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NOISE REDUCTION FOR PULSED LASERS
USING CLUSTERING

BACKGROUND

[0001] External-cavity quantum cascade lasers (EC-
QCLs) have received considerable attention in the academic
literature because a single EC-QCL can be tuned over a
significant portion of the ‘fingerprint region’ of the electro-
magnetic spectrum. This makes EC-QCLs potentially useful
in a wide range of chemical detection applications. An
EC-QCL typically includes an external optical cavity in
which are located an optical tuning device, such as a grating,
and a QCL chip that generates light. The QCL chip includes
a periodic series of thin semiconductor layers of varying
material composition that form a superlattice in which a
single electron can cause the emission of multiple photons.

[0002] EC-QCLs typically have to be operated in a pulsed
mode (sometimes referred to as a “quasi-continuous wave
mode” or a “quasi-CW mode”) to achieve broad tunability.
In pulsed mode, the QCL chip is switched on for brief time
period (typically 50-500 ns, and referred to herein as an ON
period), and then switched off for a much longer time period
(typically 0.1-1 ps, and referred to herein, and referred to
herein as an OFF period) to allow the QCL chip to cool
down before the next ON period. Operated this way, the
QCL chip never achieves thermal equilibrium. Additionally,
the temperature of the QCL chip increases between the
beginning and the end of each ON period. The increasing
temperature causes the frequency of the light generated by
the QCL chip to change monotonically between the begin-
ning and the end of each ON period. This change in
frequency is known as chirp. In an EC-QCL, the changing
frequency of the light generated by the QCL chip causes the
EC-QCL to hop among the longitudinal modes of the
external cavity. When a mode hop occurs the frequency,
phase, and intensity of the light emitted by the EC-QCL all
change discontinuously. There may be as many as six or
more mode hops over the duration of a single 200 ns pulse.
Mode hops increase the intensity noise in an EC-QCL, and
make the frequency and phase of the emitted light unstable.

[0003] Insome applications it is desirable to average pulse
data sets representing multiple pulses of light generated by
a light source to reduce the effect of noise. However, in
applications in which an EC-QCL operated in quasi-CW
mode or another type of pulsed laser that exhibits mode
hopping is used as the light source, averaging and some
other post-processing techniques are problematic.

[0004] Accordingly, what is needed is a way to use aver-
aging and other post-processing techniques in applications
in which a pulsed laser that exhibits mode hopping, such as
an EC-QCL, is used as the light source for performing
optical measurements.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG. 1 is a graph showing the variation of ampli-
tude with time of 100 output pulses from a quantum cascade
laser that have been superimposed.

[0006] FIG. 2 is a block diagram showing an example of
a heterodyne optical spectrometer having an EC-QCL as its
light source in accordance with an embodiment.
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[0007] FIG. 3 is a graph showing two pulses generated by
the heterodyne spectrometer shown in FIG. 2 by sorting the
pulse data sets into three classes and averaging the pulse data
sets in each of the classes.

[0008] FIG. 4 is a block diagram showing an example of
an optical instrument in accordance with an embodiment.
[0009] FIG. 5 is a block diagram showing a first example
of a processor that may be used as the processor of the
heterodyne spectrometer shown in FIG. 2, or the optical
instrument shown in FIG. 4.

[0010] FIG. 6 is a block diagram showing a second
example of a processor that may be used as the processor of
the heterodyne spectrometer shown in FIG. 2, or the optical
instrument shown in FIG. 4.

[0011] FIG. 7 is a block diagram showing a third example
of a processor that may be used as the processor of the
heterodyne spectrometer shown in FIG. 2, or the optical
instrument shown in FIG. 4.

[0012] FIG. 8 is a flowchart showing an example of an
optical measurement method in accordance with an embodi-
ment.

[0013] FIG. 9 is a flowchart showing an example of the
processing performed in the method shown in FIG. 8 to sort
the pulse data sets into classes based on correlation.
[0014] FIG. 10 is a flowchart showing in greater detail an
example of the processing performed in FIG. 9.

[0015] FIG. 11 is a flowchart showing an example of the
processing performed in FIG. 10 to eliminate classes con-
stituted of fewer than a predetermined number of pulse data
sets.

[0016] FIG. 12 is a flowchart showing another example of
the processing performed in the method shown in FIG. 8 to
sort the pulse data sets into classes based on correlation.
[0017] FIG. 13 is a flowchart showing in greater detail an
example of the processing performed in FIG. 12.

[0018] FIG. 14 is a flowchart showing yet another
example of the processing performed in the method shown
in FIG. 8 to sort the pulse data sets into classes based on
correlation.

DETAILED DESCRIPTION

[0019] For a given position of the tuning grating in an
external cavity quantum cascade laser (EC-QCL), at the
beginning of each ON period, the EC-QCL begins to operate
in one of a small number (typically, a single digit) of
longitudinal cavity modes that, for brevity, will be referred
to as initial modes. Each initial mode is followed by a
reasonably well determined sequence of mode hops that, for
brevity, will be referred to herein as a mode hop sequence.
As a result, in a given position of the tuning grating, the
EC-QCL generates the light pulses using a relatively small
number of mode hop sequences that can be regarded as
constituting a set of mode hop sequences. The relatively
small number of mode hop sequences used by the EC-QCL
enables each light pulse generated by the EC-QCL to be
identified as belonging to one of a relatively small number
of classes, each of which corresponds to a respective mode
hop sequence, and allows respective pulse data sets that
represent the light pulses to be sorted into classes before they
are further processed. Sorting the pulse data sets according
to class enables mitigation of some of the effects of the mode
hops during the subsequent processing.

[0020] FIG. 1 is a graph showing the variation of ampli-
tude with time of 100 output pulses generated by an EC-
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QCL that have been superimposed. The graph clearly shows
pulses arising from three different mode hop sequences.

[0021] If the 100 output pulses shown in FIG. 1 were
averaged to produce a single average waveform, some of the
structure contained the output pulses arising from each of
the mode hops sequences would be lost in the average
waveform. In some types of optical spectrometer, such as a
heterodyne optical spectrometer, but, in most cases, not a
simple absorption optical spectrometer, the power contained
in the intra-pulse structure in the signal is of interest, and
information would be lost if all the pulses were averaged
regardless of the mode hop sequences from which the pulses
originated. Averaging all the pulses together would tend to
reduce the power in the intra-pulse fluctuations since the
pulses originating from one mode hop sequence are not
necessarily in phase with the pulses originating from other
mode hop sequences. Therefore simply combining all the
pulses to produce a single average would distort the final
averaged waveform in an unpredictable way.

[0022] FIG. 2 is a block diagram showing an example of
an optical heterodyne spectrometer 100 having an external
cavity quantum cascade laser (EC-QCL) as its light source
in accordance with an embodiment. The example of hetero-
dyne spectrometer 100 shown is used to measure an optical
property, such as an absorption spectrum, of a sample.
Heterodyne spectrometer 100 is composed of an EC-QCL
110, a detector 150, a processor 160, and an optical path 170
between the pulsed laser and the detector. Optical path 170
has a first branch 132 and a second branch 134 of different
optical path lengths. Heterodyne spectrometer 100 addition-
ally includes a first beam splitter 120, a second beam splitter
122, a reflector 124, and an optical delay 126 composed of
reflectors 128, 130. Detector 150 includes two sensors 152,
154. EC-QCL 110, beam splitters 120, 122, reflectors 124,
128 and 130, branches 132, 134, and sensors 152, 154 are
arranged as follows. Light pulses generated by EC-QCL 110
are incident on first beam splitter 120. Beam splitter 120
divides the light pulses generated by laser 110 between the
branches 132, 134 of optical path 170. Reflector 124 is
arranged to direct the light pulses in optical path 132 onto
second beam splitter 122. Reflectors 128, 130 provide the
increased optical path length of branch 134 relative to
branch 132. Additionally, reflectors 128, 130 are arranged to
direct the light pulses in branch 134 to mix with the light
pulses from branch 132 at second beam splitter 122. Part of
the intensity of the mixed light pulses from branches 132,
134 passes through beam splitter 122 and is incident on
sensor 152. The remainder of the intensity of the mixed light
pulses from branches 132, 134 is reflected by beam splitter
122 onto sensor 154. A sample S, whose optical properties
are to be measured, is shown located in branch 134. Alter-
natively, sample S may be located in branch 132.

[0023] As noted above, EC-QCL 110 is operated in quasi-
CW mode, so that each light pulse generated by laser 110 is
chirped, i.e., the frequency of the light changes monotoni-
cally with time during the pulse. As a result of optical delay
126 in the branch 134 of optical path 170, the light pulses
arriving at beam splitter 122 via branch 134 are delayed
relative to the light pulses arriving via branch 132. Conse-
quently, at that any instant of time, the light incident on
beam splitter 122 from branch 132 differs in frequency from
that incident from branch 134. The variations in the intensity
of the mixed light pulses due to interference between the
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light pulses received from branches 132, 134 of optical path
170 are detected by sensors 152, 154.

[0024] Detector 150 additionally includes a subtractor 156
and an analog-to-digital converter 158. In response to the
light pulses incident thereon, each sensor 152, 154 generates
respective analog electrical pulses that are input to subtrac-
tor 156. Subtractor 156 generates difference pulses that are
digitized by analog-to-digital converter (ADC) 158. The
ADC outputs to processor 160 a pulse data set correspond-
ing to each difference pulse and, hence, to each light pulse
generated by laser 110.

