
US 20160299.007A1 

(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2016/0299007 A1 

Kleczewski (43) Pub. Date: Oct. 13, 2016 

(54) NOISE REDUCTION FOR PULSED LASERS (52) U.S. Cl. 
USING CLUSTERING CPC ........ G0IJ 3/453 (2013.01); G0IJ 2003/4538 

(2013.01) 
(71) Applicant: Agilent Technologies, Inc., (US) (57) ABSTRACT 

(72) Inventor: Adam Kleczewski, San Francisco, CA An optical measurement method in which a series of light 
(US) pulses are generated using a pulsed laser having a set of 

different mode hop sequences (e.g., an external-cavity quan 
(21) Appl. No.: 13/853,896 tum cascade laser (EC-QCL)), the light pulses are detected 

y x- - - 9 

with the detector to generate a respective pulse data set for 
each of the light pulses, and the pulse data sets are sorted 
into classes based on correlation coefficients. Sorting the 
pulse data sets into classes allows the pulse data sets 

Publication Classification originating from each of the mode hop sequences of the 
pulsed laser to be treated independently of the pulse data sets 

(51) Int. Cl. originating from others of the mode hop sequences in 
GOIF 3/453 (2006.01) Subsequent processing. 

(22) Filed: Mar. 29, 2013 



US 2016/0299007 A1 Oct. 13, 2016 Sheet 1 of 11 Patent Application Publication 

3CO 400 SOO 60 

Fig.1 
OO 

3OO ACO 

Fig.3 
20 10 

  



US 2016/0299007 A1 Oct. 13, 2016 Sheet 2 of 11 Patent Application Publication 

89 || 

z '61) 

  



US 2016/0299007 A1 Oct. 13, 2016 Sheet 3 of 11 Patent Application Publication 

??T 

g (bl 61: 

  

  

  

  



US 2016/0299007 A1 Oct. 13, 2016 Sheet 4 of 11 Patent Application Publication 

575 

  



US 2016/0299007 A1 Oct. 13, 2016 Sheet 5 of 11 Patent Application Publication 

Z '61) 

  



Patent Application Publication Oct. 13, 2016 Sheet 6 of 11 US 2016/0299007 A1 

GENERAE SERES OF. G SES SNG 
PS ASR ANG ASE OF ERIEN 

OE OF SEQENCES 
302 

DETECT THE GT SES W A 
EECORO GENERAE ARESECVE USE 
DAA SET FOR EAC OF E GT SES 

54 

SORE SE AASES NO CASSES 
BASED ON CORREAON 

508 

Fig. 8 

SORE E R SE DAA. SES 
522 

FOR EAC OF SORE PLSE DATA SES NO AREADYASSIGNED 
TO A CASS, AS AREFERENCE PULSE DAFA SET, CACUAEA 

RESPECWE CORREAON COEFFCEN SE WEEN HE REFERENCE 
USE AASE AND EAC CER OF E SORED SE ATA SES 

NOARAY ASSGNE O ACASS 
54 

ASSGN O - SAE CASS E RERENCE SE AASEAN 
EAC OF E CER USE DAA. SES VOSE CORREATON 

COEFCEN A E REFERENCE PUSE DAA SEN CAESA 
CORREAON GREATER ANAPREETERNE RESO) 

CORREAON 
526 

Fig. 9 

  



Patent Application Publication Oct. 13, 2016 Sheet 7 of 11 US 2016/0299007 A1 

INITIALIZE CLASS TABLE INDEX CTI 532 

FOREACHFIRSTBLOCK ADDRESS INDEXm (m = 1 thru (N-1)) 534 

INCREMENT m - - NOTASSIGNED? 
538 536 

STORE BLOCKADDRESS INDICASF BY m IN CURRENT CLASS TABLE 

SETASSIGNED' FLAG 542 

FOREACHSECOND BLOCK ADDRESS INDEX n (n = (m+1) thru N) 546 

NOTASSIGNED, 
548 

CALCULATE CORRELATION COFFICIENT CCmn BETWEEN PULSE 
DATASETSAT BLOCKADDRESSES INDICATED BY mANDn 

552 

NCREMENT n 
556 

STORE BLOCK ADDRESS INDICATED BY n N CURRENT CLASS TABLE 
558 

SETASSIGNED' FLAG 562 

NCREMENT n 
566 

INCREMENT CLASS TABLE INDEX 572 

NCREMENT m 
576 

PROCESS PULSE DATASETSAT BLOCK 
ADDRESSES IN ONE OF THE CLASS TABLES 

578 

Fig. 10 

5 3 

INCREMENT in 
550 

  

    

    

    

  

    

  

  

    

  



Patent Application Publication Oct. 13, 2016 Sheet 8 of 11 US 2016/0299007 A1 

INITIALIZE CLASS TABLE INDEX CT 532 

FOREACHFIRST BLOCK ADDRESS INDEX m 534 

30 
INCREMENT m NOTASSIGNED? o 

538 536 

STORE BLOCKADDRESS INDICASF BY m IN CURRENT CLASS TABLE 

SETASSIGNED' FLAG 542 

RESET PULSE DATASET COUNTER 544 

FOREACHSECOND BLOCKADDRESS INDEX n 546 

NOTASSIGNED INCREMENT n 
548 550 

CALCULATE CORRELATION COFFICIENT CCmn BETWEEN PULSE 
DATASETSATBLOCK ADDRESSES INDICATED BY mAND n 552 

INCREMENT n 
556 

STORE BLOCK ADDRESS INDICATED BY n IN CURRENT CLASS TABLE 558 

INCREMENT PULSE DATASET COUNTER 560 

SETASSIGNED' FLAG 562 

INCREMENT n 
566 

DSCDCSmin? CLEARLASS 
568 570 

INCREMENT CLASS TABLE INDEX 572 

INCREMENT m 
576 

PROCESS PULSE DATASETSAT BLOCK 
ADDRESSES IN ONE OF THE CLASS TABLES 578 

Fig. 11 

  

  

  



Patent Application Publication Oct. 13, 2016 Sheet 9 of 11 US 2016/0299007 A1 

STORE THE PULSE DATASETS 
610 

DEFINE NITIAL CLASS CENTER FOREACH OF PREDEFINED NO OF CLASSES 
612 

an ascertarreen cross seasons O O 

CALCULATE DISTANCED FROMEACHPULSE DATASET TO 
CLASS CENTER OF EACH CLASS 

614 

ASSIGNEACHPULSE DATASET TO CLASS FOR WHICH 
DISTANCE IS SMALLEST 

616 

UPDATE CLASS CENTER OF EACH CLASS USINGAVERAGE OF 
PULSE DATASETS ASSIGNED TO CLASS 

618 

REPEAT CALCULATING, ASSIGNING & UPDATING UNTIL 
TERMINATION CONDITION MET 

620 

OUTPUT PULSE DATASETS 
IN ONE OF THE CLASSES 

FOR PROCESSING 
622A 

OUTPUT CLASS CENTER OF 
AT LEAST ONE CLASS 

622B 

Fig. 12 

  



Patent Application Publication Oct. 13, 2016 Sheet 10 of 11 US 2016/0299007 A1 

DEFINE NITIAL CLASSCENTERFOREACH CLASS k(k-1 THRUK) 632 

FOREACH VALUE OF TERATION COUNTERm (me 1 THRUM) 634. 

FOREACH BLOCK ADDRESS INDEX n(n : THRU N) 836 

FOR EAC-WAJE OF CASS COLINTER k S38 

CACULATED STANCED FROM PDSA BLOCKADDRESS 
NCAC BY BOCKARESS NOEXO CASS CNER OF 

CASS k 84 

NCREMENk 
344 

ENFY CASS OR C CACA 
OSANCE S SiAES 848 

STORE BOCKADDRESS N CASS ABE FOR DENFE CASS 
348 

NCRENT f 

FOR EAC CASS is 854 

AVERAGE PSSA BOCKADRESSES STORE N 
CASS ARE O GENERATE NEW CASS CNER 

356 

6 3 

DAE CASSCENER SNG NE, CASS CENER 658 

NCREEN k 
862 

CRERON ? 
664 

NCREVEN m 

Fig. 13 

  

  

  

    

  

  



Patent Application Publication Oct. 13, 2016 Sheet 11 of 11 US 2016/0299007 A1 

CA CAE RESPECW STANCE 3.NEEN EAC 
S AND EAC OERS 

710 
700 

STORE EACH DiSTANCE IN DISTANCE MEMORY 72 

ENY PAR OF OSS FOR A-C. SANCE SORED N 
OSANCE AfE.RY S SiAES AS COSES PSS 

74. 

OA EAST 
?RGE SAS SAES 

DSANCEKMAX? 
78 

A RESPECVE 
CASS OF OSS 

78. 

MERGE COSEST POSS TO GENERATE MERGE, RDS 20 

STORE MERGED PDS IN PDS MEMORY 724 

CA CAE RESEC WE SANCE BEEEN i RGE) PS 
AND EAC OER 95.THE SE DAA. SES 

IN THE DiSTANCE MEMORY, REPLACE THE DISTANCES STORED 
THERN FOR FSAA SES A WR JRG) 
Wr SA.S. CAEAE FOR frGE 

SE AASE 
728 

Fig. 14 

  

  

  

  

  

  



