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REFERENCE TO PRIORITY APPLICATIONS 
[ 0001 ] This application claims the benefit of U . S . Provi 
sional Application No . 62 / 481 , 492 , filed Apr . 4 , 2017 , 
entitled “ Multi - Layer Artificial Neural Network Computa 
tion Engine and Microarchitecture , ” and U . S . Provisional 
Application No . 62 / 531 , 372 , filed Jul . 12 , 2017 , entitled 
“ Multi - Layer Artificial Neural Network Computation 
Engine and Microarchitecture , " both of which are incorpo 
rated herein by reference in their entirety . 

FIELD OF THE DISCLOSURE 
10002 ] The subject matter disclosed herein relates to the 
field of neural networks and more particularly relates to a 
system and method of data driven quantization optimization 
of weights and input data in an artificial neural network 
( ANN ) . 

BACKGROUND OF THE INVENTION 
[ 0003 ] Artificial neural networks ( ANNs ) are computing 
systems inspired by the biological neural networks that 
constitute animal brains . Such systems learn , i . e . progres 
sively improve performance , to do tasks by considering 
examples , generally without task - specific programming . For 
example , in image recognition , they might learn to identify 
images that contain cats by analyzing example images that 
have been manually labeled as " cat ” or “ not cat ” and using 
the analytic results to identify cats in other images . They 
have found most use in applications difficult to express in a 
traditional computer algorithm using rule - based program 
ming . 
[ 0004 ] An ANN is based on a collection of connected units 
called artificial neurons , analogous to axons in a biological 
brain . Each connection or synapse between neurons can 
transmit a signal to another neuron . The receiving or post 
synaptic neuron can process the signals and then signal 
downstream neurons connected to it . Neurons may have 
state , generally represented by real numbers , typically 
between 0 and 1 . Neurons and synapses may also have a 
weight that varies as learning proceeds , which can increase 
or decrease the strength of the signal that it sends down 
stream . Further , they may have a threshold such that only if 
the aggregate signal is below or above that level is the 
downstream signal sent . 
[ 0005 ] Typically , neurons are organized in layers . Differ 
ent layers may perform different kinds of transformations on 
their inputs . Signals travel from the first , i . e . input , to the 
last , i . e . output , layer , possibly after traversing the layers 
multiple times . 
[ 0006 ] The original goal of the neural network approach 
was to solve problems in the same way that a human brain 
would . Over time , attention focused on matching specific 
mental abilities , leading to deviations from biology such as 
backpropagation , or passing information in the reverse 
direction and adjusting the network to reflect that informa 
tion . 
[ 0007 ] The components of an artificial neural network 
include ( 1 ) neurons having an activation threshold ; ( 2 ) 
connections and weights for transferring the output of a 

neuron ; ( 3 ) a propagation function to compute the input to 
a neuron from the output of predecessor neurons ; and ( 4 ) a 
learning rule which is an algorithm that modifies the param 
eters of the neural network in order for a given input to 
produce a desired outcome which typically amounts to 
modifying the weights and thresholds . 
[ 0008 ] Given a specific task to solve , and a class of 
functions F , learning entails using a set of observations to 
find the function that which solves the task in some optimal 
sense . A cost function C is defined such that , for the optimal 
solution no other solution has a cost less than the cost of the 
optimal solution ) . 
[ 0009 ] The cost function C is a measure of how far away 
a particular solution is from an optimal solution to the 
problem to be solved . Learning algorithms search through 
the solution space to find a function that has the smallest 
possible cost . 
[ 0010 ] A neural network can be trained using backpropa 
gation which is a method to calculate the gradient of the loss 
function with respect to the weights in an ANN . The weight 
updates of backpropagation can be done via well - known 
stochastic gradient descent techniques . Note that the choice 
of the cost function depends on factors such as the learning 
type ( e . g . , supervised , unsupervised , reinforcement ) and the 
activation function . 
[ 0011 ] There are three major learning paradigms and each 
corresponds to a particular learning task : supervised learn 
ing , unsupervised learning , and reinforcement learning . 
Supervised learning uses a set of example pairs and the goal 
is to find a function in the allowed class of functions that 
matches the examples . A commonly used cost is the mean 
squared error , which tries to minimize the average squared 
error between the network ' s output and the target value over 
all example pairs . Minimizing this cost using gradient 
descent for the class of neural networks called multilayer 
perceptrons ( MLP ) , produces the backpropagation algo 
rithm for training neural networks . Examples of supervised 
learning include pattern recognition , i . e . classification , and 
regression , i . e . function approximation . 
[ 0012 ] In unsupervised learning , some data is given and 
the cost function to be minimized , that can be any function 
of the data and the network ' s output . The cost function is 
dependent on the task ( i . e . the model domain ) and any a 
priori assumptions ( i . e . the implicit properties of the model , 
its parameters , and the observed variables ) . Tasks that fall 
within the paradigm of unsupervised learning are in general 
estimation problems ; the applications include clustering , the 
estimation of statistical distributions , compression , and fil 
tering . 
[ 0013 ] In reinforcement learning , data is usually not pro 
vided , but generated by an agent ' s interactions with the 
environment . At each point in time , the agent performs an 
action and the environment generates an observation and an 
instantaneous cost according to some typically unknown 
dynamics . The aim is to discover a policy for selecting 
actions that minimizes some measure of a long - term cost , 
e . g . , the expected cumulative cost . The environment ' s 
dynamics and the long - term cost for each policy are usually 
unknown , but can be estimated . 
[ 00141 . Today , a common application for neural networks 
is in the analysis of video streams , i . e . machine vision . 
Examples include industrial factories where machine vision 
is used on the assembly line in the manufacture of goods , 
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autonomous vehicles where machine vision is used to detect 
objects in the path of and surrounding the vehicle , etc . 
[ 0015 ] Artificial Neural Network ( ANN ) have an inherent 
structure that greatly relies on a set of parameters that are 
attributed to the so - called ' network model ' . These param 
eters are often called ' weights ' of the network due to their 
tendency to operate as a scaling factor for other intermediate 
values as they propagate along the network . The process for 
determining the values of the weights is called training as 
described supra . Once training is complete , the network 
settles into a steady state and can now be used with new ( i . e . 
unknown ) data to extract information . This stage is referred 
to as the “ inference ' stage . 
[ 0016 ] During inference , one can observe the resultant set 
of parameters , namely the weights , and manipulate them to 
yield better performance ( i . e . representation ) . Methods for 
pruning and quantizing weights are known . These methods , 
however , are applied only on the trained model before 
moving to the inference stage . This approach does yield 
better execution performance . It does not , however , fully 
explore and exploit the potential of modifying the weights . 
In addition , existing solutions apply quantization of weights 
only after training once the weights of the ANN have 
converged to a satisfactory level . 

neural network , based on the observed distribution of the 
input data , determining whether to quantize weights , input 
data , or both weights and input data within the one or more 
layers , and applying quantization to the weights , input data , 
or both the weights and input data within the one or more 
layers . 
[ 0021 ] There is further provided in accordance with the 
invention , a method of optimizing quantization in an artifi 
cial neural network ( ANN ) , comprising determining a dis 
tribution of input data in a layer of the artificial neural 
network , and based on the observed distribution of the input 
data , dynamically determining and applying quantization to 
weights within the layer . 
[ 0022 ] This , additional , and / or other aspects and / or advan 
tages of the embodiments of the present invention are set 
forth in the detailed description which follows ; possibly 
inferable from the detailed description ; and / or learnable by 
practice of the embodiments of the present invention . 

