US009602496B2

a2 United States Patent

10) Patent No.: US 9,602,496 B2

Resch et al. 45) Date of Patent: Mar. 21, 2017
(54) AUTHENTICATING A DATA ACCESS (52) US.CL
REQUEST TO A DISPERSED STORAGE CPC oo HO4L 63/08 (2013.01); GOG6F 3/064

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

NETWORK

Applicant: CLEVERSAFE, INC., Chicago, IL,

Us)

Inventors: Jason K. Resch, Chicago, IL (US);
Wesley Leggette, Chicago, IL. (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

Appl. No.: 14/843,022

Filed: Sep. 2, 2015

US 2015/0381600 Al

Related U.S. Application Data

Prior Publication Data

Dec. 31, 2015

Continuation of application No. 14/148,198, filed on
Jan. 6, 2014, now Pat. No. 9,143,499, which is a

Int. CL.
GO6F 21/78
HO4L 29/06
GO6F 11/10
HO4L 1700
HO4L 120
HO4L 29/08
GO6F 3/06
GO6F 21/62

(Continued)

(2013.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2013.01)

(Continued)

(2013.01); GO6F 3/0619 (2013.01); GO6F
3/0689 (2013.01); GO6F 11/1076 (2013.01);
GO6F 21/6218 (2013.01); HO4L 1/0045
(2013.01); HO4L 1/208 (2013.01); HO4L
67/1097 (2013.01); HO4W 28/04 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0091337 Al* 4/2005 Reasor .............. GOGF 17/30106
709/217
2009/0323487 Al* 12/2009 Chen ...........c...... G11B 20/1217
369/47.15

(Continued)

Primary Examiner — Venkat Perungavoor
(74) Attorney, Agent, or Firm — Garlick & Markison;
Timothy W. Markison; Shayne X. Short

(57) ABSTRACT

A method includes sending, by a user device, a plurality of
data access requests to storage units. The method further
includes sending, by one the storage units, an authentication
request to an authenticating module. The method further
includes forwarding, by the one of the storage units, a
verification request to the user device. The method further
includes forwarding, by the one of the storage units, a
verification response to the authenticating module. The
method further includes executing, by at least some of the
storage units, corresponding ones of the plurality of data
access requests when an authentication response of the
authenticating module is favorable.

12 Claims, 24 Drawing Sheets

180

token

receive a request with an authentication

i

| determine whether signature is valid

| Ik

jt

oo

4

N reject the
request

Y

3

| determine valid permissions

v

.
oo
oo

determine whether valid permissions
applicable

L1

1

o

0

reject the
request

.
o
Ir>

execute request in accordance with valid
permissions

L1




US 9,602,496 B2
Page 2

Related U.S. Application Data

continuation of application No. 13/180,675, filed on
Jul. 12, 2011, now Pat. No. 8,627,114.

(60) Provisional application No. 61/369,812, filed on Aug.

2, 2010.
(51) Imt.CL
HO4L 13/08 (2006.01)
HO4W 28/04 (2009.01)
(56) References Cited

U.S. PATENT DOCUMENTS

2010/0037056 Al*  2/2010 Follis .....ccccenenen. GO6F 11/1464
713/171
2010/0037060 Al*  2/2010 Irvine ... GO6F 21/6236
713/176
2010/0199089 Al* 8/2010 Vysogorets ............. GO6F 21/34
713/168

* cited by examiner



US 9,602,496 B2

TTSAS STARATISS m. IN|NI>Huﬂ9|c ?Wdlfﬁzﬁmﬁwlmmﬂﬁﬂtlwﬂlmﬁw_cl I_ 0¢ 1un 8uissacoud
oTwsy a | — I Mugai a3el01s
T 'OId | € 1un sg o o _ € Hun sq _ I —
] 97 2400
[ _
rIIImWIIIIIIIIIIm,IIIL Sunndwoo
| 87 x"A32us 53 | | 571 A32s07 | &
= Y Y [ Z€ 20epau NSa
Suiseuew sq | P X T0ls03 | [Tr1 1o0us03 | A A
[ X X J
9¢ 2400
dunndwoo ;
L Q¥ s90IIs

Sheet 1 of 24

Mar. 21, 2017

U.S. Patent

,_ﬂ

| 8P X A201s03 |eee®| GF1 A2sDT |

® ° TT $9221|S s I
° ® -
[ ] [ ]
| 7P X 1201503 |@ee| TFT TS T | ooe
— oo —
¥T 201A3p Jasn _ 7€ 20e)1UI NSA _
OE 90BLIDIUI |« V“ O 9oeLIa1ul _ _ 7€ 90BLI9IUI NSC _
Q ,9 Y
— Y€ 8uissaooud
9¢ 2400 —
Sunndwo _ 7€ Suissanoud 5q _ sd
9¢ 2402 Sugndwiod 9¢ 2402 Sunndwod
OF >20|q elep
JO/8E 9|y e1ep 9T uun duissasoid §q T 201A8p J3sn




US 9,602,496 B2

Sheet 2 of 24

Mar. 21, 2017

U.S. Patent

97 a|lhpowl
2284193U] NSQ

¥Z e|npow
20B4AIUI OH

ZZ 3|hpow adega3u|
ysel

0Z 3|nhpow
20BLI9IUI YJOMIBU

89 ajnpowl
22B4193U] YEH

99 a|npow
CRLINCHITK: [Ny

{

A

A

1

W Wi

8G 20eL21UI Dd

¥9soig

79 s|hpow
ER1=TBERIV|
201A3P O

9§ J3||0Ju0D 09 20ep91Ul

> <>
G Aowbsw ZG J49||041u00 0S 9|hpow
ulew <> Alowaw > Suissenoud

55 1un 3uissasoud
sa1ydesd oapia

g7 9J02 Supndwod

—_—



US 9,602,496 B2

Sheet 3 of 24

Mar. 21, 2017

U.S. Patent

G€ aWeu 32Jnos

87 XA 931[S BIEP POPOI JOLID €'Old 9 T A 991|S BIEP POPOI JOLID
aweu I|S aweu al|g
® == e
e _ 7€ @0BMI21UI 18US(Q _ e
— ® — (]
¥¥ X T 921|s BIBP PBPO2 JOdID — eee® T T T 221|s eaep popod Jodlo
aweu 221|S [ — sweu 201|§
87 X A92s oo 7 T A3
ElEP P2p02 Jodis BlEP Pop03l JOdIo _ ﬂ 3|hpow OM@.._O“_.m _
dweu 1|5 ° dweu 1S A
[ J
— — . — —
7P X T2ds oo v T T 3ds
B1ep PapPO0D J04ID elep papoo Jodia
dweu 321§ dweu 21| 7
_ 78 a|npow pLg _
aweu eleq | asas | uadynep | glynea | xepulao1s
241o3ds uopew.loyu| Sungnoy |esJaAlu A
Jnep L JU| suBnoy | un
L€ sweu 301|S 0% 13(q0
— elep
76 A Wuswsas eyep 7
eoe _ 08 s|npow ssa0de gg sweu
— k] [eT]
06 T 3uswSas eiep A
GE€ dweu 3anos wwmw_
= Y S
Ot Welqo elep — G| «——>
87 s|npow Aemaled ,m >
I=

al 9y _ Asal _ usdnep | @ranea

S sweu a2234nos

¥E a|npow 8uissadoad s




US 9,602,496 B2

Sheet 4 of 24

Mar. 21, 2017

U.S. Patent

 391|s e3ep 53 _ Hmo_ _ Rn_ _ mNQ _ So_ _ mHn_ _ :o_ _ No_ _ mo_ _

€ 901|s e1ep D3 _ omo_ _ wNQ _ NNQ _ wHo_ _ in _ SQ _ oo_ _ NQ _

Z 9915 e1ep 73 _ mwo_ _ mNQ _ En_ _ :o_ _ EQ _ mn_ _ mo_ _ HQ _

I 991)s e1ep 33 _ mNo_ _ En_ _ oNQ _ So_ _ Sn_ _ mn _ E _ on_ _

[Fq|eee || “q|0ee[q]| eee EQQQEQQQE

76 1uaw8as elep papodus Jo siq Zg

Z8 9Inpow plJ3

SO

BZ 4201|s <

| 8 Jorendiuew Y = 150005 | Euoendivew |
< | > -ap @21|s-3sod > L8139U5-9p a8 49pOIp - 7 -ap @o1is-a4d < [ >
_ _ _
_ _ _
| €7 1un |0J1u0d n__:gm:_ _
_ | _
_ X 201ls e38P 73 _ _ _ _
° | Tg Jo1e|ndiuew - — — \é | §Z4oendivew |
" € | > 221|5-150d - 6L 499115 LLASPOUS € 22l1[s-24d € | >
_ T @215 elEp D3 _ _ _
e e e e e e e e e e e e e e e e e — — — — — — — — — — — — — — — — —]
76 1usw3gas eiep pspodus _ _ 26-06 1uaw3ss eiep




US 9,602,496 B2

Sheet 5 of 24

Mar. 21, 2017

U.S. Patent

99 "9OI4

V9 'Old

1sanbaJ Po1eID0SSE o] 91NdoXs

2 A

1SI| UOIBOUBYINE [EDO] BY3 Ul [BRUSPUID
poanoidde padwels swy e 91830

T

A
1sanbal

paieIoosse
241 109(a4 N

o

|ernuspaJd panoidde aanoe ue o}
|enuapa42 panocidde pasidxs syl WDAUOD

T

18| uoneanudyYINe
910WaJ e Ul |erruapaJd panosdde
ue $ay21ew |elUSPaJI JBYIaYM SUILLIBIBP

80T

N
1sanbaJ

pa1ernosse
ue 91nJox%e A

(443
|enuspaud
panocsdde
2|qISsa20e
paJidxa A
ay1 213[ep
PTa
9|qIssa2dk SI 181| UonednuUsyIne
910W3J B JOYIBYM 2UIWIS1ap
8T A

151| uonesnUBYIne |ed0| B
Ul |euspaJd panosdde paJidxs ue Ajnuspl

T

WO

T

151] uopEdUBYINe
|e20| e ul |enuapaJd pascidde
ue $ay21ew |elUSPaJI JBYIaYM SUILLIBIBP

7ot A

|equapa.40 e @Al=d3l

(o]
i



US 9,602,496 B2

Sheet 6 of 24

Mar. 21, 2017

U.S. Patent

YL'9ld

ZET asuodsaJ uonesnuayine

S
[

0¢cT asuodsal uonelyldan

87T 1sanbas uoneayldsa

-
[

97T 1sanbaJ uoneanuayine

8T

1un Suideuew sq

YET @suodsad ssadde eyep

\\:\l\:\:\:\v

0T =2suU odsal uopneoylisa

[
-

8ZT 1sanbal uoneoyLian

[

¥Z1 1senbau ssad0e eyep

e nunsg ZT 921Asp Jasn




US 9,602,496 B2

Sheet 7 of 24

Mar. 21, 2017

U.S. Patent

JL 914

9/ '914

o|(eloAe} sasuodsal uonedljjusyine
2yl Uaym 1SonbaJ ssadoe elep oyl =21eyl|ioe}

7T A

asuodsal uonpednuayine ue aAladal

i f

1sonbal uoneonuayine ue puss

asuodsaJ uoneonuayine ue Indino
& 1
9suodsaJ uoLledYIIDA B BAIDIA
05T A
1sonbaJ uonesyldan e yndino
7 )

1sonbal uonedfjusyine ue aAal=dal

Yeo)
—

o A
9|hpow 3unesnuayine ue Ajauspl
8T A
3se@nbaJ ssad0e elep e aAI909d
5eT




US 9,602,496 B2

Sheet 8 of 24

Mar. 21, 2017

U.S. Patent

a8 "'9ld
U3X 03} uonednuaYlne puas V8 'Ol
T 1
U0} uonedIUaYINe s1eJ3uad U303 UOLEILUBYINE YUM 153nba) puss
91

o
—

| ; E

aJnieudis a1elauad

7T 9 N

uoneJidxs Uy 01 auUlWISIp

— 9|qeoidde
(42 % U031 uoleauayine Jayisym aulwisp
suolssiwJdad aulwJa1ap 09T %
0T A 1sanbal ssadoe NS e 21eiauad
sanbaJ —
1 35T 9
U0}
ay1 109fal N
asuodsal U0} UoE2MUBYINE UR 3AI203J
89T —
35T %
plleA S| [enuapa4d JoYlaym sulwiaisp
— |[enuapald
291 % pue isanbas usy01 uonednuaynNe ue puas

[enuspaJd pue 7St
159nbaJ UX0} UOBEIUBYINE U. DAIIDI




US 9,602,496 B2

Sheet 9 of 24

Mar. 21, 2017

U.S. Patent

6 'OId

suolssiwJiad
plleA ylim asueplodde ul 3sanbas andaxa

76T

159nbaJ

ay1103fal
06T
9|gedidde
suolssiwJiad pijea Jayiaym auiwlialap
88T %
suolssiwlad pijea aulwJia1ap
98T
A
1s9nbaJ

ay1103fal N

¥81

plea sl mv._—.;mcw_m J9ylaym sulwli=iap

[

- f

U0}
uonesnuayine ue yim isenbal e aAledal

T

(@)



US 9,602,496 B2

Sheet 10 of 24

Mar. 21, 2017

U.S. Patent

0T 'S4

uauwW3as e1ep ay}
9onpouid 0} $aDI|s elep Papod JOIID 3podaP

90¢ %

S221|S B1EP P=ap02 JOUJ2 9Al=23l

1

POY1BW [BABLIIRS BYY Y1M
22Uepiodde ul so8essawl |eA21dlal puas

[

” f

POYIBW |BABIJIRY BUIWIDIRP

0

1

si21oweled mucmE._O.th aulWi=13p

Q

- f

$92I|S aAalJ1aJ 0} SHUN §( BUIW.IR13P

O

~ f

CUCIPRICE i) usw3os elep e sulwJalsp




US 9,602,496 B2

Sheet 11 of 24

T 'OId

92I|S B1Ep PRPOIUS BY1 213|3p

9T¢ A
301[S E1EP PAPODUS PAAISIBI DY) 2J0IS
— 219|9p
[44 N
Anua Sunsanbald e 01 2 oMol
a8essaw asuodsas Joud ue puss [ 1qemol 0[S e1ep
PapodUa 8y 213]3P 01 UBYM aUIWIs1ap

0¢

¥ic V\ﬁ
1senbad a1um

Mar. 21, 2017

U.S. Patent

91 Ylm paAIadal S| 901S Blep papodus
3y} ulalaym ‘a|qemoj|e si 321|s elep
papoous ayy SulI01S JBYIBYM BUIWIRIBP

20I[S EIEP PRPODUD
9y 8uipJedal JJew UOLR[IP B 2J403IS

e x

4 A

91912p

22eds Alowaw e wodj
921|s e1ep pspoaus ay3 Suls|ap 01 sulersd
1senbau 81uMm BY1 JaY1aym sulWIBIBp

o £

9IS BIEP PRpPOIUD
ue 3uipJeSal 1sanbal a11um e aA19394

ﬂ A




US 9,602,496 B2

Sheet 12 of 24

Mar. 21, 2017

U.S. Patent

(AL

sagdessaw 3sanbal [0J3UCD BpoW puss

o

= f

Sopow uonesauad ulWlislep

o

i f

9|qeded
peaJ 39 0} suonelauad YaIiym suiwisap

8¥¢ %

a|qeden
911JM 3¢ 01 SUOLIBJ3UIS UYdIym sulwla1sp

C17d %

siuswalinbas Suipeo| sulwia1ap

vre %

5195 28eJ01S UUN S JO SN1EIS BUILLISIDP

1474 %

suopelauas aulwialap

Q)
@\l




US 9,602,496 B2

Sheet 13 of 24

Mar. 21, 2017

U.S. Patent

wawdss
B1Ep 31 UO suonldUNy I3P0D 3y} wJoad

o~

T i<

23p02 IaY2 A8l 9y} BUIWIIRP

[
(a|

Agayul

29p02 }23YD
Aa8aqu1 ue Aldde o1 Jaylaym aulwdaiap

o8]
o

9

A<

23p0o2 uondAlaus Y3 sulwldIp

[4 A

Y]

1dAious

28p0d
uopdAious ue Ajdde 03 Jaylaym aulwIRISp

= X

€T 'Ol

J2p02 uolssaldwod 21 sulWJa1ap

4 A

o

ssa4dwod

A

39p02 uolssaidwod
e Ajdde 03 Jaylaym suiwJalep

Q
o

05z A

Ju2wW8as e1ep 9yl 1593 A|leonsnels

00|
o

A

159}

1S9} >__mUE.mEme 0l Jeylaym aulwlialsp

W
[V

552 A

1uawdas ElEQ B 2Al923l

c

<t




US 9,602,496 B2

Sheet 14 of 24

Mar. 21, 2017

U.S. Patent

ARE

Jusw3as ejep ay3 se Jusw3as

BlEp PaP0oI3P BY1 3ZI|IN A N\

— 8¢
6

o~

J01e31pul AlIpIjeA

Joda
ul 221|S B1RP PIPOD JOLID PRABLIIRS BY3) O}
spuodsaJ4400 1ey} 28elols Joj HUN sq e 0}
931|S B1EP PAPOI JOJJD 9DJJ-101J3 UE PUIS

Yol
o

58¢ A

juanbasqns e pue juawWsas erep papooap uanbasgns
e 9onpoJd 0} S30I|S B3RP POPOD JOLID 3} 2POIP