US 2016/0299.007 A1 

NOSE REDUCTION FOR PULSED LASERS 
USING CLUSTERING 

BACKGROUND 

0001 External-cavity quantum cascade lasers (EC 
QCLs) have received considerable attention in the academic 
literature because a single EC-QCL can be tuned over a 
significant portion of the fingerprint region of the electro 
magnetic spectrum. This makes EC-QCLS potentially useful 
in a wide range of chemical detection applications. An 
EC-QCL typically includes an external optical cavity in 
which are located an optical tuning device, such as a grating, 
and a QCL chip that generates light. The QCL chip includes 
a periodic series of thin semiconductor layers of varying 
material composition that form a Superlattice in which a 
single electron can cause the emission of multiple photons. 
0002 EC-QCLS typically have to be operated in a pulsed 
mode (sometimes referred to as a “quasi-continuous wave 
mode” or a “quasi-CW mode’) to achieve broad tunability. 
In pulsed mode, the QCL chip is switched on for brief time 
period (typically 50-500 ns, and referred to herein as an ON 
period), and then switched off for a much longer time period 
(typically 0.1-1 us, and referred to herein, and referred to 
herein as an OFF period) to allow the QCL chip to cool 
down before the next ON period. Operated this way, the 
QCL chip never achieves thermal equilibrium. Additionally, 
the temperature of the QCL chip increases between the 
beginning and the end of each ON period. The increasing 
temperature causes the frequency of the light generated by 
the QCL chip to change monotonically between the begin 
ning and the end of each ON period. This change in 
frequency is known as chirp. In an EC-QCL, the changing 
frequency of the light generated by the QCL chip causes the 
EC-QCL to hop among the longitudinal modes of the 
external cavity. When a mode hop occurs the frequency, 
phase, and intensity of the light emitted by the EC-QCL all 
change discontinuously. There may be as many as six or 
more mode hops over the duration of a single 200 ns pulse. 
Mode hops increase the intensity noise in an EC-QCL, and 
make the frequency and phase of the emitted light unstable. 
0003. In some applications it is desirable to average pulse 
data sets representing multiple pulses of light generated by 
a light source to reduce the effect of noise. However, in 
applications in which an EC-QCL operated in quasi-CW 
mode or another type of pulsed laser that exhibits mode 
hopping is used as the light source, averaging and some 
other post-processing techniques are problematic. 
0004. Accordingly, what is needed is a way to use aver 
aging and other post-processing techniques in applications 
in which a pulsed laser that exhibits mode hopping, such as 
an EC-QCL, is used as the light source for performing 
optical measurements. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0005 FIG. 1 is a graph showing the variation of ampli 
tude with time of 100 output pulses from a quantum cascade 
laser that have been Superimposed. 
0006 FIG. 2 is a block diagram showing an example of 
a heterodyne optical spectrometer having an EC-QCL as its 
light source in accordance with an embodiment. 
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0007 FIG. 3 is a graph showing two pulses generated by 
the heterodyne spectrometer shown in FIG. 2 by sorting the 
pulse data sets into three classes and averaging the pulse data 
sets in each of the classes. 
0008 FIG. 4 is a block diagram showing an example of 
an optical instrument in accordance with an embodiment. 
0009 FIG. 5 is a block diagram showing a first example 
of a processor that may be used as the processor of the 
heterodyne spectrometer shown in FIG. 2, or the optical 
instrument shown in FIG. 4. 
0010 FIG. 6 is a block diagram showing a second 
example of a processor that may be used as the processor of 
the heterodyne spectrometer shown in FIG. 2, or the optical 
instrument shown in FIG. 4. 
0011 FIG. 7 is a block diagram showing a third example 
of a processor that may be used as the processor of the 
heterodyne spectrometer shown in FIG. 2, or the optical 
instrument shown in FIG. 4. 
0012 FIG. 8 is a flowchart showing an example of an 
optical measurement method in accordance with an embodi 
ment. 

0013 FIG. 9 is a flowchart showing an example of the 
processing performed in the method shown in FIG. 8 to sort 
the pulse data sets into classes based on correlation. 
0014 FIG. 10 is a flowchart showing in greater detail an 
example of the processing performed in FIG. 9. 
0015 FIG. 11 is a flowchart showing an example of the 
processing performed in FIG. 10 to eliminate classes con 
stituted of fewer than a predetermined number of pulse data 
SetS. 

0016 FIG. 12 is a flowchart showing another example of 
the processing performed in the method shown in FIG. 8 to 
sort the pulse data sets into classes based on correlation. 
0017 FIG. 13 is a flowchart showing in greater detail an 
example of the processing performed in FIG. 12. 
0018 FIG. 14 is a flowchart showing yet another 
example of the processing performed in the method shown 
in FIG. 8 to sort the pulse data sets into classes based on 
correlation. 

DETAILED DESCRIPTION 

0019 For a given position of the tuning grating in an 
external cavity quantum cascade laser (EC-QCL), at the 
beginning of each ON period, the EC-QCL begins to operate 
in one of a small number (typically, a single digit) of 
longitudinal cavity modes that, for brevity, will be referred 
to as initial modes. Each initial mode is followed by a 
reasonably well determined sequence of mode hops that, for 
brevity, will be referred to herein as a mode hop sequence. 
As a result, in a given position of the tuning grating, the 
EC-QCL generates the light pulses using a relatively small 
number of mode hop sequences that can be regarded as 
constituting a set of mode hop sequences. The relatively 
small number of mode hop sequences used by the EC-QCL 
enables each light pulse generated by the EC-QCL to be 
identified as belonging to one of a relatively small number 
of classes, each of which corresponds to a respective mode 
hop sequence, and allows respective pulse data sets that 
represent the light pulses to be sorted into classes before they 
are further processed. Sorting the pulse data sets according 
to class enables mitigation of some of the effects of the mode 
hops during the Subsequent processing. 
0020 FIG. 1 is a graph showing the variation of ampli 
tude with time of 100 output pulses generated by an EC 
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QCL that have been superimposed. The graph clearly shows 
pulses arising from three different mode hop sequences. 
0021. If the 100 output pulses shown in FIG. 1 were 
averaged to produce a single average waveform, Some of the 
structure contained the output pulses arising from each of 
the mode hops sequences would be lost in the average 
waveform. In some types of optical spectrometer, such as a 
heterodyne optical spectrometer, but, in most cases, not a 
simple absorption optical spectrometer, the power contained 
in the intra-pulse structure in the signal is of interest, and 
information would be lost if all the pulses were averaged 
regardless of the mode hop sequences from which the pulses 
originated. Averaging all the pulses together would tend to 
reduce the power in the intra-pulse fluctuations since the 
pulses originating from one mode hop sequence are not 
necessarily in phase with the pulses originating from other 
mode hop sequences. Therefore simply combining all the 
pulses to produce a single average would distort the final 
averaged waveform in an unpredictable way. 
0022 FIG. 2 is a block diagram showing an example of 
an optical heterodyne spectrometer 100 having an external 
cavity quantum cascade laser (EC-QCL) as its light Source 
in accordance with an embodiment. The example of hetero 
dyne spectrometer 100 shown is used to measure an optical 
property, Such as an absorption spectrum, of a sample. 
Heterodyne spectrometer 100 is composed of an EC-QCL 
110, a detector 150, a processor 160, and an optical path 170 
between the pulsed laser and the detector. Optical path 170 
has a first branch 132 and a second branch 134 of different 
optical path lengths. Heterodyne spectrometer 100 addition 
ally includes a first beam splitter 120, a second beam splitter 
122, a reflector 124, and an optical delay 126 composed of 
reflectors 128, 130. Detector 150 includes two sensors 152, 
154. EC-QCL 110, beam splitters 120, 122, reflectors 124, 
128 and 130, branches 132, 134, and sensors 152, 154 are 
arranged as follows. Light pulses generated by EC-QCL 110 
are incident on first beam splitter 120. Beam splitter 120 
divides the light pulses generated by laser 110 between the 
branches 132, 134 of optical path 170. Reflector 124 is 
arranged to direct the light pulses in optical path 132 onto 
second beam splitter 122. Reflectors 128, 130 provide the 
increased optical path length of branch 134 relative to 
branch 132. Additionally, reflectors 128, 130 are arranged to 
direct the light pulses in branch 134 to mix with the light 
pulses from branch 132 at second beam splitter 122. Part of 
the intensity of the mixed light pulses from branches 132, 
134 passes through beam splitter 122 and is incident on 
sensor 152. The remainder of the intensity of the mixed light 
pulses from branches 132, 134 is reflected by beam splitter 
122 onto sensor 154. A sample S, whose optical properties 
are to be measured, is shown located in branch 134. Alter 
natively, sample S may be located in branch 132. 
0023. As noted above, EC-QCL 110 is operated in quasi 
CW mode, so that each light pulse generated by laser 110 is 
chirped, i.e., the frequency of the light changes monotoni 
cally with time during the pulse. As a result of optical delay 
126 in the branch 134 of optical path 170, the light pulses 
arriving at beam splitter 122 via branch 134 are delayed 
relative to the light pulses arriving via branch 132. Conse 
quently, at that any instant of time, the light incident on 
beam splitter 122 from branch 132 differs in frequency from 
that incident from branch 134. The variations in the intensity 
of the mixed light pulses due to interference between the 
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light pulses received from branches 132,134 of optical path 
170 are detected by sensors 152, 154. 
(0024 Detector 150 additionally includes a subtractor 156 
and an analog-to-digital converter 158. In response to the 
light pulses incident thereon, each sensor 152, 154 generates 
respective analog electrical pulses that are input to Subtrac 
tor 156. Subtractor 156 generates difference pulses that are 
digitized by analog-to-digital converter (ADC) 158. The 
ADC outputs to processor 160 a pulse data set correspond 
ing to each difference pulse and, hence, to each light pulse 
generated by laser 110. 
(0025. Another embodiment of detector 150 (not shown) 
includes two ADCs and a digital subtractor. One of the 
ADCs is connected to receive analog electrical pulses from 
sensor 152 and the other of the ADCs is connected to receive 
analog electrical pulses from sensor 154. The digital outputs 
of the ADCs are connected to respective inputs of the 
subtractor. The subtractor subtracts the digital output of one 
of the ADCs from that of the other to generate a pulse data 
set corresponding to each light pulse generated by laser 110. 
0026. Although not shown, heterodyne spectrometer 100 
typically additionally normalizes the signals subject to Sub 
traction. In the example shown, normalization can be 
accomplished optically by, for example, configuring beam 
splitter 122 to transmit half of the intensity of the light 
incident thereon, and to reflect the remaining half of the 
intensity of the light incident thereon. Alternatively, the 
analog electrical pulses output by sensors 152, 154 respec 
tively can be selectively amplified and/or attenuated prior to 
subtractor 156 to normalize the signals subject to subtrac 
tion. In an embodiment in which the analog electrical pulses 
generated by sensors 152, 154 are digitized prior to sub 
traction, one or both of the pulse data sets resulting from the 
digitization can the multiplied or divided prior to subtraction 
to normalize the signals subject to subtraction. 
0027 Processor 160 sorts the pulse data sets into classes 
based on correlation. 
0028. In the example shown, and in other examples in 
which a pulsed laser that exhibits mode hopping when 
operated in a quasi-CW mode is used as a light Source, the 
light pulses generated by the laser are detected by detector 
150 or a similar detector to generate a respective pulse data 
set for each of the light pulses, and processor 160 or a similar 
processor is used to sort the pulse data sets into classes based 
on correlation. Each class corresponds to a respective mode 
hop sequence of the pulsed laser. In an example in which the 
pulsed laser has five mode hop sequences, processor 160 
will sort most, if not all, of the pulse data sets into five 
classes. 

