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(57) ABSTRACT

Camera or object pose calculation is described, for example,
to relocalize a mobile camera (such as on a smart phone) in
a known environment or to compute the pose of an object
moving relative to a fixed camera. The pose information is
useful for robotics, augmented reality, navigation and other
applications. In various embodiments where camera pose is
calculated, a trained machine learning system associates
image elements from an image of a scene, with points in the
scene’s 3D world coordinate frame. In examples where the
camera is fixed and the pose of an object is to be calculated,
the trained machine learning system associates image ele-
ments from an image of the object with points in an object
coordinate frame. In examples, the image elements may be
noisy and incomplete and a pose inference engine calculates
an accurate estimate of the pose.
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CAMERA/OBJECT POSE FROM PREDICTED
COORDINATES

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation of U.S. Non-
Provisional application Ser. No. 13/774,145, filed on Feb.
22, 2013, and entitled “CAMERA/OBIJECT POSE FROM
PREDICTED COORDINATES” and is hereby incorporated
by reference herein for all intents and purposes.

BACKGROUND

[0002] For many applications, such as robotics, vehicle
navigation, computer game applications, medical applica-
tions and other problem domains, it is valuable to be able to
find orientation and position of a camera as it moves in a
known environment. Orientation and position of a camera is
known as camera pose and may comprise six degrees of
freedom (three of translation and three of rotation). Where a
camera is fixed and an object moves relative to the camera
it is also useful to be able to compute the pose of the object.
[0003] A previous approach uses keyframe matching
where a whole test image is matched against exemplar
training images (keyframes). K matching keyframes are
found, and the poses (keyposes) of those keyframes are
interpolated to generate an output camera pose. Keyframe
matching tends to be very approximate in the pose result.
[0004] Another previous approach uses keypoint matching
where a sparse set of interest points are detected in a test
image and matched using keypoint descriptors to a known
database of descriptors. Given a putative set of matches, a
robust optimization is run to find the camera pose for which
the largest number of those matches are consistent geometri-
cally. Keypoint matching struggles in situations where too
few keypoints are detected.

[0005] Existing approaches are limited in accuracy,
robustness and speed.

[0006] The embodiments described below are not limited
to implementations which solve any or all of the disadvan-
tages of known systems for finding camera or object pose.

SUMMARY

[0007] The following presents a simplified summary of the
disclosure in order to provide a basic understanding to the
reader. This summary is not an extensive overview of the
disclosure and it does not identify key/critical elements or
delineate the scope of the specification. Its sole purpose is to
present a selection of concepts disclosed herein in a simpli-
fied form as a prelude to the more detailed description that
is presented later.

[0008] Camera or object pose calculation is described, for
example, to relocalize a mobile camera (such as on a smart
phone) in a known environment or to compute the pose of
an object moving relative to a fixed camera. The pose
information is useful for robotics, augmented reality, navi-
gation and other applications. In various embodiments
where camera pose is calculated, a trained machine learning
system associates image elements from an image of a scene,
with points in the scene’s 3D world coordinate frame. In
examples where the camera is fixed and the pose of an object
is to be calculated, the trained machine learning system
associates image elements from an image of the object with
points in an object coordinate frame. In examples, the image
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elements may be noisy and incomplete and a pose inference
engine calculates an accurate estimate of the pose.

[0009] Many of the attendant features will be more readily
appreciated as the same becomes better understood by
reference to the following detailed description considered in
connection with the accompanying drawings.

DESCRIPTION OF THE DRAWINGS

[0010] The present description will be better understood
from the following detailed description read in light of the
accompanying drawings, wherein:

[0011] FIG. 1 is a schematic diagram of a camera pose
tracker for relocalizing a mobile camera (such as in a smart
phone) in scene A;

[0012] FIG. 2 is a schematic diagram of a person holding
amobile device with a camera and a camera pose tracker and
which communicates with an augmented reality system to
enable an image of a cat to be projected into the scene in a
realistic manner;

[0013] FIG. 3 is a schematic diagram of a person and a
robot each with a camera and a camera pose tracker;
[0014] FIG. 4 is a schematic diagram of three random
decision trees forming at least part of a random decision
forest;

[0015] FIG. 5 is a flow diagram of a method of training a
random decision forest to predict correspondences between
image elements and scene coordinates; and using the trained
random decision forest;

[0016] FIG. 6 is a flow diagram of a method of training a
random decision forest using images of a scene where image
elements have labels indicating their corresponding scene
coordinates;

[0017] FIG. 7 is a flow diagram of a method of using a
trained random decision forest to obtain scene coordinate—
image element pairs;

[0018] FIG. 8 is a flow diagram of a method at a camera
pose inference engine of using scene-coordinate-image ele-
ment pairs to infer camera pose;

[0019] FIG. 9 is a schematic diagram of the camera pose
tracker of FIG. 1 where a 3D model of the scene is available;
[0020] FIG. 10 illustrates an exemplary computing-based
device in which embodiments of a camera or object pose
tracker may be implemented.

[0021] Like reference numerals are used to designate like
parts in the accompanying drawings.

DETAILED DESCRIPTION

[0022] The detailed description provided below in con-
nection with the appended drawings is intended as a descrip-
tion of the present examples and is not intended to represent
the only forms in which the present example may be
constructed or utilized. The description sets forth the func-
tions of the example and the sequence of steps for construct-
ing and operating the example. However, the same or
equivalent functions and sequences may be accomplished by
different examples.

[0023] Although the present examples are described and
illustrated herein as being implemented using a random
decision forest, the system described is provided as an
example and not a limitation. As those skilled in the art will
appreciate, the present examples may be implemented using
a variety of different types of machine learning systems
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including but not limited to support vector machines, Gauss-
ian process regression systems.