SUMMARY OF THE INVENTION 
[ 0017 ] The present invention is a system and method of 
data driven quantization optimization of weights and input 
data in an artificial neural network ( ANN ) . The system 
reduces quantization implications ( i . e . error ) in a limited 
resource system by employing the information available in 
the data actually observed by the system . Data counters in 
the layers of the network observe the data input thereto . The 
distribution of the data is used to determine an optimum 
quantization scheme to apply to the weights , input data , or 
both . The mechanism is sensitive to the data observed at the 
input layer of the network . As a result , the network auto 
tunes to optimize the instance specific representation of the 
network . The network becomes customized ( i . e . specialized ) 
to the inputs it observes and better fits itself to the subset of 
the sample space that is applicable to its actual data flow . As 
a result , nominal process noise is reduced and detection 
accuracy improves . In addition , the mechanism enables the 
reduction of the representation space and further reduces the 
memory ( and energy thereof ) needed to represent the net 
work properties . The system operates at the core of resource 
constrained ANN devices . When transferring weights from 
a trained network to the device , the quantization scheme of 
the present invention aids in preserving accuracy while 
meeting available device resources . 
[ 0018 ] Note that throughout this document , the term dis 
tribution is meant to refer to a histogram or any other 
statistical measure of data arrangement or disposition . 
[ 0019 ] There is thus provided in accordance with the 
invention , a method of optimizing quantization in an artifi 
cial neural network ( ANN ) , comprising observing data in at 
least one layer in the artificial neural network during infer 
ence mode of operation thereof , based on the observation , 
determining a quantization level to apply , and applying the 
quantization level to the at least one layer . 
[ 0020 ] There is also provided in accordance with the 
invention , a method of optimizing quantization in an artifi 
cial neural network ( ANN ) , comprising determining a dis 
tribution of input data in one or more layers in the artificial 

BRIEF DESCRIPTION OF THE DRAWINGS 
[ 0023 ] The present invention is explained in further detail 
in the following exemplary embodiments and with reference 
to the figures , where identical or similar elements may be 
partly indicated by the same or similar reference numerals , 
and the features of various exemplary embodiments being 
combinable . The invention is herein described , by way of 
example only , with reference to the accompanying drawings , 
wherein : 
[ 0024 ] FIG . 1 is a block diagram illustrating an example 
computer processing system adapted to implement one or 
more portions of the present invention ; 
[ 0025 ] FIG . 2 is a diagram illustrating an example artifi 
cial neural network ( ANN ) ; 
[ 0026 ] FIG . 3 is a diagram illustrating a first example 
distribution of input data ; 
[ 0027 ] FIGS . 4A , 4B , 4C , 4D , and 4E are diagrams 
illustrating a second example distribution of input data ; 
[ 0028 ] FIG . 5 is a diagram illustrating a third example 
distribution of input data ; 
[ 0029 ] FIG . 6 is a diagram illustrating a neuron incorpo 
rating a plurality of data counters ; 
[ 0030 ] FIG . 7 is a diagram illustrating a first example 
histogram of neuron input data ; 
[ 0031 ] FIG . 8 is a diagram illustrating an example histo 
gram of neuron output data ; 
[ 0032 ] FIG . 9 is a flow diagram illustrating an example 
method of quantization optimization ; 
[ 0033 ] FIG . 10 is a flow diagram illustrating an example 
method of data driven quantization ; 
[ 0034 ] FIG . 11 is a flow diagram illustrating a first 
example quantization scheme ; 
[ 0035 ] FIG . 12 is a diagram illustrating a second example 
histogram of neuron input data ; 
[ 0036 ] FIG . 13 is a diagram illustrating a first example 
quantization ; 
100371 FIG . 14 is a diagram illustrating a second example 
quantization ; 
[ 0038 ] FIG . 15 is a flow diagram illustrating a second 
example quantization scheme ; 
[ 0039 ] FIG . 16 is a diagram illustrating a third example 
quantization ; 
[ 0040 ] FIG . 17 is a diagram illustrating a graph of quan 
tization performance versus time ; and 
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[ 0041 ] FIG . 18 is a block diagram illustrating an example 
integrated circuit device implementing the data driven quan - 
tization optimization mechanism of the present invention . 

DETAILED DESCRIPTION 
[ 0042 ] In the following detailed description , numerous 
specific details are set forth in order to provide a thorough 
understanding of the invention . It will be understood by 
those skilled in the art , however , that the present invention 
may be practiced without these specific details . In other 
instances , well - known methods , procedures , and compo 
nents have not been described in detail so as not to obscure 
the present invention . 
[ 0043 ] Among those benefits and improvements that have 
been disclosed , other objects and advantages of this inven 
tion will become apparent from the following description 
taken in conjunction with the accompanying figures . 
Detailed embodiments of the present invention are disclosed 
herein ; however , it is to be understood that the disclosed 
embodiments are merely illustrative of the invention that 
may be embodied in various forms . In addition , each of the 
examples given in connection with the various embodiments 
of the invention which are intended to be illustrative , and not 
restrictive . 
[ 0044 The subject matter regarded as the invention is 
particularly pointed out and distinctly claimed in the con 
cluding portion of the specification . The invention , however , 
both as to organization and method of operation , together 
with objects , features , and advantages thereof , may best be 
understood by reference to the following detailed descrip 
tion when read with the accompanying drawings . 
0045 ] The figures constitute a part of this specification 
and include illustrative embodiments of the present inven 
tion and illustrate various objects and features thereof . 
Further , the figures are not necessarily to scale , some fea 
tures may be exaggerated to show details of particular 
components . In addition , any measurements , specifications 
and the like shown in the figures are intended to be illus 
trative , and not restrictive . Therefore , specific structural and 
functional details disclosed herein are not to be interpreted 
as limiting , but merely as a representative basis for teaching 
one skilled in the art to variously employ the present 
invention . Further , where considered appropriate , reference 
numerals may be repeated among the figures to indicate 
corresponding or analogous elements . 
[ 0046 ] Because the illustrated embodiments of the present 
invention may for the most part , be implemented using 
electronic components and circuits known to those skilled in 
the art , details will not be explained in any greater extent 
than that considered necessary , for the understanding and 
appreciation of the underlying concepts of the present inven 
tion and in order not to obfuscate or distract from the 
teachings of the present invention . 
[ 0047 ] Any reference in the specification to a method 
should be applied mutatis mutandis to a system capable of 
executing the method . Any reference in the specification to 
a system should be applied mutatis mutandis to a method 
that may be executed by the system . 
[ 0048 ] Throughout the specification and claims , the fol 
lowing terms take the meanings explicitly associated herein , 
unless the context clearly dictates otherwise . The phrases in 
one embodiment , " " in an example embodiment , ” and “ in 
some embodiments ” as used herein do not necessarily refer 
to the same embodiment ( s ) , though it may . Furthermore , the 