0029. After the pulse data sets have been sorted into 
classes based on correlation, the pulse data sets within each 
class are well correlated in the sense that correlations among 
the pulse data sets in each class are greater than correlations 
between the pulse data sets in one class and the pulse data 
sets in another class. In an example in which the pulse data 
set of Sorted into two classes named class 1 and class 2. 
correlations among the pulse data sets in class 1 are greater 
than correlations between the pulse data sets in class 1 and 
the pulse data sets in class 2. 
0030 Pulse data sets sorted into classes based on corre 
lation can be further processed. For example, the pulse data 
sets in each class can be separately averaged to generate a 
respective average pulse data set for the class, with each 
average pulse data set corresponding to a respective mode 



US 2016/0299.007 A1 

hop sequence of the pulsed laser. Such averaging is capable 
of reducing noise because the average pulse data set is an 
average of like pulse data sets that is not perturbed by the 
inclusion of pulse data sets originating from different mode 
hop sequences. 
0031 FIG. 3 is a graph showing three superposed pulses. 
The pulses are a first pulse obtained by averaging the pulse 
data sets in a first class, a second pulse obtained by aver 
aging the pulse data sets in a second class and a third pulse 
obtained by averaging the pulse data sets in a third class. It 
can be seen that the amplitude of the noise on the three 
averaged pulses shown in FIG. 3 is clearly reduced com 
pared with the noise amplitude of the 100 unprocessed 
pulses shown in FIG. 1, but the qualitative features of the 
three pulses are retained. 
0032 FIG. 4 is a block diagram showing an example 180 
of an optical instrument in accordance with an embodiment. 
Optical instrument 180 includes an external cavity quantum 
cascade laser (EC-QCL) 182 that generates a series of light 
pulses using a set of different mode hop sequences. A 
detector 186 is optically coupled to EC-QCL 182 by an 
optical path 184 that includes a sample or some other 
element with optical properties that make measurable 
changes to the properties of the light pulses generated by 
EC-QCL 182. Detector 186 generates a respective pulse data 
set in response to each of the light pulses generated by the 
EC-QCL. Detector 186 has an electrical output coupled to a 
processor 188. Processor 188 operates to sort the pulse data 
sets generated by the detector into multiple classes based on 
correlation in a manner similar to that described above with 
reference to FIG. 2. Another type of pulsed laser that 
exhibits mode-hopping may be substituted for EC-QCL 182. 
0033 FIG. 5 is a block diagram showing a first example 
200 of a processor that may be used as processor 160 in 
heterodyne spectrometer 100 described above with refer 
ence to FIG. 2 and as processor 188 in optical instrument 
180 described above with reference to FIG. 4. In the 
example shown, processor 200 calculates correlation coef 
ficients that are used to identify the pulse data sets that are 
well correlated so that Such pulse data sets can be assigned 
to the same class. The example of processor 200 shown 
includes a pulse data set (PDS) memory 210, a correlation 
coefficient engine 220, a comparator 230, a class memory 
240 and a controller 250. In a typical embodiment, pulse 
data set memory 210 and class memory 240 are respective 
portions of a common physical memory. 
0034 Pulse data set memory 210 has an input 212 to 
receive pulse data sets from detector 150 (FIG. 2) during 
operation of heterodyne spectrometer 100. Pulse data set 
memory 210 has an output 214 to deliver pulse data sets to 
correlation coefficient engine 220. Output 214 is shown in 
FIG. 3 as having two paths to simply to indicate that the 
correlation coefficients generated by correlation coefficient 
engine 220 are correlation coefficients between pairs of 
pulse data sets received from the pulse data set memory. 
More typically, the pulse data sets for which the correlation 
coefficients are generated are output serially via a single 
path. Pulse data set memory 210 additionally has a pulse 
data set output 216 via which all the pulse data sets sorted 
into a given class are output at the end of a sorting operation. 
Finally, pulse data set memory 210 has an input/output port 
218 connected to controller 250 via which control signals 
are exchanged between the pulse data set memory and the 
controller. 
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0035. In an example, pulse data set memory 210 is 
organized into memory blocks each capable of storing a 
single pulse data set and addressed by a respective block 
address. 
0036 Correlation coefficient engine 220 has an input 222 
via which it receives pulse data sets from pulse data set 
memory 210. Input 222 is shown in FIG. 3 as having two 
paths simply to indicate that the correlation coefficients 
generated by correlation coefficient engine 220 are correla 
tion coefficients between pairs of pulse data sets received 
from pulse data set memory 210. More typically, the pulse 
data sets for which the correlation coefficients are generated 
are received serially via a single path. Correlation coefficient 
engine 220 additionally has a correlation coefficient output 
224 via which it outputs a respective correlation coefficient 
calculated for the pulse data sets received from pulse data set 
memory 210. Finally, correlation coefficient engine 220 has 
an input/output port 226 connected to controller 250 via 
which control signals are exchanged between the correlation 
coefficient engine and the controller. 
0037 Comparator 230 has an input 232 connected to the 
correlation coefficient output 224 of correlation coefficient 
engine 220 and an enable output 234 connected to an enable 
input of class memory 240. Comparator 230 additionally has 
an input/output port 236 connected to controller 250 via 
which control signals are exchanged between the compara 
tor and the controller. 
0038 Class memory 240 has an enable input 242 con 
nected to the enable output 234 of comparator 230 and an 
input/output port 244 connected to controller 250 via which 
control signals are exchanged between the class memory and 
the controller. In an example, class memory 240 is organized 
as a number of class tables each addressed by a correspond 
ing class table index. Each class table is for storing the block 
addresses of the pulse data sets assigned to the class defined 
by the class table index. Alternatively, the class tables may 
store the pulse data sets assigned to the class all copies of the 
pulse data sets assigned to the class. 
0039 Each of the above-described connections may con 
sist of more than one conductor. 
0040. In operation, processor 200 receives the pulse data 
sets generated by detector 150 (FIG. 2) and stores each of the 
pulse data sets in pulse data set memory 210 in a respective 
memory block defined by a block address supplied by 
controller 250. Once all the pulse data sets have been stored, 
controller 250 causes pulse data set memory 210 to output 
two of the stored pulse data sets to correlation coefficient 
engine 220. In an example, the pulse data sets first output to 
the correlation coefficient engine are the pulse data sets that 
were stored in the memory blocks of the pulse data set 
memory having the lowest and next-lowest blockaddresses. 
0041 Correlation coefficient engine 220 treats the pulse 
data set received from the memory block with the lowest 
block address as a reference pulse data set and generates a 
respective correlation coefficient between the reference 
pulse data set and each of the remaining pulse data sets 
received from pulse data set memory 210. In an example, the 
correlation coefficient engine Subtracts each data value of 
the reference pulse data set from a corresponding data value 
of the other pulse data set to generate a difference and Sums 
the differences for all the data values of the pulse data sets 
to generate raw correlation data. Alternatively, the raw 
correlation data can be generated using ratios or percentage 
or fractional differences instead of differences. In an 
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embodiment, correlation coefficient engine 220 calculates a 
covariance between the pulse data sets to provide a raw 
correlation coefficient. In an example, the covariance 
between two pulse data sets is given by: 

where P is the number of pulse data points in each pulse data 
set, X, and y, are the values of the i-th pulse data points in 
pulse data sets X and y, respectively, and x and y are the 
means of all the pulse data points in pulse data sets X and y, 
respectively. 
0042 Additionally, normalizing is applied to convert the 
raw correlation data to a correlation coefficient close to unity 
or close to 0 for two well-correlated pulse data sets. In the 
above embodiment, the covariance between the two pulse 
data sets is divided by the product of the standard deviations 
of the pulse data sets to generate Pearson's correlation 
coefficient for the pulse data sets that ranges from 0 for 
uncorrelated pulse data sets to 1 for perfectly correlated 
pulse data sets. Correlation coefficient engine 220 outputs 
the calculated correlation coefficient to comparator 230. 
0043 Comparator 230 receives the correlation coeffi 
cients generated by correlation coefficient engine 220 and 
compares each of them with a predetermined threshold. The 
threshold is related to the way in which the correlation 
coefficient engine calculates the correlation coefficient and is 
set to distinguish among the pulse data sets resulting from 
the respective mode hop sequences of EC-QCL 110 (FIG. 2) 
or EC-QCL 182 (FIG. 4). Pulse data sets originating from 
the same mode hop sequence have a correlation coefficient 
on one side of (e.g., greater than) the threshold whereas 
pulse data sets originating from different mode hop 
sequences have a correlation coefficient on the other side of 
(e.g., less than) the threshold. Comparator 230 generates an 
enable signal for each correlation coefficient it receives that 
is greater or less than the threshold, depending on whether 
well-correlated pulse data sets have a high correlation coef 
ficient or a low correlation coefficient. 

0044 Controller 250 provides to class memory 240 a 
class table index and the blockaddress of the reference pulse 
data set output to correlation coefficient engine 220 by pulse 
data set memory 210. In response to a command from 
controller 250 class memory 240 stores the block address of 
the reference pulse data set in the class table defined by the 
current class table index. Additionally, each time it receives 
an enable signal from comparator 230, class memory 240 
stores the block address of pulse data set be compared with 
the reference pulse data set in the class table defined by the 
current class table index. Thus, if the pulse data sets stored 
in the memory blocks with the lowest and next-lowest block 
addresses originate from the same mode hop sequence of 
EC-QCL 110, the block address of the memory block with 
the next-lowest block address is additionally stored in class 
memory 240 in the class table defined by the current class 
table index. However, if the pulse data sets stored in the 
memory blocks with the lowest and next-lowest block 
addresses originate from different mode hop sequences of 
EC-QCL 110, only the block address of the memory block 
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with the lowest block address (i.e., the block address of the 
reference pulse data set) is stored in the class table in class 
memory 240. 
0045. Subsequently, controller 250 causes pulse data set 
memory 210 to output sequentially the pulse data sets that 
have not already been allocated to a class to correlation 
coefficient engine 220. Correlation coefficient engine 220 
calculates a correlation coefficient between each pulse data 
set and the reference pulse data set. Comparator 230 com 
pares each correlation coefficient with the threshold. Class 
memory 240 stores in the class table for the current class the 
block addresses of the memory blocks where those of the 
pulse data sets that are well-correlated with the reference 
pulse data set are stored. 
0046 Controller 250 additionally tracks the block 
addresses of the memory blocks whose pulse data sets have 
been assigned to a class. In an example, controller 250 
includes a block address table in which are stored the 
respective block addresses of all the memory blocks in 
which pulse data sets are stored and a corresponding flag 
field that, when set, indicates that the pulse data set stored at 
that block address has been assigned to a class. Initially, 
none of the flags are set, but as processor 200 assigns block 
addresses (and, hence, pulse data sets) to classes, the con 
troller sets the respective flags for those block addresses. 
Thus, when correlation coefficients between the reference 
pulse data set stored in the first memory block and each of 
the remaining pulse data sets have been generated, compared 
with a threshold, and the block addresses of those of the 
pulse data sets that are well-correlated with the reference 
pulse data set have been stored in the class table for the first 
class, the flags linked to the block addresses of those pulse 
data sets are set. 

0047 Once the pulse data sets constituting the first class 
have been identified, processor 200 operates to identify the 
pulse data sets that will constitute the second class using 
operations similar to those just described. Controller 250 
increments the class table index and Supplies the incre 
mented class table index, i.e., the class table index of the 
second class, to class memory 240 to indicate that block 
addresses are to be stored in the class table of the second 
class. Controller 250 refers to its table of block addresses to 
find the lowest block address whose pulse data set has not 
been assigned to a class, i.e., pulse data sets that have not 
been assigned to the first class when membership of the 
second class is being determined or pulse data sets that have 
not been assigned to the first class or the second class when 
membership of the third class is being determined. Control 
ler 250 commands pulse data set memory 210 to output the 
pulse data set that is not already a member of a class for 
correlation coefficient engine 220 to use as a new reference 
pulse data set. Controller 250 commands class memory 240 
to store the block address of the reference pulse data set in 
the class table for the second class. 

