
US 20220043607A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2022/0043607 A1

MILLER et al . (43) Pub . Date : Feb. 10 , 2022

(54) EXPANDING AN ADDRESS SPACE
SUPPORTED BY A STORAGE SYSTEM

(71) Applicant : PURE STORAGE , INC . , MOUNTAIN
VIEW , CA (US)

(72) Inventors : ETHAN MILLER , SANTA CRUZ ,
CA (US) ; JOHN COLGROVE , LOS
ALTOS , CA (US) ; JOHN HAYES ,
MOUNTAIN VIEW , CA (US)

Publication Classification

(51) Int . Ci .
GOOF 3/06 (2006.01)
GOOF 12/1036 (2006.01)
G06F 12/1009 (2006.01)

(52) U.S. CI .
CPC G06F 370665 (2013.01) ; G06F 12/1036

(2013.01) ; G06F 370688 (2013.01) ; G06F
370626 (2013.01) ; G06F 37064 (2013.01) ;

G06F 12/1009 (2013.01)
(57) ABSTRACT
An apparatus , method , and computer - readable storage
medium for allowing a block - addressable storage device to
provide a sparse address space to a host computer . The
storage device exports an address space to a host computing
device which is larger than the storage capacity of the
storage device . The storage device translates received file
system object addresses in the larger address space to
physical locations in the smaller address space of the storage
device . This allows the host computing device more flex
ibility in selecting addresses for file system objects which
are stored on the storage device .

(21) Appl . No .: 17 / 508,533

(22) Filed : Oct. 22 , 2021 a

Related U.S. Application Data
(63) Continuation of application No. 16 / 519,832 , filed on

Jul . 23 , 2019 , now Pat . No. 11,169,745 , which is a
continuation of application No. 14 / 073,637 , filed
Nov. 6 , 2013 , now Pat . No. 10,365,858 .

on

SD
135A

o II Network SD
135B wimmin kit

Storage Controller :
Client 125

SD
135N

11 - Device
Group

Client

100

140
www

Patent Application Publication

SD 1354

110
0

Sport o

Network

SD 135B

. Storage Controller

:

Client

125

Feb. 10 , 2022 Sheet 1 of 5

SD 135N

H

Device Group 130

Client

US 2022/0043607 A1

FIG . 1

WWWWWWWWWWW
Translation Layer 206

Block Offset

UUUUUUU

Patent Application Publication

N bits

Object Address Segmeni
, Block

Physical Address Block , Page

Storage Device 202

Segment Number

Mbits

M + N bits

Address Generation Unit 205

Mapping Table 208

P bits

Feb. 10 , 2022 Sheet 2 of 5

Host Computing Device 204

Physical Storage Locations 210

US 2022/0043607 A1

9999999999 FIG . 2

Translation Layer

Block Offset

Patent Application Publication

N bits

Storage Device 302

Object Address Inode , Block

Physical Address Block , Page

Inode Number

Mbits

M + N bits

Address Generation Unit

Mapping Table 308

Pbits

Feb. 10 , 2022 Sheet 3 of 5

Most Computer 304

Physical Storage Locations 310

US 2022/0043607 A1

FIG . 3

Patent Application Publication Feb. 10 , 2022 Sheet 4 of 5 US 2022/0043607 A1

400

Start - Implement a Thin - Provisioned
Storage Device

405
??

Initiate a Memory Request
Corresponding to One or more
Data Blocks of a File System

Object

??
Generate an Address of the

Memory Request Based on the
Object Number and Offset within

the Object
415

Send the Memory Request with
the Generated Address to the

Storage Device

420
???

Translate the object Address to
the Physical Address at the

Storage Device
420
??

Process the Memory Request

End -- Implement a Thin - Provisioned
Storage Device

FIG . 4

Patent Application Publication Feb. 10 , 2022 Sheet 5 of 5 US 2022/0043607 A1

500

Start - Integrating a Thin - Provisioned Storage
Device within a Computing System

505
??

Detect a Storage Device in the
Computing System

510

Query the Storage Device for its
Storage Capacity

515
??

Reply by the Storage Device and
Overstate the Amount of Storage

Capacity
899

End - integrating a Thin - Provisioned Storage
Device within a Computing System

FIG . 5

US 2022/0043607 Al Feb. 10 , 2022
1

SUMMARY OF EMBODIMENTS EXPANDING AN ADDRESS SPACE
SUPPORTED BY A STORAGE SYSTEM

CROSS - REFERENCE TO RELATED
APPLICATIONS

a [0001] This is a continuation application for patent entitled
to a filing date and claiming the benefit of earlier - filed U.S.
Pat . No. 11,169,745 , issued Nov. 9 , 2021 , herein incorpo
rated by reference in its entirety , which is a continuation of
U.S. Pat . No. 10,365,858 , issued Jul . 30 , 2019 .

a

BACKGROUND

Field of the Invention

[0002] This invention relates to storage systems and , more
particularly , to techniques for implementing thin provision
ing in storage devices .