(s)Meqnid

JBY30 JO S2II|S BlEp POPOI 1013 DABIIIRI

e r

uoneuIqwod Jejjid e aulwIRIap

78¢C N

= x

Jusw3as ejep ayj se Jusw3as
elep papoIap ayl azijun A

Jo443 ul (s5)921]S e1ep papod
10442 paraldial syl Ajpuapl 01 sa1|s elep
pPapod 10413 O 135 33J4-10443 BY) 03 SAJN|S
E1EP PBPOD JOJIS paA3IIIR By} aJedwod

e A

S9JI|S B}Ep PIPOD JOLID JO 135 9944-10112
ue 3onpoud 01 JusWZas elep ay3 3PodUB

e X

8¢

Joiedipul Alipijea

e pue Juawsas ejep papolap e anpold
0} S32I|S €1EP P3IPOD JOLID 3Y) BPOIBP

o0

o r

S321|S B}EpP PAPOD JOLID

40 Jaquinu p|oysaJy3 9podap e anaLal

o k

1sanbaJ |eAslilald swdas elep e sAlsdal

4

<



US 9,602,496 B2

Sheet 15 of 24

Mar. 21, 2017

U.S. Patent

00¢ uonedo| a10Wal 86¢ uonedo| |e39| _

| | |
| ——= — — — — | ——= — — — —
_ 9¢ 9¢ 9¢ 9¢ 9¢ | _ 9¢ 9¢ 9¢ 9¢ 9¢ | ST *D14
_ wnsal (uunsa| |uunsa| |uunsa| [wunsal | _ Hunsa| [wunsa| |yunsa| |Hunsa| [Hunsal |
IIIII — — — — — — — — — — —— — — — — — — — — — —
0T Jeqid 6 Je|d g Je||id £ Je|d 9 Je|id S Jej|id ¥ led € Je|id z de|d T Je|d
9= ‘0T = U :paziwndo A}undas
. 00F uoneooj ajowas _ | &guomeojeo, _
Y — — — — Y — — — —
_ 9¢ 9¢ 9t 9¢ 9¢ | _ 9¢ 9¢ 9¢ 9¢ 9¢ [ g5T 914
_ wnsal fuunsg| |uunsg| |nwunsa| [wunsal | _ wunsag| [wunsa| |yunsa| |uunsg| [Hunsal |
_ _
gJeqd  aed gaeud - zaed - TJepd
73 ‘s = u :paziwndo Ajiger o4
. 00f uogeso| aowes _ | ‘secuomesoeoo |
| —— — — — — | —— — — — —
_ 9¢ 9¢ 9¢ 9¢ 9¢ | _ 9¢ 9¢ 9¢ 9¢ 9¢ VST 'O14
_ wnsg| |uwunsg| Juunsa| fuunsg | [vunsal | _ wunsg | fwunsg | fyunsg| |uunsg| [ vunsag
_ h

e T i o o 1

€= ‘g = u :paziwndo 1500



US 9,602,496 B2

Sheet 16 of 24

Mar. 21, 2017

U.S. Patent

)

9T 'Old

JadJe| ) ‘uonedo| T <
auop
ZEE
[ N $924n0SaJ 23eJ01S
$201|S e3Ep [ | Jouoneingyuod psziwundo ue sulWIBISp
’ 2pooua-al —
PPOD Jo4Id BpOodUB-BJ | ) 0TS +
0€E $224n0saJ 28e.401s 2|qe|leAe aUILIIDIAP
S90||S B1Ep PAPO2 —
JOJJ2 SPOJUI-2J 0} JAYIDyMm dUlWla1ap 80¢ +
g7e ) Ad1j0d 88e101s MBU BUIWIRISP
— —
90¢
SIS %
B1ep PRpOo2 40442 dA0W w“_.COEw..__D_OO;_ wmw.._ou_.w sulWl=lep
A [lBWS U ‘uonedo| T
T4 — ¥0€
1253 A +
S21|S 2A0W 01 J2YIDYM DUIWIDIDP Adljod 28e40315 JULIND BUILIIDIDP
— 1500 —
Z4 A N e z0¢
. 00 uonesoj sowas Ly gzuomesojjeso, |
I _
I — — — — | ——= — — — —
| GE 9€ 9 9¢ 3¢ || || 5 3¢ 9¢ 9 € || ast ‘ol
_ wnsa| [Hunsal juunsa| juunsa) fHunsal | _ wnsa| [uunsa| [Hunsa | juunsa| fwunsal |
orJed  gued  gued  gaepd - guend gJed  paend  gaepd  zaepd  Taepd

¥=) ‘0T = U :paziwndo AujigerjaJ



US 9,602,496 B2

Sheet 17 of 24

Mar. 21, 2017

U.S. Patent

9¢ 9¢ 9¢ 9¢ 9¢
unsg | juunsg | fwunsg | |yunsg| | vunsag
gJe|nd  zJejpd  gueud - guequd - aeid
€= ‘g = u sJe||id 334y3 uolsinosd-ap i€ dois
9¢ 9¢ 9¢ 9€ 9¢ 9¢ 9¢ 9¢
wunsg | yunsg | fwunsg | [yunsg | juunsg| |yunsg| fuunsg| | Hunsag
g Je||d L Je|d 9 Jeid S Jeq|id v Je|d € Je|id z Jed T Jed

€= ‘g = u sJe||id sa4y3 uoisiaold iz dois

9¢ 9¢ 9¢ 9¢ 9¢
wunsa| [uunsa| |wunsa| |uunsa| | aunsa

gleqd  paepd  guend  zaegpd  Tuaed
€=) ‘g =u 1uiod 8unJels :T doais

JLT 'Old

941 'Old

VLT 'Ol



US 9,602,496 B2

Sheet 18 of 24

Mar. 21, 2017

U.S. Patent

8T 'DId

23eJ03s jo
uonedo||e-ap pue uiuoisiroid-ap a1el|ioey}

ave A

1Jes1uod

23eJ01S 108J1U0D 0} Jayisym aullll=21ap

>A 7TE

S$a2l|s =240]1s pue spodua

e A

a8eJ01s
Jo uonedo||e pue gujuoisiaoid a1e3[108)

ove A

puedxa

a8e101s puedxa 01 JaYyioyMm UIULISISP

gee A
a|npay2s duluoisinoid adesols sulwi1ep
e A
2ouewJopad adelols sulwIRIBP
VEE A
>




US 9,602,496 B2

Sheet 19 of 24

Mar. 21, 2017

U.S. Patent

| |
I Uyl _
|

e I
| 7€ oinpow “ _
| «— Suissaooud

87 [ sq [ 2l | |
" UU0D A |
seapeo.
| 58P0 TUL |
_ |
| Z 901ADp J3SN _
e I_
4
uoUeIIUNW WO
201ABpP-J21UI
| i
_ Uyl _
_

4 _
| ¥E€ anpow ” _
| «— 8uissaooud

I
8ve sa Tyl
“ U31U0D A |
seapeo.
| 1seapeoiq THl _
_ _
|
| T 991A3p Jasn
e -

6T 'Ol

uonesunwwos u Jeid

T —
et

uonedunwwod ¢ Jejjid

uonediunwwod
¢ Je|nd

uopeduNWWOod
T Jejd

A\\\\\\_\_\\\\\\\

uoueduNWWod u Jejid "

A\\\\\\_\_\\\\\\\

uonedUNWWOD Z Jej|id

A\\\\\\_\_\\\\\\\

uonedunwwod T Jejjid

_
_
_
Z 3|hpow |
Suissad0ld e
el s _
_
TZ YL |
_
Z oS |
0s€
uoBedIUNWWOoD
91s-491Ul
_
utT Yyl |
° _
b T ajnpow |
[
Suisseoold e
T YL s _
N _
TTHL |
_
T 2Ms |

87 € 1a1u00 15e2peo.q



US 9,602,496 B2

Sheet 20 of 24

Mar. 21, 2017

U.S. Patent

0Z 'OId

S|2UUBYD SSB|AJIM O3 SIS B1RP
papoaus jo Buiddew puodas e sulwIIRP

99¢

|ewndo-gns

|[ewndo
-gns si 3uiddew ay3 Jayiaym sulwI12p

¥9¢€ N

Jusw3das ejep e aunydeodas 03
S3JI|S B1EP PIPOIUB PaAISIa] 3Y]} 2p0d3P

4

€

paAlaD3l U33a( aABY SDI[S BIEP
PapPOoIUD PaAIRIR JO J2QUWINU PlOYSAIY}
9p023p B 1Se3| 18 J3YI3YM DU[WIBIBp

S92I|S BIEP PAPOIUS SAIDIB
01 SJ2A1922J pa4n3yuod 2y} 21e3[10ey

00|
o

A

SioAladal QLJME.COU

W
o)

A<

S|auUUEYD SSD|AIIM 0} $3DI|S
ejep papodus jo 3uiddew e suiwiaiap

<
o™

A




US 9,602,496 B2

Sheet 21 of 24

Mar. 21, 2017

U.S. Patent

T¢'OId
o>
N A
SEEID
2Jn3YU03-aJ 01 JOYIaYM dUlWIIBpP
i}7

N

ysnous

1u3s eiep YysSnouas Jayiaym aujwlalap

a k

SS9[2JIM BIA SDDI|S B1RP PIPOD JOJI3 pUSS

e x

S821|S B1ep papod
Joula aanpoud 01 JUaWEas elep B DPOdUD

>A 96¢

ssa|aJim aunSyuod

i k

_.\_O_hm‘_:m_u_.c 02 Sse|adIm aullulolap

433 A<

}seopeouq 0] ejep sullielesp

Q)
on

= _




US 9,602,496 B2

Sheet 22 of 24

Mar. 21, 2017

U.S. Patent

¢C 'Old
XT q X¢ q Sl
Xc SY XT 1% X¢ 1% &1
Xc q XT € XT € X¢ € €Yl
Xv v e XT [4 XT [4 X¢ [4 (411
Xv 7T XT T XT T X¢ T XT S 1 THl
0S¥ 372 <1727 vy 477 ovy 8V 9¢v vev 437
paads | ssejud | pooads | sseqid | posds | sied paads sie|id | psads | ssed
0S¥ g 2ouejeq 87V V 2oue|eq 9y Mgeray ey 2ouewuopiad 2l 1500

0¢v (€= ‘g=u) stuswugisse Jejjid pue uonesn3YUOd SSIBJIM




US 9,602,496 B2

Sheet 23 of 24

Mar. 21, 2017

U.S. Patent

A

N

ucleNSYUOD SSB|IIM
9A1903J 24nSYU0I-3J 0} JBYIBYM BUIWIDIDP

<
<

9

A

S21IS 2J0W JO OM] 2} WOJ] Sadl|s
eyep MC_N__D.J sjuawdas e1ep 12n4isuooad

o
<

9

A

SlIS °JOW JO OM]
2} WOJJ SSa|=21IMm BIA S@DI|S Blep aAledal

>4 0ov

uoLeINSYUOD SSB|2JIM DAIDIR
31 YUM 20UepIodde Ul $S9]241M 2InSYuod

Q)
<

9

A

CODG.._Bm_u:.\_Ou SS9|2JIM BAIDJRJ BUIWIR1P

O
LN
<

A

S9}IS 2J0W JO OM] ay} JO
COBE:MTFCOU SSa|aJIm Jllisuel) aulwialep

ST A
Sa1Is
240W 10 OM] WOJ4 w_mcw_w SSo|adIm mt:cum
7oh A
1

dyuoo-al €Z '9l4d



US 9,602,496 B2

Sheet 24 of 24

Mar. 21, 2017

U.S. Patent

A

dyuod-al
N

SSO[AIIM
2InSYyu02-24 03 J3YIDYM SUIWIIBP

o
Q)
<t

A

$30||S BIEP PIAIDI
8uiz|jan syuaw3as elep }NJISUCI

=)
)]
<

A

921A9P J3SN BuIpUSS JO/pue SB1IS
93 WO1) SSIDJIM BIA SID||S BIBP DAIFD

>A 887

uoneInSyU0d SS3[2IM A1922)
21 YUM 20UBPJ0D0E Ul SSD[2J1M 2JNZYU0D

O
<

8

A

uonesnsyuod
SS3|2JIM DAIDIDI BUIWIDIDP-3

<
0
<

A

201ADp Jasn Sulpuas ay) Jo
uoneINSLUOD $S2|241M HWSUERIL SUIWIR1DP

T x

S301|5 elep awes ay1 Sulpuas 21A3p Jasn
Suipuas e wodyj s|eusis ssaja4im aJinboe

vZ '5l4

N

A N

ploysaJyl e mo|aq sl aduew.opad
uondadal ejep Jayiaym aulwI1ap

c0
™~
<

A

S91IS 2J0W JO OM] 3y} WU} Sa0l|s
elep MC_N__B.: syuswdas Elep 10nJisuodal

o
<

9

A

S$S9lIS 2J0W JO OM]
2l WOJ]} SSa|alIm BIA Sa01|S Blep 9Al803.

o
<

9

f<

uoneINZYUOD SSIRJIM BAIS03U
31 Y1IM 20UBPJOIDR Ul SSB|aJIM 2UnSyuod

o0
<

9

A

COB.m\_Jm_L.COu SS9|2JIM BAIRdR) SUlWIR1apP

o
LN
<

A

S=2liS aJoWw JO OM] Byl JO
CO_PmLJME.COU SSolalim liusued] sulWialsp

<t
<

9

A

> A 0%v

rad

sals
2JOW JO OM] WoJJ s|eudis ssajaJim aJinboe

ol
LN
<



US 9,602,496 B2

1

AUTHENTICATING A DATA ACCESS
REQUEST TO A DISPERSED STORAGE
NETWORK

CROSS REFERENCE TO RELATED PATENTS

The present U.S. Utility Patent Application claims priority
pursuant to 35 U.S.C. §120 as a continuation of U.S. Utility
application Ser. No. 14/148,198, entitled “AUTHENTICAT-
ING A DATA ACCESS REQUEST TO A DISPERSED
STORAGE NETWORK,” filed Jan. 6, 2014, which is a
continuation of U.S. Utility application Ser. No. 13/180,675,
entitted “AUTHENTICATING A DATA ACCESS
REQUEST TO A DISPERSED STORAGE NETWORK?”,
filed Jul. 12, 2011, now U.S. Pat. No. 8,627,114, issued on
Jan. 7, 2014, which claims priority pursuant to 35 U.S.C.
§119(e) to U.S. Provisional Application No. 61/369,812,
entitled “DISPERSED STORAGE NETWORK ACCESS
REQUEST AUTHENTICATION?, filed Aug. 2, 2010, all of
which are hereby incorporated herein by reference in their
entirety and made part of the present U.S. Utility Patent
Application for all purposes.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

Not Applicable

INCORPORATION-BY-REFERENCE OF
MATERIAL SUBMITTED ON A COMPACT
DISC

Not Applicable
BACKGROUND OF THE INVENTION

Technical Field of the Invention

This invention relates generally to computing systems and
more particularly to data storage solutions within such
computing systems.

Description of Related Art

Computers are known to communicate, process, and store
data. Such computers range from wireless smart phones to
data centers that support millions of web searches, stock
trades, or on-line purchases every day. In general, a com-
puting system generates data and/or manipulates data from
one form into another. For instance, an image sensor of the
computing system generates raw picture data and, using an
image compression program (e.g., JPEG, MPEG, etc.), the
computing system manipulates the raw picture data into a
standardized compressed image.

With continued advances in processing speed and com-
munication speed, computers are capable of processing real
time multimedia data for applications ranging from simple
voice communications to streaming high definition video.
As such, general-purpose information appliances are replac-
ing purpose-built communications devices (e.g., a tele-
phone). For example, smart phones can support telephony
communications but they are also capable of text messaging
and accessing the internet to perform functions including
email, web browsing, remote applications access, and media
communications (e.g., telephony voice, image transfer,
music files, video files, real time video streaming. etc.).

Each type of computer is constructed and operates in
accordance with one or more communication, processing,
and storage standards. As a result of standardization and
with advances in technology, more and more information

25

40

45

55

2

content is being converted into digital formats. For example,
more digital cameras are now being sold than film cameras,
thus producing more digital pictures. As another example,
web-based programming is becoming an alternative to over
the air television broadcasts and/or cable broadcasts. As
further examples, papers, books, video entertainment, home
video, etc. are now being stored digitally, which increases
the demand on the storage function of computers.

A typical computer storage system includes one or more
memory devices aligned with the needs of the various
operational aspects of the computer’s processing and com-
munication functions. Generally, the immediacy of access
dictates what type of memory device is used. For example,
random access memory (RAM) memory can be accessed in
any random order with a constant response time, thus it is
typically used for cache memory and main memory. By
contrast, memory device technologies that require physical
movement such as magnetic disks, tapes, and optical discs,
have a variable response time as the physical movement can
take longer than the data transfer, thus they are typically
used for secondary memory (e.g., hard drive, backup
memory, etc.).

A computer’s storage system will be compliant with one
or more computer storage standards that include, but are not
limited to, network file system (NFS), flash file system
(FFS), disk file system (DFS), small computer system inter-
face (SCSI), internet small computer system interface
(iSCS8I), file transfer protocol (FTP), and web-based distrib-
uted authoring and versioning (WebDAV). These standards
specify the data storage format (e.g., files, data objects, data
blocks, directories, etc.) and interfacing between the com-
puter’s processing function and its storage system, which is
a primary function of the computer’s memory controller.

Despite the standardization of the computer and its stor-
age system, memory devices fail; especially commercial
grade memory devices that utilize technologies incorporat-
ing physical movement (e.g., a disc drive). For example, it
is fairly common for a disc drive to routinely suffer from bit
level corruption and to completely fail after three years of
use. One solution is to utilize a higher-grade disc drive,
which adds significant cost to a computer.

Another solution is to utilize multiple levels of redundant
disc drives to replicate the data into two or more copies. One
such redundant drive approach is called redundant array of
independent discs (RAID). In a RAID device, a RAID
controller adds parity data to the original data before storing
it across the array. The parity data is calculated from the
original data such that the failure of a disc will not result in
the loss of the original data. For example, RAID 5 uses three
discs to protect data from the failure of a single disc. The
parity data, and associated redundancy overhead data,
reduces the storage capacity of three independent discs by
one third (e.g., n—1=capacity). RAID 6 can recover from a
loss of two discs and requires a minimum of four discs with
a storage capacity of n-2.