0048 Controller 250 again refers to its block address 
table and causes pulse data set memory 210 to output the 
next pulse data set that is not already a member of a class to 
correlation coefficient engine 220. The correlation coeffi 
cient engine generates a respective correlation coefficient 
that comparator 230 compares to the threshold and, if the 
pulse data sets are well-correlated, causes class memory 240 
to store the block address of the memory block where this 
pulse data set is stored in the class table of the second class. 
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0049 Processor 200 repeats the process described in the 
previous paragraph until all of the pulse data sets have been 
sorted into classes by their block addresses being stored in 
respective class tables. In some embodiments, controller 250 
additionally counts the number of pulse data sets assigned to 
the current class so that, when assignment of pulse data sets 
to the current class is complete but the size of the current 
class is less than a threshold size, the assignment of the pulse 
data sets to the current class can be reversed. 
0050. The number of classes generated by processor 200 
corresponds to the number of mode hop sequences used by 
EC-QCL 110 (FIG. 2) or EC-QCL 182 (FIG. 4) to generate 
light pulses at its current frequency setting. At other fre 
quency settings, the number of mode hop sequences can be 
different. It should be noted, however, that processor 200 
does not need to be provided with the number of mode hop 
sequences of the EC-QCL in advance. Using correlation 
coefficients to sort the pulse data sets into classes automati 
cally results in the pulse data sets being Sorted into a number 
of classes corresponding to the number of mode hop 
Sequences. 

0051. Once all (or most) of the pulse data sets have been 
Sorted into classes, the pulse data sets in each of the classes 
can be subject to additional processing. For example, in 
response to a command to output the pulse data sets in the 
first class for further processing, controller 250 reads from 
the class memory 240 the block addresses stored in the class 
table of the first class and issues commands to pulse data set 
memory 210 that cause the pulse data set memory to output 
the pulse data sets stored at these block addresses. In an 
example, the pulse data sets in the first class are subject to 
averaging. A Subsequent command causes the pulse data sets 
in the second class to be output and to be subject to 
averaging. The averaging operation applied to the pulse data 
sets in the second class typically produces a result different 
from the averaging operation applied to the pulse data sets 
in the first class because the two classes of pulse data sets 
originate from different mode hop sequences of EC-QCL 
110. 

0052 FIG. 6 is a block diagram showing another 
example 300 of a processor that may be used as processor 
160 in the heterodyne spectrometer 100 described above 
with reference to FIG. 2 and as processor 188 in the optical 
instrument 180 described above with reference to FIG. 4. In 
the example shown, processor 300 uses K-means clustering 
to identify the pulse data sets that are well correlated so that 
Such pulse data sets can be assigned to the same class. The 
example of processor 300 shown includes a pulse data set 
(PDS) memory 310, a distance engine 320, a class assigner 
330, a class memory 340 and a controller 350. In a typical 
embodiment, pulse data set memory 310, class memory 340 
and class centers memory 370 are respective portions of a 
common physical memory. 
0053 Pulse data set memory 310 has an input 312 to 
receive pulse data sets from detector 150 (FIG. 2) during 
operation of heterodyne spectrometer 100 or from detector 
188 (FIG. 4) during operation of optical instrument 180. 
Pulse data set memory 310 has a pulse data set output 314 
to deliver pulse data sets to distance engine 320, averaging 
engine 360, and a pulse data set output 380. Additionally, 
pulse data set memory 310 has an input/output port 316 
connected to controller 350 via which control signals are 
exchanged between the pulse data set memory and the 
controller. 
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0054. In an example, pulse data set memory 310 is 
organized into memory blocks each capable of storing a 
single pulse data set and addressed by a respective block 
address. 
0055 Distance engine 320 has an input 322 via which it 
receives pulse data sets from pulse data set memory 310. 
Distance engine 320 additionally has a class centers input 
328 via which it receives from class centers memory 370 a 
respective class center for each of the K classes into which 
processor 300 will sort the pulse data sets. Distance engine 
320 additionally has a distances output 324 via which it 
outputs sets of K distances. Each distance in the set is a 
respective distance between the pulse data set currently 
received from pulse data set memory 310 and each of the 
class centers received from class centers memory 370. 
Finally, distance engine 320 has an input/output port 326 
connected to controller 350 via which control signals are 
exchanged between the distance engine and the controller. 
0056 Class assigner 330 has an input 332 connected to 
the distances output 324 of distance engine 320, and a class 
output 334 connected to deliver a class index for each of the 
pulse data sets to a class input of class memory 340. Class 
assigner 330 additionally has an input/output port 336 
connected to controller 350 via which control signals are 
exchanged between the class assigner and the controller. 
0057 Class memory 340 has a class input 342 connected 
to the class output 334 of class assigner 330 and an input/ 
output port 346 connected to controller 350 via which 
control signals are exchanged between the class memory and 
the controller. In an example, class memory 340 is organized 
as a number of class tables each addressed by a correspond 
ing class table index. Each class table is for storing the block 
addresses of the pulse data sets assigned to the class defined 
by the class table index. Alternatively, the class tables may 
store the pulse data sets assigned to the class or copies of the 
pulse data sets assigned to the class. 
0.058 Averaging engine 360 has a pulse data set input 362 
connected to the pulse data set output 314 of pulse data set 
memory 310. Averaging engine 360 additionally has an 
averages output 364 connected to deliver an average for 
each class to an averages input 372 of class centers memory 
370. Finally, averaging engine 360 has an input/output port 
366 connected to controller 350 via which control signals 
are exchanged between the averaging engine and the con 
troller. 
0059 Class centers memory 370 has an averages input 
372 connected to the averages output 364 of averaging 
engine 360. Class centers memory 370 additionally has a 
class centers output 374 via which the class centers memory 
delivers sets of K class centers to the class centers input 328 
distance engine 320. Class centers memory 370 additionally 
delivers class averages or sets of class averages to class 
average output 382 via class centers output 374. Finally, 
class centers memory 370 has an input/output port 376 
connected to controller 350 via which control signals are 
exchanged between the class centers memory and the con 
troller. 

0060 Each of the above-described connections may con 
sist of more than one conductor. 
0061. In operation, processor 300 receives the pulse data 
sets generated by detector 150 (FIG. 2) or by detector 188 
(FIG. 4) and stores each of the pulse data sets in pulse data 
set memory 310 in a respective memory block defined by a 
block address supplied by controller 350. Once all the pulse 
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data sets have been stored, controller 350 causes class 
centers memory 370 to output a set of K initial class centers 
to distance engine 320. The initial class centers may be 
defined randomly or may be defined based on class centers 
used in previous sorting operations performed by processor 
300 or may be defined in some other way. Each class center 
is a coordinate in P-dimensional space, where P is the 
number of pulse data points in each pulse data set, that 
defines the location in the P-dimensional space of the center 
of the respective class. 
0062 Controller 350 then causes pulse data set memory 
310 to output each of the stored pulse data sets to distance 
engine 320. In an example, the pulse data set first output to 
the distance engine is the pulse data set that was stored in the 
memory block of the pulse data set memory having the 
lowest block addresses. For each Successive pulse data set 
output from pulse data set memory 310, the block address is 
incremented by one. 
0063 For each pulse data set received from pulse data set 
memory 310, distance engine 320 calculates a respective 
distance in the P-dimensional space between the pulse data 
set and each of the K initial class centers and outputs the K 
distances to class assigner 330. 
0064 Class assigner 330 receives the K distances gener 
ated for each pulse data set by distance engine 320, com 
pares them with one another to identify which of them is 
smallest and outputs to class memory 340 the class index of 
the class for which the distance was identified as being the 
smallest. The smallest distance indicates that the pulse data 
set is best correlated with the current class center of the 
identified class. Pulse data sets originating from the same 
mode hop sequence of the EC-QCL tend to be correlated 
with the class center of the same class, although at this early 
stage of the processing, the correlation is imperfect unless 
the class centers were retained from a previous sorting 
operation and the settings of the EC-QCL have not been 
changed in the meantime. 
0065 Controller 350 provides to class memory 340 the 
blockaddress of the current pulse data set output to distance 
engine 320 by pulse data set memory 310. In response to a 
command from controller 350, class memory 340 stores the 
block address of the current pulse data set in the class table 
defined by the class table index received from class assigner 
330. 

0066 Once class memory 340 stored the block addresses 
of the all pulse data sets stored in pulse data set memory 310 
in respective class tables in class memory 340 in response to 
respective class indices received from class assigner 330, 
controller 350 causes averaging engine 360 to generate a 
new class center for each class. In this, for each class, 
controller 350 reads the block addresses stored in the class 
table for the class stored in class memory 340 and causes 
pulse data set memory 310 to output to averaging engine 360 
the pulse data sets stored at the block addresses retrieved 
from the class table. Averaging engine 360 performs an 
averaging operation on the pulse data sets to generate a new 
class center for the class and outputs the new class center to 
class centers memory 370. Controller 350 causes class 
centers memory 370 to update the class center stored for the 
class with the new class center. 
0067 Controller 350 next causes pulse data set memory 
310, distance engine 320, class assigner 330, class memory 
340, averaging engine 360, and class centers memory 370 
operate repetitively as described above each time to generate 
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another set of class centers. In each iteration, distance engine 
320 calculates a distance for each pulse data set using the 
new class centers stored in class centers memory 370 during 
the previous iteration. Provided that the number of classes K 
is equal to the number of mode hop sequences of the 
EC-QCL, the distances between the pulse data sets assigned 
to each class and the updated class center will decrease 
between consecutive iterations. This decrease in distance is 
indicative of an increase in correlation among the pulse data 
sets assigned to each class. Operations continue until a 
termination condition has been met. In an example, the 
operations continue until a defined number of iterations have 
been performed. In another example, the operations continue 
until the controller determines that the number of changes in 
class membership between consecutive iterations has fallen 
below a defined threshold. This criterion can be tested by 
providing two class tables for each class in class memory 
340 so that a record of class membership in the previous 
iteration can be preserved. Controller 350 can then compare 
class membership in the previous iteration with the class 
membership in the current iteration. 
0068. The above-described termination condition can 
Sometimes be met by the above described processing finding 
one or more local minima instead of respective global 
minima. To check for this possibility, in some embodiments, 
controller 350 causes pulse data set memory 310, distance 
engine 320, class assigner 330, class memory 340, averaging 
engine 360, and class centers memory 370 to calculate the 
class centers more than once. The most commonly-occur 
ring results for the class centers are then taken to be the true 
class centers. In some embodiments, controller 350 addi 
tionally causes class centers memory 370 to provide a 
different set of initial class centers for each calculation of the 
class centers. 

