(19)

US 20190278756A1

a2y Patent Application Publication o) Pub. No.: US 2019/0278756 A1

United States

Meredith et al. 43) Pub. Date: Sep. 12, 2019
(54) SORTING SYSTEM (52) US. CL
CPC GOG6F 16/2228 (2019.01); GOGF 16/2455
(71) Applicants: AT&T Mobility II LLC, Atlanta, GA (2019.01); GO6F 13/4221 (2013.01)
(US); AT&T Intellectual Property 1,
L.P., Atlanta, GA (US)
(72) Inventors: Sheldon K. Meredith, Roswell, GA 67 ABSTRACT
(US); William C. Cottrill, Canton, GA
(US) A sorter sorts a list of elements using a plurality of registers.
(21) Appl. No.: 16/414,301 Each register stores a value of at most one element. Each
register receives an input from a previous one of the registers
(22) Filed: May 16, 2019 indicating whether the previous one of the registers is
Related U.S. Application Data s.toring a value of a lis.t element before .stoF‘ing. a value of a
list element. Each register supplies an indication to a next
(63) Continuation of application No. 14/869,374, filed on register whether the register is storing a list element value.
Sep. 29, 2015, now Pat. No. 10,296,612. A register sends a stored value and the register identification
A . . to a register stack. The register stack uses the value as an
Publication Classification index to store a pointer to the register. In that way a sorted
(51) Imt. ClL list is created in the register stack. A register stores list
GO6F 16/22 (2006.01) location information for one or more occurrences of a value
GO6F 13/42 (2006.01) stored by the register. Overflow of list location information
GO6F 16/2455 (2006.01) is handled in a duplicate values stack.

100

105
REG_STACK f 107" DUP_STACK

A

REQUESTING
COMPUTER f 101

SYSTEM

Mean, Mode,
109—" Median

f 111
SENDER

103—~] REGISTER

102

A
U115

CLK

US 2019/0278756 Al

Sep. 12,2019 Sheet 1 of 6

Patent Application Publication

¢0l

| "b14
M10
Gl _\H «
€0l
yasiox Vo Ve MIANES
L1l

uepsN | —60l
‘9pO}\ ‘UBS|\

wovisdna L4 | vousTom
501

oL/

W3LSAS
d31NdWOD
ONILS3NOIY

A

001

US 2019/0278756 Al

Sep. 12,2019 Sheet 2 of 6

Patent Application Publication

. @_ WILSAS H31NdWOD «\:_\ :
ve ol 101="| " onilsanom - [€—*] 30N3s 102
sng Sanje JO 18I m
1 _ 1088l _ _ I
\ 4
¥o0P
I A Q07 Y | AL R 2
(" [T N\ S [NI (
< . anjep |e— - snep | T+t anea —
1sixaf anjea 1sixofanjen Jsixd “anje 1sikaTanjea SIXo oN|eA
ugLg- asie —BGIT . !
ugze 1 [o3UoD 4577 jo1u09) jouey kA~ BG7Z
"z | L_siewiod 000\ SO0 siauiod [BleC
SUOIJIBULIOY) qlec SUOIY9UUO
pigog-ien A21z—T1__tewnog 1] m.m_m,\,_ munoy | | emmog R | piogumny
¥4
ULlCY\—T wnog | wa_wnog || |[_wnop M €6l
G0¢
N 43181934 ¢ H3LSION | ¥31S193y m
AL | b | 3 |
1SIX8 ™ yojew
siovis dna 0 -
dna mor/\, MOVLS 934

Patent Application Publication Sep. 12,2019 Sheet 3 of 6 US 2019/0278756 Al

LIST ELEMENT

?
251 ON BUS?

S REGISTER
STORING A LIST
VALUE?

VALUE_EXIST
ASSERTED?

MATCH_EXIST
ASSERTED?

LIST VALUE?

ASSERT 257 STORE VALUE OF 265
MATCH_EXIST - LIST ELEMENT e
STORE COUNT /259 STORE COUNT /267

VALUE VALUE
' I
REPORT VALUE TO
269 ™~ REG_STACK

Fig. 2B

Patent Application Publication Sep. 12,2019 Sheet 4 of 6 US 2019/0278756 Al
107
DUP_STACK ts
e
103n Value is used as an
\ index to the
thl(Ej_GISJIERIIDk 3 7
ing the clo
REGISTER > inczerr}egn’g(co?nt%rs 3 1
#N or that vaiue 1301
; [ndex
Handler
3
®
103a
* 5
value
clock REGISTER .tgpe/.set
identifier
reset #1)
1111 SENE)ER -
REQUESTING
COMPUTER }=
SYSTEM

101

Fig. 3

US 2019/0278756 Al

Sep. 12,2019 Sheet 5 of 6

Patent Application Publication

M:
.@_ NALSAS
y Ol > Y3LNdINOD
ONILSINOIY
L0l v
f m > ¥3AN3S -~ 111
N |
) T » L# Josal
00J0
Ly 147/ RSN s19ju10d Jo 43151934 0
.) DN sdnoJb 0y 1u0d
m : w m ue9 sisuiod ®
X A 507 | 0% | R
la|pue ¢
AX at__w Ew_m -
. L0v XoPY
. m 0y saiod
oon/ s goom v
X no_wo“m &,m SJaquinu;« 318193
JUBWAIUI %90}
al al al
Y3LSI93y enien Y31SI93y fenfea ya1Sio3ylenien
> MOV1S 93y

Patent Application Publication

505

COUNT VALUES
STORAGE FULL?