[0024] FIG. 1 is a schematic diagram of a camera pose
tracker for relocalizing a mobile camera (such as in a smart
phone) in scene A. In this example a person 114 is holding
the mobile camera 112 which is integral with a communi-
cations device such as a smart phone. The person 114 uses
the mobile camera 112 to capture at least one image 118 of
scene A 116, such as a living room, office or other environ-
ment. The image may be a depth image, a color image
(referred to as an RGB image) or may comprise both a depth
image and a color image. In some examples a stream of
images is captured by the mobile camera.

[0025] A camera pose tracker 100 is either integral with
the smart phone or is provided at another entity in commu-
nication with the smart phone. The camera pose tracker 100
is implemented using software and/or hardware as described
in more detail below with reference to FIG. 10. The camera
pose tracker 100 comprises a plurality of trained scene
coordinate decision forests 102, 104, 106 one for each of a
plurality of scenes. The trained scene coordinate decision
forests may be stored at the camera pose tracker or may be
located at another entity which is in communication with the
camera pose tracker. Each scene coordinate decision forest
is a type of machine learning system which takes image
elements (from images of its associated scene) as input and
produces estimates of scene coordinates (in world space) of
points in a scene which the image elements depict. Image
elements may be pixels, groups of pixels, voxels, groups of
voxels, blobs, patches or other components of an image.
Other types of machine learning system may be used in
place of the scene coordinate decision forest. For example,
support vector machine regression systems, Gaussian pro-
cess regression systems.

[0026] A decision forest comprises one or more decision
trees each having a root node, a plurality of split nodes and
a plurality of leaf nodes. Image elements of an image may
be pushed through trees of a decision forest from the root to
a leaf node in a process whereby a decision is made at each
split node. The decision is made according to characteristics
of the image element and characteristics of test image
elements displaced therefrom by spatial offsets specified by
the parameters at the split node. At a split node the image
element proceeds to the next level of the tree down a branch
chosen according to the results of the decision. The random
decision forest may use regression or classification as
described in more detail below. During training, parameter
values (also referred to as features) are learnt for use at the
split nodes and data is accumulated at the leaf nodes. For
example, distributions of scene coordinates are accumulated
at the leaf nodes.

[0027] Storing all the scene coordinates at the leaf nodes
during training may be very memory intensive since large
amounts of training data are typically used for practical
applications. The scene coordinates may be aggregated in
order that they may be stored in a compact manner. Various
different aggregation processes may be used. An example in
which modes of the distribution of scene coordinates are
store is described in more detail below.

[0028] In the example of FIG. 1 there is a plurality of
trained scene coordinate decision forests; one for each of a
plurality of scenes. However, it is also possible to have a
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single trained scene coordinate decision forest which oper-
ates for a plurality of scenes. This is explained below with
reference to FIG. 9.

[0029] The scene coordinate decision forest(s) provide
image element-scene coordinate pair estimates 110 for input
to a camera pose inference engine 108 in the camera pose
tracker 100. Information about the certainty of the image
element-scene coordinate estimates may also be available.
The camera pose inference engine 108 may use an energy
optimization approach to find a camera pose which is a good
fit to a plurality of image element—scene coordinate pairs
predicted by the scene coordinate decision forest. This is
described in more detail below with reference to FIG. 8. In
some examples scene coordinates for each available image
element may be computed and used in the energy optimi-
zation. However, to achieve performance improvements
whilst retaining accuracy, a subsample of image elements
may be used to compute predicted scene coordinates.
[0030] The camera pose inference engine 108 uses many
image element-scene coordinate pairs 110 to infer the pose
of the mobile camera 112 using an energy optimization
approach as mentioned above. Many more than three pairs
(the minimum needed) may be used to improve accuracy.
For example, the at least one captured image 118 may be
noisy and may have missing image elements, especially
where the captured image 118 is a depth image. On the other
hand, to obtain a scene coordinate prediction for each image
element in an image is computationally expensive and time
consuming because each image element needs to be pushed
through the forest as described with reference to FIG. 7.
Therefore, in some examples, the camera pose inference
engine may use an iterative process which gives the benefit
that a subsample of image elements are used to compute
scene coordinate predictions whilst taking accuracy into
account.

[0031] The camera pose 120 output by the camera pose
tracker may be in the form of a set of parameters with six
degrees of freedom, three indicating the rotation of the
camera and three indicating the position of the camera. For
example, the output of the camera pose tracker is a set of
registration parameters of a transform from camera space to
world space. In some examples these registration parameters
are provided as a six degree of freedom (6DOF) pose
estimate in the form of an SE; matrix describing the rotation
and translation of the camera relative to real-world coordi-
nates.

[0032] The camera pose 120 output by the camera pose
tracker 100 may be input to a downstream system 122
together with the captured image(s) 118. The downstream
system may be a game system 124, an augmented reality
system 126, a robotic system 128, a navigation system 130
or other system. An example where the downstream system
122 is an augmented reality system is described with refer-
ence to FIG. 2.

[0033] The examples described show how camera pose
may be calculated. These examples may be modified in a
straightforward manner to enable pose of an object to be
calculated where the camera is fixed. In this case the
machine learning system is trained using training images of
an object where image elements are labeled with object
coordinates. An object pose tracker is then provided which
uses the methods described herein adapted to the situation
where the camera is fixed and pose of an object is to be
calculated.
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[0034] Alternatively, or in addition, the camera pose
tracker or object pose tracker described herein can be
performed, at least in part, by one or more hardware logic
components. For example, and without limitation, illustra-
tive types of hardware logic components that can be used
include Field-programmable Gate Arrays (FPGAs), Pro-
gram-specific Integrated Circuits (ASICs), Program-specific
Standard Products (ASSPs), System-on-a-chip systems
(SOCs), Complex Programmable Logic Devices (CPLDs),
Graphics Processing Units (GPUs).