[0007] Various embodiments of apparatuses and methods
for implementing thin provisioned storage devices are con
templated .
[0008] In one embodiment , a computer system may
include a storage device coupled to a host computer , and the
storage device may export a sparse address space to the host
computer . The host computer may track file system objects
and generate addresses for memory operations based on a
file system object identifier (ID) and an offset within the file
system object . In one embodiment , host computer may
generate an object address for a data block by concatenating
an object ID or number with an offset corresponding to the
location of the data block within the object . The host
computer may convey the object address to the storage
device as part of a memory operation for this data block .
This scheme simplifies address generation and allows the
host computer to avoid having to maintain a mapping table
of segments to physical locations .
[0009] The storage device may be configured to maintain
mappings between the sparse address space utilized by the
host computer and actual physical locations on the storage
device . In one embodiment , the storage device may include
a mapping table to map an object number and block offset
combination to a physical storage location .
[0010] In one embodiment , the host computer may query
the storage device to determine the storage capacity of the
storage device . In response to receiving this query , the
storage device may overstate its capacity to the host com
puter , responding with an amount of storage which exceeds
the actual capacity of the storage device . In one embodi
ment , the storage device may respond to the query by
informing the host computer that the storage device has the
maximum possible capacity based on the size of the address
field in the interface connection between the host computer
and the storage device .
[0011] These and other embodiments will become appar
ent upon consideration of the following description and
accompanying drawings .

Description of the Related Art

BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The use of solid - state storage devices (e.g. , flash
memory) in computer systems and storage systems is
increasing due to the performance of flash memory as
compared to traditional disk storage devices (e.g. , hard disk
drives (HDDs)) . Flash memory offers low - power consump
tion combined with fast , random (input / output) I / O accesses
as compared to traditional disk storage technology . Until
recently , flash memory was used primarily in embedded
applications , but the use of flash memory has expanded to
other applications including desktop and enterprise storage .
[0004] Embedded applications which use flash memory
typically include custom operating systems and custom file
systems which are designed around the advantages and
limitations of flash memory . However , when using flash
memory in different applications , such as in desktop and
enterprise storage , these systems often have legacy operat
ing systems and file systems which are designed and opti
mized for use with HDD storage technology . These legacy
operating systems and file systems are not able to take full
advantage of all of the characteristics of flash memory . Also ,
these legacy systems may reduce the effective life of flash
memory if wear leveling and other techniques are not
utilized to prevent frequent writes to the same flash memory
locations .

[0005] Additionally , inefficiencies are often introduced
when integrating host storage systems with storage devices
such as flash memory . For example , host file systems typi
cally need to maintain a mapping between a logical location
of a data block , as within a file , and the physical address of
that block on the storage device . However , since the physical
location of a block may change due to garbage collection
and other device - internal processes , flash memory storage
devices also maintain a mapping between the block address
as provided by the host and the actual physical address of the
block . Hence , these approaches require duplication of block
mapping in both the file system and on the storage device
itself .

[0006] In view of the above , improved systems and meth
ods for providing more efficient interactions between host
computing devices and storage devices are desired .

[0012] FIG . 1 is a generalized block diagram illustrating
one embodiment of a storage system .
[0013] FIG . 2 is a generalized block diagram of one
embodiment of a host computing device coupled to a storage
device .
[0014] FIG . 3 is a generalized block diagram of another
embodiment of a host computing device coupled to a storage
device .
[0015] FIG . 4 is a generalized flow diagram illustrating
one embodiment of a method for implementing a thin
provisioned storage device .
[0016] FIG . 5 is a generalized flow diagram illustrating
one embodiment of a method for integrating a thin - provi
sioned storage device within a computing system .
[0017] While the invention is susceptible to various modi
fications and alternative forms , specific embodiments are
shown by way of example in the drawings and are herein
described in detail . It should be understood , however , that
drawings and detailed description thereto are not intended to
limit the invention to the particular form disclosed , but on
the contrary , the invention is to cover all modifications ,

US 2022/0043607 A1 Feb. 10 , 2022
2

equivalents and alternatives falling within the spirit and
scope of the present invention as defined by the appended
claims .