Sep. 12,2019 Sheet 6 of 6

SEND COUNT
VALUES SET TO

DUP_STACK

A 4

507 \

STORE RETURNED
POINTERTO
COUNT VALUES
SET IN DUP_STACK
IN POINTER
STORAGE

!

509 \

STORE COUNT
VALUE

Fig. 5A

511

515

POINTER VALUES
STORAGE FULL?

US 2019/0278756 Al

\ SEND POINTER

VALUES SET TO
DUP_STACK

'

STORE RETURNED
POINTER TO
POINTER VALUES
SET IN DUP_STACK
IN POINTER
STORAGE

'

519\ STORE POINTER

VALUE
|

Fig. 58

US 2019/0278756 Al

SORTING SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of U.S. patent
application Ser. No. 14/869,374, filed Sep. 29, 2015, entitled
“Sorting System,” naming Sheldon K. Meredith and William
C. Cottrill as inventors, which application is incorporated
herein by reference in its entirety.

BACKGROUND

Field of the Invention

[0002] This application relates to sorting.
Description of the Related Art
[0003] The widely accepted value for the minimum num-

ber of comparison operations to sort a large list of N items
is Nlog2(N). Different algorithms don’t improve on the
Nlog2(N) barrier, but provide opportunities to perform sort-
ing of the list and also provide other measures during the
process such as median and mean. Regardless, to sort a very
large list of one billion items, for example, still requires
roughly 30 B comparisons. Each of these comparisons can
also require many clock cycles of the computing system. 30
B comparisons might actually take 300 B clocked opera-
tions. In Big Data analytics, weather prediction, nuclear
calculations, astrophysics, genetics, public health, and many
other disciplines, there is a frequent need to sort very large
datasets. This further implies computational resources than
can literally fill buildings with racks of servers to service
these needs. To the extent one can improve on this Nlog2(N)
limitation, or otherwise improve sorting operations, one can
improve on the capital infrastructure and associated opera-
tional costs for computing systems.

SUMMARY OF EMBODIMENTS OF THE
INVENTION

[0004] Accordingly, one embodiment for sorting a list of
items includes a list communication bus coupled to supply
the list of elements. A plurality of registers are coupled in
parallel to the list communication bus. A register of the
plurality of registers includes a value storage to store a value
of one of the elements in the list. An input node receives an
input value exist indication. The register supplies to an
output node an output value exist indication to indicate,
when asserted, that the register is storing a value of an
element of the list in the value storage. Compare logic in the
register asserts a match exist signal line coupled in parallel
to the registers if a list value currently being supplied on the
list communication bus matches the value in the value
storage.

[0005] In another embodiment a method for sorting a list
of elements includes supplying the list of elements from a
list communication bus to a plurality of registers. Respon-
sive to the register storing a value of an element of the list
in a value storage and a list element being on the list
communication bus, checking if a value of the list element
matches the value in the value storage and asserting a match
exist signal line coupled to the plurality of registers if the
match exists. If the register is not storing a value of a list
element in the value storage, the register is responsive to the
list element being on the list communication bus to check a

Sep. 12,2019

value exist input to the register indicating whether a pre-
ceding register has stored a list element. If the value exist
input is not asserted then the register ignores the list element
on the list communication bus. If the value exist input is
asserted, then the register ignores the list element if the
match exist line is asserted. If the value exist input is
asserted and the match exist line is not asserted, the register
stores a value of the list element in a value storage associated
with the register.

[0006] In another embodiment, a sorting apparatus to sort
a list of items includes a plurality of registers. At least one
register includes a value storage to store a value of one of the
items in the list. An input node of the register receives an
input value exist indication from a previous one of the
registers indicating whether the previous one of the registers
is storing another value of another one of the elements of the
list. The register supplies an output node an output value
exist indication to a next register of the plurality of registers
to indicate whether the one register is storing the value of the
one of the items in the list in the value storage. The one
register further includes a counter to count every element of
the list. Count storage stores a count value of the counter that
corresponds to a list location one of the items in the list
whose value is stored in the value storage.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The present invention may be better understood,
and its numerous objects, features, and advantages made
apparent to those skilled in the art by referencing the
accompanying drawings.

[0008] FIG. 1 illustrates a sorter system according to an
embodiment.
[0009] FIG. 2A illustrates additional details of an embodi-

ment of a register of the sorter apparatus.

[0010] FIG. 2B illustrates a flow diagram showing an
embodiment of the basic operation of a register evaluating a
list element on bus 201

[0011] FIG. 3 illustrates additional details of an embodi-
ment of the register stack (REG_STACK).