[0035] FIG. 2 is a schematic diagram of a person 200
holding a mobile device 202 which has a camera 212, a
camera pose tracker 214 and a projector 210. For example,
the mobile device may be a smart phone. Other components
of'the mobile device to enable it to function as a smart phone
such as a communications interface, display screen, power
source and other components are not shown for clarity. A
person 200 holding the mobile device 202 is able to capture
images of the scene or environment in which the user is
moving. In the example of FIG. 2 the scene or environment
is a living room containing various objects 206 and another
person 204.

[0036] The mobile device is able to communicate with one
or more entities provided in the cloud 216 such as an
augmented reality system 218, a 3D model of the scene 220
and an optional 3D model generation system 222.

[0037] For example, the user 200 operates the mobile
device 202 to capture images of the scene which are used by
the camera pose tracker 214 to compute the pose (position
and orientation) of the camera. At the consent of the user, the
camera pose is sent 224 to the entities in the cloud 216
optionally with the images 228. The augmented reality
system 218 may have access to a 3D model of the scene 220
(for example, a 3D model of the living room) and may use
the 3D model and the camera pose to calculate projector
input 226. The projector input 226 is sent to the mobile
device 202 and may be projected by the projector 210 into
the scene. For example, an image of a cat 208 may be
projected into the scene in a realistic manner taking into
account the 3D model of the scene and the camera pose. The
3D model of the scene could be a computer aided design
(CAD) model, or could be a model of the surfaces in the
scene built up from images captured of the scene using a 3D
model generation system 222. An example of a 3D model
generation system which may be used is described in US
patent application “Three-Dimensional Environment
Reconstruction” Newcombe, Richard et al. published on
Aug. 2,2012 US20120194516. Other types of 3D model and
3D model generation systems may also be used.

[0038] An example where the downstream system 122 is
a navigation system is now described with reference to FIG.
3. FIG. 3 has a plan view of a floor of an office 300 with
various objects 310. A person 302 holding a mobile device
304 is walking along a corridor 306 in the direction of
arrows 308. The mobile device 304 has one or more cameras
314, a camera pose tracker 316 and a map display 318. The
mobile device 304 may be a smart phone or other mobile
communications device as described with reference to FIG.
2 and which is able to communicate with a navigation
system 322 in the cloud 320. The navigation system 322
receives the camera pose from the mobile device (where the
user has consented to the disclosure of this information) and
uses that information together with maps 324 of the floor of
the office to calculate map display data to aid the person 302
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in navigating the office floor. The map display data is sent to
the mobile device and may be displayed at map display 318.
[0039] An example where the downstream system 122 is
a robotic system is now described with reference to FIG. 3.
A robot vehicle 312 moves along the corridor 306 and
captures images using one or more cameras 326 on the robot
vehicle. A camera pose tracker 328 at the robot vehicle is
able to calculate pose of the camera(s) where the scene is
already known to the robot vehicle.

[0040] FIG. 4 is a schematic diagram of an example
decision forest comprising three decision trees: a first tree
400 (denoted tree W, ); a second tree 402 (denoted tree W,);
and a third tree 404 (denoted tree W;). Each decision tree
comprises a root node (e.g. root node 406 of the first
decision tree 700), a plurality of internal nodes, called split
nodes (e.g. split node 408 of the first decision tree 400), and
a plurality of leaf nodes (e.g. leaf node 410 of the first
decision tree 400).

[0041] In operation, each root and split node of each tree
performs a binary test (or possibly an n-ary test) on the input
data and based on the result directs the data to the left or
right child node. The leaf nodes do not perform any action;
they store accumulated scene coordinates (and optionally
other information). For example, probability distributions
may be stored representing the accumulated scene coordi-
nates.

[0042] FIG. 5 is a flow diagram of a method of training a
random decision forest to predict correspondences between
image elements and scene coordinates. This is illustrated in
the upper part of FIG. 5 above the dotted line in the region
labeled “training”. The lower part of FIG. 5 below the dotted
line shows method steps at test time when the trained
random decision forest is used to predict (or estimate)
correspondences between image elements from an image of
a scene and points in the scene’s 3D world coordinate frame
(scene coordinates).

[0043] A random decision forest is trained 502 to enable
image elements to generate predictions of correspondences
between themselves and scene coordinates. During training,
labeled training images 500 of at least one scene, such as
scene A, are used. For example, a labeled training image
comprises, for each image element, a point in a scene’s 3D
world coordinate frame which the image element depicts. To
obtain the labeled training images various different methods
may be used to capture images 516 of scene A and record or
calculate the pose of the camera for each captured image.
Using this data a scene coordinate may be calculated indi-
cating the world point depicted by an image element. To
capture the images and record or calculate the associated
camera pose, one approach is to carry out camera tracking
from depth camera input 512. For example as described in
US patent application “Real-time camera tracking using
depth maps” Newcombe, Richard et al. published on Aug. 2,
2012 US20120196679. Another approach is to carry out
dense reconstruction and camera tracking from RGB camera
input 514. It is also possible to use a CAD model to generate
synthetic training data. The training images themselves (i.e.
not the label images) may be real or synthetic.

[0044] An example of the training process of box 502 is
described below with reference to FIG. 6. The result of
training is a trained random decision forest 504 for scene A
(in the case where the training images were of scene A).
[0045] At test time an input image 508 of scene A is
received and a plurality of image elements are selected from
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the input image. The image elements may be selected at
random or in another manner (for example, by selecting such
that spurious or noisy image elements are omitted). Each
selected image element may be applied 506 to the trained
decision forest to obtain predicted correspondences 510
between those image elements and points in the scene’s 3D
world coordinate frame.

[0046] FIG. 6 is a flow diagram of a method of training a
random decision forest using images of a scene where image
elements have labels indicating their corresponding scene
coordinates. A training set of images of a scene is received
600 where the image elements have labels indicating the
scene coordinate of the scene point they depict. A number of
trees to be used in the decision forest is selected 602, for
example, between 3 and 20 trees.