DETAILED DESCRIPTION a

[0018] In the following description , numerous specific
details are set forth to provide a thorough understanding of
the present invention . However , one having ordinary skill in
the art should recognize that the invention might be prac
ticed without these specific details . In some instances ,
well - known circuits , structures , signals , computer program
instruction , and techniques have not been shown in detail to
avoid obscuring the present invention . It will be appreciated
that for simplicity and clarity of illustration , elements shown
in the figures have not necessarily been drawn to scale . For
example , the dimensions of some of the elements may be
exaggerated relative to other elements .
[0019] This specification includes references to “ one
embodiment ” . The appearance of the phrase “ in one embodi
ment ” in different contexts does not necessarily refer to the
same embodiment . Particular features , structures , or char
acteristics may be combined in any suitable manner consis
tent with this disclosure . Furthermore , as used throughout
this application , the word “ may ” is used in a permissive
sense (i.e. , meaning having the potential to) , rather than the
mandatory sense (i.e. , meaning must) . Similarly , the words
“ include ” , “ including ” , and “ includes ” mean including , but
not limited to .
[0020) Terminology . The following paragraphs provide
definitions and / or context for terms found in this disclosure
(including the appended claims) :
[0021] “ Comprising . ” This term is open - ended . As used in
the appended claims , this term does not foreclose additional
structure or steps . Consider a claim that recites : “ A com
puting system comprising a plurality of storage devices ...
. ” Such a claim does not foreclose the computing system
from including additional components (e.g. , a network inter
face , one or more processors , a storage controller) .
[0022] “ Configured To . ” Various units , circuits , or other
components may be described or claimed as “ configured to ”
perform a task or tasks . In such contexts , “ configured to ” is
used to connote structure by indicating that the units /
circuits / components include structure (e.g. , circuitry) that
performs the task or tasks during operation . As such , the
unit / circuit / component can be said to be configured to
perform the task even when the specified unit / circuit / com
ponent is not currently operational (e.g. , is not on) . The
units / circuits / components used with the " configured to "
language include hardware - for example , circuits , memory
storing program instructions executable to implement the
operation , etc. Reciting that a unit / circuit / component is
“ configured to ” perform one or more tasks is expressly
intended not to invoke 35 U.S.C. § 112 , sixth paragraph , for
that unit / circuit / component . Additionally , " configured to ”
can include generic structure (e.g. , generic circuitry) that is
manipulated by software and / or firmware (e.g. , an FPGA or
a general - purpose processor executing software) to operate
in manner that is capable of performing the task (s) at issue .
" Configured to ” may also include adapting a manufacturing
process (e.g. , a semiconductor fabrication facility) to fabri
cate devices (e.g. , integrated circuits) that are adapted to
implement or perform one or more tasks .
[0023] “ Based On . ” As used herein , this term is used to
describe one or more factors that affect a determination . This

term does not foreclose additional factors that may affect a
determination . That is , a determination may be solely based
on those factors or based , at least in part , on those factors .
Consider the phrase " determine A based on B. ” While B may
be a factor that affects the determination of A , such a phrase
does not foreclose the determination of A from also being
based on C. In other instances , A may be determined based
solely on B.
[0024] Referring now to FIG . 1 , a generalized block
diagram of one embodiment of a storage system 100 is
shown . Storage system 100 may include storage controller
110 and storage device groups 130 and 140 , which are
representative of any number of storage device groups (or
data storage arrays) . As shown , storage device group 130
includes storage devices 135A - N , which are representative
of any number and type of storage devices (e.g. , solid - state
drives (SSDs)) . Storage device group 140 may also include
a plurality of storage devices which are not shown to avoid
obscuring the figure .
[0025] Storage controller 110 may be coupled directly to
client computer system 125 , and storage controller 110 may
be coupled remotely over network 120 to client computer
system 115. Clients 115 and 125 are representative of any
number of clients which may utilize storage controller 110
for storing and accessing data in system 100. It is noted that
some systems may include only a single client , connected
directly or remotely to storage controller 110 .
[0026] Storage controller 110 may include software and / or
hardware configured to provide access to storage devices
135A - N . Although storage controller 110 is shown as being
separate from storage device groups 130 and 140 , in some
embodiments , portions or the entirety of storage controller
110 may be located within one or each of storage device
groups 130 and 140. Storage controller 110 may include or
be coupled to a base operating system (OS) , a volume
manager , and additional control logic for implementing the
various techniques disclosed herein .
[0027] Storage controller 110 may include and / or execute
on any number of processors and may include and / or
execute on a single host computing device or be spread
across multiple host computing devices , depending on the
embodiment . The host computing device (s) may be servers ,
workstations , or other types of computing devices . In some
embodiments , storage controller 110 may include or execute
on one or more file servers and / or block servers . Storage
controller 110 may use any of various techniques for repli
cating data across devices 135A - N to prevent loss of data
due to the failure of a device or the failure of storage
locations within a device .
[0028] The file system of storage controller 110 may
manage blocks of data according to a file system object , such
as a file , volume , segment , or other type of object . Each
block of data may be associated with the identifier of the
object (e.g. , file ID , segment number) and the offset of the
block within the object . In one embodiment , storage con
troller 110 may provide a given storage device with file
system object information directly , allowing the given stor
age device to maintain the mapping between the file system
object and the actual physical location , and freeing storage
controller 110 from having to maintain this mapping infor
mation . Instead , storage controller 110 may maintain only a
minimal amount of information about the file system
objects . For example , in one embodiment , storage controller
110 may maintain a table with one entry per object detailing