[0025] Another embodiment of detector 150 (not shown)
includes two ADCs and a digital subtractor. One of the
ADC:s is connected to receive analog electrical pulses from
sensor 152 and the other of the ADCs is connected to receive
analog electrical pulses from sensor 154. The digital outputs
of the ADCs are connected to respective inputs of the
subtractor. The subtractor subtracts the digital output of one
of the ADCs from that of the other to generate a pulse data
set corresponding to each light pulse generated by laser 110.
[0026] Although not shown, heterodyne spectrometer 100
typically additionally normalizes the signals subject to sub-
traction. In the example shown, normalization can be
accomplished optically by, for example, configuring beam
splitter 122 to transmit half of the intensity of the light
incident thereon, and to reflect the remaining half of the
intensity of the light incident thereon. Alternatively, the
analog electrical pulses output by sensors 152, 154 respec-
tively can be selectively amplified and/or attenuated prior to
subtractor 156 to normalize the signals subject to subtrac-
tion. In an embodiment in which the analog electrical pulses
generated by sensors 152, 154 are digitized prior to sub-
traction, one or both of the pulse data sets resulting from the
digitization can the multiplied or divided prior to subtraction
to normalize the signals subject to subtraction.

[0027] Processor 160 sorts the pulse data sets into classes
based on correlation.

[0028] In the example shown, and in other examples in
which a pulsed laser that exhibits mode hopping when
operated in a quasi-CW mode is used as a light source, the
light pulses generated by the laser are detected by detector
150 or a similar detector to generate a respective pulse data
set for each of the light pulses, and processor 160 or a similar
processor is used to sort the pulse data sets into classes based
on correlation. Each class corresponds to a respective mode
hop sequence of the pulsed laser. In an example in which the
pulsed laser has five mode hop sequences, processor 160
will sort most, if not all, of the pulse data sets into five
classes.

[0029] After the pulse data sets have been sorted into
classes based on correlation, the pulse data sets within each
class are well correlated in the sense that correlations among
the pulse data sets in each class are greater than correlations
between the pulse data sets in one class and the pulse data
sets in another class. In an example in which the pulse data
set of sorted into two classes named class 1 and class 2,
correlations among the pulse data sets in class 1 are greater
than correlations between the pulse data sets in class 1 and
the pulse data sets in class 2.

[0030] Pulse data sets sorted into classes based on corre-
lation can be further processed. For example, the pulse data
sets in each class can be separately averaged to generate a
respective average pulse data set for the class, with each
average pulse data set corresponding to a respective mode
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hop sequence of the pulsed laser. Such averaging is capable
of reducing noise because the average pulse data set is an
average of like pulse data sets that is not perturbed by the
inclusion of pulse data sets originating from different mode
hop sequences.

[0031] FIG. 3 is a graph showing three superposed pulses.
The pulses are a first pulse obtained by averaging the pulse
data sets in a first class, a second pulse obtained by aver-
aging the pulse data sets in a second class and a third pulse
obtained by averaging the pulse data sets in a third class. It
can be seen that the amplitude of the noise on the three
averaged pulses shown in FIG. 3 is clearly reduced com-
pared with the noise amplitude of the 100 unprocessed
pulses shown in FIG. 1, but the qualitative features of the
three pulses are retained.

[0032] FIG. 4 is a block diagram showing an example 180
of an optical instrument in accordance with an embodiment.
Optical instrument 180 includes an external cavity quantum
cascade laser (EC-QCL) 182 that generates a series of light
pulses using a set of different mode hop sequences. A
detector 186 is optically coupled to EC-QCL 182 by an
optical path 184 that includes a sample or some other
element with optical properties that make measurable
changes to the properties of the light pulses generated by
EC-QCL 182. Detector 186 generates a respective pulse data
set in response to each of the light pulses generated by the
EC-QCL. Detector 186 has an electrical output coupled to a
processor 188. Processor 188 operates to sort the pulse data
sets generated by the detector into multiple classes based on
correlation in a manner similar to that described above with
reference to FIG. 2. Another type of pulsed laser that
exhibits mode-hopping may be substituted for EC-QCL 182.

[0033] FIG. 5 is a block diagram showing a first example
200 of a processor that may be used as processor 160 in
heterodyne spectrometer 100 described above with refer-
ence to FIG. 2 and as processor 188 in optical instrument
180 described above with reference to FIG. 4. In the
example shown, processor 200 calculates correlation coef-
ficients that are used to identify the pulse data sets that are
well correlated so that such pulse data sets can be assigned
to the same class. The example of processor 200 shown
includes a pulse data set (PDS) memory 210, a correlation
coeflicient engine 220, a comparator 230, a class memory
240 and a controller 250. In a typical embodiment, pulse
data set memory 210 and class memory 240 are respective
portions of a common physical memory.

[0034] Pulse data set memory 210 has an input 212 to
receive pulse data sets from detector 150 (FIG. 2) during
operation of heterodyne spectrometer 100. Pulse data set
memory 210 has an output 214 to deliver pulse data sets to
correlation coefficient engine 220. Output 214 is shown in
FIG. 3 as having two paths to simply to indicate that the
correlation coefficients generated by correlation coeflicient
engine 220 are correlation coefficients between pairs of
pulse data sets received from the pulse data set memory.
More typically, the pulse data sets for which the correlation
coeflicients are generated are output serially via a single
path. Pulse data set memory 210 additionally has a pulse
data set output 216 via which all the pulse data sets sorted
into a given class are output at the end of a sorting operation.
Finally, pulse data set memory 210 has an input/output port
218 connected to controller 250 via which control signals
are exchanged between the pulse data set memory and the
controller.
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[0035] In an example, pulse data set memory 210 is
organized into memory blocks each capable of storing a
single pulse data set and addressed by a respective block
address.

[0036] Correlation coeflicient engine 220 has an input 222
via which it receives pulse data sets from pulse data set
memory 210. Input 222 is shown in FIG. 3 as having two
paths simply to indicate that the correlation coefficients
generated by correlation coeflicient engine 220 are correla-
tion coeflicients between pairs of pulse data sets received
from pulse data set memory 210. More typically, the pulse
data sets for which the correlation coefficients are generated
are received serially via a single path. Correlation coeflicient
engine 220 additionally has a correlation coefficient output
224 via which it outputs a respective correlation coeflicient
calculated for the pulse data sets received from pulse data set
memory 210. Finally, correlation coefficient engine 220 has
an input/output port 226 connected to controller 250 via
which control signals are exchanged between the correlation
coeflicient engine and the controller.

[0037] Comparator 230 has an input 232 connected to the
correlation coefficient output 224 of correlation coeflicient
engine 220 and an enable output 234 connected to an enable
input of class memory 240. Comparator 230 additionally has
an input/output port 236 connected to controller 250 via
which control signals are exchanged between the compara-
tor and the controller.

[0038] Class memory 240 has an enable input 242 con-
nected to the enable output 234 of comparator 230 and an
input/output port 244 connected to controller 250 via which
control signals are exchanged between the class memory and
the controller. In an example, class memory 240 is organized
as a number of class tables each addressed by a correspond-
ing class table index. Each class table is for storing the block
addresses of the pulse data sets assigned to the class defined
by the class table index. Alternatively, the class tables may
store the pulse data sets assigned to the class all copies of the
pulse data sets assigned to the class.

[0039] Each of the above-described connections may con-
sist of more than one conductor.

[0040] In operation, processor 200 receives the pulse data
sets generated by detector 150 (FIG. 2) and stores each of the
pulse data sets in pulse data set memory 210 in a respective
memory block defined by a block address supplied by
controller 250. Once all the pulse data sets have been stored,
controller 250 causes pulse data set memory 210 to output
two of the stored pulse data sets to correlation coeflicient
engine 220. In an example, the pulse data sets first output to
the correlation coefficient engine are the pulse data sets that
were stored in the memory blocks of the pulse data set
memory having the lowest and next-lowest block addresses.
[0041] Correlation coefficient engine 220 treats the pulse
data set received from the memory block with the lowest
block address as a reference pulse data set and generates a
respective correlation coefficient between the reference
pulse data set and each of the remaining pulse data sets
received from pulse data set memory 210. In an example, the
correlation coefficient engine subtracts each data value of
the reference pulse data set from a corresponding data value
of the other pulse data set to generate a difference and sums
the differences for all the data values of the pulse data sets
to generate raw correlation data. Alternatively, the raw
correlation data can be generated using ratios or percentage
or fractional differences instead of differences. In an
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embodiment, correlation coefficient engine 220 calculates a
covariance between the pulse data sets to provide a raw
correlation coefficient. In an example, the covariance
between two pulse data sets is given by:

1
o, y) = mz (&~ D~ )

where P is the number of pulse data points in each pulse data
set, X, and y, are the values of the i-th pulse data points in
pulse data sets x and y, respectively, and X and y are the
means of all the pulse data points in pulse data sets x and y,
respectively.