phrases “ in another embodiment , ” “ in an alternative 
embodiment , ” and “ in some other embodiments ” as used 
herein do not necessarily refer to a different embodiment , 
although it may . Thus , as described below , various embodi 
ments of the invention may be readily combined , without 
departing from the scope or spirit of the invention . 
[ 0049 ] In addition , as used herein , the term “ or ” is an 
inclusive “ or ” operator , and is equivalent to the term “ and / 
or , " unless the context clearly dictates otherwise . The term 
“ based on ” is not exclusive and allows for being based on 
additional factors not described , unless the context clearly 
dictates otherwise . In addition , throughout the specification , 
the meaning of “ a , " " an , ” and “ the ” include plural refer 
ences . The meaning of “ in ” includes “ in ” and “ on . " 
[ 0050 ] As will be appreciated by one skilled in the art , the 
present invention may be embodied as a system , method , 
computer program product or any combination thereof . 
Accordingly , the present invention may take the form of an 
entirely hardware embodiment , an entirely software embodi 
ment ( including firmware , resident software , micro - code , 
etc . ) or an embodiment combining software and hardware 
aspects that may all generally be referred to herein as a 
" circuit , " " module ” or “ system . ” Furthermore , the present 
invention may take the form of a computer program product 
embodied in any tangible medium of expression having 
computer usable program code embodied in the medium . 
[ 0051 ] The invention may be described in the general 
context of computer - executable instructions , such as pro 
gram modules , being executed by a computer . Generally , 
program modules include routines , programs , objects , com 
ponents , data structures , etc . that perform particular tasks or 
implement particular abstract data types . The invention may 
also be practiced in distributed computing environments 
where tasks are performed by remote processing devices that 
are linked through a communications network . In a distrib 
uted computing environment , program modules may be 
located in both local and remote computer storage media 
including memory storage devices . 
[ 0052 ] Any combination of one or more computer usable 
or computer readable medium ( s ) may be utilized . The com 
puter - usable or computer - readable medium may be , for 
example but not limited to , an electronic , magnetic , optical , 
electromagnetic , infrared , or semiconductor system , appa 
ratus , device , or propagation medium . More specific 
examples ( a non - exhaustive list ) of the computer - readable 
medium would include the following : an electrical connec 
tion having one or more wires , a portable computer diskette , 
a hard disk , a random access memory ( RAM ) , a read - only 
memory ( ROM ) , an erasable programmable read - only 
memory ( EPROM or flash memory ) , an optical fiber , a 
portable compact disc read - only memory ( CDROM ) , an 
optical storage device , a transmission media such as those 
supporting the Internet or an intranet , or a magnetic storage 
device . Note that the computer - usable or computer - readable 
medium could even be paper or another suitable medium 
upon which the program is printed , as the program can be 
electronically captured , via , for instance , optical scanning of 
the paper or other medium , then compiled , interpreted , or 
otherwise processed in a suitable manner , if necessary , and 
then stored in a computer memory . In the context of this 
document , a computer - usable or computer - readable medium 
may be any medium that can contain or store the program for 
use by or in connection with the instruction execution 
system , apparatus , or device . 
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[ 0053 ] Computer program code for carrying out opera 
tions of the present invention may be written in any com - 
bination of one or more programming languages , including 
an object - oriented programming language such as Java , 
Smalltalk , C + + , C # or the like , conventional procedural 
programming languages , such as the “ C ” programming 
language , and functional programming languages such as 
Prolog and Lisp , machine code , assembler or any other 
suitable programming languages . The program code may 
execute entirely on the user ' s computer , partly on the user ' s 
computer , as a stand - alone software package , partly on the 
user ' s computer and partly on a remote computer or entirely 
on the remote computer or server . In the latter scenario , the 
remote computer may be connected to the user ' s computer 
through any type of network using any type of network 
protocol , including for example a local area network ( LAN ) 
or a wide area network ( WAN ) , or the connection may be 
made to an external computer ( for example , through the 
Internet using an Internet Service Provider ) . 
[ 0054 ] The present invention is described below with 
reference to flowchart illustrations and / or block diagrams of 
methods , apparatus ( systems ) and computer program prod 
ucts according to embodiments of the invention . It will be 
understood that each block of the flowchart illustrations 
and / or block diagrams , and combinations of blocks in the 
flowchart illustrations and / or block diagrams , can be imple 
mented or supported by computer program instructions . 
These computer program instructions may be provided to a 
processor of a general - purpose computer , special purpose 
computer , or other programmable data processing apparatus 
to produce a machine , such that the instructions , which 
execute via the processor of the computer or other program 
mable data processing apparatus , create means for imple 
menting the functions / acts specified in the flowchart and / or 
block diagram block or blocks . 
[ 0055 ] These computer program instructions may also be 
stored in a computer - readable medium that can direct a 
computer or other programmable data processing apparatus 
to function in a particular manner , such that the instructions 
stored in the computer - readable medium produce an article 
of manufacture including instruction means which imple 
ment the function / act specified in the flowchart and / or block 
diagram block or blocks . 
[ 0056 ] The computer program instructions may also be 
loaded onto a computer or other programmable data pro 
cessing apparatus to cause a series of operational steps to be 
performed on the computer or other programmable appara 
tus to produce a computer implemented process such that the 
instructions which execute on the computer or other pro 
grammable apparatus provide processes for implementing 
the functions / acts specified in the flowchart and / or block 
diagram block or blocks . 
[ 0057 ] The invention is operational with numerous gen 
eral purpose or special purpose computing system environ 
ments or configurations . Examples of well - known comput 
ing systems , environments , and / or configurations that may 
be suitable for use with the invention include , but are not 
limited to , personal computers , server computers , cloud 
computing , hand - held or laptop devices , multiprocessor 
systems , microprocessor , microcontroller or microcomputer 
based systems , set top boxes , programmable consumer elec 
tronics , ASIC or FPGA core , DSP core , network PCs , 