a

a

a a

US 2022/0043607 A1 Feb. 10 , 2022
3

a

a

information including the object's creation time , current
usage statistics , and an object ID . Accordingly , block
address generation may be simplified for storage controller
110 without needing to reference a complex mapping table
to determine the address of a specific block of a given object .
When storage controller 110 creates a new object , the new
object may be given an ID one greater than any previously
used object ID . In this way , storage controller 110 can ensure
that the blocks in this new object do not reuse any previously
used addresses .
[0029] In one embodiment , a given storage device 135
may receive read and write memory operations generated by
storage controller 110. Each memory operation may include
an address composed of a file system object number (or ID)
and an offset for the data block in question . Each storage
device may include a translation layer , and the translation
layer may include a mapping table to map an object number
and offset received with a given memory operation to a
corresponding physical storage location . The translation
layer may export an address space larger than the capacity
of the storage device , which allows storage controller 110 to
write a data block to a first address , wherein the first address
has a value larger than a capacity of block storage locations
in the storage device .
[0030] For example , in one embodiment , a given storage
device 135A may have 1024 addressable storage locations
for storing a block of data . The given storage device 135A
may utilize 10 address bits to address these 1024 storage
locations . The translation layer on this given storage device
135A may allow storage controller 110 to write to addresses
with more than 10 address bits . For example , storage con
troller 110 may utilize 16 address bits for addressing
memory operations to the given storage device 135A . This
provides storage controller 110 with 65,536 different block
addresses to use for memory operations targeting the given
storage device 135A . The storage controller 110 may actu
ally only use a small percentage of these 65,536 addressable
locations to prevent the given storage device 135A from
being oversubscribed . Therefore , the address space of stor
age controller 110 may be described as being a sparse
address space , where only a portion of the total address
space is being utilized at any given time . The translation
layer of the given storage device 135A may map received
16 - bit length addresses to 10 - bit addresses corresponding to
actual physical storage locations . It is noted that this sce
nario of using a 16 - bit address length at storage controller
110 and a 10 - bit address length at storage device 135A is
merely one example of a thin - provisioned storage device
implementation . Other bit - lengths for addresses at the stor
age controller 110 and the storage device 135A may be
utilized in other embodiments . Generally speaking , the
address space size may be larger at storage controller 110
than the total amount of free space on storage devices 135A .
In some embodiments , the bit - lengths for addresses at stor
age controller 110 and storage devices 135A may be the
same size , but there may be more available storage locations
at storage controller 110 than in storage devices 135A .
[0031] In some embodiments , storage controller 110 may
be coupled to multiple storage devices 135A - N . The total
number of addressable storage locations on all of the storage
devices coupled to storage controller 110 may be less than
the number of addresses in the address space utilized by
storage controller 110. For example , in one scenario , storage
controller 110 may be coupled to 16 storage devices , and

each storage device may have 2916 addressable storage
locations for data blocks . The combined total of all address
able storage locations on all 16 storage devices in this
scenario would be 2 20 (2 ̂ 16 * 16 storage devices) . The
storage controller 110 may utilize an address space of 2 48
addresses in this scenario , which exceeds the combined
capacity of all 16 storage devices . Other scenarios may have
other numbers of storage devices with other capacities , and
the combined total capacity of all storage devices coupled to
the storage controller may be less than the size of the address
space utilized by the storage controller for generating object
addresses .
[0032] In embodiments where storage controller 110 is
coupled to multiple storage devices , storage controller 110
may utilize any of various techniques for spreading memory
operations out to the multiple storage devices . For example ,
in one embodiment , storage controller 110 may determine
which storage device to send a given memory operation
based on a modulo operation performed on the offset portion
of the address . Accordingly , in an embodiment with 8
storage devices , storage controller 110 may take the offset
portion of the address modulo 8 and use this to map a value
of 0 to the first storage device , a value of 1 to the second
storage device , and so on . Other techniques for distributing
memory operations to multiple storage devices are possible
and are contemplated . These techniques may also be utilized
for other types of computing devices (besides storage con
trollers) which are coupled to multiple storage devices .
[0033] In one embodiment , a given storage device 135B
may declare itself to have a larger capacity than it actually
possesses . Storage controller 110 may receive and believe
this “ dishonest ” declaration from the given storage device
135B . Accordingly , storage controller 110 may operate
under the assumption that each block address being gener
ated by its file system and conveyed to the given storage
device 135B is being mapped directly to an addressable
block storage location . In effect , the given storage device
135B is hiding the fact that it is thin - provisioned from
storage controller 110 , and device 135B is also hiding the
underlying mapping of object addresses to physical
addresses from storage controller 110. This scheme may
allow legacy operation systems , file systems , interface pro
tocols , and / or interface logic to be used by storage controller
110 when interfacing with solid - state storage devices . The
given storage device 135B may also be able to use legacy
interface logic to communicate with storage controller 110
based on using this “ dishonest ” declaration scheme .
[0034] It is noted that in alternative embodiments , the
number and type of client computers , storage controllers ,
networks , storage device groups , and data storage devices is
not limited to those shown in FIG . 1. At various times one
or more clients may operate offline . In addition , during
operation , individual client computer connection types may
change as users connect , disconnect , and reconnect to sys
tem 100. Further , the systems and methods described herein
may be applied to directly attached storage systems or
network attached storage systems and may include a host
operating system configured to perform one or more aspects
of the described methods . Numerous such alternatives are
possible and are contemplated .
[0035] Network 120 may utilize a variety of techniques
including wireless connection , direct local area network
(LAN) connections , wide area network (WAN) connections
such as the Internet , a router , storage area network , Ethernet ,