[0047] A decision tree from the decision forest is selected
604 (e.g. the first decision tree 600) and the root node 606
is selected 606. At least a subset of the image elements from
each of the training images are then selected 608. For
example, the image may be filtered to remove noisy or
spurious image elements.

[0048] A random set of test parameters (also called weak
learners) are then generated 610 for use by the binary test
performed at the root node as candidate features. In one
example, the binary test is of the form: £>f(x;8)>t, such that
F(x;0) is a function applied to image element x with param-
eters 0, and with the output of the function compared to
threshold values & and . If the result of f(x;0) is in the range
between & and T then the result of the binary test is true.
Otherwise, the result of the binary test is false. In other
examples, only one of the threshold values & and T can be
used, such that the result of the binary test is true if the result
of f(x;0) is greater than (or alternatively less than) a
threshold value. In the example described here, the param-
eter 0 defines a feature of the image.

[0049] A candidate function f(x;0) makes use of image
information which is available at test time. The parameter 0
for the function f(x;0) is randomly generated during train-
ing. The process for generating the parameter 6 can com-
prise generating random spatial offset values in the form of
a two or three dimensional displacement. The result of the
function f(x;0) is then computed by observing the depth (or
intensity value in the case of an RGB image and depth image
pair) value for one or more test image elements which are
displaced from the image element of interest x in the image
by spatial offsets. The spatial offsets are optionally made
depth invariant by scaling by 1/depth of the image element
of interest. Where RGB images are used without depth
images the result of the function f(x;0) may be computed by
observing the intensity value in a specified one of the red,
green or blue color channel for one or more test image
elements which are displaced from the image element of
interest x in the image by spatial offsets.

[0050] The result of the binary test performed at a root
node or split node determines which child node an image
element is passed to. For example, if the result of the binary
test is true, the image element is passed to a first child node,
whereas if the result is false, the image element is passed to
a second child node.

[0051] The random set of test parameters generated com-
prise a plurality of random values for the function parameter
6 and the threshold values & and t. In order to inject
randomness into the decision trees, the function parameters
0 of each split node are optimized only over a randomly
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sampled subset @ of all possible parameters. This is an
effective and simple way of injecting randomness into the
trees, and increases generalization.

[0052] Then, every combination of test parameter may be
applied 612 to each image element in the set of training
images. In other words, available values for 0 (i.c. 0,£0) are
tried one after the other, in combination with available
values of § and t for each image element in each training
image. For each combination, criteria (also referred to as
objectives) are calculated 614. The combination of param-
eters that optimize the criteria is selected 614 and stored at
the current node for future use.

[0053] In an example the objective is a reduction-in-
variance objective expressed as follows:

52
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[0054] Which may be expressed in words as the reduction
in variance of the training examples at split node n, with
weak learner parameters 6 equal to the variance of all the
training examples which reach that split node minus the sum
of'the variances of the training examples which reach the left
and right child nodes of the split node. The variance may be
calculated as:
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[0055] Which may be expressed in words as, the variance
of a set of training examples S equals the average of the
differences between the scene coordinates m and the mean
of the scene coordinates in S.

[0056] As an alternative to a reduction-in-variance objec-
tive, other criteria can be used, such as logarithm of the
determinant, or the continuous information gain.

[0057] It is then determined 616 whether the value for the
calculated criteria is less than (or greater than) a threshold.
If the value for the calculated criteria is less than the
threshold, then this indicates that further expansion of the
tree does not provide significant benefit. This gives rise to
asymmetrical trees which naturally stop growing when no
further nodes are beneficial. In such cases, the current node
is set 618 as a leaf node. Similarly, the current depth of the
tree is determined (i.e. how many levels of nodes are
between the root node and the current node). If this is greater
than a predefined maximum value, then the current node is
set 618 as a leaf node. Each leaf node has scene coordinate
predictions which accumulate at that leaf node during the
training process as described below.

[0058] It is also possible to use another stopping criterion
in combination with those already mentioned. For example,
to assess the number of example image elements that reach
the leaf. If there are too few examples (compared with a
threshold for example) then the process may be arranged to
stop to avoid overfitting. However, it is not essential to use
this stopping criterion.

[0059] Ifthe value for the calculated criteria is greater than
or equal to the threshold, and the tree depth is less than the
maximum value, then the current node is set 620 as a split
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node. As the current node is a split node, it has child nodes,
and the process then moves to training these child nodes.
Each child node is trained using a subset of the training
image elements at the current node. The subset of image
elements sent to a child node is determined using the
parameters that optimized the criteria. These parameters are
used in the binary test, and the binary test performed 622 on
all image elements at the current node. The image elements
that pass the binary test form a first subset sent to a first child
node, and the image elements that fail the binary test form
a second subset sent to a second child node.

[0060] For each of the child nodes, the process as outlined
in blocks 610 to 622 of FIG. 6 are recursively executed 624
for the subset of image elements directed to the respective
child node. In other words, for each child node, new random
test parameters are generated 610, applied 612 to the respec-
tive subset of image elements, parameters optimizing the
criteria selected 614, and the type of node (split or leaf)
determined 616. If it is a leaf node, then the current branch
of recursion ceases. If it is a split node, binary tests are
performed 622 to determine further subsets of image ele-
ments and another branch of recursion starts. Therefore, this
process recursively moves through the tree, training each
node until leaf nodes are reached at each branch. As leaf
nodes are reached, the process waits 626 until the nodes in
all branches have been trained. Note that, in other examples,
the same functionality can be attained using alternative
techniques to recursion.

[0061] Once all the nodes in the tree have been trained to
determine the parameters for the binary test optimizing the
criteria at each split node, and leaf nodes have been selected
to terminate each branch, then scene coordinates may be
accumulated 628 at the leaf nodes of the tree. This is the
training stage and so particular image elements which reach
a given leaf node have specified scene coordinates known
from the ground truth training data. A representation of the
scene coordinates may be stored 630 using various different
methods. For example by aggregating the scene coordinates
or storing statistics representing the distribution of scene
coordinates.