[0042] Additionally, normalizing is applied to convert the
raw correlation data to a correlation coefficient close to unity
or close to 0 for two well-correlated pulse data sets. In the
above embodiment, the covariance between the two pulse
data sets is divided by the product of the standard deviations
of the pulse data sets to generate Pearson’s correlation
coeflicient for the pulse data sets that ranges from O for
uncorrelated pulse data sets to 1 for perfectly correlated
pulse data sets. Correlation coeflicient engine 220 outputs
the calculated correlation coefficient to comparator 230.

[0043] Comparator 230 receives the correlation coeffi-
cients generated by correlation coefficient engine 220 and
compares each of them with a predetermined threshold. The
threshold is related to the way in which the correlation
coeflicient engine calculates the correlation coefficient and is
set to distinguish among the pulse data sets resulting from
the respective mode hop sequences of EC-QCL 110 (FIG. 2)
or EC-QCL 182 (FIG. 4). Pulse data sets originating from
the same mode hop sequence have a correlation coefficient
on one side of (e.g., greater than) the threshold whereas
pulse data sets originating from different mode hop
sequences have a correlation coefficient on the other side of
(e.g., less than) the threshold. Comparator 230 generates an
enable signal for each correlation coefficient it receives that
is greater or less than the threshold, depending on whether
well-correlated pulse data sets have a high correlation coef-
ficient or a low correlation coeflicient.

[0044] Controller 250 provides to class memory 240 a
class table index and the block address of the reference pulse
data set output to correlation coefficient engine 220 by pulse
data set memory 210. In response to a command from
controller 250 class memory 240 stores the block address of
the reference pulse data set in the class table defined by the
current class table index. Additionally, each time it receives
an enable signal from comparator 230, class memory 240
stores the block address of pulse data set be compared with
the reference pulse data set in the class table defined by the
current class table index. Thus, if the pulse data sets stored
in the memory blocks with the lowest and next-lowest block
addresses originate from the same mode hop sequence of
EC-QCL 110, the block address of the memory block with
the next-lowest block address is additionally stored in class
memory 240 in the class table defined by the current class
table index. However, if the pulse data sets stored in the
memory blocks with the lowest and next-lowest block
addresses originate from different mode hop sequences of
EC-QCL 110, only the block address of the memory block
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with the lowest block address (i.e., the block address of the
reference pulse data set) is stored in the class table in class
memory 240.

[0045] Subsequently, controller 250 causes pulse data set
memory 210 to output sequentially the pulse data sets that
have not already been allocated to a class to correlation
coeflicient engine 220. Correlation coefficient engine 220
calculates a correlation coefficient between each pulse data
set and the reference pulse data set. Comparator 230 com-
pares each correlation coeflicient with the threshold. Class
memory 240 stores in the class table for the current class the
block addresses of the memory blocks where those of the
pulse data sets that are well-correlated with the reference
pulse data set are stored.

[0046] Controller 250 additionally tracks the block
addresses of the memory blocks whose pulse data sets have
been assigned to a class. In an example, controller 250
includes a block address table in which are stored the
respective block addresses of all the memory blocks in
which pulse data sets are stored and a corresponding flag
field that, when set, indicates that the pulse data set stored at
that block address has been assigned to a class. Initially,
none of the flags are set, but as processor 200 assigns block
addresses (and, hence, pulse data sets) to classes, the con-
troller sets the respective flags for those block addresses.
Thus, when correlation coeflicients between the reference
pulse data set stored in the first memory block and each of
the remaining pulse data sets have been generated, compared
with a threshold, and the block addresses of those of the
pulse data sets that are well-correlated with the reference
pulse data set have been stored in the class table for the first
class, the flags linked to the block addresses of those pulse
data sets are set.

[0047] Once the pulse data sets constituting the first class
have been identified, processor 200 operates to identify the
pulse data sets that will constitute the second class using
operations similar to those just described. Controller 250
increments the class table index and supplies the incre-
mented class table index, i.e., the class table index of the
second class, to class memory 240 to indicate that block
addresses are to be stored in the class table of the second
class. Controller 250 refers to its table of block addresses to
find the lowest block address whose pulse data set has not
been assigned to a class, i.e., pulse data sets that have not
been assigned to the first class when membership of the
second class is being determined or pulse data sets that have
not been assigned to the first class or the second class when
membership of the third class is being determined. Control-
ler 250 commands pulse data set memory 210 to output the
pulse data set that is not already a member of a class for
correlation coefficient engine 220 to use as a new reference
pulse data set. Controller 250 commands class memory 240
to store the block address of the reference pulse data set in
the class table for the second class.

[0048] Controller 250 again refers to its block address
table and causes pulse data set memory 210 to output the
next pulse data set that is not already a member of a class to
correlation coefficient engine 220. The correlation coeffi-
cient engine generates a respective correlation coeflicient
that comparator 230 compares to the threshold and, if the
pulse data sets are well-correlated, causes class memory 240
to store the block address of the memory block where this
pulse data set is stored in the class table of the second class.
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[0049] Processor 200 repeats the process described in the
previous paragraph until all of the pulse data sets have been
sorted into classes by their block addresses being stored in
respective class tables. In some embodiments, controller 250
additionally counts the number of pulse data sets assigned to
the current class so that, when assignment of pulse data sets
to the current class is complete but the size of the current
class is less than a threshold size, the assignment of the pulse
data sets to the current class can be reversed.

[0050] The number of classes generated by processor 200
corresponds to the number of mode hop sequences used by
EC-QCL 110 (FIG. 2) or EC-QCL 182 (FIG. 4) to generate
light pulses at its current frequency setting. At other fre-
quency settings, the number of mode hop sequences can be
different. It should be noted, however, that processor 200
does not need to be provided with the number of mode hop
sequences of the EC-QCL in advance. Using correlation
coeflicients to sort the pulse data sets into classes automati-
cally results in the pulse data sets being sorted into a number
of classes corresponding to the number of mode hop
sequences.

[0051] Once all (or most) of the pulse data sets have been
sorted into classes, the pulse data sets in each of the classes
can be subject to additional processing. For example, in
response to a command to output the pulse data sets in the
first class for further processing, controller 250 reads from
the class memory 240 the block addresses stored in the class
table of the first class and issues commands to pulse data set
memory 210 that cause the pulse data set memory to output
the pulse data sets stored at these block addresses. In an
example, the pulse data sets in the first class are subject to
averaging. A subsequent command causes the pulse data sets
in the second class to be output and to be subject to
averaging. The averaging operation applied to the pulse data
sets in the second class typically produces a result different
from the averaging operation applied to the pulse data sets
in the first class because the two classes of pulse data sets
originate from different mode hop sequences of EC-QCL
110.

[0052] FIG. 6 is a block diagram showing another
example 300 of a processor that may be used as processor
160 in the heterodyne spectrometer 100 described above
with reference to FIG. 2 and as processor 188 in the optical
instrument 180 described above with reference to FIG. 4. In
the example shown, processor 300 uses K-means clustering
to identify the pulse data sets that are well correlated so that
such pulse data sets can be assigned to the same class. The
example of processor 300 shown includes a pulse data set
(PDS) memory 310, a distance engine 320, a class assigner
330, a class memory 340 and a controller 350. In a typical
embodiment, pulse data set memory 310, class memory 340
and class centers memory 370 are respective portions of a
common physical memory.

[0053] Pulse data set memory 310 has an input 312 to
receive pulse data sets from detector 150 (FIG. 2) during
operation of heterodyne spectrometer 100 or from detector
188 (FIG. 4) during operation of optical instrument 180.
Pulse data set memory 310 has a pulse data set output 314
to deliver pulse data sets to distance engine 320, averaging
engine 360, and a pulse data set output 380. Additionally,
pulse data set memory 310 has an input/output port 316
connected to controller 350 via which control signals are
exchanged between the pulse data set memory and the
controller.
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[0054] In an example, pulse data set memory 310 is
organized into memory blocks each capable of storing a
single pulse data set and addressed by a respective block
address.

[0055] Distance engine 320 has an input 322 via which it
receives pulse data sets from pulse data set memory 310.
Distance engine 320 additionally has a class centers input
328 via which it receives from class centers memory 370 a
respective class center for each of the K classes into which
processor 300 will sort the pulse data sets. Distance engine
320 additionally has a distances output 324 via which it
outputs sets of K distances. Each distance in the set is a
respective distance between the pulse data set currently
received from pulse data set memory 310 and each of the
class centers received from class centers memory 370.
Finally, distance engine 320 has an input/output port 326
connected to controller 350 via which control signals are
exchanged between the distance engine and the controller.
[0056] Class assigner 330 has an input 332 connected to
the distances output 324 of distance engine 320, and a class
output 334 connected to deliver a class index for each of the
pulse data sets to a class input of class memory 340. Class
assigner 330 additionally has an input/output port 336
connected to controller 350 via which control signals are
exchanged between the class assigner and the controller.
[0057] Class memory 340 has a class input 342 connected
to the class output 334 of class assigner 330 and an input/
output port 346 connected to controller 350 via which
control signals are exchanged between the class memory and
the controller. In an example, class memory 340 is organized
as a number of class tables each addressed by a correspond-
ing class table index. Each class table is for storing the block
addresses of the pulse data sets assigned to the class defined
by the class table index. Alternatively, the class tables may
store the pulse data sets assigned to the class or copies of the
pulse data sets assigned to the class.