US 2022/0043607 A1 Feb. 10 , 2022
4

a

and others . Network 120 may comprise one or more LANs
that may also be wireless . Network 120 may further include
remote direct memory access (RDMA) hardware and / or
software , transmission control protocol / internet protocol
(TCP / IP) hardware and / or software , router , repeaters ,
switches , grids , and / or others . Protocols such as Fibre Chan
nel , Fibre Channel over Ethernet (FCOE) , iSCSI , and so
forth may be used in network 120. The network 120 may
interface with a set of communications protocols used for
the Internet such as the Transmission Control Protocol
(TCP) and the Internet Protocol (IP) , or TCP / IP .
[0036] Client computer systems 115 and 125 are repre
sentative of any number of stationary or mobile computers
such as desktop personal computers (PCs) , servers , server
farms , workstations , laptops , handheld computers , servers ,
personal digital assistants (PDAs) , smart phones , and so
forth . Generally speaking , client computer systems 115 and
125 include one or more processors comprising one or more
processor cores . Each processor core includes circuitry for
executing instructions according to a predefined general
purpose instruction set . For example , the x86 instruction set
architecture may be selected . Alternatively , the ARM® ,
Alpha® , PowerPC® , SPARC® , or any other general - pur
pose instruction set architecture may be selected . The pro
cessor cores may access cache memory subsystems for data
and computer program instructions . The cache subsystems
may be coupled to a memory hierarchy comprising random
access memory (RAM) and a storage device .
[0037] Turning now to FIG . 2 , a block diagram of one
embodiment of a host computing device coupled to a storage
device is shown . Host computing device 204 may include
address generation unit 205 for generating addresses for
segments of memory operations being conveyed to storage
device 202. Address generation unit 205 may generate
addresses for a memory operation from the corresponding
segment number and block offset . For example , in one
embodiment , segments may be 8 megabytes (MB) in length
and blocks may be 4 kilobytes (KB) long , resulting in 2048
blocks per segment . Address generation unit 205 may con
struct block addresses by concatenating the segment number
with an 11 - bit block offset and passing the resultant address
to storage device 202. It is noted that the block diagram of
address generation unit 205 is a logical representation of
address generation unit 205. Address generation unit 205
may be implemented using hardware and / or software ,
depending on the embodiment .
[0038] Storage device 202 may include translation layer
206 and non - volatile physical storage locations 210. Storage
device 202 may also include other components (e.g. , buffer ,
processor) which are not shown to avoid obscuring the
figure . Translation layer 206 may be part of the interface
logic utilized by storage device 202 to interface with host
computing device 204 and to process received memory
operations . Translation layer 206 may be referred to as a
flash translation layer in embodiments where storage device
202 is a flash memory device .
[0039] Translation layer 206 may be configured to trans
late addresses from a sparse address space utilized by host
computing device 204 to the physical address space corre
sponding to physical storage locations 210. Translation layer
206 may present an address space to host computing device
204 which is larger than the storage capacity of storage
device 202. Translation layer 206 may be implemented
using any suitable combination of hardware and / or software .