[0062] In some embodiments a multi-modal distribution is
fitted to the accumulated scene coordinates. Examples of
fitting a multi-model distribution include using expectation
maximization (such as fitting a Gaussian mixture model);
using mean shift mode detection; using any suitable clus-
tering process such as k-means clustering, agglomerative
clustering or other clustering processes. Characteristics of
the clusters or multi-modal distributions are then stored
rather than storing the individual scene coordinates. In some
examples a handful of the samples of the individual scene
coordinates may be stored.

[0063] A weight may also be stored for each cluster or
mode. For example, a mean shift mode detection algorithm
is used and the number of scene coordinates that reached a
particular mode may be used as a weight for that mode.
Mean shift mode detection is an algorithm that efficiently
detects the modes (peaks) in a distribution defined by a
Parzen window density estimator. In another example, the
density as defined by a Parzen window density estimator
may be used as a weight. A Parzen window density estimator
(also known as a kernel density estimator) is a non-para-
metric process for estimating a probability density function,
in this case of the accumulated scene coordinates. A Parzen
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window density estimator takes a bandwidth parameter
which can be thought of as controlling a degree of smooth-
ing.

[0064] In an example a sub-sample of the training image
elements that reach a leaf are taken and input to a mean shift
mode detection process. This clusters the scene coordinates
into a small set of modes. One or more of these modes may
be stored for example, according to the number of examples
assigned to each mode.

[0065] Once the accumulated scene coordinates have been
stored it is determined 632 whether more trees are present in
the decision forest. If so, then the next tree in the decision
forest is selected, and the process repeats. If all the trees in
the forest have been trained, and no others remain, then the
training process is complete and the process terminates 634.
[0066] Therefore, as a result of the training process, one or
more decision trees are trained using empirical training
images. Each tree comprises a plurality of split nodes storing
optimized test parameters, and leaf nodes storing associated
scene coordinates or representations of aggregated scene
coordinates. Due to the random generation of parameters
from a limited subset used at each node, and the possible
subsampled set of training data used in each tree, the trees
of the forest are distinct (i.e. different) from each other.
[0067] The training process may be performed in advance
of using the trained prediction system to identify scene
coordinates for image elements of depth or RGB images of
one or more known scenes. The decision forest and the
optimized test parameters may be stored on a storage device
for use in identifying scene coordinates of image elements at
a later time.

[0068] FIG. 7 illustrates a flowchart of a process for
predicting scene coordinates in a previously unseen image (a
depth image, an RGB image, or a pair of rectified depth and
RGB images) using a decision forest that has been trained as
described with reference to FIG. 6. Firstly, an unseen image
is received 700. An image is referred to as ‘unseen’ to
distinguish it from a training image which has the scene
coordinates already specified.

[0069] An image element from the unseen image is
selected 702. A trained decision tree from the decision forest
is also selected 704. The selected image element is pushed
706 through the selected decision tree, such that it is tested
against the trained parameters at a node, and then passed to
the appropriate child in dependence on the outcome of the
test, and the process repeated until the image element
reaches a leaf node. Once the image element reaches a leaf
node, the accumulated scene coordinates (from the training
stage) associated with this leaf node are stored 708 for this
image element. In an example where the leaf node stores one
or more modes of a distribution of scene coordinates, one or
more of those modes are stored for this image element.
[0070] Ifitis determined 710 that there are more decision
trees in the forest, then a new decision tree is selected 704,
the image element pushed 706 through the tree and the
accumulated scene coordinates stored 708. This is repeated
until it has been performed for all the decision trees in the
forest. The final prediction of the forest for an image element
may be an aggregate of the scene coordinates obtained from
the leaf found at each tree. Where one or more modes of a
distribution of scene coordinates are stored at the leaves, the
final prediction of the forest may be a union of the modes
from the leaf found at each tree. Note that the process for
pushing an image element through the plurality of trees in
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the decision forest can also be performed in parallel, instead
of in sequence as shown in FIG. 7.

[0071] It is then determined 712 whether further unana-
lyzed image elements are to be assessed, and if so another
image element is selected and the process repeated. The
camera pose inference engine may be arranged to determine
whether further unanalyzed image clements are to be
assessed as described below with reference to FIG. 8.
[0072] FIG. 8 is a flow diagram of a method at a camera
pose inference engine of using scene-coordinate-image ele-
ment pairs to infer camera pose. As mentioned above the
camera pose inference engine may use an energy optimiza-
tion approach to find a camera pose which is a good fit to a
plurality of image element—scene coordinate pairs pre-
dicted by the scene coordinate decision forest. In the case
that depth images, or both depth and RGB images are used,
an example energy function may be:

E(H) = Zp(rgeuﬁ b - Hx;||2] = et
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[0073] Where i €1is an image element index; p is a robust
error function; m € M, represents the set of modes (3D
locations in the scene’s world space) predicted by the trees
in the forest at image element p,; and x; are the 3D coordi-
nates in camera space corresponding to pixel p, which may
be obtained by back-projecting the depth image elements.
The energy function may be considered as counting the
number of outliers for a given camera hypothesis H. The
above notation uses homogeneous 3D coordinates.

[0074] Inthe case that RGB images are used without depth
images the energy function may be modified by

E(H) = Zp(&uﬁ (K m = ppl, = ) eiH)
il ' et

[0075] where p is a robust error function, w projects from
3D to 2D image coordinates, K is a matrix that encodes the
camera intrinsic parameters, and p, is the 2D image element
coordinate.

[0076] Note that E, p and e; may be separated out with
different superscripts such as rgb/depth in the above equa-
tions.

[0077] Inorder to optimize the energy function an iterative
process may be used to search for good camera pose
candidates amongst a set of possible camera pose candi-
dates. Samples of image element—scene coordinate pairs
are taken and used to assess the camera pose candidates. The
camera pose candidates may be refined or updated using a
subset of the image element-scene coordinate pairs. By
using samples of image element-scene coordinate pairs
rather than each image element-scene coordinate pair from
an image computation time is reduced without loss of
accuracy.