0069. The number of classes generated by processor 300 
corresponds to the number of mode hop sequences used by 
EC-QCL 110 (FIG. 3) or pulsed laser 182 (FIG. 4) to 
generate light pulses at its current frequency setting. At other 
frequency settings, the number of mode hop sequences can 
be different. The number of classes into which processor 300 
sorts the pulse data sets needs to be defined in advance. 
Sorting with a number of classes different from the number 
of mode hop sequences of the laser makes it unlikely that the 
termination condition will be met. Controller 350 can be 
configured to perform testing, e.g., by looking for churning 
of pulse data sets among the classes, that indicates that the 
number of classes is incorrect, and can be configured to start 
over using an increased or decreased number of classes. 
0070. Once the termination criterion has been met, the 
pulse data sets in each of the classes can be subject to 
additional processing. For example, in response to a com 
mand to output the pulse data sets in the first class for further 
processing, controller 350 reads from class memory 340 the 
block addresses stored in the class table of the first class and 
issues commands to pulse data set memory 310 that cause 
the pulse data set memory to output the pulse data sets stored 
at these block addresses to pulse data set output 380. 
However, if the pulse data sets in a selected class are to be 
Subject to averaging, there is no need to output them because 
an average for each of the classes as currently configured has 
already been generated by averaging engine 360 and is 
stored as a class center in class centers memory 370. Class 
centers memory 370 will output the averages for all of the 
classes or the average for a selected one of the classes in 
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response to a command received from controller 350. The 
averaging operation applied to the pulse data sets in each 
class typically produces a result different from the averaging 
operations applied to the pulse data sets in the other classes 
because the classes of pulse data sets originate from different 
mode hop sequences of EC-QCL 110. 
0071 FIG. 7 is a block diagram showing a third example 
400 of a processor that may be used as processor 160 in 
heterodyne spectrometer 100 described above with refer 
ence to FIG. 2 and as processor 188 in optical instrument 
180 described above with reference to FIG. 4. In the 
example shown, processor 400 implements a hierarchical 
clustering process to identify the pulse data sets that are well 
correlated so that such pulse data sets can be assigned to the 
same class. The example of processor 400 shown includes a 
pulse data set (PDS) memory 410, a distance engine 420, a 
distance memory 430, a smallest distance identifier 440, a 
controller 450 and a merging engine 460. In a typical 
embodiment, pulse data set memory 410 and distance 
memory 430 are respective portions of a common physical 
memory. 
0072 Pulse data set memory 410 has a pulse data set 
input 412 to receive pulse data sets from detector 150 (FIG. 
2) during operation of heterodyne spectrometer 100 or from 
detector 188 (FIG. 4) during operation of optical instrument 
180 or from merging engine 460. Pulse data set memory 410 
has a pulse data set output 414 to deliver pulse data sets to 
distance engine 420 and to merging engine 460. Pulse data 
set output 414 is shown in FIG. 7 as having two paths to 
simply to indicate that the distances generated by distance 
engine 420 are distances between pairs of pulse data sets 
received from the pulse data set memory, and that merging 
engine 460 merges pairs of pulse data sets. More typically, 
the pulse data sets for which the distances are generated are 
output serially via a single path. Pulse data set memory 410 
additionally has a pulse data set output 416 connected to a 
pulse data set output 480 via which all the pulse data sets 
Sorted into a given class are output at the end of a sorting 
operation. Finally, pulse data set memory 410 has an input/ 
output port 418 connected to controller 450 via which 
control signals are exchanged between the pulse data set 
memory and the controller. 
0073. In an example, pulse data set memory 410 is 
organized into memory blocks each capable of storing a 
single pulse data set and addressed by a respective block 
address. 

0074 Distance engine 420 has an input 422 via which it 
receives pulse data sets from pulse data set memory 410. 
Input 422 is shown in FIG. 7 as having two paths simply to 
indicate that the distances calculated by distance engine 420 
are distances between pairs of pulse data sets received from 
pulse data set memory 410. More typically, the pulse data 
sets for which the distances are calculated are received 
serially via a single path. Distance engine 420 additionally 
has a distance output 424 via which it outputs a respective 
distance calculated for the pairs of pulse data sets received 
from pulse data set memory 410. Finally, distance engine 
420 has an input/output port 426 connected to controller 450 
via which control signals are exchanged between the dis 
tance engine and the controller. 
0075 Distance memory 430 has a distance input 432 
connected to receive distances from the distance output 424 
of distance engine 420 and a distance output 434 connected 
to deliver distances read from distance memory 430 to a 
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distance input of smallest distance identifier 440. Distance 
memory 430 additionally has an input/output port 436 
connected to controller 450 via which control signals are 
exchanged between the distance memory and the controller. 
In an example, distance memory 430 is organized as a square 
array in which the cell in which is stored the distance 
between two pulse data sets is addressed in the row direction 
and the column direction by addresses derived from the 
respective block addresses of the pulse data sets. 
0076 Smallest distance identifier 440 has a distance input 
442 connected to receive distances from the distance output 
434 of distance memory 430 and an input/output port 446 
connected to controller 450 via which control signals are 
exchanged between the smallest distance identifier and the 
controller. 

0077 Merging engine 460 has a pulse data set input 462 
connected to receive the pairs of pulse data sets that are to 
be merged from the pulse data set output 414 of pulse data 
set memory 410. Merging engine 460 additionally has a 
merged pulse data set output 464 via which it delivers 
merged pulse data sets to the pulse data set input 412 of 
pulse data set memory 410. Finally, merging engine 460 has 
an input/output port 466 connected to controller 450 by 
which control signals are exchanged between the merging 
engine and the controller. 
0078 Each of the above-described connections may con 
sist of more than one conductor. 

0079. In operation, processor 400 initially receives the 
pulse data sets generated by detector 150 (FIG. 2) or by 
detector 188 (FIG. 3) and stores each of the pulse data sets 
in pulse data set memory 410 in a respective memory block 
defined by a block address supplied by controller 450. Once 
all the pulse data sets have been stored, controller 450 causes 
pulse data set memory 410 to output one of the stored pulse 
data sets to distance engine 420. In an example, the pulse 
data set first output to the distance engine are the pulse data 
sets that were stored in the memory blocks of the pulse data 
set memory having the lowest block address. Controller 450 
then causes pulse data set memory 410 to output the remain 
ing pulse data sets stored therein sequentially to distance 
engine 420. 
0080 Distance engine 420 treats the pulse data set first 
received as a reference pulse data set and calculates a 
respective distance between the reference pulse data set and 
each of the pulse data sets Subsequently received from pulse 
data set memory 410. A small distance between two pulse 
data sets is indicative of the pulse data sets being generated 
using the same mode hop sequence of EC-QCL 110 whereas 
a larger distance is indicative of the pulse data sets being 
generated using different mode hop sequences of the EC 
QCL. Once the distance engine has calculated distances 
between the first pulse data set received and each of the 
remaining pulse data sets, controller 450 causes pulse data 
set memory 410 to output the pulse data set at the second 
lowest block address for the distance engine to use as a 
reference pulse data set and then causes pulse data set 
memory 410 to output sequentially the pulse data sets at 
block addresses higher than that of the reference pulse data 
set. The process of outputting a reference pulse data set 
followed by a sequence of all the pulse data sets at block 
addresses greater than that of the reference pulse data set 
continues until distance engine 420 has calculated respective 
distances between each of the pulse data sets and each other 
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of the pulse data sets stored in pulse data set memory 410. 
Distance engine 420 outputs each calculated distance to 
distance memory 430. 
0081 Distance memory 430 receives each of distances 
calculated by distance engine 420 and additionally receives 
from controller 450 the block addresses of the pair of pulse 
data sets to which the distance pertains. Distance memory 
430 stores each distance linked to its corresponding block 
addresses. 

0082 Concurrently with the distances being stored in 
distance memory 430, or after all the distances have been 
stored in distance memory 430, controller 450 provides pairs 
of block addresses to distance memory 430 and to smallest 
distance identifier 440. Each pair of block addresses pro 
vided to the distance memory causes the distance memory to 
output to smallest distance identifier 440 the respective 
distance stored in the distance memory at the address 
defined by the pair of block addresses. Outputting continues 
until respective distances between each of the pulse data sets 
stored in pulse data set memory 410 and each other of the 
pulse data sets stored in the pulse data set memory have been 
output. 
0083. Smallest distance identifier 440 assigns the first 
distance received from distance memory 430 and the block 
addresses received from controller 450 and corresponding to 
the first distance to a temporary memory. Smallest distance 
identifier 440 then compares each Subsequent distance it 
receives from distance memory 430 with the distance stored 
in a temporary memory. When the subsequently-received 
distance is larger than the stored distance, the Smallest 
distance identifier does nothing. When the subsequently 
received distance is Smaller than the stored distance, the 
smallest distance identifier overwrites the distance and block 
addresses stored in the temporary memory with the Subse 
quently-received distance and its corresponding block 
addresses. When all of the distances have been processed by 
smallest distance identifier 440, controller 450 causes the 
Smallest distance identifier to output the Smallest distance 
and the block addresses of the corresponding pulse data sets 
from its temporary memory to the controller. 
0084 Controller 450 forwards the block addresses 
received from smallest distance identifier 440 to pulse data 
set memory 410 and commands the pulse data set memory 
to output the pulse data sets stored at the block addresses to 
merging engine 460. Merging engine 460 merges the pulse 
data sets that have the smallest distance between them to 
form a merged pulse data set and outputs the merged pulse 
data set to pulse data set memory 410. In an example, 
merging engine 460 merges the pulse data sets by averaging 
them to generate a merged pulse data set that is the average 
of the pulse data sets Subject to merging. Other ways of 
merging pulse data sets are known and may be implemented 
by merging engine 460. Controller 450 provides a block 
address and a command to pulse data set memory 410 that 
causes the pulse data set memory to store the merged pulse 
data set at the block address provided. The merged pulse 
data set constitutes the beginning of a class. Typically, 
merging engine 460 will later merge other pulse data sets 
and/or other merged pulse data sets with the merged pulse 
data set to increase the size the class. Merging two pulse data 
sets that have not previously been merged forms a new class. 
Merging a merged pulse data set with a pulse data set that 
has not previously been merged increases the size of the 
class corresponding to the merged pulse data set. Merging 
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two merged pulse data sets forms a new class that Supersedes 
the classes represented by the constituent merged pulse data 
SetS. 