[0040] In one embodiment , the interface between host
computing device 204 and storage device 202 may be a
custom designed interface . Alternatively , in other embodi
ments , the interface may utilize a standard communication
protocol . For example , the interface between host computing
device 204 and storage device 202 may utilize a Serial
Advanced Technology Attachment (“ SATA ”) protocol bus , a
Small Computer System Interface (" SCSI ”) protocol bus , a
Serial Attached SCSI (“ SAS ”) protocol bus , or any of
various other communication protocols . In one embodiment ,
the protocol utilized on the interface between host comput
ing device 204 and storage device 202 may utilize a fixed
width address for addressing blocks . The protocol may also
support only a single volume per storage device 202 , and the
number of blocks storage device 202 can store may be less
than the number of blocks the protocol can address .
[0041] Translation layer 206 may include mapping table
208 for mapping file system object addresses received from
host computing device 204 to specific locations within
physical storage locations 210. Mapping table 208 may
include multiple levels and may be arranged in any suitable
fashion , depending on the embodiment . For example , map
ping table 208 may implement a fully associative mapping ,
set associative mapping , or direct mapping , depending on
the embodiment . It is noted that translation layer 206 may
also include other logic which is not shown to avoid obscur
ing the figure .
[0042] In one embodiment , for a given data block man
aged by host computing device 204 , the segment number of
the segment containing the data block may be concatenated
with the offset of the data block within the segment to
generate the address of the data block , and this address may
be conveyed to storage device 202. The segment number
may be M bits and the block offset may be N bits , resulting
in an address length of M + N bits which is conveyed to
storage device 202. This approach simplifies address gen
eration and allows host computing device 204 to avoid
having to maintain a mapping table to translate addresses of
data blocks to logical or physical addresses . Instead , host
computing device 204 and storage device 202 are able to
share a single mapping table 208 for mapping segments to
physical addresses .
[0043] Memory operations may be conveyed by host
computing device 204 to storage device 202 , and each
memory operation may include an object address generated
from the corresponding segment number and block offset .
When a memory operation is received by storage device
202 , the segment number and block offset address may be
translated to a physical address using mapping table 208. In
one embodiment , each physical address may indicate a
corresponding block and page of physical storage locations
210. The physical address may be of size P bits , wherein P
is less than the size (M + N) of the object address received by
storage device 202. In other words , the address space
utilized by host computing device 204 to manage segments
targeting storage device 202 is larger than the capacity of
physical storage in storage device 202. Accordingly , trans
lation layer 206 may be configured to allow host computing
device 204 to write a data block to a first address in the
address space of host computing device 204) , wherein the
first address has a value larger than the capacity of block
storage locations in storage device 202. The values P , M , and
N are assumed to be positive integers for the purposes of this
discussion .

US 2022/0043607 A1 Feb. 10 , 2022
5

a

a a

[0044] In one embodiment , with a segment length of 8
MB , if storage device 202 has a capacity of 50,000 seg
ments , then storage device 202 has a storage capacity of 400
gigabytes (GB) . However , some of the data utilized by host
computing device 204 might not be within the first 400 GB
of address space . For example , host computing device 204
might create 200,000 segments interspersed with invalida
tion of 160,000 segments , leading to a maximum address
space of 1.6 terabytes (TB) , but only actually storing 320 GB
of data on storage device 202 , which is within its 400 GB
capacity . If a segment is no longer needed , host computing
device 204 may use a TRIM command to inform storage
device 202 that it can free the blocks associated with the
segment . If a new segment is created , rather than reusing a
segment ID from an old segment , host computing device 204
can simply create a new segment ID by incrementing the
largest previously - used segment ID .
[0045] If the memory operation is a read operation and a
lookup corresponding to the memory operation hits an
existing entry in mapping table 208 , then the read operation
may be performed to the corresponding physical address
retrieved from the hit entry . Write operations which are
received by storage device 202 may result in new entries
being generated for mapping table 208. If a write operation
hits in mapping table 208 , then the physical address of the
hit entry may be invalidated (and erased at a later point in
time) , and a new entry may be recorded in mapping table
208 which maps the segment number and block offset
address to the new physical address allocated for the write
operation . During garbage collection operations or other
internal - device processes , mapping table 208 may be
updated as data is moved between physical storage loca
tions .
[0046] Turning now to FIG . 3 , a block diagram of another
embodiment of a host computing device coupled to a storage
device is shown . As shown in FIG . 3 , host computer 304 is
coupled to storage device 302. Host computer 304 includes
address generation unit 305 , and storage device includes
physical storage locations 310 and translation layer 306 ,
which includes mapping table 308 .
[0047] In contrast to FIG . 2 , address generation unit 305 of
FIG . 3 may generate an address of a memory operation
based on an inode number instead of using a segment
number . Host computer 304 may include a file system which
tracks data based on files and block offsets within the file ,
and the file system may map each file name to an inode
number .
[0048] It is noted that in other embodiments , other file
system objects may be utilized by address generation unit
305 of host computer 304 for generating addresses associ
ated with memory operations . For example , in another
embodiment , the file system may track data according to
volumes , and the volume numbers and offsets may be
utilized for generating addresses in address generation unit .
[0049] Mapping table 308 of translation layer 306 may
map object addresses to physical addresses , and each object
address in this case may be an inode number concatenated
with an offset . Storage device 302 may be configured in a
similar manner to storage device 202 of FIG . 2 , and the
description of storage device 202 may also apply to storage
device 302
[0050] Turning now to FIG . 4 , one embodiment of a
method 400 for implementing a thin - provisioned storage
device is shown . For purposes of discussion , the steps in this