minicomputers , mainframe computers , distributed comput 
ing environments that include any of the above systems or 
devices , and the like . 
[ 0058 ] In addition , the invention is operational in systems 
incorporating video and still cameras , sensors , etc . such as 
found in automated factories , autonomous vehicles , in 
mobile devices such as tablets and smartphones , smart 
meters installed in the power grid and control systems for 
robot networks . In general , any computation device that can 
host an agent can be used to implement the present inven 
tion . 
[ 0059 ] A block diagram illustrating an example computer 
processing system adapted to implement one or more por 
tions of the present invention is shown in FIG . 1 . The 
exemplary computer processing system , generally refer 
enced 10 , for implementing the invention comprises a gen 
eral - purpose computing device 11 . Computing device 11 
comprises central processing unit ( CPU ) 12 , host / PIC / cache 
bridge 20 and main memory 24 . 
[ 0060 ] The CPU 12 comprises one or more general pur 
pose CPU cores 14 and optionally one or more special 
purpose cores 16 ( e . g . , DSP core , floating point , GPU , and 
neural network optimized core ) . The one or more general 
purpose cores execute general purpose opcodes while the 
special purpose cores execute functions specific to their 
purpose . The CPU 12 is coupled through the CPU local bus 
18 to a host / PCI / cache bridge or chipset 20 . A second level 
( i . e . L2 ) cache memory ( not shown ) may be coupled to a 
cache controller in the chipset . For some processors , the 
external cache may comprise an Ll or first level cache . The 
bridge or chipset 20 couples to main memory 24 via memory 
bus 20 . The main memory comprises dynamic random 
access memory ( DRAM ) or extended data out ( EDO ) 
memory , or other types of memory such as ROM , static 
RAM , flash , and non - volatile static random access memory 
( NVSRAM ) , bubble memory , etc . 
[ 0061 ] The computing device 11 also comprises various 
system components coupled to the CPU via system bus 26 
( e . g . , PCI ) . The host / PCI / cache bridge or chipset 20 inter 
faces to the system bus 26 , such as peripheral component 
interconnect ( PCI ) bus . The system bus 26 may comprise 
any of several types of well - known bus structures using any 
of a variety of bus architectures . Example architectures 
include Industry Standard Architecture ( ISA ) bus , Micro 
Channel Architecture ( MCA ) bus , Enhanced ISA ( EISA ) 
bus , Video Electronics Standards Associate ( VESA ) local 
bus and Peripheral Component Interconnect ( PCI ) also 
known as Mezzanine bus . 
[ 0062 ] Various components connected to the system bus 
include , but are not limited to , non - volatile memory ( e . g . , 
disk based data storage ) 28 , video / graphics adapter 30 
connected to display 32 , user input interface ( I / F ) controller 
31 connected to one or more input devices such mouse 34 , 
tablet 35 , microphone 36 , keyboard 38 and modem 40 , 
network interface controller 42 , peripheral interface control 
ler 52 connected to one or more external peripherals such as 
printer 54 and speakers 56 . The network interface controller 
42 is coupled to one or more devices , such as data storage 
46 , remote computer 48 running one or more remote appli 
cations 50 , via a network 44 which may comprise the 
Internet cloud , a local area network ( LAN ) , wide area 
network ( WAN ) , storage area network ( SAN ) , etc . A small 
computer systems interface ( SCSI ) adapter ( not shown ) may 
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also be coupled to the system bus . The SCSI adapter can 
couple to various SCSI devices such as a CD - ROM drive , 
tape drive , etc . 
[ 0063 ] The non - volatile memory 28 may include various 
removable / non - removable , volatile / nonvolatile computer 
storage media , such as hard disk drives that reads from or 
writes to non - removable , nonvolatile magnetic media , a 
magnetic disk drive that reads from or writes to a removable , 
nonvolatile magnetic disk , an optical disk drive that reads 
from or writes to a removable , nonvolatile optical disk such 
as a CD ROM or other optical media . Other removable / non 
removable , volatile / nonvolatile computer storage media that 
can be used in the exemplary operating environment 
include , but are not limited to , magnetic tape cassettes , flash 
memory cards , digital versatile disks , digital video tape , 
solid state RAM , solid state ROM , and the like . 
[ 0064 ] A user may enter commands and information into 
the computer through input devices connected to the user 
input interface 31 . Examples of input devices include a 
keyboard and pointing device , mouse , trackball or touch 
pad . Other input devices may include a microphone , joy 
stick , game pad , satellite dish , scanner , etc . 
[ 0065 ] The computer 11 may operate in a networked 
environment via connections to one or more remote com 
puters , such as a remote computer 48 . The remote computer 
may comprise a personal computer ( PC ) , server , router , 
network PC , peer device or other common network node , 
and typically includes many or all of the elements described 
supra . Such networking environments are commonplace in 
offices , enterprise - wide computer networks , intranets and 
the Internet . 
10066 . When used in a LAN networking environment , the 
computer 11 is connected to the LAN 44 via network 
interface 42 . When used in a WAN networking environment , 
the computer 11 includes a modem 40 or other means for 
establishing communications over the WAN , such as the 
Internet . The modem 40 , which may be internal or external , 
is connected to the system bus 26 via user input interface 31 , 
or other appropriate mechanism . 
10067 ] The computing system environment , generally ref 
erenced 10 , is an example of a suitable computing environ 
ment and is not intended to suggest any limitation as to the 
scope of use or functionality of the invention . Neither should 
the computing environment be interpreted as having any 
dependency or requirement relating to any one or combina 
tion of components illustrated in the exemplary operating 
environment . 
[ 0068 ] In one embodiment , the software adapted to imple 
ment the system and methods of the present invention can 
also reside in the cloud . Cloud computing provides compu 
tation , software , data access and storage services that do not 
require end - user knowledge of the physical location and 
configuration of the system that delivers the services . Cloud 
computing encompasses any subscription - based or pay - per 
use service and typically involves provisioning of dynami 
cally scalable and often virtualized resources . Cloud com 
puting providers deliver applications via the internet , which 
can be accessed from a web browser , while the business 
software and data are stored on servers at a remote location . 
[ 0069 ] In another embodiment , software adapted to imple 
ment the system and methods of the present invention is 
adapted to reside on a computer readable medium . Com 
puter readable media can be any available media that can be 
accessed by the computer and capable of storing for later 

reading by a computer a computer program implementing 
the method of this invention . Computer readable media 
includes both volatile and nonvolatile media , removable and 
non - removable media . By way of example , and not limita 
tion , computer readable media may comprise computer 
storage media and communication media . Computer storage 
media includes volatile and nonvolatile , removable and 
non - removable media implemented in any method or tech 
nology for storage of information such as computer readable 
instructions , data structures , program modules or other data . 
Computer storage media includes , but is not limited to , 
RAM , ROM , EEPROM , flash memory or other memory 
technology , CD - ROM , digital versatile disks ( DVD ) or other 
optical disk storage , magnetic cassettes , magnetic tape , 
magnetic disk storage or other magnetic storage devices , or 
any other medium which can be used to store the desired 
information and which can be accessed by a computer . 
Communication media typically embodies computer read 
able instructions , data structures , program modules or other 
data such as a magnetic disk within a disk drive unit . The 
software adapted to implement the system and methods of 
the present invention may also reside , in whole or in part , in 
the static or dynamic main memories or in firmware within 
the processor of the computer system ( i . e . within microcon 
troller , microprocessor or microcomputer internal memory ) . 
[ 0070 ) Other digital computer system configurations can 
also be employed to implement the system and methods of 
the present invention , and to the extent that a particular 
system configuration is capable of implementing the system 
and methods of this invention , it is equivalent to the repre 
sentative digital computer system of FIG . 1 and within the 
spirit and scope of this invention . 
10071 ] Once they are programmed to perform particular 
functions pursuant to instructions from program software 
that implements the system and methods of this invention , 
such digital computer systems in effect become special 
purpose computers particular to the method of this inven 
tion . The techniques necessary for this are well - known to 
those skilled in the art of computer systems . 
10072 ] It is noted that computer programs implementing 
the system and methods of this invention will commonly be 
distributed to users on a distribution medium such as floppy 
disk , CDROM , DVD , flash memory , portable hard disk 
drive , etc . From there , they will often be copied to a hard 
disk or a similar intermediate storage medium . When the 
programs are to be run , they will be loaded either from their 
distribution medium or their intermediate storage medium 
into the execution memory of the computer , configuring the 
computer to act in accordance with the method of this 
invention . All these operations are well - known to those 
skilled in the art of computer systems . 
[ 0073 ] The flowchart and block diagrams in the figures 
illustrate the architecture , functionality , and operation of 
possible implementations of systems , methods and computer 
program products according to various embodiments of the 
present invention . In this regard , each block in the flowchart 
or block diagrams may represent a module , segment , or 
portion of code , which comprises one or more executable 
instructions for implementing the specified logical function 
( s ) . It should also be noted that , in some alternative imple 
mentations , the functions noted in the block may occur out 
of the order noted in the figures . For example , two blocks 
shown in succession may , in fact , be executed substantially 
concurrently , or the blocks may sometimes be executed in 
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the reverse order , depending upon the functionality 
involved . It will also be noted that each block of the block 
diagrams and / or flowchart illustration , and combinations of 
blocks in the block diagrams and / or flowchart illustration , 
can be implemented by special purpose hardware - based 
systems that perform the specified functions or acts , or by 
combinations of special purpose hardware and computer 
instructions . 
[ 0074 ] A diagram illustrating an example artificial neural 
network ( ANN ) is shown in FIG . 2 . The example ANN , 
generally referenced 60 , comprises a plurality of layers 
including layers L1 , L2 , L4 , and L4 . During inference mode 
of operation , the ANN receives input values X ( t ) ( X , X2 , X3 , 
and Xx ) and generates an output vector y ( t ) 64 ( i . e . infer 
ences ) , namely OUTPUT and OUTPUT2 . 
[ 0075 ] . During inference , one can observe the resultant set 
of parameters , namely the weights , and manipulate them to 
yield better performance ( i . e . representation ) . Methods for 
pruning and quantizing weights are well - known . These 
known methods , however , are applied only on the trained 
model of the ANN before moving to the inference stage . 
This approach does yield better execution performance . It 
does not , however , fully explore and exploit the potential of 
modifying the weights . 
[ 0076 ] In accordance with the present invention , the 
weights are modified dynamically ' on the fly ' to extract 
further performance improvements based on the specific 
data presented to the network . Performance can be improved 
due to the fact that typically the infrastructure that runs the 
inference stage is sensitive to dynamic changes in its net 
work representation . Further , performing instance - specific 
adaptations in the ANN results in readjustments of weights 
per instance as a function of the specific data samples the 
ANN sees . 
[ 0077 ] Unlike prior art techniques , the mechanism of the 
present invention is sensitive to the data observed at the 
input layer of the network . As a result , the mechanism 
functions to auto - tune the network to optimize the instance 
specific representation of the network . This provides the 
advantages that the network becomes customized ( i . e . spe 
cialized ) to the inputs it observes and better fits itself to the 
subset of the sample space that is applicable to its actual data 
flow . As a result , nominal process noise is reduced and 
detection accuracy improves . Another advantage is that the 
mechanism enables the reduction of the representation space 
and further reduces the memory ( and energy thereof ) needed 
to represent the network properties . In particular , the inven 
tion optimizes the quantization applied in the ANN . 
[ 0078 ] Regarding quantization , the following discussion 
aids in understanding the operation and benefits of the 
present invention . A source of ‘ information can be 
expressed in many ways . Information is defined as anything 
that can be expressed digitally . Each way of representing 
information has an associated ' efficiency ' that can usually be 
measured considering the “ energy ' invested in representing 
the information . The more redundancy there is the less 
efficient is the representation in terms of energy . 
[ 0079 ] Typically , two sources of redundancy include ( 1 ) 
the source information distribution ( inherent to the nature of 
the source ) , and ( 2 ) the path through which this information 
needs to travel and the impact this path imposes on the data 
( i . e . referred to as " channel noise ' ) . The process of quanti 
zation refers to a representation of the source information 
differently such that less data is needed to “ properly ' repre 