I0085. To keep track of the pulse data sets that are merged 
into each merged pulse data set, controller 450 keeps a class 
table for each merged pulse data set. Controller 450 stores in 
the class table the block addresses of the pulse data sets that 
are merged to form each merged pulse data set. In applica 
tions in which hierarchical information is of interest, con 
troller 450 additionally stores in each class table information 
indicating the processing cycle in which each pulse data set 
was merged into the class. 
I0086. In an example in which merging engine 460 merges 
two merged pulse data sets by averaging them or merges a 
pulse data set with a merged pulse data set by averaging 
them, the merging engine performs averaging that is 
weighted in accordance with the number of pulse data sets 
that have been merged to form each merged pulse data set. 
In another example in which merging engine 460 merges 
two merged pulse data sets by averaging them or merges a 
pulse data set with a merged pulse data set by averaging 
them, the averaging engine averages the pulse data sets 
identified by the class table kept by controller 450 as being 
constituents of each merged pulse data set. 
I0087 Controller 450 next causes pulse data set memory 
410 to output the merged pulse data set that it has just stored 
to distance engine 420 as a reference pulse data set and 
additionally causes pulse data set memory 410 to output 
sequentially to distance engine 420 each other pulse data set 
stored in pulse data set memory 410. Distance engine 420 
calculates a difference between the merged pulse data set 
and each pulse data set it Subsequently receives and outputs 
the resulting distance to distance memory 430. Distance 
memory 430 replaces the distances stored therein for the 
pulse data sets that were merged with the distances calcu 
lated for the merged pulse data set. Distance memory 430 
stores each distance for the merged pulse data set at an 
address derived from its corresponding block addresses, as 
described above. Replacing the distances stored in distance 
memory 430 for the pulse data sets that were merged with 
the distances calculated for the merged pulse data set 
reduces the size of the array of distances stored in the 
distance memory by one row and one colon. 
I0088 Distance memory 430 then sequentially outputs the 
distances stored therein sequentially to Smallest distance 
identifier 440 in a manner similar to that described above. 
However, this time, distance memory 430 outputs the newly 
calculated distances for the merged pulse data set instead of 
the distances for the pair of pulse data sets that were merged 
to form the merged pulse data set. As a result, Smallest 
distance identifier identifies another pair of pulse data sets 
for which the distance smallest. These pulse data sets may be 
previously-unmerged pulse data sets (indicating the start of 
another class) or of one of the pulse data sets may be the 
recently-formed merged pulse data set (indicating an 
increase in the size of an existing class). 
I0089 Merging engine 460, pulse data set memory 410, 
distance engine 420, distance memory 430, and Smallest 
distance identifier 440 operate cyclically in response to 
commands from controller 450. During each cycle, merging 
engine 460 merges the pair of pulse data sets identified by 
smallest distance identifier 440 as having the smallest dis 
tance between them. During each cycle, the size of an 
existing class may increase by one, or a new class may be 
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formed. During each cycle, after Smallest distance identifier 
440 identifies the smallest distance between the pulse data 
sets that have valid distances stored in distance memory 430, 
controller 450 compares the size of the smallest distance 
with a threshold that defines the lowest-acceptable correla 
tion among the pulse data sets Sorted into each class. When 
the smallest distance exceeds the threshold, controller 450 
terminates the Sorting process. 
0090. Each of the merged pulse data sets stored in pulse 
data set memory 410 is a merged pulse data set for a 
respective class. In an embodiment in which pulse data sets 
are merged by averaging them, each of the merged pulse 
data sets is an average pulse data set for the class. In 
applications in which the purpose of the processing per 
formed by processor 400 is to generate an average of the 
pulse data sets in each class, controller 450 provides the 
block address where the merged pulse data set of a class of 
interest is stored pulse data set memory 410 to cause the 
pulse data set memory to output the average for the class of 
interest to pulse data set output 480. In applications in which 
the pulse data sets themselves are of interest, controller 450 
refers to the class table for the class of interest and provides 
respective block addresses and a command to pulse data set 
memory 410 that cause the pulse data set memory to output 
the pulse data sets constituting the class to pulse data set 
output 480 for further processing. 
0091. The embodiments of processors 160, 200, 300, 400 
and elements thereof described in this disclosure may be 
constructed from discrete components, small-scale or large 
scale integrated circuits, suitably-configured application 
specific integrated circuits (ASICs) or field-programmable 
gate arrays (FPGAs) and/or other suitable hardware. Alter 
natively, processors 160, 200, 300, 400 and the elements 
thereof may be constructed using a digital signal processor 
(DSP), microprocessor, microcomputer or computer with 
internal or external memory operating in response to a 
sorting program fixed in a computer-readable medium. A 
device. Such as a DSP, a microprocessor, microcomputer or 
computer, capable of executing a sorting program will be 
referred to herein as a computer. 
0092. In computer-based embodiments, the various mod 
ules described herein may be ephemeral, and may only exist 
temporarily as the program executes. In Such embodiments, 
the program could be conveyed to the computer on which it 
is to run by embodying the program in a Suitable computer 
readable medium, such as a set of floppy disks, a CD-ROM, 
a DVD-ROM, a BD-ROM, a flash drive, or a read-only 
memory. Alternatively, the program could be transmitted to 
the computer on which it is to run from a computer-readable 
medium in another computer by a suitable physical or 
wireless data link, and be stored in a memory device in the 
computer on which it is to run. 
0093 FIG. 8 is a flowchart showing an example 500 of an 
optical measurement method in accordance with an embodi 
ment. In the example shown, in block 502, a series of light 
pulses is generated using a mode-hopping pulsed laser 
having a set of different mode hop sequences. In block 504, 
the light pulses are detected with a detector to generate a 
respective pulse data set for each of the light pulses. In block 
506, the pulse data sets are sorted into classes based on 
correlation. Once sorted into classes, the pulse data sets in 
each of the classes can be subject to further processing, Such 
as averaging. 
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(0094 FIG. 9 is a flowchart showing an example 520 of 
the processing performed in block 506 of method shown in 
FIG. 6 to sort the pulse data sets into classes based on 
correlation. In this example, correlation coefficients among 
the pulse data sets are calculated to identify those of the 
pulse data sets that are well correlated with one another and 
therefore should be assigned to the same class. In the 
example shown, in block 522, the pulse data sets generated 
in block 504 of FIG. 6 are stored. In block 524, for each of 
the stored pulse data sets not already assigned to a class, 
referred to as a reference pulse data set, a respective corre 
lation coefficient is calculated between the reference pulse 
data sets and each other of the stored pulse data sets not 
already assigned to a class. Finally, in block 526, the 
reference pulse data set and each of the other pulse data sets 
whose correlation coefficient with the reference pulse data 
set indicates a correlation greater than a predetermined 
threshold correlation are assigned to the same class. 
0.095 FIG. 10 is a flowchart showing in greater detail an 
example 530 of the processing performed in blocks 524 and 
526 of FIG. 9. In this example, it is assumed that each pulse 
data set received from detector 150 (FIG. 2) is stored in a 
respective block of a memory, and the blocks have respec 
tive blockaddresses tracked by two blockaddress indices. A 
first block address index m tracks the block address of each 
pulse data sets that is used as a reference pulse data set, and 
a second block address index n tracks the block address of 
each pulse data set for which a correlation coefficient with 
the reference pulse data set is determined. The first block 
address index m ranges from 1 through N-1, where N is the 
number of pulse data sets stored in block 522 (FIG. 7). The 
second block address index n ranges from m+1 through N. 
A class table for each class is used to store the block 
addresses of the memory blocks in which are stored the 
pulse data sets belonging to the class. A class table index is 
used to track the class tables. Flags linked to the block 
addresses are used to track whether the process has previ 
ously assigned the corresponding pulse data sets to a class. 
(0096. In the example shown in FIG. 8, in block 532, the 
class table index is initialized. In its initialized state, the 
class table index indicates the class table of the first class. 

(0097. In block 534, a first loop is established that pro 
gressively increments first block address index m from 1 
through N-1. 
(0098. In block 536, a test is performed to determine 
whether the pulse data set at the block address indicated by 
first block address index m has not already been assigned to 
a class. The test is unnecessary during the first iteration of 
the first loop but is nevertheless performed during the first 
iteration of the first loop for simplicity. 
0099 A NO result in block 536 causes execution to 
advance to block 538, where the value of first block address 
index m is incremented by one. Execution and then returns 
to block 534, where the next iteration of the first loop begins. 
0100. A YES result in block 536 causes execution to 
advance to block 540, where the block address indicated by 
the current value of first block address index m is stored in 
the class table indicated by the current value of the class 
table index. 

0101. In block 542, the flag linked to the block address 
indicated by first blockaddress index m is set to indicate that 
the pulse data set at this block address has now been 
assigned to a class. 
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0102. In block 546, a second loop is established that 
progressively increments second blockaddress index n from 
m+1 through N. 
0103) In block 548, a test is performed to determine 
whether the pulse data set at the block address indicated by 
second block address index n has not already been assigned 
to a class. The test is unnecessary during the 1st iteration of 
the loop that begins at block 546 but is nevertheless per 
formed during the first iteration of the second loop for 
simplicity. 
0104. A NO result in block 548 causes execution to 
advance to block 550 where the value of second block 
address index n is incremented by one. Execution then 
returns to block 546 where the next iteration of the 2nd loop 
begins. 
0105. A YES result in block 548 causes execution to 
advance to block 552, where a correlation coefficient 
between the pulse data sets at the block addresses indicated 
by first block address index m and second block address 
index n is calculated. 
0106. In block 554, a test is performed to determine 
whether the correlation coefficient calculated in block 552 
indicates that the pulse data sets at the block addresses 
indicated by first block address index m and second block 
address index n are well-correlated. In an example, the pulse 
data sets are well-correlated when the correlation coefficient 
between them is greater than a predetermined threshold 
correlation coefficient T1. In another, the pulse data sets are 
well-correlated when the correlation coefficient between 
them is less than a predetermined threshold correlation 
coefficient T1. 
0107 A NO result in block 554 causes execution to 
advance to block 556 where the value of second block 
address index n is incremented by one. Execution than 
advances to block 546, where the next iteration of the 2nd 
loop begins. When a NO result is obtained in block 554, the 
blockaddress indicated by second block index n is not stored 
in the class table indicated by the current value of the class 
table index and, hence, the pulse data set at this block 
address is not assigned to the class. 
01.08 A YES result in block 554 causes execution to 
advance to block 558, where the block address indicated by 
second block address index n is stored in the class table 
indicated by the current value of the class table index. As a 
result, the pulse data set at this block address is assigned to 
the class. 
0109. In block 562, a flag linked to the block address 
indicated by second block address index n is set to indicate 
that the pulse data set at this address has now been assigned 
to a class. 
0110. In block 564, a test is performed to determine 
whether the current value of second block address index n is 
greater than N, the number of pulse data sets stored. 
0111. A NO result in block 564 causes execution to 
advance to block 566, where the value of second block 
address index n is incremented by one. Execution then 
returns to block 546, where the next iteration of the second 
loop begins. In each iteration of the second loop, a respective 
correlation coefficient between the reference pulse data set at 
the block address indicated by first block address index m 
and the pulse data set at the block address indicated by the 
new value of second block address index n is calculated. 

