .

10. The device according to claim 9 , wherein acquiring
the reference zip header includes :

determining the zone length of the unavailable storage
zone ;

determining an index for the reference zip header based
on the zone length ; and

US 2022/0214833 A1 Jul . 7. 2022
7

determining , based on the index , the reference zip header
from a set of candidate zip headers corresponding to
different zone lengths .

11. The device according to claim 9 , wherein generating
consecutive write requests for the storage area includes :

generating zone padding data for the unavailable storage
zone using the reference zip header , wherein the zone
padding data includes the reference zip header and first
padding data that is used to overwrite compressed data
previously stored in the unavailable storage zone ; and

generating the consecutive write requests based at least on
the target data and the zone padding data .

12. The device according to claim 11 , wherein generating
the consecutive write requests based at least on the target
data and the zone padding data includes :

if data in only a portion of the available storage zones in
the multiple storage zones needs to be overwritten by
the target data , determining a remaining portion of the
available storage zones that does not need to be
replaced with the target data ;

generating second padding data for the remaining portion ;
and

generating the consecutive write requests based on the
target data , the zone padding data , and the second
padding data .

13. The device according to claim 12 , wherein at least one
of the first padding data and the second padding data is
generated based on a predetermined value .

14. The device according to claim 12 , wherein generating
the consecutive write requests based on the target data , the
zone padding data , and the second padding data includes :

determining multiple data portions from the target data ,
the zone padding data , and the second padding data
according to a storage granularity associated with the

storage area , wherein the size of each data portion
corresponds to the storage granularity ; and

generating the consecutive write requests based on the
multiple data portions .

15. The device according to claim 9 , wherein the actions
further include :

reconstructing , in response to a request to reconstruct
backup metadata for the storage area , the backup meta
data based on the zone length of the unavailable storage
zone , wherein the backup metadata indicates a distri
bution of the multiple storage zones .

16. The device according to claim 9 , wherein the unavail
able storage zone is marked as unavailable in response to
being recycled .

17. A computer program product having a non - transitory
computer readable medium which stores a set of instructions
to perform data writing ; the set of instructions , when carried
out by computerized circuitry , causing the computerized
circuitry to perform a method of :

determining an unavailable storage zone in multiple stor
age zones of a storage area , wherein each storage zone
is used to store a zip header and compressed data
corresponding to the zip header ;

acquiring a reference zip header for the unavailable
storage zone , wherein the reference zip header includes
metadata indicating a zone length of the unavailable
storage zone ; and

generating consecutive write requests for the storage area
based at least on target data to be written to the storage
area and the reference zip header , so as to write the
target data to available storage zones in the multiple
storage zones .

* * *