[0012] FIG. 4 illustrates additional details of an embodi-
ment of the duplicate stack (DUP_STACK).

[0013] FIG. 5A illustrates an example operational flow of
the control logic in a register to utilize DUP_STACK.
[0014] FIG. 5B illustrates another example operational
flow of the control logic in a register to utilize DUP_
STACK.

[0015] The use of the same reference symbols in different
drawings indicates similar or identical items.

DETAILED DESCRIPTION

[0016] Referring to FIG. 1 an electronic hardware sorter
100 receives a list of alphanumeric values (or any list than
can be numerically represented) from a requesting computer
system 101 and then sorts the list as described herein. The
sorter 100 receives a serial list of alphanumeric values (the
list) over a communication link 102. The list may be, e.g.,
numeric, text, ASCII, or user defined. In addition to the list,
the sorter may receive such inputs as a reset command, a list
type, and a count of the number of elements in the list.
Primary sections of the sorter 100 include, registers 103, the
register pointer stack (REG_STACK) 105, the duplicated
values stack (DUP_STACK) 107, the median/mean/mode
function (MMM) 109, and the sending function (SENDER)

US 2019/0278756 Al

111. The sorter 100 also receives a clock signal 115. Prior to
the requesting computer system 101 sending the list to the
sorter 100, a reset command may be provided that resets the
entire sorter to a default or known state. The reset command
can be sent on the same communication path as the list or on
a separate one, and precedes the sending of the list. In other
embodiments, the sorter 100 may reset itself after providing
a sorted list to the requesting computer system or in response
to a first list element or in any other suitable way.

[0017] The requesting computer system may send a total
list size so that the sorter 100 knows when the last element
of the list has been received. The received list may be
terminated with a unique identifier or delimiter associated
with the last element in the list. The sorting apparatus may
count the number of elements in the list until the delimiter
is received to determine the total list size. The sorter
provides as outputs a sorted list of values and may also
provide median, mean, and/or mode values associated with
the sorted list.

[0018] Referring to FIG. 2A, the registers 103 are shown
in greater detail, along with interconnections between the
register 103 and other functions of the sorter 100. Registers
103, which include registers 1034, 1035, and 1037, receive
every incoming list element on the bus 201. Each of the
registers 103a, 1035, 103% receives a value_exist input 203
(2034, 2035, 2037) and a match_exist input 205. Value_exist
203 tells a register whether the immediately preceding
register is storing an element of the list. Match_exist is
asserted if any register is already storing the same value as
the value of the element appearing on bus 201.

[0019] A register does not evaluate a list element on bus
201 unless the value_exist input is asserted for that register
or the register already is storing a list element value. For
example, assume that for REGISTER N 103z, the value
exist input 2037 is not asserted. In that case, when a valid list
element is present on bus 201, REGISTER N takes no action
regarding that element. If on the other hand, the value exist
input 203z is asserted for REGISTER N, but the value_exist
output is not asserted, indicating the previous register is
storing a value of an element of the list but not REGISTER
N, REGISTER N evaluates the match_exist line. If the
match_exist line is asserted, the register asserting the mat-
ch_exist line handles the list element as described further
herein and REGISTER N takes no action. If however, the
match_exist line is not asserted, REGISTER N stores the
value of the list item in the value storage 215z and then
asserts the value_exist output signal line 207x.

[0020] IfREGISTER N is already storing a list value in its
value storage 2157, when a list element is present on bus
201, REGISTER N evaluates the list element on bus 201 to
determine if the list element on bus 2013 matches the value
in stored in value storage 215n. If the value of the list
element on bus 203 matches the value stored, the REGIS-
TER N asserts the match_exist line and all other registers
take no action. If there is no match, REGISTER N takes no
action. In an embodiment, the match_exist line utilizes an
open collector implementation where any of the registers
can assert to match exist line by pulling the line to ground.
If none of the REGISTERSs assert the match exist line 205,
the line will remain at a high voltage typically by being
pulled up to a supply voltage through a resistor.

[0021] In an embodiment, REGISTER 1 103a stores the
first list element but note that REGISTER 1 has no preceding
register to supply a value_exist signal. Therefore, for REG-

Sep. 12,2019

ISTER 1, the input value_exist signal line 203a is kept
asserted when REGISTERI1 evaluates the input value_exist
signal line 203a for the first element of the list. In order to
keep the input value_exists signal line 203a asserted, the
value_exist line 2034 for REGISTER 1 may be tied high (or
low). Having the input value_exist signal line 203a asserted
allows REGISTER1 to evaluate whether or not the match_
exist line 205 is asserted before storing a list element
consistent with operation of other registers. Other embodi-
ments may have the control logic in REGISTER 1 recognize
it is the first register and ignore the value_exists signal line
203a. For the first element in the LIST, no other REGISTER
has a list element value already stored, so match_exist 205
will remain unasserted for the first element. To make the
control logic consistent across all regsiters, REGISTER 1
may evaluate the match-exist signal line 205 before storing
the first element of the list. REGISTER 1 stores the value of
the first list element on the bus 201 in value storage 215a.