sent the source information . During this process , ' distortion ' 
may be added to the source . It is desired that this added 
distortion or noise will not impact the representation to the 
extent that the needed information cannot be extracted . 
[ 0080 ] There are two key factors when determining how 
much quantization to apply . The first factor is the distribu 
tion of the data source . Lacking a priori knowledge , unifor 
mity is assumed and thus each piece of information is 
equally important . If , however , the true distribution was 
known , more compact representation could be assigned to 
the messages more likely to occur thereby resulting in 
improved efficiency . 
10081 ] The second factor is the marginal error which 
refers to how much ‘ slack ’ is available before confusion with 
other symbols occurs . For example , consider three level 
black - gray - white images from a visual source that generates 
an 8 - bit gray level per pixel . For three levels , two bits are 
sufficient for a three level result . Thus , we can discard six 
bits without any loss and an input image of X bytes can now 
be represented using 28 = 1 / 4 the number of bytes or X / 4 . 
[ 0082 ] If , however , we observe the distribution of black 
gray - white pixels even higher efficiency can be obtained . 
Consider images containing written text where the majority 
of the image is white , e . g . , 70 % white , 15 % gray , 15 % black . 
In this case pixels can be represented in binary as follows : 
white as “ l ' , gray as ' 00 ' , and black as ' 01 ' . The memory 
requirements for pixels in the image are then ( 0 . 7x1 + 0 . 3x 
2 ) / 8 = 1 % the number of bytes or X / 6 . Thus , the more knowl 
edge about the source distribution can be leveraged for 
improved efficiency . 
[ 0083 ] In artificial neural networks , source information is 
represented by both the internal weights and the data ( i . e . 
input data to each layer ) . Weights are determined during 
training after which they are static . At this point the weights 
can be quantized . The quantization , however , is limited to 
being uniform across all the possible values of the weights . 
This is because the quantization process has no a priori 
knowledge of the input distribution and is thus forced to 
assume uniformity . 
10084 ] In accordance with the present invention , the 
redundancy in the input data is leveraged to allow additional 
quantization of the input data , internal weights , or both . In 
one embodiment , knowledge of the input data is leveraged 
for optimizing data quantization . In this case the mechanism 
determines that some data elements consistently contribute 
little to the network output . This may occur , for example , if 
the values at the edges of the image are irrelevant to 
determining the object in the frame . 
[ 0085 ] In another embodiment , knowledge of the input 
data is leveraged for optimizing weight quantization . Once 
the distribution of the input data is known , weights that 
multiply data of less importance can be quantized more 
heavily . In another embodiment , knowledge of the input data 
is leveraged for optimizing both data and weight quantiza 
tion . 
[ 0086 ] Several examples of the distribution of input data 
to aid in illustrating the operation of the invention will now 
be presented . A diagram illustrating a first example distri 
bution of input data from a neural network is shown in FIG . 
3 . Histograms 70 , 72 , 74 , 78 from four layers Lj , L2 , L3 , L4 , 
respectively , of a neural network in the middle of training a 
network for MNIST are shown . Each layer represents the 
histogram of hidden states . The X - axis represents the expo 
nent of all possible data values . Note that the distributions 
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( 1 ) are far from being uniform thus implying quantization 
has high potential , and ( 2 ) vary from layer to layer suggest 
ing a dependence on the statistics of weights and data . 
[ 0087 ] Diagrams illustrating a second example distribu 
tion of input data are shown in FIGS . 4A , 4B , 4C , 4D , and 
4E . Histograms 82 , 84 , 86 , 88 represent luminance , red , 
green , blue , channel components , respectively , of image 80 . 
Note that these distributions are also quite clearly not 
uniform and vary from channel to channel . 
[ 0088 ] A diagram illustrating a third example distribution 
of input data is shown in FIG . 5 . Output histograms ( before 
activation ) 90 , 92 , 94 , 96 and weight histograms 98 , 100 , 
102 , 104 for four layers L1 , L2 , L3 , L4 , respectively , are from 
the Google analysis tool Tensorboard . The x - axis represents 
the range of values , the y - axis each neuron , and the z - axis 
the distribution value . Note that ( 1 ) weights are distributed 
differently among the layers , e . g . , weights for L , versus L4 , 
and ( 2 ) outputs are clearly distributed differently than the 
weights of the same layer . Note that since the only other 
factor shaping the output apart from the weights is the data , 
incorporating data in the quantization process is valuable . 
[ 0089 ] Note that the mechanism of the present invention 
can be applied to almost any ANN . One requirement is to 
generate the distribution of the input data . This can be 
achieved by incorporating one or more counters in a neuron . 
A diagram illustrating a neuron incorporating a plurality of 
data counters is shown in FIG . 6 . A counter 126 in each 
neuron 120 is associated with each possible value bin . In one 
embodiment , the neuron maintains the statistics for the input 
data 122 that is sees as well as the output data 124 that is 
generates . 
[ 0090 ) Consider an ANN having one or more layers . The 
common notation for a layer output is expressed as follows : 

y = 0 ( W - x + B ) ( 1 ) 