While RAID addresses the memory device failure issue,
it is not without its own failure issues that affect its effec-
tiveness, efficiency and security. For instance, as more discs
are added to the array, the probability of a disc failure
increases, which increases the demand for maintenance. For
example, when a disc fails, it needs to be manually replaced
before another disc fails and the data stored in the RAID
device is lost. To reduce the risk of data loss, data on a RAID
device is typically copied on to one or more other RAID
devices. While this addresses the loss of data issue, it raises
a security issue since multiple copies of data are available,
which increases the chances of unauthorized access. Further,



US 9,602,496 B2

3

as the amount of data being stored grows, the overhead of
RAID devices becomes a non-trivial efficiency issue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING(S)

FIG. 1 is a schematic block diagram of an embodiment of
a computing system in accordance with the invention;

FIG. 2 is a schematic block diagram of an embodiment of
a computing core in accordance with the invention;

FIG. 3 is a schematic block diagram of an embodiment of
a distributed storage processing unit in accordance with the
invention;

FIG. 4 is a schematic block diagram of an embodiment of
a grid module in accordance with the invention;

FIG. 5 is a diagram of an example embodiment of error
coded data slice creation in accordance with the invention;

FIG. 6A is a flowchart illustrating an example of authen-
ticating a request in accordance with the invention;

FIG. 6B is a flowchart illustrating an example of refresh-
ing a local authentication list in accordance with the inven-
tion;

FIG. 7A is a diagram illustrating an example of an
authentication sequence bounce diagram in accordance with
the invention;

FIG. 7B is a flowchart illustrating an example of authen-
ticating a data access request in accordance with the inven-
tion;

FIG. 7C is a flowchart illustrating an example of process-
ing an authentication request in accordance with the inven-
tion;

FIG. 8A is a flowchart illustrating an example of acquiring
an authentication token in accordance with the invention;

FIG. 8B is a flowchart illustrating an example of process-
ing an authentication token request in accordance with the
invention;

FIG. 9 is a flowchart illustrating an example of processing
a request in accordance with the invention;

FIG. 10 is a flowchart illustrating an example of retrieving
error coded data slices in accordance with the invention;

FIG. 11 is a flowchart illustrating an example of process-
ing a write request in accordance with the invention;

FIG. 12 is a flowchart illustrating an example of deter-
mining storage generation operational modes in accordance
with the invention;

FIG. 13 is a flowchart illustrating an example of manipu-
lating pre-slice data in accordance with the invention;

FIG. 14 is a flowchart illustrating an example of error
correcting a data slice in accordance with the invention;

FIG. 15A is a schematic block diagram of an embodiment
of a pillar assignment of a dispersed storage network
memory in accordance with the invention;

FIG. 15B is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network memory in accordance with the invention;

FIG. 15C is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network memory in accordance with the invention;

FIG. 15D is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network memory in accordance with the invention;

FIG. 16 is a flowchart illustrating an example of imple-
menting a storage policy in accordance with the invention;

FIG. 17A is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network memory in accordance with the invention;

w

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 17B is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network memory in accordance with the invention;

FIG. 17C is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network memory in accordance with the invention;

FIG. 18 is a flowchart illustrating an example of expand-
ing and contracting storage resources in accordance with the
invention;

FIG. 19 is a schematic block diagram of an embodiment
of a communication system in accordance with the inven-
tion;

FIG. 20 is a flowchart illustrating an example of acquiring
a content broadcast in accordance with the invention;

FIG. 21 is a flowchart illustrating an example of gener-
ating a content broadcast in accordance with the invention;

FIG. 22 is a table illustrating an example of wireless
configuration and pillar assignments in accordance with the
invention;

FIG. 23 is a flowchart illustrating another example of
acquiring a content broadcast in accordance with the inven-
tion; and

FIG. 24 is a flowchart illustrating another example of
acquiring a content broadcast in accordance with the inven-
tion.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a schematic block diagram of a computing
system 10 that includes one or more of a first type of user
devices 12, one or more of a second type of user devices 14,
at least one distributed storage (DS) processing unit 16, at
least one DS managing unit 18, at least one storage integrity
processing unit 20, and a distributed storage network (DSN)
memory 22 coupled via a network 24. The network 24 may
include one or more wireless and/or wire lined communi-
cation systems; one or more private intranet systems and/or
public internet systems; and/or one or more local area
networks (LAN) and/or wide area networks (WAN).

The DSN memory 22 includes a plurality of distributed
storage (DS) units 36 for storing data of the system. Each of
the DS units 36 includes a processing module and memory
and may be located at a geographically different site than the
other DS units (e.g., one in Chicago, one in Milwaukee,
etc.). The processing module may be a single processing
device or a plurality of processing devices. Such a process-
ing device may be a microprocessor, micro-controller, digi-
tal signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module may have
an associated memory and/or memory element, which may
be a single memory device, a plurality of memory devices,
and/or embedded circuitry of the processing module. Such a
memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static
memory, dynamic memory, flash memory, cache memory,
and/or any device that stores digital information. Note that
if the processing module includes more than one processing
device, the processing devices may be centrally located
(e.g., directly coupled together via a wired and/or wireless
bus structure) or may be distributedly located (e.g., cloud
computing via indirect coupling via a local area network
and/or a wide area network). Further note that when the



US 9,602,496 B2

5

processing module implements one or more of its functions
via a state machine, analog circuitry, digital circuitry, and/or
logic circuitry, the memory and/or memory element storing
the corresponding operational instructions may be embed-
ded within, or external to, the circuitry comprising the state
machine, analog circuitry, digital circuitry, and/or logic
circuitry. Still further note that, the memory element stores,
and the processing module executes, hard coded and/or
operational instructions corresponding to at least some of the
steps and/or functions illustrated in FIGS. 1-24.

Each of the user devices 12-14, the DS processing unit 16,
the DS managing unit 18, and the storage integrity process-
ing unit 20 may be a portable computing device (e.g., a
social networking device, a gaming device, a cell phone, a
smart phone, a personal digital assistant, a digital music
player, a digital video player, a laptop computer, a handheld
computer, a video game controller, and/or any other portable
device that includes a computing core) and/or a fixed
computing device (e.g., a personal computer, a computer
server, a cable set-top box, a satellite receiver, a television
set, a printer, a fax machine, home entertainment equipment,
a video game console, and/or any type of home or office
computing equipment). Such a portable or fixed computing
device includes a computing core 26 and one or more
interfaces 30, 32, and/or 33. An embodiment of the com-
puting core 26 will be described with reference to FIG. 2.

With respect to the interfaces, each of the interfaces 30,
32, and 33 includes software and/or hardware to support one
or more communication links via the network 24 and/or
directly. For example, interfaces 30 support a communica-
tion link (wired, wireless, direct, via a LAN, via the network
24, etc.) between the first type of user device 14 and the DS
processing unit 16. As another example, DSN interface 32
supports a plurality of communication links via the network
24 between the DSN memory 22 and the DS processing unit
16, the first type of user device 12, and/or the storage
integrity processing unit 20. As yet another example, inter-
face 33 supports a communication link between the DS
managing unit 18 and any one of the other devices and/or
units 12, 14, 16, 20, and/or 22 via the network 24.

In general and with respect to data storage, the system 10
supports three primary functions: distributed network data
storage management, distributed data storage and retrieval,
and data storage integrity verification. In accordance with
these three primary functions, data can be distributedly
stored in a plurality of physically different locations and
subsequently retrieved in a reliable and secure manner
regardless of failures of individual storage devices, failures
of network equipment, the duration of storage, the amount of
data being stored, attempts at hacking the data, etc.

The DS managing unit 18 performs distributed network
data storage management functions, which include estab-
lishing distributed data storage parameters, performing net-
work operations, performing network administration, and/or
performing network maintenance. The DS managing unit 18
establishes the distributed data storage parameters (e.g.,
allocation of virtual DSN memory space, distributed storage
parameters, security parameters, billing information, user
profile information, etc.) for one or more of the user devices
12-14 (e.g., established for individual devices, established
for a user group of devices, established for public access by
the user devices, etc.). For example, the DS managing unit
18 coordinates the creation of a vault (e.g., a virtual memory
block) within the DSN memory 22 for a user device (for a
group of devices, or for public access). The DS managing
unit 18 also determines the distributed data storage param-
eters for the vault. In particular, the DS managing unit 18

10

30

35

40

45

50

55

6

determines a number of slices (e.g., the number that a data
segment of a data file and/or data block is partitioned into for
distributed storage) and a read threshold value (e.g., the
minimum number of slices required to reconstruct the data
segment).

As another example, the DS managing module 18 creates
and stores, locally or within the DSN memory 22, user
profile information. The user profile information includes
one or more of authentication information, permissions,
and/or the security parameters. The security parameters may
include one or more of encryption/decryption scheme, one
or more encryption keys, key generation scheme, and data
encoding/decoding scheme.

As yet another example, the DS managing unit 18 creates
billing information for a particular user, user group, vault
access, public vault access, etc. For instance, the DS man-
aging unit 18 tracks the number of times a user accesses a
private vault and/or public vaults, which can be used to
generate a per-access bill. In another instance, the DS
managing unit 18 tracks the amount of data stored and/or
retrieved by a user device and/or a user group, which can be
used to generate a per-data-amount bill.

The DS managing unit 18 also performs network opera-
tions, network administration, and/or network maintenance.
As at least part of performing the network operations and/or
administration, the DS managing unit 18 monitors perfor-
mance of the devices and/or units of the system 10 for
potential failures, determines the devices’ and/or units’
activation status, determines the devices’ and/or units’ load-
ing, and any other system level operation that affects the
performance level of the system 10. For example, the DS
managing unit 18 receives and aggregates network manage-
ment alarms, alerts, errors, status information, performance
information, and messages from the devices 12-14 and/or
the units 16, 20, 22. For example, the DS managing unit 18
receives a simple network management protocol (SNMP)
message regarding the status of the DS processing unit 16.

The DS managing unit 18 performs the network mainte-
nance by identifying equipment within the system 10 that
needs replacing, upgrading, repairing, and/or expanding. For
example, the DS managing unit 18 determines that the DSN
memory 22 needs more DS units 36 or that one or more of
the DS units 36 needs updating.

The second primary function (i.e., distributed data storage
and retrieval) begins and ends with a user device 12-14. For
instance, if a second type of user device 14 has a data file 38
and/or data block 40 to store in the DSN memory 22, it sends
the data file 38 and/or data block 40 to the DS processing
unit 16 via its interface 30. As will be described in greater
detail with reference to FIG. 2, the interface 30 functions to
mimic a conventional operating system (OS) file system
interface (e.g., network file system (NFS), flash file system
(FFS), disk file system (DFS), file transfer protocol (FTP),
web-based distributed authoring and versioning (WebDAV),
etc.) and/or a block memory interface (e.g., small computer
system interface (SCSI), internet small computer system
interface (iISCSI), etc.). In addition, the interface 30 may
attach a user identification code (ID) to the data file 38
and/or data block 40.

The DS processing unit 16 receives the data file 38 and/or
data block 40 via its interface 30 and performs a distributed
storage (DS) process 34 thereon (e.g., an error coding
dispersal storage function). The DS processing 34 begins by
partitioning the data file 38 and/or data block 40 into one or
more data segments, which is represented as Y data seg-
ments. For example, the DS processing 34 may partition the
data file 38 and/or data block 40 into a fixed byte size



US 9,602,496 B2

7
segment (e.g., 2* to 2”7 bytes, where n=>2) or a variable byte
size (e.g., change byte size from segment to segment, or
from groups of segments to groups of segments, etc.).

For each of the Y data segments, the DS processing 34
error encodes (e.g., forward error correction (FEC), infor-
mation dispersal algorithm, or error correction coding) and
slices (or slices then error encodes) the data segment into a
plurality of error coded (EC) data slices 42-48, which is
represented as X slices per data segment. The number of
slices (X) per segment, which corresponds to a number of
pillars n, is set in accordance with the distributed data
storage parameters and the error coding scheme. For
example, if a Reed-Solomon (or other FEC scheme) is used
in an n/k system, then a data segment is divided into n slices,
where k number of slices is needed to reconstruct the
original data (i.e., k is the threshold). As a few specific
examples, the n/k factor may be 5/3; 6/4; 8/6; 8/5; 16/10.

For each EC slice 42-48, the DS processing unit 16
creates a unique slice name and appends it to the corre-
sponding EC slice 42-48. The slice name includes universal
DSN memory addressing routing information (e.g., virtual
memory addresses in the DSN memory 22) and user-specific
information (e.g., user ID, file name, data block identifier,
etc.).

The DS processing unit 16 transmits the plurality of EC
slices 42-48 to a plurality of DS units 36 of the DSN memory
22 via the DSN interface 32 and the network 24. The DSN
interface 32 formats each of the slices for transmission via
the network 24. For example, the DSN interface 32 may
utilize an internet protocol (e.g., TCP/IP, etc.) to packetize
the EC slices 42-48 for transmission via the network 24.

The number of DS units 36 receiving the EC slices 42-48
is dependent on the distributed data storage parameters
established by the DS managing unit 18. For example, the
DS managing unit 18 may indicate that each slice is to be
stored in a different DS unit 36. As another example, the DS
managing unit 18 may indicate that like slice numbers of
different data segments are to be stored in the same DS unit
36. For example, the first slice of each of the data segments
is to be stored in a first DS unit 36, the second slice of each
of the data segments is to be stored in a second DS unit 36,
etc. In this manner, the data is encoded and distributedly
stored at physically diverse locations to improve data stor-
age integrity and security. Further examples of encoding the
data segments will be provided with reference to one or
more of FIGS. 2-24.

Each DS unit 36 that receives an EC slice 42-48 for
storage translates the virtual DSN memory address of the
slice into a local physical address for storage. Accordingly,
each DS unit 36 maintains a virtual to physical memory
mapping to assist in the storage and retrieval of data.

The first type of user device 12 performs a similar
function to store data in the DSN memory 22 with the
exception that it includes the DS processing. As such, the
device 12 encodes and slices the data file and/or data block
it has to store. The device then transmits the slices 11 to the
DSN memory via its DSN interface 32 and the network 24.

For a second type of user device 14 to retrieve a data file
or data block from memory, it issues a read command via its
interface 30 to the DS processing unit 16. The DS processing
unit 16 performs the DS processing 34 to identify the DS
units 36 storing the slices of the data file and/or data block
based on the read command. The DS processing unit 16 may
also communicate with the DS managing unit 18 to verify
that the user device 14 is authorized to access the requested
data.

15

20

25

30

35

40

45

50

55

60

65

8

Assuming that the user device is authorized to access the
requested data, the DS processing unit 16 issues slice read
commands to at least a threshold number of the DS units 36
storing the requested data (e.g., to at least 10 DS units for a
16/10 error coding scheme). Each of the DS units 36
receiving the slice read command, verifies the command,
accesses its virtual to physical memory mapping, retrieves
the requested slice, or slices, and transmits it to the DS
processing unit 16.

Once the DS processing unit 16 has received a read
threshold number of slices for a data segment, it performs an
error decoding function and de-slicing to reconstruct the
data segment. When Y number of data segments has been
reconstructed, the DS processing unit 16 provides the data
file 38 and/or data block 40 to the user device 14. Note that
the first type of user device 12 performs a similar process to
retrieve a data file and/or data block.

The storage integrity processing unit 20 performs the third
primary function of data storage integrity verification. In
general, the storage integrity processing unit 20 periodically
retrieves slices 45, and/or slice names, of a data file or data
block of a user device to verify that one or more slices have
not been corrupted or lost (e.g., the DS unit failed). The
retrieval process mimics the read process previously
described.

If the storage integrity processing unit 20 determines that
one or more slices is corrupted or lost, it rebuilds the
corrupted or lost slice(s) in accordance with the error coding
scheme. The storage integrity processing unit 20 stores the
rebuild slice, or slices, in the appropriate DS unit(s) 36 in a
manner that mimics the write process previously described.

FIG. 2 is a schematic block diagram of an embodiment of
a computing core 26 that includes a processing module 50,
a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a
peripheral component interconnect (PCI) interface 58, an 10
interface 60, at least one 10 device interface module 62, a
read only memory (ROM) basic input output system (BIOS)
64, and one or more memory interface modules. The
memory interface module(s) includes one or more of a
universal serial bus (USB) interface module 66, a host bus
adapter (HBA) interface module 68, a network interface
module 70, a flash interface module 72, a hard drive inter-
face module 74, and a DSN interface module 76. Note the
DSN interface module 76 and/or the network interface
module 70 may function as the interface 30 of the user
device 14 of FIG. 1. Further note that the TO device
interface module 62 and/or the memory interface modules
may be collectively or individually referred to as TO ports.

The processing module 50 may be a single processing
device or a plurality of processing devices. Such a process-
ing device may be a microprocessor, micro-controller, digi-
tal signal processor, microcomputer, central processing unit,
field programmable gate array, programmable logic device,
state machine, logic circuitry, analog circuitry, digital cir-
cuitry, and/or any device that manipulates signals (analog
and/or digital) based on hard coding of the circuitry and/or
operational instructions. The processing module 50 may
have an associated memory and/or memory element, which
may be a single memory device, a plurality of memory
devices, and/or embedded circuitry of the processing mod-
ule 50. Such a memory device may be a read-only memory,
random access memory, volatile memory, non-volatile
memory, static memory, dynamic memory, flash memory,
cache memory, and/or any device that stores digital infor-
mation. Note that if the processing module 50 includes more
than one processing device, the processing devices may be



US 9,602,496 B2

9

centrally located (e.g., directly coupled together via a wired
and/or wireless bus structure) or may be distributedly
located (e.g., cloud computing via indirect coupling via a
local area network and/or a wide area network). Further note
that when the processing module 50 implements one or more
of its functions via a state machine, analog circuitry, digital
circuitry, and/or logic circuitry, the memory and/or memory
element storing the corresponding operational instructions
may be embedded within, or external to, the circuitry
comprising the state machine, analog circuitry, digital cir-
cuitry, and/or logic circuitry. Still further note that, the
memory element stores, and the processing module 50
executes, hard coded and/or operational instructions corre-
sponding to at least some of the steps and/or functions
illustrated in FIGS. 1-24.