[0022] Upon storing a list element value, each register
asserts its own value_exist output signal which is supplied to
the next physical register. For example, REGISTER 1 sup-
plies value_exist output 207a to REGISTER 2 (received as
2035). Similarly, REGISTER 2 supplies value_exist signal
line 2075 to the next register.

[0023] After the first element of the list is consumed, the
next incoming list element will be separated from the next
value in LIST by a known delimiter such as a comma or a
reserved character, or another protocol mechanism such as
assertion and deassertion of control line, to indicate a
transition between one element and a next list element.
When the delimiter is recognized, or a valid list element is
recognized on bus 201, that observation triggers a counter
217 (2174, 217b, 217r) to increment within every register.
The count value of the counter identifies the location of an
element in the list. Thus, the first element will have a count
value of 1 and the second element will have a count value
of 2. The count value identifies the location in the list of the
stored value.

[0024] Assuming REGISTER1 has processed the first
element of the list then REGISTER1 has stored the element
value in value storage 215a. In addition, REGISTERI1 has a
count value of 1 (that identifies the position in the list of the
first list element) and stores that count value in the count
storage 219a. REGISTERT1 then sends its stored list element
value and its physical register ID=1 (since it is REGISTER
1) to the REG_STACK 105.

[0025] FIG. 2B illustrates a flow diagram showing an
embodiment of the basic operation of a register evaluating a
list element on bus 201. In 251, the control logic 225 checks
if there is a list element on the bus based on a delimiter, valid
line, or other protocol mechanism. If there is a list element
to be evaluated, the control logic determines if the register
is already storing a list element value in 253. If so, the
control logic determines if a match exists between the stored
list value and the value of the list element on the bus in 255.
If the match exists, the control logic causes the match_exist
line 205 to be asserted in 257, the count value stored in 259
so that the list position information is maintained for the list
element, and then the control logic returns to 251 to wait for
the next element of the list. If the register is not storing a list
value yet, the control logic determines if the value_exist
input signal line 203 is asserted in 261. If not, the flow
returns to 251 to wait for the next element of the list. If the
value_exist line is asserted, the control logic determines in

US 2019/0278756 Al

263 if the match_exist line is asserted, and if so, the flow
returns to 251 to wait for the next list element. If no other
register matches the value on the element on the bus in 263,
the register stores the value of the list element in 265, stores
the count value in 267, reports the value to the register stack
in 269, and returns to 251 to wait for the next element on the
bus.

[0026] Referring to FIG. 3, additional details of an
embodiment the register stack REG_STACK are illustrated.
REG_STACK receives the stored value and the physical
register ID and uses the stored value as an index into its stack
301. The index points to a location in the stack that stores the
register ID as a pointer to the register that supplied the list
element value. For example, assume the first element in the
list has a value of 6. REGISTER 1 stores the value 6 and the
count 1 as described above. REGISTER 1 sends its ID=1
and the value 6 to REG_STACK 105. REG_STACK uses the
list value 6 as an index to store the register ID 1.

[0027] Now assume bus 201 provides a second list ele-
ment and that list element has a different value that the first
element. REGISTER 1 already has a stored value, so it
ignores value_exist and match_exist and compares the
incoming value to its stored value and finds no match, so it
does not assert match_exist. REGISTER 2 now identifies
that REGISTER 1 has a value through the value_exist line
2035 (FIG. 2), but no other registers have a match, so
REGISTER 2 stores the value of the second element in value
storage 2155 along with the count value from counter 2175
in count storage 2195 and sends the list value and its register
1D to REG_STACK.

[0028] For example, assume the value of the second
element is 3. At this point in the process, REGISTER 1 holds
value 6 with count value=1 and REGISTER 2 holds value 3
with count value=2. Further, REG_STACK has two entries,
specifically at index 3, a pointer to REGISTER 2 and at
index 6 a pointer to REGISTER 1. In this simplified
example, it should be apparent that if one reads the REG_
STACK the two values have been sorted from low to high
(3 then 6) and by pointing to REGISTER 2 and REGISTER
1 respectively, reading those registers provides the positions
of these two values in list (2 (from REGISTER 2) and 1
(from REGISTER 1), respectively). Assume that other
entries in the stack have a null entry so valid entries in the
stack can be identified. At this point, we have achieved a low
to high sort and maintained list position integrity in the
registers.

[0029] Now assume the value of the third element in the
list is 6. That value matches the value in REGISTER 1,
which asserts the match_exist signal line 205 (FIG. 2).
REGISTER 2 knows it does not have a match and REGIS-
TER 3 ignores the value 6 because it recognizes that
match_exist has been asserted indicating the value already
belongs to another register. REGISTER 1 also saves the
incremented count value of 3 corresponding to the third
element in the count storage 2194. REGISTER 1 now stores
two count values, 1 and 3, since the first and third elements
of the list were both the same value of 6. REGISTER 1 does
not send anything to REG_STACK because REG_STACK
has already been informed that matches for the value 6 can
be found in REGISTER 1. At this point the process has again
achieved a low to high sort by looking at REG_STACK and
first finding the value 3 at list position 2 as learned from
REGISTER 2. We know that 6 is the next larger value at list

Sep. 12,2019

position 1 as learned from REGISTER 1, but we also see
there is another 6 at list position 3 as also learned from
REGISTER 1.