Where o is the activation function , W are the weights , x is 
the input , B is the bias , and y is the output . 
[ 0091 ] We denote : 

& W = 10 ( W - x + B ) - 0 ( W2 . x + B9 

( 0094 ] In one embodiment , the mechanism of the present 
invention relies on the fact that the entropy achieved by a 
quantization function that is only a function of the weights 
themselves is higher or equal to that achieved by introducing 
and considering input data along with the weights as a 
function to the quantization . This is expressed mathemati 
cally below : 

H ( W2 = 2 ( W ) ) > H ( W2 = Q ( W , x ) ) ( 5 ) 

Where QO ) denotes the quantization function , W are the 
weights , and x is the input data . 
[ 0095 ] An example will now be presented to better illus 
trate the mechanism of the present invention . A diagram 
illustrating a first example histogram of neuron input data is 
shown in FIG . 7 . Consider a histogram 130 representing the 
distribution function of 16 - bit input data with each vertical 
bar ( or bin ) 132 representing the probability of getting that 
particular input value . If the histogram 130 represents , for 
example , a black and white image , the data represents a 
relatively dark image since most of the pixels are skewed to 
small values . The x - axis is labeled with the sixteen possible 
values expressed in decimal and binary . The distribution of 
the data is clearly skewed to lower values with the highest 
probability of getting the value “ 2 . 
[ 0096 ] Now let us assume we have sixteen weight levels 
at some layer , that are uniformly distributed over the range 
[ 0 , 1 ] . The optimum quantization is to have the weights 
represented with 4 - bits corresponding to each level out of 
the 16 possible levels , i . e . 1 / 16 , 2 / 16 , . . . , 16 / 16 . Let us 
observe , for example , a neuron for which all weights have 
converged to some value that represent an equal weight for 
all its inputs . 
10097 ] Considering the above , the output of a dense layer 
( MLP ) , which is 8 - bits wide ( i . e . two 4 - bit values multiplied 
together ) would have a distribution identical to the input 
distribution as shown below in FIG . 8 . The histogram 140 
comprises vertical lines 142 representing the probability of 
that particular output value from the neuron . The values 
along the x - axis are expressed as 0 to 1 fraction , 0 to 255 
decimal , and 0000 to 1111 binary . 
[ 0098 ] Now , assume it is desired to quantize the weights 
such that the output value range is narrower . In prior art 
systems , without knowing anything about the input data , 
however , the only choice is to uniformly quantize the 
weights . Without the input data distribution or histogram , it 
is not possible to custom tailor the quantization of the 
weights . This results in a quantization error of - 9 . 5 % , a 
nearly 10 % average error . 
[ 0099 ] It is clear , however , that by quantizing the weights 
around the lower end ( i . e . centered around the highest 
likelihood ) better representation can be obtained due to 
lower quantization error . Such a quantization approach 
would result in ~ 4 . 5 % quantization error . 
[ 0100 ] The mechanism of the present invention achieves 
this better quantization by taking into account the distribu 
tion of the input data . A flow diagram illustrating an example 
method of quantization optimization is shown in FIG . 9 . 
Note that the method can be applied at any layer in the 
network . First , the input data is sampled using the current 
quantization scheme or representation depth ( step 180 ) . This 
may comprise weight quantization set during training mode . 
The histogram of the input data is then calculated ( step 182 ) . 
Note that the counters in the neurons are constantly tabu 
lating the values that are input to the neuron during infer 

& t = lo ( W + x + B ) - 0 ( W . x2 + B ) 

( 4 ) & T = 10 ( W + x + B ) - 0 ( W2 . + B91 
where ) denotes optimum quantization , and ? represents 
the quantization error between the original output and the 
output with optimized quantization ( either for input data , 
weights , or both ) . 
[ 0092 ] The mechanism of the present invention permits a 
user to select the quantization approach from among the 
above , enabling a trade - off between memory and accuracy . 
In some cases , memory utilization is improved by moving 
from quantized weights to quantized input data . 
[ 0093 ] Traditionally , training input data is used to train the 
network and determine the appropriate weights . Once the 
weights are determined , quantization of the weights is then 
performed after training is complete . The quantization of the 
weights in this case are based on the particular distribution 
the input training data happens to have . It is , therefore , more 
likely to carry higher variance across the whole layer . When 
employing data - driven quantization , however , in many cases 
a localized subset of the neurons ( even in MLP ) are domi 
nant to enable better quantization in terms of the observed 
quantization error owing to the narrower distribution of the 
information ( i . e . smaller variance ) . 
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two bounds . The bias indicates the shift , i . e . the lower 
bound , of where in the range to begin . The original number 
of values are reassigned to a narrower region to better 
represent where most of the data lies . Thus , the data between 
the bounds will be represented with a higher number of 
values thus improving efficiency and reducing quantization 
error . 
[ 0106 ] Note that the quantization can be applied linearly 
or nonlinearly ( step 192 ) . The scale and shift parameters are 
then applied to the current weight quantization ( step 194 ) . 
The scale and shift parameters are applied to the current 
input data quantization ( step 196 ) . Note that the new quan 
tization scheme can be applied to the weight , input data , or 
both . 
[ 0107 ] In one embodiment , the scale factor y and bias B 
parameters can be determined in the following manner . We 
define some distance measure D ( y , yy ) . Expressing y2 as a 
function of the quantization parameters , i . e . y2 = f ( y , B ) , an 
optimal solution is achieved by argmin D ( y , y2 ) . 
[ 0108 ] For example , 

D ( y – y ) = ( y – yQ ) ? 
= ( y – 0 ( W2 . x + b ) 2 
= ( y – o ( floor ( y . w + B ) - x + b2 ) ) ? 

where y and ß are solved for using the following : 

ence . Periodically , after observing a sufficient number of 
input values , the mechanism calculates the histogram . A 
similar process on the data output of the neuron is also 
performed ( step 184 ) . Note that the output is the product of 
the input data and the weights . Optionally , using a similar 
process as used on the input and output data , the distribution 
of the weights in each layer is also determined ( step 185 ) . 
[ 0101 ] In accordance with the distributions ( i . e . histo 
grams ) of the input data , output data , and / or the weights , an 
optimum quantization scheme is determined and applied to 
the input data , weights or both ( step 186 ) . Note that two 
quantization schemes are provided , described in more detail 
infra . The selection being based on a tradeoff between 
efficiency and accuracy . The histogram of the output data is 
calculated again ( step 188 ) and the quantization error is 
calculated ( step 189 ) . Note that this step is optional and only 
performed if it is desired to estimate a performance metric 
related to the quantization scheme chosen and applied . Note 
also that the quantization error may be calculated using any 
suitable technique and is not critical to the invention . 
[ 0102 ] A flow diagram illustrating an example method of 
data driven quantization is shown in FIG . 10 . Initially , the 
network is trained ( step 230 ) and an initial quantization is 
applied without any consideration to optimization , i . e . the 
weights are quantized not to exceed the resource availability 
on the target device ( step 232 ) . This allows further quanti 
zation to leverage the input data . The neural network model 
and the weights are deployed ( step 234 ) . Inference is then 
run and data driven diagnosis is applied ( step 236 ) . In one 
embodiment , this is achieved by network manager logic in 
the core instructing layer controllers to collect statistics on 
neuronal activity ( see FIG . 18 ) . Statistics are gathered using 
a set of counters that count the level of activity observed at 
the neurons at each layer and which can be performed 
gradually as per resource availability , i . e . a larger network 
will take more time for the data collection . The activity 
monitored may include data input to the neuron , data output 
from the neuron , the internal weights , and any combination 
thereof . 
[ 0103 ] When sufficient statistics have been collected ( step 
238 ) using a total counter that monitors the ensemble size , 
the controller is triggered to analyze the output ( step 240 ) . 
If not enough statistics have been collected , the method 
continues with step 236 . At this point the output is analyzed 
for the distribution , and hypothesis testing is applied , i . e . 
input data , weights , or both are quantized according to the 
statistics obtained and checked against actual inputs . This is 
similar to the example described supra where knowledge is 
gained that the input image is 70 % white . 
[ 0104 ] Two quantization schemes are described below . 
The first is essentially a scaling and shift ( i . e . bias ) operation 
and the second is dropping one or more bits . Each is 
described along with an illustrative example . 
[ 0105 ] A flow diagram illustrating a first example quanti 
zation scheme is shown in FIG . 11 . Based on the input data 
distribution , the scale factor y and shift or bias B parameters 
are calculated ( step 190 ) . 