FIG. 3 is a schematic block diagram of an embodiment of
a dispersed storage (DS) processing module 34 of user
device 12 and/or of the DS processing unit 16. The DS
processing module 34 includes a gateway module 78, an
access module 80, a grid module 82, and a storage module
84. The DS processing module 34 may also include an
interface 30 and the DSnet interface 32 or the interfaces 68
and/or 70 may be part of user device 12 or of the DS
processing unit 16. The DS processing module 34 may
further include a bypass/feedback path between the storage
module 84 to the gateway module 78. Note that the modules
78-84 of the DS processing module 34 may be in a single
unit or distributed across multiple units.

In an example of storing data, the gateway module 78
receives an incoming data object that includes a user ID field
86, an object name field 88, and the data object field 40 and
may also receive corresponding information that includes a
process identifier (e.g., an internal process/application ID),
metadata, a file system directory, a block number, a trans-
action message, a user device identity (ID), a data object
identifier, a source name, and/or user information. The
gateway module 78 authenticates the user associated with
the data object by verifying the user ID 86 with the DS
managing unit 18 and/or another authenticating unit.

When the user is authenticated, the gateway module 78
obtains user information from the management unit 18, the
user device, and/or the other authenticating unit. The user
information includes a vault identifier, operational param-
eters, and user attributes (e.g., user data, billing information,
etc.). A vault identifier identifies a vault, which is a virtual
memory space that maps to a set of DS storage units 36. For
example, vault 1 (i.e., user 1’s DSN memory space) includes
eight DS storage units (X=8 wide) and vault 2 (i.e., user 2’s
DSN memory space) includes sixteen DS storage units
(X=16 wide). The operational parameters may include an
error coding algorithm, the width n (number of pillars X or
slices per segment for this vault), a read threshold T, a write
threshold, an encryption algorithm, a slicing parameter, a
compression algorithm, an integrity check method, caching
settings, parallelism settings, and/or other parameters that
may be used to access the DSN memory layer.

The gateway module 78 uses the user information to
assign a source name 35 to the data. For instance, the
gateway module 78 determines the source name 35 of the
data object 40 based on the vault identifier and the data
object. For example, the source name may contain a file
identifier (ID), a vault generation number, a reserved field,
and a vault identifier (ID). As another example, the gateway
module 78 may generate the file ID based on a hash function
of the data object 40. Note that the gateway module 78 may
also perform message conversion, protocol conversion, elec-
trical conversion, optical conversion, access control, user

10

15

20

25

30

35

40

45

50

55

60

65

10

identification, user information retrieval, traffic monitoring,
statistics generation, configuration, management, and/or
source name determination.

The access module 80 receives the data object 40 and
creates a series of data segments 1 through Y 90-92 in
accordance with a data storage protocol (e.g., file storage
system, a block storage system, and/or an aggregated block
storage system). The number of segments Y may be chosen
or randomly assigned based on a selected segment size and
the size of the data object. For example, if the number of
segments is chosen to be a fixed number, then the size of the
segments varies as a function of the size of the data object.
For instance, if the data object is an image file of 4,194,304
eight bit bytes (e.g., 33,554,432 bits) and the number of
segments Y=131,072, then each segment is 256 bits or 32
bytes. As another example, if segment size is fixed, then the
number of segments Y varies based on the size of data
object. For instance, if the data object is an image file of
4,194,304 bytes and the fixed size of each segment is 4,096
bytes, then the number of segments Y=1,024. Note that each
segment is associated with the same source name.

The grid module 82 receives the data segments and may
manipulate (e.g., compression, encryption, cyclic redun-
dancy check (CRC), etc.) each of the data segments before
performing an error coding function of the error coding
dispersal storage function to produce a pre-manipulated data
segment. After manipulating a data segment, if applicable,
the grid module 82 error encodes (e.g., Reed-Solomon,
Convolution encoding, Trellis encoding, etc.) the data seg-
ment or manipulated data segment into X error coded data
slices 42-44.

The value X, or the number of pillars (e.g., X=16), is
chosen as a parameter of the error coding dispersal storage
function. Other parameters of the error coding dispersal
function include a read threshold T, a write threshold W, etc.
The read threshold (e.g., T=10, when X=16) corresponds to
the minimum number of error-free error coded data slices
required to reconstruct the data segment. In other words, the
DS processing module 34 can compensate for X-T (e.g.,
16-10=6) missing error coded data slices per data segment.
The write threshold W corresponds to a minimum number of
DS storage units that acknowledge proper storage of their
respective data slices before the DS processing module
indicates proper storage of the encoded data segment. Note
that the write threshold is greater than or equal to the read
threshold for a given number of pillars (X).

For each data slice of a data segment, the grid module 82
generates a unique slice name 37 and attaches it thereto. The
slice name 37 includes a universal routing information field
and a vault specific field and may be 48 bytes (e.g., 24 bytes
for each of the universal routing information field and the
vault specific field). As illustrated, the universal routing
information field includes a slice index, a vault 1D, a vault
generation, and a reserved field. The slice index is based on
the pillar number and the vault ID and, as such, is unique for
each pillar (e.g., slices of the same pillar for the same vault
for any segment will share the same slice index). The vault
specific field includes a data name, which includes a file ID
and a segment number (e.g., a sequential numbering of data
segments 1-Y of a simple data object or a data block
number).

Prior to outputting the error coded data slices of a data
segment, the grid module may perform post-slice manipu-
lation on the slices. If enabled, the manipulation includes
slice level compression, encryption, CRC, addressing, tag-
ging, and/or other manipulation to improve the effectiveness
of the computing system.



US 9,602,496 B2

11

When the error coded data slices of a data segment are
ready to be outputted, the grid module 82 determines which
of'the DS storage units 36 will store the EC data slices based
on a dispersed storage memory mapping associated with the
user’s vault and/or DS storage unit attributes. The DS
storage unit attributes may include availability, self-selec-
tion, performance history, link speed, link latency, owner-
ship, available DSN memory, domain, cost, a prioritization
scheme, a centralized selection message from another
source, a lookup table, data ownership, and/or any other
factor to optimize the operation of the computing system.
Note that the number of DS storage units 36 is equal to or
greater than the number of pillars (e.g., X) so that no more
than one error coded data slice of the same data segment is
stored on the same DS storage unit 36. Further note that EC
data slices of the same pillar number but of different
segments (e.g., EC data slice 1 of data segment 1 and EC
data slice 1 of data segment 2) may be stored on the same
or different DS storage units 36.

The storage module 84 performs an integrity check on the
outbound encoded data slices and, when successful, identi-
fies a plurality of DS storage units based on information
provided by the grid module 82. The storage module 84 then
outputs the encoded data slices 1 through X of each segment
1 through Y to the DS storage units 36. Each of the DS
storage units 36 stores its EC data slice(s) and maintains a
local virtual DSN address to physical location table to
convert the virtual DSN address of the EC data slice(s) into
physical storage addresses.

In an example of a read operation, the user device 12
and/or 14 sends a read request to the DS processing unit 16,
which authenticates the request. When the request is authen-
tic, the DS processing unit 16 sends a read message to each
of the DS storage units 36 storing slices of the data object
being read. The slices are received via the DSnet interface 32
and processed by the storage module 84, which performs a
parity check and provides the slices to the grid module 82
when the parity check was successful. The grid module 82
decodes the slices in accordance with the error coding
dispersal storage function to reconstruct the data segment.
The access module 80 reconstructs the data object from the
data segments and the gateway module 78 formats the data
object for transmission to the user device.

FIG. 4 is a schematic block diagram of an embodiment of
a grid module 82 that includes a control unit 73, a pre-slice
manipulator 75, an encoder 77, a slicer 79, a post-slice
manipulator 81, a pre-slice de-manipulator 83, a decoder 85,
a de-slicer 87, and/or a post-slice de-manipulator 89. Note
that the control unit 73 may be partially or completely
external to the grid module 82. For example, the control unit
73 may be part of the computing core at a remote location,
part of a user device, part of the DS managing unit 18, or
distributed amongst one or more DS storage units.

In an example of write operation, the pre-slice manipu-
lator 75 receives a data segment 90-92 and a write instruc-
tion from an authorized user device. The pre-slice manipu-
lator 75 determines if pre-manipulation of the data segment
90-92 is required and, if so, what type. The pre-slice
manipulator 75 may make the determination independently
or based on instructions from the control unit 73, where the
determination is based on a computing system-wide prede-
termination, a table lookup, vault parameters associated with
the user identification, the type of data, security require-
ments, available DSN memory, performance requirements,
and/or other metadata.

Once a positive determination is made, the pre-slice
manipulator 75 manipulates the data segment 90-92 in

10

15

20

25

30

35

40

45

50

55

60

65

12

accordance with the type of manipulation. For example, the
type of manipulation may be compression (e.g., Lempel-
Ziv-Welch, Huffman, Golomb, fractal, wavelet, etc.), signa-
tures (e.g., Digital Signature Algorithm (DSA), Elliptic
Curve DSA, Secure Hash Algorithm, etc.), watermarking,
tagging, encryption (e.g., Data Encryption Standard,
Advanced Encryption Standard, etc.), adding metadata (e.g.,
time/date stamping, user information, file type, etc.), cyclic
redundancy check (e.g., CRC32), and/or other data manipu-
lations to produce the pre-manipulated data segment.

The encoder 77 encodes the pre-manipulated data seg-
ment 92 using a forward error correction (FEC) encoder
(and/or other type of erasure coding and/or error coding) to
produce an encoded data segment 94. The encoder 77
determines which forward error correction algorithm to use
based on a predetermination associated with the user’s vault,
a time based algorithm, user direction, DS managing unit
direction, control unit direction, as a function of the data
type, as a function of the data segment 92 metadata, and/or
any other factor to determine algorithm type. The forward
error correction algorithm may be Golay, Multidimensional
parity, Reed-Solomon, Hamming, Bose Ray Chauduri Hoc-
quenghem (BCH), Cauchy-Reed-Solomon, or any other
FEC encoder. Note that the encoder 77 may use a different
encoding algorithm for each data segment 92, the same
encoding algorithm for the data segments 92 of a data object,
or a combination thereof.

The encoded data segment 94 is of greater size than the
data segment 92 by the overhead rate of the encoding
algorithm by a factor of X/T, where X is the width or number
of slices, and T is the read threshold. In this regard, the
corresponding decoding process can accommodate at most
X-T missing EC data slices and still recreate the data
segment 92. For example, if X=16 and T=10, then the data
segment 92 will be recoverable as long as 10 or more EC
data slices per segment are not corrupted.

The slicer 79 transforms the encoded data segment 94 into
EC data slices in accordance with the slicing parameter from
the vault for this user and/or data segment 92. For example,
if the slicing parameter is X=16, then the slicer 79 slices
each encoded data segment 94 into 16 encoded slices.

The post-slice manipulator 81 performs, if enabled, post-
manipulation on the encoded slices to produce the EC data
slices. If enabled, the post-slice manipulator 81 determines
the type of post-manipulation, which may be based on a
computing system-wide predetermination, parameters in the
vault for this user, a table lookup, the user identification, the
type of data, security requirements, available DSN memory,
performance requirements, control unit directed, and/or
other metadata. Note that the type of post-slice manipulation
may include slice level compression, signatures, encryption,
CRC, addressing, watermarking, tagging, adding metadata,
and/or other manipulation to improve the effectiveness of
the computing system.

In an example of a read operation, the post-slice de-
manipulator 89 receives at least a read threshold number of
EC data slices and performs the inverse function of the
post-slice manipulator 81 to produce a plurality of encoded
slices. The de-slicer 87 de-slices the encoded slices to
produce an encoded data segment 94. The decoder 85
performs the inverse function of the encoder 77 to recapture
the data segment 90-92. The pre-slice de-manipulator 83
performs the inverse function of the pre-slice manipulator 75
to recapture the data segment 90-92.

FIG. 5 is a diagram of an example of slicing an encoded
data segment 94 by the slicer 79. In this example, the
encoded data segment 94 includes thirty-two bits, but may



US 9,602,496 B2

13

include more or less bits. The slicer 79 disperses the bits of
the encoded data segment 94 across the EC data slices in a
pattern as shown. As such, each EC data slice does not
include consecutive bits of the data segment 94 reducing the
impact of consecutive bit failures on data recovery. For
example, if EC data slice 2 (which includes bits 1, 5, 9, 13,
17, 25, and 29) is unavailable (e.g., lost, inaccessible, or
corrupted), the data segment can be reconstructed from the
other EC data slices (e.g., 1, 3 and 4 for a read threshold of
3 and a width of 4).

FIG. 6A is a flowchart illustrating an example of authen-
ticating a request. The method begins with step 102 where
a processing module (e.g., of a dispersed storage (DS)
processing unit) receives a credential from a requester (e.g.,
a user device). The method continues at step 104 where the
processing module determines whether the credential
matches an approved credential from a local authentication
list. The determination may be based on whether the cre-
dential matches an approved credential in the local authen-
tication list and whether the credential in the local authen-
tication list has not expired (e.g., from a time perspective).
The local authentication list includes one or more previously
approved credentials (e.g., received from an authentication
authority) and an associated one or more timestamps such
that a timestamp is paired with each approved credential.
The timestamp indicates at least one of how long the
credential is approved and when the credential expires. For
example, the processing module determines that the creden-
tial is approved when the credential matches at least one of
the one or more previously approved credentials and the at
least one of the one or more previously approved credentials
has not expired. The method branches to step 108 when the
processing module determines that the credential does not
match the approved credential in the local authentication
list. The method continues to step 106 when the processing
module determines that the credential matches the approved
credential in the local authentication list. The method con-
tinues at step 106 where the processing module executes an
associated request.

The method continues at step 108 where the processing
module determines whether the credential matches an
approved credential in a remote authentication list (e.g., a
list of the authentication authority). For example, the pro-
cessing module sends an authentication request message to
the authentication authority that includes the credential. The
processing module receives an authentication response mes-
sage that indicates whether the credential matches an
approved credential in the remote authentication list. The
processing module determines that the credential is
approved when the authentication response message
includes an indication that the credential matches an
approved credential in the remote authentication list. The
method branches to step 112 when the processing module
determines that the credential matches the approved creden-
tial in the remote authentication list. The method continues
to step 110 when the processing module determines that the
credential does not match the approved credential and the
remote authentication list. The method continues at step 110
where the processing module rejects the associated request
when the processing module determines that the credential
is not approved. For example, the processing module sends
a reject message to the requester to reject the associated
request. Alternatively, the processing module may execute
the method as discussed in FIG. 6B when the processing
module does not receive the authentication response mes-
sage in a timely manner (e.g., unable to access the remote
authentication list).

10

15

20

25

30

35

40

45

50

55

60

65

14

The method continues at step 112 where the processing
module creates a time stamped approved credential in the
local authentication list when the processing module deter-
mines that the credential matches the approved credential in
the remote authentication list. For example, the processing
module stores the credential and an associated expiration
timestamp in the local authentication list. The method con-
tinues at step 114 where the processing module executes the
associated request.

FIG. 6B is a flowchart illustrating an example of refresh-
ing a local authentication list. The method begins with step
116 where a processing module (e.g., of a dispersed storage
(DS) processing unit) identifies an expired approved cre-
dential in a local authentication list. The identification may
be based on comparing an expiration timestamp associated
with the approved credential to a current time. For example,
the processing module determines that the approved creden-
tial is expired when the current time is greater than the
expiration timestamp. The method continues at step 118
where the processing module determines whether a remote
authentication list is accessible. The determination may be
based on whether an authorization authority containing the
remote authentication list is accessible (e.g., online). For
example, the processing module determines that the remote
authentication list is accessible when the processing module
receives an accessibility response message from the autho-
rization authority in response to receiving an accessibility
inquiry message from the processing module. The method
branches to step 122 when the processing module deter-
mines that the remote authentication list is not accessible.
The method continues to step 120 when the processing
module determines that the remote authentication list is
accessible. The method continues at step 120 where the
processing module deletes the expired approved credential
from the local authentication list. The method continues at
step 122 where the processing module converts the expired
approved credential to an active approved credential when
the processing module determines that the remote authenti-
cation list is not accessible. For example, the processing
module extends the expiration timestamp associated with the
expired approved credential to convert the expired approved
credential to an active approved credential. In an instance,
the processing module extends the expiration timestamp by
one day.

FIG. 7A is a diagram illustrating an example of an
authentication sequence bounce diagram between a user
device 12, a dispersed storage (DS) unit 36, and a DS
managing unit 18. The sequence begins with a data access-
ing module (e.g., user device 12) of a dispersed storage
network (DSN) sending a data access request 124 to a data
storage module (e.g., DS unit 36, DS processing unit 16) of
the DSN. Alternatively, or in addition to, the data accessing
module sends a set of data access requests 124 to a set of
data storage modules of the DSN. A data access request
includes one or more of a read request, a write request, a list
request, a delete request, and an edit request. The sequence
continues where the data storage module identifies an
authenticating module (e.g., DS managing unit 18) of the
DSN for the data accessing module based on the data access
request. For example, the data storage module extracts a user
device identifier (ID) from the data access request and
utilizes the user device ID in an authenticating module table
lookup. The sequence continues where the data storage
module sends an authentication request 126 to the authen-
ticating module, wherein the authentication request 126
includes at least a portion of the data access request. For



US 9,602,496 B2

15

example, the authentication request includes the user device
1D, a request type, and a data ID.

The sequence continues where the authenticating module
outputs a verification request 128 destined for the data
accessing module, wherein the verification request 128
includes a verification code that is generated based on the
authentication request. A verification code may be unique
for the data access request and user ID and may include one
or more of a random number, a random string of characters,
a nonce, a sequential number, and a number based on a table
lookup. The outputting of the verification request by the
authentication module includes sending the verification
request to the data storage module and forwarding, by the
data storage module, the verification request to the data
accessing module.