[0078] An example iterative process which may be used at
the camera pose inference engine is now described with
reference to FIG. 8. A set of initial camera pose candidates
or hypotheses is generated 800 by, for each camera pose
candidate, selecting 802 three image elements from the input
image (which may be a depth image, an RGB image or a pair

Oct. 4, 2018

of rectified depth and RGB images). The selection may be
random or may take into account noise or missing values in
the input image. It is also possible to pick pairs where the
scene coordinate is more certain where certainty information
is available from the forest. In some examples a minimum
distance separation between the image elements may be
enforced in order to improve accuracy. Each image element
is pushed through the trained scene coordinate decision
forest to obtain three scene coordinates. The three image
element-scene coordinate pairs are used to compute 804 a
camera pose using any suitable method such as the Kabsch
algorithm also known as orthogonal Procrustes alignment
which uses a singular value decomposition to compute the
camera pose hypothesis. In some examples the set of initial
camera pose candidates may include 820 one or more
camera poses of previous frames where a stream of images
is available. It may also include a camera pose predicted
from knowledge of the camera’s path.

[0079] For each camera pose hypothesis some inliers or
outliers are computed 806. Inliers and outliers are image
element-scene coordinate pairs which are classified as either
being consistent with a camera pose hypothesis or not. To
compute inliers and outliers a batch B of image elements is
sampled 808 from the input image and applied to the trained
forest to obtain scene coordinates. The sampling may be
random or may take into account noise or missing values in
the input image. Fach scene coordinate-image element pair
may be classified 810 as an inlier or an outlier according to
each of the camera pose hypotheses. For example, by
comparing what the forest says the scene coordinate is for
the image element and what the camera pose hypothesis says
the scene coordinate is for the image element.

[0080] Optionally, one or more of the camera pose hypoth-
eses may be discarded 812 on the basis of the relative
number of inliers (or outliers) associated with each hypoth-
esis, or on the basis of a rank ordering by outlier count with
the other hypotheses. In various examples the ranking or
selecting hypotheses may be achieved by counting how
many outliers each camera pose hypothesis has. Camera
pose hypotheses with fewer outliers have a higher energy
according to the energy function above.

[0081] Optionally, the remaining camera pose hypotheses
may be refined 814 by using the inliers associated with each
camera pose to recompute that camera pose (using the
Kabsch algorithm mentioned above). For efficiency the
process may store and update the means and covariance
matrices used by the singular value decomposition.

[0082] The process may repeat 816 by sampling another
batch B of image elements and so on until one or a specified
number of camera poses remains or according to other
criteria (such as the number of iterations).

[0083] The camera pose inference engine is able to pro-
duce an accurate camera pose estimate at interactive rates.
This is achieved without an explicit 3D model of the scene
having to be computed. A 3D model of the scene can be
thought of as implicitly encoded in the trained random
decision forest. Because the forest has been trained to work
at any valid image element it is possible to sample image
elements at test time. The sampling avoids the need to
compute interest points and the expense of densely evalu-
ation the forest.

[0084] FIG. 9 is a schematic diagram of the camera pose
tracker of FIG. 1 where a 3D model 902 of the scene is
available. For example the 3D model may be a CAD model
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or may be a dense reconstruction of the scene built up from
depth images of the scene as described in US patent appli-
cation “Three-dimensional environment reconstruction”
Newcombe, Richard et al. published on Aug. 2, 2012
US20120194516. A pose refinement process 900 may be
carried out to improve the accuracy of the camera pose 120.
The pose refinement process 900 may be an iterative closest
point pose refinement as described in US patent application
“Real-time camera tracking using depth maps” Newcombe,
Richard et al. published on Aug. 2, 2012 US20120196679.
In another example the pose refinement process 900 may
seek to align depth observations from the mobile camera
with surfaces of the 3D model of the scene in order to find
an updated position and orientation of the camera which
facilitates the alignment. This is described in U.S. patent
application Ser. No. 13/749,497 filed on 24 Jan. 2013
entitled “Camera pose estimation for 3D reconstruction”
Sharp et al.

[0085] The example shown in FIG. 9 has a camera pose
tracker with one trained random decision forest rather than
a plurality of trained random decision forests as in FIG. 1.
This is intended to illustrate that a single forest may encap-
sulate a plurality of scenes by training the single forest using
training data from those scenes. The training data comprises
scene coordinates for image elements and also labels for
image elements which identify a particular scene. Each
sub-scene may be given a 3D sub-region of the full 3D world
coordinate space and the forest may then be trained as
described above. The camera pose tracker output may com-
prise an estimated camera pose and a scene so that the
camera pose tracker is also able to carry out scene recog-
nition. This enables the camera pose tracker to send data to
a downstream system identifying which of a plurality of
possible scenes the camera is in.

[0086] FIG. 10 illustrates various components of an exem-
plary computing-based device 1004 which may be imple-
mented as any form of'a computing and/or electronic device,
and in which embodiments of a camera pose tracker or
object pose tracker may be implemented.

[0087] The computing-based device 1004 comprises one
or more input interfaces 1002 arranged to receive and
process input from one or more devices, such as user input
devices (e.g. capture device 1008, a game controller 1005, a
keyboard 1006, a mouse 1007). This user input may be used
to control software applications, camera pose tracking or
object pose tracking. For example, capture device 1008 may
be a mobile depth camera arranged to capture depth maps of
a scene. It may also be a fixed depth camera arranged to
capture depth maps of an object. In another example, capture
device 1008 comprises both a depth camera and an RGB
camera. The computing-based device 1004 may be arranged
to provide camera or object pose tracking at interactive rates.
[0088] The computing-based device 1004 also comprises
an output interface 1010 arranged to output display infor-
mation to a display device 1009 which can be separate from
or integral to the computing device 1004. The display
information may provide a graphical user interface. In an
example, the display device 1009 may also act as the user
input device if it is a touch sensitive display device. The
output interface 1010 may also output date to devices other
than the display device, e.g. a locally connected printing
device.