embodiment are shown in sequential order . It should be
noted that in various embodiments of the method described
below , one or more of the elements described may be
performed concurrently , in a different order than shown , or
may be omitted entirely . Other additional elements may also
be performed as desired .
[0051] A host computing device may initiate a memory
request corresponding to one or more data blocks of a file
system object (block 405) . The file system object may be a
file , segment , volume , or another type of object depending
on the embodiment . The host computing device may gen
erate an address of the memory request based on an object
number (or ID) and an offset of the first block (of the one or
more blocks) within the object (block 410) . The address of
the memory request may be N bits in length . Therefore , for
an address of N bits in length , there are a total of 2N possible
addresses that may be utilized in this address space . In one
embodiment , the file system object may be a file and the file
system may use the inode number corresponding to the file
as the first part of the address . The second part of the address
may be the offset of the data block within the file . In one
embodiment , the inode number may be represented by 24
bits and the offset may be represented by 24 bits , making the
length of the address equal to 48 bits . This would give the
file system a total of 248 different addresses in the address
space when mapping requests to a storage device coupled to
the host computing device . It may be assumed for the
purposes of this discussion that the host computing device is
coupled to a single storage device .
[0052] Next , the host computing device may send the
memory request with the generated address to the storage
device (block 415) . In response to receiving the memory
request , the storage device may translate the object address
of the memory request to a physical address (block 420) . In
one embodiment , the storage device may maintain a map
ping table to translate received object addresses to physical
addresses . If the object address of the memory request is a
new address , or if the memory request is a write request ,
then the storage device may generate a new physical address
for this object address and store this new mapping in the
mapping table . In one embodiment , the request sent from the
host computing device to the storage device may be a TRIM
command , and the TRIM command may specify a file
system object which has been deleted . A TRIM command is
an example of one technique in which the host computing
device may inform the storage device that an address range
has been deleted and that the storage device may “ forget ”
about a range of identifiers . In response to receiving the
TRIM command , the storage device may reclaim the storage
locations utilized by these range of identifiers .
[0053] The address space of all possible object addresses
may exceed the physical capacity of the storage device . In
other words , the bit length of object addresses may be larger
than the bit length of physical addresses stored in the table .
For example , in one embodiment , object addresses may be
48 bits in length and physical addresses may be 20 bits in
length . In other embodiments , other object address bit
lengths and other physical address bit - lengths may be uti
lized .
[0054] After block 420 , the storage device may process
the memory request using the physical address translated
from the object address (block 425) . The processing of the
memory request may be performed using any of various
techniques well known to those skilled in the art . If the

a

US 2022/0043607 A1 Feb. 10 , 2022
6

a

the storage

memory request is a TRIM command , the storage controller
may reclaim the blocks corresponding to the specified
address range . After block 425 , method 400 may end .
[0055] Referring now to FIG . 5 , one embodiment of a
method for integrating a thin - provisioned storage device
within a computing system is shown . For purposes of
discussion , the steps in this embodiment are shown in
sequential order . It should be noted that in various embodi
ments of the method described below , one or more of the
elements described may be performed concurrently , in a
different order than shown , or may be omitted entirely . Other
additional elements may also be performed as desired .
[0056] A computing system may detect a storage device
connected to the computing system (block 505) . In one
embodiment , the computing system may be a server and the
storage device may be a storage device (e.g. , solid state
drive) in the server . In another embodiment , the computing
system may be a tablet and the storage device may be a flash
memory device integrated within the tablet . In other
embodiments , other types of computing systems (e.g. , desk
top computer , smartphone) may be utilized with any of
various types of storage devices . In response to detecting the
presence of the storage device , the computing system may
query device for its storage capacity (block 510) .
In response to receiving the query , the storage device may
“ lie ” and overstate the amount of storage capacity it contains
(block 515) .
[0057] In one embodiment , the storage device may reply
to the computing system's query with the maximum possible
storage capacity based on the number of supported address
bits which are available on the interface connection between
the computing system and the storage device . For example ,
if the storage device uses the Serial Advance Technology
Attachment (SATA) protocol to communicate with the com
puting system host , the number of supported address bits
may be 48 , and the storage device may reply that it contains
248 addressable blocks , even though this may far exceed the
amount of addressable blocks on the storage device . In other
embodiments , the storage device may utilize other types of
protocols or interfaces to communicate with the computing
system , and these other types of interfaces may support other
numbers of address bits besides 48 .
[0058] By overstating its storage capacity , the storage
device provides the computing system host with more
flexibility in selecting addresses for file system objects that
are stored on the storage device . For example , when the
computing system needs to generate an ID for a new file
system object , instead of reusing an ID from an old object ,
the computing system may increment the largest previously
used ID and to create a new ID for the new object . The large
address space exported by the storage device enables this
flexibility in generating IDs for the computing system .
[0059] It is noted that the above - described embodiments
may comprise software . In such an embodiment , the pro
gram instructions that implement the methods and / or mecha
nisms may be conveyed or stored on a non - transitory
computer readable medium . Numerous types of media
which are configured to store program instructions are
available and include hard disks , floppy disks , CD - ROM ,
DVD , flash memory , Programmable ROMs (PROM) , ran
dom access memory (RAM) , and various other forms of
volatile or non - volatile storage .
[0060] In various embodiments , one or more portions of
the methods and mechanisms described herein may form