[0030] Inembodiments, no register stores a value from the
list unless the prior register already has a value and no
registers currently have matches with that value. Further,
each register notifies the REG_STACK only once upon its
initial storing of a list element value. Each register can store
multiple count values, which each indicate the position in
list where the stored value was observed.

[0031] To generate the rank ordered list of values, one
inspects the REG_STACK, which provides the ranked val-
ues, but does not know about positions within LIST or how
many matches of each value may have occurred. If list
positions are requested by the request computing system
101, the list positions stored in the registers are available. A
requesting computing system may also request the sorted list
without list positions. If list positions are desired, REG_
STACK points to the registers which retain such information
and can send all of the list positions to the SENDER 111 (see
FIG. 1), which then returns the rank ordered values back to
the requesting computer system. SENDER 111 acts as the
interface between the rest of the sorter 100 and the request-
ing computer system 101. The SENDER 111 does not need
to accumulate the entire rank ordered list prior to sending,
but may instead send them sequentially as they are recov-
ered from the registers.

[0032] The approach to rank-ordering the list and handling
duplicate values has been described above. However, there
needs to be a mechanism to handle outlier situations such as
when a large number (or all) of the elements in the list have
same value. If all the elements in the list were the same,
REGISTER 1, which handles the first element in the list,
would also have to store every count value (indicating every
position in list) for every list element. If the list has a large
number of duplicate values, then REGISTER 1 would have
to store the large number of count values identifying location
in the list of the large number of matches. That suggests
every register might need storage to store a large number of
count values identifying locations in the list of identical
values as it is uncertain at what point in the list the large
number of matches will occur. Some embodiments may
provide a large amount of storage on each register to handle
outlier situations and generate an error condition if that
storage is exhausted. Other embodiments may provide less
storage on each register and generate an error condition if an
outlier situation comes up with too many matches.

[0033] In order to provide greater flexibility, an embodi-
ment provides a duplicated values stack (DUP_STACK) 107
to handle overflow matches from the registers. Referring
back to FIG. 2, in an embodiment, each register structure
includes storage 219 to store a predetermined number X of
count values identifying the list position of X occurrences of
list element value. Referring to FIG. 4, any occurrences
beyond X causes the first X count values to be sent out to
DUP_STACK 107, which stores the set of X count values at
401 and returns a pointer 403 to the sending register iden-
tifying the location in the DUP_STACK in which the set of
X count values are located. The sending register stores the
pointer in pointer storage 221 (see FIG. 2) and can store Y
such pointers. The count storage 219 is then free to store
another set of X count values. There is a tradeoff between

US 2019/0278756 Al

operational speed in terms of traversing the pointers to
recover the sorted list and the cost of storage on the
integrated circuits.

[0034] A situation may arise that the size Y of the pointer
storage 221 (221a, 2215, 221n) is inadequate to because
there are so many matches that the pointer space on a
register is exhausted. Accordingly, embodiments provide a
mechanism to cascade pointers as needed. Assume, for
example, that all Y pointers in pointer storage 221 of a
register have been filled and all X count values in count
storage 219 have also been filled. The next match triggers
sending all X values to DUP_STACK which would return
another pointer which cannot be stored on the register,
because the pointer storage 221 is full. To address this lack
of pointer space, the register will send its batch of pointers
to DUP_STACK, but will identify the batch as pointers and
not count values. For example, a field may be provided in the
communication protocol between a register and DUP_
STACK identifying the type of information (pointers or
count values) being provided to DUP_STACK by the reg-
ister. When DUP_STACK stores these pointers, e.g., at 405
they are identified as pointers. Again, DUP_STACK returns
a pointer to the sending register which now points to the
batch of pointers at location 407 in the DUP_STACK. The
pointers 405 point to Y separate sets of X count values 409.
That process can be replicated as needed. For example, the
Y pointers 411 may point to another Y set of pointers 415,
which in turn point to Y2 sets of X count values 417.
[0035] FIG. 5A illustrates an example operational flow of
the control logic 225 (see FIG. 2A) to utilize DUP_STACK.
The control logic 225 determines in 501 if the count value
storage 219 is full. If not, the control logic waits for the next
count value to store. If however, the count value storage is
full and unable to store another count value after a match, the
register sends the set of count values in the count value
storage to the DUP_STACK in 505. In 507, the control logic
stores the returned pointer from DUP_STACK in the stored
pointers location 221. In that way the count value storage
219 becomes available to store more count values and the
count value that was unable to be stored because the count
value storage 219 was full in 501 is stored in 509. Note that
rather than wait for an overflow condition, a register may
send a set of counts to the DUP_STACK when a full
condition is detected in the count value storage.