0112 AYES result in block 564 indicates that correlation 
coefficients between the reference pulse data set at the block 
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address indicated by first block address index m and all of 
the other pulse data sets not already assigned to a class have 
been calculated. The YES result in block 564 causes execu 
tion to advance to block 572, where the class table index is 
incremented by one to select the next class table. 
0113. In block 574, a test is performed to determine 
whether first pulse data set index m is greater than N-1. 
0114. A NO result in block 574 causes execution to 
advance to block 576, where the value of first block address 
index m is incremented by one block. Execution then returns 
to block 534, where the next iteration of the first loop begins. 
In this next iteration of the 1st loop, a respective correlation 
coefficient is calculated between the reference pulse data set 
at the block address indicated by the new first block address 
index m and the pulse data set at each block address 
indicated by the value of second block address index n and 
that has not already been assigned to a class in a previous 
iteration of the first loop. 
0115 AYES result in block 574 indicates that, for each 
one of the stored pulse data sets not already assigned to a 
class, as a reference pulse data set, a respective correlation 
coefficient has been calculated between the reference pulse 
data set and each other of the stored pulse data sets not 
already assigned to a class, and that an assignment of the 
other pulse data set to a class has or has not been made 
depending on the calculated correlation coefficient. 
0116. In block 578, the pulse data sets stored at the block 
addresses stored in one of the class tables are subject to 
processing. Such as averaging or selection. 
0117. In some applications, it is desirable to define a 
minimum number of pulse data sets that may constitute a 
class. FIG. 11 is a flowchart showing an example 590 of the 
processing performed in blocks 524 and 526 of FIG.9 when 
the minimum size of the class is defined. A pulse data set 
counter is used to track the number of pulse data sets 
assigned to the class indicated by the current class table 
index. Elements of FIG. 11 that correspond to elements of 
FIG. 10 are indicated using the same reference numerals and 
will not be described again here. 
0118. In block 534, the maximum value of the first block 
address index m is less than the total number N of pulse data 
sets stored by the minimum class-size CS, i.e., the 
minimum number of pulse data sets that may constitute a 
class. 
0119. In block 544, the pulse data set counter that counts 
the number of pulse data sets assigned to the current class is 
reset. 

0.120. In block 560, a YES result in block 554 addition 
ally causes the pulse data set counter to be incremented by 
OC. 

0121 A YES result in block 564 causes execution to 
advance to block 568, where a test is performed to determine 
whether the number of pulse data sets in the current class 
indicated by the pulse data set counter exceeds minimum 
class size CS. 
0.122 A NO result in block 568 causes execution to 
advance to block 570, where the block addresses stored in 
the current class table are cleared. Execution then advances 
to block 574, skipping block 572. As a result, the class table 
index is not incremented and the class table indicated by the 
current value of the class table index is repopulated on the 
next iteration of the first loop. 
I0123. Other sorting methods may be used. For example 
correlation coefficients between each pulse data set and each 
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other of the pulse data sets may be calculated and stored, for 
example, in a two-dimensional array. A column of the array 
is then searched for correlation coefficients that indicate 
well-correlated pairs of pulse data sets, the block addresses 
of the corresponding pulse data sets are added to a class 
table, and all the correlation coefficients relating to the pulse 
data sets whose blockaddresses were added to the class table 
are removed from the table. The next column of the array is 
then searched to add block addresses to another class table. 
0.124 FIG. 12 is a flowchart showing another example 
600 of the processing performed in block 506 of method 
shown in FIG. 8 to sort the pulse data sets into classes based 
on correlation. The processing is based on what is known as 
K-means clustering. In this example, no correlation coeffi 
cients among the pulse data sets are calculated but the 
number of classes into which the pulse data sets will be 
Sorted has to be defined in advance. The processing refers to 
a P-dimensional space, where P is the number of pulse data 
points in each pulse data set. 
0.125. In the example shown, in block 610, the pulse data 
sets generated in block 504 of FIG. 8 are stored. In block 
612, an initial class center for each of the classes is defined 
in the P-dimensional space. In some embodiments, the initial 
class centers are defined based on known properties of the 
EC-QCL. In other embodiments, the initial class centers are 
randomly assigned or are based on class centers used in 
previous sorting operations. Alternatively, other techniques 
may be used to define the initial class centers. 
0126. In block 614, a distance in the P-dimensional space 
between each pulse data set and the class center of each class 
is calculated. Thus, if there are K classes. K distances are 
calculated for each pulse data set. 
0127. In block 616, each pulse data set is assigned to the 
class for which the distance calculated in block 614 is 
Smallest. 
0128. In block 618, once all the pulse data sets have been 
assigned to classes, the class center in the P-dimensional 
space of each class is updated using the average of the pulse 
data sets assigned to the class. 
0129. In block 620, the until a termination condition is 
met. For example, the termination condition may be met 
when the pulse data sets assigned to each of the classes does 
not change significantly between Subsequent iterations. In 
another example, the termination condition is the perfor 
mance of a defined number of iterations. 

0130. The termination condition can sometimes be met 
by the above described processing finding one or more local 
minima instead of respective global minima. To check for 
this possibility, in some embodiments, the processing 
sequence described above with reference to blocks 614, 616, 
618 and 620 is repeated more than once. The most com 
monly-occurring results for the class centers are then taken 
to be the true class centers. In some embodiments, the 
sequence that is repeated additionally includes block 612. 
where a set of different initial class centers is defined for 
each repetition. 
0131 Optionally, tests may be performed in block 620 to 
determine whether the processing is converging on a solu 
tion so that if the processing is not converging, process can 
be stopped and Subsequently restarted using a different 
number of classes. 
0.132. In block 622A, the pulse data sets assigned to one 
of the classes in the most recent performance of block 616 
are output for processing. Alternatively, when block 506 of 
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the method shown in FIG. 8 is performed to average the 
pulse data sets, the most recently updated class center of a 
specified class generated in block 618 can be output as an 
average for the class. 
0.133 FIG. 13 is a flowchart showing in greater detail an 
example 630 of the processing performed in blocks 610 
through 620 of FIG. 12. In block 632, an initial class center 
for each class is defined as described above. 
I0134. In block 634, a first loop is established that pro 
gressively increments and iteration counter m from 1 
through M. 
I0135) In block 636, a second loop is established that 
progressively increments a block address index n from 1 to 
N, where N is the number of pulse data sets stored in the 
pulse data set memory. 
0.136. In block 638, a third loop is established that pro 
gressively increments a class counter k from 1 to K, where 
K is the number of classes for which initial class centers 
were defined in block 632. 
0.137 In block 640, a distance is calculated between the 
pulse data set at the block address indicated by the current 
value of blockaddress index n and the class center of current 
class k. 
0.138. In block 642, a test is performed to determine 
whether the current value of class counter k is greater than 
or equal to the number of classes K. A NO result in block 
642 causes execution to advance to block 644, where class 
counter k is incremented by 1. Execution then returns to 
block 638, where processing of the next class begins. AYES 
result in block 642 causes execution to advance to block 
646, where the class for which the distance calculated in 
block 640 is smallest is identified. 
(0.139. In block 648, the block address indicated by the 
current value of the block address index n is stored in the 
class table for the class identified in block 646. 
0140. In block 650, a test is performed to determine 
whether the current value of blockaddress index n is greater 
than or equal to the number of stored pulse data sets N. ANO 
result in block 650 causes execution to advance to block 
652, where block address index n is incremented by 1. 
01.41 Execution then returns to block 636, where pro 
cessing of the next pulse data set begins. A YES result in 
block 650 causes execution to advance to block 654, where 
a new loop is established that progressively increments class 
counter k from 1 to K, where K is the number of classes for 
which initial class centers were defined in block 632. 
0142. In block 656, the pulse data sets stored at the block 
addresses stored in the class table for the current class k are 
averaged to generate a new class center for the current class. 
0143. In block 658, the class center for the current class 
k is updated using the new class center generated in block 
656. 
0144. In block 660, a test is performed to determine 
whether the current value of class counter k is greater than 
or equal to the number of classes K. A NO result in block 
660 causes execution to advance to block 662, where class 
counter k is incremented by 1. Execution then returns to 
block 654, where processing of the next class begins. AYES 
result in block 660 causes execution to advance to block 
664. 
0145. In block 664, a test is performed to determine 
whether a termination criterion has been met. Examples of 
termination criteria that may be used are described above. A 
NO result in block 664 causes execution to advance to block 
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666, where iteration counterm is incremented by 1. Execu 
tion then returns to block 634, where processing of the next 
iteration begins. AYES result in block 664 causes execution 
to stop. 
0146. As noted above, the most-recently updated class 
centers represent averages for the classes and may be output 
as Such. If processing other than averaging is to be applied 
to the pulse data sets in each class, the pulse data sets in a 
selected class are read out from the bulk pulse data set 
memory by referring to the class table for the class. 
0147 FIG. 14 is a flowchart showing another example 
700 of the processing performed in block 506 of method 
shown in FIG. 8 to sort the pulse data sets into classes based 
on correlation. In this example, a hierarchical clustering 
process is used to identify those of the pulse data sets that are 
well correlated with one another and therefore should be 
assigned to the same class. 
0148. In block 710, a respective distance is calculated 
between each pulse data set stored in a pulse data set 
memory and each other pulse data set stored in the pulse data 
set memory. 
0149. In block 712, each distance calculated in block 710 

is stored in a distance memory. 
0150 Block 714 is the beginning of a loop that includes 
blocks 714, 716, 720, 724, 726 and 728. In block 714, a pair 
of pulse data sets for which the distance stored in the 
distance memory is Smallest is identified as a closest pair of 
pulse data sets. 
0151. In block 716, a test is performed to determine 
whether the distance identified as the smallest distance in 
block 714 is less than a maximum allowed distance. The 
maximum allowed distance is indicative a minimum allowed 
correlation among the pulse data sets assigned to a class. A 
NO result in block 716 (smallest distance greater than 
maximum allowed) causes the Sorting operation to stop and 
execution to advance to block 718, where at least one of the 
merged pulse data sets is output as a respective class of pulse 
data sets. In an example in which pulse data sets are merged 
by averaging them, as described below, each of the merged 
pulse data sets is an average pulse data set for the class. In 
applications in which the purpose to generate an average of 
the pulse data sets in each class the merged pulse data set of 
a class of interest is output as the average for the class of 
interest. In applications in which the pulse data sets belong 
ing to a specified class are of interest, the pulse data sets 
constituting the class are output. 
0152. A YES result in block 716 (smallest distance less 
than maximum allowed) allows the Sorting operation to 
continue and execution advances to block 720, where the 
pulse data sets constituting the closest pair of pulse data sets 
identified in block 714 are merged. In an example, the pulse 
data sets constituting the closest pair of pulse data sets is 
merged by averaging them. Other ways of merging pulse 
data sets are known and may be used. 
0153. In an example in which two merged pulse data sets 
are merged by averaging them or a pulse data set is merged 
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with a merged pulse data set by averaging them, the merging 
operation performs averaging that is weighted in accordance 
with the number of pulse data sets that have been merged to 
form each merged pulse data set. In another example in 
which two merged pulse data sets are merged by averaging 
them or a pulse data set is merged with a merged pulse data 
set by averaging them, the averaging operation averages the 
pulse data sets that are the constituents of each merged pulse 
data set. 