The sequence continues where the data accessing module
outputs a verification response 130 destined for the authen-
ticating module, wherein the verification response 130
includes a modified verification code that is generated based
on the verification code and a credential. The credential
includes at least one of a locally stored password, a remotely
retrieved stored password, a password from a user input, a
key, and an authenticator. The generating of the modified
verification code includes one or more of performing a
verifying function (e.g., a deterministic function, a hashing
function, encryption, other mathematical manipulation) on
the verification code and the credential to produce the
modified verification code; generating a second random
string of characters; obtaining a certificate chain; generating
a signature over the second random string of characters and
the verification request; and obtaining a signature algorithm
indicator. The signature is generated utilizing a private key
associated with the data accessing module. The outputting of
the verification response 130 by the data accessing module
includes sending the verification response 130 to the data
storage module and forwarding, by the data storage module,
the verification response 130 to the authenticating module.

The sequence continues where the authenticating module
outputs an authentication response 132 to the data storage
module, wherein the authentication response 132 is gener-
ated based on the verification response 130. The generating
of the authentication response 132 includes performing the
verifying function on the verification code and a reference
credential to produce a reference verification code, compar-
ing the modified verification code with the reference veri-
fication code, and when the comparison is favorable, gen-
erating the authentication response 132 to indicate a
favorable authentication. A reference credential includes a
stored credential. Alternatively, the generating of the authen-
tication response 132 includes verifying the signature of the
verification response 130, utilizing a public key associated
with the data accessing module, and when the veritying is
favorable, generating the authentication response 132 to
indicate a favorable authentication.

The sequence continues where the data storage module
facilitates the data access request when the authentication
response 132 is favorable. The facilitation may include
outputting a data access response 134 to the data accessing
module. For example, the data storage module outputs a data
access response 134 that includes an encoded data slice that
corresponds to a slice name when the data access request
124 includes a read request for the slice name. The method
of operation of the data storage module and the authenti-
cating module is discussed in greater detail of reference to
FIGS. 7B and 7C.

FIG. 7B is a flowchart illustrating an example of authen-
ticating a data access request. The method begins with step

10

15

20

25

30

35

40

45

50

55

60

65

16

136 where a processing module (e.g., of a storage module)
receives a data access request from a data accessing module
of a dispersed storage network (DSN). The method contin-
ues at step 138 where the processing module identifies an
authenticating module for the data accessing module based
on the data access request. The method continues at step 140
where the processing module sends an authentication
request to the authenticating module of the DSN, wherein
the authentication request includes at least a portion of the
data access request. The method continues at step 142 where
the processing module receives an authentication response
from the authenticating module, wherein the authentication
response is generated based on a verification response of the
data accessing module. The method continues at step 144
with a processing module facilitates the data access request
when the authentication response is favorable.

FIG. 7C is a flowchart illustrating an example of process-
ing an authentication request. The method begins with step
146 where a processing module (e.g., of an authenticating
module) receives an authentication request from a data
storage module of a dispersed storage network (DSN),
wherein the authentication request includes at least a portion
of a data access request of a data accessing module of the
DSN. The method continues at step 148 where the process-
ing module outputs a verification request destined for the
data accessing module, wherein the verification request
includes a verification code that is generated based on the
authentication request. The method continues at step 150
where the processing module receives a verification
response, wherein the verification response includes a modi-
fied verification code that is generated by the data accessing
module based on the verification code and a credential. The
method continues at step 152 where the processing module
outputs an authentication response that is generated based on
the verification response, wherein, the data access request is
authenticated when the authentication response is favorable.
The generating the authentication response includes per-
forming a verifying function on the verification code and a
reference credential to produce a reference verification code,
comparing the modified verification code with the reference
verification code, and when the comparison is favorable,
generating the authentication response to indicate a favor-
able authentication.

FIG. 8A is a flowchart illustrating an example of acquiring
an authentication token. The method begins at step 154
where a processing module (e.g., a user device) generates
and sends an authentication token request message that
includes a credential. The credential includes one or more of
a user device identifier (ID), a password, a hash of the
password, and a signature. For example, the processing
module of a user device sends the request to an authentica-
tion authority (e.g., a DS managing unit). The authentication
authority receives the authentication token request message
and generates an authentication token response message in
response. The method of operation of the authentication
authority is discussed in greater detail with reference to FIG.
8B. The method continues at step 156 where the processing
module receives the authentication token response message.
The authentication token response message includes an
authentication token, wherein the token includes one or
more of a permission, a timestamp associated with the
permission, and a signature signed by the authentication
authority.

The method continues at step 158 where the processing
module generates a dispersed storage network (DSN) access
request. The generation may be based on one or more of a
user input, an application output, a read sequence, a write



US 9,602,496 B2

17

sequence, an access requirement, and a transfer requirement.
For example, the processing module executes a storage
sequence of a data object by generating a write request as the
DSN access request. The method continues at step 160
where the processing module determines whether the
authentication token is applicable to the request. The pro-
cessing module determines that the authentication token is
applicable to the request when the request is allowable based
on permissions associated with the authentication token. For
example, the processing module determines that the authen-
tication token is applicable to the request when the request
is a write request and a permission allows the processing
module to perform an associated write sequence (e.g., for a
particular vault). The method repeats back to step 154 when
the processing module determines that the authentication
token is not applicable. The method continues to step 162
when the processing module determines that the authenti-
cation token is applicable.

The method continues at step 162 where the processing
module sends a request message that includes the DSN
access request and the authentication token. For example,
the processing module sends the request message to a
dispersed storage (DS) unit to write an encoded data slice to
the DS unit. The method of operation to process the request
message is discussed in greater detail with reference to FIG.
9.

FIG. 8B is a flowchart illustrating an example of process-
ing an authentication token request. The method begins with
step 164 where a processing module (e.g., of an authenti-
cation authority) receives an authentication token request
message that includes a credential. For example, the pro-
cessing module receives the authentication token request
from a user device. The method continues at step 166 where
the processing module verifies the credential (e.g., compar-
ing a decrypted signature to a hash of the request message).
At step 166, the processing module determines whether the
credential is valid based on comparing an element of the
credential to a stored representation of the credential. For
example the processing module determines that the creden-
tial is valid when a comparison of a password of the
credential to a stored password associated with an identifi-
cation of a user device indicates that the password and the
stored password are substantially the same. The method
branches to step 170 when the processing module deter-
mines that the credential is valid. The processing module
continues to step 168 when the processing module deter-
mines that the credential is not valid. The method continues
at step 168 where the processing module rejects the authen-
tication token request when the processing module deter-
mines that the credential is not valid. For example, the
processing module rejects the authentication token request
by sending an authentication token reject response message
to the user device.

The method continues at step 170 where the processing
module determines permissions based on one or more of
information contained in the authentication token request
message, a query, a lookup, predetermination, a message,
and a command. For example, the processing module deter-
mines the permissions by a lookup into a permissions table
associated with a user device identifier (ID) included in the
authentication token request message. The method continues
at step 172 where the processing module determines a token
expiration. The determination may be based on one or more
of a requester identification, a predetermined time, a time
associated with the requester identification, a request type, a
message, and a command. The method continues at step 174
where the processing module generates a signature for the

10

15

20

25

30

35

40

45

50

55

60

65

18

authentication token. For example, the processing module
generates an encrypted hash of the permissions and token
expiration (and any other elements of the authentication
token) utilizing a private key associated with the processing
module. The method continues at step 176 where the pro-
cessing module generates an authentication token by aggre-
gating the permissions, the token expiration, and the signa-
ture. The method continues at step 178 where the processing
module sends the authentication token (e.g., to the user
device).

FIG. 9 is a flowchart illustrating an example of processing
a request message. The method begins with step 180 where
a processing module (e.g., of a dispersed storage (DS) unit)
receives a request message that includes an authentication
token. The method continues at step 182 where the process-
ing module determines whether a signature associated with
the authentication token is valid (e.g., indicating valid when
a comparison of a decrypted signature to a hash of the
authentication token indicates that they are substantially the
same). The method branches to step 186 when the process-
ing module determines that the signature is valid. The
method continues to step 184 when the processing module
determines that the signature is not valid. The method
continues at step 184 where the processing module rejects
the request message when the processing module determines
that the signature is not valid. For example, the processing
module sends a reject response message to a requester
associated with the request.

The method continues at step 186 where the processing
module determines valid permissions based on permissions
included in the authentication token. The method continues
at step 188 where the processing module determines whether
the valid permissions are applicable to the request. For
example, the processing module determines that the valid
permissions are applicable when the valid permissions sub-
stantially encompasses the request. For instance, the pro-
cessing module determines that the valid permissions are
applicable when the valid permissions allow a read request
to access vault 100 for a user device identifier (ID) 356 and
the request is from user device ID 356 to read data from
vault 100.

The method branches to step 192 when the processing
module determines that the valid permissions are applicable.
The method continues to step 190 when the processing
module determines that the valid permissions are not appli-
cable. The method continues at step 190 where the process-
ing module rejects the request message when the processing
module determines that the valid permissions are not appli-
cable. For example, the processing module sends the reject
response message to the requester and a DS managing unit.
The method continues at step 192 where the processing
module executes a request of the request message in accor-
dance with the valid permissions when the processing mod-
ule determines that the valid permissions are applicable. For
example, the processing module accesses vault 100 for
device ID 356.

FIG. 10 is a flowchart illustrating an example of retrieving
error coded data slices. The method begins with step 194
where a processing module (e.g., of a dispersed storage (DS)
processing module) determines a data segment to retrieve.
The determination may be based on one or more of an access
request, a data object name, a source name, a data segment
identifier, a list, a query, a message, and a command. For
example, the processing module receives a data object
retrieval request message and determines the data segment
to retrieve based on converting a data object name of the
data object into a source name of the data object. The



US 9,602,496 B2

19

method continues at step 196 where the processing module
determines DS units to retrieve slices based on one or more
of'the data segment identifier, the source name, a slice name,
and a virtual dispersed storage network (DSN) address to
physical location table lookup.

The method continues at step 198 where the processing
module determines performance parameters. The perfor-
mance parameters may include one or more of input port
bandwidth limitations, link speeds, a current average input
port loading, DS unit performance history, a number of DS
units, error coding dispersal storage function parameters,
and retrieval sequences in progress. For example, the pro-
cessing module determines the performance parameters to
include a 100 Mb per second input port bandwidth limitation
and a current average input port loading of 60 Mb per
second.

The method continues at step 200 where the processing
module determines a retrieval method based on one or more
of the performance parameters, a performance threshold, a
number of DS units, a priority indicator, a performance
indicator, a security indicator, a command, and a message.
The retrieval method includes sequencing the sending of
retrieval messages to the DS units in a timed pattern such
that the average input port loading is less than the input port
bandwidth limitation. For example, processing module
spaces the retrievals in time to avoid exceeding an input port
bandwidth limitation.

The method continues at step 202 where the processing
module sends retrieval messages in accordance with the
retrieval method. The processing module may change the
retrieval method based on updated performance parameters
during the sending of the retrieval messages. The method
continues at step 204 where the processing module receives
error coded data slices from the DS units. The processing
module may update the performance parameters based on
performance of receiving of the error coded data slices. The
method continues at step 206 where the processing module
decodes the error coded data slices in accordance with an
error coding dispersal storage function to produce the data
segment.

FIG. 11 is a flowchart illustrating an example of process-
ing a write request. The method begins with step 208 where
a processing module (e.g., of a dispersed storage (DS) unit)
receives a write request regarding an encoded data slice. The
write request includes one or more of a write request opcode,
a slice name, an encoded data slice, and a slice length. The
method continues at step 210 where the processing module
determines whether the write request pertains to deleting the
encoded data slice from a memory space (e.g., a memory
space of a memory associated with the processing module).
The determining whether the write request pertains to delet-
ing the encoded data slice includes interpreting the slice
length field of the write request, indicating that the write
request pertains to deleting the encoded data slice when the
slice length field includes a first value, and indicating that
the write request does not pertain to deleting the encoded
data slice when the slice length field includes a second value.
Such a value includes at least one of a number, a delete flag,
and a delete code. For example, a first value includes a
number zero and a second value includes a non-zero number.
The method branches to step 218 when the processing
module determines that the write request does not pertain to
deleting the encoded data slice. The method continues to
step 212 when the processing module determines that the
write request pertains to deleting the encoded data slice.

The method continues at step 212 where the processing
module stores a deletion marker regarding the encoded data

10

15

20

25

30

35

40

45

50

55

60

65

20

slice when the write request pertains to deleting the encoded
data slice. For example, the processing module stores the
deletion marker in a local directory. The method continues
at step 214 where the processing module determines when to
delete the encoded data slice based on the deletion marker
and in accordance with a deletion scheme. The determining
when to delete the encoded data slice includes at least one
of deleting the encoded data slice when memory availability
compares unfavorably to a memory availability threshold,
deleting the encoded data slice when a predetermined period
of time has expired after receiving the write request, deleting
the encoded data slice when utilization of the memory space
compares unfavorably to a memory space usage threshold,
and deleting the encoded data slice based on a deletion
instruction of the write request (e.g., receiving an instruction
to immediately delete).

The memory availability includes a number of available
bytes of a memory associated with the processing module
(e.g., of a DS unit). For example, the processing module
determines that memory availability compares unfavorably
to the memory availability threshold when memory avail-
ability is less than the memory availability threshold. The
utilization of the memory space includes a number of
utilized bytes of a memory associated with one of the
processing module (e.g., of a DS unit) and a vault (e.g.,
associated with one or more user devices such as a vault).
For example, the processing module determines that utili-
zation of the memory space compares unfavorably to the
memory space usage threshold when utilization of the
memory space is greater than the memory space usage
threshold. The method loops back to step 214 when the
processing module determines not to delete the encoded data
slice. The method continues to step 216 one the processing
module determines to delete the encoded data slice. The
method continues at step 216 where the processing module
deletes the encoded data slice. For example, the processing
module deletes the encoded data slice from the memory and
deletes the deletion marker from the local directory.

The method continues at step 218 where the processing
module determines whether storing the encoded data slice is
allowable when the write request does not pertain to deleting
the encoded data slice, wherein the encoded data slice is
received with the write request. The determining whether the
storing the encoded data slice is allowable includes at least
one of indicating that storing the received encoded data slice
is allowable when the received encoded data slice is asso-
ciated with a directory file (e.g., based on a flag, a query,
directory information associated with the write request,
matching a slice name, a message, and a command), indi-
cating that storing the received encoded data slice is allow-
able when memory availability compares favorably to a
memory availability threshold, and indicating that storing
the received encoded data slice is allowable when utilization
of'the memory space compares favorably to a memory space
usage threshold. The method branches to step 222 when the
processing module determines that storing the encoded data
slice is allowable. The method continues to step 220 when
the processing module determines that storing the encoded
data slice is not allowable. The method continues at step 220
where the processing module sends an error response mes-
sage to a requesting entity when the storing is not allowable.
The method continues at step 222 where the processing
module stores the received encoded data slice when the
storing is allowable.

FIG. 12 is a flowchart illustrating an example of deter-
mining storage generation operational modes. The method
begins with step 240 where a processing module (e.g., of a



US 9,602,496 B2

21

dispersed storage (DS) processing module) determines gen-
erations based on one or more of a generation list, which
generation the process left off with last time, an error
message, a vault identifier, a message, and a command. The
method continues at step 242 where the processing module
determines a status of DS unit storage sets associated with
the generations, wherein the DS unit storage set determina-
tions are based on one or more of a lookup, a query, a list,
a message, and a command. The status may include one or
more of a ping time, a write speed indicator, a read speed
indicator, an availability history, a reliability history, cost,
power availability, and utilization. The method continues at
step 244 where the processing module determines loading
requirements. The loading requirements include at least one
of read operations per unit of time and write operations per
unit of time. The determination may be based on one or more
of a read history record, a write history record, a number of
readers predictor, a number of writers predictor, a read
activity predictor, and a write activity predictor. For
example, the processing module determines the loading
requirements to include 15,000 read operations per minute
and 1,000 write operations per minute based on aggregating
the historical and predictive records.

The method continues at step 246 where the processing
module determines which generations to be write capable
based on one or more of a status of the DS unit storage sets,
the loading requirements, system preferences, a message,
and a command. For example, the processing module deter-
mines DS unit storage set 500 to be write capable when the
status of DS unit storage set 500 indicates that memory
utilization is less than a utilization threshold. As another
example, the processing module determines DS unit storage
sets 430, 395, and 632 to be write capable when the loading
requirements indicates a number of predicted writers is
greater than a number of writers threshold. In such an
instance, a system performance improvement is realized by
activating multiple DS unit storage sets to process write
sequence activity from many writers.

The method continues at step 248 where the processing
module determines which generations to be read capable
based on one or more of the status of the DS unit storage
sets, the loading requirements, system preferences, a mes-
sage, and a command. For example, the processing module
determines DS unit storage set 700 to be read capable when
the status of DS unit storage set 600 indicates that memory
utilization is near a utilization threshold. As another
example, the processing module determines DS unit storage
sets 111, 327, and 948 to be read capable when the loading
requirements indicates a number of predicted readers is
greater than a number of readers threshold. In such an
instance, a system performance improvement is realized by
activating multiple DS unit storage sets to process read
sequence activity from many readers.

The method continues at step 250 where the processing
module determines generation modes. The generations
modes includes one or more of DS unit power off, DS unit
power on, DS unit memory spin down, DS unit memory spin
up, DS unit off-line, and DS unit online. Such a determina-
tion may be based on one or more of which generations are
write capable, which generations are read capable, status of
the DS unit storage sets, loading requirements, system
preferences, a message, and a command. For example, the
processing module determines the generation mode for DS
unit storage set 948 to be DS unit memory spin down when
loading requirements indicates that system performance is
satisfactory without utilizing DS unit storage set 948. The
method continues at step 252 where the processing module

10

15

20

25

30

35

40

45

50

55

60

65

22

sends mode control request messages to the DS unit storage
sets in accordance with the generation modes.