[0036] FIG. 5B illustrates an example operation flow of
the control logic 225 to utilize DUP_STACK to store
pointers in an embodiment. The control logic determines in
511 if the pointer value storage 221 is full. If not, the control
logic waits for the next pointer to store value to store. If
however, the pointer value storage is full and the register is
unable to store another pointer value after the DUP_STACK
has returned a pointer value, the register sends the set of
pointer values in the pointer value storage to the DUP_
STACK in 515. In 517, the control logic stores the returned
pointer from DUP_STACK in the stored pointers storage
221. In that way the count value storage becomes available
to store more count values and the pointer value that was
unable to be stored because the pointer value storage 221
was full in 511 may be stored in 519. Note that rather than
wait for an overflow condition, a register may send a set of
pointers to the DUP_STACK when a full condition is
detected in the pointer storage.

[0037] SENDER 111 can be used to send the rank-ordered
list back to the requesting computer system. SENDER first

Sep. 12,2019

looks in REG_STACK for a first value by finding a first
entry in the stack that is not a null value. REG_STACK
identifies the register number holding that value, e.g., REG-
ISTER N. SENDER then asks REGISTER N for all of its
count values and pointer values. For each count value,
SENDER can immediately send rank ordered list elements
such as value R 34, value R 56, value R 87, value R 109,
where value R is the value of the list element stored in
REGISTER N and the second number is the count value
identifying the location in the list for elements having the
value R. Then SENDER uses the pointers to more count
values stored in DUP_STACK. DUP_STACK includes a
flag indicating whether a particular entry is a count value or
a pointer. Sometimes, as described above, a pointer will
point to a set of pointers instead of a set of count values. In
such cases, SENDER will then query DUP_STACK for the
indirectly referenced count values. Such referencing can
have arbitrary numbers of layers of pointer-to-pointer ref-
erencing prior to getting to the count values. As SENDER
receives clock increment numbers from DUP_STACK, it
can immediately send rank-ordered list elements having the
same value as was stored in the register from which the
pointers were retrieved. After each register has directly or
indirectly, via pointers, exposed all count values (which are
again just position indicators within the original list), then
SENDER will re-inspect REG_STACK for the next value
which points to a different register and the process is
repeated until all registers have been visited and the number
of returned, rank-ordered elements equals the number of
values originally input from the requesting computer sys-
tem

[0038] Once the count of returned values equals the count
received as part of list, then the sorter could automatically
reset. Other embodiments provide that any new request from
a computer system be preambled with a reset command.
Note that any character set that can be digitally represented
can be used with REG_STACK for determining what con-
stitutes the rank ordering. For example, numbers may be
chosen to come before letters or vice versa. The REG_
STACK can map any values coming from the registers into
an indexing order that accomplishes the desired rank-order-
ing. When the requesting computer system sends a list to the
sorter, the type of rank-ordering may be specified and sent
to the REG_STACK for subsequent mapping. Embodiments
described herein map any language or non-language types.

[0039] Consider how embodiments of the sorter handle
certain outlier situations. The first situation involves having
a huge quantity of only a few values. That would result in
only a few registers being populated with values, with a
large number of count values and pointers to DUP_STACK.
In that case, REG_STACK would also require very few
resources. A second scenario is a large number of different
valued elements in the list. In that case every different
valued element in the lists needs a register and REG_
STACK would have to be sized one-to-one with the number
of registers. There would be no entries populated into
DUP_STACK at all.

[0040] One solution to accommodate these two extremes
is a modular implementation of hardware where the com-
puter system requesting the sort can “pay as they play.”
Depending on the type and volume of data being sorted, one
would provision an appropriate number of circuit cards (in
a rack configuration for example) to meet the needs of the
data being sorted. A plurality of registers may be formed on

US 2019/0278756 Al

a circuit card. Cards containing registers may be separate
from cards containing DUP_STACKS and different from
REG_STACK cards. The cards would be scalable. Thus, for
register cards, the last register on one register circuit card
would electrically connect to the first register on a next
circuit card in order to implement the value_exist line
between them. The list bus 201 would couple between the
circuit cards as would match_exist and communication
signal lines with the REG_STACK and DUP_STACK. Even
if the values in a list have a very large bit representation, one
never needs more registers or REG_STACK space than the
number of different values to be processed. However, the
width of the “value” storage on each register must be large
enough to hold the bit size of the values to be sorted.

[0041] Referring again to FIG. 2, the registers 103
includes control functionality 225 that perform the various
functions described. The control functionality may be imple-
mented as separate control logic using, e.g., state machines
to implement the control functions described herein, includ-
ing the control flow illustrated in FIGS. 2B, 5A, and 5B.
Alternatively, the control functionality may be implemented
using a microcontroller or a microprocessor as control logic
225. Such a microcontroller (or microprocessor) may pro-
vide control for more than one register. In particular, a
processor may control evaluation of the value_exist line,
provide the counting function to determine list location,
maintain a count location of the current count value, provide
appropriate addressing and access to the stored value and the
stored pointers, and communicate with the REG_STACK
and DUP_STACK as described herein.