0154) In block 724, the merged pulse data set generated 
in block 720 is stored in the pulse data set memory. 
0.155. In block 726, a respective distance is calculated 
between the merged pulse data set generated in block 720 
and each other of the pulse data sets (including, in late 
iterations, other merged pulse data sets) stored in the pulse 
data set memory. 
0156. In block 728, in the distance memory, the distances 
stored therein for the pulse data sets that were merged in 
block 720 are replaced with the distances calculated in block 
726 for the merged pulse data set. 
0157 Execution then returns to the beginning of the loop 
at block 714, where a pair of pulse data sets for which the 
distance stored in the distance memory is Smallest is iden 
tified as a new closest pair of pulse data sets. The loop 
composed of blocks 714, 716, 720, 724, 726, and 728 
repeats to sort the pulse data sets into classes based on 
correlation until a NO result is obtained in block 716. 

0158. The methods described above with reference to 
FIGS. 9-14, and block 506 of the method described above 
with reference to FIG. 8 are typically performed by a 
computer (as defined above) in response to a sorting pro 
gram. In response to the Sorting program, the computer 
implements all of the operations described above. This 
disclosure provides Sufficient information for a programmer 
to write a suitable sorting program using a high-level (e.g., 
C or C. Sup.++) or low-level programming language. 
Accordingly, the program listing itself is omitted. 
0159. As an alternative to the sorting methods described 
above, a correlation clustering algorithm may be used to sort 
the pulse data sets into classes based on correlation coeffi 
cients. An example of a correlation clustering algorithm 
written in MATLAB(R) script is set forth below. 
0160 The exemplary algorithm receives pulse data sets 
and stores them in an (nxm) array called pulses, where n is 
the number of samples per pulse data set and m is the 
number of pulse data sets that were recorded. The algorithm 
returns an array of averaged pulse data sets called class AV 
erages. This array has dimension (nxk) where k is the 
number of distinct classes into which the pulse data sets 
were sorted by the algorithm. The algorithm also returns a 
one-dimensional array of length k called coadds containing 
the respective number of pulse data sets that were averaged 
to produce each of the averaged pulse data sets. 

if normalize samples in array pulses to generate normalized samples normpulses 
normpulses=pulses max(max(pulses)); 
corrcoeffmatrix=corrcoef(normpulses); 
class Averages=: 

findex i labels a distinct class into which the pulse data sets are sorted 
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// Sort the rows of the correlation coefficient matrix corrcoeffmatrix in decending 
fi order (indicated by the -1) based on the value of the element in the first column, 
fi Variable index is a list indicating the order of the sort. 
while -isempty (corrcoeffmatrix) 

rowsorted index=sortrows(corrcoeffmatrix, -1); 
classSum=zeros(size(normpulses,1),1); 
// Step through the 1st column of the sorted correlation coefficient matrix until the 
fi correlation coefficient drops below the value of corrthresh to identify the pulse data 
i? sets to be assigned to a class i. 
if Sum the pulse data sets assigned to class i. 
k=1: 
while k <= size(corrcoeffmatrix.2) && rowsorted(k,1)>corrthresh 

classSum=classSum+pulses(:k); 
k=k+1; 

end 
// Divide the summed pulse data sets by the number of pulses data sets in the sum 
if Append resulting average pulse data set to the array class Averages; 
if Append the value of k to the array coadds. 
class Averages=class Averages classSum(k-1); 
coadds=coadds (k-1); 
// Remove the entries in the arrays pulses and index that were used to create 
if the i-th average pulse data set. 
pulses(:...index(1:k-1))=: 
index(1:k-1)=; 
if Remove the rows and columns of the array correoeffmatrix corresponding to the 
if pulse data sets used to create the i-th average pulse data set. 
corrcoeffmatrix (...index(1:k-1))=: 
correoeffmatrix(index(1:k-1).:)= ); 
if Increment i and repeat to create the next average pulse data set. 
i=1--1; 

end 

0161 Correlation clustering algorithms such as that 
exemplified above are typically executed by a computer (as 
defined above). 
0162. This disclosure describes the invention in detail 
using illustrative embodiments. However, the invention 
defined by the appended claims is not limited to the precise 
embodiments described. 

I claim: 
1. An optical measurement method, comprising: 
generating a series of light pulses using a pulsed laser 

having a set of different mode hop sequences; 
detecting the light pulses with a detector to generate a 

respective pulse data set for each of the light pulses; 
and 

Sorting the pulse data sets into classes based on correla 
tion. 

2. The method of claim 1, additionally comprising aver 
aging the respective pulse data sets within each of one or 
more of the classes. 

3. The method of claim 1, additionally comprising het 
erodyning prior to the detecting. 

4. The method of claim 1, in which the Sorting comprises 
performing a clustering algorithm to sort the pulse data sets 
into the classes. 

5. The method of claim 1, in which the respective pulse 
data sets in each of the classes have mutual correlations 
greater than a predetermined threshold correlation. 

6. The method of claim 1, in which each of the classes 
corresponds to a respective one of the mode hop sequences. 

7. The method of claim 1, in which the pulsed laser 
comprises a quantum cascade laser. 

8. The method of claim 1, in which the sorting comprises: 
storing the pulse data sets; 
calculating, for each one of the stored pulse data sets not 

already assigned to a class, a respective correlation 

coefficient between the one of the stored pulse data sets 
and each other of the stored pulse data sets not already 
assigned to a class; and 

assigning to the same class the one of the stored pulse data 
sets and each of the other stored pulse data sets whose 
correlation coefficient with the one of the stored pulse 
data sets indicates a correlation greater than a prede 
termined threshold correlation. 

9. The method of claim 1, in which the sorting comprises: 
defining an initial class center for each of a pre-defined 
number of classes; 

calculating a respective distance from each of the pulse 
data sets to the class center of each class; 

assigning each pulse data set to the class for which the 
distance is Smallest; 

updating the class center of each class using the average 
of the pulse data sets assigned to the class; and 

repeating the calculating, the assigning, and the updating 
until a termination condition is met. 

10. The method of claim 1, in which the sorting com 
prises: 

calculating a respective distance between each of the 
pulse data sets and each other of the pulse data sets; 

storing each distance in a distance memory; and 
performing a loop, comprising: 

identifying a pair of the pulse data sets for which the 
distance stored in the distance memory is Smallest, 
the pair of pulse data sets identified constituting a 
closest pair of pulse data sets, 

merging the closest pair of pulse data sets to form a 
merged pulse data set, 

calculating a respective distance between the merged 
pulse data set and each other of the pulse data sets, 
and 
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the distance memory, replacing the distances calculated 
for the pulse data sets that were merged with the 
distances calculated for the merged pulse data set. 

11. The method of claim 10, in which the loop is per 
formed until, in the identifying, the distance that is Smallest 
is greater than a maximum allowed distance corresponding 
to a minimum allowed correlation. 

12. An optical instrument, comprising: 
a pulsed laser to generate a series of light pulses using a 

set of different mode hop sequences; 
a detector optically coupled to the pulsed laser to generate 

a respective pulse data set in response to each of the 
light pulses; 

an optical path between the pulsed laser and the detector; 
and 

a processor to sort the pulse data sets generated by the 
detector into classes based on correlation. 

13. The optical instrument of claim 12, in which the 
processor is additionally to average the pulse data sets 
within each of one or more of the classes. 

14. The optical instrument of claim 12, in which the 
processor is to sort the pulse data sets using a clustering 
algorithm. 

15. The optical instrument of claim 12, in which the 
processor comprises: 

a pulse data set memory to store the pulse data sets; 
a correlation coefficient engine to calculate, for each one 

of the stored pulse data sets not already assigned to a 
class, a respective correlation coefficient between the 
one of the stored pulse data sets and each other of the 
stored pulse data sets not already assigned to a class; 
and 

a comparator to assign to the same class the one of the 
stored pulse data sets and each of the other stored pulse 
data sets whose correlation coefficient with the one of 
the stored pulse data sets indicates a correlation greater 
than a predetermined threshold correlation. 

16. The optical instrument of claim 12, in which the 
processor is to sort the pulse data sets into a pre-defined 
number of classes, and comprises: 

a class centers memory to store a class center for each of 
the classes; 

a distance engine to calculate a respective distance from 
each of the pulse data sets to the class center of each 
class; 

a class assigner operating in response to the distances 
calculated for each pulse data set to assign the pulse 
data set to the class for which the distance is smallest; 
and 

an averaging engine to generate a new class center for 
each class by averaging the pulse data sets assigned to 
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the class, and to update the class center for the class 
stored in the class centers memory with the new class 
Center. 

17. The optical instrument of claim 16, in which the 
distance engine, the class assigner, and the averaging engine 
operate cyclically until a termination condition is achieved. 

18. The optical instrument of claim 12, in which the 
processor comprises: 

a distance engine to calculate a respective distance 
between each of the pulse data sets and each other of 
the pulse data sets; 

a distance memory to store the distances calculated by the 
distance engine; 

a smallest distance identifier to identify a pair of the pulse 
data sets for which the distance stored in the distance 
memory is Smallest, the pair of pulse data sets identified 
constituting a closest pair of pulse data sets; 

a merging engine to merge the closest pair of pulse data 
sets to form a merged pulse data set; 

in which the distance engine is additionally to calculate a 
respective distance between the merged pulse data set 
and each other of the pulse data sets; and 

the distance memory is additionally to store the calculated 
distances for the merged pulse data set instead of the 
calculated distances for the pulse data sets that were 
merged. 

19. The optical instrument of claim 12, in which the pulse 
data sets in each of the classes have mutual correlations 
indicating a correlation greater than a predetermined thresh 
old correlation. 

20. The optical instrument of claim 12, in which each of 
the classes corresponds to a respective one of the mode hop 
Sequences. 

21. The optical instrument of claim 12, in which the 
pulsed laser comprises a quantum cascade laser. 

22. The optical instrument of claim 12, in which: 
the optical instrument is a heterodyne spectrometer to 

measure an optical property of a sample: 
the detector comprises two sensors to generate electrical 

pulses from which the pulse data sets are derived; and 
the optical path comprises: 

a first branch and a second branch of different optical 
path lengths, the sample located in one of the 
branches, 

a first beam splitter to divide the light pulses between 
the branches, and 

a second beam splitter to direct the light pulses received 
from both branches onto each of the sensors. 
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