FIG. 13 is a flowchart illustrating an example of manipu-
lating pre-slice data. The method begins with step 254 where
a processing module (e.g., of a dispersed storage (DS)
processing unit) receives a data segment. For example, a
processing module receives the data segment with metadata
associated with the data segment. The metadata may include
one or more of a data object name, a data object type, magic
values, header information, data object content attributes,
data object size, a user identifier (ID), a priority indicator, a
security indicator, an integrity check indicator, an encryption
indicator, a compression indicator, and a performance indi-
cator. The method continues at step 256 where the process-
ing module determines whether to statistically test the data
segment. The determination may be based on the metadata.
For example, the processing module determines to not
statistically test the data segment when the metadata indi-
cates that a file name extension is associated with a data
object type that is already compressed. The method branches
to step 264 when the processing module determines to not
statistically test the data segment. The method continues to
step 258 when the processing module determines to statis-
tically test the data segment.

The method continues at step 258 where the processing
module statistically tests the data segment to determine
compressibility. For example, the processing module com-
presses a portion of the data segment and compares a
resulting compressed portion to the portion to determine if
the difference is more than a compressibility threshold. The
method continues at step 260 where the processing module
determines whether to apply a compression codec based on
the statistical test. For example, the processing module
determines to not apply the compression codec when the
statistical test indicates that the difference between the
compressed portion and a portion is less than the compress-
ibility threshold. The method branches to step 264 when the
processing module determines to not apply the compression
codec. The method continues to step 262 when the process-
ing module determines to apply the compression codec. The
method continues at step 262 where the processing module
determines the compression codec when the processing
module determines to apply the compression codec. The
determination may be based on one or more of the statistical
test (e.g., compressibility), a compression codec table
lookup, a compression codec matching algorithm, a mes-
sage, and a command.

The method continues at step 264 where the processing
module determines whether to apply an encryption codec
based on determining whether the data segment is already
encrypted. For example, the processing module analyzes the
data segment to determine a randomness factor and com-
pares the randomness factor to a randomness threshold.
Next, the processing module indicates to apply the encryp-
tion codec when the comparison indicates that the random-
ness factor is greater than the randomness threshold. As
another example, the processing module determines that the
data segment is encrypted based on the security indicator
and/or encryption indicator of the metadata. The method
branches to step 268 when the processing module deter-
mines to not apply the encryption codec. The method
continues to step 266 when the processing module deter-
mines to apply the encryption codec. The method continues
at step 266 where the processing module determines the
encryption codec when the processing module determines to
apply the encryption codec. The determination may be based
on one or more of the randomness factor, the security



US 9,602,496 B2

23

indicator, the encryption indicator, an encryption codec table
lookup, an encryption codec matching algorithm, a message,
and a command.

The method continues at step 268 where the processing
module determines whether to apply an integrity check
codec based on determining whether an integrity check has
already been applied to the data segment. For example, the
processing module analyzes the data segments to determine
if one or more of a signature, a hash, a checksum have been
applied. As another example, the processing module deter-
mines that the integrity check has already been applied to the
data segment based on the integrity check indicator of the
metadata. The method branches to step 272 when the
processing module determines to not apply the integrity
check codec. The method continues to step 270 when the
processing module determines to apply the integrity check
codec. The method continues at step 270 where the process-
ing module determines the integrity check codec when the
processing module determines to apply the integrity check
codec. The determination may be based on one or more of
the integrity check determination, the integrity check indi-
cator, an integrity check codec table lookup, an integrity
check codec matching algorithm, a message, and a com-
mand.

The method continues at step 272 where the processing
module performs the codec functions on the data segment in
accordance with the compression codec, the encryption
codec, and the integrity check codec as previously deter-
mined. For example, the processing module applies all three
codec types to the data segment when all three codec types
are desired. As another example, the processing module
applies none of the three codec types to the data segment
when none of the codec types are desired. As yet another
example, the processing module applies one codec type but
not the other two codec types. In addition, the processing
module may update a codec stack to indicate the ordering of
the codec functions as applied to the data segment to enable
subsequent post-slice data de-manipulation in the reverse
order. The method may continue to apply more codecs to the
data segment in the same or more categories. For example,
the processing module may apply the compression codec,
the encryption codec, a second encryption codec and the
integrity check codec.

FIG. 14 is a flowchart illustrating an example of error
correcting a data slice. The method begins with step 274
where a processing module (e.g., a dispersed storage (DS)
processing unit) receives a data segment retrieval request.
For example, the processing module retrieves a plurality of
data segments to re-create a data object by generating a
plurality of retrieval requests for the plurality of data seg-
ments. The method continues at step 276 where the pro-
cessing module generates a plurality of data slice retrieval
requests to retrieve a decode threshold number of error
coded data slices in response to receiving the data segment
retrieval request. For example, the processing module
receives a source name associated with the data segment,
determines a plurality of slice names for the data segment,
determines a plurality of DS units associated with the
plurality of slice names, and sends the plurality of data slice
retrieval requests to the plurality of DS units. At step 276,
the processing module receives a decode threshold number
of error coded data slices in response to the plurality of
retrieval requests.

The method continues at step 278 where the processing
module decodes the error coded data slices in accordance
with an error coding dispersal storage function to produce a
decoded data segment and a validity indicator. For example,

10

15

20

25

30

35

40

45

50

55

60

65

24

the processing module calculates a hash of the decoded data
segment to produce the validity indicator. At step 278, the
processing module determines whether the decoded data
segment is valid by comparing a stored validity indicator
(e.g., associated with the data segment) with the validity
indicator. The processing module determines that the
decoded data segment is valid when the stored validity
indicator and the validity indicator are substantially the
same. The method branches to step 282 when the processing
module determines that the decoded data segment is not
valid. The method continues to step 280 when the processing
module determines that the decoded data segment is valid.
The method continues at step 280 where the processing
module utilizes the decoded data segment as the data seg-
ment when the processing module determines that the
decoded data segment is valid.

The method continues at step 282 where the processing
module determines a pillar combination such that the pillar
combination specifies which pillars to retrieve and utilize
data slices in an attempt to re-create a valid decoded data
segment. Such a determination may be based on one or more
of the pillar width, the threshold, a number of pillar com-
binations, which pillar combinations resulted in a previous
test with a valid decoded data segment, and which pillar
combinations resulted in a previous test with an invalid the
decoded data segment. The processing module may utilize
one or more techniques to determine the one or more data
slices in error. For example, the processing module may
choose to utilize slices from different pillar groups to ini-
tially determine where an error is sourced from. In an
instance, the processing module may choose to utilize pillars
1-3 in a first test and pillars 3-5 in a second test when the
pillar width is 5 and the threshold is 3. As another technique,
the processing module may eliminate one pillar at a time. In
an instance, the processing module may choose to utilize the
following pillar combinations to eliminate pillar 2: 1, 3, 4;
1,3,5;1,4, 5 and 3, 4, 5.

The method continues at step 284 where the processing
module retrieves error coded data slices of other pillar(s) in
accordance with the pillar combination. The processing
module may retrieve data slices of all of the pillars at once
and subsequently perform the validity testing of decoded
data segments from different combinations of pillars. The
method continues at step 286 where the processing module
decodes the error coded data slices in accordance with the
error coding dispersal storage function to produce a subse-
quent decoded data segment and a subsequent validity
indicator. At step 288, the processing module determines
whether the subsequent decoded data segment is valid. The
method branches back to step 282 (e.g., to try another pillar
combination) when the processing module determines that
the subsequent decoded data segment is not valid. The
method continues to step 290 when the processing module
determines that the subsequent decoded data segment is
valid.

The method continues at step 290 where the processing
module utilizes the subsequent decoded data segment as the
data segment when the processing module determines that
the subsequent data segment is valid. Alternatively, or in
addition to, the processing module may end the testing loop
when the error status has been determined for each data slice
(e.g., each of the data slices in error have been identified).
Alternatively, the process fails if all possible pillar combi-
nations have been tried without producing a valid subse-
quent decoded data segment.

The method continues at step 292 where the processing
module encodes the data segment in accordance with the



US 9,602,496 B2

25

error coding dispersal storage function to produce an error-
free set of error coded data slices. The method continues at
step 294 where the processing module compares the
retrieved error coded data slices to the error-free set of error
coded data slices to identify the retrieved error coded data
slice(s) (and pillars) in error (e.g., a difference signifies an
error). The method continues at step 296 where the process-
ing module sends an error-free error coded data slice to a DS
unit, wherein the DS unit corresponds to the pillar of the
retrieved error coded data slice in error. The DS unit replaces
the error coded data slice in error with the error-free error
coded data slice. Alternatively, or in addition to, the pro-
cessing module initiates a rebuilding process to identify and
repair data slices in error.

FIGS. 15A-15D depict an example of a dispersed storage
network (DSN) memory where a first plurality of DS units
36 are implemented in a local location and a second plurality
of DS units 36 are implemented in a remote location. For
example, the local location is proximate to a DS processing
unit utilized to store and retrieve data slices to the DSN
memory and the remote location is not proximate to the DS
processing unit and the local location. As such, the network
24 operably couples the DS processing unit to the plurality
of DS units 36 at the remote location. FIGS. 15A-15D
individually depict configuration examples of error coding
dispersal storage function parameters (e.g., pillar width,
threshold) and pillar assignments to DS units of one or both
of the plurality of DS units. Note that the configurations are
associated with a storage policy that includes optimization
objectives such as cost, reliability, security, and perfor-
mance. The configurations and objectives are discussed in
greater detail with reference to FIGS. 15A-15D. A method to
determine and implement the configuration of the storage
policy is discussed in greater detail with reference to FIG.
16.

FIG. 15A is a schematic block diagram of an embodiment
of a pillar assignment of a dispersed storage network (DSN)
memory. The DSN memory includes a plurality of dispersed
storage (DS) units 36 at a local location 298 and a plurality
of DS units 36 at a remote location 300. Combinations of DS
units 36 from one or both of the local location 298 and the
remote location 300 may be assigned to form a DS unit
storage set in accordance with a system design objective,
wherein the DS unit storage set accommodates storing a
pillar width number (n) of encoded data slices as a set of
encode slices. For example, pillars 1-5 of a set of encoded
data slices are assigned to five DS units 36 of the local
location 298 when a pillar width n=5 and a decode threshold
k=3 (e.g., no pillars of the set of encoded data slices are
assigned to DS units of the remote location 300). Such a
configuration may be associated with a system designed
objective of low-cost since utilized DS units 36 are all
located at the local location 298 (e.g., no remote location
300 costs) and the pillar width is relatively low as compared
to other configurations thus lowering costs associated DS
units 36.

FIG. 15B is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network (DSN) memory. The DSN memory includes a
plurality of dispersed storage (DS) units 36 at a local
location 298 and a plurality of DS units 36 at a remote
location 300. In an implementation example, pillars 1-3 of a
set of encoded data slices are assigned to three DS units 36
of'the local location 298 and pillars 4-5 of the set of encoded
data slices are assigned two DS units 36 of the remote
location 300 when a pillar width n=5 and a decode threshold
k=2. Such a configuration may be associated with a system

5

10

15

20

25

30

35

40

45

50

55

60

65

26

designed objective of improved reliability since a decode
threshold number of pillars are included in both the local
location 298 and the remote location 300. As such, data may
be retrieved from one location even when the other location
is not available

FIG. 15C is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network (DSN) memory. The DSN memory includes a
plurality of dispersed storage (DS) units 36 at a local
location 298 and a plurality of DS units 36 at a remote
location 300. In an implementation example, pillars 1-5 of a
set of encoded data slices are assigned to five DS units 36 of
the local location 298 and pillars 6-10 of the set of encoded
data slices are assigned five DS units 36 of the remote
location 300 when a pillar width n=10 and a decode thresh-
old k=6. Such a configuration may be associated with a
system designed objective of improved security since the
decode threshold is relatively high with respect to the pillar
width, encoded data slices of the pillars are stored in more
than one location, and a decode threshold number of
encoded data slices does not exist at a single location.

FIG. 15D is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network (DSN) memory. The DSN memory includes a
plurality of dispersed storage (DS) units 36 at a local
location 298 and a plurality of DS units 36 at a remote
location 300. In an implementation example, pillars 1-5 of a
set of encoded data slices are assigned to five DS units 36 of
the local location 298 and pillars 6-10 of the set of encoded
data slices are assigned five DS units 36 of the remote
location 300 when a pillar width n=10 and a decode thresh-
old k=4. Such a configuration may be associated with a
system designed objective of improved reliability since a
decode threshold number of pillars are stored in both loca-
tions and the decode threshold is relatively low with respect
to the pillar width. As such, there are 210 ways (e.g., 10
choose 4) to successtully retrieve a decode threshold number
of encoded data slices from DS units 36 of the remote
location 298 and the remote location 300.

FIG. 16 is a flowchart illustrating an example of imple-
menting a storage policy. The method begins with step 302
where a processing module (e.g., of a dispersed storage (DS)
processing unit) determines a current storage policy. The
current storage policy may include one or more of a storing
policy, a retrieving policy, an aggregate storing and retriev-
ing policy. The determination may be based on one or more
of'a lookup, a query, a list, a message, and a command. The
method continues at step 304 where the processing module
determines storage requirements, wherein the requirements
includes one or more objectives related to cost, reliability,
performance, and security. The determination may be based
on one or more of a cost requirement, a reliability require-
ment, a performance requirement, a security requirement, a
user input, an indicator, an error message, a request, a
message, and a command.

The method continues at step 306 where the processing
module determines a new storage policy based on one or
more of the current storage policy, a policy guideline,
minimum requirements, and the storage requirements. For
example, the processing module determines a new storage
policy to lower costs when there was no current storage
policy and the storage requirements indicate a low-cost is
favored over other objectives. As another example, the
processing module determines the new storage policy to
optimize reliability when the current storage policy is opti-
mized for cost and the storage requirements indicate that
reliability is now preferred over cost.



US 9,602,496 B2

27

The method continues at step 308 where the processing
module determines available storage resources (e.g., DS
units, locations of DS units, network connectivity availabil-
ity, etc.). The determination may be based on one or more of
a table lookup, a list, a query, a message, and a command.
For example, the processing module determines the avail-
able resources to include a first group of five DS units at a
local location and a second group of five DS units at a
remote location. The method continues at step 310 where the
processing module determines an optimized configuration of
storage resources based on the new storage policy and the
available storage resources. The determination includes
selecting one alternative configuration of a plurality of
alternative configurations of the storage resources based on
evaluating a fit of the alternative configuration to the new
storage policy and storage requirements. The evaluation
may include analyzing individual parameters of cost, reli-
ability, and security.

The method continues at step 312 where the processing
module determines whether cost optimization is required
based on the optimized configuration. The method branches
to step 316 when the processing module determines that cost
optimization is not required. The method continues at step
314 where the processing module optimizes the configura-
tion for cost (e.g., one location, a small pillar width) when
the processing module determines to optimize for cost. The
method continues at step 316 where the processing module
determines whether reliability optimization is required
based on the optimized configuration. The method branches
to step 320 when the processing module determines that
reliability optimization is not required. The method contin-
ues at step 318 where the processing module optimizes the
configuration for reliability (e.g., greater than one location,
a small threshold) when the processing module determines
to optimize for reliability. The method continues at step 320
where the processing module determines whether security
optimization is required based on the optimized configura-
tion. The method branches to step 324 when the processing
module determines that security optimization is not
required. The method continues that step 322 where the
processing module optimizes the configuration for security
(e.g., greater than one location, a larger threshold) when the
processing module determines to optimize for security.

The method continues at step 324 where the processing
module determines whether to move slices based on the
optimized configuration. For example, the processing mod-
ule determines to move slices from a DS unit of the local
location to a DS unit of the remote location to address
improved reliability and/or or security. The method branches
to step 328 when the processing module determines to not
move slices. The method continues at step 326 where
processing module moves error coded data slices when the
processing module determines to move data slices. The
method continues at step 328 where the processing module
determines whether to re-encode error coded data slices
based on the optimized configuration. For example, the
processing module determines to re-encode when changing
error coding dispersal storage function parameters (e.g., a
new pillar width, a new threshold). The method branches to
step 332 when the processing module determines to not
re-encode error encoded data slices. The method continues
at step 330 where the processing module re-encodes error
coded data slices (e.g., retrieve the old slices, decode the old
slices to produce a data segment, encode the data segment to
produce re-encoded data slices, store the re-encoded data
slices, delete the old slices) when the processing module

10

15

20

25

30

35

40

45

50

55

60

65

28

determines to re-encode error coded data slices. The method
continues at step 332 where the method ends.

FIGS. 17A-17C depict an example of a dispersed storage
network (DSN) memory that includes a variable number of
dispersed storage (DS) units 36 depicting a migration sce-
nario from a starting step of FIG. 17A, to a mid-step of FIG.
17B, to an ending step of FIG. 17C. At each step, the DS
units 36 are assigned pillars of a corresponding set of
encoded data slices in accordance with error coding disper-
sal storage function parameters (e.g., pillar width, decode
threshold, etc.). The migration scenario steps support migra-
tion objectives including expanding and contracting storage
resources. For example, the storage resources may be
expanded to support a migration objective to add more DS
units 36 and/or retire older DS units 36. As another example,
the storage resources may be contracted support a migration
objective to shrink a number of DS units 36. As illustrated,
the DS units 36 of FIGS. 17A-17C are configured to support
a migration objective to retire three of five DS units by
adding three DS units, temporarily resulting in eight DS
units 36, followed by retirement of three original DS units
36 to end the scenario with five DS units 36. The migration
objectives and configurations are discussed in greater detail
with reference to FIGS. 17A-17C. A method to expand and
contract storage resources is discussed in greater detail with
reference to FIG. 18.

FIG. 17A is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network (DSN) memory. Five dispersed storage (DS) units
36 correspond to a step 1 of a migration scenario when a
pillar width is 5 and a decode threshold is 3. A migration
objective may include retiring three of the five DS units 36.
For example, the three DS units 36 may have aged past a DS
unit age threshold where it is desired to retire DS units that
have aged past the threshold. As another example, error
messages and/or performance history may indicate that the
three DS units 36 should be retired.