part of a cloud - computing environment . In such embodi
ments , resources may be provided over the Internet as
services according to one or more various models . Such
models may include Infrastructure as a Service (IaaS) ,
Platform as a Service (PaaS) , and Software as a Service
(SaaS) . In IaaS , computer infrastructure is delivered as a
service . In such a case , the computing equipment is gener
ally owned and operated by the service provider . In the PaaS
model , software tools and underlying equipment used by
developers to develop software solutions may be provided as
a service and hosted by the service provider . SaaS typically
includes a service provider licensing software as a service on
demand . The service provider may host the software , or may
deploy the software to a customer for a given period of time .
Numerous combinations of the above models are possible
and are contemplated .
[0061] Although the embodiments above have been
described in considerable detail , numerous variations and
modifications will become apparent to those skilled in the art
once the above disclosure is fully appreciated . It is intended
that the following claims be interpreted to embrace all such
variations and modifications .

1. A storage controller configured to :
generate an address for an I / O operation that is to be

directed to one or more storage devices in a storage
system ; and

issue an I / O operation to the one or more storage devices
using the generated address , wherein the generated
address exceeds the range of actual addressable loca
tions within the storage device .

2. The storage controller of claim 1 wherein the I / O
operation is issued using a protocol that addresses blocks
with a fixed - width address .

3. The storage controller of claim 2 , wherein the first
protocol is Serial Advanced Technology Attachment
(SATA) , Small Computer System Interface (SCSI) or Serial
Attached SCSI (SAS) .

4. The storage controller of claim 1 wherein the storage
controller includes a translation layer that maintains a map
ping table to map addresses in an exported address space to
addressable storage locations on the one or more storage
devices , wherein the one or more storage devices include a
first number of addressable storage locations and the
exported address space has a second number of addressable
storage locations , wherein the second number is greater than
the first number .

5. The storage controller of claim 4 wherein the mapping
table is updated during garbage collection .

6. The storage controller of claim 4 wherein the mapping
table maps object addresses to physical addresses in the one
or more storage devices .

7. The storage controller of claim 1 wherein the storage
controller is coupled to multiple storage devices , and the
storage controller is further configured to distribute I / O
operations amongst the multiple storage devices .

8. A method comprising :
generating an address for an I / O operation that is to be

directed to one or more storage devices in a storage
system ; and

issuing an I / O operation to the one or more storage
devices using the generated address , wherein the gen
erated address exceeds the range of actual addressable
locations within the storage device .

a

2

a

US 2022/0043607 A1 Feb. 10 , 2022
7

9. The method as recited in claim 8 , wherein the I / O
operation is issued using a protocol that addresses blocks
with a fixed - width address .

10. The method as recited in claim 9 , wherein the first
protocol is Serial Advanced Technology Attachment
(SATA) , Small Computer System Interface (SCSI) or Serial
Attached SCSI (SAS) .

11. The method as recited in claim 8 , further comprising
maintaining a mapping table to map addresses in an
exported address space to addressable storage locations on
the one or more storage devices , wherein the one or more
storage devices include a first number of addressable storage
locations and the exported address space has a second
number of addressable storage locations , wherein the second
number is greater than the first number .

12. The method as recited in claim 11 , wherein the
mapping table is updated during garbage collection .

13. The method as recited in claim 11 , wherein the
mapping table maps object addresses to physical addresses
in the one or more storage devices .

14. The method as recited in claim 8 , further comprising
distributing I / O operations amongst the multiple storage
devices .

15. A non - transitory computer readable storage medium
comprising program instructions , wherein the program
instructions are executable to :

generate an address for an I / O operation that is to be
directed to one or more storage devices in a storage
system ; and

issue an I / O operation to the one or more storage devices
using the generated address , wherein the generated
address exceeds the range of actual addressable loca
tions within the storage device .

16. The non - transitory computer readable storage medium
as recited in claim 15 , wherein the I / O operation is issued
using a protocol that addresses blocks with a fixed - width
address .

17. The non - transitory computer readable storage medium
as recited in claim 16 , wherein the first protocol is Serial
Advanced Technology Attachment (SATA) , Small Com
puter System Interface (SCSI) or Serial Attached SCSI
(SAS) .

18. The non - transitory computer readable storage medium
as recited in claim 15 , wherein the program instructions are
further executable to maintain a mapping table to map
addresses in an exported address space to addressable stor
age locations on the one or more storage devices , wherein
the one or more storage devices include a first number of
addressable storage locations and the exported address space
has a second number of addressable storage locations ,
wherein the second number is greater than the first number .

19. The non - transitory computer readable storage medium
as recited in claim 18 , wherein the mapping table is updated
during garbage collection .

20. The non - transitory computer readable storage medium
as recited in claim 18 , wherein the mapping table maps
object addresses to physical addresses in the one or more
storage devices .

*