Y ; B = ( W @ = y . W + B ) 
The scale factor indicates the custom range selected and the 
bias indicates the shift . Consider the histogram 110 of FIG . 
12 . The lower bound 112 and upper bound 114 define a range 
of values to be considered . The scaling factor will compress 
the full range of available values into the range between the 

[ 8? , ?? . * * , ß * = argmin = OyaB = 0 ; 120 = 0 

[ 0109 ] A diagram illustrating a first example quantization 
is shown in FIG . 13 . In this example distribution 150 , 
assume the analysis indicates to focus on the lower half of 
the range of values ( as indicated by the half point arrow 
152 ) . Assuming linear spacing , the sixteen available values 
are spread linearly across the lower half 154 from 0000 to 
1111 . The value in the upper half 156 of the range are set to 
1111 . Now the bulk of the data will be represented with a 
higher number of values thus improving efficiency and 
reducing quantization error . 
[ 0110 ] Note that there is tradeoff inherent in this process in 
that the quantization error is actually increased by fixing all 
values in the upper half to the maximum value 111 . Some 
data is effectively discarded by doing this . On the other 
hand , the quantization error is reduced by reassigning the 
values across a smaller region in the lower half where the 
bulk of the input data lies . The net result , however , is a 
significant improvement in quantization error . 
[ 0111 ] A diagram illustrating a second example quantiza 
tion is shown in FIG . 14 . This example is similar to the 
example of FIG . 13 with the difference being the nonlinear 
spacing used . Analysis of the histogram 160 yields a deci 
sion to apply the full range of sixteen values in the lower half 
164 of the original data range ( i . e . to the left of half point 
arrow 162 ) . Values above this point 166 are set to the 
maximum 1111 . Values below this point 164 are spaced 
apart nonlinearly , whereby the values associated with higher 

( 6 ) 
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probability are assigned values closer together . For example , 
the values around 0100 are spaced closer together than those 
near 1100 . 
[ 0112 ] A flow diagram illustrating a second example quan 
tization scheme is shown in FIG . 15 . In this second quan 
tization scheme , rather than maintain the original bit width 
spread across a smaller range , one or more bits from the 
value representation are dropped ( step 200 ) . The number of 
bits to be dropped and form where ( MSB , LSB , etc . ) is based 
on the distribution of the input data . Once the quantization 
scheme is determined , the memory system is notified of the 
new bit representation ( step 202 ) . Depending on the imple 
mentation , this is necessary so that the memory system can 
reconfigure its memory and know how to represent the data 
therein . 
[ 0113 ] The determination of how many bits y to drop is a 
special case of Equations 7 and 8 supra , where the quanti 
zation is expressed as a binary shift right operation , and 
takes the following form : 

we = floor ( ( w - w ) / 2 " ) ( 9 ) 

where 

w = average ( w ) ( 10 ) 

and y represents the number of bits to drop . Note that the 
nonlinear case may be approximated as a piecewise linear 
solution where each piece is centered around a local maxima 
and a solution ( as described supra ) is applied to it . 
[ 0114 ] A diagram illustrating a third example quantization 
is shown in FIG . 16 . In this example distribution 170 , the 
analysis of the histogram yields a decision to drop the most 
significant bit ( MSB ) of each value . Since the bulk of the 
values lie within half the range , only three bits are required 
to represent the data rather than four . The range of values 
now spans from 000 to 111 , rather than 0000 to 1111 . This 
may increase the quantization error but memory efficiency is 
increased by 25 % . 
[ 0115 ] In one embodiment , in addition to dropping one or 
more bits , the reduced number of possible values may be 
assigned in a compressed fashion such as in FIGS . 13 and 14 
described supra . In this example , all eight possible values 
are spread over the lower half 174 in either a linear or 
nonlinear manner . The values in the upper half 176 are set 
to the maximum 3 - bit value 111 . This serves to reduce the 
quantization the error as well as increase memory efficiency . 
[ 0116 ] A diagram illustrating a graph of quantization per 
formance versus time is shown in FIG . 17 . The curve 210 
represents the quantization performance achieved by the 
network over time . The quantization changes 212 , 214 are 
applied as a result of the mechanism of the present inven 
tion . Each represents collection of statistics on the input and 
periodic analysis to determine a new quantization scheme ( if 
any ) . Once the new quantization scheme is applied , its 
effects take hold after a transition period and the perfor - 
mance stabilizes . The assumption here is that the distribution 
of the input data is more or less static over and that 
monitoring the counters over time will yield a stable 
response from the selected quantization scheme . 
[ 0117 ] In this example , the mechanism was successful in 
increasing quantization performance from values V , to V , 
after application of new quantization schemes . In other 
words , the mechanism was able to dynamically adapt the 