FIG. 17B is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network (DSN) memory. Three dispersed storage (DS) units
36 are newly provisioned resulting in eight DS units 36
correspond to a step 2 of a migration scenario when a pillar
width is expanded to 8 and a decode threshold remains 3. As
such, the three newly provisioned DS units 36 are assigned
to expansion pillars 6-8. A migration objective may include
retiring a first three of an initial five DS units 36 without
moving encoded data slices from the first three DS units 36.

At step 2 of the migration scenario, encoded data slices
corresponding to the expansion pillars are generated and
stored in the three expansion DS units 36. For example, a
decode threshold number of encoded data slices are
retrieved from the initial five DS units 36, the encoded slices
are decoded in accordance with an error coding dispersal
storage function (e.g., n=5) to produce a data segment, the
data segment is encoded in accordance with new error
coding dispersal storage function parameters (e.g., n=8) to
produce encoded data slices corresponding to the expansion
pillars.

FIG. 17C is a schematic block diagram of another
embodiment of a pillar assignment of a dispersed storage
network (DSN) memory. Three dispersed storage (DS) units
36 of an initial five DS units 36 are retired resulting in five
DS units 36 correspond to a step 3 of a migration scenario
when a pillar width was expanded to 8 and a decode
threshold remains 3. As such, there is no need to modify
encoded data slices of the remaining three DS units 36
corresponding to pillars 4-6 since data segments can be



US 9,602,496 B2

29

successfully decoded based on retrieving a decode threshold
number (e.g., 3 pillars) of data slices from any of the
remaining DS units. In such a migration scenario, a total
number of DS units 36 and the decode threshold is the same
in steps 1 and 3 and there are still 5 choose 3 ways to retrieve
the decode threshold number of encoded data slices.

FIG. 18 is a flowchart illustrating an example of expand-
ing and contracting storage resources. The method begins
with step 334 where a processing module (e.g., dispersed
storage (DS) processing unit) determines storage perfor-
mance based on one or more of a query, and error message,
a lookup, a message, and a command. Storage performance
may include one or more of memory device uptime, mean
time to failure, mean time to repair, access latency, access
bandwidth, and network performance. The method contin-
ues at step 336 where the processing module determines a
storage provisioning schedule based on one more of the
storage performance, storage requirements, a previous
schedule, a command, a lookup, a query, a request, and a
message. The storage provisioning schedule may include
one or more of an expansion requirement, a contraction
requirement, a provisioning schedule, and a de-provisioning
schedule.

The method continues at step 338 where the processing
module determines whether to expand storage. Expansion of
storage may include one more of adding memory devices,
adding DS units, adding a dispersed storage network (DSN)
memory, activating dormant storage, and allocating more
memory of already provisioned memory devices. The deter-
mination may be based on one or more of the provisioning
schedule, the storage performance, an expansion indicator, a
storage requirement, and a comparison of the storage per-
formance to the requirement. For example, the processing
module determines to expand storage when the storage
provisioning schedule indicates that more storage is to be
added when the storage performance indicates a 10% fall of
the mean time to failure in any ten day period. The method
branches to step 344 when the processing module deter-
mines to not expand storage. The method continues to step
340 when the processing module determines to expand
storage.

The method continues at step 340 where the processing
module facilitates provisioning and allocation of storage.
For example, the processing module sends a message to a
DS managing unit communicating a need to add more DS
units to a system. As another example, the processing
module activates dormant DS units. As yet another example,
the processing module allocates more memory of an existing
DS unit to a vault. As a still further example, the processing
module determines a new pillar width. The method contin-
ues at step 342 where the processing module encodes and
stores slices. For example, the processing module re-en-
codes data slices in accordance with a new pillar width and
stores re-encoded data slices in newly allocated storage. As
another example, the processing module retrieves encoded
data slices of a corresponding vault and sends the encoded
data slices to the newly allocated storage.

The method continues at step 344 where the processing
module determines whether to contract storage. Contraction
of storage may include one more of deactivating memory
devices, removing DS units, deactivating DS units, remov-
ing a DSN memory, turning off active storage, and de-
allocating memory of provisioned memory devices. The
determination may be based on one or more of a de-
provisioning schedule, storage performance, a contraction
indicator, a storage requirement, and a comparison of the
storage performance to a requirement. For example, the

40

45

55

30

processing module determines to contract storage when the
storage de-provisioning schedule indicates that storage is to
be removed when the storage performance indicates a 20%
rise of the mean time to failure in any ten day period. The
method repeats back to step 334 when the processing
module determines to not contract storage. The method
continues to step 346 when the processing module deter-
mines to contract storage.

The method continues at step 346 where the processing
module facilitates de-provisioning and de-allocation of stor-
age. The de-provisioning and de-allocation may include one
or more of deactivating a memory device, deactivating a DS
unit, deactivating a DSN memory, de-allocating memory
from one or more faults, turning off the memory device,
turning off a DS unit, and retrieving slices from a primary
memory device and storing them in a different memory
device or DS unit followed by turning off the primary
memory device. The method repeats back to step 334.

FIG. 19 is a schematic block diagram of an embodiment
of' a communication system. The system includes a site 1, a
site 2, a user device 1, and a user device 2. The site 1
includes a DS processing module 1 and a plurality of n
transmitter receiver (TR) modules 11-1%. The site 2 includes
a DS processing module 1 and a plurality of n TR modules
21-2n. The user device 1 and the user device 2 includes a DS
processing module 34 and a plurality of n TR modules 1-7.
The TR modules may be implemented as at least one of n
wireless hardware transceivers or fewer than n frequency
multiplexed, time multiplexed, or the like, as n software
modules operating on one hardware transceiver (e.g., a
software defined radio (SDR)), and as n software modules
operating on two or more hardware transceivers (e.g., soft-
ware defined radios).

The DS processing modules 1-2 receive broadcast content
348 (e.g., video, multimedia, audio, music, voice, data
streaming, etc.), determine error coding dispersal storage
function parameters, encode the broadcast content to pro-
duce error encoded data slices of n pillars in accordance with
the error coding dispersal storage function parameters,
determine a wireless configuration, configure TR modules
11-17 and 21-2#z in accordance with the wireless configu-
ration, and send the error encoded data slices via the TR
modules to produce pillar 1-» communication as wireless
signals. For example, DS processing module 1 sends error
encoded data slices of all 16 pillars from TR modules 11-1z
as wireless signals when a pillar width is 16 (e.g., pillar 1
communication from TR module 11, pillar 2 communication
from TR module 12, pillar 3 communication from TR
module 13, etc.). As another example, DS processing mod-
ule 2 sends pillar 3 communication from TR module 23,
through sending pillar 16 communications from TR module
21 when the pillar width is 16. The method of operation of
the DS processing modules 1-2 is discussed in greater detail
with reference to FIG. 21.

The TR modules communicate wireless signals with other
TR modules of the system and may operate in accordance
with one or more wireless industry protocol standards
including but not limited to universal mobile telecommuni-
cations system (UMTS), global system for mobile commu-
nications (GSM), long term evolution (LTE), wideband code
division multiplexing (WCDMA), IEEE 802.11, IEEE
802.16, WiMax, Bluetooth, or any other local area network
(LAN), wide area network (WAN), personal area network
(PAN) or like wireless protocol. As such, any two, four, or
any number of TR modules may utilize one or more of the



US 9,602,496 B2

31

same or different wireless protocols. For example, TR mod-
ule 11 may utilize GSM and TR module 12 may simulta-
neously utilize IEEE 802.16.

The TR modules 1-» may utilize similar or different
performance levels (e.g., speed in bits per second) of the
wireless signals. For example, TR module 14 may commu-
nicate at 100 kilo bits per second (Kbps) via pillar 4
communication wireless signals in accordance with the
WCDMA standard and TR module 17 may simultaneously
communicate at 3.3 mega bits per second (Mbps) via pillar
7 communication wireless signals in accordance with IEEE
802.11 standard. As another example, TR module 14 and TR
module 17 may both function in accordance with the
IEEE802.16 standard but operate at different performance
levels. For instance, TR module 14 may communicate at 350
kilo bits per second via pillar 4 communication wireless
signals in accordance with the IEEE 802.16 standard and TR
module 17 may simultaneously communicate at 675 kilo bits
per second via pillar 7 communication wireless signals in
accordance with IEEE 802.16 standard. Since software
defined radios are possible in some embodiments, such
protocols may be changed over time according to a prede-
termined security algorithm whereby the protocol is chang-
ing over time.

Site 1 and site 2 communicate with each other to facilitate
coordination of the transmission of pillar communications.
For example, such coordination communication is facilitated
via a wireless inter-site communication 350. As another
example, the coordination communication is facilitated via
a wireline inter-site communication. In an example of coor-
dination, site 1 sends a message to site 2 that site 1 will
transmit pillars 1-5 and site 2 will transmit pillars 6-8 of the
same data segment when the pillar width is 8.

The DS processing module 34 of user device 1 or 2
receives the broadcast content by determining a wireless
configuration for TR modules 1-», configuring the TR
modules in accordance with the wireless configuration,
determining error coding dispersal storage function param-
eters, receiving pillar communication via of the TR modules,
decoding received data slices from the pillar communication
in accordance with the error coding dispersal storage func-
tion parameters to produce the broadcast content 348. For
example, user device 1 receives pillar 1-» communications
from site 1 to receive a decode threshold number of error
encoded data slices to decode reproducing the broadcast
content 348. As another example, user device 2 receives
pillar 1-2 communications from site 1 and pillar 3-» com-
munications from site 2 to receive a decode threshold
number of error encoded data slices to decode producing the
broadcast content 348. As yet another example, user device
2 receives pillar 1-2 communications from user device 1 via
an inter-device wireless communication 352 and pillar 3-»
communications from site 2 to receive a decode threshold
number of error encoded data slices to decode reproducing
the broadcast content 348. The inter-device wireless com-
munications 352 is utilized to communicate pillar commu-
nications and coordination information between two or more
user devices. The coordination information includes
requests and responses to forward particular pillar commu-
nications. For example, user device 2 sends a pillar 1-2
communication request via the inter-device wireless com-
munication 352 to user device 1. User device 1 forwards
pillar 1-2 communications to user device 2 via inter-device
wireless communications 352 in response. The method of
operation of the DS processing module of the user devices
1-2 is discussed in greater detail with reference to FIGS. 20,
23, and 24.

10

15

20

25

30

35

40

45

50

55

60

65

32

FIG. 20 is a flowchart illustrating an example of acquiring
a content broadcast. The method begins with step 354 where
a processing module (e.g., of a user device) determining a
mapping of encoded data slices to wireless channels for
wireless communication of data, wherein a data segment of
the data is encoded in accordance with a dispersed storage
error encoding protocol to produce a set of encoded data
slices and wherein a first encoded data slice of the set of
encoded data slices is associated with a first wireless channel
of a set of wireless channels. The mapping includes one or
more of a pillar to wireless channel mapping, wherein the
dispersed storage error encoding protocol prescribes a set of
pillars, a data segment to wireless channel mapping, and an
encoded data slice pattern to wireless channel mapping (e.g.,
a combination of pillars and segments).

As amapping example, the processing module determines
to receive pillars 1-2 from site 1 and pillars 3-16 from site
2 when the processing module determines that pillars 1-2
can only be received from site 1 and pillars 3-16 can only be
received from site 2. As another example, the processing
module determines to receive pillars 1-8 from site 1 and
pillars 9-16 from site 2 when all 16 pillars are transmitted
from both sites and the wireless signal quality indicator
indicates that pillar 1-8 communications from site 1 is
preferred to pillar 1-8 communications from site 2 and that
pillar 9-16 communications from site 2 is preferred to pillar
9-16 communications from site 1. As yet another example,
the processing module determines wireless parameters to
optimize a resulting wireless signal quality indicator. For
instance, the processing module determines to utilize a
slower wireless signal to improve reliability of the wireless
communications.

The determining of the mapping may be based on at least
one of receiving a broadcast indicator, a broadcast status
indicator, a user device data requirement (e.g., another user
device desires the same data segment), a previously utilized
access method, a data access response, a message, a pillar
broadcast indicator, and a wireless signal indicator. For
example, the processing module determines the mapping to
include a first mapping of a first collective of encoded data
slices of the set of encoded data slices to at least one wireless
channel of a first transmission site and a second mapping of
a second collective of encoded data slices of the set of
encoded data slices to at least one wireless channel of a
second transmission site.

The method continues at step 356 where the processing
module configures, in accordance with the mapping, receiv-
ers of a wireless communication device to receive, via a set
of wireless channels, at least some of the set of encoded data
slices to produce configured receivers. The configuring the
receivers includes configuring a first receiver of the receiv-
ers to receive the first encoded data slice via a first wireless
channel of the set of wireless channels, configuring a second
receiver of the receivers to receive a second encoded data
slice of the set of encoded data slices via a second wireless
channel of the set of wireless channels, and configuring a
third receiver of the receivers to receive a third encoded data
slice of the set of encoded data slices via a third wireless
channel of the set of wireless channels. At step 356, the
processing module configures, in accordance with the map-
ping, a first receiver of the receivers to receive at least some
of the set of encoded data slices via a first wireless channel
of the set of wireless channels and a second receiver of the
receivers to receive at least some of the second set of
encoded data slices via a second wireless channel of the set
of wireless channels when a second data segment of the data



US 9,602,496 B2

33

is encoded in accordance with the dispersed storage error
encoding protocol to produce a second set of encoded data
slices.

At step 356, the processing module may generate a
configuration signal regarding optimal operational charac-
teristics of at least one of the configured receivers and
facilitate transmission of the configuration signal. For
example, the processing module facilitates transmission of
the configuration signal to a transmitter corresponding to at
least one receiver such that transmitter configuration
includes information of the configuration signal.

The method continues at step 358 where the processing
module facilitates the configured receivers to receive
encoded data slices of the set of encoded data slices to
produce received encoded data slices. At step 358, the
processing module facilitates the first receiver to receive the
encoded data slices of the set of encoded data slices to
produce the received encoded data slices and facilitates the
second receiver to receive encoded data slices of the second
set of encoded data slices to produce second received
encoded data slices when the second data segment of the
data is encoded in accordance with the dispersed storage
error encoding protocol to produce the second set of
encoded data slices.

The method continues at step 360 where the processing
module determines whether at least a decode threshold
number of received encoded data slices have been received
within a predetermined period of time. At step 360, the
processing module determines whether at least a decode
threshold number of the second received encoded data slices
have been received when the second data segment of the
data is encoded in accordance with the dispersed storage
error encoding protocol to produce the second set of
encoded data slices. The method branches to step 364 when
the processing module determines that the decode threshold
number of received encoded data slices have not been
received within the predetermined period of time. The
method continues to step 362 when the processing module
determines that the decode threshold number of received
encoded data slices have been received.

The method continues at step 362 where the processing
module decodes the received encoded data slices to recap-
ture the data segment when at least the decode threshold
number of received encoded data slices have been received.
At step 362, the processing module decodes the second
received encoded data slices to recapture the second data
segment when at least the decode threshold number of the
second received encoded data slices have been received.
Alternatively, the method may loop back to step 360 when
more data segments are to be recaptured.

The method continues at step 364 where the processing
module determines whether the mapping is sub-optimal
based on wireless communication conditions when the
decode threshold number of encoded data slices have not
been received within the predetermined period of time. The
determining whether the mapping is sub-optimal includes at
least one of determining that a performance indicator asso-
ciated with at least one of the configured receivers compares
unfavorably to a performance threshold and determining that
a signaling indicator associated with the at least one of the
configured receivers compares unfavorably to the perfor-
mance threshold. The performance indicator includes one or
more of a received bit rate, a number of encoded slices
received per second, a number of pillars received per sec-
ond, which pillars are being received, and which pillars are
not been received. The signaling indicator includes one or
more of a received bit rate, a received bit error rate, an

30

40

45

50

55

34

interference level, a loss of wireless signal indicator, and a
wireless signal level indicator.

The method repeats back to step 362 continue to receive
encoded data slices when the processing module determines
that the mapping is not sub-optimal. The method continues
to step 366 when the processing module determines that the
mapping is sub-optimal. The method continues at step 366
where the processing module determines a second mapping
of encoded data slices to wireless channels based on the
wireless communication conditions when the mapping is
sub-optimal. The method loops back to step 356 to configure
receivers in accordance with the second mapping.

FIG. 21 is a flowchart illustrating an example of gener-
ating a content broadcast. The method begins with step 390
where a processing module (e.g., of a dispersed storage (DS)
processing unit) determines data to broadcast based on one
or more of a data segment indicator, a next data segment of
a data object indicator, an application request, a user input,
a message, a request from a user device, a request from a
site, and a command. The method continues at step 392
where the processing module determines a wireless configu-
ration based on one or more of a quality level indicator of a
wireless communications path from a site to one or more
user devices, user devices within wireless range, required
pillars, and which pillars are being transmitted by which
transceiver (TR) module. The wireless configuration may
include one or more of wireless parameters for the TR
modules, configuring TR modules to broadcast particular
pillars, and indicating that one or more other sites and/or
user devices broadcast particular pillars.

The method continues at step 394 where the processing
module configures the wireless. The configuring includes
sending wireless configuration information to TR modules
associated with one or more sites and/or one or more user
devices. The method continues at step 396 where the pro-
cessing module encodes a data segment in accordance with
an error coding dispersal storage function to produce error
coded data slices. The method continues at step 398 where
the processing module sends the error coded data slices
utilizing the TR modules as pillar communications via
wireless signals. The method continues at step 400 where the
processing module determines whether enough data has
been sent based on one or more of a number of data
segments in the data object, a number of data slices sent, a
number of data segments sent, a number of outstanding data
segments to be sent, and a number of outstanding data slices
to be sent. The method branches back to step 390 when the
processing module determines that enough data has been
sent. The method continues to step 402 when the processing
module determines that not enough data has been sent.