[0058] Averaging engine 360 has a pulse data set input 362
connected to the pulse data set output 314 of pulse data set
memory 310. Averaging engine 360 additionally has an
averages output 364 connected to deliver an average for
each class to an averages input 372 of class centers memory
370. Finally, averaging engine 360 has an input/output port
366 connected to controller 350 via which control signals
are exchanged between the averaging engine and the con-
troller.

[0059] Class centers memory 370 has an averages input
372 connected to the averages output 364 of averaging
engine 360. Class centers memory 370 additionally has a
class centers output 374 via which the class centers memory
delivers sets of K class centers to the class centers input 328
distance engine 320. Class centers memory 370 additionally
delivers class averages or sets of class averages to class
average output 382 via class centers output 374. Finally,
class centers memory 370 has an input/output port 376
connected to controller 350 via which control signals are
exchanged between the class centers memory and the con-
troller.

[0060] Each of the above-described connections may con-
sist of more than one conductor.

[0061] In operation, processor 300 receives the pulse data
sets generated by detector 150 (FIG. 2) or by detector 188
(FIG. 4) and stores each of the pulse data sets in pulse data
set memory 310 in a respective memory block defined by a
block address supplied by controller 350. Once all the pulse
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data sets have been stored, controller 350 causes class
centers memory 370 to output a set of K initial class centers
to distance engine 320. The initial class centers may be
defined randomly or may be defined based on class centers
used in previous sorting operations performed by processor
300 or may be defined in some other way. Each class center
is a coordinate in P-dimensional space, where P is the
number of pulse data points in each pulse data set, that
defines the location in the P-dimensional space of the center
of the respective class.

[0062] Controller 350 then causes pulse data set memory
310 to output each of the stored pulse data sets to distance
engine 320. In an example, the pulse data set first output to
the distance engine is the pulse data set that was stored in the
memory block of the pulse data set memory having the
lowest block addresses. For each successive pulse data set
output from pulse data set memory 310, the block address is
incremented by one.

[0063] For each pulse data set received from pulse data set
memory 310, distance engine 320 calculates a respective
distance in the P-dimensional space between the pulse data
set and each of the K initial class centers and outputs the K
distances to class assigner 330.

[0064] Class assigner 330 receives the K distances gener-
ated for each pulse data set by distance engine 320, com-
pares them with one another to identify which of them is
smallest and outputs to class memory 340 the class index of
the class for which the distance was identified as being the
smallest. The smallest distance indicates that the pulse data
set is best correlated with the current class center of the
identified class. Pulse data sets originating from the same
mode hop sequence of the EC-QCL tend to be correlated
with the class center of the same class, although at this early
stage of the processing, the correlation is imperfect unless
the class centers were retained from a previous sorting
operation and the settings of the EC-QCL have not been
changed in the meantime.

[0065] Controller 350 provides to class memory 340 the
block address of the current pulse data set output to distance
engine 320 by pulse data set memory 310. In response to a
command from controller 350, class memory 340 stores the
block address of the current pulse data set in the class table
defined by the class table index received from class assigner
330.

[0066] Once class memory 340 stored the block addresses
of'the all pulse data sets stored in pulse data set memory 310
in respective class tables in class memory 340 in response to
respective class indices received from class assigner 330,
controller 350 causes averaging engine 360 to generate a
new class center for each class. In this, for each class,
controller 350 reads the block addresses stored in the class
table for the class stored in class memory 340 and causes
pulse data set memory 310 to output to averaging engine 360
the pulse data sets stored at the block addresses retrieved
from the class table. Averaging engine 360 performs an
averaging operation on the pulse data sets to generate a new
class center for the class and outputs the new class center to
class centers memory 370. Controller 350 causes class
centers memory 370 to update the class center stored for the
class with the new class center.

[0067] Controller 350 next causes pulse data set memory
310, distance engine 320, class assigner 330, class memory
340, averaging engine 360, and class centers memory 370
operate repetitively as described above each time to generate
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another set of class centers. In each iteration, distance engine
320 calculates a distance for each pulse data set using the
new class centers stored in class centers memory 370 during
the previous iteration. Provided that the number of classes K
is equal to the number of mode hop sequences of the
EC-QCL, the distances between the pulse data sets assigned
to each class and the updated class center will decrease
between consecutive iterations. This decrease in distance is
indicative of an increase in correlation among the pulse data
sets assigned to each class. Operations continue until a
termination condition has been met. In an example, the
operations continue until a defined number of iterations have
been performed. In another example, the operations continue
until the controller determines that the number of changes in
class membership between consecutive iterations has fallen
below a defined threshold. This criterion can be tested by
providing two class tables for each class in class memory
340 so that a record of class membership in the previous
iteration can be preserved. Controller 350 can then compare
class membership in the previous iteration with the class
membership in the current iteration.

[0068] The above-described termination condition can
sometimes be met by the above described processing finding
one or more local minima instead of respective global
minima. To check for this possibility, in some embodiments,
controller 350 causes pulse data set memory 310, distance
engine 320, class assigner 330, class memory 340, averaging
engine 360, and class centers memory 370 to calculate the
class centers more than once. The most commonly-occur-
ring results for the class centers are then taken to be the true
class centers. In some embodiments, controller 350 addi-
tionally causes class centers memory 370 to provide a
different set of initial class centers for each calculation of the
class centers.

[0069] The number of classes generated by processor 300
corresponds to the number of mode hop sequences used by
EC-QCL 110 (FIG. 3) or pulsed laser 182 (FIG. 4) to
generate light pulses at its current frequency setting. At other
frequency settings, the number of mode hop sequences can
be different. The number of classes into which processor 300
sorts the pulse data sets needs to be defined in advance.
Sorting with a number of classes different from the number
of mode hop sequences of the laser makes it unlikely that the
termination condition will be met. Controller 350 can be
configured to perform testing, e.g., by looking for churning
of pulse data sets among the classes, that indicates that the
number of classes is incorrect, and can be configured to start
over using an increased or decreased number of classes.

[0070] Once the termination criterion has been met, the
pulse data sets in each of the classes can be subject to
additional processing. For example, in response to a com-
mand to output the pulse data sets in the first class for further
processing, controller 350 reads from class memory 340 the
block addresses stored in the class table of the first class and
issues commands to pulse data set memory 310 that cause
the pulse data set memory to output the pulse data sets stored
at these block addresses to pulse data set output 380.
However, if the pulse data sets in a selected class are to be
subject to averaging, there is no need to output them because
an average for each of the classes as currently configured has
already been generated by averaging engine 360 and is
stored as a class center in class centers memory 370. Class
centers memory 370 will output the averages for all of the
classes or the average for a selected one of the classes in
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response to a command received from controller 350. The
averaging operation applied to the pulse data sets in each
class typically produces a result different from the averaging
operations applied to the pulse data sets in the other classes
because the classes of pulse data sets originate from different
mode hop sequences of EC-QCL 110.

[0071] FIG. 7 is a block diagram showing a third example
400 of a processor that may be used as processor 160 in
heterodyne spectrometer 100 described above with refer-
ence to FIG. 2 and as processor 188 in optical instrument
180 described above with reference to FIG. 4. In the
example shown, processor 400 implements a hierarchical
clustering process to identify the pulse data sets that are well
correlated so that such pulse data sets can be assigned to the
same class. The example of processor 400 shown includes a
pulse data set (PDS) memory 410, a distance engine 420, a
distance memory 430, a smallest distance identifier 440, a
controller 450 and a merging engine 460. In a typical
embodiment, pulse data set memory 410 and distance
memory 430 are respective portions of a common physical
memory.

[0072] Pulse data set memory 410 has a pulse data set
input 412 to receive pulse data sets from detector 150 (FIG.
2) during operation of heterodyne spectrometer 100 or from
detector 188 (FIG. 4) during operation of optical instrument
180 or from merging engine 460. Pulse data set memory 410
has a pulse data set output 414 to deliver pulse data sets to
distance engine 420 and to merging engine 460. Pulse data
set output 414 is shown in FIG. 7 as having two paths to
simply to indicate that the distances generated by distance
engine 420 are distances between pairs of pulse data sets
received from the pulse data set memory, and that merging
engine 460 merges pairs of pulse data sets. More typically,
the pulse data sets for which the distances are generated are
output serially via a single path. Pulse data set memory 410
additionally has a pulse data set output 416 connected to a
pulse data set output 480 via which all the pulse data sets
sorted into a given class are output at the end of a sorting
operation. Finally, pulse data set memory 410 has an input/
output port 418 connected to controller 450 via which
control signals are exchanged between the pulse data set
memory and the controller.

[0073] In an example, pulse data set memory 410 is
organized into memory blocks each capable of storing a
single pulse data set and addressed by a respective block
address.

[0074] Distance engine 420 has an input 422 via which it
receives pulse data sets from pulse data set memory 410.
Input 422 is shown in FIG. 7 as having two paths simply to
indicate that the distances calculated by distance engine 420
are distances between pairs of pulse data sets received from
pulse data set memory 410. More typically, the pulse data
sets for which the distances are calculated are received
serially via a single path. Distance engine 420 additionally
has a distance output 424 via which it outputs a respective
distance calculated for the pairs of pulse data sets received
from pulse data set memory 410. Finally, distance engine
420 has an input/output port 426 connected to controller 450
via which control signals are exchanged between the dis-
tance engine and the controller.