[0042] The control logic 225 may include memory (not
separately illustrated) to store data structures, code instruc-
tions, system or device information such as register capa-
bilities such as size of stored values, number of count value
locations, number of pointer locations and so on. Various
aspects disclosed in the subject specification can also be
implemented through (i) program modules stored in a com-
puter-readable storage medium or memory (e.g., forming
part of control logic 225 and executed by a processor
(forming part of control logic 225) or control for DUP_
STACK or REG_STACK, or (ii) other combination(s) of
hardware and software, or hardware and firmware.

[0043] In the subject specification, terms such as “data
store,” data storage,” “database,” “cache,” and substantially
any other information storage component relevant to opera-
tion and functionality of a component, refer to any form of
memory that can store information and be read by computers
or processors or other electronic components. Memory may
be volatile memory or nonvolatile memory, or both. Non-
volatile memory can include read only memory (ROM),
programmable ROM (PROM), electrically programmable
ROM (EPROM), electrically erasable ROM (EEPROM), or
flash memory. In addition non-volatile memory can include
magnetic and optical memory. Volatile memory can include
random access memory (RAM), available in many forms
such as synchronous RAM (SRAM), dynamic RAM
(DRAM), synchronous DRAM (SDRAM), double data rate
SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM),
Synchlink DRAM (SLDRAM), and direct Rambus RAM
(DRRAM). Additionally, the disclosed memory components
of systems or methods herein are intended to comprise,
without being limited to comprising, these and any other
suitable types of memory.

Sep. 12,2019

[0044] Sender 111 may also utilize a processor and
memory to effectuate the functionality described that is
associated with sender 111. The Sender may also be used,
e.g., to initialize the registers in a power-on reset sequence
to assign IDs to the registers.

[0045] For large lists, one might send some elements of
the list to the sorter so that that the sent elements fit within
the hardware-defined limits of the sorting apparatus and then
sub-sort using remaining elements. There is a tradeoff that
can be managed as a cost. For lower performance, the sorter
owner (or leaser) could purchase registers with less “value
depth” and tolerate sub-sorting while a maximum perfor-
mance application may require registers with great “value
depth” costing more money. Therefore the sorter architec-
ture lends itself very well to the application, sorting types,
volume of values to be sorted, and performance needs of the
owner. Alternatively, such sorting can be offered as a service
with the cost of the service determined by the various
hardware and software components required to implement
the service.

[0046] Various algorithms used today also provide metrics
such as median, mean or mode. Embodiments of the sorting
apparatus can provide such metrics. Since the list length is
known from the start of processing, to get the median value
one approach is to monitor how many times registers send
information to the REG_STACK plus how many times the
match_exist line toggles. REG_STACK is contacted upon
the first occurrence of each value and match_exist toggles on
all subsequent observations of an existing value. If the list
length is odd, once the summation of REG_STACK and
match_exist togglings reaches the mid-point of list length,
that value is stored and is the median. If list length is an even
number, the two centermost values may be captured and
averaged as the median. To find the average, the sum of all
incoming values can be generated as they arrive and, upon
the last value, divide the total by the list length, which has
been provided at the start of the process. Alternatively, a
separate counter may count each received list element to
determine the list length. To find the mode, in an embodi-
ment DUP_STACK maintains a count of times it is con-
tacted by each REGISTER. The REGISTER with the most
contacts to DUP_STACK also holds the mode of the values
in LIST. If more than one REGISTER holds the most
contacts to DUP_STACK, then we have a multi-mode
outcome, which can also be provided by the sorter back to
the requesting computer system. Note that the mean,
median, and mode functionality 109 can be implemented
using, e.g., a processor or microcontroller dedicated to the
task. In other embodiments, the processor may be shared,
with, e.g., the sender 111.

[0047] Thus, aspects of a sorter have been described. The
description set forth herein is illustrative, and is not intended
to limit the scope of the following claims. Variations and
modifications of the embodiments disclosed herein may be
made based on the description set forth herein, without
departing from the scope and spirit of the following claims.

What is claimed is:

1. A sorting apparatus to sort elements of a list of elements
comprising:
a list communication bus to supply the list of elements;

a plurality of registers, coupled in parallel to the list
communication bus,

US 2019/0278756 Al

wherein a register of the plurality of registers includes,
a value storage to store a value of one of the elements

in the list;

an input node to receive an input value exist indication;

an output node to supply an output value exist indica-
tion to indicate, when asserted, that the register is
storing a value of an element of the list in the value
storage;

a register stack communicatively coupled to the plurality
of registers, the register stack including a register
identification field indexed by respective values stored
in respective value storages of the plurality of registers;
and

a duplicate stack communicatively coupled to the plural-
ity of registers and configured to store one or more sets
of indications of list locations of elements in the list,
each of the one or more sets associated with a particular
element value.

2. The sorting apparatus as recited in claim 1 wherein the

register further comprises:

compare logic configured to assert a match exist signal
line coupled in parallel to the registers responsive to a
value of an element currently being supplied on the list
communication bus matching the value in the value
storage.

3. The sorting apparatus as recited in claim 1 wherein the
input value exist indication is from a preceding register of
the plurality of registers and indicates whether the preceding
register has stored another value of another one of the
elements of the list.