[0089] In some examples the user input devices 1005,
1007, 1008, 1009 may detect voice input, user gestures or
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other user actions and may provide a natural user interface
(NUI). This user input may be used to control a game or
other application. The output interface 1010 may also output
data to devices other than the display device, e.g. a locally
connected printing device.

[0090] The input interface 1002, output interface 1010,
display device 1009 and optionally the user input devices
1005, 1007, 1008, 1009 may comprise NUI technology
which enables a user to interact with the computing-based
device in a natural manner, free from artificial constraints
imposed by input devices such as mice, keyboards, remote
controls and the like. Examples of NUI technology that may
be provided include but are not limited to those relying on
voice and/or speech recognition, touch and/or stylus recog-
nition (touch sensitive displays), gesture recognition both on
screen and adjacent to the screen, air gestures, head and eye
tracking, voice and speech, vision, touch, gestures, and
machine intelligence. Other examples of NUI technology
that may be used include intention and goal understanding
systems, motion gesture detection systems using depth cam-
eras (such as stereoscopic camera systems, infrared camera
systems, rgb camera systems and combinations of these),
motion gesture detection using accelerometers/gyroscopes,
facial recognition, 3D displays, head, eye and gaze tracking,
immersive augmented reality and virtual reality systems and
technologies for sensing brain activity using electric field
sensing electrodes (EEG and related methods).

[0091] Computer executable instructions may be provided
using any computer-readable media that is accessible by
computing based device 1004. Computer-readable media
may include, for example, computer storage media such as
memory 1012 and communications media. Computer stor-
age media, such as memory 1012, includes volatile and
non-volatile, removable and non-removable media imple-
mented in any method or technology for storage of infor-
mation such as computer readable instructions, data struc-
tures, program modules or other data. Computer storage
media includes, but is not limited to, RAM, ROM, EPROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other non-transmis-
sion medium that can be used to store information for access
by a computing device.

[0092] In contrast, communication media may embody
computer readable instructions, data structures, program
modules, or other data in a modulated data signal, such as a
carrier wave, or other transport mechanism. As defined
herein, computer storage media does not include communi-
cation media. Therefore, a computer storage medium should
not be interpreted to be a propagating signal per se. Propa-
gated signals may be present in a computer storage media,
but propagated signals per se are not examples of computer
storage media. Although the computer storage media
(memory 1012) is shown within the computing-based device
1004 it will be appreciated that the storage may be distrib-
uted or located remotely and accessed via a network or other
communication link (e.g. using communication interface
1013).

[0093] Computing-based device 1004 also comprises one
or more processors 1000 which may be microprocessors,
controllers or any other suitable type of processors for
processing computing executable instructions to control the
operation of the device in order to provide real-time camera
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tracking. In some examples, for example where a system on
a chip architecture is used, the processors 1000 may include
one or more fixed function blocks (also referred to as
accelerators) which implement a part of the method of
real-time camera tracking in hardware (rather than software
or firmware).

[0094] Platform software comprising an operating system
1014 or any other suitable platform software may be pro-
vided at the computing-based device to enable application
software 1016 to be executed on the device. Other software
than may be executed on the computing device 1004 com-
prises: camera/object pose tracker 1018 which comprises a
pose inference engine. A trained support vector machine
regression system may also be provided and/or a trained
Gaussian process regression system. A data store 1020 is
provided to store data such as previously received images,
camera pose estimates, object pose estimates, trained ran-
dom decision forests registration parameters, user configu-
rable parameters, other parameters, 3D models of scenes,
game state information, game metadata, map data and other
data.

[0095] The term ‘computer’ or ‘computing-based device’
is used herein to refer to any device with processing capa-
bility such that it can execute instructions. Those skilled in
the art will realize that such processing capabilities are
incorporated into many different devices and therefore the
terms ‘computer’ and ‘computing-based device’ each
include PCs, servers, mobile telephones (including smart
phones), tablet computers, set-top boxes, media players,
games consoles, personal digital assistants and many other
devices.

[0096] The methods described herein may be performed
by software in machine readable form on a tangible storage
medium e.g. in the form of a computer program comprising
computer program code means adapted to perform all the
steps of any of the methods described herein when the
program is run on a computer and where the computer
program may be embodied on a computer readable medium.
Examples of tangible storage media include computer stor-
age devices comprising computer-readable media such as
disks, thumb drives, memory etc. and do not include propa-
gated signals. Propagated signals may be present in a
tangible storage media, but propagated signals per se are not
examples of tangible storage media. The software can be
suitable for execution on a parallel processor or a serial
processor such that the method steps may be carried out in
any suitable order, or simultaneously.

[0097] This acknowledges that software can be a valuable,
separately tradable commodity. It is intended to encompass
software, which runs on or controls “dumb” or standard
hardware, to carry out the desired functions. It is also
intended to encompass software which “describes” or
defines the configuration of hardware, such as HDL (hard-
ware description language) software, as is used for designing
silicon chips, or for configuring universal programmable
chips, to carry out desired functions.