[0075] Distance memory 430 has a distance input 432
connected to receive distances from the distance output 424
of distance engine 420 and a distance output 434 connected
to deliver distances read from distance memory 430 to a
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distance input of smallest distance identifier 440. Distance
memory 430 additionally has an input/output port 436
connected to controller 450 via which control signals are
exchanged between the distance memory and the controller.
In an example, distance memory 430 is organized as a square
array in which the cell in which is stored the distance
between two pulse data sets is addressed in the row direction
and the column direction by addresses derived from the
respective block addresses of the pulse data sets.

[0076] Smallest distance identifier 440 has a distance input
442 connected to receive distances from the distance output
434 of distance memory 430 and an input/output port 446
connected to controller 450 via which control signals are
exchanged between the smallest distance identifier and the
controller.

[0077] Merging engine 460 has a pulse data set input 462
connected to receive the pairs of pulse data sets that are to
be merged from the pulse data set output 414 of pulse data
set memory 410. Merging engine 460 additionally has a
merged pulse data set output 464 via which it delivers
merged pulse data sets to the pulse data set input 412 of
pulse data set memory 410. Finally, merging engine 460 has
an input/output port 466 connected to controller 450 by
which control signals are exchanged between the merging
engine and the controller.

[0078] Each of the above-described connections may con-
sist of more than one conductor.

[0079] In operation, processor 400 initially receives the
pulse data sets generated by detector 150 (FIG. 2) or by
detector 188 (FIG. 3) and stores each of the pulse data sets
in pulse data set memory 410 in a respective memory block
defined by a block address supplied by controller 450. Once
all the pulse data sets have been stored, controller 450 causes
pulse data set memory 410 to output one of the stored pulse
data sets to distance engine 420. In an example, the pulse
data set first output to the distance engine are the pulse data
sets that were stored in the memory blocks of the pulse data
set memory having the lowest block address. Controller 450
then causes pulse data set memory 410 to output the remain-
ing pulse data sets stored therein sequentially to distance
engine 420.

[0080] Distance engine 420 treats the pulse data set first
received as a reference pulse data set and calculates a
respective distance between the reference pulse data set and
each of the pulse data sets subsequently received from pulse
data set memory 410. A small distance between two pulse
data sets is indicative of the pulse data sets being generated
using the same mode hop sequence of EC-QCL 110 whereas
a larger distance is indicative of the pulse data sets being
generated using different mode hop sequences of the EC-
QCL. Once the distance engine has calculated distances
between the first pulse data set received and each of the
remaining pulse data sets, controller 450 causes pulse data
set memory 410 to output the pulse data set at the second-
lowest block address for the distance engine to use as a
reference pulse data set and then causes pulse data set
memory 410 to output sequentially the pulse data sets at
block addresses higher than that of the reference pulse data
set. The process of outputting a reference pulse data set
followed by a sequence of all the pulse data sets at block
addresses greater than that of the reference pulse data set
continues until distance engine 420 has calculated respective
distances between each of the pulse data sets and each other
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of the pulse data sets stored in pulse data set memory 410.
Distance engine 420 outputs each calculated distance to
distance memory 430.

[0081] Distance memory 430 receives each of distances
calculated by distance engine 420 and additionally receives
from controller 450 the block addresses of the pair of pulse
data sets to which the distance pertains. Distance memory
430 stores each distance linked to its corresponding block
addresses.

[0082] Concurrently with the distances being stored in
distance memory 430, or after all the distances have been
stored in distance memory 430, controller 450 provides pairs
of block addresses to distance memory 430 and to smallest
distance identifier 440. Each pair of block addresses pro-
vided to the distance memory causes the distance memory to
output to smallest distance identifier 440 the respective
distance stored in the distance memory at the address
defined by the pair of block addresses. Outputting continues
until respective distances between each of the pulse data sets
stored in pulse data set memory 410 and each other of the
pulse data sets stored in the pulse data set memory have been
output.

[0083] Smallest distance identifier 440 assigns the first
distance received from distance memory 430 and the block
addresses received from controller 450 and corresponding to
the first distance to a temporary memory. Smallest distance
identifier 440 then compares each subsequent distance it
receives from distance memory 430 with the distance stored
in a temporary memory. When the subsequently-received
distance is larger than the stored distance, the smallest
distance identifier does nothing. When the subsequently-
received distance is smaller than the stored distance, the
smallest distance identifier overwrites the distance and block
addresses stored in the temporary memory with the subse-
quently-received distance and its corresponding block
addresses. When all of the distances have been processed by
smallest distance identifier 440, controller 450 causes the
smallest distance identifier to output the smallest distance
and the block addresses of the corresponding pulse data sets
from its temporary memory to the controller.

[0084] Controller 450 forwards the block addresses
received from smallest distance identifier 440 to pulse data
set memory 410 and commands the pulse data set memory
to output the pulse data sets stored at the block addresses to
merging engine 460. Merging engine 460 merges the pulse
data sets that have the smallest distance between them to
form a merged pulse data set and outputs the merged pulse
data set to pulse data set memory 410. In an example,
merging engine 460 merges the pulse data sets by averaging
them to generate a merged pulse data set that is the average
of the pulse data sets subject to merging. Other ways of
merging pulse data sets are known and may be implemented
by merging engine 460. Controller 450 provides a block
address and a command to pulse data set memory 410 that
causes the pulse data set memory to store the merged pulse
data set at the block address provided. The merged pulse
data set constitutes the beginning of a class. Typically,
merging engine 460 will later merge other pulse data sets
and/or other merged pulse data sets with the merged pulse
data set to increase the size the class. Merging two pulse data
sets that have not previously been merged forms a new class.
Merging a merged pulse data set with a pulse data set that
has not previously been merged increases the size of the
class corresponding to the merged pulse data set. Merging
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two merged pulse data sets forms a new class that supersedes
the classes represented by the constituent merged pulse data
sets.

[0085] To keep track of the pulse data sets that are merged
into each merged pulse data set, controller 450 keeps a class
table for each merged pulse data set. Controller 450 stores in
the class table the block addresses of the pulse data sets that
are merged to form each merged pulse data set. In applica-
tions in which hierarchical information is of interest, con-
troller 450 additionally stores in each class table information
indicating the processing cycle in which each pulse data set
was merged into the class.

[0086] Inan example in which merging engine 460 merges
two merged pulse data sets by averaging them or merges a
pulse data set with a merged pulse data set by averaging
them, the merging engine performs averaging that is
weighted in accordance with the number of pulse data sets
that have been merged to form each merged pulse data set.
In another example in which merging engine 460 merges
two merged pulse data sets by averaging them or merges a
pulse data set with a merged pulse data set by averaging
them, the averaging engine averages the pulse data sets
identified by the class table kept by controller 450 as being
constituents of each merged pulse data set.

[0087] Controller 450 next causes pulse data set memory
410 to output the merged pulse data set that it has just stored
to distance engine 420 as a reference pulse data set and
additionally causes pulse data set memory 410 to output
sequentially to distance engine 420 each other pulse data set
stored in pulse data set memory 410. Distance engine 420
calculates a difference between the merged pulse data set
and each pulse data set it subsequently receives and outputs
the resulting distance to distance memory 430. Distance
memory 430 replaces the distances stored therein for the
pulse data sets that were merged with the distances calcu-
lated for the merged pulse data set. Distance memory 430
stores each distance for the merged pulse data set at an
address derived from its corresponding block addresses, as
described above. Replacing the distances stored in distance
memory 430 for the pulse data sets that were merged with
the distances calculated for the merged pulse data set
reduces the size of the array of distances stored in the
distance memory by one row and one colon.

[0088] Distance memory 430 then sequentially outputs the
distances stored therein sequentially to smallest distance
identifier 440 in a manner similar to that described above.
However, this time, distance memory 430 outputs the newly-
calculated distances for the merged pulse data set instead of
the distances for the pair of pulse data sets that were merged
to form the merged pulse data set. As a result, smallest
distance identifier identifies another pair of pulse data sets
for which the distance smallest. These pulse data sets may be
previously-unmerged pulse data sets (indicating the start of
another class) or of one of the pulse data sets may be the
recently-formed merged pulse data set (indicating an
increase in the size of an existing class).

[0089] Merging engine 460, pulse data set memory 410,
distance engine 420, distance memory 430, and smallest
distance identifier 440 operate cyclically in response to
commands from controller 450. During each cycle, merging
engine 460 merges the pair of pulse data sets identified by
smallest distance identifier 440 as having the smallest dis-
tance between them. During each cycle, the size of an
existing class may increase by one, or a new class may be
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formed. During each cycle, after smallest distance identifier
440 identifies the smallest distance between the pulse data
sets that have valid distances stored in distance memory 430,
controller 450 compares the size of the smallest distance
with a threshold that defines the lowest-acceptable correla-
tion among the pulse data sets sorted into each class. When
the smallest distance exceeds the threshold, controller 450
terminates the sorting process.

[0090] Each of the merged pulse data sets stored in pulse
data set memory 410 is a merged pulse data set for a
respective class. In an embodiment in which pulse data sets
are merged by averaging them, each of the merged pulse
data sets is an average pulse data set for the class. In
applications in which the purpose of the processing per-
formed by processor 400 is to generate an average of the
pulse data sets in each class, controller 450 provides the
block address where the merged pulse data set of a class of
interest is stored pulse data set memory 410 to cause the
pulse data set memory to output the average for the class of
interest to pulse data set output 480. In applications in which
the pulse data sets themselves are of interest, controller 450
refers to the class table for the class of interest and provides
respective block addresses and a command to pulse data set
memory 410 that cause the pulse data set memory to output
the pulse data sets constituting the class to pulse data set
output 480 for further processing.