4. The sorting apparatus as recited in claim 1 wherein the
register further comprises:

a list location storage configured to store an indication of

a location in the list where a list element appears.

5. The sorting apparatus as recited in claim 4 wherein the
list location storage is further configured to store one or
more additional list location indications indicative of one or
more subsequent locations in the list for elements in the list
having the value stored in the value storage.

6. The sorting apparatus as recited in claim 1 wherein the
register further comprises:

pointer storage configured to store one or more pointers
pointing directly or indirectly to a memory location in
the duplicate stack storing list location indications for
the register.

7. The sorting apparatus as recited in claim 1 further

comprising:

logic to determine at least one of mode, median, and mean
of the list of elements.

8. A sorting apparatus to sort a list of a plurality of

elements comprising:

a plurality of registers to store information regarding the
plurality of elements;

a communication bus coupled to a plurality of registers to
supply the plurality of elements;

wherein a register of the plurality of registers includes,
a value storage to store a value of one of the plurality

of elements;

a value exist input node to receive a value exist
indication from a previous one of the registers, the
value exist indication indicating whether the previ-
ous one of the registers has stored another value of
another one of the elements of the list;

Sep. 12,2019

compare logic configured to assert a match exist signal
line coupled in parallel to the registers if a current
element value being supplied on the communication
bus matches the value stored in the value storage;
wherein if the register is not storing the value of one of
the plurality of elements in the value storage, respon-
sive to the current element value being on the
communication bus, the register is configured:
to ignore the current element value being on the
communication bus if the value exist indication is
not asserted;
to ignore the current element value being on the
communication bus if the value exist input indi-
cation is asserted and the match exist line is
asserted by another one of the registers; and
to store the current element value in the value storage
if the value exist indication is asserted and the
match exist line is not asserted.

9. The sorting apparatus as recited in claim 8 wherein the
register further comprises:

an output node to supply a first value of an output value
exist indication to a next one of the registers to indicate
that the register is storing the value of one of the
plurality of elements in the value storage and to supply
a second value of the output value exist indication to
indicate that the register is not storing the value of one
of the plurality of elements in the value storage.

10. The sorting apparatus as recited in claim 8 wherein the

register further comprises:

a list location storage associated with an element having
the value stored in the value storage identifying where
the element appears in the list.

11. The sorting apparatus as recited in claim 8 wherein the

register further comprises:

additional list location information storage associated
with another element in the list supplied on the com-
munication bus having the value stored in the value
storage.

12. The sorting apparatus as recited in claim 8 wherein the

register further comprises:

one or more pointers to point directly or indirectly to
another memory location storing a set of list location
indications.

13. The sorting apparatus as recited in claim 8 further

comprising:

a register stack to store a register identification field
indexed by the value in the value storage.

14. The sorting apparatus as recited in claim 13 wherein
the register is communicatively coupled to the register stack
to send information to the register stack of the value in the
value storage and an identification of the register for storage
in the register identification field.

15. The sorting apparatus as recited in claim 8 further
comprising:

a duplicate stack communicatively coupled to the plural-
ity of registers to store one or more sets of indications
of list locations in a duplicate stack communicatively
coupled to the plurality of registers, each set associated
with one of the registers.

16. The sorting apparatus as recited in claim 8 further

comprising:

logic to determine at least one of mode, median, and mean
of the list of the plurality of elements.

US 2019/0278756 Al

17. A sorting apparatus to sort a list of elements compris-
ing:
a list communication bus to supply elements of the list;
a plurality of registers coupled to the list communication
bus, wherein a register of the plurality of registers
includes,
a value storage to store a value of one of the elements
in the list;
an input node to receive an input value exist indication
from a preceding one of the registers indicating
whether the preceding one of the registers is storing
another value of another one of the elements of the
list;
an output node to supply an output value exist indica-
tion to a next register of the plurality of registers to
indicate whether the value storage is storing the
value of one of the elements of the list; and
a register stack communicatively coupled to the plurality
of registers to store at a location in the register stack
indexed by the value stored in the value storage, an
indication of the register storing the value of the one of
the elements in the list.
18. The sorting apparatus as recited in claim 17,
wherein the register includes a list location storage con-
figured to store one or more locations in the list where

Sep. 12,2019

one or more list elements having the value stored in the
value storage appear in the list; and

wherein the sorting apparatus includes a duplicate stack
coupled to the plurality of registers to store a set of list
locations responsive to the list location storage being
full.

19. The sorting apparatus as recited in claim 17 wherein

the register further comprises:

compare logic configured to assert a match exist signal
line coupled in parallel to the registers if a value of a
current element being supplied on a communication
bus matches the value stored in the value storage.

20. The sorting apparatus as recited in claim 19 wherein

the register is configured,

to ignore the value of the current element on the list
communication bus if the input value exist indication is
not asserted;

to ignore the value of the current element on the list
communication bus if the input value exist input indi-
cation is asserted and the match exist line is asserted by
another one of the registers; and

to store the value of the current element in the value
storage if the value exist indication is asserted and the
match exist line is not asserted.

#* #* #* #* #*