The method continues at step 402 where the processing
module determines whether to reconfigure the wireless
based on one or more of monitoring a wireless signal quality
level indicator indicating performance of the wireless com-
munications paths (e.g., receiving feedback from one or
more user devices), a performance threshold, and comparing
the wireless signal quality level to the performance thresh-
old. For example, the processing module determines to
reconfigure the wireless when receiving a request from a
user device to start sending more pillars via a particular
wireless communications path that is more favorable for the
user device. As another example, the processing module
determines to reconfigure the wireless to increase the speed
of a TR module when receiving a message from a user
device that indicates that a transmission speed is too slow on
an associated wireless communications path. As yet another
example, the processing module determines to reconfigure



US 9,602,496 B2

35

the wireless to align with a configuration objective (e.g.,
cost, performance, reliability, a balance between these fac-
tors, etc.) where the configuration objective may be deter-
mined based on a predetermination, a lookup, a user device
requests, a performance driven dynamic, and from another
site. Configuration objectives, wireless configuration, and
pillars assignments are discussed in greater detail with
reference to FIG. 22. The method branches back to step 396
when the processing module determines not to reconfigure
the wireless. The method branches back to step 392 when the
processing module determines to reconfigure the wireless.

FIG. 22 is a table illustrating an example of wireless
configuration and pillar assignments 420. The wireless con-
figuration and pillar assignments 420 represents pillar num-
ber and communication speed assignments for each trans-
ceiver (TR) of a plurality of TR modules 1-5 in accordance
with an optimization objective when a pillar width is five.
The optimization objectives includes cost, performance,
reliability, balance A (e.g., mixed objectives), and balance B.
A cost field 422 includes a pillars field 432 and a speed field
434, a performance field 424 includes a pillars field 436 and
a speed field 438, a reliability field 426 includes a pillars
field 440 and a speed field 442, a balance A field 428
includes a pillars field 444 and a speed field 446, and a
balance B field 430 includes a pillars field 448 and a speed
field 450. Each pillars field 432, 436, 440, 444, 448 includes
one or more pillar numbers of encoded data slices that are to
be transmitted from a corresponding transceiver of TR 1-5.
Each speed field 434, 438, 442, 446, 450 includes a relative
speed indicator for transmission of the one or more pillar
numbers of encoded data slices that are to be transmitted
from the corresponding transceiver of TR 1-5.

In a cost optimized example, TR module 1 transmits
pillars 1-5 at a normal 1X relative wireless speed. Using one
TR module may lower cost as desired. In a performance
optimized example, TR module 1 transmits pillar 1 at a 2x
relative wireless speed, TR module 2 transmits pillar 2 at 2x,
TR module 3 transmits pillar 3 at 2x, TR module 4 transmits
pillar 4 at 2x, and TR module 5 transmits pillar 5 at 2x. A
performance improvement is provided by sending pillars 1-5
simultaneously via parallel communications paths. In a
reliability optimized example, TR modules 1-5 transmit
pillars 1-5 as in the performance optimized example but at
a 1x speed.

In a balance A optimized example, TR modules 1-3
transmit pillars 1-3 at the 1x relative wireless speed and TR
module 4 transmits pillars 4-5 at the 2x relative wireless
speed. A balance is provided between cost and reliability by
utilizing one less TR module but yet at a similar throughput
as the reliability optimized example. In a balance B opti-
mized example, TR module 1 transmits pillars 1-2 at a 4x
speed, TR module 2 transmits pillars 3-4 at a 4x speed, and
TR module 3 transmits pillar 5 at a 2x speed. Note that a
balance is provided between cost and performance by uti-
lizing two fewer TR modules but yet at a similar throughput
as the performance example. Note that a decode threshold
number of encoded data slices are received at a 2x rate even
when any one of the TR modules is not operable.

FIG. 23 is a flowchart illustrating another example of
acquiring a content broadcast. The method begins with step
452 where a processing module (e.g., of a user device)
acquires wireless signals from two or more sites. The
wireless signal acquisition may include one or more of
scanning, searching channels from a predetermined list,
searching channels from a previous wireless cyclist, search-
ing channels based on location, and searching all channels.
The method continues at step 454 where the processing

25

40

45

50

36

module determines transmit wireless configuration of two or
more sites based on one or more of receiving the transmit
wireless configuration information from the two or more
sites and analyzing received information to extract transmit
wireless configuration information (e.g., pillar number
assignment to wireless paths).

The method continues at step 456 where the processing
module determines receive wireless configuration to enable
receiving data slices of desired pillars based on one or more
of a wireless quality level indicator, an indicator of sites
within range, an indicator of user devices within range, and
a pillar to wireless communications path assignment indi-
cator. The method continues at step 458 where the process-
ing module configures wireless transceiver (TR) modules in
accordance with the receive wireless configuration by send-
ing the receive wireless configuration information to the TR
modules associated with the processing module. The method
continues at step 460 where the processing module receives
encoded data slices via reception of wireless signals from
transmitting TR modules of the two or more sites. The
method continues at step 462 where the processing module
decodes the encoded data slices from the two or more sites
in accordance with an error coding dispersal storage func-
tion to produce reconstructed data segments.

The method continues at step 464 where the processing
module determines whether to reconfigure the receive wire-
less configuration. The determination may be based on one
or more of the wireless quality level indicator, the indicator
of sites within range, the indicator of user devices within
range, and the pillar to wireless communications path
assignment indicator. The method branches back to step 460
when the processing module determines not to reconfigure
the receive wireless configuration. The method loops back to
step 452 when the processing module determines to recon-
figure the receive wireless.

FIG. 24 is a flowchart illustrating another example of
acquiring a content broadcast, which includes similar steps
to FIG. 23. The method begins with steps 452-462 of FIG.
23 where a processing module (e.g., of a user device)
acquires wireless signals from two or more sites, determines
transmit wireless configuration of the two or more sites,
determines a receive wireless configuration, configures
transceiver (TR) wireless modules in accordance with the
receive wireless configuration, receives encoded data slices
via wireless communications from the two or more sites, and
reconstructs data segments utilizing data slices from the two
or more sites. The method continues at step 478 where the
processing module determines whether data reception per-
formance is below a performance threshold. The determi-
nation may be based on one or more of a received data rate
indicator, a received data error indicator, a threshold, a
comparison of data reception performance to the threshold,
a wireless quality level indicator, an indicator of sites within
range, an indicator of user devices within range, and a pillar
to wireless communications path assignment indicator. The
method repeats back to step 460 of FIG. 23 when the
processing module determines that the data reception per-
formance is not below a threshold. The method continues to
step 480 when the processing module determines that the
data reception performance is below a threshold.

The method continues at step 480 where the processing
module acquires wireless signals from a sending user device
transmitting copies of the encoded data slices. The wireless
signal acquisition may be based on scanning wireless signals
of the user device and/or sending a request message to
another user device to request that it relay the copies of the
encode slices. The method continues at step 482 where the



US 9,602,496 B2

37

processing module determines transmit wireless configura-
tion of one or more of the sending user device based on
receiving information from the user device and/or by
extracting information from one or more pillar communica-
tions and of the two or more sites.

The method continues at step 484 where the processing
module re-determines the receive wireless configuration
based on the transmit wireless configuration of the sending
user device and/or the transmit wireless configuration of the
two or more sites. The processing module may determine to
receive pillar communications from two or more sites and
another user device. The method continues at step 486 where
the processing module configures a wireless TR modules
associated with the processing module in accordance with
the receive wireless configuration. The method continues at
step 488 where the processing module receives encoded data
slices (e.g., including copies) via wireless from the two or
more sites and/or the sending user device.

The method continues at step 490 where the processing
module decodes the received encoded data slices in accor-
dance with an error coding dispersal storage function to
produce reconstructed data segments. The method continues
at step 492 where the processing module determines whether
to reconfigure the wireless based on the wireless perfor-
mance and/or the received data. The method repeats back to
step 488 when the processing module determines not to
reconfigure the wireless. The method loops back to the step
480 when the processing module determines to reconfigure
the wireless.

As may be used herein, the terms “substantially” and
“approximately” provides an industry-accepted tolerance for
its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one
percent to fifty percent and corresponds to, but is not limited
to, component values, integrated circuit process variations,
temperature variations, rise and fall times, and/or thermal
noise. Such relativity between items ranges from a differ-
ence of a few percent to magnitude differences. As may also
be used herein, the term(s) “operably coupled to”, “coupled
t0”, and/or “coupling” includes direct coupling between
items and/or indirect coupling between items via an inter-
vening item (e.g., an item includes, but is not limited to, a
component, an element, a circuit, and/or a module) where,
for indirect coupling, the intervening item does not modify
the information of a signal but may adjust its current level,
voltage level, and/or power level. As may further be used
herein, inferred coupling (i.e., where one element is coupled
to another element by inference) includes direct and indirect
coupling between two items in the same manner as “coupled
t0”. As may even further be used herein, the term “operable
t0” or “operably coupled to” indicates that an item includes
one or more of power connections, input(s), output(s), etc.,
to perform, when activated, one or more its corresponding
functions and may further include inferred coupling to one
or more other items. As may still further be used herein, the
term ““associated with”, includes direct and/or indirect cou-
pling of separate items and/or one item being embedded
within another item. As may be used herein, the term
“compares favorably”, indicates that a comparison between
two or more items, signals, etc., provides a desired relation-
ship. For example, when the desired relationship is that
signal 1 has a greater magnitude than signal 2, a favorable
comparison may be achieved when the magnitude of signal
1 is greater than that of signal 2 or when the magnitude of
signal 2 is less than that of signal 1.

While the transistors in the above described figure(s)
is/are shown as field effect transistors (FETs), as one of

20

30

40

45

55

65

38

ordinary skill in the art will appreciate, the transistors may
be implemented using any type of transistor structure includ-
ing, but not limited to, bipolar, metal oxide semiconductor
field effect transistors (MOSFET), N-well transistors, P-well
transistors, enhancement mode, depletion mode, and zero
voltage threshold (VT) transistors.

The present invention has also been described above with
the aid of method steps illustrating the performance of
specified functions and relationships thereof. The boundar-
ies and sequence of these functional building blocks and
method steps have been arbitrarily defined herein for con-
venience of description. Alternate boundaries and sequences
can be defined so long as the specified functions and
relationships are appropriately performed. Any such alter-
nate boundaries or sequences are thus within the scope and
spirit of the claimed invention.

The present invention has been described, at least in part,
in terms of one or more embodiments. An embodiment of
the present invention is used herein to illustrate the present
invention, an aspect thereof, a feature thereof, a concept
thereof, and/or an example thereof. A physical embodiment
of'an apparatus, an article of manufacture, a machine, and/or
of'a process that embodies the present invention may include
one or more of the aspects, features, concepts, examples, etc.
described with reference to one or more of the embodiments
discussed herein.

The present invention has been described above with the
aid of functional building blocks illustrating the perfor-
mance of certain significant functions. The boundaries of
these functional building blocks have been arbitrarily
defined for convenience of description. Alternate boundaries
could be defined as long as the certain significant functions
are appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate
certain significant functionality. To the extent used, the flow
diagram block boundaries and sequence could have been
defined otherwise and still perform the certain significant
functionality. Such alternate definitions of both functional
building blocks and flow diagram blocks and sequences are
thus within the scope and spirit of the claimed invention.
One of average skill in the art will also recognize that the
functional building blocks, and other illustrative blocks,
modules and components herein, can be implemented as
illustrated or by discrete components, application specific
integrated circuits, processors executing appropriate soft-
ware and the like or any combination thereof.

What is claimed is:

1. A computer implemented method comprises:

sending, by a user device, a plurality of data access

requests to storage units, wherein the plurality of data
access requests is regarding a set of encoded data slices
that are distributedly stored among the storage units,
wherein a data segment of data is dispersed error
encoded in accordance with dispersed storage error
encoding parameters to produce the set of encoded data
slices, wherein a write threshold number of encoded
data slices of the set of encoded data slices provides
successful storage of the data segment within the
storage units, and wherein a decode threshold number
of encoded data slices of the set of encoded data slices
are required to recover the data segment;

sending, by one the storage units, an authentication

request to an authenticating module;

forwarding, by the one of the storage units, a verification

request to the user device;

forwarding, by the one of the storage units, a verification

response to the authenticating module; and



US 9,602,496 B2

39

executing, by at least some of the storage units, corre-
sponding ones of the plurality of data access requests
when an authentication response of the authenticating
module is favorable, wherein the plurality of data
access requests corresponds to at least one of the
decode threshold number of encoded data slices or the
write threshold number of encoded data slices.

2. The method of claim 1 further comprises:

sending, by the at least some of the storage units, authen-
tication requests to the authenticating module;

forwarding, by the at least some of the storage units,
verification requests to the user device;

forwarding, by the at least some of the storage units,
verification responses to the authenticating module;
and

executing, by the at least some of the storage units,
corresponding ones of the plurality of data access
requests when authentication responses of the authen-
ticating module are favorable.

3. The method of claim 1 further comprises:

when the plurality of data access requests corresponds to
writing one or more sets of encoded data slices:

determining a storage priority to be one of cost optimi-
zation, reliability optimization, or security optimiza-
tion;

determining the dispersed storage error encoding param-
eters based on the storage priority;

encoding the data segment in accordance with the dis-
persed storage error encoding parameters to produce
the set of encoded data slices; and

sending a set of write requests to a set of the storage units
to store the set of encoded data slices.

4. The method of claim 1 further comprises:

when the plurality of data access requests corresponds to
information regarding storage performance:

determining storage performance based on responses
from the storage units;

determining that storage expansion is required based on
the storage performance;

allocating additional storage;

generating additional encoded data slices for the data
segment to produce an expanded set of encoded data
slices; and

storing the additional encoded data slices in the additional
storage, wherein an updated set of encoded data slices
includes the set of encoded data slices and the addi-
tional encoded data slices.

5. The method of claim 4, wherein the allocating addi-

tional storage comprises one or more of:

adding one or more new storage units;

activating one or more dormant storage units; and

allocating memory of another storage unit to a vault,
wherein the storage units support the vault.

6. The method of claim 4 further comprises:

determining to contract one or more of the storage units;
and

when the one or more of the storage units are to be
contracted, removing one or more encoded data slices
stored in the one or more of the storage units from the
updated set of encoded data slices.

7. A non-transitory computer readable storage device

comprises:

a first memory section storing operational instructions
that, when executed by a user computing device, causes
the user computing device to:

send a plurality of data access requests to storage units,
wherein the plurality of data access requests is regard-

10

15

20

25

30

35

40

45

50

55

60

40

ing a set of encoded data slices that are distributedly
stored among the storage units, wherein a data segment
of data is dispersed error encoded in accordance with
dispersed storage error encoding parameters to produce
the set of encoded data slices, wherein a write threshold
number of encoded data slices of the set of encoded
data slices provides successful storage of the data
segment within the storage units, and wherein a decode
threshold number of encoded data slices of the set of
encoded data slices are required to recover the data
segment;

a second memory section storing operational instructions
that, when executed by one of the storage units, causes
the one of the storage units to:

send an authentication request to an authenticating device;

forward a verification request to the user computing

device;
forward a verification response to the authenticating
device; and

a third memory section storing operational instructions
that, when executed by one of the storage units, causes
the one of the storage units to:

execute, along with at least some of the storage units, a
corresponding one of the plurality of data access
requests when an authentication response of the authen-
ticating device is favorable, wherein the plurality of
data access requests corresponds to at least one of the
decode threshold number of encoded data slices or the
write threshold number of encoded data slices.

8. The non-transitory computer readable storage device of
claim 7, wherein the second memory section further stores
operational instructions that, when executed by the one of
the storage units, causes the one of the storage units to:

send an authentication request to the authenticating device
on behalf of the at least some of the storage units.

9. The non-transitory computer readable storage device of
claim 7 further comprises:

when the plurality of data access requests corresponds to
writing one or more sets of encoded data slices:

a fourth memory section storing operational instructions
that, when executed by the authenticating device,
causes the authenticating device to:

determine a storage priority to be one of cost optimiza-
tion, reliability optimization, or security optimization;

determine the dispersed storage error encoding param-
eters based on the storage priority;

a fifth memory section storing operational instructions
that, when executed by the user computing device or
another computing device, causes the user computing
or the another computing device to:

encoding the data segment in accordance with the dis-
persed storage error encoding parameters to produce
the set of encoded data slices; and

the first memory section further stores operational instruc-
tions that, when executed by the user computing
device, causes the user computing device to:

send a set of write requests to a set of the storage units to
store the set of encoded data slices.

10. The non-transitory computer readable storage device

of claim 7 further comprises:

when the plurality of data access requests corresponds to
information regarding storage performance:

a fourth memory section storing operational instructions
that, when executed by the authenticating device,
causes the authenticating device to:

determine storage performance based on responses from
the storage units;



US 9,602,496 B2

41

determine that storage expansion is required based on the
storage performance;

allocate additional storage;

a fifth memory section storing operational instructions
that, when executed by the user computing device or
another computing device, causes the user computing
or the another computing device to:

generate additional encoded data slices for the data seg-
ment to produce an expanded set of encoded data
slices; and

send the additional encoded data slices to the additional
storage for storage therein, wherein an updated set of
encoded data slices includes the set of encoded data
slices and the additional encoded data slices.

11. The non-transitory computer readable storage device
of claim 10, wherein the allocate additional storage com-
prises one or more of:

adding one or more new storage units;

activating one or more dormant storage units; and

allocating memory of another storage unit to a vault,
wherein the storage units support the vault.

12. The non-transitory computer readable storage device

of claim 10 further comprises:

a sixth memory section storing operational instructions
that, when executed by the authenticating device,
causes the authenticating device to:

determine to contract one or more of the storage units; and

when the one or more of the storage units are to be
contracted, remove one or more encoded data slices
stored in the one or more of the storage units from the
updated set of encoded data slices.

#* #* #* #* #*

10

20

30

42