[0091] The embodiments of processors 160, 200, 300, 400
and elements thereof described in this disclosure may be
constructed from discrete components, small-scale or large-
scale integrated circuits, suitably-configured application-
specific integrated circuits (ASICs) or field-programmable
gate arrays (FPGAs) and/or other suitable hardware. Alter-
natively, processors 160, 200, 300, 400 and the elements
thereof may be constructed using a digital signal processor
(DSP), microprocessor, microcomputer or computer with
internal or external memory operating in response to a
sorting program fixed in a computer-readable medium. A
device, such as a DSP, a microprocessor, microcomputer or
computer, capable of executing a sorting program will be
referred to herein as a computer.

[0092] In computer-based embodiments, the various mod-
ules described herein may be ephemeral, and may only exist
temporarily as the program executes. In such embodiments,
the program could be conveyed to the computer on which it
is to run by embodying the program in a suitable computer-
readable medium, such as a set of floppy disks, a CD-ROM,
a DVD-ROM, a BD-ROM, a flash drive, or a read-only
memory. Alternatively, the program could be transmitted to
the computer on which it is to run from a computer-readable
medium in another computer by a suitable physical or
wireless data link, and be stored in a memory device in the
computer on which it is to run.

[0093] FIG. 8 is a flowchart showing an example 500 of an
optical measurement method in accordance with an embodi-
ment. In the example shown, in block 502, a series of light
pulses is generated using a mode-hopping pulsed laser
having a set of different mode hop sequences. In block 504,
the light pulses are detected with a detector to generate a
respective pulse data set for each of the light pulses. In block
506, the pulse data sets are sorted into classes based on
correlation. Once sorted into classes, the pulse data sets in
each of the classes can be subject to further processing, such
as averaging.
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[0094] FIG. 9 is a flowchart showing an example 520 of
the processing performed in block 506 of method shown in
FIG. 6 to sort the pulse data sets into classes based on
correlation. In this example, correlation coefficients among
the pulse data sets are calculated to identify those of the
pulse data sets that are well correlated with one another and
therefore should be assigned to the same class. In the
example shown, in block 522, the pulse data sets generated
in block 504 of FIG. 6 are stored. In block 524, for each of
the stored pulse data sets not already assigned to a class,
referred to as a reference pulse data set, a respective corre-
lation coefficient is calculated between the reference pulse
data sets and each other of the stored pulse data sets not
already assigned to a class. Finally, in block 526, the
reference pulse data set and each of the other pulse data sets
whose correlation coefficient with the reference pulse data
set indicates a correlation greater than a predetermined
threshold correlation are assigned to the same class.

[0095] FIG. 10 is a flowchart showing in greater detail an
example 530 of the processing performed in blocks 524 and
526 of FIG. 9. In this example, it is assumed that each pulse
data set received from detector 150 (FIG. 2) is stored in a
respective block of a memory, and the blocks have respec-
tive block addresses tracked by two block address indices. A
first block address index m tracks the block address of each
pulse data sets that is used as a reference pulse data set, and
a second block address index n tracks the block address of
each pulse data set for which a correlation coefficient with
the reference pulse data set is determined. The first block
address index m ranges from 1 through N-1, where N is the
number of pulse data sets stored in block 522 (FIG. 7). The
second block address index n ranges from m+1 through N.
A class table for each class is used to store the block
addresses of the memory blocks in which are stored the
pulse data sets belonging to the class. A class table index is
used to track the class tables. Flags linked to the block
addresses are used to track whether the process has previ-
ously assigned the corresponding pulse data sets to a class.
[0096] In the example shown in FIG. 8, in block 532, the
class table index is initialized. In its initialized state, the
class table index indicates the class table of the first class.

[0097] In block 534, a first loop is established that pro-
gressively increments first block address index m from 1
through N-1.

[0098] In block 536, a test is performed to determine
whether the pulse data set at the block address indicated by
first block address index m has not already been assigned to
a class. The test is unnecessary during the first iteration of
the first loop but is nevertheless performed during the first
iteration of the first loop for simplicity.

[0099] A NO result in block 536 causes execution to
advance to block 538, where the value of first block address
index m is incremented by one. Execution and then returns
to block 534, where the next iteration of the first loop begins.

[0100] A YES result in block 536 causes execution to
advance to block 540, where the block address indicated by
the current value of first block address index m is stored in
the class table indicated by the current value of the class
table index.

[0101] In block 542, the flag linked to the block address
indicated by first block address index m is set to indicate that
the pulse data set at this block address has now been
assigned to a class.
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[0102] In block 546, a second loop is established that
progressively increments second block address index n from
m+1 through N.

[0103] In block 548, a test is performed to determine
whether the pulse data set at the block address indicated by
second block address index n has not already been assigned
to a class. The test is unnecessary during the 1st iteration of
the loop that begins at block 546 but is nevertheless per-
formed during the first iteration of the second loop for
simplicity.

[0104] A NO result in block 548 causes execution to
advance to block 550 where the value of second block
address index n is incremented by one. Execution then
returns to block 546 where the next iteration of the 2nd loop
begins.

[0105] A YES result in block 548 causes execution to
advance to block 552, where a correlation coeflicient
between the pulse data sets at the block addresses indicated
by first block address index m and second block address
index n is calculated.

[0106] In block 554, a test is performed to determine
whether the correlation coefficient calculated in block 552
indicates that the pulse data sets at the block addresses
indicated by first block address index m and second block
address index n are well-correlated. In an example, the pulse
data sets are well-correlated when the correlation coeflicient
between them is greater than a predetermined threshold
correlation coefficient T1. In another, the pulse data sets are
well-correlated when the correlation coefficient between
them is less than a predetermined threshold correlation
coefficient T1.

[0107] A NO result in block 554 causes execution to
advance to block 556 where the value of second block
address index n is incremented by one. Execution than
advances to block 546, where the next iteration of the 2nd
loop begins. When a NO result is obtained in block 554, the
block address indicated by second block index n is not stored
in the class table indicated by the current value of the class
table index and, hence, the pulse data set at this block
address is not assigned to the class.

[0108] A YES result in block 554 causes execution to
advance to block 558, where the block address indicated by
second block address index n is stored in the class table
indicated by the current value of the class table index. As a
result, the pulse data set at this block address is assigned to
the class.

[0109] In block 562, a flag linked to the block address
indicated by second block address index n is set to indicate
that the pulse data set at this address has now been assigned
to a class.

[0110] In block 564, a test is performed to determine
whether the current value of second block address index n is
greater than N, the number of pulse data sets stored.
[0111] A NO result in block 564 causes execution to
advance to block 566, where the value of second block
address index n is incremented by one. Execution then
returns to block 546, where the next iteration of the second
loop begins. In each iteration of the second loop, a respective
correlation coefficient between the reference pulse data set at
the block address indicated by first block address index m
and the pulse data set at the block address indicated by the
new value of second block address index n is calculated.
[0112] AYES result in block 564 indicates that correlation
coeflicients between the reference pulse data set at the block
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address indicated by first block address index m and all of
the other pulse data sets not already assigned to a class have
been calculated. The YES result in block 564 causes execu-
tion to advance to block 572, where the class table index is
incremented by one to select the next class table.

[0113] In block 574, a test is performed to determine
whether first pulse data set index m is greater than N-1.
[0114] A NO result in block 574 causes execution to
advance to block 576, where the value of first block address
index m is incremented by one block. Execution then returns
to block 534, where the next iteration of the first loop begins.
In this next iteration of the 1st loop, a respective correlation
coeflicient is calculated between the reference pulse data set
at the block address indicated by the new first block address
index m and the pulse data set at each block address
indicated by the value of second block address index n and
that has not already been assigned to a class in a previous
iteration of the first loop.

[0115] A YES result in block 574 indicates that, for each
one of the stored pulse data sets not already assigned to a
class, as a reference pulse data set, a respective correlation
coeflicient has been calculated between the reference pulse
data set and each other of the stored pulse data sets not
already assigned to a class, and that an assignment of the
other pulse data set to a class has or has not been made
depending on the calculated correlation coefficient.

[0116] In block 578, the pulse data sets stored at the block
addresses stored in one of the class tables are subject to
processing, such as averaging or selection.

[0117] In some applications, it is desirable to define a
minimum number of pulse data sets that may constitute a
class. FIG. 11 is a flowchart showing an example 590 of the
processing performed in blocks 524 and 526 of FIG. 9 when
the minimum size of the class is defined. A pulse data set
counter is used to track the number of pulse data sets
assigned to the class indicated by the current class table
index. Elements of FIG. 11 that correspond to elements of
FIG. 10 are indicated using the same reference numerals and
will not be described again here.

[0118] In block 534, the maximum value of the first block
address index m is less than the total number N of pulse data
sets stored by the minimum class-size CS,,, i.e., the
minimum number of pulse data sets that may constitute a
class.

[0119] In block 544, the pulse data set counter that counts
the number of pulse data sets assigned to the current class is
reset.