quantization of the weights , input data , or both , by observing 
the input data and optimizing the quantization to best fit the 
distribution thereof . 
[ 0118 ] A block diagram illustrating an example integrated 
circuit device implementing the augmented ANN of the 
present invention incorporating the data driven quantization 
optimization mechanism of the present invention is shown in 
FIG . 18 . The device , generally referenced 270 , comprises a 
control block 280 incorporating logic circuitry 282 , memory 
block 278 , inputs 272 , pre - processing data shaping block 
274 , weights block 276 , computer and interconnected fabric 
288 , post - processing / activation , normalization block 284 , 
and output block 286 . 
[ 0119 ] The device 270 describes a generalized version of 
a device that efficiently implements a neural network . It 
comprises an array of computational elements 288 ( i . e . the 
fabric ) . Note that these elements are either physical or 
virtual entities that implement the mathematical computa 
tion required to obtain a desired output from the neural 
network . 
10120 ] . The computational elements use two sets of data 
points , the inputs 272 and the weights 276 retrieved from 
memory 278 . The inputs may be subject to pre - processing 
via block 274 and the outputs may be subject to post 
processing via block 284 . 
10121 ] A control entity 280 is operative to orchestrate the 
overall execution of the device by triggering data retrieval of 
inputs and weights from memory to the compute fabric 288 , 
as well as triggering the execution of the compute fabric . 
[ 0122 ] Note that in the context of the present invention , 
the components that are adapted to implement the invention 
may or may not participate in execution of the device , 
depending on the actual implementation . 
[ 0123 ] In accordance with one embodiment of the present 
invention , the device 270 also comprises a plurality of 
counters 292 for tabulating the input data observed at the 
input to the neurons in any of the layers . In operation , the 
ANN is implemented in the fabric 288 . Counters may be 
placed within the network to observe the data used to 
generate histograms of the data , as described in detail supra . 
[ 0124 ] In one embodiment , the control block 280 is con 
figured to , inter alia , control and administer the histogram 
data collection from the counters in the network , perform the 
analysis on the distribution , and periodically determine and 
apply new quantization schemes that optimally fit the cur 
rent distribution of the input data . 
10125 ] Those skilled in the art will recognize that the 
boundaries between logic and circuit blocks are merely 
illustrative and that alternative embodiments may merge 
logic blocks or circuit elements or impose an alternate 
decomposition of functionality upon various logic blocks or 
circuit elements . Thus , it is to be understood that the 
architectures depicted herein are merely exemplary , and that 
in fact many other architectures may be implemented which 
achieve the same functionality . 
[ 0126 ] Any arrangement of components to achieve the 
same functionality is effectively “ associated ” such that the 
desired functionality is achieved . Hence , any two compo 
nents herein combined to achieve a particular functionality 
may be seen as “ associated with ” each other such that the 
desired functionality is achieved , irrespective of architec 
tures or intermediary components . Likewise , any two com 
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ponents so associated can also be viewed as being “ operably 
connected , ” or “ operably coupled , ” to each other to achieve 
the desired functionality . 
[ 0127 ] Furthermore , those skilled in the art will recognize 
that boundaries between the above described operations 
merely illustrative . The multiple operations may be com 
bined into a single operation , a single operation may be 
distributed in additional operations and operations may be 
executed at least partially overlapping in time . Moreover , 
alternative embodiments may include multiple instances of 
a particular operation , and the order of operations may be 
altered in various other embodiments . 
[ 0128 ] The terminology used herein is for the purpose of 
describing particular embodiments only and is not intended 
to be limiting of the invention . As used herein , the singular 
forms “ a ” , “ an ” and “ the ” are intended to include the plural 
forms as well , unless the context clearly indicates otherwise . 
It will be further understood that the terms " comprises ” 
and / or “ comprising , " when used in this specification , specify 
the presence of stated features , integers , steps , operations , 
elements , and / or components , but do not preclude the pres 
ence or addition of one or more other features , integers , 
steps , operations , elements , components , and / or groups 
thereof . 

[ 0129 ] In the claims , any reference signs placed between 
parentheses shall not be construed as limiting the claim . The 
use of introductory phrases such as " at least one ” and “ one 
or more ” in the claims should not be construed to imply that 
the introduction of another claim element by the indefinite 
articles “ a ” or “ an ” limits any particular claim containing 
such introduced claim element to inventions containing only 
one such element , even when the same claim includes the 
introductory phrases “ one or more ” or “ at least one ” and 
indefinite articles such as " a " or " an . ” The same holds true 
for the use of definite articles . Unless stated otherwise , terms 
such as “ first , ” “ second , ” etc . are used to arbitrarily distin 
guish between the elements such terms describe . Thus , these 
terms are not necessarily intended to indicate temporal or 
other prioritization of such elements . The mere fact that 
certain measures are recited in mutually different claims 
does not indicate that a combination of these measures 
cannot be used to advantage . 
[ 0130 ] The corresponding structures , materials , acts , and 
equivalents of all means or step plus function elements in the 
claims below are intended to include any structure , material , 
or act for performing the function in combination with other 
claimed elements as specifically claimed . The description of 
the present invention has been presented for purposes of 
illustration and description , but is not intended to be exhaus 
tive or limited to the invention in the form disclosed . As 
numerous modifications and changes will readily occur to 
those skilled in the art , it is intended that the invention not 
be limited to the limited number of embodiments described 
herein . Accordingly , it will be appreciated that all suitable 
variations , modifications and equivalents may be resorted to , 
falling within the spirit and scope of the present invention . 
The embodiments were chosen and described in order to 
best explain the principles of the invention and the practical 
application , and to enable others of ordinary skill in the art 
to understand the invention for various embodiments with 
various modifications as are suited to the particular use 
contemplated . 

What is claimed is : 
1 . A method of optimizing quantization in an artificial 

neural network ( ANN ) , comprising : 
observing data in at least one layer in the artificial neural 

network during inference mode of operation thereof ; 
based on said observation , determining a quantization 

level to apply ; and 
applying said quantization level to said at least one layer . 
2 . The method according to claim 1 , wherein observing 

data comprises generating a distribution of at least one of 
data input to said at least one layer , weight distribution of 
said layer , and data output of said at least one layer . 

3 . The method according to claim 1 , further comprising 
calculating a quantization error after application of said 
quantization level , whereby said quantization error is uti 
lized in periodically determining an updated quantization 
level . 

4 . The method according to claim 1 , wherein determining 
comprises analyzing at least one of data input to said at least 
one layer , data output from said at least one layer , and 
weights in said at least one layer and selecting said quanti 
zation level that minimizes a quantization error of output 
from said at least one layer . 

5 . The method according to claim 1 , wherein applying 
said quantization level comprises assigning bit values over 
a smaller range of quantized weights and / or input data in 
either a linear or nonlinear manner in an attempt to reduce 
quantization error . 

6 . The method according to claim 1 , wherein applying 
said quantization level comprises generating at least one of 
a scaling and bias parameter which is used in determining 
said quantization level . 

7 . The method according to claim 1 , wherein applying 
said quantization level comprises dropping one or more bits 
used to represent quantized weights and / or input data in an 
attempt to improve memory utilization . 

8 . The method according to claim 1 , wherein applying 
said quantization level comprises dividing a range of quan 
tization values into a plurality of subranges thereby enabling 
piecewise linear quantization . 

9 . A method of optimizing quantization in an artificial 
neural network ( ANN ) , comprising : 

determining a distribution of input data in one or more 
layers in the artificial neural network ; 

based on the observed distribution of said input data , 
determining whether to quantize weights , input data , or 
both weights and input data within said one or more 
layers ; and 

applying quantization to said weights , input data , or both 
said weights and input data within said one or more 
layers . 

10 . The method according to claim 9 , wherein determin 
ing a distribution comprises generating a histogram of said 
input data . 

11 . The method according to claim 9 , further comprising 
calculating a quantization error after quantization of said 
weights , input data , or both said weights and input data . 

12 . The method according to claim 9 , wherein the quan 
tization applied best is substantially optimum for the 
observed distribution of the input data . 
13 . The method according to claim 9 , wherein said 

quantization comprises assigning bit values over a smaller 
range of quantized weights and / or input data in either a 
linear or nonlinear manner in an attempt to reduce quanti 
zation error . 
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14 . The method according to claim 9 , wherein said 
quantization comprises generating at least one of a scaling 
and bias parameter which is used in determining said 
quantization . 

15 . The method according to claim 9 , wherein said 
quantization comprises dropping one or more bits used to 
represent quantized weights and / or input data in an attempt 
to improve memory utilization . 

16 . A method of optimizing quantization in an artificial 
neural network ( ANN ) , comprising : 

determining a distribution of input data in a layer of the 
artificial neural network ; and 

based on the observed distribution of said input data , 
dynamically determining and applying quantization to 
weights within the layer . 

17 . The method according to claim 16 , wherein determin 
ing a distribution of input data comprises generating one or 
more histograms thereof . 

18 . The method according to claim 16 , wherein determin 
ing quantization comprises analyzing the input data and 
selecting a quantization level that minimizes a quantization 
error . 

* * * * * 