[0098] Those skilled in the art will realize that storage
devices utilized to store program instructions can be distrib-
uted across a network. For example, a remote computer may
store an example of the process described as software. A
local or terminal computer may access the remote computer
and download a part or all of the software to run the
program. Alternatively, the local computer may download
pieces of the software as needed, or execute some software
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instructions at the local terminal and some at the remote
computer (or computer network). Those skilled in the art
will also realize that by utilizing conventional techniques
known to those skilled in the art that all, or a portion of the
software instructions may be carried out by a dedicated
circuit, such as a DSP, programmable logic array, or the like.
[0099] Any range or device value given herein may be
extended or altered without losing the effect sought, as will
be apparent to the skilled person.
[0100] Although the subject matter has been described in
language specific to structural features and/or methodologi-
cal acts, it is to be understood that the subject matter defined
in the appended claims is not necessarily limited to the
specific features or acts described above. Rather, the specific
features and acts described above are disclosed as example
forms of implementing the claims.
[0101] It will be understood that the benefits and advan-
tages described above may relate to one embodiment or may
relate to several embodiments. The embodiments are not
limited to those that solve any or all of the stated problems
or those that have any or all of the stated benefits and
advantages. It will further be understood that reference to
‘an’ item refers to one or more of those items.
[0102] The steps of the methods described herein may be
carried out in any suitable order, or simultaneously where
appropriate. Additionally, individual blocks may be deleted
from any of the methods without departing from the spirit
and scope of the subject matter described herein. Aspects of
any of the examples described above may be combined with
aspects of any of the other examples described to form
further examples without losing the effect sought.
[0103] The term ‘comprising’ is used herein to mean
including the method blocks or elements identified, but that
such blocks or elements do not comprise an exclusive list
and a method or apparatus may contain additional blocks or
elements.
[0104] It will be understood that the above description is
given by way of example only and that various modifica-
tions may be made by those skilled in the art. The above
specification, examples and data provide a complete descrip-
tion of the structure and use of exemplary embodiments.
Although various embodiments have been described above
with a certain degree of particularity, or with reference to
one or more individual embodiments, those skilled in the art
could make numerous alterations to the disclosed embodi-
ments without departing from the spirit or scope of this
specification.
1. A method of calculating pose of an entity comprising:
receiving, at a processor, at least one image where the
image is either: of the entity and captured by a fixed
camera, or of a scene captured by a mobile camera in
the scene;
applying image elements of the at least one image to a
trained machine learning system to obtain a plurality of
associations between image elements and points in
either entity coordinates or scene coordinates; and
calculating the pose of the entity from the associations.
2. A method as claimed in claim 1 where the entity is a
mobile camera and the pose of the camera is calculated.
3. A method as claimed in claim 1 where the entity is an
object and the pose of the object is calculated using the at
least one image captured by a fixed camera.
4. A method as claimed in claim 1 comprising calculating
the pose of the entity as parameters having six degrees of
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freedom, three indicating rotation of the entity and three
indicating position of the entity.

5. A method as claimed in claim 1, the machine learning
system having been trained using images with image ele-
ments labeled either with scene coordinates or object coor-
dinates.

6. A method as claimed in claim 1 where the machine
learning system is a random decision forest.

7. A method as claimed in claim 1 where the machine
learning system comprises a plurality of trained random
forests and the method comprises applying the image ele-
ments of the at least one image to the plurality of trained
random forests, each random forest having been trained
using images from a different one of a plurality of scenes,
and calculating which of the scenes the mobile camera was
in when the at least one image was captured.

8. A method as claimed in claim 1 the machine learning
system having been trained using images of a plurality of
scenes with image elements labeled with scene identifiers
and labeled with scene coordinates of points in the scene the
image elements depict.

9. A method as claimed in claim 1 comprising applying
only a subsample of the image elements of the at least one
image to the trained machine learning system.

10. A method as claimed in claim 1 comprising calculat-
ing the pose by searching amongst a set of possible pose
candidates and using samples of associations between image
elements and points to assess the pose candidates.

11. A method as claimed in claim 1 comprising receiving
at the processor, a stream of images, and calculating the pose
by searching amongst a set of possible pose candidates
which includes a pose calculated from another image in the
stream.

12. A method as claimed in claim 1 at least partially
carried out using hardware logic selected from any one or
more of: a field-programmable gate array, a program-spe-
cific integrated circuit, a program-specific standard product,
a system-on-a-chip, a complex programmable logic device,
a graphics processing unit.

13. A method as claimed in claim 1 where the entity is a
mobile camera and the pose of the camera is calculated, the
method comprising accessing a 3D model of the scene and
refining the camera pose using the accessed 3D model.

14. A method comprising:

receiving, at a processor, a plurality of images, each image
having a plurality of image elements labeled with
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coordinates of points either in a scene the image
elements depict or of an object the image elements
depict;

training a machine learning system using the received
plurality of images such that when an image element
from another image is applied to the machine learning
system, an estimate of a coordinate of a point the image
element depicts is produced.

15. A method as claimed in claim 14 comprising receiving

a plurality of images of sub-scenes, each having a plurality
of' image elements labeled with scene coordinates in a space
in which the sub-scenes are embedded; and training the
machine learning system using the received plurality of
images of sub-scenes.

16. A pose tracker comprising:

a processor arranged to receive at least one image either
of an object captured by a fixed camera, or of a scene
captured by a mobile camera;

the processor arranged to apply image elements of the at
least one image to a trained machine learning system to
obtain a plurality of associations between image ele-
ments and points in either object coordinates or scene
coordinates; and

a pose inference engine arranged to calculate a position
and orientation of either the object or the mobile
camera from the associations.

17. A pose tracker as claimed in claim 16 the processor
arranged to apply only a subsample of the image elements of
the at least one image to the trained machine learning
system.

18. A pose tracker as claimed in claim 16 the pose
inference engine arranged to calculate the pose by searching
amongst a set of possible pose candidates and using samples
of associations between image elements and points in either
object coordinates or scene coordinates to assess the pose
candidates.

19. A pose tracker as claimed in claim 16 the processor
arranged to receive a stream of images, and comprising a
pose inference engine arranged to calculate the pose by
searching amongst a set of possible pose candidates which
includes a pose calculated from another image in the stream.

20. A pose tracker as claimed in claim 16 at least partially
implemented using hardware logic selected from any one or
more of: a field-programmable gate array, a program-spe-
cific integrated circuit, a program-specific standard product,
a system-on-a-chip, a complex programmable logic device,
a graphics processing unit.
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