[0120] In block 560, a YES result in block 554 addition-
ally causes the pulse data set counter to be incremented by
one.

[0121] A YES result in block 564 causes execution to
advance to block 568, where a test is performed to determine
whether the number of pulse data sets in the current class
indicated by the pulse data set counter exceeds minimum
class size CS,,,,.

[0122] A NO result in block 568 causes execution to
advance to block 570, where the block addresses stored in
the current class table are cleared. Execution then advances
to block 574, skipping block 572. As a result, the class table
index is not incremented and the class table indicated by the
current value of the class table index is repopulated on the
next iteration of the first loop.

[0123] Other sorting methods may be used. For example
correlation coefficients between each pulse data set and each
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other of the pulse data sets may be calculated and stored, for
example, in a two-dimensional array. A column of the array
is then searched for correlation coefficients that indicate
well-correlated pairs of pulse data sets, the block addresses
of the corresponding pulse data sets are added to a class
table, and all the correlation coefficients relating to the pulse
data sets whose block addresses were added to the class table
are removed from the table. The next column of the array is
then searched to add block addresses to another class table.
[0124] FIG. 12 is a flowchart showing another example
600 of the processing performed in block 506 of method
shown in FIG. 8 to sort the pulse data sets into classes based
on correlation. The processing is based on what is known as
K-means clustering. In this example, no correlation coeffi-
cients among the pulse data sets are calculated but the
number of classes into which the pulse data sets will be
sorted has to be defined in advance. The processing refers to
a P-dimensional space, where P is the number of pulse data
points in each pulse data set.

[0125] In the example shown, in block 610, the pulse data
sets generated in block 504 of FIG. 8 are stored. In block
612, an initial class center for each of the classes is defined
in the P-dimensional space. In some embodiments, the initial
class centers are defined based on known properties of the
EC-QCL. In other embodiments, the initial class centers are
randomly assigned or are based on class centers used in
previous sorting operations. Alternatively, other techniques
may be used to define the initial class centers.

[0126] Inblock 614, a distance in the P-dimensional space
between each pulse data set and the class center of each class
is calculated. Thus, if there are K classes. K distances are
calculated for each pulse data set.

[0127] In block 616, each pulse data set is assigned to the
class for which the distance calculated in block 614 is
smallest.

[0128] Inblock 618, once all the pulse data sets have been
assigned to classes, the class center in the P-dimensional
space of each class is updated using the average of the pulse
data sets assigned to the class.

[0129] In block 620, the until a termination condition is
met. For example, the termination condition may be met
when the pulse data sets assigned to each of the classes does
not change significantly between subsequent iterations. In
another example, the termination condition is the perfor-
mance of a defined number of iterations.

[0130] The termination condition can sometimes be met
by the above described processing finding one or more local
minima instead of respective global minima. To check for
this possibility, in some embodiments, the processing
sequence described above with reference to blocks 614, 616,
618 and 620 is repeated more than once. The most com-
monly-occurring results for the class centers are then taken
to be the true class centers. In some embodiments, the
sequence that is repeated additionally includes block 612,
where a set of different initial class centers is defined for
each repetition.

[0131] Optionally, tests may be performed in block 620 to
determine whether the processing is converging on a solu-
tion so that if the processing is not converging, process can
be stopped and subsequently restarted using a different
number of classes.

[0132] In block 622A, the pulse data sets assigned to one
of the classes in the most recent performance of block 616
are output for processing. Alternatively, when block 506 of
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the method shown in FIG. 8 is performed to average the
pulse data sets, the most recently updated class center of a
specified class generated in block 618 can be output as an
average for the class.

[0133] FIG. 13 is a flowchart showing in greater detail an
example 630 of the processing performed in blocks 610
through 620 of FIG. 12. In block 632, an initial class center
for each class is defined as described above.

[0134] In block 634, a first loop is established that pro-
gressively increments and iteration counter m from 1
through M.

[0135] In block 636, a second loop is established that
progressively increments a block address index n from 1 to
N, where N is the number of pulse data sets stored in the
pulse data set memory.

[0136] In block 638, a third loop is established that pro-
gressively increments a class counter k from 1 to K, where
K is the number of classes for which initial class centers
were defined in block 632.

[0137] In block 640, a distance is calculated between the
pulse data set at the block address indicated by the current
value of block address index n and the class center of current
class k.

[0138] In block 642, a test is performed to determine
whether the current value of class counter k is greater than
or equal to the number of classes K. A NO result in block
642 causes execution to advance to block 644, where class
counter k is incremented by 1. Execution then returns to
block 638, where processing of the next class begins. AYES
result in block 642 causes execution to advance to block
646, where the class for which the distance calculated in
block 640 is smallest is identified.

[0139] In block 648, the block address indicated by the
current value of the block address index n is stored in the
class table for the class identified in block 646.

[0140] In block 650, a test is performed to determine
whether the current value of block address index n is greater
than or equal to the number of stored pulse data sets N. ANO
result in block 650 causes execution to advance to block
652, where block address index n is incremented by 1.
[0141] Execution then returns to block 636, where pro-
cessing of the next pulse data set begins. A YES result in
block 650 causes execution to advance to block 654, where
a new loop is established that progressively increments class
counter k from 1 to K, where K is the number of classes for
which initial class centers were defined in block 632.
[0142] Inblock 656, the pulse data sets stored at the block
addresses stored in the class table for the current class k are
averaged to generate a new class center for the current class.
[0143] In block 658, the class center for the current class
k is updated using the new class center generated in block
656.

[0144] In block 660, a test is performed to determine
whether the current value of class counter k is greater than
or equal to the number of classes K. A NO result in block
660 causes execution to advance to block 662, where class
counter k is incremented by 1. Execution then returns to
block 654, where processing of the next class begins. AYES
result in block 660 causes execution to advance to block
664.

[0145] In block 664, a test is performed to determine
whether a termination criterion has been met. Examples of
termination criteria that may be used are described above. A
NO result in block 664 causes execution to advance to block
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666, where iteration counter m is incremented by 1. Execu-
tion then returns to block 634, where processing of the next
iteration begins. A YES result in block 664 causes execution
to stop.

[0146] As noted above, the most-recently updated class
centers represent averages for the classes and may be output
as such. If processing other than averaging is to be applied
to the pulse data sets in each class, the pulse data sets in a
selected class are read out from the bulk pulse data set
memory by referring to the class table for the class.
[0147] FIG. 14 is a flowchart showing another example
700 of the processing performed in block 506 of method
shown in FIG. 8 to sort the pulse data sets into classes based
on correlation. In this example, a hierarchical clustering
process is used to identify those of the pulse data sets that are
well correlated with one another and therefore should be
assigned to the same class.

[0148] In block 710, a respective distance is calculated
between each pulse data set stored in a pulse data set
memory and each other pulse data set stored in the pulse data
set memory.

[0149] Inblock 712, each distance calculated in block 710
is stored in a distance memory.

[0150] Block 714 is the beginning of a loop that includes
blocks 714, 716, 720, 724, 726 and 728. In block 714, a pair
of pulse data sets for which the distance stored in the
distance memory is smallest is identified as a closest pair of
pulse data sets.

[0151] In block 716, a test is performed to determine
whether the distance identified as the smallest distance in
block 714 is less than a maximum allowed distance. The
maximum allowed distance is indicative a minimum allowed
correlation among the pulse data sets assigned to a class. A
NO result in block 716 (smallest distance greater than
maximum allowed) causes the sorting operation to stop and
execution to advance to block 718, where at least one of the
merged pulse data sets is output as a respective class of pulse
data sets. In an example in which pulse data sets are merged
by averaging them, as described below, each of the merged
pulse data sets is an average pulse data set for the class. In
applications in which the purpose to generate an average of
the pulse data sets in each class the merged pulse data set of
a class of interest is output as the average for the class of
interest. In applications in which the pulse data sets belong-
ing to a specified class are of interest, the pulse data sets
constituting the class are output.

[0152] A YES result in block 716 (smallest distance less
than maximum allowed) allows the sorting operation to
continue and execution advances to block 720, where the
pulse data sets constituting the closest pair of pulse data sets
identified in block 714 are merged. In an example, the pulse
data sets constituting the closest pair of pulse data sets is
merged by averaging them. Other ways of merging pulse
data sets are known and may be used.

[0153] In an example in which two merged pulse data sets
are merged by averaging them or a pulse data set is merged

Oct. 13, 2016

with a merged pulse data set by averaging them, the merging
operation performs averaging that is weighted in accordance
with the number of pulse data sets that have been merged to
form each merged pulse data set. In another example in
which two merged pulse data sets are merged by averaging
them or a pulse data set is merged with a merged pulse data
set by averaging them, the averaging operation averages the
pulse data sets that are the constituents of each merged pulse
data set.

[0154] In block 724, the merged pulse data set generated
in block 720 is stored in the pulse data set memory.

[0155] In block 726, a respective distance is calculated
between the merged pulse data set generated in block 720
and each other of the pulse data sets (including, in late
iterations, other merged pulse data sets) stored in the pulse
data set memory.

[0156] Inblock 728, in the distance memory, the distances
stored therein for the pulse data sets that were merged in
block 720 are replaced with the distances calculated in block
726 for the merged pulse data set.

[0157] Execution then returns to the beginning of the loop
at block 714, where a pair of pulse data sets for which the
distance stored in the distance memory is smallest is iden-
tified as a new closest pair of pulse data sets. The loop
composed of blocks 714, 716, 720, 724, 726, and 728
repeats to sort the pulse data sets into classes based on
correlation until a NO result is obtained in block 716.

[0158] The methods described above with reference to
FIGS. 9-14, and block 506 of the method described above
with reference to FIG. 8 are typically performed by a
computer (as defined above) in response to a sorting pro-
gram. In response to the sorting program, the computer
implements all of the operations described above. This
disclosure provides sufficient information for a programmer
to write a suitable sorting program using a high-level (e.g.,
C or C.sup.++) or low-level programming language.
Accordingly, the program listing itself is omitted.

[0159] As an alternative to the sorting methods described
above, a correlation clustering algorithm may be used to sort
the pulse data sets into classes based on correlation coeffi-
cients. An example of a correlation clustering algorithm
written in MATLAB® script is set forth below.

[0160] The exemplary algorithm receives pulse data sets
and stores them in an (nxm) array called pulses, where n is
the number of samples per pulse data set and m is the
number of pulse data sets that were recorded. The algorithm
returns an array of averaged pulse data sets called classAv-
erages. This array has dimension (nxk) where k is the
number of distinct classes into which the pulse data sets
were sorted by the algorithm. The algorithm also returns a
one-dimensional array of length k called coadds containing
the respective number of pulse data sets that were averaged
to produce each of the averaged pulse data sets.

//mormalize samples in array pulses to generate normalized samples normpulses
normpulses=pulses/max(max(pulses));
corrcoeffmatrix=corrcoef(normpulses);
classAverages=[ ];

coadds=[ ];

//index i labels a distinct class into which the pulse data sets are sorted

i=1;
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// Sort the rows of the correlation coefficient matrix corrcoeffmatrix in decending
// order (indicated by the -1) based on the value of the element in the first column,

// Variable index is a list indicating the order of the sort.
while ~isempty(corrcoeffimatrix)
[rowsorted index]=sortrows(corrcoeffimatrix, -1);
classSum=zeros(size(normpulses,1),1);

// Step through the 1st column of the sorted correlation coefficient matrix until the
// correlation coefficient drops below the value of corrthresh to identify the pulse data

// sets to be assigned to a class i.

// Sum the pulse data sets assigned to class i.

k=1;

while k <= size(corrcoeffmatrix,2) && rowsorted(k,1)>corrthresh
classSum=classSum-+pulses(:,k);
k=k+1;

end

// Divide the summed pulse data sets by the number of pulses data sets in the sum

// Append resulting average pulse data set to the array classAverages;
// Append the value of k to the array coadds.
classAverages=[classAverages classSum/(k-1)];

coadds=[coadds (k-1)];

// Remove the entries in the arrays pulses and index that were used to create

// the i-th average pulse data set.
pulses(:,index(1:k-1))=[ ];
index(1:k-1)=[ ];

// Remove the rows and columns of the array correoeffmatrix corresponding to the

// pulse data sets used to create the i-th average pulse data set.
corrcoeffmatrix(:,index(1:k-1))=[ ];
correoeffmatrix(index(1:k-1),:)=[ 1;
// Increment i and repeat to create the next average pulse data set.
i=i+1;

end

[0161] Correlation clustering algorithms such as that
exemplified above are typically executed by a computer (as
defined above).

[0162] This disclosure describes the invention in detail
using illustrative embodiments. However, the invention
defined by the appended claims is not limited to the precise
embodiments described.

I claim:

1. An optical measurement method, comprising:

generating a series of light pulses using a pulsed laser

having a set of different mode hop sequences;

detecting the light pulses with a detector to generate a

respective pulse data set for each of the light pulses;
and

sorting the pulse data sets into classes based on correla-

tion.

2. The method of claim 1, additionally comprising aver-
aging the respective pulse data sets within each of one or
more of the classes.

3. The method of claim 1, additionally comprising het-
erodyning prior to the detecting.

4. The method of claim 1, in which the sorting comprises
performing a clustering algorithm to sort the pulse data sets
into the classes.

5. The method of claim 1, in which the respective pulse
data sets in each of the classes have mutual correlations
greater than a predetermined threshold correlation.

6. The method of claim 1, in which each of the classes
corresponds to a respective one of the mode hop sequences.

7. The method of claim 1, in which the pulsed laser
comprises a quantum cascade laser.

8. The method of claim 1, in which the sorting comprises:

storing the pulse data sets;

calculating, for each one of the stored pulse data sets not

already assigned to a class, a respective correlation

coeflicient between the one of the stored pulse data sets
and each other of the stored pulse data sets not already
assigned to a class; and
assigning to the same class the one of the stored pulse data
sets and each of the other stored pulse data sets whose
correlation coefficient with the one of the stored pulse
data sets indicates a correlation greater than a prede-
termined threshold correlation.
9. The method of claim 1, in which the sorting comprises:
defining an initial class center for each of a pre-defined
number of classes;
calculating a respective distance from each of the pulse
data sets to the class center of each class;
assigning each pulse data set to the class for which the
distance is smallest;
updating the class center of each class using the average
of the pulse data sets assigned to the class; and
repeating the calculating, the assigning, and the updating
until a termination condition is met.
10. The method of claim 1, in which the sorting com-
prises:
calculating a respective distance between each of the
pulse data sets and each other of the pulse data sets;
storing each distance in a distance memory; and
performing a loop, comprising:
identifying a pair of the pulse data sets for which the
distance stored in the distance memory is smallest,
the pair of pulse data sets identified constituting a
closest pair of pulse data sets,
merging the closest pair of pulse data sets to form a
merged pulse data set,
calculating a respective distance between the merged
pulse data set and each other of the pulse data sets,
and
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the distance memory, replacing the distances calculated
for the pulse data sets that were merged with the
distances calculated for the merged pulse data set.

11. The method of claim 10, in which the loop is per-
formed until, in the identifying, the distance that is smallest
is greater than a maximum allowed distance corresponding
to a minimum allowed correlation.

12. An optical instrument, comprising:

a pulsed laser to generate a series of light pulses using a

set of different mode hop sequences;

a detector optically coupled to the pulsed laser to generate
a respective pulse data set in response to each of the
light pulses;

an optical path between the pulsed laser and the detector;
and

a processor to sort the pulse data sets generated by the
detector into classes based on correlation.

13. The optical instrument of claim 12, in which the
processor is additionally to average the pulse data sets
within each of one or more of the classes.

14. The optical instrument of claim 12, in which the
processor is to sort the pulse data sets using a clustering
algorithm.

15. The optical instrument of claim 12, in which the
processor comprises:

a pulse data set memory to store the pulse data sets;

a correlation coefficient engine to calculate, for each one
of the stored pulse data sets not already assigned to a
class, a respective correlation coefficient between the
one of the stored pulse data sets and each other of the
stored pulse data sets not already assigned to a class;
and

a comparator to assign to the same class the one of the
stored pulse data sets and each of the other stored pulse
data sets whose correlation coefficient with the one of
the stored pulse data sets indicates a correlation greater
than a predetermined threshold correlation.

16. The optical instrument of claim 12, in which the
processor is to sort the pulse data sets into a pre-defined
number of classes, and comprises:

a class centers memory to store a class center for each of

the classes;

a distance engine to calculate a respective distance from
each of the pulse data sets to the class center of each
class;

a class assigner operating in response to the distances
calculated for each pulse data set to assign the pulse
data set to the class for which the distance is smallest;
and

an averaging engine to generate a new class center for
each class by averaging the pulse data sets assigned to
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the class, and to update the class center for the class

stored in the class centers memory with the new class

center.

17. The optical instrument of claim 16, in which the
distance engine, the class assigner, and the averaging engine
operate cyclically until a termination condition is achieved.

18. The optical instrument of claim 12, in which the
processor comprises:

a distance engine to calculate a respective distance
between each of the pulse data sets and each other of
the pulse data sets;

a distance memory to store the distances calculated by the
distance engine;

a smallest distance identifier to identify a pair of the pulse
data sets for which the distance stored in the distance
memory is smallest, the pair of pulse data sets identified
constituting a closest pair of pulse data sets;

a merging engine to merge the closest pair of pulse data
sets to form a merged pulse data set;

in which the distance engine is additionally to calculate a
respective distance between the merged pulse data set
and each other of the pulse data sets; and

the distance memory is additionally to store the calculated
distances for the merged pulse data set instead of the
calculated distances for the pulse data sets that were
merged.

19. The optical instrument of claim 12, in which the pulse
data sets in each of the classes have mutual correlations
indicating a correlation greater than a predetermined thresh-
old correlation.

20. The optical instrument of claim 12, in which each of
the classes corresponds to a respective one of the mode hop
sequences.

21. The optical instrument of claim 12, in which the
pulsed laser comprises a quantum cascade laser.

22. The optical instrument of claim 12, in which:

the optical instrument is a heterodyne spectrometer to
measure an optical property of a sample;

the detector comprises two sensors to generate electrical
pulses from which the pulse data sets are derived; and

the optical path comprises:

a first branch and a second branch of different optical
path lengths, the sample located in one of the
branches,

a first beam splitter to divide the light pulses between
the branches, and

a second beam splitter to direct the light pulses received
from both branches onto each of the sensors.
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